drivers/net/intel: use napi_complete_done()
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49 static const struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count)
150 {
151 }
152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 struct e1000_rx_ring *rx_ring,
154 int cleaned_count);
155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 struct e1000_rx_ring *rx_ring,
157 int cleaned_count);
158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 int cmd);
161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163 static void e1000_tx_timeout(struct net_device *dev);
164 static void e1000_reset_task(struct work_struct *work);
165 static void e1000_smartspeed(struct e1000_adapter *adapter);
166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167 struct sk_buff *skb);
168
169 static bool e1000_vlan_used(struct e1000_adapter *adapter);
170 static void e1000_vlan_mode(struct net_device *netdev,
171 netdev_features_t features);
172 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 bool filter_on);
174 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 __be16 proto, u16 vid);
176 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 __be16 proto, u16 vid);
178 static void e1000_restore_vlan(struct e1000_adapter *adapter);
179
180 #ifdef CONFIG_PM
181 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182 static int e1000_resume(struct pci_dev *pdev);
183 #endif
184 static void e1000_shutdown(struct pci_dev *pdev);
185
186 #ifdef CONFIG_NET_POLL_CONTROLLER
187 /* for netdump / net console */
188 static void e1000_netpoll (struct net_device *netdev);
189 #endif
190
191 #define COPYBREAK_DEFAULT 256
192 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193 module_param(copybreak, uint, 0644);
194 MODULE_PARM_DESC(copybreak,
195 "Maximum size of packet that is copied to a new buffer on receive");
196
197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 pci_channel_state_t state);
199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200 static void e1000_io_resume(struct pci_dev *pdev);
201
202 static const struct pci_error_handlers e1000_err_handler = {
203 .error_detected = e1000_io_error_detected,
204 .slot_reset = e1000_io_slot_reset,
205 .resume = e1000_io_resume,
206 };
207
208 static struct pci_driver e1000_driver = {
209 .name = e1000_driver_name,
210 .id_table = e1000_pci_tbl,
211 .probe = e1000_probe,
212 .remove = e1000_remove,
213 #ifdef CONFIG_PM
214 /* Power Management Hooks */
215 .suspend = e1000_suspend,
216 .resume = e1000_resume,
217 #endif
218 .shutdown = e1000_shutdown,
219 .err_handler = &e1000_err_handler
220 };
221
222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
226
227 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228 static int debug = -1;
229 module_param(debug, int, 0);
230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
232 /**
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
235 *
236 **/
237 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238 {
239 struct e1000_adapter *adapter = hw->back;
240 return adapter->netdev;
241 }
242
243 /**
244 * e1000_init_module - Driver Registration Routine
245 *
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
248 **/
249 static int __init e1000_init_module(void)
250 {
251 int ret;
252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253
254 pr_info("%s\n", e1000_copyright);
255
256 ret = pci_register_driver(&e1000_driver);
257 if (copybreak != COPYBREAK_DEFAULT) {
258 if (copybreak == 0)
259 pr_info("copybreak disabled\n");
260 else
261 pr_info("copybreak enabled for "
262 "packets <= %u bytes\n", copybreak);
263 }
264 return ret;
265 }
266
267 module_init(e1000_init_module);
268
269 /**
270 * e1000_exit_module - Driver Exit Cleanup Routine
271 *
272 * e1000_exit_module is called just before the driver is removed
273 * from memory.
274 **/
275 static void __exit e1000_exit_module(void)
276 {
277 pci_unregister_driver(&e1000_driver);
278 }
279
280 module_exit(e1000_exit_module);
281
282 static int e1000_request_irq(struct e1000_adapter *adapter)
283 {
284 struct net_device *netdev = adapter->netdev;
285 irq_handler_t handler = e1000_intr;
286 int irq_flags = IRQF_SHARED;
287 int err;
288
289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290 netdev);
291 if (err) {
292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293 }
294
295 return err;
296 }
297
298 static void e1000_free_irq(struct e1000_adapter *adapter)
299 {
300 struct net_device *netdev = adapter->netdev;
301
302 free_irq(adapter->pdev->irq, netdev);
303 }
304
305 /**
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
308 **/
309 static void e1000_irq_disable(struct e1000_adapter *adapter)
310 {
311 struct e1000_hw *hw = &adapter->hw;
312
313 ew32(IMC, ~0);
314 E1000_WRITE_FLUSH();
315 synchronize_irq(adapter->pdev->irq);
316 }
317
318 /**
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
321 **/
322 static void e1000_irq_enable(struct e1000_adapter *adapter)
323 {
324 struct e1000_hw *hw = &adapter->hw;
325
326 ew32(IMS, IMS_ENABLE_MASK);
327 E1000_WRITE_FLUSH();
328 }
329
330 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331 {
332 struct e1000_hw *hw = &adapter->hw;
333 struct net_device *netdev = adapter->netdev;
334 u16 vid = hw->mng_cookie.vlan_id;
335 u16 old_vid = adapter->mng_vlan_id;
336
337 if (!e1000_vlan_used(adapter))
338 return;
339
340 if (!test_bit(vid, adapter->active_vlans)) {
341 if (hw->mng_cookie.status &
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 adapter->mng_vlan_id = vid;
345 } else {
346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 }
348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 (vid != old_vid) &&
350 !test_bit(old_vid, adapter->active_vlans))
351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 old_vid);
353 } else {
354 adapter->mng_vlan_id = vid;
355 }
356 }
357
358 static void e1000_init_manageability(struct e1000_adapter *adapter)
359 {
360 struct e1000_hw *hw = &adapter->hw;
361
362 if (adapter->en_mng_pt) {
363 u32 manc = er32(MANC);
364
365 /* disable hardware interception of ARP */
366 manc &= ~(E1000_MANC_ARP_EN);
367
368 ew32(MANC, manc);
369 }
370 }
371
372 static void e1000_release_manageability(struct e1000_adapter *adapter)
373 {
374 struct e1000_hw *hw = &adapter->hw;
375
376 if (adapter->en_mng_pt) {
377 u32 manc = er32(MANC);
378
379 /* re-enable hardware interception of ARP */
380 manc |= E1000_MANC_ARP_EN;
381
382 ew32(MANC, manc);
383 }
384 }
385
386 /**
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
389 **/
390 static void e1000_configure(struct e1000_adapter *adapter)
391 {
392 struct net_device *netdev = adapter->netdev;
393 int i;
394
395 e1000_set_rx_mode(netdev);
396
397 e1000_restore_vlan(adapter);
398 e1000_init_manageability(adapter);
399
400 e1000_configure_tx(adapter);
401 e1000_setup_rctl(adapter);
402 e1000_configure_rx(adapter);
403 /* call E1000_DESC_UNUSED which always leaves
404 * at least 1 descriptor unused to make sure
405 * next_to_use != next_to_clean
406 */
407 for (i = 0; i < adapter->num_rx_queues; i++) {
408 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 adapter->alloc_rx_buf(adapter, ring,
410 E1000_DESC_UNUSED(ring));
411 }
412 }
413
414 int e1000_up(struct e1000_adapter *adapter)
415 {
416 struct e1000_hw *hw = &adapter->hw;
417
418 /* hardware has been reset, we need to reload some things */
419 e1000_configure(adapter);
420
421 clear_bit(__E1000_DOWN, &adapter->flags);
422
423 napi_enable(&adapter->napi);
424
425 e1000_irq_enable(adapter);
426
427 netif_wake_queue(adapter->netdev);
428
429 /* fire a link change interrupt to start the watchdog */
430 ew32(ICS, E1000_ICS_LSC);
431 return 0;
432 }
433
434 /**
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
437 *
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
441 **/
442 void e1000_power_up_phy(struct e1000_adapter *adapter)
443 {
444 struct e1000_hw *hw = &adapter->hw;
445 u16 mii_reg = 0;
446
447 /* Just clear the power down bit to wake the phy back up */
448 if (hw->media_type == e1000_media_type_copper) {
449 /* according to the manual, the phy will retain its
450 * settings across a power-down/up cycle
451 */
452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 mii_reg &= ~MII_CR_POWER_DOWN;
454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455 }
456 }
457
458 static void e1000_power_down_phy(struct e1000_adapter *adapter)
459 {
460 struct e1000_hw *hw = &adapter->hw;
461
462 /* Power down the PHY so no link is implied when interface is down *
463 * The PHY cannot be powered down if any of the following is true *
464 * (a) WoL is enabled
465 * (b) AMT is active
466 * (c) SoL/IDER session is active
467 */
468 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 hw->media_type == e1000_media_type_copper) {
470 u16 mii_reg = 0;
471
472 switch (hw->mac_type) {
473 case e1000_82540:
474 case e1000_82545:
475 case e1000_82545_rev_3:
476 case e1000_82546:
477 case e1000_ce4100:
478 case e1000_82546_rev_3:
479 case e1000_82541:
480 case e1000_82541_rev_2:
481 case e1000_82547:
482 case e1000_82547_rev_2:
483 if (er32(MANC) & E1000_MANC_SMBUS_EN)
484 goto out;
485 break;
486 default:
487 goto out;
488 }
489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 mii_reg |= MII_CR_POWER_DOWN;
491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492 msleep(1);
493 }
494 out:
495 return;
496 }
497
498 static void e1000_down_and_stop(struct e1000_adapter *adapter)
499 {
500 set_bit(__E1000_DOWN, &adapter->flags);
501
502 cancel_delayed_work_sync(&adapter->watchdog_task);
503
504 /*
505 * Since the watchdog task can reschedule other tasks, we should cancel
506 * it first, otherwise we can run into the situation when a work is
507 * still running after the adapter has been turned down.
508 */
509
510 cancel_delayed_work_sync(&adapter->phy_info_task);
511 cancel_delayed_work_sync(&adapter->fifo_stall_task);
512
513 /* Only kill reset task if adapter is not resetting */
514 if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 cancel_work_sync(&adapter->reset_task);
516 }
517
518 void e1000_down(struct e1000_adapter *adapter)
519 {
520 struct e1000_hw *hw = &adapter->hw;
521 struct net_device *netdev = adapter->netdev;
522 u32 rctl, tctl;
523
524 netif_carrier_off(netdev);
525
526 /* disable receives in the hardware */
527 rctl = er32(RCTL);
528 ew32(RCTL, rctl & ~E1000_RCTL_EN);
529 /* flush and sleep below */
530
531 netif_tx_disable(netdev);
532
533 /* disable transmits in the hardware */
534 tctl = er32(TCTL);
535 tctl &= ~E1000_TCTL_EN;
536 ew32(TCTL, tctl);
537 /* flush both disables and wait for them to finish */
538 E1000_WRITE_FLUSH();
539 msleep(10);
540
541 napi_disable(&adapter->napi);
542
543 e1000_irq_disable(adapter);
544
545 /* Setting DOWN must be after irq_disable to prevent
546 * a screaming interrupt. Setting DOWN also prevents
547 * tasks from rescheduling.
548 */
549 e1000_down_and_stop(adapter);
550
551 adapter->link_speed = 0;
552 adapter->link_duplex = 0;
553
554 e1000_reset(adapter);
555 e1000_clean_all_tx_rings(adapter);
556 e1000_clean_all_rx_rings(adapter);
557 }
558
559 void e1000_reinit_locked(struct e1000_adapter *adapter)
560 {
561 WARN_ON(in_interrupt());
562 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563 msleep(1);
564 e1000_down(adapter);
565 e1000_up(adapter);
566 clear_bit(__E1000_RESETTING, &adapter->flags);
567 }
568
569 void e1000_reset(struct e1000_adapter *adapter)
570 {
571 struct e1000_hw *hw = &adapter->hw;
572 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
573 bool legacy_pba_adjust = false;
574 u16 hwm;
575
576 /* Repartition Pba for greater than 9k mtu
577 * To take effect CTRL.RST is required.
578 */
579
580 switch (hw->mac_type) {
581 case e1000_82542_rev2_0:
582 case e1000_82542_rev2_1:
583 case e1000_82543:
584 case e1000_82544:
585 case e1000_82540:
586 case e1000_82541:
587 case e1000_82541_rev_2:
588 legacy_pba_adjust = true;
589 pba = E1000_PBA_48K;
590 break;
591 case e1000_82545:
592 case e1000_82545_rev_3:
593 case e1000_82546:
594 case e1000_ce4100:
595 case e1000_82546_rev_3:
596 pba = E1000_PBA_48K;
597 break;
598 case e1000_82547:
599 case e1000_82547_rev_2:
600 legacy_pba_adjust = true;
601 pba = E1000_PBA_30K;
602 break;
603 case e1000_undefined:
604 case e1000_num_macs:
605 break;
606 }
607
608 if (legacy_pba_adjust) {
609 if (hw->max_frame_size > E1000_RXBUFFER_8192)
610 pba -= 8; /* allocate more FIFO for Tx */
611
612 if (hw->mac_type == e1000_82547) {
613 adapter->tx_fifo_head = 0;
614 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615 adapter->tx_fifo_size =
616 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617 atomic_set(&adapter->tx_fifo_stall, 0);
618 }
619 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
620 /* adjust PBA for jumbo frames */
621 ew32(PBA, pba);
622
623 /* To maintain wire speed transmits, the Tx FIFO should be
624 * large enough to accommodate two full transmit packets,
625 * rounded up to the next 1KB and expressed in KB. Likewise,
626 * the Rx FIFO should be large enough to accommodate at least
627 * one full receive packet and is similarly rounded up and
628 * expressed in KB.
629 */
630 pba = er32(PBA);
631 /* upper 16 bits has Tx packet buffer allocation size in KB */
632 tx_space = pba >> 16;
633 /* lower 16 bits has Rx packet buffer allocation size in KB */
634 pba &= 0xffff;
635 /* the Tx fifo also stores 16 bytes of information about the Tx
636 * but don't include ethernet FCS because hardware appends it
637 */
638 min_tx_space = (hw->max_frame_size +
639 sizeof(struct e1000_tx_desc) -
640 ETH_FCS_LEN) * 2;
641 min_tx_space = ALIGN(min_tx_space, 1024);
642 min_tx_space >>= 10;
643 /* software strips receive CRC, so leave room for it */
644 min_rx_space = hw->max_frame_size;
645 min_rx_space = ALIGN(min_rx_space, 1024);
646 min_rx_space >>= 10;
647
648 /* If current Tx allocation is less than the min Tx FIFO size,
649 * and the min Tx FIFO size is less than the current Rx FIFO
650 * allocation, take space away from current Rx allocation
651 */
652 if (tx_space < min_tx_space &&
653 ((min_tx_space - tx_space) < pba)) {
654 pba = pba - (min_tx_space - tx_space);
655
656 /* PCI/PCIx hardware has PBA alignment constraints */
657 switch (hw->mac_type) {
658 case e1000_82545 ... e1000_82546_rev_3:
659 pba &= ~(E1000_PBA_8K - 1);
660 break;
661 default:
662 break;
663 }
664
665 /* if short on Rx space, Rx wins and must trump Tx
666 * adjustment or use Early Receive if available
667 */
668 if (pba < min_rx_space)
669 pba = min_rx_space;
670 }
671 }
672
673 ew32(PBA, pba);
674
675 /* flow control settings:
676 * The high water mark must be low enough to fit one full frame
677 * (or the size used for early receive) above it in the Rx FIFO.
678 * Set it to the lower of:
679 * - 90% of the Rx FIFO size, and
680 * - the full Rx FIFO size minus the early receive size (for parts
681 * with ERT support assuming ERT set to E1000_ERT_2048), or
682 * - the full Rx FIFO size minus one full frame
683 */
684 hwm = min(((pba << 10) * 9 / 10),
685 ((pba << 10) - hw->max_frame_size));
686
687 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
688 hw->fc_low_water = hw->fc_high_water - 8;
689 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
690 hw->fc_send_xon = 1;
691 hw->fc = hw->original_fc;
692
693 /* Allow time for pending master requests to run */
694 e1000_reset_hw(hw);
695 if (hw->mac_type >= e1000_82544)
696 ew32(WUC, 0);
697
698 if (e1000_init_hw(hw))
699 e_dev_err("Hardware Error\n");
700 e1000_update_mng_vlan(adapter);
701
702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703 if (hw->mac_type >= e1000_82544 &&
704 hw->autoneg == 1 &&
705 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706 u32 ctrl = er32(CTRL);
707 /* clear phy power management bit if we are in gig only mode,
708 * which if enabled will attempt negotiation to 100Mb, which
709 * can cause a loss of link at power off or driver unload
710 */
711 ctrl &= ~E1000_CTRL_SWDPIN3;
712 ew32(CTRL, ctrl);
713 }
714
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
720
721 e1000_release_manageability(adapter);
722 }
723
724 /* Dump the eeprom for users having checksum issues */
725 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726 {
727 struct net_device *netdev = adapter->netdev;
728 struct ethtool_eeprom eeprom;
729 const struct ethtool_ops *ops = netdev->ethtool_ops;
730 u8 *data;
731 int i;
732 u16 csum_old, csum_new = 0;
733
734 eeprom.len = ops->get_eeprom_len(netdev);
735 eeprom.offset = 0;
736
737 data = kmalloc(eeprom.len, GFP_KERNEL);
738 if (!data)
739 return;
740
741 ops->get_eeprom(netdev, &eeprom, data);
742
743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 csum_new += data[i] + (data[i + 1] << 8);
747 csum_new = EEPROM_SUM - csum_new;
748
749 pr_err("/*********************/\n");
750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 pr_err("Calculated : 0x%04x\n", csum_new);
752
753 pr_err("Offset Values\n");
754 pr_err("======== ======\n");
755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756
757 pr_err("Include this output when contacting your support provider.\n");
758 pr_err("This is not a software error! Something bad happened to\n");
759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 pr_err("result in further problems, possibly loss of data,\n");
761 pr_err("corruption or system hangs!\n");
762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 pr_err("which is invalid and requires you to set the proper MAC\n");
764 pr_err("address manually before continuing to enable this network\n");
765 pr_err("device. Please inspect the EEPROM dump and report the\n");
766 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 pr_err("/*********************/\n");
768
769 kfree(data);
770 }
771
772 /**
773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774 * @pdev: PCI device information struct
775 *
776 * Return true if an adapter needs ioport resources
777 **/
778 static int e1000_is_need_ioport(struct pci_dev *pdev)
779 {
780 switch (pdev->device) {
781 case E1000_DEV_ID_82540EM:
782 case E1000_DEV_ID_82540EM_LOM:
783 case E1000_DEV_ID_82540EP:
784 case E1000_DEV_ID_82540EP_LOM:
785 case E1000_DEV_ID_82540EP_LP:
786 case E1000_DEV_ID_82541EI:
787 case E1000_DEV_ID_82541EI_MOBILE:
788 case E1000_DEV_ID_82541ER:
789 case E1000_DEV_ID_82541ER_LOM:
790 case E1000_DEV_ID_82541GI:
791 case E1000_DEV_ID_82541GI_LF:
792 case E1000_DEV_ID_82541GI_MOBILE:
793 case E1000_DEV_ID_82544EI_COPPER:
794 case E1000_DEV_ID_82544EI_FIBER:
795 case E1000_DEV_ID_82544GC_COPPER:
796 case E1000_DEV_ID_82544GC_LOM:
797 case E1000_DEV_ID_82545EM_COPPER:
798 case E1000_DEV_ID_82545EM_FIBER:
799 case E1000_DEV_ID_82546EB_COPPER:
800 case E1000_DEV_ID_82546EB_FIBER:
801 case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 return true;
803 default:
804 return false;
805 }
806 }
807
808 static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 netdev_features_t features)
810 {
811 /* Since there is no support for separate Rx/Tx vlan accel
812 * enable/disable make sure Tx flag is always in same state as Rx.
