Merge branch 'upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/floppy...
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void __devexit e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring,
152 int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162 struct sk_buff *skb);
163
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166 netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
170 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
171 static void e1000_restore_vlan(struct e1000_adapter *adapter);
172
173 #ifdef CONFIG_PM
174 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
175 static int e1000_resume(struct pci_dev *pdev);
176 #endif
177 static void e1000_shutdown(struct pci_dev *pdev);
178
179 #ifdef CONFIG_NET_POLL_CONTROLLER
180 /* for netdump / net console */
181 static void e1000_netpoll (struct net_device *netdev);
182 #endif
183
184 #define COPYBREAK_DEFAULT 256
185 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
186 module_param(copybreak, uint, 0644);
187 MODULE_PARM_DESC(copybreak,
188 "Maximum size of packet that is copied to a new buffer on receive");
189
190 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
191 pci_channel_state_t state);
192 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
193 static void e1000_io_resume(struct pci_dev *pdev);
194
195 static struct pci_error_handlers e1000_err_handler = {
196 .error_detected = e1000_io_error_detected,
197 .slot_reset = e1000_io_slot_reset,
198 .resume = e1000_io_resume,
199 };
200
201 static struct pci_driver e1000_driver = {
202 .name = e1000_driver_name,
203 .id_table = e1000_pci_tbl,
204 .probe = e1000_probe,
205 .remove = __devexit_p(e1000_remove),
206 #ifdef CONFIG_PM
207 /* Power Management Hooks */
208 .suspend = e1000_suspend,
209 .resume = e1000_resume,
210 #endif
211 .shutdown = e1000_shutdown,
212 .err_handler = &e1000_err_handler
213 };
214
215 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
216 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
217 MODULE_LICENSE("GPL");
218 MODULE_VERSION(DRV_VERSION);
219
220 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
221 static int debug = -1;
222 module_param(debug, int, 0);
223 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
224
225 /**
226 * e1000_get_hw_dev - return device
227 * used by hardware layer to print debugging information
228 *
229 **/
230 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
231 {
232 struct e1000_adapter *adapter = hw->back;
233 return adapter->netdev;
234 }
235
236 /**
237 * e1000_init_module - Driver Registration Routine
238 *
239 * e1000_init_module is the first routine called when the driver is
240 * loaded. All it does is register with the PCI subsystem.
241 **/
242
243 static int __init e1000_init_module(void)
244 {
245 int ret;
246 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
247
248 pr_info("%s\n", e1000_copyright);
249
250 ret = pci_register_driver(&e1000_driver);
251 if (copybreak != COPYBREAK_DEFAULT) {
252 if (copybreak == 0)
253 pr_info("copybreak disabled\n");
254 else
255 pr_info("copybreak enabled for "
256 "packets <= %u bytes\n", copybreak);
257 }
258 return ret;
259 }
260
261 module_init(e1000_init_module);
262
263 /**
264 * e1000_exit_module - Driver Exit Cleanup Routine
265 *
266 * e1000_exit_module is called just before the driver is removed
267 * from memory.
268 **/
269
270 static void __exit e1000_exit_module(void)
271 {
272 pci_unregister_driver(&e1000_driver);
273 }
274
275 module_exit(e1000_exit_module);
276
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279 struct net_device *netdev = adapter->netdev;
280 irq_handler_t handler = e1000_intr;
281 int irq_flags = IRQF_SHARED;
282 int err;
283
284 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 netdev);
286 if (err) {
287 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288 }
289
290 return err;
291 }
292
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295 struct net_device *netdev = adapter->netdev;
296
297 free_irq(adapter->pdev->irq, netdev);
298 }
299
300 /**
301 * e1000_irq_disable - Mask off interrupt generation on the NIC
302 * @adapter: board private structure
303 **/
304
305 static void e1000_irq_disable(struct e1000_adapter *adapter)
306 {
307 struct e1000_hw *hw = &adapter->hw;
308
309 ew32(IMC, ~0);
310 E1000_WRITE_FLUSH();
311 synchronize_irq(adapter->pdev->irq);
312 }
313
314 /**
315 * e1000_irq_enable - Enable default interrupt generation settings
316 * @adapter: board private structure
317 **/
318
319 static void e1000_irq_enable(struct e1000_adapter *adapter)
320 {
321 struct e1000_hw *hw = &adapter->hw;
322
323 ew32(IMS, IMS_ENABLE_MASK);
324 E1000_WRITE_FLUSH();
325 }
326
327 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
328 {
329 struct e1000_hw *hw = &adapter->hw;
330 struct net_device *netdev = adapter->netdev;
331 u16 vid = hw->mng_cookie.vlan_id;
332 u16 old_vid = adapter->mng_vlan_id;
333
334 if (!e1000_vlan_used(adapter))
335 return;
336
337 if (!test_bit(vid, adapter->active_vlans)) {
338 if (hw->mng_cookie.status &
339 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
340 e1000_vlan_rx_add_vid(netdev, vid);
341 adapter->mng_vlan_id = vid;
342 } else {
343 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
344 }
345 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
346 (vid != old_vid) &&
347 !test_bit(old_vid, adapter->active_vlans))
348 e1000_vlan_rx_kill_vid(netdev, old_vid);
349 } else {
350 adapter->mng_vlan_id = vid;
351 }
352 }
353
354 static void e1000_init_manageability(struct e1000_adapter *adapter)
355 {
356 struct e1000_hw *hw = &adapter->hw;
357
358 if (adapter->en_mng_pt) {
359 u32 manc = er32(MANC);
360
361 /* disable hardware interception of ARP */
362 manc &= ~(E1000_MANC_ARP_EN);
363
364 ew32(MANC, manc);
365 }
366 }
367
368 static void e1000_release_manageability(struct e1000_adapter *adapter)
369 {
370 struct e1000_hw *hw = &adapter->hw;
371
372 if (adapter->en_mng_pt) {
373 u32 manc = er32(MANC);
374
375 /* re-enable hardware interception of ARP */
376 manc |= E1000_MANC_ARP_EN;
377
378 ew32(MANC, manc);
379 }
380 }
381
382 /**
383 * e1000_configure - configure the hardware for RX and TX
384 * @adapter = private board structure
385 **/
386 static void e1000_configure(struct e1000_adapter *adapter)
387 {
388 struct net_device *netdev = adapter->netdev;
389 int i;
390
391 e1000_set_rx_mode(netdev);
392
393 e1000_restore_vlan(adapter);
394 e1000_init_manageability(adapter);
395
396 e1000_configure_tx(adapter);
397 e1000_setup_rctl(adapter);
398 e1000_configure_rx(adapter);
399 /* call E1000_DESC_UNUSED which always leaves
400 * at least 1 descriptor unused to make sure
401 * next_to_use != next_to_clean */
402 for (i = 0; i < adapter->num_rx_queues; i++) {
403 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404 adapter->alloc_rx_buf(adapter, ring,
405 E1000_DESC_UNUSED(ring));
406 }
407 }
408
409 int e1000_up(struct e1000_adapter *adapter)
410 {
411 struct e1000_hw *hw = &adapter->hw;
412
413 /* hardware has been reset, we need to reload some things */
414 e1000_configure(adapter);
415
416 clear_bit(__E1000_DOWN, &adapter->flags);
417
418 napi_enable(&adapter->napi);
419
420 e1000_irq_enable(adapter);
421
422 netif_wake_queue(adapter->netdev);
423
424 /* fire a link change interrupt to start the watchdog */
425 ew32(ICS, E1000_ICS_LSC);
426 return 0;
427 }
428
429 /**
430 * e1000_power_up_phy - restore link in case the phy was powered down
431 * @adapter: address of board private structure
432 *
433 * The phy may be powered down to save power and turn off link when the
434 * driver is unloaded and wake on lan is not enabled (among others)
435 * *** this routine MUST be followed by a call to e1000_reset ***
436 *
437 **/
438
439 void e1000_power_up_phy(struct e1000_adapter *adapter)
440 {
441 struct e1000_hw *hw = &adapter->hw;
442 u16 mii_reg = 0;
443
444 /* Just clear the power down bit to wake the phy back up */
445 if (hw->media_type == e1000_media_type_copper) {
446 /* according to the manual, the phy will retain its
447 * settings across a power-down/up cycle */
448 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
449 mii_reg &= ~MII_CR_POWER_DOWN;
450 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
451 }
452 }
453
454 static void e1000_power_down_phy(struct e1000_adapter *adapter)
455 {
456 struct e1000_hw *hw = &adapter->hw;
457
458 /* Power down the PHY so no link is implied when interface is down *
459 * The PHY cannot be powered down if any of the following is true *
460 * (a) WoL is enabled
461 * (b) AMT is active
462 * (c) SoL/IDER session is active */
463 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 hw->media_type == e1000_media_type_copper) {
465 u16 mii_reg = 0;
466
467 switch (hw->mac_type) {
468 case e1000_82540:
469 case e1000_82545:
470 case e1000_82545_rev_3:
471 case e1000_82546:
472 case e1000_ce4100:
473 case e1000_82546_rev_3:
474 case e1000_82541:
475 case e1000_82541_rev_2:
476 case e1000_82547:
477 case e1000_82547_rev_2:
478 if (er32(MANC) & E1000_MANC_SMBUS_EN)
479 goto out;
480 break;
481 default:
482 goto out;
483 }
484 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485 mii_reg |= MII_CR_POWER_DOWN;
486 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487 msleep(1);
488 }
489 out:
490 return;
491 }
492
493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
494 {
495 set_bit(__E1000_DOWN, &adapter->flags);
496
497 /* Only kill reset task if adapter is not resetting */
498 if (!test_bit(__E1000_RESETTING, &adapter->flags))
499 cancel_work_sync(&adapter->reset_task);
500
501 cancel_delayed_work_sync(&adapter->watchdog_task);
502 cancel_delayed_work_sync(&adapter->phy_info_task);
503 cancel_delayed_work_sync(&adapter->fifo_stall_task);
504 }
505
506 void e1000_down(struct e1000_adapter *adapter)
507 {
508 struct e1000_hw *hw = &adapter->hw;
509 struct net_device *netdev = adapter->netdev;
510 u32 rctl, tctl;
511
512
513 /* disable receives in the hardware */
514 rctl = er32(RCTL);
515 ew32(RCTL, rctl & ~E1000_RCTL_EN);
516 /* flush and sleep below */
517
518 netif_tx_disable(netdev);
519
520 /* disable transmits in the hardware */
521 tctl = er32(TCTL);
522 tctl &= ~E1000_TCTL_EN;
523 ew32(TCTL, tctl);
524 /* flush both disables and wait for them to finish */
525 E1000_WRITE_FLUSH();
526 msleep(10);
527
528 napi_disable(&adapter->napi);
529
530 e1000_irq_disable(adapter);
531
532 /*
533 * Setting DOWN must be after irq_disable to prevent
534 * a screaming interrupt. Setting DOWN also prevents
535 * tasks from rescheduling.
536 */
537 e1000_down_and_stop(adapter);
538
539 adapter->link_speed = 0;
540 adapter->link_duplex = 0;
541 netif_carrier_off(netdev);
542
543 e1000_reset(adapter);
544 e1000_clean_all_tx_rings(adapter);
545 e1000_clean_all_rx_rings(adapter);
546 }
547
548 static void e1000_reinit_safe(struct e1000_adapter *adapter)
549 {
550 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
551 msleep(1);
552 mutex_lock(&adapter->mutex);
553 e1000_down(adapter);
554 e1000_up(adapter);
555 mutex_unlock(&adapter->mutex);
556 clear_bit(__E1000_RESETTING, &adapter->flags);
557 }
558
559 void e1000_reinit_locked(struct e1000_adapter *adapter)
560 {
561 /* if rtnl_lock is not held the call path is bogus */
562 ASSERT_RTNL();
563 WARN_ON(in_interrupt());
564 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
565 msleep(1);
566 e1000_down(adapter);
567 e1000_up(adapter);
568 clear_bit(__E1000_RESETTING, &adapter->flags);
569 }
570
571 void e1000_reset(struct e1000_adapter *adapter)
572 {
573 struct e1000_hw *hw = &adapter->hw;
574 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
575 bool legacy_pba_adjust = false;
576 u16 hwm;
577
578 /* Repartition Pba for greater than 9k mtu
579 * To take effect CTRL.RST is required.
