Merge branch 'next/drivers' into HEAD
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void __devexit e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring,
152 int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162 struct sk_buff *skb);
163
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166 netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
170 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
171 static void e1000_restore_vlan(struct e1000_adapter *adapter);
172
173 #ifdef CONFIG_PM
174 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
175 static int e1000_resume(struct pci_dev *pdev);
176 #endif
177 static void e1000_shutdown(struct pci_dev *pdev);
178
179 #ifdef CONFIG_NET_POLL_CONTROLLER
180 /* for netdump / net console */
181 static void e1000_netpoll (struct net_device *netdev);
182 #endif
183
184 #define COPYBREAK_DEFAULT 256
185 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
186 module_param(copybreak, uint, 0644);
187 MODULE_PARM_DESC(copybreak,
188 "Maximum size of packet that is copied to a new buffer on receive");
189
190 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
191 pci_channel_state_t state);
192 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
193 static void e1000_io_resume(struct pci_dev *pdev);
194
195 static const struct pci_error_handlers e1000_err_handler = {
196 .error_detected = e1000_io_error_detected,
197 .slot_reset = e1000_io_slot_reset,
198 .resume = e1000_io_resume,
199 };
200
201 static struct pci_driver e1000_driver = {
202 .name = e1000_driver_name,
203 .id_table = e1000_pci_tbl,
204 .probe = e1000_probe,
205 .remove = __devexit_p(e1000_remove),
206 #ifdef CONFIG_PM
207 /* Power Management Hooks */
208 .suspend = e1000_suspend,
209 .resume = e1000_resume,
210 #endif
211 .shutdown = e1000_shutdown,
212 .err_handler = &e1000_err_handler
213 };
214
215 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
216 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
217 MODULE_LICENSE("GPL");
218 MODULE_VERSION(DRV_VERSION);
219
220 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
221 static int debug = -1;
222 module_param(debug, int, 0);
223 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
224
225 /**
226 * e1000_get_hw_dev - return device
227 * used by hardware layer to print debugging information
228 *
229 **/
230 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
231 {
232 struct e1000_adapter *adapter = hw->back;
233 return adapter->netdev;
234 }
235
236 /**
237 * e1000_init_module - Driver Registration Routine
238 *
239 * e1000_init_module is the first routine called when the driver is
240 * loaded. All it does is register with the PCI subsystem.
241 **/
242
243 static int __init e1000_init_module(void)
244 {
245 int ret;
246 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
247
248 pr_info("%s\n", e1000_copyright);
249
250 ret = pci_register_driver(&e1000_driver);
251 if (copybreak != COPYBREAK_DEFAULT) {
252 if (copybreak == 0)
253 pr_info("copybreak disabled\n");
254 else
255 pr_info("copybreak enabled for "
256 "packets <= %u bytes\n", copybreak);
257 }
258 return ret;
259 }
260
261 module_init(e1000_init_module);
262
263 /**
264 * e1000_exit_module - Driver Exit Cleanup Routine
265 *
266 * e1000_exit_module is called just before the driver is removed
267 * from memory.
268 **/
269
270 static void __exit e1000_exit_module(void)
271 {
272 pci_unregister_driver(&e1000_driver);
273 }
274
275 module_exit(e1000_exit_module);
276
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279 struct net_device *netdev = adapter->netdev;
280 irq_handler_t handler = e1000_intr;
281 int irq_flags = IRQF_SHARED;
282 int err;
283
284 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 netdev);
286 if (err) {
287 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288 }
289
290 return err;
291 }
292
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295 struct net_device *netdev = adapter->netdev;
296
297 free_irq(adapter->pdev->irq, netdev);
298 }
299
300 /**
301 * e1000_irq_disable - Mask off interrupt generation on the NIC
302 * @adapter: board private structure
303 **/
304
305 static void e1000_irq_disable(struct e1000_adapter *adapter)
306 {
307 struct e1000_hw *hw = &adapter->hw;
308
309 ew32(IMC, ~0);
310 E1000_WRITE_FLUSH();
311 synchronize_irq(adapter->pdev->irq);
312 }
313
314 /**
315 * e1000_irq_enable - Enable default interrupt generation settings
316 * @adapter: board private structure
317 **/
318
319 static void e1000_irq_enable(struct e1000_adapter *adapter)
320 {
321 struct e1000_hw *hw = &adapter->hw;
322
323 ew32(IMS, IMS_ENABLE_MASK);
324 E1000_WRITE_FLUSH();
325 }
326
327 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
328 {
329 struct e1000_hw *hw = &adapter->hw;
330 struct net_device *netdev = adapter->netdev;
331 u16 vid = hw->mng_cookie.vlan_id;
332 u16 old_vid = adapter->mng_vlan_id;
333
334 if (!e1000_vlan_used(adapter))
335 return;
336
337 if (!test_bit(vid, adapter->active_vlans)) {
338 if (hw->mng_cookie.status &
339 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
340 e1000_vlan_rx_add_vid(netdev, vid);
341 adapter->mng_vlan_id = vid;
342 } else {
343 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
344 }
345 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
346 (vid != old_vid) &&
347 !test_bit(old_vid, adapter->active_vlans))
348 e1000_vlan_rx_kill_vid(netdev, old_vid);
349 } else {
350 adapter->mng_vlan_id = vid;
351 }
352 }
353
354 static void e1000_init_manageability(struct e1000_adapter *adapter)
355 {
356 struct e1000_hw *hw = &adapter->hw;
357
358 if (adapter->en_mng_pt) {
359 u32 manc = er32(MANC);
360
361 /* disable hardware interception of ARP */
362 manc &= ~(E1000_MANC_ARP_EN);
363
364 ew32(MANC, manc);
365 }
366 }
367
368 static void e1000_release_manageability(struct e1000_adapter *adapter)
369 {
370 struct e1000_hw *hw = &adapter->hw;
371
372 if (adapter->en_mng_pt) {
373 u32 manc = er32(MANC);
374
375 /* re-enable hardware interception of ARP */
376 manc |= E1000_MANC_ARP_EN;
377
378 ew32(MANC, manc);
379 }
380 }
381
382 /**
383 * e1000_configure - configure the hardware for RX and TX
384 * @adapter = private board structure
385 **/
386 static void e1000_configure(struct e1000_adapter *adapter)
387 {
388 struct net_device *netdev = adapter->netdev;
389 int i;
390
391 e1000_set_rx_mode(netdev);
392
393 e1000_restore_vlan(adapter);
394 e1000_init_manageability(adapter);
395
396 e1000_configure_tx(adapter);
397 e1000_setup_rctl(adapter);
398 e1000_configure_rx(adapter);
399 /* call E1000_DESC_UNUSED which always leaves
400 * at least 1 descriptor unused to make sure
401 * next_to_use != next_to_clean */
402 for (i = 0; i < adapter->num_rx_queues; i++) {
403 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404 adapter->alloc_rx_buf(adapter, ring,
405 E1000_DESC_UNUSED(ring));
406 }
407 }
408
409 int e1000_up(struct e1000_adapter *adapter)
410 {
411 struct e1000_hw *hw = &adapter->hw;
412
413 /* hardware has been reset, we need to reload some things */
414 e1000_configure(adapter);
415
416 clear_bit(__E1000_DOWN, &adapter->flags);
417
418 napi_enable(&adapter->napi);
419
420 e1000_irq_enable(adapter);
421
422 netif_wake_queue(adapter->netdev);
423
424 /* fire a link change interrupt to start the watchdog */
425 ew32(ICS, E1000_ICS_LSC);
426 return 0;
427 }
428
429 /**
430 * e1000_power_up_phy - restore link in case the phy was powered down
431 * @adapter: address of board private structure
432 *
433 * The phy may be powered down to save power and turn off link when the
434 * driver is unloaded and wake on lan is not enabled (among others)
435 * *** this routine MUST be followed by a call to e1000_reset ***
436 *
437 **/
438
439 void e1000_power_up_phy(struct e1000_adapter *adapter)
440 {
441 struct e1000_hw *hw = &adapter->hw;
442 u16 mii_reg = 0;
443
444 /* Just clear the power down bit to wake the phy back up */
445 if (hw->media_type == e1000_media_type_copper) {
446 /* according to the manual, the phy will retain its
447 * settings across a power-down/up cycle */
448 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
449 mii_reg &= ~MII_CR_POWER_DOWN;
450 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
451 }
452 }
453
454 static void e1000_power_down_phy(struct e1000_adapter *adapter)
455 {
456 struct e1000_hw *hw = &adapter->hw;
457
458 /* Power down the PHY so no link is implied when interface is down *
459 * The PHY cannot be powered down if any of the following is true *
460 * (a) WoL is enabled
461 * (b) AMT is active
462 * (c) SoL/IDER session is active */
463 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 hw->media_type == e1000_media_type_copper) {
465 u16 mii_reg = 0;
466
467 switch (hw->mac_type) {
468 case e1000_82540:
469 case e1000_82545:
470 case e1000_82545_rev_3:
471 case e1000_82546:
472 case e1000_ce4100:
473 case e1000_82546_rev_3:
474 case e1000_82541:
475 case e1000_82541_rev_2:
476 case e1000_82547:
477 case e1000_82547_rev_2:
478 if (er32(MANC) & E1000_MANC_SMBUS_EN)
479 goto out;
480 break;
481 default:
482 goto out;
483 }
484 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485 mii_reg |= MII_CR_POWER_DOWN;
486 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487 msleep(1);
488 }
489 out:
490 return;
491 }
492
493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
494 {
495 set_bit(__E1000_DOWN, &adapter->flags);
496
497 /* Only kill reset task if adapter is not resetting */
498 if (!test_bit(__E1000_RESETTING, &adapter->flags))
499 cancel_work_sync(&adapter->reset_task);
500
501 cancel_delayed_work_sync(&adapter->watchdog_task);
502 cancel_delayed_work_sync(&adapter->phy_info_task);
503 cancel_delayed_work_sync(&adapter->fifo_stall_task);
504 }
505
506 void e1000_down(struct e1000_adapter *adapter)
507 {
508 struct e1000_hw *hw = &adapter->hw;
509 struct net_device *netdev = adapter->netdev;
510 u32 rctl, tctl;
511
512
513 /* disable receives in the hardware */
514 rctl = er32(RCTL);
515 ew32(RCTL, rctl & ~E1000_RCTL_EN);
516 /* flush and sleep below */
517
518 netif_tx_disable(netdev);
519
520 /* disable transmits in the hardware */
521 tctl = er32(TCTL);
522 tctl &= ~E1000_TCTL_EN;
523 ew32(TCTL, tctl);
524 /* flush both disables and wait for them to finish */
525 E1000_WRITE_FLUSH();
526 msleep(10);
527
528 napi_disable(&adapter->napi);
529
530 e1000_irq_disable(adapter);
531
532 /*
533 * Setting DOWN must be after irq_disable to prevent
534 * a screaming interrupt. Setting DOWN also prevents
535 * tasks from rescheduling.
536 */
537 e1000_down_and_stop(adapter);
538
539 adapter->link_speed = 0;
540 adapter->link_duplex = 0;
541 netif_carrier_off(netdev);
542
543 e1000_reset(adapter);
544 e1000_clean_all_tx_rings(adapter);
545 e1000_clean_all_rx_rings(adapter);
546 }
547
548 static void e1000_reinit_safe(struct e1000_adapter *adapter)
549 {
550 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
551 msleep(1);
552 mutex_lock(&adapter->mutex);
553 e1000_down(adapter);
554 e1000_up(adapter);
555 mutex_unlock(&adapter->mutex);
556 clear_bit(__E1000_RESETTING, &adapter->flags);
557 }
558
559 void e1000_reinit_locked(struct e1000_adapter *adapter)
560 {
561 /* if rtnl_lock is not held the call path is bogus */
562 ASSERT_RTNL();
563 WARN_ON(in_interrupt());
564 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
565 msleep(1);
566 e1000_down(adapter);
567 e1000_up(adapter);
568 clear_bit(__E1000_RESETTING, &adapter->flags);
569 }
570
571 void e1000_reset(struct e1000_adapter *adapter)
572 {
573 struct e1000_hw *hw = &adapter->hw;
574 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
575 bool legacy_pba_adjust = false;
576 u16 hwm;
577
578 /* Repartition Pba for greater than 9k mtu
579 * To take effect CTRL.RST is required.
580 */
581
582 switch (hw->mac_type) {
583 case e1000_82542_rev2_0:
584 case e1000_82542_rev2_1:
585 case e1000_82543:
586 case e1000_82544:
587 case e1000_82540:
588 case e1000_82541:
589 case e1000_82541_rev_2:
590 legacy_pba_adjust = true;
591 pba = E1000_PBA_48K;
592 break;
593 case e1000_82545:
594 case e1000_82545_rev_3:
595 case e1000_82546:
596 case e1000_ce4100:
597 case e1000_82546_rev_3:
598 pba = E1000_PBA_48K;
599 break;
600 case e1000_82547:
601 case e1000_82547_rev_2:
602 legacy_pba_adjust = true;
603 pba = E1000_PBA_30K;
604 break;
605 case e1000_undefined:
606 case e1000_num_macs:
607 break;
608 }
609
610 if (legacy_pba_adjust) {
611 if (hw->max_frame_size > E1000_RXBUFFER_8192)
612 pba -= 8; /* allocate more FIFO for Tx */
613
614 if (hw->mac_type == e1000_82547) {
615 adapter->tx_fifo_head = 0;
616 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
617 adapter->tx_fifo_size =
618 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
619 atomic_set(&adapter->tx_fifo_stall, 0);
620 }
621 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
622 /* adjust PBA for jumbo frames */
623 ew32(PBA, pba);
624
625 /* To maintain wire speed transmits, the Tx FIFO should be
626 * large enough to accommodate two full transmit packets,
627 * rounded up to the next 1KB and expressed in KB. Likewise,
628 * the Rx FIFO should be large enough to accommodate at least
629 * one full receive packet and is similarly rounded up and
630 * expressed in KB. */
631 pba = er32(PBA);
632 /* upper 16 bits has Tx packet buffer allocation size in KB */
633 tx_space = pba >> 16;
634 /* lower 16 bits has Rx packet buffer allocation size in KB */
635 pba &= 0xffff;
636 /*
637 * the tx fifo also stores 16 bytes of information about the tx
638 * but don't include ethernet FCS because hardware appends it
639 */
640 min_tx_space = (hw->max_frame_size +
641 sizeof(struct e1000_tx_desc) -
642 ETH_FCS_LEN) * 2;
643 min_tx_space = ALIGN(min_tx_space, 1024);
644 min_tx_space >>= 10;
645 /* software strips receive CRC, so leave room for it */
646 min_rx_space = hw->max_frame_size;
647 min_rx_space = ALIGN(min_rx_space, 1024);
648 min_rx_space >>= 10;
649
650 /* If current Tx allocation is less than the min Tx FIFO size,
651 * and the min Tx FIFO size is less than the current Rx FIFO
652 * allocation, take space away from current Rx allocation */
653 if (tx_space < min_tx_space &&
654 ((min_tx_space - tx_space) < pba)) {
655 pba = pba - (min_tx_space - tx_space);
656
657 /* PCI/PCIx hardware has PBA alignment constraints */
658 switch (hw->mac_type) {
659 case e1000_82545 ... e1000_82546_rev_3:
660 pba &= ~(E1000_PBA_8K - 1);
661 break;
662 default:
663 break;
664 }
665
666 /* if short on rx space, rx wins and must trump tx
667 * adjustment or use Early Receive if available */
668 if (pba < min_rx_space)
669 pba = min_rx_space;
670 }
671 }
672
673 ew32(PBA, pba);
674
675 /*
676 * flow control settings:
677 * The high water mark must be low enough to fit one full frame
678 * (or the size used for early receive) above it in the Rx FIFO.
679 * Set it to the lower of:
680 * - 90% of the Rx FIFO size, and
681 * - the full Rx FIFO size minus the early receive size (for parts
682 * with ERT support assuming ERT set to E1000_ERT_2048), or
683 * - the full Rx FIFO size minus one full frame
684 */
685 hwm = min(((pba << 10) * 9 / 10),
686 ((pba << 10) - hw->max_frame_size));
687
688 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
689 hw->fc_low_water = hw->fc_high_water - 8;
690 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
691 hw->fc_send_xon = 1;
692 hw->fc = hw->original_fc;
693
694 /* Allow time for pending master requests to run */
695 e1000_reset_hw(hw);
696 if (hw->mac_type >= e1000_82544)
697 ew32(WUC, 0);
698
699 if (e1000_init_hw(hw))
700 e_dev_err("Hardware Error\n");
701 e1000_update_mng_vlan(adapter);
702
703 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
704 if (hw->mac_type >= e1000_82544 &&
705 hw->autoneg == 1 &&
706 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
707 u32 ctrl = er32(CTRL);
708 /* clear phy power management bit if we are in gig only mode,
709 * which if enabled will attempt negotiation to 100Mb, which
710 * can cause a loss of link at power off or driver unload */
711 ctrl &= ~E1000_CTRL_SWDPIN3;
712 ew32(CTRL, ctrl);
713 }
714
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
720
721 e1000_release_manageability(adapter);
722 }
723
724 /* Dump the eeprom for users having checksum issues */
725 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726 {
727 struct net_device *netdev = adapter->netdev;
728 struct ethtool_eeprom eeprom;
729 const struct ethtool_ops *ops = netdev->ethtool_ops;
730 u8 *data;
731 int i;
732 u16 csum_old, csum_new = 0;
733
734 eeprom.len = ops->get_eeprom_len(netdev);
735 eeprom.offset = 0;
736
737 data = kmalloc(eeprom.len, GFP_KERNEL);
738 if (!data)
739 return;
740
741 ops->get_eeprom(netdev, &eeprom, data);
742
743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 csum_new += data[i] + (data[i + 1] << 8);
747 csum_new = EEPROM_SUM - csum_new;
748
749 pr_err("/*********************/\n");
750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 pr_err("Calculated : 0x%04x\n", csum_new);
752
753 pr_err("Offset Values\n");
754 pr_err("======== ======\n");
755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756
757 pr_err("Include this output when contacting your support provider.\n");
758 pr_err("This is not a software error! Something bad happened to\n");
759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 pr_err("result in further problems, possibly loss of data,\n");
761 pr_err("corruption or system hangs!\n");
762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 pr_err("which is invalid and requires you to set the proper MAC\n");
764 pr_err("address manually before continuing to enable this network\n");
765 pr_err("device. Please inspect the EEPROM dump and report the\n");
766 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 pr_err("/*********************/\n");
768
769 kfree(data);
770 }
771
772 /**
773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774 * @pdev: PCI device information struct
775 *
776 * Return true if an adapter needs ioport resources
777 **/
778 static int e1000_is_need_ioport(struct pci_dev *pdev)
779 {
780 switch (pdev->device) {
781 case E1000_DEV_ID_82540EM:
782 case E1000_DEV_ID_82540EM_LOM:
783 case E1000_DEV_ID_82540EP:
784 case E1000_DEV_ID_82540EP_LOM:
785 case E1000_DEV_ID_82540EP_LP:
786 case E1000_DEV_ID_82541EI:
787 case E1000_DEV_ID_82541EI_MOBILE:
788 case E1000_DEV_ID_82541ER:
789 case E1000_DEV_ID_82541ER_LOM:
790 case E1000_DEV_ID_82541GI:
791 case E1000_DEV_ID_82541GI_LF:
792 case E1000_DEV_ID_82541GI_MOBILE:
793 case E1000_DEV_ID_82544EI_COPPER:
794 case E1000_DEV_ID_82544EI_FIBER:
795 case E1000_DEV_ID_82544GC_COPPER:
796 case E1000_DEV_ID_82544GC_LOM:
797 case E1000_DEV_ID_82545EM_COPPER:
798 case E1000_DEV_ID_82545EM_FIBER:
799 case E1000_DEV_ID_82546EB_COPPER:
800 case E1000_DEV_ID_82546EB_FIBER:
801 case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 return true;
803 default:
804 return false;
805 }
806 }
807
808 static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 netdev_features_t features)
810 {
811 /*
812 * Since there is no support for separate rx/tx vlan accel
813 * enable/disable make sure tx flag is always in same state as rx.