813 */
814 if (features & NETIF_F_HW_VLAN_CTAG_RX)
815 features |= NETIF_F_HW_VLAN_CTAG_TX;
816 else
817 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
818
819 return features;
820 }
821
822 static int e1000_set_features(struct net_device *netdev,
823 netdev_features_t features)
824 {
825 struct e1000_adapter *adapter = netdev_priv(netdev);
826 netdev_features_t changed = features ^ netdev->features;
827
828 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
829 e1000_vlan_mode(netdev, features);
830
831 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
832 return 0;
833
834 netdev->features = features;
835 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
836
837 if (netif_running(netdev))
838 e1000_reinit_locked(adapter);
839 else
840 e1000_reset(adapter);
841
842 return 0;
843 }
844
845 static const struct net_device_ops e1000_netdev_ops = {
846 .ndo_open = e1000_open,
847 .ndo_stop = e1000_close,
848 .ndo_start_xmit = e1000_xmit_frame,
849 .ndo_get_stats = e1000_get_stats,
850 .ndo_set_rx_mode = e1000_set_rx_mode,
851 .ndo_set_mac_address = e1000_set_mac,
852 .ndo_tx_timeout = e1000_tx_timeout,
853 .ndo_change_mtu = e1000_change_mtu,
854 .ndo_do_ioctl = e1000_ioctl,
855 .ndo_validate_addr = eth_validate_addr,
856 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
857 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
858 #ifdef CONFIG_NET_POLL_CONTROLLER
859 .ndo_poll_controller = e1000_netpoll,
860 #endif
861 .ndo_fix_features = e1000_fix_features,
862 .ndo_set_features = e1000_set_features,
863 };
864
865 /**
866 * e1000_init_hw_struct - initialize members of hw struct
867 * @adapter: board private struct
868 * @hw: structure used by e1000_hw.c
869 *
870 * Factors out initialization of the e1000_hw struct to its own function
871 * that can be called very early at init (just after struct allocation).
872 * Fields are initialized based on PCI device information and
873 * OS network device settings (MTU size).
874 * Returns negative error codes if MAC type setup fails.
875 */
876 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
877 struct e1000_hw *hw)
878 {
879 struct pci_dev *pdev = adapter->pdev;
880
881 /* PCI config space info */
882 hw->vendor_id = pdev->vendor;
883 hw->device_id = pdev->device;
884 hw->subsystem_vendor_id = pdev->subsystem_vendor;
885 hw->subsystem_id = pdev->subsystem_device;
886 hw->revision_id = pdev->revision;
887
888 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
889
890 hw->max_frame_size = adapter->netdev->mtu +
891 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
893
894 /* identify the MAC */
895 if (e1000_set_mac_type(hw)) {
896 e_err(probe, "Unknown MAC Type\n");
897 return -EIO;
898 }
899
900 switch (hw->mac_type) {
901 default:
902 break;
903 case e1000_82541:
904 case e1000_82547:
905 case e1000_82541_rev_2:
906 case e1000_82547_rev_2:
907 hw->phy_init_script = 1;
908 break;
909 }
910
911 e1000_set_media_type(hw);
912 e1000_get_bus_info(hw);
913
914 hw->wait_autoneg_complete = false;
915 hw->tbi_compatibility_en = true;
916 hw->adaptive_ifs = true;
917
918 /* Copper options */
919
920 if (hw->media_type == e1000_media_type_copper) {
921 hw->mdix = AUTO_ALL_MODES;
922 hw->disable_polarity_correction = false;
923 hw->master_slave = E1000_MASTER_SLAVE;
924 }
925
926 return 0;
927 }
928
929 /**
930 * e1000_probe - Device Initialization Routine
931 * @pdev: PCI device information struct
932 * @ent: entry in e1000_pci_tbl
933 *
934 * Returns 0 on success, negative on failure
935 *
936 * e1000_probe initializes an adapter identified by a pci_dev structure.
937 * The OS initialization, configuring of the adapter private structure,
938 * and a hardware reset occur.
939 **/
940 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
941 {
942 struct net_device *netdev;
943 struct e1000_adapter *adapter;
944 struct e1000_hw *hw;
945
946 static int cards_found = 0;
947 static int global_quad_port_a = 0; /* global ksp3 port a indication */
948 int i, err, pci_using_dac;
949 u16 eeprom_data = 0;
950 u16 tmp = 0;
951 u16 eeprom_apme_mask = E1000_EEPROM_APME;
952 int bars, need_ioport;
953
954 /* do not allocate ioport bars when not needed */
955 need_ioport = e1000_is_need_ioport(pdev);
956 if (need_ioport) {
957 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958 err = pci_enable_device(pdev);
959 } else {
960 bars = pci_select_bars(pdev, IORESOURCE_MEM);
961 err = pci_enable_device_mem(pdev);
962 }
963 if (err)
964 return err;
965
966 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
967 if (err)
968 goto err_pci_reg;
969
970 pci_set_master(pdev);
971 err = pci_save_state(pdev);
972 if (err)
973 goto err_alloc_etherdev;
974
975 err = -ENOMEM;
976 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
977 if (!netdev)
978 goto err_alloc_etherdev;
979
980 SET_NETDEV_DEV(netdev, &pdev->dev);
981
982 pci_set_drvdata(pdev, netdev);
983 adapter = netdev_priv(netdev);
984 adapter->netdev = netdev;
985 adapter->pdev = pdev;
986 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
987 adapter->bars = bars;
988 adapter->need_ioport = need_ioport;
989
990 hw = &adapter->hw;
991 hw->back = adapter;
992
993 err = -EIO;
994 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
995 if (!hw->hw_addr)
996 goto err_ioremap;
997
998 if (adapter->need_ioport) {
999 for (i = BAR_1; i <= BAR_5; i++) {
1000 if (pci_resource_len(pdev, i) == 0)
1001 continue;
1002 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003 hw->io_base = pci_resource_start(pdev, i);
1004 break;
1005 }
1006 }
1007 }
1008
1009 /* make ready for any if (hw->...) below */
1010 err = e1000_init_hw_struct(adapter, hw);
1011 if (err)
1012 goto err_sw_init;
1013
1014 /* there is a workaround being applied below that limits
1015 * 64-bit DMA addresses to 64-bit hardware. There are some
1016 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017 */
1018 pci_using_dac = 0;
1019 if ((hw->bus_type == e1000_bus_type_pcix) &&
1020 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021 pci_using_dac = 1;
1022 } else {
1023 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024 if (err) {
1025 pr_err("No usable DMA config, aborting\n");
1026 goto err_dma;
1027 }
1028 }
1029
1030 netdev->netdev_ops = &e1000_netdev_ops;
1031 e1000_set_ethtool_ops(netdev);
1032 netdev->watchdog_timeo = 5 * HZ;
1033 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034
1035 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036
1037 adapter->bd_number = cards_found;
1038
1039 /* setup the private structure */
1040
1041 err = e1000_sw_init(adapter);
1042 if (err)
1043 goto err_sw_init;
1044
1045 err = -EIO;
1046 if (hw->mac_type == e1000_ce4100) {
1047 hw->ce4100_gbe_mdio_base_virt =
1048 ioremap(pci_resource_start(pdev, BAR_1),
1049 pci_resource_len(pdev, BAR_1));
1050
1051 if (!hw->ce4100_gbe_mdio_base_virt)
1052 goto err_mdio_ioremap;
1053 }
1054
1055 if (hw->mac_type >= e1000_82543) {
1056 netdev->hw_features = NETIF_F_SG |
1057 NETIF_F_HW_CSUM |
1058 NETIF_F_HW_VLAN_CTAG_RX;
1059 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060 NETIF_F_HW_VLAN_CTAG_FILTER;
1061 }
1062
1063 if ((hw->mac_type >= e1000_82544) &&
1064 (hw->mac_type != e1000_82547))
1065 netdev->hw_features |= NETIF_F_TSO;
1066
1067 netdev->priv_flags |= IFF_SUPP_NOFCS;
1068
1069 netdev->features |= netdev->hw_features;
1070 netdev->hw_features |= (NETIF_F_RXCSUM |
1071 NETIF_F_RXALL |
1072 NETIF_F_RXFCS);
1073
1074 if (pci_using_dac) {
1075 netdev->features |= NETIF_F_HIGHDMA;
1076 netdev->vlan_features |= NETIF_F_HIGHDMA;
1077 }
1078
1079 netdev->vlan_features |= (NETIF_F_TSO |
1080 NETIF_F_HW_CSUM |
1081 NETIF_F_SG);
1082
1083 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086 netdev->priv_flags |= IFF_UNICAST_FLT;
1087
1088 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1089
1090 /* initialize eeprom parameters */
1091 if (e1000_init_eeprom_params(hw)) {
1092 e_err(probe, "EEPROM initialization failed\n");
1093 goto err_eeprom;
1094 }
1095
1096 /* before reading the EEPROM, reset the controller to
1097 * put the device in a known good starting state
1098 */
1099
1100 e1000_reset_hw(hw);
1101
1102 /* make sure the EEPROM is good */
1103 if (e1000_validate_eeprom_checksum(hw) < 0) {
1104 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1105 e1000_dump_eeprom(adapter);
1106 /* set MAC address to all zeroes to invalidate and temporary
1107 * disable this device for the user. This blocks regular
1108 * traffic while still permitting ethtool ioctls from reaching
1109 * the hardware as well as allowing the user to run the
1110 * interface after manually setting a hw addr using
1111 * `ip set address`
1112 */
1113 memset(hw->mac_addr, 0, netdev->addr_len);
1114 } else {
1115 /* copy the MAC address out of the EEPROM */
1116 if (e1000_read_mac_addr(hw))
1117 e_err(probe, "EEPROM Read Error\n");
1118 }
1119 /* don't block initialization here due to bad MAC address */
1120 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1121
1122 if (!is_valid_ether_addr(netdev->dev_addr))
1123 e_err(probe, "Invalid MAC Address\n");
1124
1125
1126 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128 e1000_82547_tx_fifo_stall_task);
1129 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1130 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1131
1132 e1000_check_options(adapter);
1133
1134 /* Initial Wake on LAN setting
1135 * If APM wake is enabled in the EEPROM,
1136 * enable the ACPI Magic Packet filter
1137 */
1138
1139 switch (hw->mac_type) {
1140 case e1000_82542_rev2_0:
1141 case e1000_82542_rev2_1:
1142 case e1000_82543:
1143 break;
1144 case e1000_82544:
1145 e1000_read_eeprom(hw,
1146 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1148 break;
1149 case e1000_82546:
1150 case e1000_82546_rev_3:
1151 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1152 e1000_read_eeprom(hw,
1153 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1154 break;
1155 }
1156 /* Fall Through */
1157 default:
1158 e1000_read_eeprom(hw,
1159 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1160 break;
1161 }
1162 if (eeprom_data & eeprom_apme_mask)
1163 adapter->eeprom_wol |= E1000_WUFC_MAG;
1164
1165 /* now that we have the eeprom settings, apply the special cases
1166 * where the eeprom may be wrong or the board simply won't support
1167 * wake on lan on a particular port
1168 */
1169 switch (pdev->device) {
1170 case E1000_DEV_ID_82546GB_PCIE:
1171 adapter->eeprom_wol = 0;
1172 break;
1173 case E1000_DEV_ID_82546EB_FIBER:
1174 case E1000_DEV_ID_82546GB_FIBER:
1175 /* Wake events only supported on port A for dual fiber
1176 * regardless of eeprom setting
1177 */
1178 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1179 adapter->eeprom_wol = 0;
1180 break;
1181 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182 /* if quad port adapter, disable WoL on all but port A */
1183 if (global_quad_port_a != 0)
1184 adapter->eeprom_wol = 0;
1185 else
1186 adapter->quad_port_a = true;
1187 /* Reset for multiple quad port adapters */
1188 if (++global_quad_port_a == 4)
1189 global_quad_port_a = 0;
1190 break;
1191 }
1192
1193 /* initialize the wol settings based on the eeprom settings */
1194 adapter->wol = adapter->eeprom_wol;
1195 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1196
1197 /* Auto detect PHY address */
1198 if (hw->mac_type == e1000_ce4100) {
1199 for (i = 0; i < 32; i++) {
1200 hw->phy_addr = i;
1201 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1202 if (tmp == 0 || tmp == 0xFF) {
1203 if (i == 31)
1204 goto err_eeprom;
1205 continue;
1206 } else
1207 break;
1208 }
1209 }
1210
1211 /* reset the hardware with the new settings */
1212 e1000_reset(adapter);
1213
1214 strcpy(netdev->name, "eth%d");
1215 err = register_netdev(netdev);
1216 if (err)
1217 goto err_register;
1218
1219 e1000_vlan_filter_on_off(adapter, false);
1220
1221 /* print bus type/speed/width info */
1222 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1223 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1229 netdev->dev_addr);
1230
1231 /* carrier off reporting is important to ethtool even BEFORE open */
1232 netif_carrier_off(netdev);
1233
1234 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1235
1236 cards_found++;
1237 return 0;
1238
1239 err_register:
1240 err_eeprom:
1241 e1000_phy_hw_reset(hw);
1242
1243 if (hw->flash_address)
1244 iounmap(hw->flash_address);
1245 kfree(adapter->tx_ring);
1246 kfree(adapter->rx_ring);
1247 err_dma:
1248 err_sw_init:
1249 err_mdio_ioremap:
1250 iounmap(hw->ce4100_gbe_mdio_base_virt);
1251 iounmap(hw->hw_addr);
1252 err_ioremap:
1253 free_netdev(netdev);
1254 err_alloc_etherdev:
1255 pci_release_selected_regions(pdev, bars);
1256 err_pci_reg:
1257 pci_disable_device(pdev);
1258 return err;
1259 }
1260
1261 /**
1262 * e1000_remove - Device Removal Routine
1263 * @pdev: PCI device information struct
1264 *
1265 * e1000_remove is called by the PCI subsystem to alert the driver
1266 * that it should release a PCI device. The could be caused by a
1267 * Hot-Plug event, or because the driver is going to be removed from
1268 * memory.
1269 **/
1270 static void e1000_remove(struct pci_dev *pdev)
1271 {
1272 struct net_device *netdev = pci_get_drvdata(pdev);
1273 struct e1000_adapter *adapter = netdev_priv(netdev);
1274 struct e1000_hw *hw = &adapter->hw;
1275
1276 e1000_down_and_stop(adapter);
1277 e1000_release_manageability(adapter);
1278
1279 unregister_netdev(netdev);
1280
1281 e1000_phy_hw_reset(hw);
1282
1283 kfree(adapter->tx_ring);
1284 kfree(adapter->rx_ring);
1285
1286 if (hw->mac_type == e1000_ce4100)
1287 iounmap(hw->ce4100_gbe_mdio_base_virt);
1288 iounmap(hw->hw_addr);
1289 if (hw->flash_address)
1290 iounmap(hw->flash_address);
1291 pci_release_selected_regions(pdev, adapter->bars);
1292
1293 free_netdev(netdev);
1294
1295 pci_disable_device(pdev);
1296 }
1297
1298 /**
1299 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300 * @adapter: board private structure to initialize
1301 *
1302 * e1000_sw_init initializes the Adapter private data structure.
1303 * e1000_init_hw_struct MUST be called before this function
1304 **/
1305 static int e1000_sw_init(struct e1000_adapter *adapter)
1306 {
1307 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1308
1309 adapter->num_tx_queues = 1;
1310 adapter->num_rx_queues = 1;
1311
1312 if (e1000_alloc_queues(adapter)) {
1313 e_err(probe, "Unable to allocate memory for queues\n");
1314 return -ENOMEM;
1315 }
1316
1317 /* Explicitly disable IRQ since the NIC can be in any state. */
1318 e1000_irq_disable(adapter);
1319
1320 spin_lock_init(&adapter->stats_lock);
1321
1322 set_bit(__E1000_DOWN, &adapter->flags);
1323
1324 return 0;
1325 }
1326
1327 /**
1328 * e1000_alloc_queues - Allocate memory for all rings
1329 * @adapter: board private structure to initialize
1330 *
1331 * We allocate one ring per queue at run-time since we don't know the
1332 * number of queues at compile-time.
1333 **/
1334 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1335 {
1336 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1337 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1338 if (!adapter->tx_ring)
1339 return -ENOMEM;
1340
1341 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1342 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1343 if (!adapter->rx_ring) {
1344 kfree(adapter->tx_ring);
1345 return -ENOMEM;
1346 }
1347
1348 return E1000_SUCCESS;
1349 }
1350
1351 /**
1352 * e1000_open - Called when a network interface is made active
1353 * @netdev: network interface device structure
1354 *
1355 * Returns 0 on success, negative value on failure
1356 *
1357 * The open entry point is called when a network interface is made
1358 * active by the system (IFF_UP). At this point all resources needed
1359 * for transmit and receive operations are allocated, the interrupt
1360 * handler is registered with the OS, the watchdog task is started,
1361 * and the stack is notified that the interface is ready.
1362 **/
1363 static int e1000_open(struct net_device *netdev)
1364 {
1365 struct e1000_adapter *adapter = netdev_priv(netdev);
1366 struct e1000_hw *hw = &adapter->hw;
1367 int err;
1368
1369 /* disallow open during test */
1370 if (test_bit(__E1000_TESTING, &adapter->flags))
1371 return -EBUSY;
1372
1373 netif_carrier_off(netdev);
1374
1375 /* allocate transmit descriptors */
1376 err = e1000_setup_all_tx_resources(adapter);
1377 if (err)
1378 goto err_setup_tx;
1379
1380 /* allocate receive descriptors */
1381 err = e1000_setup_all_rx_resources(adapter);
1382 if (err)
1383 goto err_setup_rx;
1384
1385 e1000_power_up_phy(adapter);
1386
1387 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1388 if ((hw->mng_cookie.status &
1389 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1390 e1000_update_mng_vlan(adapter);
1391 }
1392
1393 /* before we allocate an interrupt, we must be ready to handle it.
1394 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1395 * as soon as we call pci_request_irq, so we have to setup our
1396 * clean_rx handler before we do so.
1397 */
1398 e1000_configure(adapter);
1399
1400 err = e1000_request_irq(adapter);
1401 if (err)
1402 goto err_req_irq;
1403
1404 /* From here on the code is the same as e1000_up() */
1405 clear_bit(__E1000_DOWN, &adapter->flags);
1406
1407 napi_enable(&adapter->napi);
1408
1409 e1000_irq_enable(adapter);
1410
1411 netif_start_queue(netdev);
1412
1413 /* fire a link status change interrupt to start the watchdog */
1414 ew32(ICS, E1000_ICS_LSC);
1415
1416 return E1000_SUCCESS;
1417
1418 err_req_irq:
1419 e1000_power_down_phy(adapter);
1420 e1000_free_all_rx_resources(adapter);
1421 err_setup_rx:
1422 e1000_free_all_tx_resources(adapter);
1423 err_setup_tx:
1424 e1000_reset(adapter);
1425
1426 return err;
1427 }
1428
1429 /**
1430 * e1000_close - Disables a network interface
1431 * @netdev: network interface device structure
1432 *
1433 * Returns 0, this is not allowed to fail
1434 *
1435 * The close entry point is called when an interface is de-activated
1436 * by the OS. The hardware is still under the drivers control, but
1437 * needs to be disabled. A global MAC reset is issued to stop the
1438 * hardware, and all transmit and receive resources are freed.