580 */
581
582 switch (hw->mac_type) {
583 case e1000_82542_rev2_0:
584 case e1000_82542_rev2_1:
585 case e1000_82543:
586 case e1000_82544:
587 case e1000_82540:
588 case e1000_82541:
589 case e1000_82541_rev_2:
590 legacy_pba_adjust = true;
591 pba = E1000_PBA_48K;
592 break;
593 case e1000_82545:
594 case e1000_82545_rev_3:
595 case e1000_82546:
596 case e1000_ce4100:
597 case e1000_82546_rev_3:
598 pba = E1000_PBA_48K;
599 break;
600 case e1000_82547:
601 case e1000_82547_rev_2:
602 legacy_pba_adjust = true;
603 pba = E1000_PBA_30K;
604 break;
605 case e1000_undefined:
606 case e1000_num_macs:
607 break;
608 }
609
610 if (legacy_pba_adjust) {
611 if (hw->max_frame_size > E1000_RXBUFFER_8192)
612 pba -= 8; /* allocate more FIFO for Tx */
613
614 if (hw->mac_type == e1000_82547) {
615 adapter->tx_fifo_head = 0;
616 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
617 adapter->tx_fifo_size =
618 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
619 atomic_set(&adapter->tx_fifo_stall, 0);
620 }
621 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
622 /* adjust PBA for jumbo frames */
623 ew32(PBA, pba);
624
625 /* To maintain wire speed transmits, the Tx FIFO should be
626 * large enough to accommodate two full transmit packets,
627 * rounded up to the next 1KB and expressed in KB. Likewise,
628 * the Rx FIFO should be large enough to accommodate at least
629 * one full receive packet and is similarly rounded up and
630 * expressed in KB. */
631 pba = er32(PBA);
632 /* upper 16 bits has Tx packet buffer allocation size in KB */
633 tx_space = pba >> 16;
634 /* lower 16 bits has Rx packet buffer allocation size in KB */
635 pba &= 0xffff;
636 /*
637 * the tx fifo also stores 16 bytes of information about the tx
638 * but don't include ethernet FCS because hardware appends it
639 */
640 min_tx_space = (hw->max_frame_size +
641 sizeof(struct e1000_tx_desc) -
642 ETH_FCS_LEN) * 2;
643 min_tx_space = ALIGN(min_tx_space, 1024);
644 min_tx_space >>= 10;
645 /* software strips receive CRC, so leave room for it */
646 min_rx_space = hw->max_frame_size;
647 min_rx_space = ALIGN(min_rx_space, 1024);
648 min_rx_space >>= 10;
649
650 /* If current Tx allocation is less than the min Tx FIFO size,
651 * and the min Tx FIFO size is less than the current Rx FIFO
652 * allocation, take space away from current Rx allocation */
653 if (tx_space < min_tx_space &&
654 ((min_tx_space - tx_space) < pba)) {
655 pba = pba - (min_tx_space - tx_space);
656
657 /* PCI/PCIx hardware has PBA alignment constraints */
658 switch (hw->mac_type) {
659 case e1000_82545 ... e1000_82546_rev_3:
660 pba &= ~(E1000_PBA_8K - 1);
661 break;
662 default:
663 break;
664 }
665
666 /* if short on rx space, rx wins and must trump tx
667 * adjustment or use Early Receive if available */
668 if (pba < min_rx_space)
669 pba = min_rx_space;
670 }
671 }
672
673 ew32(PBA, pba);
674
675 /*
676 * flow control settings:
677 * The high water mark must be low enough to fit one full frame
678 * (or the size used for early receive) above it in the Rx FIFO.
679 * Set it to the lower of:
680 * - 90% of the Rx FIFO size, and
681 * - the full Rx FIFO size minus the early receive size (for parts
682 * with ERT support assuming ERT set to E1000_ERT_2048), or
683 * - the full Rx FIFO size minus one full frame
684 */
685 hwm = min(((pba << 10) * 9 / 10),
686 ((pba << 10) - hw->max_frame_size));
687
688 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
689 hw->fc_low_water = hw->fc_high_water - 8;
690 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
691 hw->fc_send_xon = 1;
692 hw->fc = hw->original_fc;
693
694 /* Allow time for pending master requests to run */
695 e1000_reset_hw(hw);
696 if (hw->mac_type >= e1000_82544)
697 ew32(WUC, 0);
698
699 if (e1000_init_hw(hw))
700 e_dev_err("Hardware Error\n");
701 e1000_update_mng_vlan(adapter);
702
703 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
704 if (hw->mac_type >= e1000_82544 &&
705 hw->autoneg == 1 &&
706 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
707 u32 ctrl = er32(CTRL);
708 /* clear phy power management bit if we are in gig only mode,
709 * which if enabled will attempt negotiation to 100Mb, which
710 * can cause a loss of link at power off or driver unload */
711 ctrl &= ~E1000_CTRL_SWDPIN3;
712 ew32(CTRL, ctrl);
713 }
714
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
720
721 e1000_release_manageability(adapter);
722 }
723
724 /**
725 * Dump the eeprom for users having checksum issues
726 **/
727 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
728 {
729 struct net_device *netdev = adapter->netdev;
730 struct ethtool_eeprom eeprom;
731 const struct ethtool_ops *ops = netdev->ethtool_ops;
732 u8 *data;
733 int i;
734 u16 csum_old, csum_new = 0;
735
736 eeprom.len = ops->get_eeprom_len(netdev);
737 eeprom.offset = 0;
738
739 data = kmalloc(eeprom.len, GFP_KERNEL);
740 if (!data)
741 return;
742
743 ops->get_eeprom(netdev, &eeprom, data);
744
745 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
746 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
747 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
748 csum_new += data[i] + (data[i + 1] << 8);
749 csum_new = EEPROM_SUM - csum_new;
750
751 pr_err("/*********************/\n");
752 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
753 pr_err("Calculated : 0x%04x\n", csum_new);
754
755 pr_err("Offset Values\n");
756 pr_err("======== ======\n");
757 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
758
759 pr_err("Include this output when contacting your support provider.\n");
760 pr_err("This is not a software error! Something bad happened to\n");
761 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
762 pr_err("result in further problems, possibly loss of data,\n");
763 pr_err("corruption or system hangs!\n");
764 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
765 pr_err("which is invalid and requires you to set the proper MAC\n");
766 pr_err("address manually before continuing to enable this network\n");
767 pr_err("device. Please inspect the EEPROM dump and report the\n");
768 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
769 pr_err("/*********************/\n");
770
771 kfree(data);
772 }
773
774 /**
775 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
776 * @pdev: PCI device information struct
777 *
778 * Return true if an adapter needs ioport resources
779 **/
780 static int e1000_is_need_ioport(struct pci_dev *pdev)
781 {
782 switch (pdev->device) {
783 case E1000_DEV_ID_82540EM:
784 case E1000_DEV_ID_82540EM_LOM:
785 case E1000_DEV_ID_82540EP:
786 case E1000_DEV_ID_82540EP_LOM:
787 case E1000_DEV_ID_82540EP_LP:
788 case E1000_DEV_ID_82541EI:
789 case E1000_DEV_ID_82541EI_MOBILE:
790 case E1000_DEV_ID_82541ER:
791 case E1000_DEV_ID_82541ER_LOM:
792 case E1000_DEV_ID_82541GI:
793 case E1000_DEV_ID_82541GI_LF:
794 case E1000_DEV_ID_82541GI_MOBILE:
795 case E1000_DEV_ID_82544EI_COPPER:
796 case E1000_DEV_ID_82544EI_FIBER:
797 case E1000_DEV_ID_82544GC_COPPER:
798 case E1000_DEV_ID_82544GC_LOM:
799 case E1000_DEV_ID_82545EM_COPPER:
800 case E1000_DEV_ID_82545EM_FIBER:
801 case E1000_DEV_ID_82546EB_COPPER:
802 case E1000_DEV_ID_82546EB_FIBER:
803 case E1000_DEV_ID_82546EB_QUAD_COPPER:
804 return true;
805 default:
806 return false;
807 }
808 }
809
810 static netdev_features_t e1000_fix_features(struct net_device *netdev,
811 netdev_features_t features)
812 {
813 /*
814 * Since there is no support for separate rx/tx vlan accel
815 * enable/disable make sure tx flag is always in same state as rx.
816 */
817 if (features & NETIF_F_HW_VLAN_RX)
818 features |= NETIF_F_HW_VLAN_TX;
819 else
820 features &= ~NETIF_F_HW_VLAN_TX;
821
822 return features;
823 }
824
825 static int e1000_set_features(struct net_device *netdev,
826 netdev_features_t features)
827 {
828 struct e1000_adapter *adapter = netdev_priv(netdev);
829 netdev_features_t changed = features ^ netdev->features;
830
831 if (changed & NETIF_F_HW_VLAN_RX)
832 e1000_vlan_mode(netdev, features);
833
834 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
835 return 0;
836
837 netdev->features = features;
838 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
839
840 if (netif_running(netdev))
841 e1000_reinit_locked(adapter);
842 else
843 e1000_reset(adapter);
844
845 return 0;
846 }
847
848 static const struct net_device_ops e1000_netdev_ops = {
849 .ndo_open = e1000_open,
850 .ndo_stop = e1000_close,
851 .ndo_start_xmit = e1000_xmit_frame,
852 .ndo_get_stats = e1000_get_stats,
853 .ndo_set_rx_mode = e1000_set_rx_mode,
854 .ndo_set_mac_address = e1000_set_mac,
855 .ndo_tx_timeout = e1000_tx_timeout,
856 .ndo_change_mtu = e1000_change_mtu,
857 .ndo_do_ioctl = e1000_ioctl,
858 .ndo_validate_addr = eth_validate_addr,
859 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
860 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
861 #ifdef CONFIG_NET_POLL_CONTROLLER
862 .ndo_poll_controller = e1000_netpoll,
863 #endif
864 .ndo_fix_features = e1000_fix_features,
865 .ndo_set_features = e1000_set_features,
866 };
867
868 /**
869 * e1000_init_hw_struct - initialize members of hw struct
870 * @adapter: board private struct
871 * @hw: structure used by e1000_hw.c
872 *
873 * Factors out initialization of the e1000_hw struct to its own function
874 * that can be called very early at init (just after struct allocation).
875 * Fields are initialized based on PCI device information and
876 * OS network device settings (MTU size).
877 * Returns negative error codes if MAC type setup fails.
878 */
879 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
880 struct e1000_hw *hw)
881 {
882 struct pci_dev *pdev = adapter->pdev;
883
884 /* PCI config space info */
885 hw->vendor_id = pdev->vendor;
886 hw->device_id = pdev->device;
887 hw->subsystem_vendor_id = pdev->subsystem_vendor;
888 hw->subsystem_id = pdev->subsystem_device;
889 hw->revision_id = pdev->revision;
890
891 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
892
893 hw->max_frame_size = adapter->netdev->mtu +
894 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
895 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
896
897 /* identify the MAC */
898 if (e1000_set_mac_type(hw)) {
899 e_err(probe, "Unknown MAC Type\n");
900 return -EIO;
901 }
902
903 switch (hw->mac_type) {
904 default:
905 break;
906 case e1000_82541:
907 case e1000_82547:
908 case e1000_82541_rev_2:
909 case e1000_82547_rev_2:
910 hw->phy_init_script = 1;
911 break;
912 }
913
914 e1000_set_media_type(hw);
915 e1000_get_bus_info(hw);
916
917 hw->wait_autoneg_complete = false;
918 hw->tbi_compatibility_en = true;
919 hw->adaptive_ifs = true;
920
921 /* Copper options */
922
923 if (hw->media_type == e1000_media_type_copper) {
924 hw->mdix = AUTO_ALL_MODES;
925 hw->disable_polarity_correction = false;
926 hw->master_slave = E1000_MASTER_SLAVE;
927 }
928
929 return 0;
930 }
931
932 /**
933 * e1000_probe - Device Initialization Routine
934 * @pdev: PCI device information struct
935 * @ent: entry in e1000_pci_tbl
936 *
937 * Returns 0 on success, negative on failure
938 *
939 * e1000_probe initializes an adapter identified by a pci_dev structure.