814 */
815 if (features & NETIF_F_HW_VLAN_RX)
816 features |= NETIF_F_HW_VLAN_TX;
817 else
818 features &= ~NETIF_F_HW_VLAN_TX;
819
820 return features;
821 }
822
823 static int e1000_set_features(struct net_device *netdev,
824 netdev_features_t features)
825 {
826 struct e1000_adapter *adapter = netdev_priv(netdev);
827 netdev_features_t changed = features ^ netdev->features;
828
829 if (changed & NETIF_F_HW_VLAN_RX)
830 e1000_vlan_mode(netdev, features);
831
832 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
833 return 0;
834
835 netdev->features = features;
836 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
837
838 if (netif_running(netdev))
839 e1000_reinit_locked(adapter);
840 else
841 e1000_reset(adapter);
842
843 return 0;
844 }
845
846 static const struct net_device_ops e1000_netdev_ops = {
847 .ndo_open = e1000_open,
848 .ndo_stop = e1000_close,
849 .ndo_start_xmit = e1000_xmit_frame,
850 .ndo_get_stats = e1000_get_stats,
851 .ndo_set_rx_mode = e1000_set_rx_mode,
852 .ndo_set_mac_address = e1000_set_mac,
853 .ndo_tx_timeout = e1000_tx_timeout,
854 .ndo_change_mtu = e1000_change_mtu,
855 .ndo_do_ioctl = e1000_ioctl,
856 .ndo_validate_addr = eth_validate_addr,
857 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
858 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
859 #ifdef CONFIG_NET_POLL_CONTROLLER
860 .ndo_poll_controller = e1000_netpoll,
861 #endif
862 .ndo_fix_features = e1000_fix_features,
863 .ndo_set_features = e1000_set_features,
864 };
865
866 /**
867 * e1000_init_hw_struct - initialize members of hw struct
868 * @adapter: board private struct
869 * @hw: structure used by e1000_hw.c
870 *
871 * Factors out initialization of the e1000_hw struct to its own function
872 * that can be called very early at init (just after struct allocation).
873 * Fields are initialized based on PCI device information and
874 * OS network device settings (MTU size).
875 * Returns negative error codes if MAC type setup fails.
876 */
877 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
878 struct e1000_hw *hw)
879 {
880 struct pci_dev *pdev = adapter->pdev;
881
882 /* PCI config space info */
883 hw->vendor_id = pdev->vendor;
884 hw->device_id = pdev->device;
885 hw->subsystem_vendor_id = pdev->subsystem_vendor;
886 hw->subsystem_id = pdev->subsystem_device;
887 hw->revision_id = pdev->revision;
888
889 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
890
891 hw->max_frame_size = adapter->netdev->mtu +
892 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
893 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
894
895 /* identify the MAC */
896 if (e1000_set_mac_type(hw)) {
897 e_err(probe, "Unknown MAC Type\n");
898 return -EIO;
899 }
900
901 switch (hw->mac_type) {
902 default:
903 break;
904 case e1000_82541:
905 case e1000_82547:
906 case e1000_82541_rev_2:
907 case e1000_82547_rev_2:
908 hw->phy_init_script = 1;
909 break;
910 }
911
912 e1000_set_media_type(hw);
913 e1000_get_bus_info(hw);
914
915 hw->wait_autoneg_complete = false;
916 hw->tbi_compatibility_en = true;
917 hw->adaptive_ifs = true;
918
919 /* Copper options */
920
921 if (hw->media_type == e1000_media_type_copper) {
922 hw->mdix = AUTO_ALL_MODES;
923 hw->disable_polarity_correction = false;
924 hw->master_slave = E1000_MASTER_SLAVE;
925 }
926
927 return 0;
928 }
929
930 /**
931 * e1000_probe - Device Initialization Routine
932 * @pdev: PCI device information struct
933 * @ent: entry in e1000_pci_tbl
934 *
935 * Returns 0 on success, negative on failure
936 *
937 * e1000_probe initializes an adapter identified by a pci_dev structure.
938 * The OS initialization, configuring of the adapter private structure,
939 * and a hardware reset occur.
940 **/
941 static int __devinit e1000_probe(struct pci_dev *pdev,
942 const struct pci_device_id *ent)
943 {
944 struct net_device *netdev;
945 struct e1000_adapter *adapter;
946 struct e1000_hw *hw;
947
948 static int cards_found = 0;
949 static int global_quad_port_a = 0; /* global ksp3 port a indication */
950 int i, err, pci_using_dac;
951 u16 eeprom_data = 0;
952 u16 tmp = 0;
953 u16 eeprom_apme_mask = E1000_EEPROM_APME;
954 int bars, need_ioport;
955
956 /* do not allocate ioport bars when not needed */
957 need_ioport = e1000_is_need_ioport(pdev);
958 if (need_ioport) {
959 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
960 err = pci_enable_device(pdev);
961 } else {
962 bars = pci_select_bars(pdev, IORESOURCE_MEM);
963 err = pci_enable_device_mem(pdev);
964 }
965 if (err)
966 return err;
967
968 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
969 if (err)
970 goto err_pci_reg;
971
972 pci_set_master(pdev);
973 err = pci_save_state(pdev);
974 if (err)
975 goto err_alloc_etherdev;
976
977 err = -ENOMEM;
978 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
979 if (!netdev)
980 goto err_alloc_etherdev;
981
982 SET_NETDEV_DEV(netdev, &pdev->dev);
983
984 pci_set_drvdata(pdev, netdev);
985 adapter = netdev_priv(netdev);
986 adapter->netdev = netdev;
987 adapter->pdev = pdev;
988 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
989 adapter->bars = bars;
990 adapter->need_ioport = need_ioport;
991
992 hw = &adapter->hw;
993 hw->back = adapter;
994
995 err = -EIO;
996 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
997 if (!hw->hw_addr)
998 goto err_ioremap;
999
1000 if (adapter->need_ioport) {
1001 for (i = BAR_1; i <= BAR_5; i++) {
1002 if (pci_resource_len(pdev, i) == 0)
1003 continue;
1004 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1005 hw->io_base = pci_resource_start(pdev, i);
1006 break;
1007 }
1008 }
1009 }
1010
1011 /* make ready for any if (hw->...) below */
1012 err = e1000_init_hw_struct(adapter, hw);
1013 if (err)
1014 goto err_sw_init;
1015
1016 /*
1017 * there is a workaround being applied below that limits
1018 * 64-bit DMA addresses to 64-bit hardware. There are some
1019 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1020 */
1021 pci_using_dac = 0;
1022 if ((hw->bus_type == e1000_bus_type_pcix) &&
1023 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1024 /*
1025 * according to DMA-API-HOWTO, coherent calls will always
1026 * succeed if the set call did
1027 */
1028 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1029 pci_using_dac = 1;
1030 } else {
1031 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1032 if (err) {
1033 pr_err("No usable DMA config, aborting\n");
1034 goto err_dma;
1035 }
1036 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1037 }
1038
1039 netdev->netdev_ops = &e1000_netdev_ops;
1040 e1000_set_ethtool_ops(netdev);
1041 netdev->watchdog_timeo = 5 * HZ;
1042 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1043
1044 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1045
1046 adapter->bd_number = cards_found;
1047
1048 /* setup the private structure */
1049
1050 err = e1000_sw_init(adapter);
1051 if (err)
1052 goto err_sw_init;
1053
1054 err = -EIO;
1055 if (hw->mac_type == e1000_ce4100) {
1056 hw->ce4100_gbe_mdio_base_virt =
1057 ioremap(pci_resource_start(pdev, BAR_1),
1058 pci_resource_len(pdev, BAR_1));
1059
1060 if (!hw->ce4100_gbe_mdio_base_virt)
1061 goto err_mdio_ioremap;
1062 }
1063
1064 if (hw->mac_type >= e1000_82543) {
1065 netdev->hw_features = NETIF_F_SG |
1066 NETIF_F_HW_CSUM |
1067 NETIF_F_HW_VLAN_RX;
1068 netdev->features = NETIF_F_HW_VLAN_TX |
1069 NETIF_F_HW_VLAN_FILTER;
1070 }
1071
1072 if ((hw->mac_type >= e1000_82544) &&
1073 (hw->mac_type != e1000_82547))
1074 netdev->hw_features |= NETIF_F_TSO;
1075
1076 netdev->priv_flags |= IFF_SUPP_NOFCS;
1077
1078 netdev->features |= netdev->hw_features;
1079 netdev->hw_features |= (NETIF_F_RXCSUM |
1080 NETIF_F_RXALL |
1081 NETIF_F_RXFCS);
1082
1083 if (pci_using_dac) {
1084 netdev->features |= NETIF_F_HIGHDMA;
1085 netdev->vlan_features |= NETIF_F_HIGHDMA;
1086 }
1087
1088 netdev->vlan_features |= (NETIF_F_TSO |
1089 NETIF_F_HW_CSUM |
1090 NETIF_F_SG);
1091
1092 netdev->priv_flags |= IFF_UNICAST_FLT;
1093
1094 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1095
1096 /* initialize eeprom parameters */
1097 if (e1000_init_eeprom_params(hw)) {
1098 e_err(probe, "EEPROM initialization failed\n");
1099 goto err_eeprom;
1100 }
1101
1102 /* before reading the EEPROM, reset the controller to
1103 * put the device in a known good starting state */
1104
1105 e1000_reset_hw(hw);
1106
1107 /* make sure the EEPROM is good */
1108 if (e1000_validate_eeprom_checksum(hw) < 0) {
1109 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1110 e1000_dump_eeprom(adapter);
1111 /*
1112 * set MAC address to all zeroes to invalidate and temporary
1113 * disable this device for the user. This blocks regular
1114 * traffic while still permitting ethtool ioctls from reaching
1115 * the hardware as well as allowing the user to run the
1116 * interface after manually setting a hw addr using
1117 * `ip set address`
1118 */
1119 memset(hw->mac_addr, 0, netdev->addr_len);
1120 } else {
1121 /* copy the MAC address out of the EEPROM */
1122 if (e1000_read_mac_addr(hw))
1123 e_err(probe, "EEPROM Read Error\n");
1124 }
1125 /* don't block initalization here due to bad MAC address */
1126 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1127 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1128
1129 if (!is_valid_ether_addr(netdev->perm_addr))
1130 e_err(probe, "Invalid MAC Address\n");
1131
1132
1133 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1134 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1135 e1000_82547_tx_fifo_stall_task);
1136 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1137 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1138
1139 e1000_check_options(adapter);
1140
1141 /* Initial Wake on LAN setting
1142 * If APM wake is enabled in the EEPROM,
1143 * enable the ACPI Magic Packet filter
1144 */
1145
1146 switch (hw->mac_type) {
1147 case e1000_82542_rev2_0:
1148 case e1000_82542_rev2_1:
1149 case e1000_82543:
1150 break;
1151 case e1000_82544:
1152 e1000_read_eeprom(hw,
1153 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1154 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1155 break;
1156 case e1000_82546:
1157 case e1000_82546_rev_3:
1158 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1159 e1000_read_eeprom(hw,
1160 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1161 break;
1162 }
1163 /* Fall Through */
1164 default:
1165 e1000_read_eeprom(hw,
1166 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1167 break;
1168 }
1169 if (eeprom_data & eeprom_apme_mask)
1170 adapter->eeprom_wol |= E1000_WUFC_MAG;
1171
1172 /* now that we have the eeprom settings, apply the special cases
1173 * where the eeprom may be wrong or the board simply won't support
1174 * wake on lan on a particular port */
1175 switch (pdev->device) {
1176 case E1000_DEV_ID_82546GB_PCIE:
1177 adapter->eeprom_wol = 0;
1178 break;
1179 case E1000_DEV_ID_82546EB_FIBER:
1180 case E1000_DEV_ID_82546GB_FIBER:
1181 /* Wake events only supported on port A for dual fiber
1182 * regardless of eeprom setting */
1183 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1184 adapter->eeprom_wol = 0;
1185 break;
1186 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1187 /* if quad port adapter, disable WoL on all but port A */
1188 if (global_quad_port_a != 0)
1189 adapter->eeprom_wol = 0;
1190 else
1191 adapter->quad_port_a = true;
1192 /* Reset for multiple quad port adapters */
1193 if (++global_quad_port_a == 4)
1194 global_quad_port_a = 0;
1195 break;
1196 }
1197
1198 /* initialize the wol settings based on the eeprom settings */
1199 adapter->wol = adapter->eeprom_wol;
1200 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1201
1202 /* Auto detect PHY address */
1203 if (hw->mac_type == e1000_ce4100) {
1204 for (i = 0; i < 32; i++) {
1205 hw->phy_addr = i;
1206 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1207 if (tmp == 0 || tmp == 0xFF) {
1208 if (i == 31)
1209 goto err_eeprom;
1210 continue;
1211 } else
1212 break;
1213 }
1214 }
1215
1216 /* reset the hardware with the new settings */
1217 e1000_reset(adapter);
1218
1219 strcpy(netdev->name, "eth%d");
1220 err = register_netdev(netdev);
1221 if (err)
1222 goto err_register;
1223
1224 e1000_vlan_filter_on_off(adapter, false);
1225
1226 /* print bus type/speed/width info */
1227 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1228 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1229 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1230 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1231 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1232 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1233 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1234 netdev->dev_addr);
1235
1236 /* carrier off reporting is important to ethtool even BEFORE open */
1237 netif_carrier_off(netdev);
1238
1239 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1240
1241 cards_found++;
1242 return 0;
1243
1244 err_register:
1245 err_eeprom:
1246 e1000_phy_hw_reset(hw);
1247
1248 if (hw->flash_address)
1249 iounmap(hw->flash_address);
1250 kfree(adapter->tx_ring);
1251 kfree(adapter->rx_ring);
1252 err_dma:
1253 err_sw_init:
1254 err_mdio_ioremap:
1255 iounmap(hw->ce4100_gbe_mdio_base_virt);
1256 iounmap(hw->hw_addr);
1257 err_ioremap:
1258 free_netdev(netdev);
1259 err_alloc_etherdev:
1260 pci_release_selected_regions(pdev, bars);
1261 err_pci_reg:
1262 pci_disable_device(pdev);
1263 return err;
1264 }
1265
1266 /**
1267 * e1000_remove - Device Removal Routine
1268 * @pdev: PCI device information struct
1269 *
1270 * e1000_remove is called by the PCI subsystem to alert the driver
1271 * that it should release a PCI device. The could be caused by a
1272 * Hot-Plug event, or because the driver is going to be removed from
1273 * memory.
1274 **/
1275
1276 static void __devexit e1000_remove(struct pci_dev *pdev)
1277 {
1278 struct net_device *netdev = pci_get_drvdata(pdev);
1279 struct e1000_adapter *adapter = netdev_priv(netdev);
1280 struct e1000_hw *hw = &adapter->hw;
1281
1282 e1000_down_and_stop(adapter);
1283 e1000_release_manageability(adapter);
1284
1285 unregister_netdev(netdev);
1286
1287 e1000_phy_hw_reset(hw);
1288
1289 kfree(adapter->tx_ring);
1290 kfree(adapter->rx_ring);
1291
1292 if (hw->mac_type == e1000_ce4100)
1293 iounmap(hw->ce4100_gbe_mdio_base_virt);
1294 iounmap(hw->hw_addr);
1295 if (hw->flash_address)
1296 iounmap(hw->flash_address);
1297 pci_release_selected_regions(pdev, adapter->bars);
1298
1299 free_netdev(netdev);
1300
1301 pci_disable_device(pdev);
1302 }
1303
1304 /**
1305 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1306 * @adapter: board private structure to initialize
1307 *
1308 * e1000_sw_init initializes the Adapter private data structure.
1309 * e1000_init_hw_struct MUST be called before this function
1310 **/
1311
1312 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1313 {
1314 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1315
1316 adapter->num_tx_queues = 1;
1317 adapter->num_rx_queues = 1;
1318
1319 if (e1000_alloc_queues(adapter)) {
1320 e_err(probe, "Unable to allocate memory for queues\n");
1321 return -ENOMEM;
1322 }
1323
1324 /* Explicitly disable IRQ since the NIC can be in any state. */
1325 e1000_irq_disable(adapter);
1326
1327 spin_lock_init(&adapter->stats_lock);
1328 mutex_init(&adapter->mutex);
1329
1330 set_bit(__E1000_DOWN, &adapter->flags);
1331
1332 return 0;
1333 }
1334
1335 /**
1336 * e1000_alloc_queues - Allocate memory for all rings
1337 * @adapter: board private structure to initialize
1338 *
1339 * We allocate one ring per queue at run-time since we don't know the
1340 * number of queues at compile-time.
1341 **/
1342
1343 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1344 {
1345 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1346 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1347 if (!adapter->tx_ring)
1348 return -ENOMEM;
1349
1350 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1351 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1352 if (!adapter->rx_ring) {
1353 kfree(adapter->tx_ring);
1354 return -ENOMEM;
1355 }
1356
1357 return E1000_SUCCESS;
1358 }
1359
1360 /**
1361 * e1000_open - Called when a network interface is made active
1362 * @netdev: network interface device structure
1363 *
1364 * Returns 0 on success, negative value on failure
1365 *
1366 * The open entry point is called when a network interface is made
1367 * active by the system (IFF_UP). At this point all resources needed
1368 * for transmit and receive operations are allocated, the interrupt
1369 * handler is registered with the OS, the watchdog task is started,
1370 * and the stack is notified that the interface is ready.
1371 **/
1372
1373 static int e1000_open(struct net_device *netdev)
1374 {
1375 struct e1000_adapter *adapter = netdev_priv(netdev);
1376 struct e1000_hw *hw = &adapter->hw;
1377 int err;
1378
1379 /* disallow open during test */
1380 if (test_bit(__E1000_TESTING, &adapter->flags))
1381 return -EBUSY;
1382
1383 netif_carrier_off(netdev);
1384
1385 /* allocate transmit descriptors */
1386 err = e1000_setup_all_tx_resources(adapter);
1387 if (err)
1388 goto err_setup_tx;
1389
1390 /* allocate receive descriptors */
1391 err = e1000_setup_all_rx_resources(adapter);
1392 if (err)
1393 goto err_setup_rx;
1394
1395 e1000_power_up_phy(adapter);
1396
1397 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1398 if ((hw->mng_cookie.status &
1399 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1400 e1000_update_mng_vlan(adapter);
1401 }
1402
1403 /* before we allocate an interrupt, we must be ready to handle it.
1404 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1405 * as soon as we call pci_request_irq, so we have to setup our
1406 * clean_rx handler before we do so. */
1407 e1000_configure(adapter);
1408
1409 err = e1000_request_irq(adapter);
1410 if (err)
1411 goto err_req_irq;
1412
1413 /* From here on the code is the same as e1000_up() */
1414 clear_bit(__E1000_DOWN, &adapter->flags);
1415
1416 napi_enable(&adapter->napi);
1417
1418 e1000_irq_enable(adapter);
1419
1420 netif_start_queue(netdev);
1421
1422 /* fire a link status change interrupt to start the watchdog */
1423 ew32(ICS, E1000_ICS_LSC);
1424
1425 return E1000_SUCCESS;
1426
1427 err_req_irq:
1428 e1000_power_down_phy(adapter);
1429 e1000_free_all_rx_resources(adapter);
1430 err_setup_rx:
1431 e1000_free_all_tx_resources(adapter);
1432 err_setup_tx:
1433 e1000_reset(adapter);
1434
1435 return err;
1436 }
1437
1438 /**
1439 * e1000_close - Disables a network interface
1440 * @netdev: network interface device structure
1441 *
1442 * Returns 0, this is not allowed to fail
1443 *
1444 * The close entry point is called when an interface is de-activated
1445 * by the OS. The hardware is still under the drivers control, but
1446 * needs to be disabled. A global MAC reset is issued to stop the
1447 * hardware, and all transmit and receive resources are freed.