1439 **/
1440 static int e1000_close(struct net_device *netdev)
1441 {
1442 struct e1000_adapter *adapter = netdev_priv(netdev);
1443 struct e1000_hw *hw = &adapter->hw;
1444 int count = E1000_CHECK_RESET_COUNT;
1445
1446 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1447 usleep_range(10000, 20000);
1448
1449 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1450 e1000_down(adapter);
1451 e1000_power_down_phy(adapter);
1452 e1000_free_irq(adapter);
1453
1454 e1000_free_all_tx_resources(adapter);
1455 e1000_free_all_rx_resources(adapter);
1456
1457 /* kill manageability vlan ID if supported, but not if a vlan with
1458 * the same ID is registered on the host OS (let 8021q kill it)
1459 */
1460 if ((hw->mng_cookie.status &
1461 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1463 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464 adapter->mng_vlan_id);
1465 }
1466
1467 return 0;
1468 }
1469
1470 /**
1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472 * @adapter: address of board private structure
1473 * @start: address of beginning of memory
1474 * @len: length of memory
1475 **/
1476 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1477 unsigned long len)
1478 {
1479 struct e1000_hw *hw = &adapter->hw;
1480 unsigned long begin = (unsigned long)start;
1481 unsigned long end = begin + len;
1482
1483 /* First rev 82545 and 82546 need to not allow any memory
1484 * write location to cross 64k boundary due to errata 23
1485 */
1486 if (hw->mac_type == e1000_82545 ||
1487 hw->mac_type == e1000_ce4100 ||
1488 hw->mac_type == e1000_82546) {
1489 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1490 }
1491
1492 return true;
1493 }
1494
1495 /**
1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497 * @adapter: board private structure
1498 * @txdr: tx descriptor ring (for a specific queue) to setup
1499 *
1500 * Return 0 on success, negative on failure
1501 **/
1502 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503 struct e1000_tx_ring *txdr)
1504 {
1505 struct pci_dev *pdev = adapter->pdev;
1506 int size;
1507
1508 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1509 txdr->buffer_info = vzalloc(size);
1510 if (!txdr->buffer_info)
1511 return -ENOMEM;
1512
1513 /* round up to nearest 4K */
1514
1515 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1516 txdr->size = ALIGN(txdr->size, 4096);
1517
1518 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1519 GFP_KERNEL);
1520 if (!txdr->desc) {
1521 setup_tx_desc_die:
1522 vfree(txdr->buffer_info);
1523 return -ENOMEM;
1524 }
1525
1526 /* Fix for errata 23, can't cross 64kB boundary */
1527 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528 void *olddesc = txdr->desc;
1529 dma_addr_t olddma = txdr->dma;
1530 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1531 txdr->size, txdr->desc);
1532 /* Try again, without freeing the previous */
1533 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534 &txdr->dma, GFP_KERNEL);
1535 /* Failed allocation, critical failure */
1536 if (!txdr->desc) {
1537 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538 olddma);
1539 goto setup_tx_desc_die;
1540 }
1541
1542 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543 /* give up */
1544 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545 txdr->dma);
1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 olddma);
1548 e_err(probe, "Unable to allocate aligned memory "
1549 "for the transmit descriptor ring\n");
1550 vfree(txdr->buffer_info);
1551 return -ENOMEM;
1552 } else {
1553 /* Free old allocation, new allocation was successful */
1554 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555 olddma);
1556 }
1557 }
1558 memset(txdr->desc, 0, txdr->size);
1559
1560 txdr->next_to_use = 0;
1561 txdr->next_to_clean = 0;
1562
1563 return 0;
1564 }
1565
1566 /**
1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568 * (Descriptors) for all queues
1569 * @adapter: board private structure
1570 *
1571 * Return 0 on success, negative on failure
1572 **/
1573 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1574 {
1575 int i, err = 0;
1576
1577 for (i = 0; i < adapter->num_tx_queues; i++) {
1578 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579 if (err) {
1580 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1581 for (i-- ; i >= 0; i--)
1582 e1000_free_tx_resources(adapter,
1583 &adapter->tx_ring[i]);
1584 break;
1585 }
1586 }
1587
1588 return err;
1589 }
1590
1591 /**
1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593 * @adapter: board private structure
1594 *
1595 * Configure the Tx unit of the MAC after a reset.
1596 **/
1597 static void e1000_configure_tx(struct e1000_adapter *adapter)
1598 {
1599 u64 tdba;
1600 struct e1000_hw *hw = &adapter->hw;
1601 u32 tdlen, tctl, tipg;
1602 u32 ipgr1, ipgr2;
1603
1604 /* Setup the HW Tx Head and Tail descriptor pointers */
1605
1606 switch (adapter->num_tx_queues) {
1607 case 1:
1608 default:
1609 tdba = adapter->tx_ring[0].dma;
1610 tdlen = adapter->tx_ring[0].count *
1611 sizeof(struct e1000_tx_desc);
1612 ew32(TDLEN, tdlen);
1613 ew32(TDBAH, (tdba >> 32));
1614 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1615 ew32(TDT, 0);
1616 ew32(TDH, 0);
1617 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618 E1000_TDH : E1000_82542_TDH);
1619 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620 E1000_TDT : E1000_82542_TDT);
1621 break;
1622 }
1623
1624 /* Set the default values for the Tx Inter Packet Gap timer */
1625 if ((hw->media_type == e1000_media_type_fiber ||
1626 hw->media_type == e1000_media_type_internal_serdes))
1627 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628 else
1629 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630
1631 switch (hw->mac_type) {
1632 case e1000_82542_rev2_0:
1633 case e1000_82542_rev2_1:
1634 tipg = DEFAULT_82542_TIPG_IPGT;
1635 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1637 break;
1638 default:
1639 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641 break;
1642 }
1643 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1645 ew32(TIPG, tipg);
1646
1647 /* Set the Tx Interrupt Delay register */
1648
1649 ew32(TIDV, adapter->tx_int_delay);
1650 if (hw->mac_type >= e1000_82540)
1651 ew32(TADV, adapter->tx_abs_int_delay);
1652
1653 /* Program the Transmit Control Register */
1654
1655 tctl = er32(TCTL);
1656 tctl &= ~E1000_TCTL_CT;
1657 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1658 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659
1660 e1000_config_collision_dist(hw);
1661
1662 /* Setup Transmit Descriptor Settings for eop descriptor */
1663 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664
1665 /* only set IDE if we are delaying interrupts using the timers */
1666 if (adapter->tx_int_delay)
1667 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1668
1669 if (hw->mac_type < e1000_82543)
1670 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671 else
1672 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673
1674 /* Cache if we're 82544 running in PCI-X because we'll
1675 * need this to apply a workaround later in the send path.
1676 */
1677 if (hw->mac_type == e1000_82544 &&
1678 hw->bus_type == e1000_bus_type_pcix)
1679 adapter->pcix_82544 = true;
1680
1681 ew32(TCTL, tctl);
1682
1683 }
1684
1685 /**
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
1688 * @rxdr: rx descriptor ring (for a specific queue) to setup
1689 *
1690 * Returns 0 on success, negative on failure
1691 **/
1692 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693 struct e1000_rx_ring *rxdr)
1694 {
1695 struct pci_dev *pdev = adapter->pdev;
1696 int size, desc_len;
1697
1698 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1699 rxdr->buffer_info = vzalloc(size);
1700 if (!rxdr->buffer_info)
1701 return -ENOMEM;
1702
1703 desc_len = sizeof(struct e1000_rx_desc);
1704
1705 /* Round up to nearest 4K */
1706
1707 rxdr->size = rxdr->count * desc_len;
1708 rxdr->size = ALIGN(rxdr->size, 4096);
1709
1710 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1711 GFP_KERNEL);
1712 if (!rxdr->desc) {
1713 setup_rx_desc_die:
1714 vfree(rxdr->buffer_info);
1715 return -ENOMEM;
1716 }
1717
1718 /* Fix for errata 23, can't cross 64kB boundary */
1719 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720 void *olddesc = rxdr->desc;
1721 dma_addr_t olddma = rxdr->dma;
1722 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1723 rxdr->size, rxdr->desc);
1724 /* Try again, without freeing the previous */
1725 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726 &rxdr->dma, GFP_KERNEL);
1727 /* Failed allocation, critical failure */
1728 if (!rxdr->desc) {
1729 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1730 olddma);
1731 goto setup_rx_desc_die;
1732 }
1733
1734 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735 /* give up */
1736 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1737 rxdr->dma);
1738 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739 olddma);
1740 e_err(probe, "Unable to allocate aligned memory for "
1741 "the Rx descriptor ring\n");
1742 goto setup_rx_desc_die;
1743 } else {
1744 /* Free old allocation, new allocation was successful */
1745 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746 olddma);
1747 }
1748 }
1749 memset(rxdr->desc, 0, rxdr->size);
1750
1751 rxdr->next_to_clean = 0;
1752 rxdr->next_to_use = 0;
1753 rxdr->rx_skb_top = NULL;
1754
1755 return 0;
1756 }
1757
1758 /**
1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760 * (Descriptors) for all queues
1761 * @adapter: board private structure
1762 *
1763 * Return 0 on success, negative on failure
1764 **/
1765 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1766 {
1767 int i, err = 0;
1768
1769 for (i = 0; i < adapter->num_rx_queues; i++) {
1770 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1771 if (err) {
1772 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1773 for (i-- ; i >= 0; i--)
1774 e1000_free_rx_resources(adapter,
1775 &adapter->rx_ring[i]);
1776 break;
1777 }
1778 }
1779
1780 return err;
1781 }
1782
1783 /**
1784 * e1000_setup_rctl - configure the receive control registers
1785 * @adapter: Board private structure
1786 **/
1787 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1788 {
1789 struct e1000_hw *hw = &adapter->hw;
1790 u32 rctl;
1791
1792 rctl = er32(RCTL);
1793
1794 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1795
1796 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797 E1000_RCTL_RDMTS_HALF |
1798 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1799
1800 if (hw->tbi_compatibility_on == 1)
1801 rctl |= E1000_RCTL_SBP;
1802 else
1803 rctl &= ~E1000_RCTL_SBP;
1804
1805 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806 rctl &= ~E1000_RCTL_LPE;
1807 else
1808 rctl |= E1000_RCTL_LPE;
1809
1810 /* Setup buffer sizes */
1811 rctl &= ~E1000_RCTL_SZ_4096;
1812 rctl |= E1000_RCTL_BSEX;
1813 switch (adapter->rx_buffer_len) {
1814 case E1000_RXBUFFER_2048:
1815 default:
1816 rctl |= E1000_RCTL_SZ_2048;
1817 rctl &= ~E1000_RCTL_BSEX;
1818 break;
1819 case E1000_RXBUFFER_4096:
1820 rctl |= E1000_RCTL_SZ_4096;
1821 break;
1822 case E1000_RXBUFFER_8192:
1823 rctl |= E1000_RCTL_SZ_8192;
1824 break;
1825 case E1000_RXBUFFER_16384:
1826 rctl |= E1000_RCTL_SZ_16384;
1827 break;
1828 }
1829
1830 /* This is useful for sniffing bad packets. */
1831 if (adapter->netdev->features & NETIF_F_RXALL) {
1832 /* UPE and MPE will be handled by normal PROMISC logic
1833 * in e1000e_set_rx_mode
1834 */
1835 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1838
1839 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840 E1000_RCTL_DPF | /* Allow filtered pause */
1841 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843 * and that breaks VLANs.
1844 */
1845 }
1846
1847 ew32(RCTL, rctl);
1848 }
1849
1850 /**
1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852 * @adapter: board private structure
1853 *
1854 * Configure the Rx unit of the MAC after a reset.
1855 **/
1856 static void e1000_configure_rx(struct e1000_adapter *adapter)
1857 {
1858 u64 rdba;
1859 struct e1000_hw *hw = &adapter->hw;
1860 u32 rdlen, rctl, rxcsum;
1861
1862 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863 rdlen = adapter->rx_ring[0].count *
1864 sizeof(struct e1000_rx_desc);
1865 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1867 } else {
1868 rdlen = adapter->rx_ring[0].count *
1869 sizeof(struct e1000_rx_desc);
1870 adapter->clean_rx = e1000_clean_rx_irq;
1871 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872 }
1873
1874 /* disable receives while setting up the descriptors */
1875 rctl = er32(RCTL);
1876 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877
1878 /* set the Receive Delay Timer Register */
1879 ew32(RDTR, adapter->rx_int_delay);
1880
1881 if (hw->mac_type >= e1000_82540) {
1882 ew32(RADV, adapter->rx_abs_int_delay);
1883 if (adapter->itr_setting != 0)
1884 ew32(ITR, 1000000000 / (adapter->itr * 256));
1885 }
1886
1887 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1888 * the Base and Length of the Rx Descriptor Ring
1889 */
1890 switch (adapter->num_rx_queues) {
1891 case 1:
1892 default:
1893 rdba = adapter->rx_ring[0].dma;
1894 ew32(RDLEN, rdlen);
1895 ew32(RDBAH, (rdba >> 32));
1896 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1897 ew32(RDT, 0);
1898 ew32(RDH, 0);
1899 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900 E1000_RDH : E1000_82542_RDH);
1901 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902 E1000_RDT : E1000_82542_RDT);
1903 break;
1904 }
1905
1906 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907 if (hw->mac_type >= e1000_82543) {
1908 rxcsum = er32(RXCSUM);
1909 if (adapter->rx_csum)
1910 rxcsum |= E1000_RXCSUM_TUOFL;
1911 else
1912 /* don't need to clear IPPCSE as it defaults to 0 */
1913 rxcsum &= ~E1000_RXCSUM_TUOFL;
1914 ew32(RXCSUM, rxcsum);
1915 }
1916
1917 /* Enable Receives */
1918 ew32(RCTL, rctl | E1000_RCTL_EN);
1919 }
1920
1921 /**
1922 * e1000_free_tx_resources - Free Tx Resources per Queue
1923 * @adapter: board private structure
1924 * @tx_ring: Tx descriptor ring for a specific queue
1925 *
1926 * Free all transmit software resources
1927 **/
1928 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929 struct e1000_tx_ring *tx_ring)
1930 {
1931 struct pci_dev *pdev = adapter->pdev;
1932
1933 e1000_clean_tx_ring(adapter, tx_ring);
1934
1935 vfree(tx_ring->buffer_info);
1936 tx_ring->buffer_info = NULL;
1937
1938 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939 tx_ring->dma);
1940
1941 tx_ring->desc = NULL;
1942 }
1943
1944 /**
1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946 * @adapter: board private structure
1947 *
1948 * Free all transmit software resources
1949 **/
1950 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1951 {
1952 int i;
1953
1954 for (i = 0; i < adapter->num_tx_queues; i++)
1955 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1956 }
1957
1958 static void
1959 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960 struct e1000_tx_buffer *buffer_info)
1961 {
1962 if (buffer_info->dma) {
1963 if (buffer_info->mapped_as_page)
1964 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965 buffer_info->length, DMA_TO_DEVICE);
1966 else
1967 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1968 buffer_info->length,
1969 DMA_TO_DEVICE);
1970 buffer_info->dma = 0;
1971 }
1972 if (buffer_info->skb) {
1973 dev_kfree_skb_any(buffer_info->skb);
1974 buffer_info->skb = NULL;
1975 }
1976 buffer_info->time_stamp = 0;
1977 /* buffer_info must be completely set up in the transmit path */
1978 }
1979
1980 /**
1981 * e1000_clean_tx_ring - Free Tx Buffers
1982 * @adapter: board private structure
1983 * @tx_ring: ring to be cleaned
1984 **/
1985 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1986 struct e1000_tx_ring *tx_ring)
1987 {
1988 struct e1000_hw *hw = &adapter->hw;
1989 struct e1000_tx_buffer *buffer_info;
1990 unsigned long size;
1991 unsigned int i;
1992
1993 /* Free all the Tx ring sk_buffs */
1994
1995 for (i = 0; i < tx_ring->count; i++) {
1996 buffer_info = &tx_ring->buffer_info[i];
1997 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1998 }
1999
2000 netdev_reset_queue(adapter->netdev);
2001 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2002 memset(tx_ring->buffer_info, 0, size);
2003
2004 /* Zero out the descriptor ring */
2005
2006 memset(tx_ring->desc, 0, tx_ring->size);
2007
2008 tx_ring->next_to_use = 0;
2009 tx_ring->next_to_clean = 0;
2010 tx_ring->last_tx_tso = false;
2011
2012 writel(0, hw->hw_addr + tx_ring->tdh);
2013 writel(0, hw->hw_addr + tx_ring->tdt);
2014 }
2015
2016 /**
2017 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018 * @adapter: board private structure
2019 **/
2020 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2021 {
2022 int i;
2023
2024 for (i = 0; i < adapter->num_tx_queues; i++)
2025 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2026 }
2027
2028 /**
2029 * e1000_free_rx_resources - Free Rx Resources
2030 * @adapter: board private structure
2031 * @rx_ring: ring to clean the resources from
2032 *
2033 * Free all receive software resources
2034 **/
2035 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2036 struct e1000_rx_ring *rx_ring)
2037 {
2038 struct pci_dev *pdev = adapter->pdev;
2039
2040 e1000_clean_rx_ring(adapter, rx_ring);
2041
2042 vfree(rx_ring->buffer_info);
2043 rx_ring->buffer_info = NULL;
2044
2045 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2046 rx_ring->dma);
2047
2048 rx_ring->desc = NULL;
2049 }
2050
2051 /**
2052 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2053 * @adapter: board private structure
2054 *
2055 * Free all receive software resources
2056 **/
2057 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2058 {
2059 int i;
2060
2061 for (i = 0; i < adapter->num_rx_queues; i++)
2062 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2063 }
2064
2065 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2066 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2067 {
2068 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2069 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2070 }
2071
2072 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2073 {
2074 unsigned int len = e1000_frag_len(a);
2075 u8 *data = netdev_alloc_frag(len);
2076
2077 if (likely(data))
2078 data += E1000_HEADROOM;
2079 return data;
2080 }
2081
2082 /**
2083 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2084 * @adapter: board private structure
2085 * @rx_ring: ring to free buffers from
2086 **/
2087 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2088 struct e1000_rx_ring *rx_ring)
2089 {
2090 struct e1000_hw *hw = &adapter->hw;
2091 struct e1000_rx_buffer *buffer_info;
2092 struct pci_dev *pdev = adapter->pdev;
2093 unsigned long size;
2094 unsigned int i;
2095
2096 /* Free all the Rx netfrags */
2097 for (i = 0; i < rx_ring->count; i++) {
2098 buffer_info = &rx_ring->buffer_info[i];
2099 if (adapter->clean_rx == e1000_clean_rx_irq) {
2100 if (buffer_info->dma)
2101 dma_unmap_single(&pdev->dev, buffer_info->dma,
2102 adapter->rx_buffer_len,
2103 DMA_FROM_DEVICE);
2104 if (buffer_info->rxbuf.data) {
2105 skb_free_frag(buffer_info->rxbuf.data);
2106 buffer_info->rxbuf.data = NULL;
2107 }
2108 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2109 if (buffer_info->dma)
2110 dma_unmap_page(&pdev->dev, buffer_info->dma,
2111 adapter->rx_buffer_len,
2112 DMA_FROM_DEVICE);
2113 if (buffer_info->rxbuf.page) {
2114 put_page(buffer_info->rxbuf.page);
2115 buffer_info->rxbuf.page = NULL;
2116 }
2117 }
2118
2119 buffer_info->dma = 0;
2120 }
2121
2122 /* there also may be some cached data from a chained receive */
2123 napi_free_frags(&adapter->napi);
2124 rx_ring->rx_skb_top = NULL;
2125
2126 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2127 memset(rx_ring->buffer_info, 0, size);
2128
2129 /* Zero out the descriptor ring */
2130 memset(rx_ring->desc, 0, rx_ring->size);
2131
2132 rx_ring->next_to_clean = 0;
2133 rx_ring->next_to_use = 0;
2134
2135 writel(0, hw->hw_addr + rx_ring->rdh);
2136 writel(0, hw->hw_addr + rx_ring->rdt);
2137 }
2138
2139 /**
2140 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2141 * @adapter: board private structure
2142 **/
2143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2144 {
2145 int i;
2146
2147 for (i = 0; i < adapter->num_rx_queues; i++)
2148 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2149 }
2150
2151 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2152 * and memory write and invalidate disabled for certain operations
2153 */
2154 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2155 {
2156 struct e1000_hw *hw = &adapter->hw;
2157 struct net_device *netdev = adapter->netdev;
2158 u32 rctl;
2159
2160 e1000_pci_clear_mwi(hw);
2161
2162 rctl = er32(RCTL);
2163 rctl |= E1000_RCTL_RST;
2164 ew32(RCTL, rctl);
2165 E1000_WRITE_FLUSH();
2166 mdelay(5);
2167
2168 if (netif_running(netdev))
2169 e1000_clean_all_rx_rings(adapter);
2170 }
2171
2172 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2173 {
2174 struct e1000_hw *hw = &adapter->hw;
2175 struct net_device *netdev = adapter->netdev;
2176 u32 rctl;
2177
2178 rctl = er32(RCTL);
2179 rctl &= ~E1000_RCTL_RST;
2180 ew32(RCTL, rctl);
2181 E1000_WRITE_FLUSH();
2182 mdelay(5);
2183
2184 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2185 e1000_pci_set_mwi(hw);
2186
2187 if (netif_running(netdev)) {
2188 /* No need to loop, because 82542 supports only 1 queue */
2189 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2190 e1000_configure_rx(adapter);
2191 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2192 }
2193 }
2194
2195 /**
2196 * e1000_set_mac - Change the Ethernet Address of the NIC
2197 * @netdev: network interface device structure
2198 * @p: pointer to an address structure
2199 *
2200 * Returns 0 on success, negative on failure
2201 **/
2202 static int e1000_set_mac(struct net_device *netdev, void *p)
2203 {
2204 struct e1000_adapter *adapter = netdev_priv(netdev);
2205 struct e1000_hw *hw = &adapter->hw;
2206 struct sockaddr *addr = p;
2207
2208 if (!is_valid_ether_addr(addr->sa_data))
2209 return -EADDRNOTAVAIL;
2210
2211 /* 82542 2.0 needs to be in reset to write receive address registers */
2212
2213 if (hw->mac_type == e1000_82542_rev2_0)
2214 e1000_enter_82542_rst(adapter);
2215
2216 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2217 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2218
2219 e1000_rar_set(hw, hw->mac_addr, 0);
2220
2221 if (hw->mac_type == e1000_82542_rev2_0)
2222 e1000_leave_82542_rst(adapter);
2223
2224 return 0;
2225 }
2226
2227 /**
2228 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2229 * @netdev: network interface device structure
2230 *
2231 * The set_rx_mode entry point is called whenever the unicast or multicast
2232 * address lists or the network interface flags are updated. This routine is
2233 * responsible for configuring the hardware for proper unicast, multicast,
2234 * promiscuous mode, and all-multi behavior.