940 * The OS initialization, configuring of the adapter private structure,
941 * and a hardware reset occur.
942 **/
943 static int __devinit e1000_probe(struct pci_dev *pdev,
944 const struct pci_device_id *ent)
945 {
946 struct net_device *netdev;
947 struct e1000_adapter *adapter;
948 struct e1000_hw *hw;
949
950 static int cards_found = 0;
951 static int global_quad_port_a = 0; /* global ksp3 port a indication */
952 int i, err, pci_using_dac;
953 u16 eeprom_data = 0;
954 u16 tmp = 0;
955 u16 eeprom_apme_mask = E1000_EEPROM_APME;
956 int bars, need_ioport;
957
958 /* do not allocate ioport bars when not needed */
959 need_ioport = e1000_is_need_ioport(pdev);
960 if (need_ioport) {
961 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
962 err = pci_enable_device(pdev);
963 } else {
964 bars = pci_select_bars(pdev, IORESOURCE_MEM);
965 err = pci_enable_device_mem(pdev);
966 }
967 if (err)
968 return err;
969
970 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
971 if (err)
972 goto err_pci_reg;
973
974 pci_set_master(pdev);
975 err = pci_save_state(pdev);
976 if (err)
977 goto err_alloc_etherdev;
978
979 err = -ENOMEM;
980 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
981 if (!netdev)
982 goto err_alloc_etherdev;
983
984 SET_NETDEV_DEV(netdev, &pdev->dev);
985
986 pci_set_drvdata(pdev, netdev);
987 adapter = netdev_priv(netdev);
988 adapter->netdev = netdev;
989 adapter->pdev = pdev;
990 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
991 adapter->bars = bars;
992 adapter->need_ioport = need_ioport;
993
994 hw = &adapter->hw;
995 hw->back = adapter;
996
997 err = -EIO;
998 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
999 if (!hw->hw_addr)
1000 goto err_ioremap;
1001
1002 if (adapter->need_ioport) {
1003 for (i = BAR_1; i <= BAR_5; i++) {
1004 if (pci_resource_len(pdev, i) == 0)
1005 continue;
1006 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1007 hw->io_base = pci_resource_start(pdev, i);
1008 break;
1009 }
1010 }
1011 }
1012
1013 /* make ready for any if (hw->...) below */
1014 err = e1000_init_hw_struct(adapter, hw);
1015 if (err)
1016 goto err_sw_init;
1017
1018 /*
1019 * there is a workaround being applied below that limits
1020 * 64-bit DMA addresses to 64-bit hardware. There are some
1021 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1022 */
1023 pci_using_dac = 0;
1024 if ((hw->bus_type == e1000_bus_type_pcix) &&
1025 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1026 /*
1027 * according to DMA-API-HOWTO, coherent calls will always
1028 * succeed if the set call did
1029 */
1030 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1031 pci_using_dac = 1;
1032 } else {
1033 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1034 if (err) {
1035 pr_err("No usable DMA config, aborting\n");
1036 goto err_dma;
1037 }
1038 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1039 }
1040
1041 netdev->netdev_ops = &e1000_netdev_ops;
1042 e1000_set_ethtool_ops(netdev);
1043 netdev->watchdog_timeo = 5 * HZ;
1044 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1045
1046 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1047
1048 adapter->bd_number = cards_found;
1049
1050 /* setup the private structure */
1051
1052 err = e1000_sw_init(adapter);
1053 if (err)
1054 goto err_sw_init;
1055
1056 err = -EIO;
1057 if (hw->mac_type == e1000_ce4100) {
1058 hw->ce4100_gbe_mdio_base_virt =
1059 ioremap(pci_resource_start(pdev, BAR_1),
1060 pci_resource_len(pdev, BAR_1));
1061
1062 if (!hw->ce4100_gbe_mdio_base_virt)
1063 goto err_mdio_ioremap;
1064 }
1065
1066 if (hw->mac_type >= e1000_82543) {
1067 netdev->hw_features = NETIF_F_SG |
1068 NETIF_F_HW_CSUM |
1069 NETIF_F_HW_VLAN_RX;
1070 netdev->features = NETIF_F_HW_VLAN_TX |
1071 NETIF_F_HW_VLAN_FILTER;
1072 }
1073
1074 if ((hw->mac_type >= e1000_82544) &&
1075 (hw->mac_type != e1000_82547))
1076 netdev->hw_features |= NETIF_F_TSO;
1077
1078 netdev->priv_flags |= IFF_SUPP_NOFCS;
1079
1080 netdev->features |= netdev->hw_features;
1081 netdev->hw_features |= NETIF_F_RXCSUM;
1082 netdev->hw_features |= NETIF_F_RXALL;
1083 netdev->hw_features |= NETIF_F_RXFCS;
1084
1085 if (pci_using_dac) {
1086 netdev->features |= NETIF_F_HIGHDMA;
1087 netdev->vlan_features |= NETIF_F_HIGHDMA;
1088 }
1089
1090 netdev->vlan_features |= NETIF_F_TSO;
1091 netdev->vlan_features |= NETIF_F_HW_CSUM;
1092 netdev->vlan_features |= NETIF_F_SG;
1093
1094 netdev->priv_flags |= IFF_UNICAST_FLT;
1095
1096 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1097
1098 /* initialize eeprom parameters */
1099 if (e1000_init_eeprom_params(hw)) {
1100 e_err(probe, "EEPROM initialization failed\n");
1101 goto err_eeprom;
1102 }
1103
1104 /* before reading the EEPROM, reset the controller to
1105 * put the device in a known good starting state */
1106
1107 e1000_reset_hw(hw);
1108
1109 /* make sure the EEPROM is good */
1110 if (e1000_validate_eeprom_checksum(hw) < 0) {
1111 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1112 e1000_dump_eeprom(adapter);
1113 /*
1114 * set MAC address to all zeroes to invalidate and temporary
1115 * disable this device for the user. This blocks regular
1116 * traffic while still permitting ethtool ioctls from reaching
1117 * the hardware as well as allowing the user to run the
1118 * interface after manually setting a hw addr using
1119 * `ip set address`
1120 */
1121 memset(hw->mac_addr, 0, netdev->addr_len);
1122 } else {
1123 /* copy the MAC address out of the EEPROM */
1124 if (e1000_read_mac_addr(hw))
1125 e_err(probe, "EEPROM Read Error\n");
1126 }
1127 /* don't block initalization here due to bad MAC address */
1128 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1129 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1130
1131 if (!is_valid_ether_addr(netdev->perm_addr))
1132 e_err(probe, "Invalid MAC Address\n");
1133
1134
1135 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1136 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1137 e1000_82547_tx_fifo_stall_task);
1138 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1139 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1140
1141 e1000_check_options(adapter);
1142
1143 /* Initial Wake on LAN setting
1144 * If APM wake is enabled in the EEPROM,
1145 * enable the ACPI Magic Packet filter
1146 */
1147
1148 switch (hw->mac_type) {
1149 case e1000_82542_rev2_0:
1150 case e1000_82542_rev2_1:
1151 case e1000_82543:
1152 break;
1153 case e1000_82544:
1154 e1000_read_eeprom(hw,
1155 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1156 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1157 break;
1158 case e1000_82546:
1159 case e1000_82546_rev_3:
1160 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1161 e1000_read_eeprom(hw,
1162 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1163 break;
1164 }
1165 /* Fall Through */
1166 default:
1167 e1000_read_eeprom(hw,
1168 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1169 break;
1170 }
1171 if (eeprom_data & eeprom_apme_mask)
1172 adapter->eeprom_wol |= E1000_WUFC_MAG;
1173
1174 /* now that we have the eeprom settings, apply the special cases
1175 * where the eeprom may be wrong or the board simply won't support
1176 * wake on lan on a particular port */
1177 switch (pdev->device) {
1178 case E1000_DEV_ID_82546GB_PCIE:
1179 adapter->eeprom_wol = 0;
1180 break;
1181 case E1000_DEV_ID_82546EB_FIBER:
1182 case E1000_DEV_ID_82546GB_FIBER:
1183 /* Wake events only supported on port A for dual fiber
1184 * regardless of eeprom setting */
1185 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1186 adapter->eeprom_wol = 0;
1187 break;
1188 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1189 /* if quad port adapter, disable WoL on all but port A */
1190 if (global_quad_port_a != 0)
1191 adapter->eeprom_wol = 0;
1192 else
1193 adapter->quad_port_a = true;
1194 /* Reset for multiple quad port adapters */
1195 if (++global_quad_port_a == 4)
1196 global_quad_port_a = 0;
1197 break;
1198 }
1199
1200 /* initialize the wol settings based on the eeprom settings */
1201 adapter->wol = adapter->eeprom_wol;
1202 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1203
1204 /* Auto detect PHY address */
1205 if (hw->mac_type == e1000_ce4100) {
1206 for (i = 0; i < 32; i++) {
1207 hw->phy_addr = i;
1208 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1209 if (tmp == 0 || tmp == 0xFF) {
1210 if (i == 31)
1211 goto err_eeprom;
1212 continue;
1213 } else
1214 break;
1215 }
1216 }
1217
1218 /* reset the hardware with the new settings */
1219 e1000_reset(adapter);
1220
1221 strcpy(netdev->name, "eth%d");
1222 err = register_netdev(netdev);
1223 if (err)
1224 goto err_register;
1225
1226 e1000_vlan_filter_on_off(adapter, false);
1227
1228 /* print bus type/speed/width info */
1229 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1230 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1231 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1232 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1233 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1234 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1235 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1236 netdev->dev_addr);
1237
1238 /* carrier off reporting is important to ethtool even BEFORE open */
1239 netif_carrier_off(netdev);
1240
1241 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1242
1243 cards_found++;
1244 return 0;
1245
1246 err_register:
1247 err_eeprom:
1248 e1000_phy_hw_reset(hw);
1249
1250 if (hw->flash_address)
1251 iounmap(hw->flash_address);
1252 kfree(adapter->tx_ring);
1253 kfree(adapter->rx_ring);
1254 err_dma:
1255 err_sw_init:
1256 err_mdio_ioremap:
1257 iounmap(hw->ce4100_gbe_mdio_base_virt);
1258 iounmap(hw->hw_addr);
1259 err_ioremap:
1260 free_netdev(netdev);
1261 err_alloc_etherdev:
1262 pci_release_selected_regions(pdev, bars);
1263 err_pci_reg:
1264 pci_disable_device(pdev);
1265 return err;
1266 }
1267
1268 /**
1269 * e1000_remove - Device Removal Routine
1270 * @pdev: PCI device information struct
1271 *
1272 * e1000_remove is called by the PCI subsystem to alert the driver
1273 * that it should release a PCI device. The could be caused by a
1274 * Hot-Plug event, or because the driver is going to be removed from
1275 * memory.
1276 **/
1277
1278 static void __devexit e1000_remove(struct pci_dev *pdev)
1279 {
1280 struct net_device *netdev = pci_get_drvdata(pdev);
1281 struct e1000_adapter *adapter = netdev_priv(netdev);
1282 struct e1000_hw *hw = &adapter->hw;
1283
1284 e1000_down_and_stop(adapter);
1285 e1000_release_manageability(adapter);
1286
1287 unregister_netdev(netdev);
1288
1289 e1000_phy_hw_reset(hw);
1290
1291 kfree(adapter->tx_ring);
1292 kfree(adapter->rx_ring);
1293
1294 if (hw->mac_type == e1000_ce4100)
1295 iounmap(hw->ce4100_gbe_mdio_base_virt);
1296 iounmap(hw->hw_addr);
1297 if (hw->flash_address)
1298 iounmap(hw->flash_address);
1299 pci_release_selected_regions(pdev, adapter->bars);
1300
1301 free_netdev(netdev);
1302
1303 pci_disable_device(pdev);
1304 }
1305
1306 /**
1307 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1308 * @adapter: board private structure to initialize
1309 *
1310 * e1000_sw_init initializes the Adapter private data structure.