1448 **/
1449
1450 static int e1000_close(struct net_device *netdev)
1451 {
1452 struct e1000_adapter *adapter = netdev_priv(netdev);
1453 struct e1000_hw *hw = &adapter->hw;
1454
1455 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1456 e1000_down(adapter);
1457 e1000_power_down_phy(adapter);
1458 e1000_free_irq(adapter);
1459
1460 e1000_free_all_tx_resources(adapter);
1461 e1000_free_all_rx_resources(adapter);
1462
1463 /* kill manageability vlan ID if supported, but not if a vlan with
1464 * the same ID is registered on the host OS (let 8021q kill it) */
1465 if ((hw->mng_cookie.status &
1466 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1467 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1468 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1469 }
1470
1471 return 0;
1472 }
1473
1474 /**
1475 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1476 * @adapter: address of board private structure
1477 * @start: address of beginning of memory
1478 * @len: length of memory
1479 **/
1480 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1481 unsigned long len)
1482 {
1483 struct e1000_hw *hw = &adapter->hw;
1484 unsigned long begin = (unsigned long)start;
1485 unsigned long end = begin + len;
1486
1487 /* First rev 82545 and 82546 need to not allow any memory
1488 * write location to cross 64k boundary due to errata 23 */
1489 if (hw->mac_type == e1000_82545 ||
1490 hw->mac_type == e1000_ce4100 ||
1491 hw->mac_type == e1000_82546) {
1492 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1493 }
1494
1495 return true;
1496 }
1497
1498 /**
1499 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1500 * @adapter: board private structure
1501 * @txdr: tx descriptor ring (for a specific queue) to setup
1502 *
1503 * Return 0 on success, negative on failure
1504 **/
1505
1506 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1507 struct e1000_tx_ring *txdr)
1508 {
1509 struct pci_dev *pdev = adapter->pdev;
1510 int size;
1511
1512 size = sizeof(struct e1000_buffer) * txdr->count;
1513 txdr->buffer_info = vzalloc(size);
1514 if (!txdr->buffer_info) {
1515 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1516 "ring\n");
1517 return -ENOMEM;
1518 }
1519
1520 /* round up to nearest 4K */
1521
1522 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1523 txdr->size = ALIGN(txdr->size, 4096);
1524
1525 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1526 GFP_KERNEL);
1527 if (!txdr->desc) {
1528 setup_tx_desc_die:
1529 vfree(txdr->buffer_info);
1530 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1531 "ring\n");
1532 return -ENOMEM;
1533 }
1534
1535 /* Fix for errata 23, can't cross 64kB boundary */
1536 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1537 void *olddesc = txdr->desc;
1538 dma_addr_t olddma = txdr->dma;
1539 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1540 txdr->size, txdr->desc);
1541 /* Try again, without freeing the previous */
1542 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1543 &txdr->dma, GFP_KERNEL);
1544 /* Failed allocation, critical failure */
1545 if (!txdr->desc) {
1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 olddma);
1548 goto setup_tx_desc_die;
1549 }
1550
1551 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1552 /* give up */
1553 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1554 txdr->dma);
1555 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1556 olddma);
1557 e_err(probe, "Unable to allocate aligned memory "
1558 "for the transmit descriptor ring\n");
1559 vfree(txdr->buffer_info);
1560 return -ENOMEM;
1561 } else {
1562 /* Free old allocation, new allocation was successful */
1563 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1564 olddma);
1565 }
1566 }
1567 memset(txdr->desc, 0, txdr->size);
1568
1569 txdr->next_to_use = 0;
1570 txdr->next_to_clean = 0;
1571
1572 return 0;
1573 }
1574
1575 /**
1576 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1577 * (Descriptors) for all queues
1578 * @adapter: board private structure
1579 *
1580 * Return 0 on success, negative on failure
1581 **/
1582
1583 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1584 {
1585 int i, err = 0;
1586
1587 for (i = 0; i < adapter->num_tx_queues; i++) {
1588 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1589 if (err) {
1590 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1591 for (i-- ; i >= 0; i--)
1592 e1000_free_tx_resources(adapter,
1593 &adapter->tx_ring[i]);
1594 break;
1595 }
1596 }
1597
1598 return err;
1599 }
1600
1601 /**
1602 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1603 * @adapter: board private structure
1604 *
1605 * Configure the Tx unit of the MAC after a reset.
1606 **/
1607
1608 static void e1000_configure_tx(struct e1000_adapter *adapter)
1609 {
1610 u64 tdba;
1611 struct e1000_hw *hw = &adapter->hw;
1612 u32 tdlen, tctl, tipg;
1613 u32 ipgr1, ipgr2;
1614
1615 /* Setup the HW Tx Head and Tail descriptor pointers */
1616
1617 switch (adapter->num_tx_queues) {
1618 case 1:
1619 default:
1620 tdba = adapter->tx_ring[0].dma;
1621 tdlen = adapter->tx_ring[0].count *
1622 sizeof(struct e1000_tx_desc);
1623 ew32(TDLEN, tdlen);
1624 ew32(TDBAH, (tdba >> 32));
1625 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1626 ew32(TDT, 0);
1627 ew32(TDH, 0);
1628 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1629 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1630 break;
1631 }
1632
1633 /* Set the default values for the Tx Inter Packet Gap timer */
1634 if ((hw->media_type == e1000_media_type_fiber ||
1635 hw->media_type == e1000_media_type_internal_serdes))
1636 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1637 else
1638 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1639
1640 switch (hw->mac_type) {
1641 case e1000_82542_rev2_0:
1642 case e1000_82542_rev2_1:
1643 tipg = DEFAULT_82542_TIPG_IPGT;
1644 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1645 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1646 break;
1647 default:
1648 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1649 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1650 break;
1651 }
1652 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1653 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1654 ew32(TIPG, tipg);
1655
1656 /* Set the Tx Interrupt Delay register */
1657
1658 ew32(TIDV, adapter->tx_int_delay);
1659 if (hw->mac_type >= e1000_82540)
1660 ew32(TADV, adapter->tx_abs_int_delay);
1661
1662 /* Program the Transmit Control Register */
1663
1664 tctl = er32(TCTL);
1665 tctl &= ~E1000_TCTL_CT;
1666 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1667 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1668
1669 e1000_config_collision_dist(hw);
1670
1671 /* Setup Transmit Descriptor Settings for eop descriptor */
1672 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1673
1674 /* only set IDE if we are delaying interrupts using the timers */
1675 if (adapter->tx_int_delay)
1676 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1677
1678 if (hw->mac_type < e1000_82543)
1679 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1680 else
1681 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1682
1683 /* Cache if we're 82544 running in PCI-X because we'll
1684 * need this to apply a workaround later in the send path. */
1685 if (hw->mac_type == e1000_82544 &&
1686 hw->bus_type == e1000_bus_type_pcix)
1687 adapter->pcix_82544 = true;
1688
1689 ew32(TCTL, tctl);
1690
1691 }
1692
1693 /**
1694 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1695 * @adapter: board private structure
1696 * @rxdr: rx descriptor ring (for a specific queue) to setup
1697 *
1698 * Returns 0 on success, negative on failure
1699 **/
1700
1701 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1702 struct e1000_rx_ring *rxdr)
1703 {
1704 struct pci_dev *pdev = adapter->pdev;
1705 int size, desc_len;
1706
1707 size = sizeof(struct e1000_buffer) * rxdr->count;
1708 rxdr->buffer_info = vzalloc(size);
1709 if (!rxdr->buffer_info) {
1710 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1711 "ring\n");
1712 return -ENOMEM;
1713 }
1714
1715 desc_len = sizeof(struct e1000_rx_desc);
1716
1717 /* Round up to nearest 4K */
1718
1719 rxdr->size = rxdr->count * desc_len;
1720 rxdr->size = ALIGN(rxdr->size, 4096);
1721
1722 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1723 GFP_KERNEL);
1724
1725 if (!rxdr->desc) {
1726 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1727 "ring\n");
1728 setup_rx_desc_die:
1729 vfree(rxdr->buffer_info);
1730 return -ENOMEM;
1731 }
1732
1733 /* Fix for errata 23, can't cross 64kB boundary */
1734 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735 void *olddesc = rxdr->desc;
1736 dma_addr_t olddma = rxdr->dma;
1737 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1738 rxdr->size, rxdr->desc);
1739 /* Try again, without freeing the previous */
1740 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1741 &rxdr->dma, GFP_KERNEL);
1742 /* Failed allocation, critical failure */
1743 if (!rxdr->desc) {
1744 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1745 olddma);
1746 e_err(probe, "Unable to allocate memory for the Rx "
1747 "descriptor ring\n");
1748 goto setup_rx_desc_die;
1749 }
1750
1751 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1752 /* give up */
1753 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1754 rxdr->dma);
1755 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1756 olddma);
1757 e_err(probe, "Unable to allocate aligned memory for "
1758 "the Rx descriptor ring\n");
1759 goto setup_rx_desc_die;
1760 } else {
1761 /* Free old allocation, new allocation was successful */
1762 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1763 olddma);
1764 }
1765 }
1766 memset(rxdr->desc, 0, rxdr->size);
1767
1768 rxdr->next_to_clean = 0;
1769 rxdr->next_to_use = 0;
1770 rxdr->rx_skb_top = NULL;
1771
1772 return 0;
1773 }
1774
1775 /**
1776 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1777 * (Descriptors) for all queues
1778 * @adapter: board private structure
1779 *
1780 * Return 0 on success, negative on failure
1781 **/
1782
1783 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1784 {
1785 int i, err = 0;
1786
1787 for (i = 0; i < adapter->num_rx_queues; i++) {
1788 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1789 if (err) {
1790 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1791 for (i-- ; i >= 0; i--)
1792 e1000_free_rx_resources(adapter,
1793 &adapter->rx_ring[i]);
1794 break;
1795 }
1796 }
1797
1798 return err;
1799 }
1800
1801 /**
1802 * e1000_setup_rctl - configure the receive control registers
1803 * @adapter: Board private structure
1804 **/
1805 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1806 {
1807 struct e1000_hw *hw = &adapter->hw;
1808 u32 rctl;
1809
1810 rctl = er32(RCTL);
1811
1812 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1813
1814 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1815 E1000_RCTL_RDMTS_HALF |
1816 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1817
1818 if (hw->tbi_compatibility_on == 1)
1819 rctl |= E1000_RCTL_SBP;
1820 else
1821 rctl &= ~E1000_RCTL_SBP;
1822
1823 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1824 rctl &= ~E1000_RCTL_LPE;
1825 else
1826 rctl |= E1000_RCTL_LPE;
1827
1828 /* Setup buffer sizes */
1829 rctl &= ~E1000_RCTL_SZ_4096;
1830 rctl |= E1000_RCTL_BSEX;
1831 switch (adapter->rx_buffer_len) {
1832 case E1000_RXBUFFER_2048:
1833 default:
1834 rctl |= E1000_RCTL_SZ_2048;
1835 rctl &= ~E1000_RCTL_BSEX;
1836 break;
1837 case E1000_RXBUFFER_4096:
1838 rctl |= E1000_RCTL_SZ_4096;
1839 break;
1840 case E1000_RXBUFFER_8192:
1841 rctl |= E1000_RCTL_SZ_8192;
1842 break;
1843 case E1000_RXBUFFER_16384:
1844 rctl |= E1000_RCTL_SZ_16384;
1845 break;
1846 }
1847
1848 /* This is useful for sniffing bad packets. */
1849 if (adapter->netdev->features & NETIF_F_RXALL) {
1850 /* UPE and MPE will be handled by normal PROMISC logic
1851 * in e1000e_set_rx_mode */
1852 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1853 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1854 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1855
1856 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1857 E1000_RCTL_DPF | /* Allow filtered pause */
1858 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1859 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1860 * and that breaks VLANs.
1861 */
1862 }
1863
1864 ew32(RCTL, rctl);
1865 }
1866
1867 /**
1868 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1869 * @adapter: board private structure
1870 *
1871 * Configure the Rx unit of the MAC after a reset.
1872 **/
1873
1874 static void e1000_configure_rx(struct e1000_adapter *adapter)
1875 {
1876 u64 rdba;
1877 struct e1000_hw *hw = &adapter->hw;
1878 u32 rdlen, rctl, rxcsum;
1879
1880 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1881 rdlen = adapter->rx_ring[0].count *
1882 sizeof(struct e1000_rx_desc);
1883 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1884 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1885 } else {
1886 rdlen = adapter->rx_ring[0].count *
1887 sizeof(struct e1000_rx_desc);
1888 adapter->clean_rx = e1000_clean_rx_irq;
1889 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1890 }
1891
1892 /* disable receives while setting up the descriptors */
1893 rctl = er32(RCTL);
1894 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1895
1896 /* set the Receive Delay Timer Register */
1897 ew32(RDTR, adapter->rx_int_delay);
1898
1899 if (hw->mac_type >= e1000_82540) {
1900 ew32(RADV, adapter->rx_abs_int_delay);
1901 if (adapter->itr_setting != 0)
1902 ew32(ITR, 1000000000 / (adapter->itr * 256));
1903 }
1904
1905 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1906 * the Base and Length of the Rx Descriptor Ring */
1907 switch (adapter->num_rx_queues) {
1908 case 1:
1909 default:
1910 rdba = adapter->rx_ring[0].dma;
1911 ew32(RDLEN, rdlen);
1912 ew32(RDBAH, (rdba >> 32));
1913 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1914 ew32(RDT, 0);
1915 ew32(RDH, 0);
1916 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1917 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1918 break;
1919 }
1920
1921 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1922 if (hw->mac_type >= e1000_82543) {
1923 rxcsum = er32(RXCSUM);
1924 if (adapter->rx_csum)
1925 rxcsum |= E1000_RXCSUM_TUOFL;
1926 else
1927 /* don't need to clear IPPCSE as it defaults to 0 */
1928 rxcsum &= ~E1000_RXCSUM_TUOFL;
1929 ew32(RXCSUM, rxcsum);
1930 }
1931
1932 /* Enable Receives */
1933 ew32(RCTL, rctl | E1000_RCTL_EN);
1934 }
1935
1936 /**
1937 * e1000_free_tx_resources - Free Tx Resources per Queue
1938 * @adapter: board private structure
1939 * @tx_ring: Tx descriptor ring for a specific queue
1940 *
1941 * Free all transmit software resources
1942 **/
1943
1944 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1945 struct e1000_tx_ring *tx_ring)
1946 {
1947 struct pci_dev *pdev = adapter->pdev;
1948
1949 e1000_clean_tx_ring(adapter, tx_ring);
1950
1951 vfree(tx_ring->buffer_info);
1952 tx_ring->buffer_info = NULL;
1953
1954 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1955 tx_ring->dma);
1956
1957 tx_ring->desc = NULL;
1958 }
1959
1960 /**
1961 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1962 * @adapter: board private structure
1963 *
1964 * Free all transmit software resources
1965 **/
1966
1967 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1968 {
1969 int i;
1970
1971 for (i = 0; i < adapter->num_tx_queues; i++)
1972 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1973 }
1974
1975 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1976 struct e1000_buffer *buffer_info)
1977 {
1978 if (buffer_info->dma) {
1979 if (buffer_info->mapped_as_page)
1980 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1981 buffer_info->length, DMA_TO_DEVICE);
1982 else
1983 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1984 buffer_info->length,
1985 DMA_TO_DEVICE);
1986 buffer_info->dma = 0;
1987 }
1988 if (buffer_info->skb) {
1989 dev_kfree_skb_any(buffer_info->skb);
1990 buffer_info->skb = NULL;
1991 }
1992 buffer_info->time_stamp = 0;
1993 /* buffer_info must be completely set up in the transmit path */
1994 }
1995
1996 /**
1997 * e1000_clean_tx_ring - Free Tx Buffers
1998 * @adapter: board private structure
1999 * @tx_ring: ring to be cleaned
2000 **/
2001
2002 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2003 struct e1000_tx_ring *tx_ring)
2004 {
2005 struct e1000_hw *hw = &adapter->hw;
2006 struct e1000_buffer *buffer_info;
2007 unsigned long size;
2008 unsigned int i;
2009
2010 /* Free all the Tx ring sk_buffs */
2011
2012 for (i = 0; i < tx_ring->count; i++) {
2013 buffer_info = &tx_ring->buffer_info[i];
2014 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2015 }
2016
2017 size = sizeof(struct e1000_buffer) * tx_ring->count;
2018 memset(tx_ring->buffer_info, 0, size);
2019
2020 /* Zero out the descriptor ring */
2021
2022 memset(tx_ring->desc, 0, tx_ring->size);
2023
2024 tx_ring->next_to_use = 0;
2025 tx_ring->next_to_clean = 0;
2026 tx_ring->last_tx_tso = false;
2027
2028 writel(0, hw->hw_addr + tx_ring->tdh);
2029 writel(0, hw->hw_addr + tx_ring->tdt);
2030 }
2031
2032 /**
2033 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2034 * @adapter: board private structure
2035 **/
2036
2037 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2038 {
2039 int i;
2040
2041 for (i = 0; i < adapter->num_tx_queues; i++)
2042 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2043 }
2044
2045 /**
2046 * e1000_free_rx_resources - Free Rx Resources
2047 * @adapter: board private structure
2048 * @rx_ring: ring to clean the resources from
2049 *
2050 * Free all receive software resources
2051 **/
2052
2053 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2054 struct e1000_rx_ring *rx_ring)
2055 {
2056 struct pci_dev *pdev = adapter->pdev;
2057
2058 e1000_clean_rx_ring(adapter, rx_ring);
2059
2060 vfree(rx_ring->buffer_info);
2061 rx_ring->buffer_info = NULL;
2062
2063 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2064 rx_ring->dma);
2065
2066 rx_ring->desc = NULL;
2067 }
2068
2069 /**
2070 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2071 * @adapter: board private structure
2072 *
2073 * Free all receive software resources
2074 **/
2075
2076 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2077 {
2078 int i;
2079
2080 for (i = 0; i < adapter->num_rx_queues; i++)
2081 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2082 }
2083
2084 /**
2085 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2086 * @adapter: board private structure
2087 * @rx_ring: ring to free buffers from
2088 **/
2089
2090 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2091 struct e1000_rx_ring *rx_ring)
2092 {
2093 struct e1000_hw *hw = &adapter->hw;
2094 struct e1000_buffer *buffer_info;
2095 struct pci_dev *pdev = adapter->pdev;
2096 unsigned long size;
2097 unsigned int i;
2098
2099 /* Free all the Rx ring sk_buffs */
2100 for (i = 0; i < rx_ring->count; i++) {
2101 buffer_info = &rx_ring->buffer_info[i];
2102 if (buffer_info->dma &&
2103 adapter->clean_rx == e1000_clean_rx_irq) {
2104 dma_unmap_single(&pdev->dev, buffer_info->dma,
2105 buffer_info->length,
2106 DMA_FROM_DEVICE);
2107 } else if (buffer_info->dma &&
2108 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2109 dma_unmap_page(&pdev->dev, buffer_info->dma,
2110 buffer_info->length,
2111 DMA_FROM_DEVICE);
2112 }
2113
2114 buffer_info->dma = 0;
2115 if (buffer_info->page) {
2116 put_page(buffer_info->page);
2117 buffer_info->page = NULL;
2118 }
2119 if (buffer_info->skb) {
2120 dev_kfree_skb(buffer_info->skb);
2121 buffer_info->skb = NULL;
2122 }
2123 }
2124
2125 /* there also may be some cached data from a chained receive */
2126 if (rx_ring->rx_skb_top) {
2127 dev_kfree_skb(rx_ring->rx_skb_top);
2128 rx_ring->rx_skb_top = NULL;
2129 }
2130
2131 size = sizeof(struct e1000_buffer) * rx_ring->count;
2132 memset(rx_ring->buffer_info, 0, size);
2133
2134 /* Zero out the descriptor ring */
2135 memset(rx_ring->desc, 0, rx_ring->size);
2136
2137 rx_ring->next_to_clean = 0;
2138 rx_ring->next_to_use = 0;
2139
2140 writel(0, hw->hw_addr + rx_ring->rdh);
2141 writel(0, hw->hw_addr + rx_ring->rdt);
2142 }
2143
2144 /**
2145 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2146 * @adapter: board private structure
2147 **/
2148
2149 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2150 {
2151 int i;
2152
2153 for (i = 0; i < adapter->num_rx_queues; i++)
2154 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2155 }
2156
2157 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2158 * and memory write and invalidate disabled for certain operations
2159 */
2160 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2161 {
2162 struct e1000_hw *hw = &adapter->hw;
2163 struct net_device *netdev = adapter->netdev;
2164 u32 rctl;
2165
2166 e1000_pci_clear_mwi(hw);
2167
2168 rctl = er32(RCTL);
2169 rctl |= E1000_RCTL_RST;
2170 ew32(RCTL, rctl);
2171 E1000_WRITE_FLUSH();
2172 mdelay(5);
2173
2174 if (netif_running(netdev))
2175 e1000_clean_all_rx_rings(adapter);
2176 }
2177
2178 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2179 {
2180 struct e1000_hw *hw = &adapter->hw;
2181 struct net_device *netdev = adapter->netdev;
2182 u32 rctl;
2183
2184 rctl = er32(RCTL);
2185 rctl &= ~E1000_RCTL_RST;
2186 ew32(RCTL, rctl);
2187 E1000_WRITE_FLUSH();
2188 mdelay(5);
2189
2190 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2191 e1000_pci_set_mwi(hw);
2192
2193 if (netif_running(netdev)) {
2194 /* No need to loop, because 82542 supports only 1 queue */
2195 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2196 e1000_configure_rx(adapter);
2197 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2198 }
2199 }
2200
2201 /**
2202 * e1000_set_mac - Change the Ethernet Address of the NIC
2203 * @netdev: network interface device structure
2204 * @p: pointer to an address structure
2205 *
2206 * Returns 0 on success, negative on failure
2207 **/
2208
2209 static int e1000_set_mac(struct net_device *netdev, void *p)
2210 {
2211 struct e1000_adapter *adapter = netdev_priv(netdev);
2212 struct e1000_hw *hw = &adapter->hw;
2213 struct sockaddr *addr = p;
2214
2215 if (!is_valid_ether_addr(addr->sa_data))
2216 return -EADDRNOTAVAIL;
2217
2218 /* 82542 2.0 needs to be in reset to write receive address registers */
2219
2220 if (hw->mac_type == e1000_82542_rev2_0)
2221 e1000_enter_82542_rst(adapter);
2222
2223 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2224 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2225
2226 e1000_rar_set(hw, hw->mac_addr, 0);
2227
2228 if (hw->mac_type == e1000_82542_rev2_0)
2229 e1000_leave_82542_rst(adapter);
2230
2231 return 0;
2232 }
2233
2234 /**
2235 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2236 * @netdev: network interface device structure
2237 *
2238 * The set_rx_mode entry point is called whenever the unicast or multicast
2239 * address lists or the network interface flags are updated. This routine is
2240 * responsible for configuring the hardware for proper unicast, multicast,
2241 * promiscuous mode, and all-multi behavior.