2235 **/
2236 static void e1000_set_rx_mode(struct net_device *netdev)
2237 {
2238 struct e1000_adapter *adapter = netdev_priv(netdev);
2239 struct e1000_hw *hw = &adapter->hw;
2240 struct netdev_hw_addr *ha;
2241 bool use_uc = false;
2242 u32 rctl;
2243 u32 hash_value;
2244 int i, rar_entries = E1000_RAR_ENTRIES;
2245 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2246 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2247
2248 if (!mcarray)
2249 return;
2250
2251 /* Check for Promiscuous and All Multicast modes */
2252
2253 rctl = er32(RCTL);
2254
2255 if (netdev->flags & IFF_PROMISC) {
2256 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2257 rctl &= ~E1000_RCTL_VFE;
2258 } else {
2259 if (netdev->flags & IFF_ALLMULTI)
2260 rctl |= E1000_RCTL_MPE;
2261 else
2262 rctl &= ~E1000_RCTL_MPE;
2263 /* Enable VLAN filter if there is a VLAN */
2264 if (e1000_vlan_used(adapter))
2265 rctl |= E1000_RCTL_VFE;
2266 }
2267
2268 if (netdev_uc_count(netdev) > rar_entries - 1) {
2269 rctl |= E1000_RCTL_UPE;
2270 } else if (!(netdev->flags & IFF_PROMISC)) {
2271 rctl &= ~E1000_RCTL_UPE;
2272 use_uc = true;
2273 }
2274
2275 ew32(RCTL, rctl);
2276
2277 /* 82542 2.0 needs to be in reset to write receive address registers */
2278
2279 if (hw->mac_type == e1000_82542_rev2_0)
2280 e1000_enter_82542_rst(adapter);
2281
2282 /* load the first 14 addresses into the exact filters 1-14. Unicast
2283 * addresses take precedence to avoid disabling unicast filtering
2284 * when possible.
2285 *
2286 * RAR 0 is used for the station MAC address
2287 * if there are not 14 addresses, go ahead and clear the filters
2288 */
2289 i = 1;
2290 if (use_uc)
2291 netdev_for_each_uc_addr(ha, netdev) {
2292 if (i == rar_entries)
2293 break;
2294 e1000_rar_set(hw, ha->addr, i++);
2295 }
2296
2297 netdev_for_each_mc_addr(ha, netdev) {
2298 if (i == rar_entries) {
2299 /* load any remaining addresses into the hash table */
2300 u32 hash_reg, hash_bit, mta;
2301 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2302 hash_reg = (hash_value >> 5) & 0x7F;
2303 hash_bit = hash_value & 0x1F;
2304 mta = (1 << hash_bit);
2305 mcarray[hash_reg] |= mta;
2306 } else {
2307 e1000_rar_set(hw, ha->addr, i++);
2308 }
2309 }
2310
2311 for (; i < rar_entries; i++) {
2312 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2313 E1000_WRITE_FLUSH();
2314 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2315 E1000_WRITE_FLUSH();
2316 }
2317
2318 /* write the hash table completely, write from bottom to avoid
2319 * both stupid write combining chipsets, and flushing each write
2320 */
2321 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2322 /* If we are on an 82544 has an errata where writing odd
2323 * offsets overwrites the previous even offset, but writing
2324 * backwards over the range solves the issue by always
2325 * writing the odd offset first
2326 */
2327 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2328 }
2329 E1000_WRITE_FLUSH();
2330
2331 if (hw->mac_type == e1000_82542_rev2_0)
2332 e1000_leave_82542_rst(adapter);
2333
2334 kfree(mcarray);
2335 }
2336
2337 /**
2338 * e1000_update_phy_info_task - get phy info
2339 * @work: work struct contained inside adapter struct
2340 *
2341 * Need to wait a few seconds after link up to get diagnostic information from
2342 * the phy
2343 */
2344 static void e1000_update_phy_info_task(struct work_struct *work)
2345 {
2346 struct e1000_adapter *adapter = container_of(work,
2347 struct e1000_adapter,
2348 phy_info_task.work);
2349
2350 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2351 }
2352
2353 /**
2354 * e1000_82547_tx_fifo_stall_task - task to complete work
2355 * @work: work struct contained inside adapter struct
2356 **/
2357 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2358 {
2359 struct e1000_adapter *adapter = container_of(work,
2360 struct e1000_adapter,
2361 fifo_stall_task.work);
2362 struct e1000_hw *hw = &adapter->hw;
2363 struct net_device *netdev = adapter->netdev;
2364 u32 tctl;
2365
2366 if (atomic_read(&adapter->tx_fifo_stall)) {
2367 if ((er32(TDT) == er32(TDH)) &&
2368 (er32(TDFT) == er32(TDFH)) &&
2369 (er32(TDFTS) == er32(TDFHS))) {
2370 tctl = er32(TCTL);
2371 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2372 ew32(TDFT, adapter->tx_head_addr);
2373 ew32(TDFH, adapter->tx_head_addr);
2374 ew32(TDFTS, adapter->tx_head_addr);
2375 ew32(TDFHS, adapter->tx_head_addr);
2376 ew32(TCTL, tctl);
2377 E1000_WRITE_FLUSH();
2378
2379 adapter->tx_fifo_head = 0;
2380 atomic_set(&adapter->tx_fifo_stall, 0);
2381 netif_wake_queue(netdev);
2382 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2383 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2384 }
2385 }
2386 }
2387
2388 bool e1000_has_link(struct e1000_adapter *adapter)
2389 {
2390 struct e1000_hw *hw = &adapter->hw;
2391 bool link_active = false;
2392
2393 /* get_link_status is set on LSC (link status) interrupt or rx
2394 * sequence error interrupt (except on intel ce4100).
2395 * get_link_status will stay false until the
2396 * e1000_check_for_link establishes link for copper adapters
2397 * ONLY
2398 */
2399 switch (hw->media_type) {
2400 case e1000_media_type_copper:
2401 if (hw->mac_type == e1000_ce4100)
2402 hw->get_link_status = 1;
2403 if (hw->get_link_status) {
2404 e1000_check_for_link(hw);
2405 link_active = !hw->get_link_status;
2406 } else {
2407 link_active = true;
2408 }
2409 break;
2410 case e1000_media_type_fiber:
2411 e1000_check_for_link(hw);
2412 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2413 break;
2414 case e1000_media_type_internal_serdes:
2415 e1000_check_for_link(hw);
2416 link_active = hw->serdes_has_link;
2417 break;
2418 default:
2419 break;
2420 }
2421
2422 return link_active;
2423 }
2424
2425 /**
2426 * e1000_watchdog - work function
2427 * @work: work struct contained inside adapter struct
2428 **/
2429 static void e1000_watchdog(struct work_struct *work)
2430 {
2431 struct e1000_adapter *adapter = container_of(work,
2432 struct e1000_adapter,
2433 watchdog_task.work);
2434 struct e1000_hw *hw = &adapter->hw;
2435 struct net_device *netdev = adapter->netdev;
2436 struct e1000_tx_ring *txdr = adapter->tx_ring;
2437 u32 link, tctl;
2438
2439 link = e1000_has_link(adapter);
2440 if ((netif_carrier_ok(netdev)) && link)
2441 goto link_up;
2442
2443 if (link) {
2444 if (!netif_carrier_ok(netdev)) {
2445 u32 ctrl;
2446 bool txb2b = true;
2447 /* update snapshot of PHY registers on LSC */
2448 e1000_get_speed_and_duplex(hw,
2449 &adapter->link_speed,
2450 &adapter->link_duplex);
2451
2452 ctrl = er32(CTRL);
2453 pr_info("%s NIC Link is Up %d Mbps %s, "
2454 "Flow Control: %s\n",
2455 netdev->name,
2456 adapter->link_speed,
2457 adapter->link_duplex == FULL_DUPLEX ?
2458 "Full Duplex" : "Half Duplex",
2459 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2460 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2461 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2462 E1000_CTRL_TFCE) ? "TX" : "None")));
2463
2464 /* adjust timeout factor according to speed/duplex */
2465 adapter->tx_timeout_factor = 1;
2466 switch (adapter->link_speed) {
2467 case SPEED_10:
2468 txb2b = false;
2469 adapter->tx_timeout_factor = 16;
2470 break;
2471 case SPEED_100:
2472 txb2b = false;
2473 /* maybe add some timeout factor ? */
2474 break;
2475 }
2476
2477 /* enable transmits in the hardware */
2478 tctl = er32(TCTL);
2479 tctl |= E1000_TCTL_EN;
2480 ew32(TCTL, tctl);
2481
2482 netif_carrier_on(netdev);
2483 if (!test_bit(__E1000_DOWN, &adapter->flags))
2484 schedule_delayed_work(&adapter->phy_info_task,
2485 2 * HZ);
2486 adapter->smartspeed = 0;
2487 }
2488 } else {
2489 if (netif_carrier_ok(netdev)) {
2490 adapter->link_speed = 0;
2491 adapter->link_duplex = 0;
2492 pr_info("%s NIC Link is Down\n",
2493 netdev->name);
2494 netif_carrier_off(netdev);
2495
2496 if (!test_bit(__E1000_DOWN, &adapter->flags))
2497 schedule_delayed_work(&adapter->phy_info_task,
2498 2 * HZ);
2499 }
2500
2501 e1000_smartspeed(adapter);
2502 }
2503
2504 link_up:
2505 e1000_update_stats(adapter);
2506
2507 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2508 adapter->tpt_old = adapter->stats.tpt;
2509 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2510 adapter->colc_old = adapter->stats.colc;
2511
2512 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2513 adapter->gorcl_old = adapter->stats.gorcl;
2514 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2515 adapter->gotcl_old = adapter->stats.gotcl;
2516
2517 e1000_update_adaptive(hw);
2518
2519 if (!netif_carrier_ok(netdev)) {
2520 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2521 /* We've lost link, so the controller stops DMA,
2522 * but we've got queued Tx work that's never going
2523 * to get done, so reset controller to flush Tx.
2524 * (Do the reset outside of interrupt context).
2525 */
2526 adapter->tx_timeout_count++;
2527 schedule_work(&adapter->reset_task);
2528 /* exit immediately since reset is imminent */
2529 return;
2530 }
2531 }
2532
2533 /* Simple mode for Interrupt Throttle Rate (ITR) */
2534 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2535 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2536 * Total asymmetrical Tx or Rx gets ITR=8000;
2537 * everyone else is between 2000-8000.
2538 */
2539 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2540 u32 dif = (adapter->gotcl > adapter->gorcl ?
2541 adapter->gotcl - adapter->gorcl :
2542 adapter->gorcl - adapter->gotcl) / 10000;
2543 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2544
2545 ew32(ITR, 1000000000 / (itr * 256));
2546 }
2547
2548 /* Cause software interrupt to ensure rx ring is cleaned */
2549 ew32(ICS, E1000_ICS_RXDMT0);
2550
2551 /* Force detection of hung controller every watchdog period */
2552 adapter->detect_tx_hung = true;
2553
2554 /* Reschedule the task */
2555 if (!test_bit(__E1000_DOWN, &adapter->flags))
2556 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2557 }
2558
2559 enum latency_range {
2560 lowest_latency = 0,
2561 low_latency = 1,
2562 bulk_latency = 2,
2563 latency_invalid = 255
2564 };
2565
2566 /**
2567 * e1000_update_itr - update the dynamic ITR value based on statistics
2568 * @adapter: pointer to adapter
2569 * @itr_setting: current adapter->itr
2570 * @packets: the number of packets during this measurement interval
2571 * @bytes: the number of bytes during this measurement interval
2572 *
2573 * Stores a new ITR value based on packets and byte
2574 * counts during the last interrupt. The advantage of per interrupt
2575 * computation is faster updates and more accurate ITR for the current
2576 * traffic pattern. Constants in this function were computed
2577 * based on theoretical maximum wire speed and thresholds were set based
2578 * on testing data as well as attempting to minimize response time
2579 * while increasing bulk throughput.
2580 * this functionality is controlled by the InterruptThrottleRate module
2581 * parameter (see e1000_param.c)
2582 **/
2583 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2584 u16 itr_setting, int packets, int bytes)
2585 {
2586 unsigned int retval = itr_setting;
2587 struct e1000_hw *hw = &adapter->hw;
2588
2589 if (unlikely(hw->mac_type < e1000_82540))
2590 goto update_itr_done;
2591
2592 if (packets == 0)
2593 goto update_itr_done;
2594
2595 switch (itr_setting) {
2596 case lowest_latency:
2597 /* jumbo frames get bulk treatment*/
2598 if (bytes/packets > 8000)
2599 retval = bulk_latency;
2600 else if ((packets < 5) && (bytes > 512))
2601 retval = low_latency;
2602 break;
2603 case low_latency: /* 50 usec aka 20000 ints/s */
2604 if (bytes > 10000) {
2605 /* jumbo frames need bulk latency setting */
2606 if (bytes/packets > 8000)
2607 retval = bulk_latency;
2608 else if ((packets < 10) || ((bytes/packets) > 1200))
2609 retval = bulk_latency;
2610 else if ((packets > 35))
2611 retval = lowest_latency;
2612 } else if (bytes/packets > 2000)
2613 retval = bulk_latency;
2614 else if (packets <= 2 && bytes < 512)
2615 retval = lowest_latency;
2616 break;
2617 case bulk_latency: /* 250 usec aka 4000 ints/s */
2618 if (bytes > 25000) {
2619 if (packets > 35)
2620 retval = low_latency;
2621 } else if (bytes < 6000) {
2622 retval = low_latency;
2623 }
2624 break;
2625 }
2626
2627 update_itr_done:
2628 return retval;
2629 }
2630
2631 static void e1000_set_itr(struct e1000_adapter *adapter)
2632 {
2633 struct e1000_hw *hw = &adapter->hw;
2634 u16 current_itr;
2635 u32 new_itr = adapter->itr;
2636
2637 if (unlikely(hw->mac_type < e1000_82540))
2638 return;
2639
2640 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641 if (unlikely(adapter->link_speed != SPEED_1000)) {
2642 current_itr = 0;
2643 new_itr = 4000;
2644 goto set_itr_now;
2645 }
2646
2647 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2648 adapter->total_tx_packets,
2649 adapter->total_tx_bytes);
2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2652 adapter->tx_itr = low_latency;
2653
2654 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2655 adapter->total_rx_packets,
2656 adapter->total_rx_bytes);
2657 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2658 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2659 adapter->rx_itr = low_latency;
2660
2661 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2662
2663 switch (current_itr) {
2664 /* counts and packets in update_itr are dependent on these numbers */
2665 case lowest_latency:
2666 new_itr = 70000;
2667 break;
2668 case low_latency:
2669 new_itr = 20000; /* aka hwitr = ~200 */
2670 break;
2671 case bulk_latency:
2672 new_itr = 4000;
2673 break;
2674 default:
2675 break;
2676 }
2677
2678 set_itr_now:
2679 if (new_itr != adapter->itr) {
2680 /* this attempts to bias the interrupt rate towards Bulk
2681 * by adding intermediate steps when interrupt rate is
2682 * increasing
2683 */
2684 new_itr = new_itr > adapter->itr ?
2685 min(adapter->itr + (new_itr >> 2), new_itr) :
2686 new_itr;
2687 adapter->itr = new_itr;
2688 ew32(ITR, 1000000000 / (new_itr * 256));
2689 }
2690 }
2691
2692 #define E1000_TX_FLAGS_CSUM 0x00000001
2693 #define E1000_TX_FLAGS_VLAN 0x00000002
2694 #define E1000_TX_FLAGS_TSO 0x00000004
2695 #define E1000_TX_FLAGS_IPV4 0x00000008
2696 #define E1000_TX_FLAGS_NO_FCS 0x00000010
2697 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2698 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2699
2700 static int e1000_tso(struct e1000_adapter *adapter,
2701 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2702 __be16 protocol)
2703 {
2704 struct e1000_context_desc *context_desc;
2705 struct e1000_tx_buffer *buffer_info;
2706 unsigned int i;
2707 u32 cmd_length = 0;
2708 u16 ipcse = 0, tucse, mss;
2709 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2710
2711 if (skb_is_gso(skb)) {
2712 int err;
2713
2714 err = skb_cow_head(skb, 0);
2715 if (err < 0)
2716 return err;
2717
2718 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2719 mss = skb_shinfo(skb)->gso_size;
2720 if (protocol == htons(ETH_P_IP)) {
2721 struct iphdr *iph = ip_hdr(skb);
2722 iph->tot_len = 0;
2723 iph->check = 0;
2724 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2725 iph->daddr, 0,
2726 IPPROTO_TCP,
2727 0);
2728 cmd_length = E1000_TXD_CMD_IP;
2729 ipcse = skb_transport_offset(skb) - 1;
2730 } else if (skb_is_gso_v6(skb)) {
2731 ipv6_hdr(skb)->payload_len = 0;
2732 tcp_hdr(skb)->check =
2733 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2734 &ipv6_hdr(skb)->daddr,
2735 0, IPPROTO_TCP, 0);
2736 ipcse = 0;
2737 }
2738 ipcss = skb_network_offset(skb);
2739 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2740 tucss = skb_transport_offset(skb);
2741 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2742 tucse = 0;
2743
2744 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2745 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2746
2747 i = tx_ring->next_to_use;
2748 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2749 buffer_info = &tx_ring->buffer_info[i];
2750
2751 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2752 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2753 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2754 context_desc->upper_setup.tcp_fields.tucss = tucss;
2755 context_desc->upper_setup.tcp_fields.tucso = tucso;
2756 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2757 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2758 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2759 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2760
2761 buffer_info->time_stamp = jiffies;
2762 buffer_info->next_to_watch = i;
2763
2764 if (++i == tx_ring->count) i = 0;
2765 tx_ring->next_to_use = i;
2766
2767 return true;
2768 }
2769 return false;
2770 }
2771
2772 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2773 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2774 __be16 protocol)
2775 {
2776 struct e1000_context_desc *context_desc;
2777 struct e1000_tx_buffer *buffer_info;
2778 unsigned int i;
2779 u8 css;
2780 u32 cmd_len = E1000_TXD_CMD_DEXT;
2781
2782 if (skb->ip_summed != CHECKSUM_PARTIAL)
2783 return false;
2784
2785 switch (protocol) {
2786 case cpu_to_be16(ETH_P_IP):
2787 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2788 cmd_len |= E1000_TXD_CMD_TCP;
2789 break;
2790 case cpu_to_be16(ETH_P_IPV6):
2791 /* XXX not handling all IPV6 headers */
2792 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2793 cmd_len |= E1000_TXD_CMD_TCP;
2794 break;
2795 default:
2796 if (unlikely(net_ratelimit()))
2797 e_warn(drv, "checksum_partial proto=%x!\n",
2798 skb->protocol);
2799 break;
2800 }
2801
2802 css = skb_checksum_start_offset(skb);
2803
2804 i = tx_ring->next_to_use;
2805 buffer_info = &tx_ring->buffer_info[i];
2806 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2807
2808 context_desc->lower_setup.ip_config = 0;
2809 context_desc->upper_setup.tcp_fields.tucss = css;
2810 context_desc->upper_setup.tcp_fields.tucso =
2811 css + skb->csum_offset;
2812 context_desc->upper_setup.tcp_fields.tucse = 0;
2813 context_desc->tcp_seg_setup.data = 0;
2814 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2815
2816 buffer_info->time_stamp = jiffies;
2817 buffer_info->next_to_watch = i;
2818
2819 if (unlikely(++i == tx_ring->count)) i = 0;
2820 tx_ring->next_to_use = i;
2821
2822 return true;
2823 }
2824
2825 #define E1000_MAX_TXD_PWR 12
2826 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2827
2828 static int e1000_tx_map(struct e1000_adapter *adapter,
2829 struct e1000_tx_ring *tx_ring,
2830 struct sk_buff *skb, unsigned int first,
2831 unsigned int max_per_txd, unsigned int nr_frags,
2832 unsigned int mss)
2833 {
2834 struct e1000_hw *hw = &adapter->hw;
2835 struct pci_dev *pdev = adapter->pdev;
2836 struct e1000_tx_buffer *buffer_info;
2837 unsigned int len = skb_headlen(skb);
2838 unsigned int offset = 0, size, count = 0, i;
2839 unsigned int f, bytecount, segs;
2840
2841 i = tx_ring->next_to_use;
2842
2843 while (len) {
2844 buffer_info = &tx_ring->buffer_info[i];
2845 size = min(len, max_per_txd);
2846 /* Workaround for Controller erratum --
2847 * descriptor for non-tso packet in a linear SKB that follows a
2848 * tso gets written back prematurely before the data is fully
2849 * DMA'd to the controller
2850 */
2851 if (!skb->data_len && tx_ring->last_tx_tso &&
2852 !skb_is_gso(skb)) {
2853 tx_ring->last_tx_tso = false;
2854 size -= 4;
2855 }
2856
2857 /* Workaround for premature desc write-backs
2858 * in TSO mode. Append 4-byte sentinel desc
2859 */
2860 if (unlikely(mss && !nr_frags && size == len && size > 8))
2861 size -= 4;
2862 /* work-around for errata 10 and it applies
2863 * to all controllers in PCI-X mode
2864 * The fix is to make sure that the first descriptor of a
2865 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2866 */
2867 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2868 (size > 2015) && count == 0))
2869 size = 2015;
2870
2871 /* Workaround for potential 82544 hang in PCI-X. Avoid
2872 * terminating buffers within evenly-aligned dwords.