1311 * e1000_init_hw_struct MUST be called before this function
1312 **/
1313
1314 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1315 {
1316 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1317
1318 adapter->num_tx_queues = 1;
1319 adapter->num_rx_queues = 1;
1320
1321 if (e1000_alloc_queues(adapter)) {
1322 e_err(probe, "Unable to allocate memory for queues\n");
1323 return -ENOMEM;
1324 }
1325
1326 /* Explicitly disable IRQ since the NIC can be in any state. */
1327 e1000_irq_disable(adapter);
1328
1329 spin_lock_init(&adapter->stats_lock);
1330 mutex_init(&adapter->mutex);
1331
1332 set_bit(__E1000_DOWN, &adapter->flags);
1333
1334 return 0;
1335 }
1336
1337 /**
1338 * e1000_alloc_queues - Allocate memory for all rings
1339 * @adapter: board private structure to initialize
1340 *
1341 * We allocate one ring per queue at run-time since we don't know the
1342 * number of queues at compile-time.
1343 **/
1344
1345 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1346 {
1347 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1348 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1349 if (!adapter->tx_ring)
1350 return -ENOMEM;
1351
1352 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1353 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1354 if (!adapter->rx_ring) {
1355 kfree(adapter->tx_ring);
1356 return -ENOMEM;
1357 }
1358
1359 return E1000_SUCCESS;
1360 }
1361
1362 /**
1363 * e1000_open - Called when a network interface is made active
1364 * @netdev: network interface device structure
1365 *
1366 * Returns 0 on success, negative value on failure
1367 *
1368 * The open entry point is called when a network interface is made
1369 * active by the system (IFF_UP). At this point all resources needed
1370 * for transmit and receive operations are allocated, the interrupt
1371 * handler is registered with the OS, the watchdog task is started,
1372 * and the stack is notified that the interface is ready.
1373 **/
1374
1375 static int e1000_open(struct net_device *netdev)
1376 {
1377 struct e1000_adapter *adapter = netdev_priv(netdev);
1378 struct e1000_hw *hw = &adapter->hw;
1379 int err;
1380
1381 /* disallow open during test */
1382 if (test_bit(__E1000_TESTING, &adapter->flags))
1383 return -EBUSY;
1384
1385 netif_carrier_off(netdev);
1386
1387 /* allocate transmit descriptors */
1388 err = e1000_setup_all_tx_resources(adapter);
1389 if (err)
1390 goto err_setup_tx;
1391
1392 /* allocate receive descriptors */
1393 err = e1000_setup_all_rx_resources(adapter);
1394 if (err)
1395 goto err_setup_rx;
1396
1397 e1000_power_up_phy(adapter);
1398
1399 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1400 if ((hw->mng_cookie.status &
1401 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1402 e1000_update_mng_vlan(adapter);
1403 }
1404
1405 /* before we allocate an interrupt, we must be ready to handle it.
1406 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1407 * as soon as we call pci_request_irq, so we have to setup our
1408 * clean_rx handler before we do so. */
1409 e1000_configure(adapter);
1410
1411 err = e1000_request_irq(adapter);
1412 if (err)
1413 goto err_req_irq;
1414
1415 /* From here on the code is the same as e1000_up() */
1416 clear_bit(__E1000_DOWN, &adapter->flags);
1417
1418 napi_enable(&adapter->napi);
1419
1420 e1000_irq_enable(adapter);
1421
1422 netif_start_queue(netdev);
1423
1424 /* fire a link status change interrupt to start the watchdog */
1425 ew32(ICS, E1000_ICS_LSC);
1426
1427 return E1000_SUCCESS;
1428
1429 err_req_irq:
1430 e1000_power_down_phy(adapter);
1431 e1000_free_all_rx_resources(adapter);
1432 err_setup_rx:
1433 e1000_free_all_tx_resources(adapter);
1434 err_setup_tx:
1435 e1000_reset(adapter);
1436
1437 return err;
1438 }
1439
1440 /**
1441 * e1000_close - Disables a network interface
1442 * @netdev: network interface device structure
1443 *
1444 * Returns 0, this is not allowed to fail
1445 *
1446 * The close entry point is called when an interface is de-activated
1447 * by the OS. The hardware is still under the drivers control, but
1448 * needs to be disabled. A global MAC reset is issued to stop the
1449 * hardware, and all transmit and receive resources are freed.
1450 **/
1451
1452 static int e1000_close(struct net_device *netdev)
1453 {
1454 struct e1000_adapter *adapter = netdev_priv(netdev);
1455 struct e1000_hw *hw = &adapter->hw;
1456
1457 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1458 e1000_down(adapter);
1459 e1000_power_down_phy(adapter);
1460 e1000_free_irq(adapter);
1461
1462 e1000_free_all_tx_resources(adapter);
1463 e1000_free_all_rx_resources(adapter);
1464
1465 /* kill manageability vlan ID if supported, but not if a vlan with
1466 * the same ID is registered on the host OS (let 8021q kill it) */
1467 if ((hw->mng_cookie.status &
1468 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1469 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1470 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1471 }
1472
1473 return 0;
1474 }
1475
1476 /**
1477 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1478 * @adapter: address of board private structure
1479 * @start: address of beginning of memory
1480 * @len: length of memory
1481 **/
1482 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1483 unsigned long len)
1484 {
1485 struct e1000_hw *hw = &adapter->hw;
1486 unsigned long begin = (unsigned long)start;
1487 unsigned long end = begin + len;
1488
1489 /* First rev 82545 and 82546 need to not allow any memory
1490 * write location to cross 64k boundary due to errata 23 */
1491 if (hw->mac_type == e1000_82545 ||
1492 hw->mac_type == e1000_ce4100 ||
1493 hw->mac_type == e1000_82546) {
1494 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1495 }
1496
1497 return true;
1498 }
1499
1500 /**
1501 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1502 * @adapter: board private structure
1503 * @txdr: tx descriptor ring (for a specific queue) to setup
1504 *
1505 * Return 0 on success, negative on failure
1506 **/
1507
1508 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1509 struct e1000_tx_ring *txdr)
1510 {
1511 struct pci_dev *pdev = adapter->pdev;
1512 int size;
1513
1514 size = sizeof(struct e1000_buffer) * txdr->count;
1515 txdr->buffer_info = vzalloc(size);
1516 if (!txdr->buffer_info) {
1517 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1518 "ring\n");
1519 return -ENOMEM;
1520 }
1521
1522 /* round up to nearest 4K */
1523
1524 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1525 txdr->size = ALIGN(txdr->size, 4096);
1526
1527 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1528 GFP_KERNEL);
1529 if (!txdr->desc) {
1530 setup_tx_desc_die:
1531 vfree(txdr->buffer_info);
1532 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1533 "ring\n");
1534 return -ENOMEM;
1535 }
1536
1537 /* Fix for errata 23, can't cross 64kB boundary */
1538 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539 void *olddesc = txdr->desc;
1540 dma_addr_t olddma = txdr->dma;
1541 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1542 txdr->size, txdr->desc);
1543 /* Try again, without freeing the previous */
1544 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1545 &txdr->dma, GFP_KERNEL);
1546 /* Failed allocation, critical failure */
1547 if (!txdr->desc) {
1548 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1549 olddma);
1550 goto setup_tx_desc_die;
1551 }
1552
1553 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1554 /* give up */
1555 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1556 txdr->dma);
1557 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1558 olddma);
1559 e_err(probe, "Unable to allocate aligned memory "
1560 "for the transmit descriptor ring\n");
1561 vfree(txdr->buffer_info);
1562 return -ENOMEM;
1563 } else {
1564 /* Free old allocation, new allocation was successful */
1565 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1566 olddma);
1567 }
1568 }
1569 memset(txdr->desc, 0, txdr->size);
1570
1571 txdr->next_to_use = 0;
1572 txdr->next_to_clean = 0;
1573
1574 return 0;
1575 }
1576
1577 /**
1578 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1579 * (Descriptors) for all queues
1580 * @adapter: board private structure
1581 *
1582 * Return 0 on success, negative on failure
1583 **/
1584
1585 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1586 {
1587 int i, err = 0;
1588
1589 for (i = 0; i < adapter->num_tx_queues; i++) {
1590 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1591 if (err) {
1592 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1593 for (i-- ; i >= 0; i--)
1594 e1000_free_tx_resources(adapter,
1595 &adapter->tx_ring[i]);
1596 break;
1597 }
1598 }
1599
1600 return err;
1601 }
1602
1603 /**
1604 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1605 * @adapter: board private structure
1606 *
1607 * Configure the Tx unit of the MAC after a reset.