2242 **/
2243
2244 static void e1000_set_rx_mode(struct net_device *netdev)
2245 {
2246 struct e1000_adapter *adapter = netdev_priv(netdev);
2247 struct e1000_hw *hw = &adapter->hw;
2248 struct netdev_hw_addr *ha;
2249 bool use_uc = false;
2250 u32 rctl;
2251 u32 hash_value;
2252 int i, rar_entries = E1000_RAR_ENTRIES;
2253 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2254 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2255
2256 if (!mcarray) {
2257 e_err(probe, "memory allocation failed\n");
2258 return;
2259 }
2260
2261 /* Check for Promiscuous and All Multicast modes */
2262
2263 rctl = er32(RCTL);
2264
2265 if (netdev->flags & IFF_PROMISC) {
2266 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2267 rctl &= ~E1000_RCTL_VFE;
2268 } else {
2269 if (netdev->flags & IFF_ALLMULTI)
2270 rctl |= E1000_RCTL_MPE;
2271 else
2272 rctl &= ~E1000_RCTL_MPE;
2273 /* Enable VLAN filter if there is a VLAN */
2274 if (e1000_vlan_used(adapter))
2275 rctl |= E1000_RCTL_VFE;
2276 }
2277
2278 if (netdev_uc_count(netdev) > rar_entries - 1) {
2279 rctl |= E1000_RCTL_UPE;
2280 } else if (!(netdev->flags & IFF_PROMISC)) {
2281 rctl &= ~E1000_RCTL_UPE;
2282 use_uc = true;
2283 }
2284
2285 ew32(RCTL, rctl);
2286
2287 /* 82542 2.0 needs to be in reset to write receive address registers */
2288
2289 if (hw->mac_type == e1000_82542_rev2_0)
2290 e1000_enter_82542_rst(adapter);
2291
2292 /* load the first 14 addresses into the exact filters 1-14. Unicast
2293 * addresses take precedence to avoid disabling unicast filtering
2294 * when possible.
2295 *
2296 * RAR 0 is used for the station MAC address
2297 * if there are not 14 addresses, go ahead and clear the filters
2298 */
2299 i = 1;
2300 if (use_uc)
2301 netdev_for_each_uc_addr(ha, netdev) {
2302 if (i == rar_entries)
2303 break;
2304 e1000_rar_set(hw, ha->addr, i++);
2305 }
2306
2307 netdev_for_each_mc_addr(ha, netdev) {
2308 if (i == rar_entries) {
2309 /* load any remaining addresses into the hash table */
2310 u32 hash_reg, hash_bit, mta;
2311 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2312 hash_reg = (hash_value >> 5) & 0x7F;
2313 hash_bit = hash_value & 0x1F;
2314 mta = (1 << hash_bit);
2315 mcarray[hash_reg] |= mta;
2316 } else {
2317 e1000_rar_set(hw, ha->addr, i++);
2318 }
2319 }
2320
2321 for (; i < rar_entries; i++) {
2322 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2323 E1000_WRITE_FLUSH();
2324 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2325 E1000_WRITE_FLUSH();
2326 }
2327
2328 /* write the hash table completely, write from bottom to avoid
2329 * both stupid write combining chipsets, and flushing each write */
2330 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2331 /*
2332 * If we are on an 82544 has an errata where writing odd
2333 * offsets overwrites the previous even offset, but writing
2334 * backwards over the range solves the issue by always
2335 * writing the odd offset first
2336 */
2337 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2338 }
2339 E1000_WRITE_FLUSH();
2340
2341 if (hw->mac_type == e1000_82542_rev2_0)
2342 e1000_leave_82542_rst(adapter);
2343
2344 kfree(mcarray);
2345 }
2346
2347 /**
2348 * e1000_update_phy_info_task - get phy info
2349 * @work: work struct contained inside adapter struct
2350 *
2351 * Need to wait a few seconds after link up to get diagnostic information from
2352 * the phy
2353 */
2354 static void e1000_update_phy_info_task(struct work_struct *work)
2355 {
2356 struct e1000_adapter *adapter = container_of(work,
2357 struct e1000_adapter,
2358 phy_info_task.work);
2359 if (test_bit(__E1000_DOWN, &adapter->flags))
2360 return;
2361 mutex_lock(&adapter->mutex);
2362 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2363 mutex_unlock(&adapter->mutex);
2364 }
2365
2366 /**
2367 * e1000_82547_tx_fifo_stall_task - task to complete work
2368 * @work: work struct contained inside adapter struct
2369 **/
2370 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2371 {
2372 struct e1000_adapter *adapter = container_of(work,
2373 struct e1000_adapter,
2374 fifo_stall_task.work);
2375 struct e1000_hw *hw = &adapter->hw;
2376 struct net_device *netdev = adapter->netdev;
2377 u32 tctl;
2378
2379 if (test_bit(__E1000_DOWN, &adapter->flags))
2380 return;
2381 mutex_lock(&adapter->mutex);
2382 if (atomic_read(&adapter->tx_fifo_stall)) {
2383 if ((er32(TDT) == er32(TDH)) &&
2384 (er32(TDFT) == er32(TDFH)) &&
2385 (er32(TDFTS) == er32(TDFHS))) {
2386 tctl = er32(TCTL);
2387 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2388 ew32(TDFT, adapter->tx_head_addr);
2389 ew32(TDFH, adapter->tx_head_addr);
2390 ew32(TDFTS, adapter->tx_head_addr);
2391 ew32(TDFHS, adapter->tx_head_addr);
2392 ew32(TCTL, tctl);
2393 E1000_WRITE_FLUSH();
2394
2395 adapter->tx_fifo_head = 0;
2396 atomic_set(&adapter->tx_fifo_stall, 0);
2397 netif_wake_queue(netdev);
2398 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2399 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2400 }
2401 }
2402 mutex_unlock(&adapter->mutex);
2403 }
2404
2405 bool e1000_has_link(struct e1000_adapter *adapter)
2406 {
2407 struct e1000_hw *hw = &adapter->hw;
2408 bool link_active = false;
2409
2410 /* get_link_status is set on LSC (link status) interrupt or rx
2411 * sequence error interrupt (except on intel ce4100).
2412 * get_link_status will stay false until the
2413 * e1000_check_for_link establishes link for copper adapters
2414 * ONLY
2415 */
2416 switch (hw->media_type) {
2417 case e1000_media_type_copper:
2418 if (hw->mac_type == e1000_ce4100)
2419 hw->get_link_status = 1;
2420 if (hw->get_link_status) {
2421 e1000_check_for_link(hw);
2422 link_active = !hw->get_link_status;
2423 } else {
2424 link_active = true;
2425 }
2426 break;
2427 case e1000_media_type_fiber:
2428 e1000_check_for_link(hw);
2429 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2430 break;
2431 case e1000_media_type_internal_serdes:
2432 e1000_check_for_link(hw);
2433 link_active = hw->serdes_has_link;
2434 break;
2435 default:
2436 break;
2437 }
2438
2439 return link_active;
2440 }
2441
2442 /**
2443 * e1000_watchdog - work function
2444 * @work: work struct contained inside adapter struct
2445 **/
2446 static void e1000_watchdog(struct work_struct *work)
2447 {
2448 struct e1000_adapter *adapter = container_of(work,
2449 struct e1000_adapter,
2450 watchdog_task.work);
2451 struct e1000_hw *hw = &adapter->hw;
2452 struct net_device *netdev = adapter->netdev;
2453 struct e1000_tx_ring *txdr = adapter->tx_ring;
2454 u32 link, tctl;
2455
2456 if (test_bit(__E1000_DOWN, &adapter->flags))
2457 return;
2458
2459 mutex_lock(&adapter->mutex);
2460 link = e1000_has_link(adapter);
2461 if ((netif_carrier_ok(netdev)) && link)
2462 goto link_up;
2463
2464 if (link) {
2465 if (!netif_carrier_ok(netdev)) {
2466 u32 ctrl;
2467 bool txb2b = true;
2468 /* update snapshot of PHY registers on LSC */
2469 e1000_get_speed_and_duplex(hw,
2470 &adapter->link_speed,
2471 &adapter->link_duplex);
2472
2473 ctrl = er32(CTRL);
2474 pr_info("%s NIC Link is Up %d Mbps %s, "
2475 "Flow Control: %s\n",
2476 netdev->name,
2477 adapter->link_speed,
2478 adapter->link_duplex == FULL_DUPLEX ?
2479 "Full Duplex" : "Half Duplex",
2480 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2481 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2482 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2483 E1000_CTRL_TFCE) ? "TX" : "None")));
2484
2485 /* adjust timeout factor according to speed/duplex */
2486 adapter->tx_timeout_factor = 1;
2487 switch (adapter->link_speed) {
2488 case SPEED_10:
2489 txb2b = false;
2490 adapter->tx_timeout_factor = 16;
2491 break;
2492 case SPEED_100:
2493 txb2b = false;
2494 /* maybe add some timeout factor ? */
2495 break;
2496 }
2497
2498 /* enable transmits in the hardware */
2499 tctl = er32(TCTL);
2500 tctl |= E1000_TCTL_EN;
2501 ew32(TCTL, tctl);
2502
2503 netif_carrier_on(netdev);
2504 if (!test_bit(__E1000_DOWN, &adapter->flags))
2505 schedule_delayed_work(&adapter->phy_info_task,
2506 2 * HZ);
2507 adapter->smartspeed = 0;
2508 }
2509 } else {
2510 if (netif_carrier_ok(netdev)) {
2511 adapter->link_speed = 0;
2512 adapter->link_duplex = 0;
2513 pr_info("%s NIC Link is Down\n",
2514 netdev->name);
2515 netif_carrier_off(netdev);
2516
2517 if (!test_bit(__E1000_DOWN, &adapter->flags))
2518 schedule_delayed_work(&adapter->phy_info_task,
2519 2 * HZ);
2520 }
2521
2522 e1000_smartspeed(adapter);
2523 }
2524
2525 link_up:
2526 e1000_update_stats(adapter);
2527
2528 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2529 adapter->tpt_old = adapter->stats.tpt;
2530 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2531 adapter->colc_old = adapter->stats.colc;
2532
2533 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2534 adapter->gorcl_old = adapter->stats.gorcl;
2535 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2536 adapter->gotcl_old = adapter->stats.gotcl;
2537
2538 e1000_update_adaptive(hw);
2539
2540 if (!netif_carrier_ok(netdev)) {
2541 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2542 /* We've lost link, so the controller stops DMA,
2543 * but we've got queued Tx work that's never going
2544 * to get done, so reset controller to flush Tx.
2545 * (Do the reset outside of interrupt context). */
2546 adapter->tx_timeout_count++;
2547 schedule_work(&adapter->reset_task);
2548 /* exit immediately since reset is imminent */
2549 goto unlock;
2550 }
2551 }
2552
2553 /* Simple mode for Interrupt Throttle Rate (ITR) */
2554 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2555 /*
2556 * Symmetric Tx/Rx gets a reduced ITR=2000;
2557 * Total asymmetrical Tx or Rx gets ITR=8000;
2558 * everyone else is between 2000-8000.
2559 */
2560 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2561 u32 dif = (adapter->gotcl > adapter->gorcl ?
2562 adapter->gotcl - adapter->gorcl :
2563 adapter->gorcl - adapter->gotcl) / 10000;
2564 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2565
2566 ew32(ITR, 1000000000 / (itr * 256));
2567 }
2568
2569 /* Cause software interrupt to ensure rx ring is cleaned */
2570 ew32(ICS, E1000_ICS_RXDMT0);
2571
2572 /* Force detection of hung controller every watchdog period */
2573 adapter->detect_tx_hung = true;
2574
2575 /* Reschedule the task */
2576 if (!test_bit(__E1000_DOWN, &adapter->flags))
2577 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2578
2579 unlock:
2580 mutex_unlock(&adapter->mutex);
2581 }
2582
2583 enum latency_range {
2584 lowest_latency = 0,
2585 low_latency = 1,
2586 bulk_latency = 2,
2587 latency_invalid = 255
2588 };
2589
2590 /**
2591 * e1000_update_itr - update the dynamic ITR value based on statistics
2592 * @adapter: pointer to adapter
2593 * @itr_setting: current adapter->itr
2594 * @packets: the number of packets during this measurement interval
2595 * @bytes: the number of bytes during this measurement interval
2596 *
2597 * Stores a new ITR value based on packets and byte
2598 * counts during the last interrupt. The advantage of per interrupt
2599 * computation is faster updates and more accurate ITR for the current
2600 * traffic pattern. Constants in this function were computed
2601 * based on theoretical maximum wire speed and thresholds were set based
2602 * on testing data as well as attempting to minimize response time
2603 * while increasing bulk throughput.
2604 * this functionality is controlled by the InterruptThrottleRate module
2605 * parameter (see e1000_param.c)
2606 **/
2607 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2608 u16 itr_setting, int packets, int bytes)
2609 {
2610 unsigned int retval = itr_setting;
2611 struct e1000_hw *hw = &adapter->hw;
2612
2613 if (unlikely(hw->mac_type < e1000_82540))
2614 goto update_itr_done;
2615
2616 if (packets == 0)
2617 goto update_itr_done;
2618
2619 switch (itr_setting) {
2620 case lowest_latency:
2621 /* jumbo frames get bulk treatment*/
2622 if (bytes/packets > 8000)
2623 retval = bulk_latency;
2624 else if ((packets < 5) && (bytes > 512))
2625 retval = low_latency;
2626 break;
2627 case low_latency: /* 50 usec aka 20000 ints/s */
2628 if (bytes > 10000) {
2629 /* jumbo frames need bulk latency setting */
2630 if (bytes/packets > 8000)
2631 retval = bulk_latency;
2632 else if ((packets < 10) || ((bytes/packets) > 1200))
2633 retval = bulk_latency;
2634 else if ((packets > 35))
2635 retval = lowest_latency;
2636 } else if (bytes/packets > 2000)
2637 retval = bulk_latency;
2638 else if (packets <= 2 && bytes < 512)
2639 retval = lowest_latency;
2640 break;
2641 case bulk_latency: /* 250 usec aka 4000 ints/s */
2642 if (bytes > 25000) {
2643 if (packets > 35)
2644 retval = low_latency;
2645 } else if (bytes < 6000) {
2646 retval = low_latency;
2647 }
2648 break;
2649 }
2650
2651 update_itr_done:
2652 return retval;
2653 }
2654
2655 static void e1000_set_itr(struct e1000_adapter *adapter)
2656 {
2657 struct e1000_hw *hw = &adapter->hw;
2658 u16 current_itr;
2659 u32 new_itr = adapter->itr;
2660
2661 if (unlikely(hw->mac_type < e1000_82540))
2662 return;
2663
2664 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2665 if (unlikely(adapter->link_speed != SPEED_1000)) {
2666 current_itr = 0;
2667 new_itr = 4000;
2668 goto set_itr_now;
2669 }
2670
2671 adapter->tx_itr = e1000_update_itr(adapter,
2672 adapter->tx_itr,
2673 adapter->total_tx_packets,
2674 adapter->total_tx_bytes);
2675 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2676 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2677 adapter->tx_itr = low_latency;
2678
2679 adapter->rx_itr = e1000_update_itr(adapter,
2680 adapter->rx_itr,
2681 adapter->total_rx_packets,
2682 adapter->total_rx_bytes);
2683 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2684 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2685 adapter->rx_itr = low_latency;
2686
2687 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2688
2689 switch (current_itr) {
2690 /* counts and packets in update_itr are dependent on these numbers */
2691 case lowest_latency:
2692 new_itr = 70000;
2693 break;
2694 case low_latency:
2695 new_itr = 20000; /* aka hwitr = ~200 */
2696 break;
2697 case bulk_latency:
2698 new_itr = 4000;
2699 break;
2700 default:
2701 break;
2702 }
2703
2704 set_itr_now:
2705 if (new_itr != adapter->itr) {
2706 /* this attempts to bias the interrupt rate towards Bulk
2707 * by adding intermediate steps when interrupt rate is
2708 * increasing */
2709 new_itr = new_itr > adapter->itr ?