2873 */
2874 if (unlikely(adapter->pcix_82544 &&
2875 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2876 size > 4))
2877 size -= 4;
2878
2879 buffer_info->length = size;
2880 /* set time_stamp *before* dma to help avoid a possible race */
2881 buffer_info->time_stamp = jiffies;
2882 buffer_info->mapped_as_page = false;
2883 buffer_info->dma = dma_map_single(&pdev->dev,
2884 skb->data + offset,
2885 size, DMA_TO_DEVICE);
2886 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2887 goto dma_error;
2888 buffer_info->next_to_watch = i;
2889
2890 len -= size;
2891 offset += size;
2892 count++;
2893 if (len) {
2894 i++;
2895 if (unlikely(i == tx_ring->count))
2896 i = 0;
2897 }
2898 }
2899
2900 for (f = 0; f < nr_frags; f++) {
2901 const struct skb_frag_struct *frag;
2902
2903 frag = &skb_shinfo(skb)->frags[f];
2904 len = skb_frag_size(frag);
2905 offset = 0;
2906
2907 while (len) {
2908 unsigned long bufend;
2909 i++;
2910 if (unlikely(i == tx_ring->count))
2911 i = 0;
2912
2913 buffer_info = &tx_ring->buffer_info[i];
2914 size = min(len, max_per_txd);
2915 /* Workaround for premature desc write-backs
2916 * in TSO mode. Append 4-byte sentinel desc
2917 */
2918 if (unlikely(mss && f == (nr_frags-1) &&
2919 size == len && size > 8))
2920 size -= 4;
2921 /* Workaround for potential 82544 hang in PCI-X.
2922 * Avoid terminating buffers within evenly-aligned
2923 * dwords.
2924 */
2925 bufend = (unsigned long)
2926 page_to_phys(skb_frag_page(frag));
2927 bufend += offset + size - 1;
2928 if (unlikely(adapter->pcix_82544 &&
2929 !(bufend & 4) &&
2930 size > 4))
2931 size -= 4;
2932
2933 buffer_info->length = size;
2934 buffer_info->time_stamp = jiffies;
2935 buffer_info->mapped_as_page = true;
2936 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2937 offset, size, DMA_TO_DEVICE);
2938 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2939 goto dma_error;
2940 buffer_info->next_to_watch = i;
2941
2942 len -= size;
2943 offset += size;
2944 count++;
2945 }
2946 }
2947
2948 segs = skb_shinfo(skb)->gso_segs ?: 1;
2949 /* multiply data chunks by size of headers */
2950 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2951
2952 tx_ring->buffer_info[i].skb = skb;
2953 tx_ring->buffer_info[i].segs = segs;
2954 tx_ring->buffer_info[i].bytecount = bytecount;
2955 tx_ring->buffer_info[first].next_to_watch = i;
2956
2957 return count;
2958
2959 dma_error:
2960 dev_err(&pdev->dev, "TX DMA map failed\n");
2961 buffer_info->dma = 0;
2962 if (count)
2963 count--;
2964
2965 while (count--) {
2966 if (i==0)
2967 i += tx_ring->count;
2968 i--;
2969 buffer_info = &tx_ring->buffer_info[i];
2970 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2971 }
2972
2973 return 0;
2974 }
2975
2976 static void e1000_tx_queue(struct e1000_adapter *adapter,
2977 struct e1000_tx_ring *tx_ring, int tx_flags,
2978 int count)
2979 {
2980 struct e1000_tx_desc *tx_desc = NULL;
2981 struct e1000_tx_buffer *buffer_info;
2982 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2983 unsigned int i;
2984
2985 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2986 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2987 E1000_TXD_CMD_TSE;
2988 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2989
2990 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2991 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2992 }
2993
2994 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2995 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2996 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2997 }
2998
2999 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3000 txd_lower |= E1000_TXD_CMD_VLE;
3001 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3002 }
3003
3004 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3005 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3006
3007 i = tx_ring->next_to_use;
3008
3009 while (count--) {
3010 buffer_info = &tx_ring->buffer_info[i];
3011 tx_desc = E1000_TX_DESC(*tx_ring, i);
3012 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3013 tx_desc->lower.data =
3014 cpu_to_le32(txd_lower | buffer_info->length);
3015 tx_desc->upper.data = cpu_to_le32(txd_upper);
3016 if (unlikely(++i == tx_ring->count)) i = 0;
3017 }
3018
3019 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3020
3021 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3022 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3023 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3024
3025 /* Force memory writes to complete before letting h/w
3026 * know there are new descriptors to fetch. (Only
3027 * applicable for weak-ordered memory model archs,
3028 * such as IA-64).
3029 */
3030 wmb();
3031
3032 tx_ring->next_to_use = i;
3033 }
3034
3035 /* 82547 workaround to avoid controller hang in half-duplex environment.
3036 * The workaround is to avoid queuing a large packet that would span
3037 * the internal Tx FIFO ring boundary by notifying the stack to resend
3038 * the packet at a later time. This gives the Tx FIFO an opportunity to
3039 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3040 * to the beginning of the Tx FIFO.
3041 */
3042
3043 #define E1000_FIFO_HDR 0x10
3044 #define E1000_82547_PAD_LEN 0x3E0
3045
3046 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3047 struct sk_buff *skb)
3048 {
3049 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3050 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3051
3052 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3053
3054 if (adapter->link_duplex != HALF_DUPLEX)
3055 goto no_fifo_stall_required;
3056
3057 if (atomic_read(&adapter->tx_fifo_stall))
3058 return 1;
3059
3060 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3061 atomic_set(&adapter->tx_fifo_stall, 1);
3062 return 1;
3063 }
3064
3065 no_fifo_stall_required:
3066 adapter->tx_fifo_head += skb_fifo_len;
3067 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3068 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3069 return 0;
3070 }
3071
3072 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3073 {
3074 struct e1000_adapter *adapter = netdev_priv(netdev);
3075 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3076
3077 netif_stop_queue(netdev);
3078 /* Herbert's original patch had:
3079 * smp_mb__after_netif_stop_queue();
3080 * but since that doesn't exist yet, just open code it.
3081 */
3082 smp_mb();
3083
3084 /* We need to check again in a case another CPU has just
3085 * made room available.
3086 */
3087 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3088 return -EBUSY;
3089
3090 /* A reprieve! */
3091 netif_start_queue(netdev);
3092 ++adapter->restart_queue;
3093 return 0;
3094 }
3095
3096 static int e1000_maybe_stop_tx(struct net_device *netdev,
3097 struct e1000_tx_ring *tx_ring, int size)
3098 {
3099 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3100 return 0;
3101 return __e1000_maybe_stop_tx(netdev, size);
3102 }
3103
3104 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3105 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3106 struct net_device *netdev)
3107 {
3108 struct e1000_adapter *adapter = netdev_priv(netdev);
3109 struct e1000_hw *hw = &adapter->hw;
3110 struct e1000_tx_ring *tx_ring;
3111 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3112 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3113 unsigned int tx_flags = 0;
3114 unsigned int len = skb_headlen(skb);
3115 unsigned int nr_frags;
3116 unsigned int mss;
3117 int count = 0;
3118 int tso;
3119 unsigned int f;
3120 __be16 protocol = vlan_get_protocol(skb);
3121
3122 /* This goes back to the question of how to logically map a Tx queue
3123 * to a flow. Right now, performance is impacted slightly negatively
3124 * if using multiple Tx queues. If the stack breaks away from a
3125 * single qdisc implementation, we can look at this again.
3126 */
3127 tx_ring = adapter->tx_ring;
3128
3129 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3130 * packets may get corrupted during padding by HW.
3131 * To WA this issue, pad all small packets manually.
3132 */
3133 if (eth_skb_pad(skb))
3134 return NETDEV_TX_OK;
3135
3136 mss = skb_shinfo(skb)->gso_size;
3137 /* The controller does a simple calculation to
3138 * make sure there is enough room in the FIFO before
3139 * initiating the DMA for each buffer. The calc is:
3140 * 4 = ceil(buffer len/mss). To make sure we don't
3141 * overrun the FIFO, adjust the max buffer len if mss
3142 * drops.
3143 */
3144 if (mss) {
3145 u8 hdr_len;
3146 max_per_txd = min(mss << 2, max_per_txd);
3147 max_txd_pwr = fls(max_per_txd) - 1;
3148
3149 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3150 if (skb->data_len && hdr_len == len) {
3151 switch (hw->mac_type) {
3152 unsigned int pull_size;
3153 case e1000_82544:
3154 /* Make sure we have room to chop off 4 bytes,
3155 * and that the end alignment will work out to
3156 * this hardware's requirements
3157 * NOTE: this is a TSO only workaround
3158 * if end byte alignment not correct move us
3159 * into the next dword
3160 */
3161 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3162 & 4)
3163 break;
3164 /* fall through */
3165 pull_size = min((unsigned int)4, skb->data_len);
3166 if (!__pskb_pull_tail(skb, pull_size)) {
3167 e_err(drv, "__pskb_pull_tail "
3168 "failed.\n");
3169 dev_kfree_skb_any(skb);
3170 return NETDEV_TX_OK;
3171 }
3172 len = skb_headlen(skb);
3173 break;
3174 default:
3175 /* do nothing */
3176 break;
3177 }
3178 }
3179 }
3180
3181 /* reserve a descriptor for the offload context */
3182 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3183 count++;
3184 count++;
3185
3186 /* Controller Erratum workaround */
3187 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3188 count++;
3189
3190 count += TXD_USE_COUNT(len, max_txd_pwr);
3191
3192 if (adapter->pcix_82544)
3193 count++;
3194
3195 /* work-around for errata 10 and it applies to all controllers
3196 * in PCI-X mode, so add one more descriptor to the count
3197 */
3198 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3199 (len > 2015)))
3200 count++;
3201
3202 nr_frags = skb_shinfo(skb)->nr_frags;
3203 for (f = 0; f < nr_frags; f++)
3204 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3205 max_txd_pwr);
3206 if (adapter->pcix_82544)
3207 count += nr_frags;
3208
3209 /* need: count + 2 desc gap to keep tail from touching
3210 * head, otherwise try next time
3211 */
3212 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3213 return NETDEV_TX_BUSY;
3214
3215 if (unlikely((hw->mac_type == e1000_82547) &&
3216 (e1000_82547_fifo_workaround(adapter, skb)))) {
3217 netif_stop_queue(netdev);
3218 if (!test_bit(__E1000_DOWN, &adapter->flags))
3219 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3220 return NETDEV_TX_BUSY;
3221 }
3222
3223 if (skb_vlan_tag_present(skb)) {
3224 tx_flags |= E1000_TX_FLAGS_VLAN;
3225 tx_flags |= (skb_vlan_tag_get(skb) <<
3226 E1000_TX_FLAGS_VLAN_SHIFT);
3227 }
3228
3229 first = tx_ring->next_to_use;
3230
3231 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3232 if (tso < 0) {
3233 dev_kfree_skb_any(skb);
3234 return NETDEV_TX_OK;
3235 }
3236
3237 if (likely(tso)) {
3238 if (likely(hw->mac_type != e1000_82544))
3239 tx_ring->last_tx_tso = true;
3240 tx_flags |= E1000_TX_FLAGS_TSO;
3241 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3242 tx_flags |= E1000_TX_FLAGS_CSUM;
3243
3244 if (protocol == htons(ETH_P_IP))
3245 tx_flags |= E1000_TX_FLAGS_IPV4;
3246
3247 if (unlikely(skb->no_fcs))
3248 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3249
3250 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3251 nr_frags, mss);
3252
3253 if (count) {
3254 netdev_sent_queue(netdev, skb->len);
3255 skb_tx_timestamp(skb);
3256
3257 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3258 /* Make sure there is space in the ring for the next send. */
3259 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3260
3261 if (!skb->xmit_more ||
3262 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3263 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3264 /* we need this if more than one processor can write to
3265 * our tail at a time, it synchronizes IO on IA64/Altix
3266 * systems
3267 */
3268 mmiowb();
3269 }
3270 } else {
3271 dev_kfree_skb_any(skb);
3272 tx_ring->buffer_info[first].time_stamp = 0;
3273 tx_ring->next_to_use = first;
3274 }
3275
3276 return NETDEV_TX_OK;
3277 }
3278
3279 #define NUM_REGS 38 /* 1 based count */
3280 static void e1000_regdump(struct e1000_adapter *adapter)
3281 {
3282 struct e1000_hw *hw = &adapter->hw;
3283 u32 regs[NUM_REGS];
3284 u32 *regs_buff = regs;
3285 int i = 0;
3286
3287 static const char * const reg_name[] = {
3288 "CTRL", "STATUS",
3289 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3290 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3291 "TIDV", "TXDCTL", "TADV", "TARC0",
3292 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3293 "TXDCTL1", "TARC1",
3294 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3295 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3296 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3297 };
3298
3299 regs_buff[0] = er32(CTRL);
3300 regs_buff[1] = er32(STATUS);
3301
3302 regs_buff[2] = er32(RCTL);
3303 regs_buff[3] = er32(RDLEN);
3304 regs_buff[4] = er32(RDH);
3305 regs_buff[5] = er32(RDT);
3306 regs_buff[6] = er32(RDTR);
3307
3308 regs_buff[7] = er32(TCTL);
3309 regs_buff[8] = er32(TDBAL);
3310 regs_buff[9] = er32(TDBAH);
3311 regs_buff[10] = er32(TDLEN);
3312 regs_buff[11] = er32(TDH);
3313 regs_buff[12] = er32(TDT);
3314 regs_buff[13] = er32(TIDV);
3315 regs_buff[14] = er32(TXDCTL);
3316 regs_buff[15] = er32(TADV);
3317 regs_buff[16] = er32(TARC0);
3318
3319 regs_buff[17] = er32(TDBAL1);
3320 regs_buff[18] = er32(TDBAH1);
3321 regs_buff[19] = er32(TDLEN1);
3322 regs_buff[20] = er32(TDH1);
3323 regs_buff[21] = er32(TDT1);
3324 regs_buff[22] = er32(TXDCTL1);
3325 regs_buff[23] = er32(TARC1);
3326 regs_buff[24] = er32(CTRL_EXT);
3327 regs_buff[25] = er32(ERT);
3328 regs_buff[26] = er32(RDBAL0);
3329 regs_buff[27] = er32(RDBAH0);
3330 regs_buff[28] = er32(TDFH);
3331 regs_buff[29] = er32(TDFT);
3332 regs_buff[30] = er32(TDFHS);
3333 regs_buff[31] = er32(TDFTS);
3334 regs_buff[32] = er32(TDFPC);
3335 regs_buff[33] = er32(RDFH);
3336 regs_buff[34] = er32(RDFT);
3337 regs_buff[35] = er32(RDFHS);
3338 regs_buff[36] = er32(RDFTS);
3339 regs_buff[37] = er32(RDFPC);
3340
3341 pr_info("Register dump\n");
3342 for (i = 0; i < NUM_REGS; i++)
3343 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3344 }
3345
3346 /*
3347 * e1000_dump: Print registers, tx ring and rx ring
3348 */
3349 static void e1000_dump(struct e1000_adapter *adapter)
3350 {
3351 /* this code doesn't handle multiple rings */
3352 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3353 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3354 int i;
3355
3356 if (!netif_msg_hw(adapter))
3357 return;
3358
3359 /* Print Registers */
3360 e1000_regdump(adapter);
3361
3362 /* transmit dump */
3363 pr_info("TX Desc ring0 dump\n");
3364
3365 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3366 *
3367 * Legacy Transmit Descriptor
3368 * +--------------------------------------------------------------+
3369 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3370 * +--------------------------------------------------------------+
3371 * 8 | Special | CSS | Status | CMD | CSO | Length |
3372 * +--------------------------------------------------------------+
3373 * 63 48 47 36 35 32 31 24 23 16 15 0
3374 *
3375 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3376 * 63 48 47 40 39 32 31 16 15 8 7 0
3377 * +----------------------------------------------------------------+
3378 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3379 * +----------------------------------------------------------------+
3380 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3381 * +----------------------------------------------------------------+
3382 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3383 *
3384 * Extended Data Descriptor (DTYP=0x1)
3385 * +----------------------------------------------------------------+
3386 * 0 | Buffer Address [63:0] |
3387 * +----------------------------------------------------------------+
3388 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3389 * +----------------------------------------------------------------+
3390 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3391 */
3392 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3393 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3394
3395 if (!netif_msg_tx_done(adapter))
3396 goto rx_ring_summary;
3397
3398 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3399 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3400 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3401 struct my_u { __le64 a; __le64 b; };
3402 struct my_u *u = (struct my_u *)tx_desc;
3403 const char *type;
3404
3405 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3406 type = "NTC/U";
3407 else if (i == tx_ring->next_to_use)
3408 type = "NTU";
3409 else if (i == tx_ring->next_to_clean)
3410 type = "NTC";
3411 else
3412 type = "";
3413
3414 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3415 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3416 le64_to_cpu(u->a), le64_to_cpu(u->b),
3417 (u64)buffer_info->dma, buffer_info->length,
3418 buffer_info->next_to_watch,
3419 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3420 }
3421
3422 rx_ring_summary:
3423 /* receive dump */
3424 pr_info("\nRX Desc ring dump\n");
3425
3426 /* Legacy Receive Descriptor Format
3427 *
3428 * +-----------------------------------------------------+
3429 * | Buffer Address [63:0] |
3430 * +-----------------------------------------------------+
3431 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3432 * +-----------------------------------------------------+
3433 * 63 48 47 40 39 32 31 16 15 0
3434 */
3435 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3436
3437 if (!netif_msg_rx_status(adapter))
3438 goto exit;
3439
3440 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3441 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3442 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3443 struct my_u { __le64 a; __le64 b; };
3444 struct my_u *u = (struct my_u *)rx_desc;
3445 const char *type;
3446
3447 if (i == rx_ring->next_to_use)
3448 type = "NTU";
3449 else if (i == rx_ring->next_to_clean)
3450 type = "NTC";
3451 else
3452 type = "";
3453
3454 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3455 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3456 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3457 } /* for */
3458
3459 /* dump the descriptor caches */
3460 /* rx */
3461 pr_info("Rx descriptor cache in 64bit format\n");
3462 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3463 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3464 i,
3465 readl(adapter->hw.hw_addr + i+4),
3466 readl(adapter->hw.hw_addr + i),
3467 readl(adapter->hw.hw_addr + i+12),
3468 readl(adapter->hw.hw_addr + i+8));
3469 }
3470 /* tx */
3471 pr_info("Tx descriptor cache in 64bit format\n");
3472 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3473 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3474 i,
3475 readl(adapter->hw.hw_addr + i+4),
3476 readl(adapter->hw.hw_addr + i),
3477 readl(adapter->hw.hw_addr + i+12),
3478 readl(adapter->hw.hw_addr + i+8));
3479 }
3480 exit:
3481 return;
3482 }
3483
3484 /**
3485 * e1000_tx_timeout - Respond to a Tx Hang
3486 * @netdev: network interface device structure
3487 **/
3488 static void e1000_tx_timeout(struct net_device *netdev)
3489 {
3490 struct e1000_adapter *adapter = netdev_priv(netdev);
3491
3492 /* Do the reset outside of interrupt context */
3493 adapter->tx_timeout_count++;
3494 schedule_work(&adapter->reset_task);
3495 }
3496
3497 static void e1000_reset_task(struct work_struct *work)
3498 {
3499 struct e1000_adapter *adapter =
3500 container_of(work, struct e1000_adapter, reset_task);
3501
3502 e_err(drv, "Reset adapter\n");
3503 e1000_reinit_locked(adapter);
3504 }
3505
3506 /**
3507 * e1000_get_stats - Get System Network Statistics
3508 * @netdev: network interface device structure
3509 *
3510 * Returns the address of the device statistics structure.