1608 **/
1609
1610 static void e1000_configure_tx(struct e1000_adapter *adapter)
1611 {
1612 u64 tdba;
1613 struct e1000_hw *hw = &adapter->hw;
1614 u32 tdlen, tctl, tipg;
1615 u32 ipgr1, ipgr2;
1616
1617 /* Setup the HW Tx Head and Tail descriptor pointers */
1618
1619 switch (adapter->num_tx_queues) {
1620 case 1:
1621 default:
1622 tdba = adapter->tx_ring[0].dma;
1623 tdlen = adapter->tx_ring[0].count *
1624 sizeof(struct e1000_tx_desc);
1625 ew32(TDLEN, tdlen);
1626 ew32(TDBAH, (tdba >> 32));
1627 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1628 ew32(TDT, 0);
1629 ew32(TDH, 0);
1630 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1631 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1632 break;
1633 }
1634
1635 /* Set the default values for the Tx Inter Packet Gap timer */
1636 if ((hw->media_type == e1000_media_type_fiber ||
1637 hw->media_type == e1000_media_type_internal_serdes))
1638 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1639 else
1640 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1641
1642 switch (hw->mac_type) {
1643 case e1000_82542_rev2_0:
1644 case e1000_82542_rev2_1:
1645 tipg = DEFAULT_82542_TIPG_IPGT;
1646 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1647 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1648 break;
1649 default:
1650 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1651 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1652 break;
1653 }
1654 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1655 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1656 ew32(TIPG, tipg);
1657
1658 /* Set the Tx Interrupt Delay register */
1659
1660 ew32(TIDV, adapter->tx_int_delay);
1661 if (hw->mac_type >= e1000_82540)
1662 ew32(TADV, adapter->tx_abs_int_delay);
1663
1664 /* Program the Transmit Control Register */
1665
1666 tctl = er32(TCTL);
1667 tctl &= ~E1000_TCTL_CT;
1668 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1669 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1670
1671 e1000_config_collision_dist(hw);
1672
1673 /* Setup Transmit Descriptor Settings for eop descriptor */
1674 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1675
1676 /* only set IDE if we are delaying interrupts using the timers */
1677 if (adapter->tx_int_delay)
1678 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1679
1680 if (hw->mac_type < e1000_82543)
1681 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1682 else
1683 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1684
1685 /* Cache if we're 82544 running in PCI-X because we'll
1686 * need this to apply a workaround later in the send path. */
1687 if (hw->mac_type == e1000_82544 &&
1688 hw->bus_type == e1000_bus_type_pcix)
1689 adapter->pcix_82544 = true;
1690
1691 ew32(TCTL, tctl);
1692
1693 }
1694
1695 /**
1696 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1697 * @adapter: board private structure
1698 * @rxdr: rx descriptor ring (for a specific queue) to setup
1699 *
1700 * Returns 0 on success, negative on failure
1701 **/
1702
1703 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1704 struct e1000_rx_ring *rxdr)
1705 {
1706 struct pci_dev *pdev = adapter->pdev;
1707 int size, desc_len;
1708
1709 size = sizeof(struct e1000_buffer) * rxdr->count;
1710 rxdr->buffer_info = vzalloc(size);
1711 if (!rxdr->buffer_info) {
1712 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1713 "ring\n");
1714 return -ENOMEM;
1715 }
1716
1717 desc_len = sizeof(struct e1000_rx_desc);
1718
1719 /* Round up to nearest 4K */
1720
1721 rxdr->size = rxdr->count * desc_len;
1722 rxdr->size = ALIGN(rxdr->size, 4096);
1723
1724 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1725 GFP_KERNEL);
1726
1727 if (!rxdr->desc) {
1728 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1729 "ring\n");
1730 setup_rx_desc_die:
1731 vfree(rxdr->buffer_info);
1732 return -ENOMEM;
1733 }
1734
1735 /* Fix for errata 23, can't cross 64kB boundary */
1736 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1737 void *olddesc = rxdr->desc;
1738 dma_addr_t olddma = rxdr->dma;
1739 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1740 rxdr->size, rxdr->desc);
1741 /* Try again, without freeing the previous */
1742 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1743 &rxdr->dma, GFP_KERNEL);
1744 /* Failed allocation, critical failure */
1745 if (!rxdr->desc) {
1746 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1747 olddma);
1748 e_err(probe, "Unable to allocate memory for the Rx "
1749 "descriptor ring\n");
1750 goto setup_rx_desc_die;
1751 }
1752
1753 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1754 /* give up */
1755 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1756 rxdr->dma);
1757 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1758 olddma);
1759 e_err(probe, "Unable to allocate aligned memory for "
1760 "the Rx descriptor ring\n");
1761 goto setup_rx_desc_die;
1762 } else {
1763 /* Free old allocation, new allocation was successful */
1764 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1765 olddma);
1766 }
1767 }
1768 memset(rxdr->desc, 0, rxdr->size);
1769
1770 rxdr->next_to_clean = 0;
1771 rxdr->next_to_use = 0;
1772 rxdr->rx_skb_top = NULL;
1773
1774 return 0;
1775 }
1776
1777 /**
1778 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1779 * (Descriptors) for all queues
1780 * @adapter: board private structure
1781 *
1782 * Return 0 on success, negative on failure
1783 **/
1784
1785 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1786 {
1787 int i, err = 0;
1788
1789 for (i = 0; i < adapter->num_rx_queues; i++) {
1790 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1791 if (err) {
1792 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1793 for (i-- ; i >= 0; i--)
1794 e1000_free_rx_resources(adapter,
1795 &adapter->rx_ring[i]);
1796 break;
1797 }
1798 }
1799
1800 return err;
1801 }
1802
1803 /**
1804 * e1000_setup_rctl - configure the receive control registers
1805 * @adapter: Board private structure
1806 **/
1807 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1808 {
1809 struct e1000_hw *hw = &adapter->hw;
1810 u32 rctl;
1811
1812 rctl = er32(RCTL);
1813
1814 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1815
1816 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1817 E1000_RCTL_RDMTS_HALF |
1818 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1819
1820 if (hw->tbi_compatibility_on == 1)
1821 rctl |= E1000_RCTL_SBP;
1822 else
1823 rctl &= ~E1000_RCTL_SBP;
1824
1825 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1826 rctl &= ~E1000_RCTL_LPE;
1827 else
1828 rctl |= E1000_RCTL_LPE;
1829
1830 /* Setup buffer sizes */
1831 rctl &= ~E1000_RCTL_SZ_4096;
1832 rctl |= E1000_RCTL_BSEX;
1833 switch (adapter->rx_buffer_len) {
1834 case E1000_RXBUFFER_2048:
1835 default:
1836 rctl |= E1000_RCTL_SZ_2048;
1837 rctl &= ~E1000_RCTL_BSEX;
1838 break;
1839 case E1000_RXBUFFER_4096:
1840 rctl |= E1000_RCTL_SZ_4096;
1841 break;
1842 case E1000_RXBUFFER_8192:
1843 rctl |= E1000_RCTL_SZ_8192;
1844 break;
1845 case E1000_RXBUFFER_16384:
1846 rctl |= E1000_RCTL_SZ_16384;
1847 break;
1848 }
1849
1850 /* This is useful for sniffing bad packets. */
1851 if (adapter->netdev->features & NETIF_F_RXALL) {
1852 /* UPE and MPE will be handled by normal PROMISC logic
1853 * in e1000e_set_rx_mode */
1854 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1855 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1856 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1857
1858 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1859 E1000_RCTL_DPF | /* Allow filtered pause */
1860 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1861 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1862 * and that breaks VLANs.
1863 */
1864 }
1865
1866 ew32(RCTL, rctl);
1867 }
1868
1869 /**
1870 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1871 * @adapter: board private structure
1872 *
1873 * Configure the Rx unit of the MAC after a reset.
1874 **/
1875
1876 static void e1000_configure_rx(struct e1000_adapter *adapter)
1877 {
1878 u64 rdba;
1879 struct e1000_hw *hw = &adapter->hw;
1880 u32 rdlen, rctl, rxcsum;
1881
1882 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1883 rdlen = adapter->rx_ring[0].count *
1884 sizeof(struct e1000_rx_desc);
1885 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1886 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1887 } else {
1888 rdlen = adapter->rx_ring[0].count *
1889 sizeof(struct e1000_rx_desc);
1890 adapter->clean_rx = e1000_clean_rx_irq;
1891 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1892 }
1893
1894 /* disable receives while setting up the descriptors */
1895 rctl = er32(RCTL);
1896 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1897
1898 /* set the Receive Delay Timer Register */
1899 ew32(RDTR, adapter->rx_int_delay);
1900
1901 if (hw->mac_type >= e1000_82540) {
1902 ew32(RADV, adapter->rx_abs_int_delay);
1903 if (adapter->itr_setting != 0)
1904 ew32(ITR, 1000000000 / (adapter->itr * 256));
1905 }
1906
1907 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1908 * the Base and Length of the Rx Descriptor Ring */
1909 switch (adapter->num_rx_queues) {
1910 case 1:
1911 default:
1912 rdba = adapter->rx_ring[0].dma;
1913 ew32(RDLEN, rdlen);
1914 ew32(RDBAH, (rdba >> 32));
1915 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1916 ew32(RDT, 0);
1917 ew32(RDH, 0);
1918 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1919 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1920 break;
1921 }
1922
1923 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1924 if (hw->mac_type >= e1000_82543) {
1925 rxcsum = er32(RXCSUM);
1926 if (adapter->rx_csum)
1927 rxcsum |= E1000_RXCSUM_TUOFL;
1928 else
1929 /* don't need to clear IPPCSE as it defaults to 0 */
1930 rxcsum &= ~E1000_RXCSUM_TUOFL;
1931 ew32(RXCSUM, rxcsum);
1932 }
1933
1934 /* Enable Receives */
1935 ew32(RCTL, rctl | E1000_RCTL_EN);
1936 }
1937
1938 /**
1939 * e1000_free_tx_resources - Free Tx Resources per Queue
1940 * @adapter: board private structure
1941 * @tx_ring: Tx descriptor ring for a specific queue
1942 *
1943 * Free all transmit software resources
1944 **/
1945
1946 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1947 struct e1000_tx_ring *tx_ring)
1948 {
1949 struct pci_dev *pdev = adapter->pdev;
1950
1951 e1000_clean_tx_ring(adapter, tx_ring);
1952
1953 vfree(tx_ring->buffer_info);
1954 tx_ring->buffer_info = NULL;
1955
1956 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1957 tx_ring->dma);
1958
1959 tx_ring->desc = NULL;
1960 }
1961
1962 /**
1963 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1964 * @adapter: board private structure
1965 *
1966 * Free all transmit software resources
1967 **/
1968
1969 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1970 {
1971 int i;
1972
1973 for (i = 0; i < adapter->num_tx_queues; i++)
1974 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1975 }
1976
1977 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1978 struct e1000_buffer *buffer_info)
1979 {
1980 if (buffer_info->dma) {
1981 if (buffer_info->mapped_as_page)
1982 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1983 buffer_info->length, DMA_TO_DEVICE);
1984 else
1985 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1986 buffer_info->length,
1987 DMA_TO_DEVICE);
1988 buffer_info->dma = 0;
1989 }
1990 if (buffer_info->skb) {
1991 dev_kfree_skb_any(buffer_info->skb);
1992 buffer_info->skb = NULL;
1993 }
1994 buffer_info->time_stamp = 0;
1995 /* buffer_info must be completely set up in the transmit path */
1996 }
1997
1998 /**
1999 * e1000_clean_tx_ring - Free Tx Buffers
2000 * @adapter: board private structure
2001 * @tx_ring: ring to be cleaned
2002 **/
2003
2004 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2005 struct e1000_tx_ring *tx_ring)
2006 {
2007 struct e1000_hw *hw = &adapter->hw;
2008 struct e1000_buffer *buffer_info;
2009 unsigned long size;
2010 unsigned int i;
2011
2012 /* Free all the Tx ring sk_buffs */
2013
2014 for (i = 0; i < tx_ring->count; i++) {
2015 buffer_info = &tx_ring->buffer_info[i];
2016 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2017 }
2018
2019 size = sizeof(struct e1000_buffer) * tx_ring->count;
2020 memset(tx_ring->buffer_info, 0, size);
2021
2022 /* Zero out the descriptor ring */
2023
2024 memset(tx_ring->desc, 0, tx_ring->size);
2025
2026 tx_ring->next_to_use = 0;
2027 tx_ring->next_to_clean = 0;
2028 tx_ring->last_tx_tso = false;
2029
2030 writel(0, hw->hw_addr + tx_ring->tdh);
2031 writel(0, hw->hw_addr + tx_ring->tdt);
2032 }
2033
2034 /**
2035 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2036 * @adapter: board private structure
2037 **/
2038
2039 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2040 {
2041 int i;
2042
2043 for (i = 0; i < adapter->num_tx_queues; i++)
2044 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2045 }
2046
2047 /**
2048 * e1000_free_rx_resources - Free Rx Resources
2049 * @adapter: board private structure
2050 * @rx_ring: ring to clean the resources from
2051 *
2052 * Free all receive software resources
2053 **/
2054
2055 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2056 struct e1000_rx_ring *rx_ring)
2057 {
2058 struct pci_dev *pdev = adapter->pdev;
2059
2060 e1000_clean_rx_ring(adapter, rx_ring);
2061
2062 vfree(rx_ring->buffer_info);
2063 rx_ring->buffer_info = NULL;
2064
2065 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2066 rx_ring->dma);
2067
2068 rx_ring->desc = NULL;
2069 }
2070
2071 /**
2072 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2073 * @adapter: board private structure
2074 *
2075 * Free all receive software resources
2076 **/
2077
2078 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2079 {
2080 int i;
2081
2082 for (i = 0; i < adapter->num_rx_queues; i++)
2083 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2084 }
2085
2086 /**
2087 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2088 * @adapter: board private structure
2089 * @rx_ring: ring to free buffers from
2090 **/
2091
2092 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2093 struct e1000_rx_ring *rx_ring)
2094 {
2095 struct e1000_hw *hw = &adapter->hw;
2096 struct e1000_buffer *buffer_info;
2097 struct pci_dev *pdev = adapter->pdev;
2098 unsigned long size;
2099 unsigned int i;
2100
2101 /* Free all the Rx ring sk_buffs */
2102 for (i = 0; i < rx_ring->count; i++) {
2103 buffer_info = &rx_ring->buffer_info[i];
2104 if (buffer_info->dma &&
2105 adapter->clean_rx == e1000_clean_rx_irq) {
2106 dma_unmap_single(&pdev->dev, buffer_info->dma,
2107 buffer_info->length,
2108 DMA_FROM_DEVICE);
2109 } else if (buffer_info->dma &&
2110 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2111 dma_unmap_page(&pdev->dev, buffer_info->dma,
2112 buffer_info->length,
2113 DMA_FROM_DEVICE);
2114 }
2115
2116 buffer_info->dma = 0;
2117 if (buffer_info->page) {
2118 put_page(buffer_info->page);
2119 buffer_info->page = NULL;
2120 }
2121 if (buffer_info->skb) {
2122 dev_kfree_skb(buffer_info->skb);
2123 buffer_info->skb = NULL;
2124 }
2125 }
2126
2127 /* there also may be some cached data from a chained receive */
2128 if (rx_ring->rx_skb_top) {
2129 dev_kfree_skb(rx_ring->rx_skb_top);
2130 rx_ring->rx_skb_top = NULL;
2131 }
2132
2133 size = sizeof(struct e1000_buffer) * rx_ring->count;
2134 memset(rx_ring->buffer_info, 0, size);
2135
2136 /* Zero out the descriptor ring */
2137 memset(rx_ring->desc, 0, rx_ring->size);
2138
2139 rx_ring->next_to_clean = 0;
2140 rx_ring->next_to_use = 0;
2141
2142 writel(0, hw->hw_addr + rx_ring->rdh);
2143 writel(0, hw->hw_addr + rx_ring->rdt);
2144 }
2145
2146 /**
2147 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2148 * @adapter: board private structure
2149 **/
2150
2151 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2152 {
2153 int i;
2154
2155 for (i = 0; i < adapter->num_rx_queues; i++)
2156 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2157 }
2158
2159 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2160 * and memory write and invalidate disabled for certain operations
2161 */
2162 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2163 {
2164 struct e1000_hw *hw = &adapter->hw;
2165 struct net_device *netdev = adapter->netdev;
2166 u32 rctl;
2167
2168 e1000_pci_clear_mwi(hw);
2169
2170 rctl = er32(RCTL);
2171 rctl |= E1000_RCTL_RST;
2172 ew32(RCTL, rctl);
2173 E1000_WRITE_FLUSH();
2174 mdelay(5);
2175
2176 if (netif_running(netdev))
2177 e1000_clean_all_rx_rings(adapter);
2178 }
2179
2180 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2181 {
2182 struct e1000_hw *hw = &adapter->hw;
2183 struct net_device *netdev = adapter->netdev;
2184 u32 rctl;
2185
2186 rctl = er32(RCTL);
2187 rctl &= ~E1000_RCTL_RST;
2188 ew32(RCTL, rctl);
2189 E1000_WRITE_FLUSH();
2190 mdelay(5);
2191
2192 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2193 e1000_pci_set_mwi(hw);
2194
2195 if (netif_running(netdev)) {
2196 /* No need to loop, because 82542 supports only 1 queue */
2197 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2198 e1000_configure_rx(adapter);
2199 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2200 }
2201 }
2202
2203 /**
2204 * e1000_set_mac - Change the Ethernet Address of the NIC
2205 * @netdev: network interface device structure
2206 * @p: pointer to an address structure
2207 *
2208 * Returns 0 on success, negative on failure
2209 **/
2210
2211 static int e1000_set_mac(struct net_device *netdev, void *p)
2212 {
2213 struct e1000_adapter *adapter = netdev_priv(netdev);
2214 struct e1000_hw *hw = &adapter->hw;
2215 struct sockaddr *addr = p;
2216
2217 if (!is_valid_ether_addr(addr->sa_data))
2218 return -EADDRNOTAVAIL;
2219
2220 /* 82542 2.0 needs to be in reset to write receive address registers */
2221
2222 if (hw->mac_type == e1000_82542_rev2_0)
2223 e1000_enter_82542_rst(adapter);
2224
2225 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2226 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2227
2228 e1000_rar_set(hw, hw->mac_addr, 0);
2229
2230 if (hw->mac_type == e1000_82542_rev2_0)
2231 e1000_leave_82542_rst(adapter);
2232
2233 return 0;
2234 }
2235
2236 /**
2237 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2238 * @netdev: network interface device structure
2239 *
2240 * The set_rx_mode entry point is called whenever the unicast or multicast
2241 * address lists or the network interface flags are updated. This routine is
2242 * responsible for configuring the hardware for proper unicast, multicast,
2243 * promiscuous mode, and all-multi behavior.