2710 min(adapter->itr + (new_itr >> 2), new_itr) :
2711 new_itr;
2712 adapter->itr = new_itr;
2713 ew32(ITR, 1000000000 / (new_itr * 256));
2714 }
2715 }
2716
2717 #define E1000_TX_FLAGS_CSUM 0x00000001
2718 #define E1000_TX_FLAGS_VLAN 0x00000002
2719 #define E1000_TX_FLAGS_TSO 0x00000004
2720 #define E1000_TX_FLAGS_IPV4 0x00000008
2721 #define E1000_TX_FLAGS_NO_FCS 0x00000010
2722 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2723 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2724
2725 static int e1000_tso(struct e1000_adapter *adapter,
2726 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2727 {
2728 struct e1000_context_desc *context_desc;
2729 struct e1000_buffer *buffer_info;
2730 unsigned int i;
2731 u32 cmd_length = 0;
2732 u16 ipcse = 0, tucse, mss;
2733 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2734 int err;
2735
2736 if (skb_is_gso(skb)) {
2737 if (skb_header_cloned(skb)) {
2738 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2739 if (err)
2740 return err;
2741 }
2742
2743 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2744 mss = skb_shinfo(skb)->gso_size;
2745 if (skb->protocol == htons(ETH_P_IP)) {
2746 struct iphdr *iph = ip_hdr(skb);
2747 iph->tot_len = 0;
2748 iph->check = 0;
2749 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2750 iph->daddr, 0,
2751 IPPROTO_TCP,
2752 0);
2753 cmd_length = E1000_TXD_CMD_IP;
2754 ipcse = skb_transport_offset(skb) - 1;
2755 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2756 ipv6_hdr(skb)->payload_len = 0;
2757 tcp_hdr(skb)->check =
2758 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2759 &ipv6_hdr(skb)->daddr,
2760 0, IPPROTO_TCP, 0);
2761 ipcse = 0;
2762 }
2763 ipcss = skb_network_offset(skb);
2764 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2765 tucss = skb_transport_offset(skb);
2766 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2767 tucse = 0;
2768
2769 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2770 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2771
2772 i = tx_ring->next_to_use;
2773 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2774 buffer_info = &tx_ring->buffer_info[i];
2775
2776 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2777 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2778 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2779 context_desc->upper_setup.tcp_fields.tucss = tucss;
2780 context_desc->upper_setup.tcp_fields.tucso = tucso;
2781 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2782 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2783 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2784 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2785
2786 buffer_info->time_stamp = jiffies;
2787 buffer_info->next_to_watch = i;
2788
2789 if (++i == tx_ring->count) i = 0;
2790 tx_ring->next_to_use = i;
2791
2792 return true;
2793 }
2794 return false;
2795 }
2796
2797 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2798 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2799 {
2800 struct e1000_context_desc *context_desc;
2801 struct e1000_buffer *buffer_info;
2802 unsigned int i;
2803 u8 css;
2804 u32 cmd_len = E1000_TXD_CMD_DEXT;
2805
2806 if (skb->ip_summed != CHECKSUM_PARTIAL)
2807 return false;
2808
2809 switch (skb->protocol) {
2810 case cpu_to_be16(ETH_P_IP):
2811 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2812 cmd_len |= E1000_TXD_CMD_TCP;
2813 break;
2814 case cpu_to_be16(ETH_P_IPV6):
2815 /* XXX not handling all IPV6 headers */
2816 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2817 cmd_len |= E1000_TXD_CMD_TCP;
2818 break;
2819 default:
2820 if (unlikely(net_ratelimit()))
2821 e_warn(drv, "checksum_partial proto=%x!\n",
2822 skb->protocol);
2823 break;
2824 }
2825
2826 css = skb_checksum_start_offset(skb);
2827
2828 i = tx_ring->next_to_use;
2829 buffer_info = &tx_ring->buffer_info[i];
2830 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2831
2832 context_desc->lower_setup.ip_config = 0;
2833 context_desc->upper_setup.tcp_fields.tucss = css;
2834 context_desc->upper_setup.tcp_fields.tucso =
2835 css + skb->csum_offset;
2836 context_desc->upper_setup.tcp_fields.tucse = 0;
2837 context_desc->tcp_seg_setup.data = 0;
2838 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2839
2840 buffer_info->time_stamp = jiffies;
2841 buffer_info->next_to_watch = i;
2842
2843 if (unlikely(++i == tx_ring->count)) i = 0;
2844 tx_ring->next_to_use = i;
2845
2846 return true;
2847 }
2848
2849 #define E1000_MAX_TXD_PWR 12
2850 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2851
2852 static int e1000_tx_map(struct e1000_adapter *adapter,
2853 struct e1000_tx_ring *tx_ring,
2854 struct sk_buff *skb, unsigned int first,
2855 unsigned int max_per_txd, unsigned int nr_frags,
2856 unsigned int mss)
2857 {
2858 struct e1000_hw *hw = &adapter->hw;
2859 struct pci_dev *pdev = adapter->pdev;
2860 struct e1000_buffer *buffer_info;
2861 unsigned int len = skb_headlen(skb);
2862 unsigned int offset = 0, size, count = 0, i;
2863 unsigned int f, bytecount, segs;
2864
2865 i = tx_ring->next_to_use;
2866
2867 while (len) {
2868 buffer_info = &tx_ring->buffer_info[i];
2869 size = min(len, max_per_txd);
2870 /* Workaround for Controller erratum --
2871 * descriptor for non-tso packet in a linear SKB that follows a
2872 * tso gets written back prematurely before the data is fully
2873 * DMA'd to the controller */
2874 if (!skb->data_len && tx_ring->last_tx_tso &&
2875 !skb_is_gso(skb)) {
2876 tx_ring->last_tx_tso = false;
2877 size -= 4;
2878 }
2879
2880 /* Workaround for premature desc write-backs
2881 * in TSO mode. Append 4-byte sentinel desc */
2882 if (unlikely(mss && !nr_frags && size == len && size > 8))
2883 size -= 4;
2884 /* work-around for errata 10 and it applies
2885 * to all controllers in PCI-X mode
2886 * The fix is to make sure that the first descriptor of a
2887 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2888 */
2889 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2890 (size > 2015) && count == 0))
2891 size = 2015;
2892
2893 /* Workaround for potential 82544 hang in PCI-X. Avoid
2894 * terminating buffers within evenly-aligned dwords. */
2895 if (unlikely(adapter->pcix_82544 &&
2896 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2897 size > 4))
2898 size -= 4;
2899
2900 buffer_info->length = size;
2901 /* set time_stamp *before* dma to help avoid a possible race */
2902 buffer_info->time_stamp = jiffies;
2903 buffer_info->mapped_as_page = false;
2904 buffer_info->dma = dma_map_single(&pdev->dev,
2905 skb->data + offset,
2906 size, DMA_TO_DEVICE);
2907 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2908 goto dma_error;
2909 buffer_info->next_to_watch = i;
2910
2911 len -= size;
2912 offset += size;
2913 count++;
2914 if (len) {
2915 i++;
2916 if (unlikely(i == tx_ring->count))
2917 i = 0;
2918 }
2919 }
2920
2921 for (f = 0; f < nr_frags; f++) {
2922 const struct skb_frag_struct *frag;
2923
2924 frag = &skb_shinfo(skb)->frags[f];
2925 len = skb_frag_size(frag);
2926 offset = 0;
2927
2928 while (len) {
2929 unsigned long bufend;
2930 i++;
2931 if (unlikely(i == tx_ring->count))
2932 i = 0;
2933
2934 buffer_info = &tx_ring->buffer_info[i];
2935 size = min(len, max_per_txd);
2936 /* Workaround for premature desc write-backs
2937 * in TSO mode. Append 4-byte sentinel desc */
2938 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2939 size -= 4;
2940 /* Workaround for potential 82544 hang in PCI-X.
2941 * Avoid terminating buffers within evenly-aligned
2942 * dwords. */
2943 bufend = (unsigned long)
2944 page_to_phys(skb_frag_page(frag));
2945 bufend += offset + size - 1;
2946 if (unlikely(adapter->pcix_82544 &&
2947 !(bufend & 4) &&
2948 size > 4))
2949 size -= 4;
2950
2951 buffer_info->length = size;
2952 buffer_info->time_stamp = jiffies;
2953 buffer_info->mapped_as_page = true;
2954 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2955 offset, size, DMA_TO_DEVICE);
2956 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2957 goto dma_error;
2958 buffer_info->next_to_watch = i;
2959
2960 len -= size;
2961 offset += size;
2962 count++;
2963 }
2964 }
2965
2966 segs = skb_shinfo(skb)->gso_segs ?: 1;
2967 /* multiply data chunks by size of headers */
2968 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2969
2970 tx_ring->buffer_info[i].skb = skb;
2971 tx_ring->buffer_info[i].segs = segs;
2972 tx_ring->buffer_info[i].bytecount = bytecount;
2973 tx_ring->buffer_info[first].next_to_watch = i;
2974
2975 return count;
2976
2977 dma_error:
2978 dev_err(&pdev->dev, "TX DMA map failed\n");
2979 buffer_info->dma = 0;
2980 if (count)
2981 count--;
2982
2983 while (count--) {
2984 if (i==0)
2985 i += tx_ring->count;
2986 i--;
2987 buffer_info = &tx_ring->buffer_info[i];
2988 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2989 }
2990
2991 return 0;
2992 }
2993
2994 static void e1000_tx_queue(struct e1000_adapter *adapter,
2995 struct e1000_tx_ring *tx_ring, int tx_flags,
2996 int count)
2997 {
2998 struct e1000_hw *hw = &adapter->hw;
2999 struct e1000_tx_desc *tx_desc = NULL;
3000 struct e1000_buffer *buffer_info;
3001 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3002 unsigned int i;
3003
3004 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3005 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3006 E1000_TXD_CMD_TSE;
3007 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3008
3009 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3010 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3011 }
3012
3013 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3014 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3015 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3016 }
3017
3018 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3019 txd_lower |= E1000_TXD_CMD_VLE;
3020 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3021 }
3022
3023 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3024 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3025
3026 i = tx_ring->next_to_use;
3027
3028 while (count--) {
3029 buffer_info = &tx_ring->buffer_info[i];
3030 tx_desc = E1000_TX_DESC(*tx_ring, i);
3031 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3032 tx_desc->lower.data =
3033 cpu_to_le32(txd_lower | buffer_info->length);
3034 tx_desc->upper.data = cpu_to_le32(txd_upper);
3035 if (unlikely(++i == tx_ring->count)) i = 0;
3036 }
3037
3038 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3039
3040 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3041 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3042 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3043
3044 /* Force memory writes to complete before letting h/w
3045 * know there are new descriptors to fetch. (Only
3046 * applicable for weak-ordered memory model archs,
3047 * such as IA-64). */
3048 wmb();
3049
3050 tx_ring->next_to_use = i;
3051 writel(i, hw->hw_addr + tx_ring->tdt);
3052 /* we need this if more than one processor can write to our tail
3053 * at a time, it syncronizes IO on IA64/Altix systems */
3054 mmiowb();
3055 }
3056
3057 /* 82547 workaround to avoid controller hang in half-duplex environment.
3058 * The workaround is to avoid queuing a large packet that would span
3059 * the internal Tx FIFO ring boundary by notifying the stack to resend
3060 * the packet at a later time. This gives the Tx FIFO an opportunity to
3061 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3062 * to the beginning of the Tx FIFO.
3063 */
3064
3065 #define E1000_FIFO_HDR 0x10
3066 #define E1000_82547_PAD_LEN 0x3E0
3067
3068 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3069 struct sk_buff *skb)
3070 {
3071 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3072 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3073
3074 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3075
3076 if (adapter->link_duplex != HALF_DUPLEX)
3077 goto no_fifo_stall_required;
3078
3079 if (atomic_read(&adapter->tx_fifo_stall))
3080 return 1;
3081
3082 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3083 atomic_set(&adapter->tx_fifo_stall, 1);
3084 return 1;
3085 }
3086
3087 no_fifo_stall_required:
3088 adapter->tx_fifo_head += skb_fifo_len;
3089 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3090 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3091 return 0;
3092 }
3093
3094 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3095 {
3096 struct e1000_adapter *adapter = netdev_priv(netdev);
3097 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3098
3099 netif_stop_queue(netdev);
3100 /* Herbert's original patch had:
3101 * smp_mb__after_netif_stop_queue();
3102 * but since that doesn't exist yet, just open code it. */
3103 smp_mb();
3104
3105 /* We need to check again in a case another CPU has just
3106 * made room available. */
3107 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3108 return -EBUSY;
3109
3110 /* A reprieve! */
3111 netif_start_queue(netdev);
3112 ++adapter->restart_queue;
3113 return 0;
3114 }
3115
3116 static int e1000_maybe_stop_tx(struct net_device *netdev,
3117 struct e1000_tx_ring *tx_ring, int size)
3118 {
3119 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3120 return 0;
3121 return __e1000_maybe_stop_tx(netdev, size);
3122 }
3123
3124 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3125 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3126 struct net_device *netdev)
3127 {
3128 struct e1000_adapter *adapter = netdev_priv(netdev);
3129 struct e1000_hw *hw = &adapter->hw;
3130 struct e1000_tx_ring *tx_ring;
3131 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3132 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3133 unsigned int tx_flags = 0;
3134 unsigned int len = skb_headlen(skb);
3135 unsigned int nr_frags;
3136 unsigned int mss;
3137 int count = 0;
3138 int tso;
3139 unsigned int f;
3140
3141 /* This goes back to the question of how to logically map a tx queue
3142 * to a flow. Right now, performance is impacted slightly negatively
3143 * if using multiple tx queues. If the stack breaks away from a
3144 * single qdisc implementation, we can look at this again. */
3145 tx_ring = adapter->tx_ring;
3146
3147 if (unlikely(skb->len <= 0)) {
3148 dev_kfree_skb_any(skb);
3149 return NETDEV_TX_OK;
3150 }
3151
3152 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3153 * packets may get corrupted during padding by HW.
3154 * To WA this issue, pad all small packets manually.
3155 */
3156 if (skb->len < ETH_ZLEN) {
3157 if (skb_pad(skb, ETH_ZLEN - skb->len))
3158 return NETDEV_TX_OK;
3159 skb->len = ETH_ZLEN;
3160 skb_set_tail_pointer(skb, ETH_ZLEN);
3161 }
3162
3163 mss = skb_shinfo(skb)->gso_size;
3164 /* The controller does a simple calculation to
3165 * make sure there is enough room in the FIFO before
3166 * initiating the DMA for each buffer. The calc is:
3167 * 4 = ceil(buffer len/mss). To make sure we don't
3168 * overrun the FIFO, adjust the max buffer len if mss
3169 * drops. */
3170 if (mss) {
3171 u8 hdr_len;
3172 max_per_txd = min(mss << 2, max_per_txd);
3173 max_txd_pwr = fls(max_per_txd) - 1;
3174
3175 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3176 if (skb->data_len && hdr_len == len) {
3177 switch (hw->mac_type) {
3178 unsigned int pull_size;
3179 case e1000_82544:
3180 /* Make sure we have room to chop off 4 bytes,
3181 * and that the end alignment will work out to
3182 * this hardware's requirements
3183 * NOTE: this is a TSO only workaround
3184 * if end byte alignment not correct move us
3185 * into the next dword */
3186 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3187 break;
3188 /* fall through */
3189 pull_size = min((unsigned int)4, skb->data_len);
3190 if (!__pskb_pull_tail(skb, pull_size)) {
3191 e_err(drv, "__pskb_pull_tail "
3192 "failed.\n");
3193 dev_kfree_skb_any(skb);
3194 return NETDEV_TX_OK;
3195 }
3196 len = skb_headlen(skb);
3197 break;
3198 default:
3199 /* do nothing */
3200 break;
3201 }
3202 }
3203 }
3204
3205 /* reserve a descriptor for the offload context */
3206 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3207 count++;
3208 count++;
3209
3210 /* Controller Erratum workaround */
3211 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3212 count++;
3213
3214 count += TXD_USE_COUNT(len, max_txd_pwr);
3215
3216 if (adapter->pcix_82544)
3217 count++;
3218
3219 /* work-around for errata 10 and it applies to all controllers
3220 * in PCI-X mode, so add one more descriptor to the count
3221 */
3222 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3223 (len > 2015)))
3224 count++;
3225
3226 nr_frags = skb_shinfo(skb)->nr_frags;
3227 for (f = 0; f < nr_frags; f++)
3228 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3229 max_txd_pwr);
3230 if (adapter->pcix_82544)
3231 count += nr_frags;
3232
3233 /* need: count + 2 desc gap to keep tail from touching
3234 * head, otherwise try next time */
3235 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3236 return NETDEV_TX_BUSY;
3237
3238 if (unlikely((hw->mac_type == e1000_82547) &&
3239 (e1000_82547_fifo_workaround(adapter, skb)))) {
3240 netif_stop_queue(netdev);
3241 if (!test_bit(__E1000_DOWN, &adapter->flags))
3242 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3243 return NETDEV_TX_BUSY;
3244 }
3245
3246 if (vlan_tx_tag_present(skb)) {
3247 tx_flags |= E1000_TX_FLAGS_VLAN;
3248 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3249 }
3250
3251 first = tx_ring->next_to_use;
3252
3253 tso = e1000_tso(adapter, tx_ring, skb);
3254 if (tso < 0) {
3255 dev_kfree_skb_any(skb);
3256 return NETDEV_TX_OK;
3257 }
3258
3259 if (likely(tso)) {
3260 if (likely(hw->mac_type != e1000_82544))
3261 tx_ring->last_tx_tso = true;
3262 tx_flags |= E1000_TX_FLAGS_TSO;
3263 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3264 tx_flags |= E1000_TX_FLAGS_CSUM;
3265
3266 if (likely(skb->protocol == htons(ETH_P_IP)))
3267 tx_flags |= E1000_TX_FLAGS_IPV4;
3268
3269 if (unlikely(skb->no_fcs))
3270 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3271
3272 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3273 nr_frags, mss);
3274
3275 if (count) {
3276 skb_tx_timestamp(skb);
3277
3278 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3279 /* Make sure there is space in the ring for the next send. */
3280 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3281
3282 } else {
3283 dev_kfree_skb_any(skb);
3284 tx_ring->buffer_info[first].time_stamp = 0;
3285 tx_ring->next_to_use = first;
3286 }
3287
3288 return NETDEV_TX_OK;
3289 }
3290
3291 #define NUM_REGS 38 /* 1 based count */
3292 static void e1000_regdump(struct e1000_adapter *adapter)
3293 {
3294 struct e1000_hw *hw = &adapter->hw;
3295 u32 regs[NUM_REGS];
3296 u32 *regs_buff = regs;
3297 int i = 0;
3298
3299 static const char * const reg_name[] = {
3300 "CTRL", "STATUS",
3301 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3302 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3303 "TIDV", "TXDCTL", "TADV", "TARC0",
3304 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3305 "TXDCTL1", "TARC1",
3306 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3307 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3308 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3309 };
3310
3311 regs_buff[0] = er32(CTRL);
3312 regs_buff[1] = er32(STATUS);
3313
3314 regs_buff[2] = er32(RCTL);
3315 regs_buff[3] = er32(RDLEN);
3316 regs_buff[4] = er32(RDH);
3317 regs_buff[5] = er32(RDT);
3318 regs_buff[6] = er32(RDTR);
3319
3320 regs_buff[7] = er32(TCTL);
3321 regs_buff[8] = er32(TDBAL);
3322 regs_buff[9] = er32(TDBAH);
3323 regs_buff[10] = er32(TDLEN);
3324 regs_buff[11] = er32(TDH);
3325 regs_buff[12] = er32(TDT);
3326 regs_buff[13] = er32(TIDV);
3327 regs_buff[14] = er32(TXDCTL);
3328 regs_buff[15] = er32(TADV);
3329 regs_buff[16] = er32(TARC0);
3330
3331 regs_buff[17] = er32(TDBAL1);
3332 regs_buff[18] = er32(TDBAH1);
3333 regs_buff[19] = er32(TDLEN1);
3334 regs_buff[20] = er32(TDH1);
3335 regs_buff[21] = er32(TDT1);
3336 regs_buff[22] = er32(TXDCTL1);
3337 regs_buff[23] = er32(TARC1);
3338 regs_buff[24] = er32(CTRL_EXT);
3339 regs_buff[25] = er32(ERT);
3340 regs_buff[26] = er32(RDBAL0);
3341 regs_buff[27] = er32(RDBAH0);
3342 regs_buff[28] = er32(TDFH);
3343 regs_buff[29] = er32(TDFT);
3344 regs_buff[30] = er32(TDFHS);
3345 regs_buff[31] = er32(TDFTS);
3346 regs_buff[32] = er32(TDFPC);
3347 regs_buff[33] = er32(RDFH);
3348 regs_buff[34] = er32(RDFT);
3349 regs_buff[35] = er32(RDFHS);
3350 regs_buff[36] = er32(RDFTS);
3351 regs_buff[37] = er32(RDFPC);
3352
3353 pr_info("Register dump\n");
3354 for (i = 0; i < NUM_REGS; i++)
3355 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3356 }
3357
3358 /*
3359 * e1000_dump: Print registers, tx ring and rx ring
3360 */
3361 static void e1000_dump(struct e1000_adapter *adapter)
3362 {
3363 /* this code doesn't handle multiple rings */
3364 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3365 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3366 int i;
3367
3368 if (!netif_msg_hw(adapter))
3369 return;
3370
3371 /* Print Registers */
3372 e1000_regdump(adapter);
3373
3374 /*
3375 * transmit dump
3376 */
3377 pr_info("TX Desc ring0 dump\n");
3378
3379 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3380 *
3381 * Legacy Transmit Descriptor
3382 * +--------------------------------------------------------------+
3383 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3384 * +--------------------------------------------------------------+
3385 * 8 | Special | CSS | Status | CMD | CSO | Length |
3386 * +--------------------------------------------------------------+
3387 * 63 48 47 36 35 32 31 24 23 16 15 0
3388 *
3389 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3390 * 63 48 47 40 39 32 31 16 15 8 7 0
3391 * +----------------------------------------------------------------+
3392 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3393 * +----------------------------------------------------------------+
3394 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3395 * +----------------------------------------------------------------+
3396 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3397 *
3398 * Extended Data Descriptor (DTYP=0x1)
3399 * +----------------------------------------------------------------+
3400 * 0 | Buffer Address [63:0] |
3401 * +----------------------------------------------------------------+
3402 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3403 * +----------------------------------------------------------------+
3404 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3405 */
3406 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3407 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3408
3409 if (!netif_msg_tx_done(adapter))
3410 goto rx_ring_summary;
3411
3412 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3413 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3414 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3415 struct my_u { __le64 a; __le64 b; };
3416 struct my_u *u = (struct my_u *)tx_desc;
3417 const char *type;
3418
3419 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3420 type = "NTC/U";
3421 else if (i == tx_ring->next_to_use)
3422 type = "NTU";
3423 else if (i == tx_ring->next_to_clean)
3424 type = "NTC";
3425 else
3426 type = "";
3427
3428 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3429 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3430 le64_to_cpu(u->a), le64_to_cpu(u->b),
3431 (u64)buffer_info->dma, buffer_info->length,
3432 buffer_info->next_to_watch,
3433 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3434 }
3435
3436 rx_ring_summary:
3437 /*
3438 * receive dump
3439 */
3440 pr_info("\nRX Desc ring dump\n");
3441
3442 /* Legacy Receive Descriptor Format
3443 *
3444 * +-----------------------------------------------------+
3445 * | Buffer Address [63:0] |
3446 * +-----------------------------------------------------+
3447 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3448 * +-----------------------------------------------------+
3449 * 63 48 47 40 39 32 31 16 15 0
3450 */
3451 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3452
3453 if (!netif_msg_rx_status(adapter))
3454 goto exit;
3455
3456 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3457 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3458 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3459 struct my_u { __le64 a; __le64 b; };
3460 struct my_u *u = (struct my_u *)rx_desc;
3461 const char *type;
3462
3463 if (i == rx_ring->next_to_use)
3464 type = "NTU";
3465 else if (i == rx_ring->next_to_clean)
3466 type = "NTC";
3467 else
3468 type = "";
3469
3470 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3471 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3472 (u64)buffer_info->dma, buffer_info->skb, type);
3473 } /* for */
3474
3475 /* dump the descriptor caches */
3476 /* rx */
3477 pr_info("Rx descriptor cache in 64bit format\n");
3478 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3479 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3480 i,
3481 readl(adapter->hw.hw_addr + i+4),
3482 readl(adapter->hw.hw_addr + i),
3483 readl(adapter->hw.hw_addr + i+12),
3484 readl(adapter->hw.hw_addr + i+8));
3485 }
3486 /* tx */
3487 pr_info("Tx descriptor cache in 64bit format\n");
3488 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3489 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3490 i,
3491 readl(adapter->hw.hw_addr + i+4),
3492 readl(adapter->hw.hw_addr + i),
3493 readl(adapter->hw.hw_addr + i+12),
3494 readl(adapter->hw.hw_addr + i+8));
3495 }
3496 exit:
3497 return;
3498 }
3499
3500 /**
3501 * e1000_tx_timeout - Respond to a Tx Hang
3502 * @netdev: network interface device structure
3503 **/
3504
3505 static void e1000_tx_timeout(struct net_device *netdev)
3506 {
3507 struct e1000_adapter *adapter = netdev_priv(netdev);
3508
3509 /* Do the reset outside of interrupt context */
3510 adapter->tx_timeout_count++;
3511 schedule_work(&adapter->reset_task);
3512 }
3513
3514 static void e1000_reset_task(struct work_struct *work)
3515 {
3516 struct e1000_adapter *adapter =
3517 container_of(work, struct e1000_adapter, reset_task);
3518
3519 if (test_bit(__E1000_DOWN, &adapter->flags))
3520 return;
3521 e_err(drv, "Reset adapter\n");
3522 e1000_reinit_safe(adapter);
3523 }
3524
3525 /**
3526 * e1000_get_stats - Get System Network Statistics
3527 * @netdev: network interface device structure
3528 *
3529 * Returns the address of the device statistics structure.