3511 * The statistics are actually updated from the watchdog.
3512 **/
3513 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3514 {
3515 /* only return the current stats */
3516 return &netdev->stats;
3517 }
3518
3519 /**
3520 * e1000_change_mtu - Change the Maximum Transfer Unit
3521 * @netdev: network interface device structure
3522 * @new_mtu: new value for maximum frame size
3523 *
3524 * Returns 0 on success, negative on failure
3525 **/
3526 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3527 {
3528 struct e1000_adapter *adapter = netdev_priv(netdev);
3529 struct e1000_hw *hw = &adapter->hw;
3530 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3531
3532 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3533 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3534 e_err(probe, "Invalid MTU setting\n");
3535 return -EINVAL;
3536 }
3537
3538 /* Adapter-specific max frame size limits. */
3539 switch (hw->mac_type) {
3540 case e1000_undefined ... e1000_82542_rev2_1:
3541 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3542 e_err(probe, "Jumbo Frames not supported.\n");
3543 return -EINVAL;
3544 }
3545 break;
3546 default:
3547 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3548 break;
3549 }
3550
3551 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3552 msleep(1);
3553 /* e1000_down has a dependency on max_frame_size */
3554 hw->max_frame_size = max_frame;
3555 if (netif_running(netdev)) {
3556 /* prevent buffers from being reallocated */
3557 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3558 e1000_down(adapter);
3559 }
3560
3561 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3562 * means we reserve 2 more, this pushes us to allocate from the next
3563 * larger slab size.
3564 * i.e. RXBUFFER_2048 --> size-4096 slab
3565 * however with the new *_jumbo_rx* routines, jumbo receives will use
3566 * fragmented skbs
3567 */
3568
3569 if (max_frame <= E1000_RXBUFFER_2048)
3570 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3571 else
3572 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3573 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3574 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3575 adapter->rx_buffer_len = PAGE_SIZE;
3576 #endif
3577
3578 /* adjust allocation if LPE protects us, and we aren't using SBP */
3579 if (!hw->tbi_compatibility_on &&
3580 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3581 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3582 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3583
3584 pr_info("%s changing MTU from %d to %d\n",
3585 netdev->name, netdev->mtu, new_mtu);
3586 netdev->mtu = new_mtu;
3587
3588 if (netif_running(netdev))
3589 e1000_up(adapter);
3590 else
3591 e1000_reset(adapter);
3592
3593 clear_bit(__E1000_RESETTING, &adapter->flags);
3594
3595 return 0;
3596 }
3597
3598 /**
3599 * e1000_update_stats - Update the board statistics counters
3600 * @adapter: board private structure
3601 **/
3602 void e1000_update_stats(struct e1000_adapter *adapter)
3603 {
3604 struct net_device *netdev = adapter->netdev;
3605 struct e1000_hw *hw = &adapter->hw;
3606 struct pci_dev *pdev = adapter->pdev;
3607 unsigned long flags;
3608 u16 phy_tmp;
3609
3610 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3611
3612 /* Prevent stats update while adapter is being reset, or if the pci
3613 * connection is down.
3614 */
3615 if (adapter->link_speed == 0)
3616 return;
3617 if (pci_channel_offline(pdev))
3618 return;
3619
3620 spin_lock_irqsave(&adapter->stats_lock, flags);
3621
3622 /* these counters are modified from e1000_tbi_adjust_stats,
3623 * called from the interrupt context, so they must only
3624 * be written while holding adapter->stats_lock
3625 */
3626
3627 adapter->stats.crcerrs += er32(CRCERRS);
3628 adapter->stats.gprc += er32(GPRC);
3629 adapter->stats.gorcl += er32(GORCL);
3630 adapter->stats.gorch += er32(GORCH);
3631 adapter->stats.bprc += er32(BPRC);
3632 adapter->stats.mprc += er32(MPRC);
3633 adapter->stats.roc += er32(ROC);
3634
3635 adapter->stats.prc64 += er32(PRC64);
3636 adapter->stats.prc127 += er32(PRC127);
3637 adapter->stats.prc255 += er32(PRC255);
3638 adapter->stats.prc511 += er32(PRC511);
3639 adapter->stats.prc1023 += er32(PRC1023);
3640 adapter->stats.prc1522 += er32(PRC1522);
3641
3642 adapter->stats.symerrs += er32(SYMERRS);
3643 adapter->stats.mpc += er32(MPC);
3644 adapter->stats.scc += er32(SCC);
3645 adapter->stats.ecol += er32(ECOL);
3646 adapter->stats.mcc += er32(MCC);
3647 adapter->stats.latecol += er32(LATECOL);
3648 adapter->stats.dc += er32(DC);
3649 adapter->stats.sec += er32(SEC);
3650 adapter->stats.rlec += er32(RLEC);
3651 adapter->stats.xonrxc += er32(XONRXC);
3652 adapter->stats.xontxc += er32(XONTXC);
3653 adapter->stats.xoffrxc += er32(XOFFRXC);
3654 adapter->stats.xofftxc += er32(XOFFTXC);
3655 adapter->stats.fcruc += er32(FCRUC);
3656 adapter->stats.gptc += er32(GPTC);
3657 adapter->stats.gotcl += er32(GOTCL);
3658 adapter->stats.gotch += er32(GOTCH);
3659 adapter->stats.rnbc += er32(RNBC);
3660 adapter->stats.ruc += er32(RUC);
3661 adapter->stats.rfc += er32(RFC);
3662 adapter->stats.rjc += er32(RJC);
3663 adapter->stats.torl += er32(TORL);
3664 adapter->stats.torh += er32(TORH);
3665 adapter->stats.totl += er32(TOTL);
3666 adapter->stats.toth += er32(TOTH);
3667 adapter->stats.tpr += er32(TPR);
3668
3669 adapter->stats.ptc64 += er32(PTC64);
3670 adapter->stats.ptc127 += er32(PTC127);
3671 adapter->stats.ptc255 += er32(PTC255);
3672 adapter->stats.ptc511 += er32(PTC511);
3673 adapter->stats.ptc1023 += er32(PTC1023);
3674 adapter->stats.ptc1522 += er32(PTC1522);
3675
3676 adapter->stats.mptc += er32(MPTC);
3677 adapter->stats.bptc += er32(BPTC);
3678
3679 /* used for adaptive IFS */
3680
3681 hw->tx_packet_delta = er32(TPT);
3682 adapter->stats.tpt += hw->tx_packet_delta;
3683 hw->collision_delta = er32(COLC);
3684 adapter->stats.colc += hw->collision_delta;
3685
3686 if (hw->mac_type >= e1000_82543) {
3687 adapter->stats.algnerrc += er32(ALGNERRC);
3688 adapter->stats.rxerrc += er32(RXERRC);
3689 adapter->stats.tncrs += er32(TNCRS);
3690 adapter->stats.cexterr += er32(CEXTERR);
3691 adapter->stats.tsctc += er32(TSCTC);
3692 adapter->stats.tsctfc += er32(TSCTFC);
3693 }
3694
3695 /* Fill out the OS statistics structure */
3696 netdev->stats.multicast = adapter->stats.mprc;
3697 netdev->stats.collisions = adapter->stats.colc;
3698
3699 /* Rx Errors */
3700
3701 /* RLEC on some newer hardware can be incorrect so build
3702 * our own version based on RUC and ROC
3703 */
3704 netdev->stats.rx_errors = adapter->stats.rxerrc +
3705 adapter->stats.crcerrs + adapter->stats.algnerrc +
3706 adapter->stats.ruc + adapter->stats.roc +
3707 adapter->stats.cexterr;
3708 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3709 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3710 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3711 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3712 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3713
3714 /* Tx Errors */
3715 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3716 netdev->stats.tx_errors = adapter->stats.txerrc;
3717 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3718 netdev->stats.tx_window_errors = adapter->stats.latecol;
3719 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3720 if (hw->bad_tx_carr_stats_fd &&
3721 adapter->link_duplex == FULL_DUPLEX) {
3722 netdev->stats.tx_carrier_errors = 0;
3723 adapter->stats.tncrs = 0;
3724 }
3725
3726 /* Tx Dropped needs to be maintained elsewhere */
3727
3728 /* Phy Stats */
3729 if (hw->media_type == e1000_media_type_copper) {
3730 if ((adapter->link_speed == SPEED_1000) &&
3731 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3732 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3733 adapter->phy_stats.idle_errors += phy_tmp;
3734 }
3735
3736 if ((hw->mac_type <= e1000_82546) &&
3737 (hw->phy_type == e1000_phy_m88) &&
3738 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3739 adapter->phy_stats.receive_errors += phy_tmp;
3740 }
3741
3742 /* Management Stats */
3743 if (hw->has_smbus) {
3744 adapter->stats.mgptc += er32(MGTPTC);
3745 adapter->stats.mgprc += er32(MGTPRC);
3746 adapter->stats.mgpdc += er32(MGTPDC);
3747 }
3748
3749 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3750 }
3751
3752 /**
3753 * e1000_intr - Interrupt Handler
3754 * @irq: interrupt number
3755 * @data: pointer to a network interface device structure
3756 **/
3757 static irqreturn_t e1000_intr(int irq, void *data)
3758 {
3759 struct net_device *netdev = data;
3760 struct e1000_adapter *adapter = netdev_priv(netdev);
3761 struct e1000_hw *hw = &adapter->hw;
3762 u32 icr = er32(ICR);
3763
3764 if (unlikely((!icr)))
3765 return IRQ_NONE; /* Not our interrupt */
3766
3767 /* we might have caused the interrupt, but the above
3768 * read cleared it, and just in case the driver is
3769 * down there is nothing to do so return handled
3770 */
3771 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3772 return IRQ_HANDLED;
3773
3774 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3775 hw->get_link_status = 1;
3776 /* guard against interrupt when we're going down */
3777 if (!test_bit(__E1000_DOWN, &adapter->flags))
3778 schedule_delayed_work(&adapter->watchdog_task, 1);
3779 }
3780
3781 /* disable interrupts, without the synchronize_irq bit */
3782 ew32(IMC, ~0);
3783 E1000_WRITE_FLUSH();
3784
3785 if (likely(napi_schedule_prep(&adapter->napi))) {
3786 adapter->total_tx_bytes = 0;
3787 adapter->total_tx_packets = 0;
3788 adapter->total_rx_bytes = 0;
3789 adapter->total_rx_packets = 0;
3790 __napi_schedule(&adapter->napi);
3791 } else {
3792 /* this really should not happen! if it does it is basically a
3793 * bug, but not a hard error, so enable ints and continue
3794 */
3795 if (!test_bit(__E1000_DOWN, &adapter->flags))
3796 e1000_irq_enable(adapter);
3797 }
3798
3799 return IRQ_HANDLED;
3800 }
3801
3802 /**
3803 * e1000_clean - NAPI Rx polling callback
3804 * @adapter: board private structure
3805 **/
3806 static int e1000_clean(struct napi_struct *napi, int budget)
3807 {
3808 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3809 napi);
3810 int tx_clean_complete = 0, work_done = 0;
3811
3812 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3813
3814 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3815
3816 if (!tx_clean_complete)
3817 work_done = budget;
3818
3819 /* If budget not fully consumed, exit the polling mode */
3820 if (work_done < budget) {
3821 if (likely(adapter->itr_setting & 3))
3822 e1000_set_itr(adapter);
3823 napi_complete_done(napi, work_done);
3824 if (!test_bit(__E1000_DOWN, &adapter->flags))
3825 e1000_irq_enable(adapter);
3826 }
3827
3828 return work_done;
3829 }
3830
3831 /**
3832 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3833 * @adapter: board private structure
3834 **/
3835 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3836 struct e1000_tx_ring *tx_ring)
3837 {
3838 struct e1000_hw *hw = &adapter->hw;
3839 struct net_device *netdev = adapter->netdev;
3840 struct e1000_tx_desc *tx_desc, *eop_desc;
3841 struct e1000_tx_buffer *buffer_info;
3842 unsigned int i, eop;
3843 unsigned int count = 0;
3844 unsigned int total_tx_bytes=0, total_tx_packets=0;
3845 unsigned int bytes_compl = 0, pkts_compl = 0;
3846
3847 i = tx_ring->next_to_clean;
3848 eop = tx_ring->buffer_info[i].next_to_watch;
3849 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3850
3851 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3852 (count < tx_ring->count)) {
3853 bool cleaned = false;
3854 dma_rmb(); /* read buffer_info after eop_desc */
3855 for ( ; !cleaned; count++) {
3856 tx_desc = E1000_TX_DESC(*tx_ring, i);
3857 buffer_info = &tx_ring->buffer_info[i];
3858 cleaned = (i == eop);
3859
3860 if (cleaned) {
3861 total_tx_packets += buffer_info->segs;
3862 total_tx_bytes += buffer_info->bytecount;
3863 if (buffer_info->skb) {
3864 bytes_compl += buffer_info->skb->len;
3865 pkts_compl++;
3866 }
3867
3868 }
3869 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3870 tx_desc->upper.data = 0;
3871
3872 if (unlikely(++i == tx_ring->count)) i = 0;
3873 }
3874
3875 eop = tx_ring->buffer_info[i].next_to_watch;
3876 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3877 }
3878
3879 tx_ring->next_to_clean = i;
3880
3881 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3882
3883 #define TX_WAKE_THRESHOLD 32
3884 if (unlikely(count && netif_carrier_ok(netdev) &&
3885 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3886 /* Make sure that anybody stopping the queue after this
3887 * sees the new next_to_clean.
3888 */
3889 smp_mb();
3890
3891 if (netif_queue_stopped(netdev) &&
3892 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3893 netif_wake_queue(netdev);
3894 ++adapter->restart_queue;
3895 }
3896 }
3897
3898 if (adapter->detect_tx_hung) {
3899 /* Detect a transmit hang in hardware, this serializes the
3900 * check with the clearing of time_stamp and movement of i
3901 */
3902 adapter->detect_tx_hung = false;
3903 if (tx_ring->buffer_info[eop].time_stamp &&
3904 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3905 (adapter->tx_timeout_factor * HZ)) &&
3906 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3907
3908 /* detected Tx unit hang */
3909 e_err(drv, "Detected Tx Unit Hang\n"
3910 " Tx Queue <%lu>\n"
3911 " TDH <%x>\n"
3912 " TDT <%x>\n"
3913 " next_to_use <%x>\n"
3914 " next_to_clean <%x>\n"
3915 "buffer_info[next_to_clean]\n"
3916 " time_stamp <%lx>\n"
3917 " next_to_watch <%x>\n"
3918 " jiffies <%lx>\n"
3919 " next_to_watch.status <%x>\n",
3920 (unsigned long)(tx_ring - adapter->tx_ring),
3921 readl(hw->hw_addr + tx_ring->tdh),
3922 readl(hw->hw_addr + tx_ring->tdt),
3923 tx_ring->next_to_use,
3924 tx_ring->next_to_clean,
3925 tx_ring->buffer_info[eop].time_stamp,
3926 eop,
3927 jiffies,
3928 eop_desc->upper.fields.status);
3929 e1000_dump(adapter);
3930 netif_stop_queue(netdev);
3931 }
3932 }
3933 adapter->total_tx_bytes += total_tx_bytes;
3934 adapter->total_tx_packets += total_tx_packets;
3935 netdev->stats.tx_bytes += total_tx_bytes;
3936 netdev->stats.tx_packets += total_tx_packets;
3937 return count < tx_ring->count;
3938 }
3939
3940 /**
3941 * e1000_rx_checksum - Receive Checksum Offload for 82543
3942 * @adapter: board private structure
3943 * @status_err: receive descriptor status and error fields
3944 * @csum: receive descriptor csum field
3945 * @sk_buff: socket buffer with received data
3946 **/
3947 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3948 u32 csum, struct sk_buff *skb)
3949 {
3950 struct e1000_hw *hw = &adapter->hw;
3951 u16 status = (u16)status_err;
3952 u8 errors = (u8)(status_err >> 24);
3953
3954 skb_checksum_none_assert(skb);
3955
3956 /* 82543 or newer only */
3957 if (unlikely(hw->mac_type < e1000_82543)) return;
3958 /* Ignore Checksum bit is set */
3959 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3960 /* TCP/UDP checksum error bit is set */
3961 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3962 /* let the stack verify checksum errors */
3963 adapter->hw_csum_err++;
3964 return;
3965 }
3966 /* TCP/UDP Checksum has not been calculated */
3967 if (!(status & E1000_RXD_STAT_TCPCS))
3968 return;
3969
3970 /* It must be a TCP or UDP packet with a valid checksum */
3971 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3972 /* TCP checksum is good */
3973 skb->ip_summed = CHECKSUM_UNNECESSARY;
3974 }
3975 adapter->hw_csum_good++;
3976 }
3977
3978 /**
3979 * e1000_consume_page - helper function for jumbo Rx path
3980 **/
3981 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3982 u16 length)
3983 {
3984 bi->rxbuf.page = NULL;
3985 skb->len += length;
3986 skb->data_len += length;
3987 skb->truesize += PAGE_SIZE;
3988 }
3989
3990 /**
3991 * e1000_receive_skb - helper function to handle rx indications
3992 * @adapter: board private structure
3993 * @status: descriptor status field as written by hardware
3994 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3995 * @skb: pointer to sk_buff to be indicated to stack
3996 */
3997 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3998 __le16 vlan, struct sk_buff *skb)
3999 {
4000 skb->protocol = eth_type_trans(skb, adapter->netdev);
4001
4002 if (status & E1000_RXD_STAT_VP) {
4003 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4004
4005 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4006 }
4007 napi_gro_receive(&adapter->napi, skb);
4008 }
4009
4010 /**
4011 * e1000_tbi_adjust_stats
4012 * @hw: Struct containing variables accessed by shared code
4013 * @frame_len: The length of the frame in question
4014 * @mac_addr: The Ethernet destination address of the frame in question
4015 *
4016 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4017 */
4018 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4019 struct e1000_hw_stats *stats,
4020 u32 frame_len, const u8 *mac_addr)
4021 {
4022 u64 carry_bit;
4023
4024 /* First adjust the frame length. */
4025 frame_len--;
4026 /* We need to adjust the statistics counters, since the hardware
4027 * counters overcount this packet as a CRC error and undercount
4028 * the packet as a good packet
4029 */
4030 /* This packet should not be counted as a CRC error. */
4031 stats->crcerrs--;
4032 /* This packet does count as a Good Packet Received. */
4033 stats->gprc++;
4034
4035 /* Adjust the Good Octets received counters */
4036 carry_bit = 0x80000000 & stats->gorcl;
4037 stats->gorcl += frame_len;
4038 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4039 * Received Count) was one before the addition,
4040 * AND it is zero after, then we lost the carry out,
4041 * need to add one to Gorch (Good Octets Received Count High).