2244 **/
2245
2246 static void e1000_set_rx_mode(struct net_device *netdev)
2247 {
2248 struct e1000_adapter *adapter = netdev_priv(netdev);
2249 struct e1000_hw *hw = &adapter->hw;
2250 struct netdev_hw_addr *ha;
2251 bool use_uc = false;
2252 u32 rctl;
2253 u32 hash_value;
2254 int i, rar_entries = E1000_RAR_ENTRIES;
2255 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2256 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2257
2258 if (!mcarray) {
2259 e_err(probe, "memory allocation failed\n");
2260 return;
2261 }
2262
2263 /* Check for Promiscuous and All Multicast modes */
2264
2265 rctl = er32(RCTL);
2266
2267 if (netdev->flags & IFF_PROMISC) {
2268 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2269 rctl &= ~E1000_RCTL_VFE;
2270 } else {
2271 if (netdev->flags & IFF_ALLMULTI)
2272 rctl |= E1000_RCTL_MPE;
2273 else
2274 rctl &= ~E1000_RCTL_MPE;
2275 /* Enable VLAN filter if there is a VLAN */
2276 if (e1000_vlan_used(adapter))
2277 rctl |= E1000_RCTL_VFE;
2278 }
2279
2280 if (netdev_uc_count(netdev) > rar_entries - 1) {
2281 rctl |= E1000_RCTL_UPE;
2282 } else if (!(netdev->flags & IFF_PROMISC)) {
2283 rctl &= ~E1000_RCTL_UPE;
2284 use_uc = true;
2285 }
2286
2287 ew32(RCTL, rctl);
2288
2289 /* 82542 2.0 needs to be in reset to write receive address registers */
2290
2291 if (hw->mac_type == e1000_82542_rev2_0)
2292 e1000_enter_82542_rst(adapter);
2293
2294 /* load the first 14 addresses into the exact filters 1-14. Unicast
2295 * addresses take precedence to avoid disabling unicast filtering
2296 * when possible.
2297 *
2298 * RAR 0 is used for the station MAC address
2299 * if there are not 14 addresses, go ahead and clear the filters
2300 */
2301 i = 1;
2302 if (use_uc)
2303 netdev_for_each_uc_addr(ha, netdev) {
2304 if (i == rar_entries)
2305 break;
2306 e1000_rar_set(hw, ha->addr, i++);
2307 }
2308
2309 netdev_for_each_mc_addr(ha, netdev) {
2310 if (i == rar_entries) {
2311 /* load any remaining addresses into the hash table */
2312 u32 hash_reg, hash_bit, mta;
2313 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2314 hash_reg = (hash_value >> 5) & 0x7F;
2315 hash_bit = hash_value & 0x1F;
2316 mta = (1 << hash_bit);
2317 mcarray[hash_reg] |= mta;
2318 } else {
2319 e1000_rar_set(hw, ha->addr, i++);
2320 }
2321 }
2322
2323 for (; i < rar_entries; i++) {
2324 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2325 E1000_WRITE_FLUSH();
2326 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2327 E1000_WRITE_FLUSH();
2328 }
2329
2330 /* write the hash table completely, write from bottom to avoid
2331 * both stupid write combining chipsets, and flushing each write */
2332 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2333 /*
2334 * If we are on an 82544 has an errata where writing odd
2335 * offsets overwrites the previous even offset, but writing
2336 * backwards over the range solves the issue by always
2337 * writing the odd offset first
2338 */
2339 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2340 }
2341 E1000_WRITE_FLUSH();
2342
2343 if (hw->mac_type == e1000_82542_rev2_0)
2344 e1000_leave_82542_rst(adapter);
2345
2346 kfree(mcarray);
2347 }
2348
2349 /**
2350 * e1000_update_phy_info_task - get phy info
2351 * @work: work struct contained inside adapter struct
2352 *
2353 * Need to wait a few seconds after link up to get diagnostic information from
2354 * the phy
2355 */
2356 static void e1000_update_phy_info_task(struct work_struct *work)
2357 {
2358 struct e1000_adapter *adapter = container_of(work,
2359 struct e1000_adapter,
2360 phy_info_task.work);
2361 if (test_bit(__E1000_DOWN, &adapter->flags))
2362 return;
2363 mutex_lock(&adapter->mutex);
2364 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2365 mutex_unlock(&adapter->mutex);
2366 }
2367
2368 /**
2369 * e1000_82547_tx_fifo_stall_task - task to complete work
2370 * @work: work struct contained inside adapter struct
2371 **/
2372 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2373 {
2374 struct e1000_adapter *adapter = container_of(work,
2375 struct e1000_adapter,
2376 fifo_stall_task.work);
2377 struct e1000_hw *hw = &adapter->hw;
2378 struct net_device *netdev = adapter->netdev;
2379 u32 tctl;
2380
2381 if (test_bit(__E1000_DOWN, &adapter->flags))
2382 return;
2383 mutex_lock(&adapter->mutex);
2384 if (atomic_read(&adapter->tx_fifo_stall)) {
2385 if ((er32(TDT) == er32(TDH)) &&
2386 (er32(TDFT) == er32(TDFH)) &&
2387 (er32(TDFTS) == er32(TDFHS))) {
2388 tctl = er32(TCTL);
2389 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2390 ew32(TDFT, adapter->tx_head_addr);
2391 ew32(TDFH, adapter->tx_head_addr);
2392 ew32(TDFTS, adapter->tx_head_addr);
2393 ew32(TDFHS, adapter->tx_head_addr);
2394 ew32(TCTL, tctl);
2395 E1000_WRITE_FLUSH();
2396
2397 adapter->tx_fifo_head = 0;
2398 atomic_set(&adapter->tx_fifo_stall, 0);
2399 netif_wake_queue(netdev);
2400 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2401 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2402 }
2403 }
2404 mutex_unlock(&adapter->mutex);
2405 }
2406
2407 bool e1000_has_link(struct e1000_adapter *adapter)
2408 {
2409 struct e1000_hw *hw = &adapter->hw;
2410 bool link_active = false;
2411
2412 /* get_link_status is set on LSC (link status) interrupt or rx
2413 * sequence error interrupt (except on intel ce4100).
2414 * get_link_status will stay false until the
2415 * e1000_check_for_link establishes link for copper adapters
2416 * ONLY
2417 */
2418 switch (hw->media_type) {
2419 case e1000_media_type_copper:
2420 if (hw->mac_type == e1000_ce4100)
2421 hw->get_link_status = 1;
2422 if (hw->get_link_status) {
2423 e1000_check_for_link(hw);
2424 link_active = !hw->get_link_status;
2425 } else {
2426 link_active = true;
2427 }
2428 break;
2429 case e1000_media_type_fiber:
2430 e1000_check_for_link(hw);
2431 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2432 break;
2433 case e1000_media_type_internal_serdes:
2434 e1000_check_for_link(hw);
2435 link_active = hw->serdes_has_link;
2436 break;
2437 default:
2438 break;
2439 }
2440
2441 return link_active;
2442 }
2443
2444 /**
2445 * e1000_watchdog - work function
2446 * @work: work struct contained inside adapter struct
2447 **/
2448 static void e1000_watchdog(struct work_struct *work)
2449 {
2450 struct e1000_adapter *adapter = container_of(work,
2451 struct e1000_adapter,
2452 watchdog_task.work);
2453 struct e1000_hw *hw = &adapter->hw;
2454 struct net_device *netdev = adapter->netdev;
2455 struct e1000_tx_ring *txdr = adapter->tx_ring;
2456 u32 link, tctl;
2457
2458 if (test_bit(__E1000_DOWN, &adapter->flags))
2459 return;
2460
2461 mutex_lock(&adapter->mutex);
2462 link = e1000_has_link(adapter);
2463 if ((netif_carrier_ok(netdev)) && link)
2464 goto link_up;
2465
2466 if (link) {
2467 if (!netif_carrier_ok(netdev)) {
2468 u32 ctrl;
2469 bool txb2b = true;
2470 /* update snapshot of PHY registers on LSC */
2471 e1000_get_speed_and_duplex(hw,
2472 &adapter->link_speed,
2473 &adapter->link_duplex);
2474
2475 ctrl = er32(CTRL);
2476 pr_info("%s NIC Link is Up %d Mbps %s, "
2477 "Flow Control: %s\n",
2478 netdev->name,
2479 adapter->link_speed,
2480 adapter->link_duplex == FULL_DUPLEX ?