3530 * The statistics are actually updated from the watchdog.
3531 **/
3532
3533 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3534 {
3535 /* only return the current stats */
3536 return &netdev->stats;
3537 }
3538
3539 /**
3540 * e1000_change_mtu - Change the Maximum Transfer Unit
3541 * @netdev: network interface device structure
3542 * @new_mtu: new value for maximum frame size
3543 *
3544 * Returns 0 on success, negative on failure
3545 **/
3546
3547 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3548 {
3549 struct e1000_adapter *adapter = netdev_priv(netdev);
3550 struct e1000_hw *hw = &adapter->hw;
3551 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3552
3553 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3554 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3555 e_err(probe, "Invalid MTU setting\n");
3556 return -EINVAL;
3557 }
3558
3559 /* Adapter-specific max frame size limits. */
3560 switch (hw->mac_type) {
3561 case e1000_undefined ... e1000_82542_rev2_1:
3562 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3563 e_err(probe, "Jumbo Frames not supported.\n");
3564 return -EINVAL;
3565 }
3566 break;
3567 default:
3568 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3569 break;
3570 }
3571
3572 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3573 msleep(1);
3574 /* e1000_down has a dependency on max_frame_size */
3575 hw->max_frame_size = max_frame;
3576 if (netif_running(netdev))
3577 e1000_down(adapter);
3578
3579 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3580 * means we reserve 2 more, this pushes us to allocate from the next
3581 * larger slab size.
3582 * i.e. RXBUFFER_2048 --> size-4096 slab
3583 * however with the new *_jumbo_rx* routines, jumbo receives will use
3584 * fragmented skbs */
3585
3586 if (max_frame <= E1000_RXBUFFER_2048)
3587 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3588 else
3589 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3590 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3591 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3592 adapter->rx_buffer_len = PAGE_SIZE;
3593 #endif
3594
3595 /* adjust allocation if LPE protects us, and we aren't using SBP */
3596 if (!hw->tbi_compatibility_on &&
3597 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3598 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3599 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3600
3601 pr_info("%s changing MTU from %d to %d\n",
3602 netdev->name, netdev->mtu, new_mtu);
3603 netdev->mtu = new_mtu;
3604
3605 if (netif_running(netdev))
3606 e1000_up(adapter);
3607 else
3608 e1000_reset(adapter);
3609
3610 clear_bit(__E1000_RESETTING, &adapter->flags);
3611
3612 return 0;
3613 }
3614
3615 /**
3616 * e1000_update_stats - Update the board statistics counters
3617 * @adapter: board private structure
3618 **/
3619
3620 void e1000_update_stats(struct e1000_adapter *adapter)
3621 {
3622 struct net_device *netdev = adapter->netdev;
3623 struct e1000_hw *hw = &adapter->hw;
3624 struct pci_dev *pdev = adapter->pdev;
3625 unsigned long flags;
3626 u16 phy_tmp;
3627
3628 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3629
3630 /*
3631 * Prevent stats update while adapter is being reset, or if the pci
3632 * connection is down.
3633 */
3634 if (adapter->link_speed == 0)
3635 return;
3636 if (pci_channel_offline(pdev))
3637 return;
3638
3639 spin_lock_irqsave(&adapter->stats_lock, flags);
3640
3641 /* these counters are modified from e1000_tbi_adjust_stats,
3642 * called from the interrupt context, so they must only
3643 * be written while holding adapter->stats_lock
3644 */
3645
3646 adapter->stats.crcerrs += er32(CRCERRS);
3647 adapter->stats.gprc += er32(GPRC);
3648 adapter->stats.gorcl += er32(GORCL);
3649 adapter->stats.gorch += er32(GORCH);
3650 adapter->stats.bprc += er32(BPRC);
3651 adapter->stats.mprc += er32(MPRC);
3652 adapter->stats.roc += er32(ROC);
3653
3654 adapter->stats.prc64 += er32(PRC64);
3655 adapter->stats.prc127 += er32(PRC127);
3656 adapter->stats.prc255 += er32(PRC255);
3657 adapter->stats.prc511 += er32(PRC511);
3658 adapter->stats.prc1023 += er32(PRC1023);
3659 adapter->stats.prc1522 += er32(PRC1522);
3660
3661 adapter->stats.symerrs += er32(SYMERRS);
3662 adapter->stats.mpc += er32(MPC);
3663 adapter->stats.scc += er32(SCC);
3664 adapter->stats.ecol += er32(ECOL);
3665 adapter->stats.mcc += er32(MCC);
3666 adapter->stats.latecol += er32(LATECOL);
3667 adapter->stats.dc += er32(DC);
3668 adapter->stats.sec += er32(SEC);
3669 adapter->stats.rlec += er32(RLEC);
3670 adapter->stats.xonrxc += er32(XONRXC);
3671 adapter->stats.xontxc += er32(XONTXC);
3672 adapter->stats.xoffrxc += er32(XOFFRXC);
3673 adapter->stats.xofftxc += er32(XOFFTXC);
3674 adapter->stats.fcruc += er32(FCRUC);
3675 adapter->stats.gptc += er32(GPTC);
3676 adapter->stats.gotcl += er32(GOTCL);
3677 adapter->stats.gotch += er32(GOTCH);
3678 adapter->stats.rnbc += er32(RNBC);
3679 adapter->stats.ruc += er32(RUC);
3680 adapter->stats.rfc += er32(RFC);
3681 adapter->stats.rjc += er32(RJC);
3682 adapter->stats.torl += er32(TORL);
3683 adapter->stats.torh += er32(TORH);
3684 adapter->stats.totl += er32(TOTL);
3685 adapter->stats.toth += er32(TOTH);
3686 adapter->stats.tpr += er32(TPR);
3687
3688 adapter->stats.ptc64 += er32(PTC64);
3689 adapter->stats.ptc127 += er32(PTC127);
3690 adapter->stats.ptc255 += er32(PTC255);
3691 adapter->stats.ptc511 += er32(PTC511);
3692 adapter->stats.ptc1023 += er32(PTC1023);
3693 adapter->stats.ptc1522 += er32(PTC1522);
3694
3695 adapter->stats.mptc += er32(MPTC);
3696 adapter->stats.bptc += er32(BPTC);
3697
3698 /* used for adaptive IFS */
3699
3700 hw->tx_packet_delta = er32(TPT);
3701 adapter->stats.tpt += hw->tx_packet_delta;
3702 hw->collision_delta = er32(COLC);
3703 adapter->stats.colc += hw->collision_delta;
3704
3705 if (hw->mac_type >= e1000_82543) {
3706 adapter->stats.algnerrc += er32(ALGNERRC);
3707 adapter->stats.rxerrc += er32(RXERRC);
3708 adapter->stats.tncrs += er32(TNCRS);
3709 adapter->stats.cexterr += er32(CEXTERR);
3710 adapter->stats.tsctc += er32(TSCTC);
3711 adapter->stats.tsctfc += er32(TSCTFC);
3712 }
3713
3714 /* Fill out the OS statistics structure */
3715 netdev->stats.multicast = adapter->stats.mprc;
3716 netdev->stats.collisions = adapter->stats.colc;
3717
3718 /* Rx Errors */
3719
3720 /* RLEC on some newer hardware can be incorrect so build
3721 * our own version based on RUC and ROC */
3722 netdev->stats.rx_errors = adapter->stats.rxerrc +
3723 adapter->stats.crcerrs + adapter->stats.algnerrc +
3724 adapter->stats.ruc + adapter->stats.roc +
3725 adapter->stats.cexterr;
3726 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3727 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3728 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3729 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3730 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3731
3732 /* Tx Errors */
3733 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3734 netdev->stats.tx_errors = adapter->stats.txerrc;
3735 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3736 netdev->stats.tx_window_errors = adapter->stats.latecol;
3737 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3738 if (hw->bad_tx_carr_stats_fd &&
3739 adapter->link_duplex == FULL_DUPLEX) {
3740 netdev->stats.tx_carrier_errors = 0;
3741 adapter->stats.tncrs = 0;
3742 }
3743
3744 /* Tx Dropped needs to be maintained elsewhere */
3745
3746 /* Phy Stats */
3747 if (hw->media_type == e1000_media_type_copper) {
3748 if ((adapter->link_speed == SPEED_1000) &&
3749 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3750 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3751 adapter->phy_stats.idle_errors += phy_tmp;
3752 }
3753
3754 if ((hw->mac_type <= e1000_82546) &&
3755 (hw->phy_type == e1000_phy_m88) &&
3756 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3757 adapter->phy_stats.receive_errors += phy_tmp;
3758 }
3759
3760 /* Management Stats */
3761 if (hw->has_smbus) {
3762 adapter->stats.mgptc += er32(MGTPTC);
3763 adapter->stats.mgprc += er32(MGTPRC);
3764 adapter->stats.mgpdc += er32(MGTPDC);
3765 }
3766
3767 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3768 }
3769
3770 /**
3771 * e1000_intr - Interrupt Handler
3772 * @irq: interrupt number
3773 * @data: pointer to a network interface device structure
3774 **/
3775
3776 static irqreturn_t e1000_intr(int irq, void *data)
3777 {
3778 struct net_device *netdev = data;
3779 struct e1000_adapter *adapter = netdev_priv(netdev);
3780 struct e1000_hw *hw = &adapter->hw;
3781 u32 icr = er32(ICR);
3782
3783 if (unlikely((!icr)))
3784 return IRQ_NONE; /* Not our interrupt */
3785
3786 /*
3787 * we might have caused the interrupt, but the above
3788 * read cleared it, and just in case the driver is
3789 * down there is nothing to do so return handled
3790 */
3791 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3792 return IRQ_HANDLED;
3793
3794 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3795 hw->get_link_status = 1;
3796 /* guard against interrupt when we're going down */
3797 if (!test_bit(__E1000_DOWN, &adapter->flags))
3798 schedule_delayed_work(&adapter->watchdog_task, 1);
3799 }
3800
3801 /* disable interrupts, without the synchronize_irq bit */
3802 ew32(IMC, ~0);
3803 E1000_WRITE_FLUSH();
3804
3805 if (likely(napi_schedule_prep(&adapter->napi))) {
3806 adapter->total_tx_bytes = 0;
3807 adapter->total_tx_packets = 0;
3808 adapter->total_rx_bytes = 0;
3809 adapter->total_rx_packets = 0;
3810 __napi_schedule(&adapter->napi);
3811 } else {
3812 /* this really should not happen! if it does it is basically a
3813 * bug, but not a hard error, so enable ints and continue */
3814 if (!test_bit(__E1000_DOWN, &adapter->flags))
3815 e1000_irq_enable(adapter);
3816 }
3817
3818 return IRQ_HANDLED;
3819 }
3820
3821 /**
3822 * e1000_clean - NAPI Rx polling callback
3823 * @adapter: board private structure
3824 **/
3825 static int e1000_clean(struct napi_struct *napi, int budget)
3826 {
3827 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3828 int tx_clean_complete = 0, work_done = 0;
3829
3830 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3831
3832 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3833
3834 if (!tx_clean_complete)
3835 work_done = budget;
3836
3837 /* If budget not fully consumed, exit the polling mode */
3838 if (work_done < budget) {
3839 if (likely(adapter->itr_setting & 3))
3840 e1000_set_itr(adapter);
3841 napi_complete(napi);
3842 if (!test_bit(__E1000_DOWN, &adapter->flags))
3843 e1000_irq_enable(adapter);
3844 }
3845
3846 return work_done;
3847 }
3848
3849 /**
3850 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3851 * @adapter: board private structure
3852 **/
3853 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3854 struct e1000_tx_ring *tx_ring)
3855 {
3856 struct e1000_hw *hw = &adapter->hw;
3857 struct net_device *netdev = adapter->netdev;
3858 struct e1000_tx_desc *tx_desc, *eop_desc;
3859 struct e1000_buffer *buffer_info;
3860 unsigned int i, eop;
3861 unsigned int count = 0;
3862 unsigned int total_tx_bytes=0, total_tx_packets=0;
3863
3864 i = tx_ring->next_to_clean;
3865 eop = tx_ring->buffer_info[i].next_to_watch;
3866 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3867
3868 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3869 (count < tx_ring->count)) {
3870 bool cleaned = false;
3871 rmb(); /* read buffer_info after eop_desc */
3872 for ( ; !cleaned; count++) {
3873 tx_desc = E1000_TX_DESC(*tx_ring, i);
3874 buffer_info = &tx_ring->buffer_info[i];
3875 cleaned = (i == eop);
3876
3877 if (cleaned) {
3878 total_tx_packets += buffer_info->segs;
3879 total_tx_bytes += buffer_info->bytecount;
3880 }
3881 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3882 tx_desc->upper.data = 0;
3883
3884 if (unlikely(++i == tx_ring->count)) i = 0;
3885 }
3886
3887 eop = tx_ring->buffer_info[i].next_to_watch;
3888 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3889 }
3890
3891 tx_ring->next_to_clean = i;
3892
3893 #define TX_WAKE_THRESHOLD 32
3894 if (unlikely(count && netif_carrier_ok(netdev) &&
3895 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3896 /* Make sure that anybody stopping the queue after this
3897 * sees the new next_to_clean.