4042 * This could be simplified if all environments supported
4043 * 64-bit integers.
4044 */
4045 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4046 stats->gorch++;
4047 /* Is this a broadcast or multicast? Check broadcast first,
4048 * since the test for a multicast frame will test positive on
4049 * a broadcast frame.
4050 */
4051 if (is_broadcast_ether_addr(mac_addr))
4052 stats->bprc++;
4053 else if (is_multicast_ether_addr(mac_addr))
4054 stats->mprc++;
4055
4056 if (frame_len == hw->max_frame_size) {
4057 /* In this case, the hardware has overcounted the number of
4058 * oversize frames.
4059 */
4060 if (stats->roc > 0)
4061 stats->roc--;
4062 }
4063
4064 /* Adjust the bin counters when the extra byte put the frame in the
4065 * wrong bin. Remember that the frame_len was adjusted above.
4066 */
4067 if (frame_len == 64) {
4068 stats->prc64++;
4069 stats->prc127--;
4070 } else if (frame_len == 127) {
4071 stats->prc127++;
4072 stats->prc255--;
4073 } else if (frame_len == 255) {
4074 stats->prc255++;
4075 stats->prc511--;
4076 } else if (frame_len == 511) {
4077 stats->prc511++;
4078 stats->prc1023--;
4079 } else if (frame_len == 1023) {
4080 stats->prc1023++;
4081 stats->prc1522--;
4082 } else if (frame_len == 1522) {
4083 stats->prc1522++;
4084 }
4085 }
4086
4087 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4088 u8 status, u8 errors,
4089 u32 length, const u8 *data)
4090 {
4091 struct e1000_hw *hw = &adapter->hw;
4092 u8 last_byte = *(data + length - 1);
4093
4094 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4095 unsigned long irq_flags;
4096
4097 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4098 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4099 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4100
4101 return true;
4102 }
4103
4104 return false;
4105 }
4106
4107 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4108 unsigned int bufsz)
4109 {
4110 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4111
4112 if (unlikely(!skb))
4113 adapter->alloc_rx_buff_failed++;
4114 return skb;
4115 }
4116
4117 /**
4118 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4119 * @adapter: board private structure
4120 * @rx_ring: ring to clean
4121 * @work_done: amount of napi work completed this call
4122 * @work_to_do: max amount of work allowed for this call to do
4123 *
4124 * the return value indicates whether actual cleaning was done, there
4125 * is no guarantee that everything was cleaned
4126 */
4127 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4128 struct e1000_rx_ring *rx_ring,
4129 int *work_done, int work_to_do)
4130 {
4131 struct net_device *netdev = adapter->netdev;
4132 struct pci_dev *pdev = adapter->pdev;
4133 struct e1000_rx_desc *rx_desc, *next_rxd;
4134 struct e1000_rx_buffer *buffer_info, *next_buffer;
4135 u32 length;
4136 unsigned int i;
4137 int cleaned_count = 0;
4138 bool cleaned = false;
4139 unsigned int total_rx_bytes=0, total_rx_packets=0;
4140
4141 i = rx_ring->next_to_clean;
4142 rx_desc = E1000_RX_DESC(*rx_ring, i);
4143 buffer_info = &rx_ring->buffer_info[i];
4144
4145 while (rx_desc->status & E1000_RXD_STAT_DD) {
4146 struct sk_buff *skb;
4147 u8 status;
4148
4149 if (*work_done >= work_to_do)
4150 break;
4151 (*work_done)++;
4152 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4153
4154 status = rx_desc->status;
4155
4156 if (++i == rx_ring->count) i = 0;
4157 next_rxd = E1000_RX_DESC(*rx_ring, i);
4158 prefetch(next_rxd);
4159
4160 next_buffer = &rx_ring->buffer_info[i];
4161
4162 cleaned = true;
4163 cleaned_count++;
4164 dma_unmap_page(&pdev->dev, buffer_info->dma,
4165 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4166 buffer_info->dma = 0;
4167
4168 length = le16_to_cpu(rx_desc->length);
4169
4170 /* errors is only valid for DD + EOP descriptors */
4171 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4172 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4173 u8 *mapped = page_address(buffer_info->rxbuf.page);
4174
4175 if (e1000_tbi_should_accept(adapter, status,
4176 rx_desc->errors,
4177 length, mapped)) {
4178 length--;
4179 } else if (netdev->features & NETIF_F_RXALL) {
4180 goto process_skb;
4181 } else {
4182 /* an error means any chain goes out the window
4183 * too
4184 */
4185 if (rx_ring->rx_skb_top)
4186 dev_kfree_skb(rx_ring->rx_skb_top);
4187 rx_ring->rx_skb_top = NULL;
4188 goto next_desc;
4189 }
4190 }
4191
4192 #define rxtop rx_ring->rx_skb_top
4193 process_skb:
4194 if (!(status & E1000_RXD_STAT_EOP)) {
4195 /* this descriptor is only the beginning (or middle) */
4196 if (!rxtop) {
4197 /* this is the beginning of a chain */
4198 rxtop = napi_get_frags(&adapter->napi);
4199 if (!rxtop)
4200 break;
4201
4202 skb_fill_page_desc(rxtop, 0,
4203 buffer_info->rxbuf.page,
4204 0, length);
4205 } else {
4206 /* this is the middle of a chain */
4207 skb_fill_page_desc(rxtop,
4208 skb_shinfo(rxtop)->nr_frags,
4209 buffer_info->rxbuf.page, 0, length);
4210 }
4211 e1000_consume_page(buffer_info, rxtop, length);
4212 goto next_desc;
4213 } else {
4214 if (rxtop) {
4215 /* end of the chain */
4216 skb_fill_page_desc(rxtop,
4217 skb_shinfo(rxtop)->nr_frags,
4218 buffer_info->rxbuf.page, 0, length);
4219 skb = rxtop;
4220 rxtop = NULL;
4221 e1000_consume_page(buffer_info, skb, length);
4222 } else {
4223 struct page *p;
4224 /* no chain, got EOP, this buf is the packet
4225 * copybreak to save the put_page/alloc_page
4226 */
4227 p = buffer_info->rxbuf.page;
4228 if (length <= copybreak) {
4229 u8 *vaddr;
4230
4231 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4232 length -= 4;
4233 skb = e1000_alloc_rx_skb(adapter,
4234 length);
4235 if (!skb)
4236 break;
4237
4238 vaddr = kmap_atomic(p);
4239 memcpy(skb_tail_pointer(skb), vaddr,
4240 length);
4241 kunmap_atomic(vaddr);
4242 /* re-use the page, so don't erase
4243 * buffer_info->rxbuf.page
4244 */
4245 skb_put(skb, length);
4246 e1000_rx_checksum(adapter,
4247 status | rx_desc->errors << 24,
4248 le16_to_cpu(rx_desc->csum), skb);
4249
4250 total_rx_bytes += skb->len;
4251 total_rx_packets++;
4252
4253 e1000_receive_skb(adapter, status,
4254 rx_desc->special, skb);
4255 goto next_desc;
4256 } else {
4257 skb = napi_get_frags(&adapter->napi);
4258 if (!skb) {
4259 adapter->alloc_rx_buff_failed++;
4260 break;
4261 }
4262 skb_fill_page_desc(skb, 0, p, 0,
4263 length);
4264 e1000_consume_page(buffer_info, skb,
4265 length);
4266 }
4267 }
4268 }
4269
4270 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4271 e1000_rx_checksum(adapter,
4272 (u32)(status) |
4273 ((u32)(rx_desc->errors) << 24),
4274 le16_to_cpu(rx_desc->csum), skb);
4275
4276 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4277 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4278 pskb_trim(skb, skb->len - 4);
4279 total_rx_packets++;
4280
4281 if (status & E1000_RXD_STAT_VP) {
4282 __le16 vlan = rx_desc->special;
4283 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4284
4285 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4286 }
4287
4288 napi_gro_frags(&adapter->napi);
4289
4290 next_desc:
4291 rx_desc->status = 0;
4292
4293 /* return some buffers to hardware, one at a time is too slow */
4294 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4295 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4296 cleaned_count = 0;
4297 }
4298
4299 /* use prefetched values */
4300 rx_desc = next_rxd;
4301 buffer_info = next_buffer;
4302 }
4303 rx_ring->next_to_clean = i;
4304
4305 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4306 if (cleaned_count)
4307 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4308
4309 adapter->total_rx_packets += total_rx_packets;
4310 adapter->total_rx_bytes += total_rx_bytes;
4311 netdev->stats.rx_bytes += total_rx_bytes;
4312 netdev->stats.rx_packets += total_rx_packets;
4313 return cleaned;
4314 }
4315
4316 /* this should improve performance for small packets with large amounts
4317 * of reassembly being done in the stack
4318 */
4319 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4320 struct e1000_rx_buffer *buffer_info,
4321 u32 length, const void *data)
4322 {
4323 struct sk_buff *skb;
4324
4325 if (length > copybreak)
4326 return NULL;
4327
4328 skb = e1000_alloc_rx_skb(adapter, length);
4329 if (!skb)
4330 return NULL;
4331
4332 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4333 length, DMA_FROM_DEVICE);
4334
4335 memcpy(skb_put(skb, length), data, length);
4336
4337 return skb;
4338 }
4339
4340 /**
4341 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4342 * @adapter: board private structure
4343 * @rx_ring: ring to clean
4344 * @work_done: amount of napi work completed this call
4345 * @work_to_do: max amount of work allowed for this call to do
4346 */
4347 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4348 struct e1000_rx_ring *rx_ring,
4349 int *work_done, int work_to_do)
4350 {
4351 struct net_device *netdev = adapter->netdev;
4352 struct pci_dev *pdev = adapter->pdev;
4353 struct e1000_rx_desc *rx_desc, *next_rxd;
4354 struct e1000_rx_buffer *buffer_info, *next_buffer;
4355 u32 length;
4356 unsigned int i;
4357 int cleaned_count = 0;
4358 bool cleaned = false;
4359 unsigned int total_rx_bytes=0, total_rx_packets=0;
4360
4361 i = rx_ring->next_to_clean;
4362 rx_desc = E1000_RX_DESC(*rx_ring, i);
4363 buffer_info = &rx_ring->buffer_info[i];
4364
4365 while (rx_desc->status & E1000_RXD_STAT_DD) {
4366 struct sk_buff *skb;
4367 u8 *data;
4368 u8 status;
4369
4370 if (*work_done >= work_to_do)
4371 break;
4372 (*work_done)++;
4373 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4374
4375 status = rx_desc->status;
4376 length = le16_to_cpu(rx_desc->length);
4377
4378 data = buffer_info->rxbuf.data;
4379 prefetch(data);
4380 skb = e1000_copybreak(adapter, buffer_info, length, data);
4381 if (!skb) {
4382 unsigned int frag_len = e1000_frag_len(adapter);
4383
4384 skb = build_skb(data - E1000_HEADROOM, frag_len);
4385 if (!skb) {
4386 adapter->alloc_rx_buff_failed++;
4387 break;
4388 }
4389
4390 skb_reserve(skb, E1000_HEADROOM);
4391 dma_unmap_single(&pdev->dev, buffer_info->dma,
4392 adapter->rx_buffer_len,
4393 DMA_FROM_DEVICE);
4394 buffer_info->dma = 0;
4395 buffer_info->rxbuf.data = NULL;
4396 }
4397
4398 if (++i == rx_ring->count) i = 0;
4399 next_rxd = E1000_RX_DESC(*rx_ring, i);
4400 prefetch(next_rxd);
4401
4402 next_buffer = &rx_ring->buffer_info[i];
4403
4404 cleaned = true;
4405 cleaned_count++;
4406
4407 /* !EOP means multiple descriptors were used to store a single
4408 * packet, if thats the case we need to toss it. In fact, we
4409 * to toss every packet with the EOP bit clear and the next
4410 * frame that _does_ have the EOP bit set, as it is by
4411 * definition only a frame fragment
4412 */
4413 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4414 adapter->discarding = true;
4415
4416 if (adapter->discarding) {
4417 /* All receives must fit into a single buffer */
4418 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4419 dev_kfree_skb(skb);
4420 if (status & E1000_RXD_STAT_EOP)
4421 adapter->discarding = false;
4422 goto next_desc;
4423 }
4424
4425 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4426 if (e1000_tbi_should_accept(adapter, status,
4427 rx_desc->errors,
4428 length, data)) {
4429 length--;
4430 } else if (netdev->features & NETIF_F_RXALL) {
4431 goto process_skb;
4432 } else {
4433 dev_kfree_skb(skb);
4434 goto next_desc;
4435 }
4436 }
4437
4438 process_skb:
4439 total_rx_bytes += (length - 4); /* don't count FCS */
4440 total_rx_packets++;
4441
4442 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4443 /* adjust length to remove Ethernet CRC, this must be
4444 * done after the TBI_ACCEPT workaround above
4445 */
4446 length -= 4;
4447
4448 if (buffer_info->rxbuf.data == NULL)
4449 skb_put(skb, length);
4450 else /* copybreak skb */
4451 skb_trim(skb, length);
4452
4453 /* Receive Checksum Offload */
4454 e1000_rx_checksum(adapter,
4455 (u32)(status) |
4456 ((u32)(rx_desc->errors) << 24),
4457 le16_to_cpu(rx_desc->csum), skb);
4458
4459 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4460
4461 next_desc:
4462 rx_desc->status = 0;
4463
4464 /* return some buffers to hardware, one at a time is too slow */
4465 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4466 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4467 cleaned_count = 0;
4468 }
4469
4470 /* use prefetched values */
4471 rx_desc = next_rxd;
4472 buffer_info = next_buffer;
4473 }
4474 rx_ring->next_to_clean = i;
4475
4476 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4477 if (cleaned_count)
4478 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4479
4480 adapter->total_rx_packets += total_rx_packets;
4481 adapter->total_rx_bytes += total_rx_bytes;
4482 netdev->stats.rx_bytes += total_rx_bytes;
4483 netdev->stats.rx_packets += total_rx_packets;
4484 return cleaned;
4485 }
4486
4487 /**
4488 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4489 * @adapter: address of board private structure
4490 * @rx_ring: pointer to receive ring structure
4491 * @cleaned_count: number of buffers to allocate this pass
4492 **/
4493 static void
4494 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4495 struct e1000_rx_ring *rx_ring, int cleaned_count)
4496 {
4497 struct pci_dev *pdev = adapter->pdev;
4498 struct e1000_rx_desc *rx_desc;
4499 struct e1000_rx_buffer *buffer_info;
4500 unsigned int i;
4501
4502 i = rx_ring->next_to_use;
4503 buffer_info = &rx_ring->buffer_info[i];
4504
4505 while (cleaned_count--) {
4506 /* allocate a new page if necessary */
4507 if (!buffer_info->rxbuf.page) {
4508 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4509 if (unlikely(!buffer_info->rxbuf.page)) {
4510 adapter->alloc_rx_buff_failed++;
4511 break;
4512 }
4513 }
4514
4515 if (!buffer_info->dma) {
4516 buffer_info->dma = dma_map_page(&pdev->dev,
4517 buffer_info->rxbuf.page, 0,
4518 adapter->rx_buffer_len,
4519 DMA_FROM_DEVICE);
4520 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4521 put_page(buffer_info->rxbuf.page);
4522 buffer_info->rxbuf.page = NULL;
4523 buffer_info->dma = 0;
4524 adapter->alloc_rx_buff_failed++;
4525 break;
4526 }
4527 }
4528
4529 rx_desc = E1000_RX_DESC(*rx_ring, i);
4530 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4531
4532 if (unlikely(++i == rx_ring->count))
4533 i = 0;
4534 buffer_info = &rx_ring->buffer_info[i];
4535 }
4536
4537 if (likely(rx_ring->next_to_use != i)) {
4538 rx_ring->next_to_use = i;
4539 if (unlikely(i-- == 0))
4540 i = (rx_ring->count - 1);
4541
4542 /* Force memory writes to complete before letting h/w
4543 * know there are new descriptors to fetch. (Only
4544 * applicable for weak-ordered memory model archs,
4545 * such as IA-64).
4546 */
4547 wmb();
4548 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4549 }
4550 }
4551
4552 /**
4553 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4554 * @adapter: address of board private structure
4555 **/
4556 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4557 struct e1000_rx_ring *rx_ring,
4558 int cleaned_count)
4559 {
4560 struct e1000_hw *hw = &adapter->hw;
4561 struct pci_dev *pdev = adapter->pdev;
4562 struct e1000_rx_desc *rx_desc;
4563 struct e1000_rx_buffer *buffer_info;
4564 unsigned int i;
4565 unsigned int bufsz = adapter->rx_buffer_len;
4566
4567 i = rx_ring->next_to_use;
4568 buffer_info = &rx_ring->buffer_info[i];
4569
4570 while (cleaned_count--) {
4571 void *data;
4572
4573 if (buffer_info->rxbuf.data)
4574 goto skip;
4575
4576 data = e1000_alloc_frag(adapter);
4577 if (!data) {
4578 /* Better luck next round */
4579 adapter->alloc_rx_buff_failed++;
4580 break;
4581 }
4582
4583 /* Fix for errata 23, can't cross 64kB boundary */
4584 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4585 void *olddata = data;
4586 e_err(rx_err, "skb align check failed: %u bytes at "
4587 "%p\n", bufsz, data);
4588 /* Try again, without freeing the previous */
4589 data = e1000_alloc_frag(adapter);
4590 /* Failed allocation, critical failure */
4591 if (!data) {
4592 skb_free_frag(olddata);
4593 adapter->alloc_rx_buff_failed++;
4594 break;
4595 }
4596
4597 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4598 /* give up */
4599 skb_free_frag(data);
4600 skb_free_frag(olddata);
4601 adapter->alloc_rx_buff_failed++;
4602 break;
4603 }
4604
4605 /* Use new allocation */
4606 skb_free_frag(olddata);
4607 }
4608 buffer_info->dma = dma_map_single(&pdev->dev,
4609 data,
4610 adapter->rx_buffer_len,
4611 DMA_FROM_DEVICE);
4612 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4613 skb_free_frag(data);
4614 buffer_info->dma = 0;
4615 adapter->alloc_rx_buff_failed++;
4616 break;
4617 }
4618
4619 /* XXX if it was allocated cleanly it will never map to a
4620 * boundary crossing
4621 */
4622
4623 /* Fix for errata 23, can't cross 64kB boundary */
4624 if (!e1000_check_64k_bound(adapter,
4625 (void *)(unsigned long)buffer_info->dma,
4626 adapter->rx_buffer_len)) {
4627 e_err(rx_err, "dma align check failed: %u bytes at "
4628 "%p\n", adapter->rx_buffer_len,
4629 (void *)(unsigned long)buffer_info->dma);
4630
4631 dma_unmap_single(&pdev->dev, buffer_info->dma,
4632 adapter->rx_buffer_len,
4633 DMA_FROM_DEVICE);
4634
4635 skb_free_frag(data);
4636 buffer_info->rxbuf.data = NULL;
4637 buffer_info->dma = 0;
4638
4639 adapter->alloc_rx_buff_failed++;
4640 break;
4641 }
4642 buffer_info->rxbuf.data = data;
4643 skip:
4644 rx_desc = E1000_RX_DESC(*rx_ring, i);
4645 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4646
4647 if (unlikely(++i == rx_ring->count))
4648 i = 0;
4649 buffer_info = &rx_ring->buffer_info[i];
4650 }
4651
4652 if (likely(rx_ring->next_to_use != i)) {
4653 rx_ring->next_to_use = i;
4654 if (unlikely(i-- == 0))
4655 i = (rx_ring->count - 1);
4656
4657 /* Force memory writes to complete before letting h/w
4658 * know there are new descriptors to fetch. (Only
4659 * applicable for weak-ordered memory model archs,
4660 * such as IA-64).