2481 "Full Duplex" : "Half Duplex",
2482 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2483 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2484 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2485 E1000_CTRL_TFCE) ? "TX" : "None")));
2486
2487 /* adjust timeout factor according to speed/duplex */
2488 adapter->tx_timeout_factor = 1;
2489 switch (adapter->link_speed) {
2490 case SPEED_10:
2491 txb2b = false;
2492 adapter->tx_timeout_factor = 16;
2493 break;
2494 case SPEED_100:
2495 txb2b = false;
2496 /* maybe add some timeout factor ? */
2497 break;
2498 }
2499
2500 /* enable transmits in the hardware */
2501 tctl = er32(TCTL);
2502 tctl |= E1000_TCTL_EN;
2503 ew32(TCTL, tctl);
2504
2505 netif_carrier_on(netdev);
2506 if (!test_bit(__E1000_DOWN, &adapter->flags))
2507 schedule_delayed_work(&adapter->phy_info_task,
2508 2 * HZ);
2509 adapter->smartspeed = 0;
2510 }
2511 } else {
2512 if (netif_carrier_ok(netdev)) {
2513 adapter->link_speed = 0;
2514 adapter->link_duplex = 0;
2515 pr_info("%s NIC Link is Down\n",
2516 netdev->name);
2517 netif_carrier_off(netdev);
2518
2519 if (!test_bit(__E1000_DOWN, &adapter->flags))
2520 schedule_delayed_work(&adapter->phy_info_task,
2521 2 * HZ);
2522 }
2523
2524 e1000_smartspeed(adapter);
2525 }
2526
2527 link_up:
2528 e1000_update_stats(adapter);
2529
2530 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2531 adapter->tpt_old = adapter->stats.tpt;
2532 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2533 adapter->colc_old = adapter->stats.colc;
2534
2535 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2536 adapter->gorcl_old = adapter->stats.gorcl;
2537 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2538 adapter->gotcl_old = adapter->stats.gotcl;
2539
2540 e1000_update_adaptive(hw);
2541
2542 if (!netif_carrier_ok(netdev)) {
2543 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2544 /* We've lost link, so the controller stops DMA,
2545 * but we've got queued Tx work that's never going
2546 * to get done, so reset controller to flush Tx.
2547 * (Do the reset outside of interrupt context). */
2548 adapter->tx_timeout_count++;
2549 schedule_work(&adapter->reset_task);
2550 /* exit immediately since reset is imminent */
2551 goto unlock;
2552 }
2553 }
2554
2555 /* Simple mode for Interrupt Throttle Rate (ITR) */
2556 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2557 /*
2558 * Symmetric Tx/Rx gets a reduced ITR=2000;
2559 * Total asymmetrical Tx or Rx gets ITR=8000;
2560 * everyone else is between 2000-8000.
2561 */
2562 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2563 u32 dif = (adapter->gotcl > adapter->gorcl ?
2564 adapter->gotcl - adapter->gorcl :
2565 adapter->gorcl - adapter->gotcl) / 10000;
2566 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2567
2568 ew32(ITR, 1000000000 / (itr * 256));
2569 }
2570
2571 /* Cause software interrupt to ensure rx ring is cleaned */
2572 ew32(ICS, E1000_ICS_RXDMT0);
2573
2574 /* Force detection of hung controller every watchdog period */
2575 adapter->detect_tx_hung = true;
2576
2577 /* Reschedule the task */
2578 if (!test_bit(__E1000_DOWN, &adapter->flags))
2579 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2580
2581 unlock:
2582 mutex_unlock(&adapter->mutex);
2583 }
2584
2585 enum latency_range {
2586 lowest_latency = 0,
2587 low_latency = 1,
2588 bulk_latency = 2,
2589 latency_invalid = 255
2590 };
2591
2592 /**
2593 * e1000_update_itr - update the dynamic ITR value based on statistics
2594 * @adapter: pointer to adapter
2595 * @itr_setting: current adapter->itr
2596 * @packets: the number of packets during this measurement interval
2597 * @bytes: the number of bytes during this measurement interval
2598 *
2599 * Stores a new ITR value based on packets and byte
2600 * counts during the last interrupt. The advantage of per interrupt
2601 * computation is faster updates and more accurate ITR for the current
2602 * traffic pattern. Constants in this function were computed
2603 * based on theoretical maximum wire speed and thresholds were set based
2604 * on testing data as well as attempting to minimize response time
2605 * while increasing bulk throughput.
2606 * this functionality is controlled by the InterruptThrottleRate module
2607 * parameter (see e1000_param.c)
2608 **/
2609 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2610 u16 itr_setting, int packets, int bytes)
2611 {
2612 unsigned int retval = itr_setting;
2613 struct e1000_hw *hw = &adapter->hw;
2614
2615 if (unlikely(hw->mac_type < e1000_82540))
2616 goto update_itr_done;
2617
2618 if (packets == 0)
2619 goto update_itr_done;
2620
2621 switch (itr_setting) {
2622 case lowest_latency:
2623 /* jumbo frames get bulk treatment*/
2624 if (bytes/packets > 8000)
2625 retval = bulk_latency;
2626 else if ((packets < 5) && (bytes > 512))
2627 retval = low_latency;
2628 break;
2629 case low_latency: /* 50 usec aka 20000 ints/s */
2630 if (bytes > 10000) {
2631 /* jumbo frames need bulk latency setting */
2632 if (bytes/packets > 8000)
2633 retval = bulk_latency;
2634 else if ((packets < 10) || ((bytes/packets) > 1200))
2635 retval = bulk_latency;
2636 else if ((packets > 35))
2637 retval = lowest_latency;
2638 } else if (bytes/packets > 2000)
2639 retval = bulk_latency;
2640 else if (packets <= 2 && bytes < 512)
2641 retval = lowest_latency;
2642 break;
2643 case bulk_latency: /* 250 usec aka 4000 ints/s */
2644 if (bytes > 25000) {
2645 if (packets > 35)
2646 retval = low_latency;
2647 } else if (bytes < 6000) {
2648 retval = low_latency;
2649 }
2650 break;
2651 }
2652
2653 update_itr_done:
2654 return retval;
2655 }
2656
2657 static void e1000_set_itr(struct e1000_adapter *adapter)
2658 {
2659 struct e1000_hw *hw = &adapter->hw;
2660 u16 current_itr;
2661 u32 new_itr = adapter->itr;
2662
2663 if (unlikely(hw->mac_type < e1000_82540))
2664 return;
2665
2666 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2667 if (unlikely(adapter->link_speed != SPEED_1000)) {
2668 current_itr = 0;
2669 new_itr = 4000;
2670 goto set_itr_now;
2671 }
2672
2673 adapter->tx_itr = e1000_update_itr(adapter,
2674 adapter->tx_itr,
2675 adapter->total_tx_packets,
2676 adapter->total_tx_bytes);
2677 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2678 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2679 adapter->tx_itr = low_latency;
2680
2681 adapter->rx_itr = e1000_update_itr(adapter,
2682 adapter->rx_itr,
2683 adapter->total_rx_packets,
2684 adapter->total_rx_bytes);
2685 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2686 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2687 adapter->rx_itr = low_latency;
2688
2689 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2690
2691 switch (current_itr) {
2692 /* counts and packets in update_itr are dependent on these numbers */
2693 case lowest_latency:
2694 new_itr = 70000;
2695 break;
2696 case low_latency:
2697 new_itr = 20000; /* aka hwitr = ~200 */
2698 break;
2699 case bulk_latency:
2700 new_itr = 4000;
2701 break;
2702 default:
2703 break;
2704 }
2705
2706 set_itr_now:
2707 if (new_itr != adapter->itr) {
2708 /* this attempts to bias the interrupt rate towards Bulk
2709 * by adding intermediate steps when interrupt rate is
2710 * increasing */
2711 new_itr = new_itr > adapter->itr ?
2712 min(adapter->itr + (new_itr >> 2), new_itr) :
2713 new_itr;
2714 adapter->itr = new_itr;
2715 ew32(ITR, 1000000000 / (new_itr * 256));
2716 }
2717 }
2718
2719 #define E1000_TX_FLAGS_CSUM 0x00000001
2720 #define E1000_TX_FLAGS_VLAN 0x00000002
2721 #define E1000_TX_FLAGS_TSO 0x00000004
2722 #define E1000_TX_FLAGS_IPV4 0x00000008
2723 #define E1000_TX_FLAGS_NO_FCS 0x00000010
2724 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2725 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2726
2727 static int e1000_tso(struct e1000_adapter *adapter,
2728 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2729 {
2730 struct e1000_context_desc *context_desc;
2731 struct e1000_buffer *buffer_info;
2732 unsigned int i;
2733 u32 cmd_length = 0;
2734 u16 ipcse = 0, tucse, mss;
2735 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2736 int err;
2737
2738 if (skb_is_gso(skb)) {
2739 if (skb_header_cloned(skb)) {
2740 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2741 if (err)
2742 return err;
2743 }
2744
2745 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2746 mss = skb_shinfo(skb)->gso_size;
2747 if (skb->protocol == htons(ETH_P_IP)) {
2748 struct iphdr *iph = ip_hdr(skb);
2749 iph->tot_len = 0;
2750 iph->check = 0;
2751 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2752 iph->daddr, 0,
2753 IPPROTO_TCP,
2754 0);
2755 cmd_length = E1000_TXD_CMD_IP;
2756 ipcse = skb_transport_offset(skb) - 1;
2757 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2758 ipv6_hdr(skb)->payload_len = 0;
2759 tcp_hdr(skb)->check =
2760 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2761 &ipv6_hdr(skb)->daddr,
2762 0, IPPROTO_TCP, 0);
2763 ipcse = 0;
2764 }
2765 ipcss = skb_network_offset(skb);
2766 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2767 tucss = skb_transport_offset(skb);
2768 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2769 tucse = 0;
2770
2771 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2772 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2773
2774 i = tx_ring->next_to_use;
2775 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2776 buffer_info = &tx_ring->buffer_info[i];
2777
2778 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2779 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2780 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2781 context_desc->upper_setup.tcp_fields.tucss = tucss;
2782 context_desc->upper_setup.tcp_fields.tucso = tucso;
2783 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2784 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2785 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2786 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2787
2788 buffer_info->time_stamp = jiffies;
2789 buffer_info->next_to_watch = i;
2790
2791 if (++i == tx_ring->count) i = 0;
2792 tx_ring->next_to_use = i;
2793
2794 return true;
2795 }
2796 return false;
2797 }
2798
2799 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2800 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2801 {
2802 struct e1000_context_desc *context_desc;
2803 struct e1000_buffer *buffer_info;
2804 unsigned int i;
2805 u8 css;
2806 u32 cmd_len = E1000_TXD_CMD_DEXT;
2807
2808 if (skb->ip_summed != CHECKSUM_PARTIAL)
2809 return false;
2810
2811 switch (skb->protocol) {
2812 case cpu_to_be16(ETH_P_IP):
2813 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2814 cmd_len |= E1000_TXD_CMD_TCP;
2815 break;
2816 case cpu_to_be16(ETH_P_IPV6):
2817 /* XXX not handling all IPV6 headers */
2818 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2819 cmd_len |= E1000_TXD_CMD_TCP;
2820 break;
2821 default:
2822 if (unlikely(net_ratelimit()))
2823 e_warn(drv, "checksum_partial proto=%x!\n",
2824 skb->protocol);
2825 break;
2826 }
2827
2828 css = skb_checksum_start_offset(skb);
2829
2830 i = tx_ring->next_to_use;
2831 buffer_info = &tx_ring->buffer_info[i];
2832 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2833
2834 context_desc->lower_setup.ip_config = 0;
2835 context_desc->upper_setup.tcp_fields.tucss = css;
2836 context_desc->upper_setup.tcp_fields.tucso =
2837 css + skb->csum_offset;
2838 context_desc->upper_setup.tcp_fields.tucse = 0;
2839 context_desc->tcp_seg_setup.data = 0;
2840 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2841
2842 buffer_info->time_stamp = jiffies;
2843 buffer_info->next_to_watch = i;
2844
2845 if (unlikely(++i == tx_ring->count)) i = 0;
2846 tx_ring->next_to_use = i;
2847
2848 return true;
2849 }
2850
2851 #define E1000_MAX_TXD_PWR 12
2852 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2853
2854 static int e1000_tx_map(struct e1000_adapter *adapter,
2855 struct e1000_tx_ring *tx_ring,
2856 struct sk_buff *skb, unsigned int first,
2857 unsigned int max_per_txd, unsigned int nr_frags,
2858 unsigned int mss)
2859 {
2860 struct e1000_hw *hw = &adapter->hw;
2861 struct pci_dev *pdev = adapter->pdev;
2862 struct e1000_buffer *buffer_info;
2863 unsigned int len = skb_headlen(skb);
2864 unsigned int offset = 0, size, count = 0, i;
2865 unsigned int f, bytecount, segs;
2866
2867 i = tx_ring->next_to_use;
2868
2869 while (len) {
2870 buffer_info = &tx_ring->buffer_info[i];
2871 size = min(len, max_per_txd);
2872 /* Workaround for Controller erratum --
2873 * descriptor for non-tso packet in a linear SKB that follows a
2874 * tso gets written back prematurely before the data is fully
2875 * DMA'd to the controller */
2876 if (!skb->data_len && tx_ring->last_tx_tso &&
2877 !skb_is_gso(skb)) {
2878 tx_ring->last_tx_tso = false;
2879 size -= 4;
2880 }
2881
2882 /* Workaround for premature desc write-backs
2883 * in TSO mode. Append 4-byte sentinel desc */
2884 if (unlikely(mss && !nr_frags && size == len && size > 8))
2885 size -= 4;
2886 /* work-around for errata 10 and it applies
2887 * to all controllers in PCI-X mode
2888 * The fix is to make sure that the first descriptor of a
2889 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2890 */
2891 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2892 (size > 2015) && count == 0))
2893 size = 2015;
2894
2895 /* Workaround for potential 82544 hang in PCI-X. Avoid
2896 * terminating buffers within evenly-aligned dwords. */
2897 if (unlikely(adapter->pcix_82544 &&
2898 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2899 size > 4))
2900 size -= 4;
2901
2902 buffer_info->length = size;
2903 /* set time_stamp *before* dma to help avoid a possible race */
2904 buffer_info->time_stamp = jiffies;
2905 buffer_info->mapped_as_page = false;
2906 buffer_info->dma = dma_map_single(&pdev->dev,
2907 skb->data + offset,
2908 size, DMA_TO_DEVICE);
2909 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2910 goto dma_error;
2911 buffer_info->next_to_watch = i;
2912
2913 len -= size;
2914 offset += size;
2915 count++;
2916 if (len) {
2917 i++;
2918 if (unlikely(i == tx_ring->count))
2919 i = 0;
2920 }
2921 }
2922
2923 for (f = 0; f < nr_frags; f++) {
2924 const struct skb_frag_struct *frag;
2925
2926 frag = &skb_shinfo(skb)->frags[f];
2927 len = skb_frag_size(frag);
2928 offset = 0;
2929
2930 while (len) {
2931 unsigned long bufend;
2932 i++;
2933 if (unlikely(i == tx_ring->count))
2934 i = 0;
2935
2936 buffer_info = &tx_ring->buffer_info[i];
2937 size = min(len, max_per_txd);
2938 /* Workaround for premature desc write-backs
2939 * in TSO mode. Append 4-byte sentinel desc */
2940 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2941 size -= 4;
2942 /* Workaround for potential 82544 hang in PCI-X.