3898 */
3899 smp_mb();
3900
3901 if (netif_queue_stopped(netdev) &&
3902 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3903 netif_wake_queue(netdev);
3904 ++adapter->restart_queue;
3905 }
3906 }
3907
3908 if (adapter->detect_tx_hung) {
3909 /* Detect a transmit hang in hardware, this serializes the
3910 * check with the clearing of time_stamp and movement of i */
3911 adapter->detect_tx_hung = false;
3912 if (tx_ring->buffer_info[eop].time_stamp &&
3913 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3914 (adapter->tx_timeout_factor * HZ)) &&
3915 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3916
3917 /* detected Tx unit hang */
3918 e_err(drv, "Detected Tx Unit Hang\n"
3919 " Tx Queue <%lu>\n"
3920 " TDH <%x>\n"
3921 " TDT <%x>\n"
3922 " next_to_use <%x>\n"
3923 " next_to_clean <%x>\n"
3924 "buffer_info[next_to_clean]\n"
3925 " time_stamp <%lx>\n"
3926 " next_to_watch <%x>\n"
3927 " jiffies <%lx>\n"
3928 " next_to_watch.status <%x>\n",
3929 (unsigned long)((tx_ring - adapter->tx_ring) /
3930 sizeof(struct e1000_tx_ring)),
3931 readl(hw->hw_addr + tx_ring->tdh),
3932 readl(hw->hw_addr + tx_ring->tdt),
3933 tx_ring->next_to_use,
3934 tx_ring->next_to_clean,
3935 tx_ring->buffer_info[eop].time_stamp,
3936 eop,
3937 jiffies,
3938 eop_desc->upper.fields.status);
3939 e1000_dump(adapter);
3940 netif_stop_queue(netdev);
3941 }
3942 }
3943 adapter->total_tx_bytes += total_tx_bytes;
3944 adapter->total_tx_packets += total_tx_packets;
3945 netdev->stats.tx_bytes += total_tx_bytes;
3946 netdev->stats.tx_packets += total_tx_packets;
3947 return count < tx_ring->count;
3948 }
3949
3950 /**
3951 * e1000_rx_checksum - Receive Checksum Offload for 82543
3952 * @adapter: board private structure
3953 * @status_err: receive descriptor status and error fields
3954 * @csum: receive descriptor csum field
3955 * @sk_buff: socket buffer with received data
3956 **/
3957
3958 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3959 u32 csum, struct sk_buff *skb)
3960 {
3961 struct e1000_hw *hw = &adapter->hw;
3962 u16 status = (u16)status_err;
3963 u8 errors = (u8)(status_err >> 24);
3964
3965 skb_checksum_none_assert(skb);
3966
3967 /* 82543 or newer only */
3968 if (unlikely(hw->mac_type < e1000_82543)) return;
3969 /* Ignore Checksum bit is set */
3970 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3971 /* TCP/UDP checksum error bit is set */
3972 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3973 /* let the stack verify checksum errors */
3974 adapter->hw_csum_err++;
3975 return;
3976 }
3977 /* TCP/UDP Checksum has not been calculated */
3978 if (!(status & E1000_RXD_STAT_TCPCS))
3979 return;
3980
3981 /* It must be a TCP or UDP packet with a valid checksum */
3982 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3983 /* TCP checksum is good */
3984 skb->ip_summed = CHECKSUM_UNNECESSARY;
3985 }
3986 adapter->hw_csum_good++;
3987 }
3988
3989 /**
3990 * e1000_consume_page - helper function
3991 **/
3992 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3993 u16 length)
3994 {
3995 bi->page = NULL;
3996 skb->len += length;
3997 skb->data_len += length;
3998 skb->truesize += PAGE_SIZE;
3999 }
4000
4001 /**
4002 * e1000_receive_skb - helper function to handle rx indications
4003 * @adapter: board private structure
4004 * @status: descriptor status field as written by hardware
4005 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4006 * @skb: pointer to sk_buff to be indicated to stack
4007 */
4008 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4009 __le16 vlan, struct sk_buff *skb)
4010 {
4011 skb->protocol = eth_type_trans(skb, adapter->netdev);
4012
4013 if (status & E1000_RXD_STAT_VP) {
4014 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4015
4016 __vlan_hwaccel_put_tag(skb, vid);
4017 }
4018 napi_gro_receive(&adapter->napi, skb);
4019 }
4020
4021 /**
4022 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4023 * @adapter: board private structure
4024 * @rx_ring: ring to clean
4025 * @work_done: amount of napi work completed this call
4026 * @work_to_do: max amount of work allowed for this call to do
4027 *
4028 * the return value indicates whether actual cleaning was done, there
4029 * is no guarantee that everything was cleaned
4030 */
4031 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4032 struct e1000_rx_ring *rx_ring,
4033 int *work_done, int work_to_do)
4034 {
4035 struct e1000_hw *hw = &adapter->hw;
4036 struct net_device *netdev = adapter->netdev;
4037 struct pci_dev *pdev = adapter->pdev;
4038 struct e1000_rx_desc *rx_desc, *next_rxd;
4039 struct e1000_buffer *buffer_info, *next_buffer;
4040 unsigned long irq_flags;
4041 u32 length;
4042 unsigned int i;
4043 int cleaned_count = 0;
4044 bool cleaned = false;
4045 unsigned int total_rx_bytes=0, total_rx_packets=0;
4046
4047 i = rx_ring->next_to_clean;
4048 rx_desc = E1000_RX_DESC(*rx_ring, i);
4049 buffer_info = &rx_ring->buffer_info[i];
4050
4051 while (rx_desc->status & E1000_RXD_STAT_DD) {
4052 struct sk_buff *skb;
4053 u8 status;
4054
4055 if (*work_done >= work_to_do)
4056 break;
4057 (*work_done)++;
4058 rmb(); /* read descriptor and rx_buffer_info after status DD */
4059
4060 status = rx_desc->status;
4061 skb = buffer_info->skb;
4062 buffer_info->skb = NULL;
4063
4064 if (++i == rx_ring->count) i = 0;
4065 next_rxd = E1000_RX_DESC(*rx_ring, i);
4066 prefetch(next_rxd);
4067
4068 next_buffer = &rx_ring->buffer_info[i];
4069
4070 cleaned = true;
4071 cleaned_count++;
4072 dma_unmap_page(&pdev->dev, buffer_info->dma,
4073 buffer_info->length, DMA_FROM_DEVICE);
4074 buffer_info->dma = 0;
4075
4076 length = le16_to_cpu(rx_desc->length);
4077
4078 /* errors is only valid for DD + EOP descriptors */
4079 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4080 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4081 u8 *mapped;
4082 u8 last_byte;
4083
4084 mapped = page_address(buffer_info->page);
4085 last_byte = *(mapped + length - 1);
4086 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4087 last_byte)) {
4088 spin_lock_irqsave(&adapter->stats_lock,
4089 irq_flags);
4090 e1000_tbi_adjust_stats(hw, &adapter->stats,
4091 length, mapped);
4092 spin_unlock_irqrestore(&adapter->stats_lock,
4093 irq_flags);
4094 length--;
4095 } else {
4096 if (netdev->features & NETIF_F_RXALL)
4097 goto process_skb;
4098 /* recycle both page and skb */
4099 buffer_info->skb = skb;
4100 /* an error means any chain goes out the window
4101 * too */
4102 if (rx_ring->rx_skb_top)
4103 dev_kfree_skb(rx_ring->rx_skb_top);
4104 rx_ring->rx_skb_top = NULL;
4105 goto next_desc;
4106 }
4107 }
4108
4109 #define rxtop rx_ring->rx_skb_top
4110 process_skb:
4111 if (!(status & E1000_RXD_STAT_EOP)) {
4112 /* this descriptor is only the beginning (or middle) */
4113 if (!rxtop) {
4114 /* this is the beginning of a chain */
4115 rxtop = skb;
4116 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4117 0, length);
4118 } else {
4119 /* this is the middle of a chain */
4120 skb_fill_page_desc(rxtop,
4121 skb_shinfo(rxtop)->nr_frags,
4122 buffer_info->page, 0, length);
4123 /* re-use the skb, only consumed the page */
4124 buffer_info->skb = skb;
4125 }
4126 e1000_consume_page(buffer_info, rxtop, length);
4127 goto next_desc;
4128 } else {
4129 if (rxtop) {
4130 /* end of the chain */
4131 skb_fill_page_desc(rxtop,
4132 skb_shinfo(rxtop)->nr_frags,
4133 buffer_info->page, 0, length);
4134 /* re-use the current skb, we only consumed the
4135 * page */
4136 buffer_info->skb = skb;
4137 skb = rxtop;
4138 rxtop = NULL;
4139 e1000_consume_page(buffer_info, skb, length);
4140 } else {
4141 /* no chain, got EOP, this buf is the packet
4142 * copybreak to save the put_page/alloc_page */
4143 if (length <= copybreak &&
4144 skb_tailroom(skb) >= length) {
4145 u8 *vaddr;
4146 vaddr = kmap_atomic(buffer_info->page);
4147 memcpy(skb_tail_pointer(skb), vaddr, length);
4148 kunmap_atomic(vaddr);
4149 /* re-use the page, so don't erase
4150 * buffer_info->page */
4151 skb_put(skb, length);
4152 } else {
4153 skb_fill_page_desc(skb, 0,
4154 buffer_info->page, 0,
4155 length);
4156 e1000_consume_page(buffer_info, skb,
4157 length);
4158 }
4159 }
4160 }
4161
4162 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4163 e1000_rx_checksum(adapter,
4164 (u32)(status) |
4165 ((u32)(rx_desc->errors) << 24),
4166 le16_to_cpu(rx_desc->csum), skb);
4167
4168 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4169 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4170 pskb_trim(skb, skb->len - 4);
4171 total_rx_packets++;
4172
4173 /* eth type trans needs skb->data to point to something */
4174 if (!pskb_may_pull(skb, ETH_HLEN)) {
4175 e_err(drv, "pskb_may_pull failed.\n");
4176 dev_kfree_skb(skb);
4177 goto next_desc;
4178 }
4179
4180 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4181
4182 next_desc:
4183 rx_desc->status = 0;
4184
4185 /* return some buffers to hardware, one at a time is too slow */
4186 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4187 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4188 cleaned_count = 0;
4189 }
4190
4191 /* use prefetched values */
4192 rx_desc = next_rxd;
4193 buffer_info = next_buffer;
4194 }
4195 rx_ring->next_to_clean = i;
4196
4197 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4198 if (cleaned_count)
4199 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4200
4201 adapter->total_rx_packets += total_rx_packets;
4202 adapter->total_rx_bytes += total_rx_bytes;
4203 netdev->stats.rx_bytes += total_rx_bytes;
4204 netdev->stats.rx_packets += total_rx_packets;
4205 return cleaned;
4206 }
4207
4208 /*
4209 * this should improve performance for small packets with large amounts
4210 * of reassembly being done in the stack
4211 */
4212 static void e1000_check_copybreak(struct net_device *netdev,
4213 struct e1000_buffer *buffer_info,
4214 u32 length, struct sk_buff **skb)
4215 {
4216 struct sk_buff *new_skb;
4217
4218 if (length > copybreak)
4219 return;
4220
4221 new_skb = netdev_alloc_skb_ip_align(netdev, length);
4222 if (!new_skb)
4223 return;
4224
4225 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4226 (*skb)->data - NET_IP_ALIGN,
4227 length + NET_IP_ALIGN);
4228 /* save the skb in buffer_info as good */
4229 buffer_info->skb = *skb;
4230 *skb = new_skb;
4231 }
4232
4233 /**
4234 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4235 * @adapter: board private structure
4236 * @rx_ring: ring to clean
4237 * @work_done: amount of napi work completed this call
4238 * @work_to_do: max amount of work allowed for this call to do
4239 */
4240 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4241 struct e1000_rx_ring *rx_ring,
4242 int *work_done, int work_to_do)
4243 {
4244 struct e1000_hw *hw = &adapter->hw;
4245 struct net_device *netdev = adapter->netdev;
4246 struct pci_dev *pdev = adapter->pdev;
4247 struct e1000_rx_desc *rx_desc, *next_rxd;
4248 struct e1000_buffer *buffer_info, *next_buffer;
4249 unsigned long flags;
4250 u32 length;
4251 unsigned int i;
4252 int cleaned_count = 0;
4253 bool cleaned = false;
4254 unsigned int total_rx_bytes=0, total_rx_packets=0;
4255
4256 i = rx_ring->next_to_clean;
4257 rx_desc = E1000_RX_DESC(*rx_ring, i);
4258 buffer_info = &rx_ring->buffer_info[i];
4259
4260 while (rx_desc->status & E1000_RXD_STAT_DD) {
4261 struct sk_buff *skb;
4262 u8 status;
4263
4264 if (*work_done >= work_to_do)
4265 break;
4266 (*work_done)++;
4267 rmb(); /* read descriptor and rx_buffer_info after status DD */
4268
4269 status = rx_desc->status;
4270 skb = buffer_info->skb;
4271 buffer_info->skb = NULL;
4272
4273 prefetch(skb->data - NET_IP_ALIGN);
4274
4275 if (++i == rx_ring->count) i = 0;
4276 next_rxd = E1000_RX_DESC(*rx_ring, i);
4277 prefetch(next_rxd);
4278
4279 next_buffer = &rx_ring->buffer_info[i];
4280
4281 cleaned = true;
4282 cleaned_count++;
4283 dma_unmap_single(&pdev->dev, buffer_info->dma,
4284 buffer_info->length, DMA_FROM_DEVICE);
4285 buffer_info->dma = 0;
4286
4287 length = le16_to_cpu(rx_desc->length);
4288 /* !EOP means multiple descriptors were used to store a single
4289 * packet, if thats the case we need to toss it. In fact, we
4290 * to toss every packet with the EOP bit clear and the next
4291 * frame that _does_ have the EOP bit set, as it is by
4292 * definition only a frame fragment
4293 */
4294 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4295 adapter->discarding = true;
4296
4297 if (adapter->discarding) {
4298 /* All receives must fit into a single buffer */
4299 e_dbg("Receive packet consumed multiple buffers\n");
4300 /* recycle */
4301 buffer_info->skb = skb;
4302 if (status & E1000_RXD_STAT_EOP)
4303 adapter->discarding = false;
4304 goto next_desc;
4305 }
4306
4307 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4308 u8 last_byte = *(skb->data + length - 1);
4309 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4310 last_byte)) {
4311 spin_lock_irqsave(&adapter->stats_lock, flags);
4312 e1000_tbi_adjust_stats(hw, &adapter->stats,
4313 length, skb->data);
4314 spin_unlock_irqrestore(&adapter->stats_lock,
4315 flags);
4316 length--;
4317 } else {
4318 if (netdev->features & NETIF_F_RXALL)
4319 goto process_skb;
4320 /* recycle */
4321 buffer_info->skb = skb;
4322 goto next_desc;
4323 }
4324 }
4325
4326 process_skb:
4327 total_rx_bytes += (length - 4); /* don't count FCS */
4328 total_rx_packets++;
4329
4330 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4331 /* adjust length to remove Ethernet CRC, this must be
4332 * done after the TBI_ACCEPT workaround above
4333 */
4334 length -= 4;
4335
4336 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4337
4338 skb_put(skb, length);
4339
4340 /* Receive Checksum Offload */
4341 e1000_rx_checksum(adapter,
4342 (u32)(status) |
4343 ((u32)(rx_desc->errors) << 24),
4344 le16_to_cpu(rx_desc->csum), skb);
4345
4346 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4347
4348 next_desc:
4349 rx_desc->status = 0;
4350
4351 /* return some buffers to hardware, one at a time is too slow */
4352 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4353 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4354 cleaned_count = 0;
4355 }
4356
4357 /* use prefetched values */
4358 rx_desc = next_rxd;
4359 buffer_info = next_buffer;
4360 }
4361 rx_ring->next_to_clean = i;
4362
4363 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4364 if (cleaned_count)
4365 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4366
4367 adapter->total_rx_packets += total_rx_packets;
4368 adapter->total_rx_bytes += total_rx_bytes;
4369 netdev->stats.rx_bytes += total_rx_bytes;
4370 netdev->stats.rx_packets += total_rx_packets;
4371 return cleaned;
4372 }
4373
4374 /**
4375 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4376 * @adapter: address of board private structure
4377 * @rx_ring: pointer to receive ring structure
4378 * @cleaned_count: number of buffers to allocate this pass
4379 **/
4380
4381 static void
4382 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4383 struct e1000_rx_ring *rx_ring, int cleaned_count)
4384 {
4385 struct net_device *netdev = adapter->netdev;
4386 struct pci_dev *pdev = adapter->pdev;
4387 struct e1000_rx_desc *rx_desc;
4388 struct e1000_buffer *buffer_info;
4389 struct sk_buff *skb;
4390 unsigned int i;
4391 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4392
4393 i = rx_ring->next_to_use;
4394 buffer_info = &rx_ring->buffer_info[i];
4395
4396 while (cleaned_count--) {
4397 skb = buffer_info->skb;
4398 if (skb) {
4399 skb_trim(skb, 0);
4400 goto check_page;
4401 }
4402
4403 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4404 if (unlikely(!skb)) {
4405 /* Better luck next round */
4406 adapter->alloc_rx_buff_failed++;
4407 break;
4408 }
4409
4410 buffer_info->skb = skb;
4411 buffer_info->length = adapter->rx_buffer_len;
4412 check_page:
4413 /* allocate a new page if necessary */
4414 if (!buffer_info->page) {
4415 buffer_info->page = alloc_page(GFP_ATOMIC);
4416 if (unlikely(!buffer_info->page)) {
4417 adapter->alloc_rx_buff_failed++;
4418 break;
4419 }
4420 }
4421
4422 if (!buffer_info->dma) {
4423 buffer_info->dma = dma_map_page(&pdev->dev,
4424 buffer_info->page, 0,
4425 buffer_info->length,
4426 DMA_FROM_DEVICE);
4427 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4428 put_page(buffer_info->page);
4429 dev_kfree_skb(skb);
4430 buffer_info->page = NULL;
4431 buffer_info->skb = NULL;
4432 buffer_info->dma = 0;
4433 adapter->alloc_rx_buff_failed++;
4434 break; /* while !buffer_info->skb */
4435 }
4436 }
4437
4438 rx_desc = E1000_RX_DESC(*rx_ring, i);
4439 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4440
4441 if (unlikely(++i == rx_ring->count))
4442 i = 0;
4443 buffer_info = &rx_ring->buffer_info[i];
4444 }
4445
4446 if (likely(rx_ring->next_to_use != i)) {
4447 rx_ring->next_to_use = i;
4448 if (unlikely(i-- == 0))
4449 i = (rx_ring->count - 1);
4450
4451 /* Force memory writes to complete before letting h/w
4452 * know there are new descriptors to fetch. (Only
4453 * applicable for weak-ordered memory model archs,
4454 * such as IA-64). */
4455 wmb();
4456 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4457 }
4458 }
4459
4460 /**
4461 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4462 * @adapter: address of board private structure
4463 **/
4464
4465 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4466 struct e1000_rx_ring *rx_ring,
4467 int cleaned_count)
4468 {
4469 struct e1000_hw *hw = &adapter->hw;
4470 struct net_device *netdev = adapter->netdev;
4471 struct pci_dev *pdev = adapter->pdev;
4472 struct e1000_rx_desc *rx_desc;
4473 struct e1000_buffer *buffer_info;
4474 struct sk_buff *skb;
4475 unsigned int i;
4476 unsigned int bufsz = adapter->rx_buffer_len;
4477
4478 i = rx_ring->next_to_use;
4479 buffer_info = &rx_ring->buffer_info[i];
4480
4481 while (cleaned_count--) {
4482 skb = buffer_info->skb;
4483 if (skb) {
4484 skb_trim(skb, 0);
4485 goto map_skb;
4486 }
4487
4488 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4489 if (unlikely(!skb)) {
4490 /* Better luck next round */
4491 adapter->alloc_rx_buff_failed++;
4492 break;
4493 }
4494
4495 /* Fix for errata 23, can't cross 64kB boundary */
4496 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4497 struct sk_buff *oldskb = skb;
4498 e_err(rx_err, "skb align check failed: %u bytes at "
4499 "%p\n", bufsz, skb->data);
4500 /* Try again, without freeing the previous */
4501 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4502 /* Failed allocation, critical failure */
4503 if (!skb) {
4504 dev_kfree_skb(oldskb);
4505 adapter->alloc_rx_buff_failed++;
4506 break;
4507 }
4508
4509 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4510 /* give up */
4511 dev_kfree_skb(skb);
4512 dev_kfree_skb(oldskb);
4513 adapter->alloc_rx_buff_failed++;
4514 break; /* while !buffer_info->skb */
4515 }
4516
4517 /* Use new allocation */
4518 dev_kfree_skb(oldskb);
4519 }
4520 buffer_info->skb = skb;
4521 buffer_info->length = adapter->rx_buffer_len;
4522 map_skb:
4523 buffer_info->dma = dma_map_single(&pdev->dev,