4661 */
4662 wmb();
4663 writel(i, hw->hw_addr + rx_ring->rdt);
4664 }
4665 }
4666
4667 /**
4668 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4669 * @adapter:
4670 **/
4671 static void e1000_smartspeed(struct e1000_adapter *adapter)
4672 {
4673 struct e1000_hw *hw = &adapter->hw;
4674 u16 phy_status;
4675 u16 phy_ctrl;
4676
4677 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4678 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4679 return;
4680
4681 if (adapter->smartspeed == 0) {
4682 /* If Master/Slave config fault is asserted twice,
4683 * we assume back-to-back
4684 */
4685 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4686 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4687 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4688 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4689 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4690 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4691 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4692 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4693 phy_ctrl);
4694 adapter->smartspeed++;
4695 if (!e1000_phy_setup_autoneg(hw) &&
4696 !e1000_read_phy_reg(hw, PHY_CTRL,
4697 &phy_ctrl)) {
4698 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4699 MII_CR_RESTART_AUTO_NEG);
4700 e1000_write_phy_reg(hw, PHY_CTRL,
4701 phy_ctrl);
4702 }
4703 }
4704 return;
4705 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4706 /* If still no link, perhaps using 2/3 pair cable */
4707 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4708 phy_ctrl |= CR_1000T_MS_ENABLE;
4709 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4710 if (!e1000_phy_setup_autoneg(hw) &&
4711 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4712 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4713 MII_CR_RESTART_AUTO_NEG);
4714 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4715 }
4716 }
4717 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4718 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4719 adapter->smartspeed = 0;
4720 }
4721
4722 /**
4723 * e1000_ioctl -
4724 * @netdev:
4725 * @ifreq:
4726 * @cmd:
4727 **/
4728 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4729 {
4730 switch (cmd) {
4731 case SIOCGMIIPHY:
4732 case SIOCGMIIREG:
4733 case SIOCSMIIREG:
4734 return e1000_mii_ioctl(netdev, ifr, cmd);
4735 default:
4736 return -EOPNOTSUPP;
4737 }
4738 }
4739
4740 /**
4741 * e1000_mii_ioctl -
4742 * @netdev:
4743 * @ifreq:
4744 * @cmd:
4745 **/
4746 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4747 int cmd)
4748 {
4749 struct e1000_adapter *adapter = netdev_priv(netdev);
4750 struct e1000_hw *hw = &adapter->hw;
4751 struct mii_ioctl_data *data = if_mii(ifr);
4752 int retval;
4753 u16 mii_reg;
4754 unsigned long flags;
4755
4756 if (hw->media_type != e1000_media_type_copper)
4757 return -EOPNOTSUPP;
4758
4759 switch (cmd) {
4760 case SIOCGMIIPHY:
4761 data->phy_id = hw->phy_addr;
4762 break;
4763 case SIOCGMIIREG:
4764 spin_lock_irqsave(&adapter->stats_lock, flags);
4765 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4766 &data->val_out)) {
4767 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4768 return -EIO;
4769 }
4770 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4771 break;
4772 case SIOCSMIIREG:
4773 if (data->reg_num & ~(0x1F))
4774 return -EFAULT;
4775 mii_reg = data->val_in;
4776 spin_lock_irqsave(&adapter->stats_lock, flags);
4777 if (e1000_write_phy_reg(hw, data->reg_num,
4778 mii_reg)) {
4779 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4780 return -EIO;
4781 }
4782 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4783 if (hw->media_type == e1000_media_type_copper) {
4784 switch (data->reg_num) {
4785 case PHY_CTRL:
4786 if (mii_reg & MII_CR_POWER_DOWN)
4787 break;
4788 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4789 hw->autoneg = 1;
4790 hw->autoneg_advertised = 0x2F;
4791 } else {
4792 u32 speed;
4793 if (mii_reg & 0x40)
4794 speed = SPEED_1000;
4795 else if (mii_reg & 0x2000)
4796 speed = SPEED_100;
4797 else
4798 speed = SPEED_10;
4799 retval = e1000_set_spd_dplx(
4800 adapter, speed,
4801 ((mii_reg & 0x100)
4802 ? DUPLEX_FULL :
4803 DUPLEX_HALF));
4804 if (retval)
4805 return retval;
4806 }
4807 if (netif_running(adapter->netdev))
4808 e1000_reinit_locked(adapter);
4809 else
4810 e1000_reset(adapter);
4811 break;
4812 case M88E1000_PHY_SPEC_CTRL:
4813 case M88E1000_EXT_PHY_SPEC_CTRL:
4814 if (e1000_phy_reset(hw))
4815 return -EIO;
4816 break;
4817 }
4818 } else {
4819 switch (data->reg_num) {
4820 case PHY_CTRL:
4821 if (mii_reg & MII_CR_POWER_DOWN)
4822 break;
4823 if (netif_running(adapter->netdev))
4824 e1000_reinit_locked(adapter);
4825 else
4826 e1000_reset(adapter);
4827 break;
4828 }
4829 }
4830 break;
4831 default:
4832 return -EOPNOTSUPP;
4833 }
4834 return E1000_SUCCESS;
4835 }
4836
4837 void e1000_pci_set_mwi(struct e1000_hw *hw)
4838 {
4839 struct e1000_adapter *adapter = hw->back;
4840 int ret_val = pci_set_mwi(adapter->pdev);
4841
4842 if (ret_val)
4843 e_err(probe, "Error in setting MWI\n");
4844 }
4845
4846 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4847 {
4848 struct e1000_adapter *adapter = hw->back;
4849
4850 pci_clear_mwi(adapter->pdev);
4851 }
4852
4853 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4854 {
4855 struct e1000_adapter *adapter = hw->back;
4856 return pcix_get_mmrbc(adapter->pdev);
4857 }
4858
4859 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4860 {
4861 struct e1000_adapter *adapter = hw->back;
4862 pcix_set_mmrbc(adapter->pdev, mmrbc);
4863 }
4864
4865 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4866 {
4867 outl(value, port);
4868 }
4869
4870 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4871 {
4872 u16 vid;
4873
4874 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4875 return true;
4876 return false;
4877 }
4878
4879 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4880 netdev_features_t features)
4881 {
4882 struct e1000_hw *hw = &adapter->hw;
4883 u32 ctrl;
4884
4885 ctrl = er32(CTRL);
4886 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4887 /* enable VLAN tag insert/strip */
4888 ctrl |= E1000_CTRL_VME;
4889 } else {
4890 /* disable VLAN tag insert/strip */
4891 ctrl &= ~E1000_CTRL_VME;
4892 }
4893 ew32(CTRL, ctrl);
4894 }
4895 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4896 bool filter_on)
4897 {
4898 struct e1000_hw *hw = &adapter->hw;
4899 u32 rctl;
4900
4901 if (!test_bit(__E1000_DOWN, &adapter->flags))
4902 e1000_irq_disable(adapter);
4903
4904 __e1000_vlan_mode(adapter, adapter->netdev->features);
4905 if (filter_on) {
4906 /* enable VLAN receive filtering */
4907 rctl = er32(RCTL);
4908 rctl &= ~E1000_RCTL_CFIEN;
4909 if (!(adapter->netdev->flags & IFF_PROMISC))
4910 rctl |= E1000_RCTL_VFE;
4911 ew32(RCTL, rctl);
4912 e1000_update_mng_vlan(adapter);
4913 } else {
4914 /* disable VLAN receive filtering */
4915 rctl = er32(RCTL);
4916 rctl &= ~E1000_RCTL_VFE;
4917 ew32(RCTL, rctl);
4918 }
4919
4920 if (!test_bit(__E1000_DOWN, &adapter->flags))
4921 e1000_irq_enable(adapter);
4922 }
4923
4924 static void e1000_vlan_mode(struct net_device *netdev,
4925 netdev_features_t features)
4926 {
4927 struct e1000_adapter *adapter = netdev_priv(netdev);
4928
4929 if (!test_bit(__E1000_DOWN, &adapter->flags))
4930 e1000_irq_disable(adapter);
4931
4932 __e1000_vlan_mode(adapter, features);
4933
4934 if (!test_bit(__E1000_DOWN, &adapter->flags))
4935 e1000_irq_enable(adapter);
4936 }
4937
4938 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4939 __be16 proto, u16 vid)
4940 {
4941 struct e1000_adapter *adapter = netdev_priv(netdev);
4942 struct e1000_hw *hw = &adapter->hw;
4943 u32 vfta, index;
4944
4945 if ((hw->mng_cookie.status &
4946 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4947 (vid == adapter->mng_vlan_id))
4948 return 0;
4949
4950 if (!e1000_vlan_used(adapter))
4951 e1000_vlan_filter_on_off(adapter, true);
4952
4953 /* add VID to filter table */
4954 index = (vid >> 5) & 0x7F;
4955 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4956 vfta |= (1 << (vid & 0x1F));
4957 e1000_write_vfta(hw, index, vfta);
4958
4959 set_bit(vid, adapter->active_vlans);
4960
4961 return 0;
4962 }
4963
4964 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4965 __be16 proto, u16 vid)
4966 {
4967 struct e1000_adapter *adapter = netdev_priv(netdev);
4968 struct e1000_hw *hw = &adapter->hw;
4969 u32 vfta, index;
4970
4971 if (!test_bit(__E1000_DOWN, &adapter->flags))
4972 e1000_irq_disable(adapter);
4973 if (!test_bit(__E1000_DOWN, &adapter->flags))
4974 e1000_irq_enable(adapter);
4975
4976 /* remove VID from filter table */
4977 index = (vid >> 5) & 0x7F;
4978 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4979 vfta &= ~(1 << (vid & 0x1F));
4980 e1000_write_vfta(hw, index, vfta);
4981
4982 clear_bit(vid, adapter->active_vlans);
4983
4984 if (!e1000_vlan_used(adapter))
4985 e1000_vlan_filter_on_off(adapter, false);
4986
4987 return 0;
4988 }
4989
4990 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4991 {
4992 u16 vid;
4993
4994 if (!e1000_vlan_used(adapter))
4995 return;
4996
4997 e1000_vlan_filter_on_off(adapter, true);
4998 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4999 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5000 }
5001
5002 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5003 {
5004 struct e1000_hw *hw = &adapter->hw;
5005
5006 hw->autoneg = 0;
5007
5008 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5009 * for the switch() below to work
5010 */
5011 if ((spd & 1) || (dplx & ~1))
5012 goto err_inval;
5013
5014 /* Fiber NICs only allow 1000 gbps Full duplex */
5015 if ((hw->media_type == e1000_media_type_fiber) &&
5016 spd != SPEED_1000 &&
5017 dplx != DUPLEX_FULL)
5018 goto err_inval;
5019
5020 switch (spd + dplx) {
5021 case SPEED_10 + DUPLEX_HALF:
5022 hw->forced_speed_duplex = e1000_10_half;
5023 break;
5024 case SPEED_10 + DUPLEX_FULL:
5025 hw->forced_speed_duplex = e1000_10_full;
5026 break;
5027 case SPEED_100 + DUPLEX_HALF:
5028 hw->forced_speed_duplex = e1000_100_half;
5029 break;
5030 case SPEED_100 + DUPLEX_FULL:
5031 hw->forced_speed_duplex = e1000_100_full;
5032 break;
5033 case SPEED_1000 + DUPLEX_FULL:
5034 hw->autoneg = 1;
5035 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5036 break;
5037 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5038 default:
5039 goto err_inval;
5040 }
5041
5042 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5043 hw->mdix = AUTO_ALL_MODES;
5044
5045 return 0;
5046
5047 err_inval:
5048 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5049 return -EINVAL;
5050 }
5051
5052 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5053 {
5054 struct net_device *netdev = pci_get_drvdata(pdev);
5055 struct e1000_adapter *adapter = netdev_priv(netdev);
5056 struct e1000_hw *hw = &adapter->hw;
5057 u32 ctrl, ctrl_ext, rctl, status;
5058 u32 wufc = adapter->wol;
5059 #ifdef CONFIG_PM
5060 int retval = 0;
5061 #endif
5062
5063 netif_device_detach(netdev);
5064
5065 if (netif_running(netdev)) {
5066 int count = E1000_CHECK_RESET_COUNT;
5067
5068 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5069 usleep_range(10000, 20000);
5070
5071 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5072 e1000_down(adapter);
5073 }
5074
5075 #ifdef CONFIG_PM
5076 retval = pci_save_state(pdev);
5077 if (retval)
5078 return retval;
5079 #endif
5080
5081 status = er32(STATUS);
5082 if (status & E1000_STATUS_LU)
5083 wufc &= ~E1000_WUFC_LNKC;
5084
5085 if (wufc) {
5086 e1000_setup_rctl(adapter);
5087 e1000_set_rx_mode(netdev);
5088
5089 rctl = er32(RCTL);
5090
5091 /* turn on all-multi mode if wake on multicast is enabled */
5092 if (wufc & E1000_WUFC_MC)
5093 rctl |= E1000_RCTL_MPE;
5094
5095 /* enable receives in the hardware */
5096 ew32(RCTL, rctl | E1000_RCTL_EN);
5097
5098 if (hw->mac_type >= e1000_82540) {
5099 ctrl = er32(CTRL);
5100 /* advertise wake from D3Cold */
5101 #define E1000_CTRL_ADVD3WUC 0x00100000
5102 /* phy power management enable */
5103 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5104 ctrl |= E1000_CTRL_ADVD3WUC |
5105 E1000_CTRL_EN_PHY_PWR_MGMT;
5106 ew32(CTRL, ctrl);
5107 }
5108
5109 if (hw->media_type == e1000_media_type_fiber ||
5110 hw->media_type == e1000_media_type_internal_serdes) {
5111 /* keep the laser running in D3 */
5112 ctrl_ext = er32(CTRL_EXT);
5113 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5114 ew32(CTRL_EXT, ctrl_ext);
5115 }
5116
5117 ew32(WUC, E1000_WUC_PME_EN);
5118 ew32(WUFC, wufc);
5119 } else {
5120 ew32(WUC, 0);
5121 ew32(WUFC, 0);
5122 }
5123
5124 e1000_release_manageability(adapter);
5125
5126 *enable_wake = !!wufc;
5127
5128 /* make sure adapter isn't asleep if manageability is enabled */
5129 if (adapter->en_mng_pt)
5130 *enable_wake = true;
5131
5132 if (netif_running(netdev))
5133 e1000_free_irq(adapter);
5134
5135 pci_disable_device(pdev);
5136
5137 return 0;
5138 }
5139
5140 #ifdef CONFIG_PM
5141 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5142 {
5143 int retval;
5144 bool wake;
5145
5146 retval = __e1000_shutdown(pdev, &wake);
5147 if (retval)
5148 return retval;
5149
5150 if (wake) {
5151 pci_prepare_to_sleep(pdev);
5152 } else {
5153 pci_wake_from_d3(pdev, false);
5154 pci_set_power_state(pdev, PCI_D3hot);
5155 }
5156
5157 return 0;
5158 }
5159
5160 static int e1000_resume(struct pci_dev *pdev)
5161 {
5162 struct net_device *netdev = pci_get_drvdata(pdev);
5163 struct e1000_adapter *adapter = netdev_priv(netdev);
5164 struct e1000_hw *hw = &adapter->hw;
5165 u32 err;
5166
5167 pci_set_power_state(pdev, PCI_D0);
5168 pci_restore_state(pdev);
5169 pci_save_state(pdev);
5170
5171 if (adapter->need_ioport)
5172 err = pci_enable_device(pdev);
5173 else
5174 err = pci_enable_device_mem(pdev);
5175 if (err) {
5176 pr_err("Cannot enable PCI device from suspend\n");
5177 return err;
5178 }
5179 pci_set_master(pdev);
5180
5181 pci_enable_wake(pdev, PCI_D3hot, 0);
5182 pci_enable_wake(pdev, PCI_D3cold, 0);
5183
5184 if (netif_running(netdev)) {
5185 err = e1000_request_irq(adapter);
5186 if (err)
5187 return err;
5188 }
5189
5190 e1000_power_up_phy(adapter);
5191 e1000_reset(adapter);
5192 ew32(WUS, ~0);
5193
5194 e1000_init_manageability(adapter);
5195
5196 if (netif_running(netdev))
5197 e1000_up(adapter);
5198
5199 netif_device_attach(netdev);
5200
5201 return 0;
5202 }
5203 #endif
5204
5205 static void e1000_shutdown(struct pci_dev *pdev)
5206 {
5207 bool wake;
5208
5209 __e1000_shutdown(pdev, &wake);
5210
5211 if (system_state == SYSTEM_POWER_OFF) {
5212 pci_wake_from_d3(pdev, wake);
5213 pci_set_power_state(pdev, PCI_D3hot);
5214 }
5215 }
5216
5217 #ifdef CONFIG_NET_POLL_CONTROLLER
5218 /* Polling 'interrupt' - used by things like netconsole to send skbs
5219 * without having to re-enable interrupts. It's not called while
5220 * the interrupt routine is executing.
5221 */
5222 static void e1000_netpoll(struct net_device *netdev)
5223 {
5224 struct e1000_adapter *adapter = netdev_priv(netdev);
5225
5226 disable_irq(adapter->pdev->irq);
5227 e1000_intr(adapter->pdev->irq, netdev);
5228 enable_irq(adapter->pdev->irq);
5229 }
5230 #endif
5231
5232 /**
5233 * e1000_io_error_detected - called when PCI error is detected
5234 * @pdev: Pointer to PCI device
5235 * @state: The current pci connection state
5236 *
5237 * This function is called after a PCI bus error affecting
5238 * this device has been detected.
5239 */
5240 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5241 pci_channel_state_t state)
5242 {
5243 struct net_device *netdev = pci_get_drvdata(pdev);
5244 struct e1000_adapter *adapter = netdev_priv(netdev);
5245
5246 netif_device_detach(netdev);
5247
5248 if (state == pci_channel_io_perm_failure)
5249 return PCI_ERS_RESULT_DISCONNECT;
5250
5251 if (netif_running(netdev))
5252 e1000_down(adapter);
5253 pci_disable_device(pdev);
5254
5255 /* Request a slot slot reset. */
5256 return PCI_ERS_RESULT_NEED_RESET;
5257 }
5258
5259 /**
5260 * e1000_io_slot_reset - called after the pci bus has been reset.
5261 * @pdev: Pointer to PCI device
5262 *
5263 * Restart the card from scratch, as if from a cold-boot. Implementation
5264 * resembles the first-half of the e1000_resume routine.
5265 */
5266 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5267 {
5268 struct net_device *netdev = pci_get_drvdata(pdev);
5269 struct e1000_adapter *adapter = netdev_priv(netdev);
5270 struct e1000_hw *hw = &adapter->hw;
5271 int err;
5272
5273 if (adapter->need_ioport)
5274 err = pci_enable_device(pdev);
5275 else
5276 err = pci_enable_device_mem(pdev);
5277 if (err) {
5278 pr_err("Cannot re-enable PCI device after reset.\n");
5279 return PCI_ERS_RESULT_DISCONNECT;
5280 }
5281 pci_set_master(pdev);
5282
5283 pci_enable_wake(pdev, PCI_D3hot, 0);
5284 pci_enable_wake(pdev, PCI_D3cold, 0);
5285
5286 e1000_reset(adapter);
5287 ew32(WUS, ~0);
5288
5289 return PCI_ERS_RESULT_RECOVERED;
5290 }
5291
5292 /**
5293 * e1000_io_resume - called when traffic can start flowing again.
5294 * @pdev: Pointer to PCI device
5295 *
5296 * This callback is called when the error recovery driver tells us that
5297 * its OK to resume normal operation. Implementation resembles the
5298 * second-half of the e1000_resume routine.
5299 */
5300 static void e1000_io_resume(struct pci_dev *pdev)
5301 {
5302 struct net_device *netdev = pci_get_drvdata(pdev);
5303 struct e1000_adapter *adapter = netdev_priv(netdev);
5304
5305 e1000_init_manageability(adapter);
5306
5307 if (netif_running(netdev)) {
5308 if (e1000_up(adapter)) {
5309 pr_info("can't bring device back up after reset\n");
5310 return;
5311 }
5312 }
5313
5314 netif_device_attach(netdev);
5315 }
5316
5317 /* e1000_main.c */
This page took 0.147359 seconds and 5 git commands to generate.