4524 skb->data,
4525 buffer_info->length,
4526 DMA_FROM_DEVICE);
4527 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4528 dev_kfree_skb(skb);
4529 buffer_info->skb = NULL;
4530 buffer_info->dma = 0;
4531 adapter->alloc_rx_buff_failed++;
4532 break; /* while !buffer_info->skb */
4533 }
4534
4535 /*
4536 * XXX if it was allocated cleanly it will never map to a
4537 * boundary crossing
4538 */
4539
4540 /* Fix for errata 23, can't cross 64kB boundary */
4541 if (!e1000_check_64k_bound(adapter,
4542 (void *)(unsigned long)buffer_info->dma,
4543 adapter->rx_buffer_len)) {
4544 e_err(rx_err, "dma align check failed: %u bytes at "
4545 "%p\n", adapter->rx_buffer_len,
4546 (void *)(unsigned long)buffer_info->dma);
4547 dev_kfree_skb(skb);
4548 buffer_info->skb = NULL;
4549
4550 dma_unmap_single(&pdev->dev, buffer_info->dma,
4551 adapter->rx_buffer_len,
4552 DMA_FROM_DEVICE);
4553 buffer_info->dma = 0;
4554
4555 adapter->alloc_rx_buff_failed++;
4556 break; /* while !buffer_info->skb */
4557 }
4558 rx_desc = E1000_RX_DESC(*rx_ring, i);
4559 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4560
4561 if (unlikely(++i == rx_ring->count))
4562 i = 0;
4563 buffer_info = &rx_ring->buffer_info[i];
4564 }
4565
4566 if (likely(rx_ring->next_to_use != i)) {
4567 rx_ring->next_to_use = i;
4568 if (unlikely(i-- == 0))
4569 i = (rx_ring->count - 1);
4570
4571 /* Force memory writes to complete before letting h/w
4572 * know there are new descriptors to fetch. (Only
4573 * applicable for weak-ordered memory model archs,
4574 * such as IA-64). */
4575 wmb();
4576 writel(i, hw->hw_addr + rx_ring->rdt);
4577 }
4578 }
4579
4580 /**
4581 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4582 * @adapter:
4583 **/
4584
4585 static void e1000_smartspeed(struct e1000_adapter *adapter)
4586 {
4587 struct e1000_hw *hw = &adapter->hw;
4588 u16 phy_status;
4589 u16 phy_ctrl;
4590
4591 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4592 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4593 return;
4594
4595 if (adapter->smartspeed == 0) {
4596 /* If Master/Slave config fault is asserted twice,
4597 * we assume back-to-back */
4598 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4599 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4600 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4601 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4602 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4603 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4604 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4605 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4606 phy_ctrl);
4607 adapter->smartspeed++;
4608 if (!e1000_phy_setup_autoneg(hw) &&
4609 !e1000_read_phy_reg(hw, PHY_CTRL,
4610 &phy_ctrl)) {
4611 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4612 MII_CR_RESTART_AUTO_NEG);
4613 e1000_write_phy_reg(hw, PHY_CTRL,
4614 phy_ctrl);
4615 }
4616 }
4617 return;
4618 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4619 /* If still no link, perhaps using 2/3 pair cable */
4620 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4621 phy_ctrl |= CR_1000T_MS_ENABLE;
4622 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4623 if (!e1000_phy_setup_autoneg(hw) &&
4624 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4625 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4626 MII_CR_RESTART_AUTO_NEG);
4627 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4628 }
4629 }
4630 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4631 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4632 adapter->smartspeed = 0;
4633 }
4634
4635 /**
4636 * e1000_ioctl -
4637 * @netdev:
4638 * @ifreq:
4639 * @cmd:
4640 **/
4641
4642 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4643 {
4644 switch (cmd) {
4645 case SIOCGMIIPHY:
4646 case SIOCGMIIREG:
4647 case SIOCSMIIREG:
4648 return e1000_mii_ioctl(netdev, ifr, cmd);
4649 default:
4650 return -EOPNOTSUPP;
4651 }
4652 }
4653
4654 /**
4655 * e1000_mii_ioctl -
4656 * @netdev:
4657 * @ifreq:
4658 * @cmd:
4659 **/
4660
4661 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4662 int cmd)
4663 {
4664 struct e1000_adapter *adapter = netdev_priv(netdev);
4665 struct e1000_hw *hw = &adapter->hw;
4666 struct mii_ioctl_data *data = if_mii(ifr);
4667 int retval;
4668 u16 mii_reg;
4669 unsigned long flags;
4670
4671 if (hw->media_type != e1000_media_type_copper)
4672 return -EOPNOTSUPP;
4673
4674 switch (cmd) {
4675 case SIOCGMIIPHY:
4676 data->phy_id = hw->phy_addr;
4677 break;
4678 case SIOCGMIIREG:
4679 spin_lock_irqsave(&adapter->stats_lock, flags);
4680 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4681 &data->val_out)) {
4682 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4683 return -EIO;
4684 }
4685 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4686 break;
4687 case SIOCSMIIREG:
4688 if (data->reg_num & ~(0x1F))
4689 return -EFAULT;
4690 mii_reg = data->val_in;
4691 spin_lock_irqsave(&adapter->stats_lock, flags);
4692 if (e1000_write_phy_reg(hw, data->reg_num,
4693 mii_reg)) {
4694 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4695 return -EIO;
4696 }
4697 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4698 if (hw->media_type == e1000_media_type_copper) {
4699 switch (data->reg_num) {
4700 case PHY_CTRL:
4701 if (mii_reg & MII_CR_POWER_DOWN)
4702 break;
4703 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4704 hw->autoneg = 1;
4705 hw->autoneg_advertised = 0x2F;
4706 } else {
4707 u32 speed;
4708 if (mii_reg & 0x40)
4709 speed = SPEED_1000;
4710 else if (mii_reg & 0x2000)
4711 speed = SPEED_100;
4712 else
4713 speed = SPEED_10;
4714 retval = e1000_set_spd_dplx(
4715 adapter, speed,
4716 ((mii_reg & 0x100)
4717 ? DUPLEX_FULL :
4718 DUPLEX_HALF));
4719 if (retval)
4720 return retval;
4721 }
4722 if (netif_running(adapter->netdev))
4723 e1000_reinit_locked(adapter);
4724 else
4725 e1000_reset(adapter);
4726 break;
4727 case M88E1000_PHY_SPEC_CTRL:
4728 case M88E1000_EXT_PHY_SPEC_CTRL:
4729 if (e1000_phy_reset(hw))
4730 return -EIO;
4731 break;
4732 }
4733 } else {
4734 switch (data->reg_num) {
4735 case PHY_CTRL:
4736 if (mii_reg & MII_CR_POWER_DOWN)
4737 break;
4738 if (netif_running(adapter->netdev))
4739 e1000_reinit_locked(adapter);
4740 else
4741 e1000_reset(adapter);
4742 break;
4743 }
4744 }
4745 break;
4746 default:
4747 return -EOPNOTSUPP;
4748 }
4749 return E1000_SUCCESS;
4750 }
4751
4752 void e1000_pci_set_mwi(struct e1000_hw *hw)
4753 {
4754 struct e1000_adapter *adapter = hw->back;
4755 int ret_val = pci_set_mwi(adapter->pdev);
4756
4757 if (ret_val)
4758 e_err(probe, "Error in setting MWI\n");
4759 }
4760
4761 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4762 {
4763 struct e1000_adapter *adapter = hw->back;
4764
4765 pci_clear_mwi(adapter->pdev);
4766 }
4767
4768 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4769 {
4770 struct e1000_adapter *adapter = hw->back;
4771 return pcix_get_mmrbc(adapter->pdev);
4772 }
4773
4774 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4775 {
4776 struct e1000_adapter *adapter = hw->back;
4777 pcix_set_mmrbc(adapter->pdev, mmrbc);
4778 }
4779
4780 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4781 {
4782 outl(value, port);
4783 }
4784
4785 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4786 {
4787 u16 vid;
4788
4789 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4790 return true;
4791 return false;
4792 }
4793
4794 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4795 netdev_features_t features)
4796 {
4797 struct e1000_hw *hw = &adapter->hw;
4798 u32 ctrl;
4799
4800 ctrl = er32(CTRL);
4801 if (features & NETIF_F_HW_VLAN_RX) {
4802 /* enable VLAN tag insert/strip */
4803 ctrl |= E1000_CTRL_VME;
4804 } else {
4805 /* disable VLAN tag insert/strip */
4806 ctrl &= ~E1000_CTRL_VME;
4807 }
4808 ew32(CTRL, ctrl);
4809 }
4810 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4811 bool filter_on)
4812 {
4813 struct e1000_hw *hw = &adapter->hw;
4814 u32 rctl;
4815
4816 if (!test_bit(__E1000_DOWN, &adapter->flags))
4817 e1000_irq_disable(adapter);
4818
4819 __e1000_vlan_mode(adapter, adapter->netdev->features);
4820 if (filter_on) {
4821 /* enable VLAN receive filtering */
4822 rctl = er32(RCTL);
4823 rctl &= ~E1000_RCTL_CFIEN;
4824 if (!(adapter->netdev->flags & IFF_PROMISC))
4825 rctl |= E1000_RCTL_VFE;
4826 ew32(RCTL, rctl);
4827 e1000_update_mng_vlan(adapter);
4828 } else {
4829 /* disable VLAN receive filtering */
4830 rctl = er32(RCTL);
4831 rctl &= ~E1000_RCTL_VFE;
4832 ew32(RCTL, rctl);
4833 }
4834
4835 if (!test_bit(__E1000_DOWN, &adapter->flags))
4836 e1000_irq_enable(adapter);
4837 }
4838
4839 static void e1000_vlan_mode(struct net_device *netdev,
4840 netdev_features_t features)
4841 {
4842 struct e1000_adapter *adapter = netdev_priv(netdev);
4843
4844 if (!test_bit(__E1000_DOWN, &adapter->flags))
4845 e1000_irq_disable(adapter);
4846
4847 __e1000_vlan_mode(adapter, features);
4848
4849 if (!test_bit(__E1000_DOWN, &adapter->flags))
4850 e1000_irq_enable(adapter);
4851 }
4852
4853 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4854 {
4855 struct e1000_adapter *adapter = netdev_priv(netdev);
4856 struct e1000_hw *hw = &adapter->hw;
4857 u32 vfta, index;
4858
4859 if ((hw->mng_cookie.status &
4860 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4861 (vid == adapter->mng_vlan_id))
4862 return 0;
4863
4864 if (!e1000_vlan_used(adapter))
4865 e1000_vlan_filter_on_off(adapter, true);
4866
4867 /* add VID to filter table */
4868 index = (vid >> 5) & 0x7F;
4869 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4870 vfta |= (1 << (vid & 0x1F));
4871 e1000_write_vfta(hw, index, vfta);
4872
4873 set_bit(vid, adapter->active_vlans);
4874
4875 return 0;
4876 }
4877
4878 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4879 {
4880 struct e1000_adapter *adapter = netdev_priv(netdev);
4881 struct e1000_hw *hw = &adapter->hw;
4882 u32 vfta, index;
4883
4884 if (!test_bit(__E1000_DOWN, &adapter->flags))
4885 e1000_irq_disable(adapter);
4886 if (!test_bit(__E1000_DOWN, &adapter->flags))
4887 e1000_irq_enable(adapter);
4888
4889 /* remove VID from filter table */
4890 index = (vid >> 5) & 0x7F;
4891 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4892 vfta &= ~(1 << (vid & 0x1F));
4893 e1000_write_vfta(hw, index, vfta);
4894
4895 clear_bit(vid, adapter->active_vlans);
4896
4897 if (!e1000_vlan_used(adapter))
4898 e1000_vlan_filter_on_off(adapter, false);
4899
4900 return 0;
4901 }
4902
4903 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4904 {
4905 u16 vid;
4906
4907 if (!e1000_vlan_used(adapter))
4908 return;
4909
4910 e1000_vlan_filter_on_off(adapter, true);
4911 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4912 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4913 }
4914
4915 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4916 {
4917 struct e1000_hw *hw = &adapter->hw;
4918
4919 hw->autoneg = 0;
4920
4921 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4922 * for the switch() below to work */
4923 if ((spd & 1) || (dplx & ~1))
4924 goto err_inval;
4925
4926 /* Fiber NICs only allow 1000 gbps Full duplex */
4927 if ((hw->media_type == e1000_media_type_fiber) &&
4928 spd != SPEED_1000 &&
4929 dplx != DUPLEX_FULL)
4930 goto err_inval;
4931
4932 switch (spd + dplx) {
4933 case SPEED_10 + DUPLEX_HALF:
4934 hw->forced_speed_duplex = e1000_10_half;
4935 break;
4936 case SPEED_10 + DUPLEX_FULL:
4937 hw->forced_speed_duplex = e1000_10_full;
4938 break;
4939 case SPEED_100 + DUPLEX_HALF:
4940 hw->forced_speed_duplex = e1000_100_half;
4941 break;
4942 case SPEED_100 + DUPLEX_FULL:
4943 hw->forced_speed_duplex = e1000_100_full;
4944 break;
4945 case SPEED_1000 + DUPLEX_FULL:
4946 hw->autoneg = 1;
4947 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4948 break;
4949 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4950 default:
4951 goto err_inval;
4952 }
4953 return 0;
4954
4955 err_inval:
4956 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4957 return -EINVAL;
4958 }
4959
4960 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4961 {
4962 struct net_device *netdev = pci_get_drvdata(pdev);
4963 struct e1000_adapter *adapter = netdev_priv(netdev);
4964 struct e1000_hw *hw = &adapter->hw;
4965 u32 ctrl, ctrl_ext, rctl, status;
4966 u32 wufc = adapter->wol;
4967 #ifdef CONFIG_PM
4968 int retval = 0;
4969 #endif
4970
4971 netif_device_detach(netdev);
4972
4973 if (netif_running(netdev)) {
4974 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4975 e1000_down(adapter);
4976 }
4977
4978 #ifdef CONFIG_PM
4979 retval = pci_save_state(pdev);
4980 if (retval)
4981 return retval;
4982 #endif
4983
4984 status = er32(STATUS);
4985 if (status & E1000_STATUS_LU)
4986 wufc &= ~E1000_WUFC_LNKC;
4987
4988 if (wufc) {
4989 e1000_setup_rctl(adapter);
4990 e1000_set_rx_mode(netdev);
4991
4992 rctl = er32(RCTL);
4993
4994 /* turn on all-multi mode if wake on multicast is enabled */
4995 if (wufc & E1000_WUFC_MC)
4996 rctl |= E1000_RCTL_MPE;
4997
4998 /* enable receives in the hardware */
4999 ew32(RCTL, rctl | E1000_RCTL_EN);
5000
5001 if (hw->mac_type >= e1000_82540) {
5002 ctrl = er32(CTRL);
5003 /* advertise wake from D3Cold */
5004 #define E1000_CTRL_ADVD3WUC 0x00100000
5005 /* phy power management enable */
5006 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5007 ctrl |= E1000_CTRL_ADVD3WUC |
5008 E1000_CTRL_EN_PHY_PWR_MGMT;
5009 ew32(CTRL, ctrl);
5010 }
5011
5012 if (hw->media_type == e1000_media_type_fiber ||
5013 hw->media_type == e1000_media_type_internal_serdes) {
5014 /* keep the laser running in D3 */
5015 ctrl_ext = er32(CTRL_EXT);
5016 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5017 ew32(CTRL_EXT, ctrl_ext);
5018 }
5019
5020 ew32(WUC, E1000_WUC_PME_EN);
5021 ew32(WUFC, wufc);
5022 } else {
5023 ew32(WUC, 0);
5024 ew32(WUFC, 0);
5025 }
5026
5027 e1000_release_manageability(adapter);
5028
5029 *enable_wake = !!wufc;
5030
5031 /* make sure adapter isn't asleep if manageability is enabled */
5032 if (adapter->en_mng_pt)
5033 *enable_wake = true;
5034
5035 if (netif_running(netdev))
5036 e1000_free_irq(adapter);
5037
5038 pci_disable_device(pdev);
5039
5040 return 0;
5041 }
5042
5043 #ifdef CONFIG_PM
5044 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5045 {
5046 int retval;
5047 bool wake;
5048
5049 retval = __e1000_shutdown(pdev, &wake);
5050 if (retval)
5051 return retval;
5052
5053 if (wake) {
5054 pci_prepare_to_sleep(pdev);
5055 } else {
5056 pci_wake_from_d3(pdev, false);
5057 pci_set_power_state(pdev, PCI_D3hot);
5058 }
5059
5060 return 0;
5061 }
5062
5063 static int e1000_resume(struct pci_dev *pdev)
5064 {
5065 struct net_device *netdev = pci_get_drvdata(pdev);
5066 struct e1000_adapter *adapter = netdev_priv(netdev);
5067 struct e1000_hw *hw = &adapter->hw;
5068 u32 err;
5069
5070 pci_set_power_state(pdev, PCI_D0);
5071 pci_restore_state(pdev);
5072 pci_save_state(pdev);
5073
5074 if (adapter->need_ioport)
5075 err = pci_enable_device(pdev);
5076 else
5077 err = pci_enable_device_mem(pdev);
5078 if (err) {
5079 pr_err("Cannot enable PCI device from suspend\n");
5080 return err;
5081 }
5082 pci_set_master(pdev);
5083
5084 pci_enable_wake(pdev, PCI_D3hot, 0);
5085 pci_enable_wake(pdev, PCI_D3cold, 0);
5086
5087 if (netif_running(netdev)) {
5088 err = e1000_request_irq(adapter);
5089 if (err)
5090 return err;
5091 }
5092
5093 e1000_power_up_phy(adapter);
5094 e1000_reset(adapter);
5095 ew32(WUS, ~0);
5096
5097 e1000_init_manageability(adapter);
5098
5099 if (netif_running(netdev))
5100 e1000_up(adapter);
5101
5102 netif_device_attach(netdev);
5103
5104 return 0;
5105 }
5106 #endif
5107
5108 static void e1000_shutdown(struct pci_dev *pdev)
5109 {
5110 bool wake;
5111
5112 __e1000_shutdown(pdev, &wake);
5113
5114 if (system_state == SYSTEM_POWER_OFF) {
5115 pci_wake_from_d3(pdev, wake);
5116 pci_set_power_state(pdev, PCI_D3hot);
5117 }
5118 }
5119
5120 #ifdef CONFIG_NET_POLL_CONTROLLER
5121 /*
5122 * Polling 'interrupt' - used by things like netconsole to send skbs
5123 * without having to re-enable interrupts. It's not called while
5124 * the interrupt routine is executing.
5125 */
5126 static void e1000_netpoll(struct net_device *netdev)
5127 {
5128 struct e1000_adapter *adapter = netdev_priv(netdev);
5129
5130 disable_irq(adapter->pdev->irq);
5131 e1000_intr(adapter->pdev->irq, netdev);
5132 enable_irq(adapter->pdev->irq);
5133 }
5134 #endif
5135
5136 /**
5137 * e1000_io_error_detected - called when PCI error is detected
5138 * @pdev: Pointer to PCI device
5139 * @state: The current pci connection state
5140 *
5141 * This function is called after a PCI bus error affecting
5142 * this device has been detected.
5143 */
5144 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5145 pci_channel_state_t state)
5146 {
5147 struct net_device *netdev = pci_get_drvdata(pdev);
5148 struct e1000_adapter *adapter = netdev_priv(netdev);
5149
5150 netif_device_detach(netdev);
5151
5152 if (state == pci_channel_io_perm_failure)
5153 return PCI_ERS_RESULT_DISCONNECT;
5154
5155 if (netif_running(netdev))
5156 e1000_down(adapter);
5157 pci_disable_device(pdev);
5158
5159 /* Request a slot slot reset. */
5160 return PCI_ERS_RESULT_NEED_RESET;
5161 }
5162
5163 /**
5164 * e1000_io_slot_reset - called after the pci bus has been reset.
5165 * @pdev: Pointer to PCI device
5166 *
5167 * Restart the card from scratch, as if from a cold-boot. Implementation
5168 * resembles the first-half of the e1000_resume routine.
5169 */
5170 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5171 {
5172 struct net_device *netdev = pci_get_drvdata(pdev);
5173 struct e1000_adapter *adapter = netdev_priv(netdev);
5174 struct e1000_hw *hw = &adapter->hw;
5175 int err;
5176
5177 if (adapter->need_ioport)
5178 err = pci_enable_device(pdev);
5179 else
5180 err = pci_enable_device_mem(pdev);
5181 if (err) {
5182 pr_err("Cannot re-enable PCI device after reset.\n");
5183 return PCI_ERS_RESULT_DISCONNECT;
5184 }
5185 pci_set_master(pdev);
5186
5187 pci_enable_wake(pdev, PCI_D3hot, 0);
5188 pci_enable_wake(pdev, PCI_D3cold, 0);
5189
5190 e1000_reset(adapter);
5191 ew32(WUS, ~0);
5192
5193 return PCI_ERS_RESULT_RECOVERED;
5194 }
5195
5196 /**
5197 * e1000_io_resume - called when traffic can start flowing again.
5198 * @pdev: Pointer to PCI device
5199 *
5200 * This callback is called when the error recovery driver tells us that
5201 * its OK to resume normal operation. Implementation resembles the
5202 * second-half of the e1000_resume routine.
5203 */
5204 static void e1000_io_resume(struct pci_dev *pdev)
5205 {
5206 struct net_device *netdev = pci_get_drvdata(pdev);
5207 struct e1000_adapter *adapter = netdev_priv(netdev);
5208
5209 e1000_init_manageability(adapter);
5210
5211 if (netif_running(netdev)) {
5212 if (e1000_up(adapter)) {
5213 pr_info("can't bring device back up after reset\n");
5214 return;
5215 }
5216 }
5217
5218 netif_device_attach(netdev);
5219 }
5220
5221 /* e1000_main.c */
This page took 0.144855 seconds and 5 git commands to generate.