2943 * Avoid terminating buffers within evenly-aligned
2944 * dwords. */
2945 bufend = (unsigned long)
2946 page_to_phys(skb_frag_page(frag));
2947 bufend += offset + size - 1;
2948 if (unlikely(adapter->pcix_82544 &&
2949 !(bufend & 4) &&
2950 size > 4))
2951 size -= 4;
2952
2953 buffer_info->length = size;
2954 buffer_info->time_stamp = jiffies;
2955 buffer_info->mapped_as_page = true;
2956 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2957 offset, size, DMA_TO_DEVICE);
2958 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2959 goto dma_error;
2960 buffer_info->next_to_watch = i;
2961
2962 len -= size;
2963 offset += size;
2964 count++;
2965 }
2966 }
2967
2968 segs = skb_shinfo(skb)->gso_segs ?: 1;
2969 /* multiply data chunks by size of headers */
2970 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2971
2972 tx_ring->buffer_info[i].skb = skb;
2973 tx_ring->buffer_info[i].segs = segs;
2974 tx_ring->buffer_info[i].bytecount = bytecount;
2975 tx_ring->buffer_info[first].next_to_watch = i;
2976
2977 return count;
2978
2979 dma_error:
2980 dev_err(&pdev->dev, "TX DMA map failed\n");
2981 buffer_info->dma = 0;
2982 if (count)
2983 count--;
2984
2985 while (count--) {
2986 if (i==0)
2987 i += tx_ring->count;
2988 i--;
2989 buffer_info = &tx_ring->buffer_info[i];
2990 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2991 }
2992
2993 return 0;
2994 }
2995
2996 static void e1000_tx_queue(struct e1000_adapter *adapter,
2997 struct e1000_tx_ring *tx_ring, int tx_flags,
2998 int count)
2999 {
3000 struct e1000_hw *hw = &adapter->hw;
3001 struct e1000_tx_desc *tx_desc = NULL;
3002 struct e1000_buffer *buffer_info;
3003 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3004 unsigned int i;
3005
3006 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3007 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3008 E1000_TXD_CMD_TSE;
3009 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3010
3011 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3012 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3013 }
3014
3015 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3016 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3017 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3018 }
3019
3020 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3021 txd_lower |= E1000_TXD_CMD_VLE;
3022 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3023 }
3024
3025 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3026 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3027
3028 i = tx_ring->next_to_use;
3029
3030 while (count--) {
3031 buffer_info = &tx_ring->buffer_info[i];
3032 tx_desc = E1000_TX_DESC(*tx_ring, i);
3033 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3034 tx_desc->lower.data =
3035 cpu_to_le32(txd_lower | buffer_info->length);
3036 tx_desc->upper.data = cpu_to_le32(txd_upper);
3037 if (unlikely(++i == tx_ring->count)) i = 0;
3038 }
3039
3040 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3041
3042 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3043 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3044 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3045
3046 /* Force memory writes to complete before letting h/w
3047 * know there are new descriptors to fetch. (Only
3048 * applicable for weak-ordered memory model archs,
3049 * such as IA-64). */
3050 wmb();
3051
3052 tx_ring->next_to_use = i;
3053 writel(i, hw->hw_addr + tx_ring->tdt);
3054 /* we need this if more than one processor can write to our tail
3055 * at a time, it syncronizes IO on IA64/Altix systems */
3056 mmiowb();
3057 }
3058
3059 /**
3060 * 82547 workaround to avoid controller hang in half-duplex environment.
3061 * The workaround is to avoid queuing a large packet that would span
3062 * the internal Tx FIFO ring boundary by notifying the stack to resend
3063 * the packet at a later time. This gives the Tx FIFO an opportunity to
3064 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3065 * to the beginning of the Tx FIFO.
3066 **/
3067
3068 #define E1000_FIFO_HDR 0x10
3069 #define E1000_82547_PAD_LEN 0x3E0
3070
3071 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3072 struct sk_buff *skb)
3073 {
3074 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3075 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3076
3077 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3078
3079 if (adapter->link_duplex != HALF_DUPLEX)
3080 goto no_fifo_stall_required;
3081
3082 if (atomic_read(&adapter->tx_fifo_stall))
3083 return 1;
3084
3085 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3086 atomic_set(&adapter->tx_fifo_stall, 1);
3087 return 1;
3088 }
3089
3090 no_fifo_stall_required:
3091 adapter->tx_fifo_head += skb_fifo_len;
3092 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3093 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3094 return 0;
3095 }
3096
3097 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3098 {
3099 struct e1000_adapter *adapter = netdev_priv(netdev);
3100 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3101
3102 netif_stop_queue(netdev);
3103 /* Herbert's original patch had:
3104 * smp_mb__after_netif_stop_queue();
3105 * but since that doesn't exist yet, just open code it. */
3106 smp_mb();
3107
3108 /* We need to check again in a case another CPU has just
3109 * made room available. */
3110 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3111 return -EBUSY;
3112
3113 /* A reprieve! */
3114 netif_start_queue(netdev);
3115 ++adapter->restart_queue;
3116 return 0;
3117 }
3118
3119 static int e1000_maybe_stop_tx(struct net_device *netdev,
3120 struct e1000_tx_ring *tx_ring, int size)
3121 {
3122 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3123 return 0;
3124 return __e1000_maybe_stop_tx(netdev, size);
3125 }
3126
3127 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3128 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3129 struct net_device *netdev)
3130 {
3131 struct e1000_adapter *adapter = netdev_priv(netdev);
3132 struct e1000_hw *hw = &adapter->hw;
3133 struct e1000_tx_ring *tx_ring;
3134 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3135 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3136 unsigned int tx_flags = 0;
3137 unsigned int len = skb_headlen(skb);
3138 unsigned int nr_frags;
3139 unsigned int mss;
3140 int count = 0;
3141 int tso;
3142 unsigned int f;
3143
3144 /* This goes back to the question of how to logically map a tx queue
3145 * to a flow. Right now, performance is impacted slightly negatively
3146 * if using multiple tx queues. If the stack breaks away from a
3147 * single qdisc implementation, we can look at this again. */
3148 tx_ring = adapter->tx_ring;
3149
3150 if (unlikely(skb->len <= 0)) {
3151 dev_kfree_skb_any(skb);
3152 return NETDEV_TX_OK;
3153 }
3154
3155 mss = skb_shinfo(skb)->gso_size;
3156 /* The controller does a simple calculation to
3157 * make sure there is enough room in the FIFO before
3158 * initiating the DMA for each buffer. The calc is:
3159 * 4 = ceil(buffer len/mss). To make sure we don't
3160 * overrun the FIFO, adjust the max buffer len if mss
3161 * drops. */
3162 if (mss) {
3163 u8 hdr_len;
3164 max_per_txd = min(mss << 2, max_per_txd);
3165 max_txd_pwr = fls(max_per_txd) - 1;
3166
3167 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3168 if (skb->data_len && hdr_len == len) {
3169 switch (hw->mac_type) {
3170 unsigned int pull_size;
3171 case e1000_82544:
3172 /* Make sure we have room to chop off 4 bytes,
3173 * and that the end alignment will work out to
3174 * this hardware's requirements
3175 * NOTE: this is a TSO only workaround
3176 * if end byte alignment not correct move us
3177 * into the next dword */
3178 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3179 break;
3180 /* fall through */
3181 pull_size = min((unsigned int)4, skb->data_len);
3182 if (!__pskb_pull_tail(skb, pull_size)) {
3183 e_err(drv, "__pskb_pull_tail "
3184 "failed.\n");
3185 dev_kfree_skb_any(skb);
3186 return NETDEV_TX_OK;
3187 }
3188 len = skb_headlen(skb);
3189 break;
3190 default:
3191 /* do nothing */
3192 break;
3193 }
3194 }
3195 }
3196
3197 /* reserve a descriptor for the offload context */
3198 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3199 count++;
3200 count++;
3201
3202 /* Controller Erratum workaround */
3203 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3204 count++;
3205
3206 count += TXD_USE_COUNT(len, max_txd_pwr);
3207
3208 if (adapter->pcix_82544)
3209 count++;
3210
3211 /* work-around for errata 10 and it applies to all controllers
3212 * in PCI-X mode, so add one more descriptor to the count
3213 */
3214 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3215 (len > 2015)))
3216 count++;
3217
3218 nr_frags = skb_shinfo(skb)->nr_frags;
3219 for (f = 0; f < nr_frags; f++)
3220 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3221 max_txd_pwr);
3222 if (adapter->pcix_82544)
3223 count += nr_frags;
3224
3225 /* need: count + 2 desc gap to keep tail from touching
3226 * head, otherwise try next time */
3227 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3228 return NETDEV_TX_BUSY;
3229
3230 if (unlikely((hw->mac_type == e1000_82547) &&
3231 (e1000_82547_fifo_workaround(adapter, skb)))) {
3232 netif_stop_queue(netdev);
3233 if (!test_bit(__E1000_DOWN, &adapter->flags))
3234 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3235 return NETDEV_TX_BUSY;
3236 }
3237
3238 if (vlan_tx_tag_present(skb)) {
3239 tx_flags |= E1000_TX_FLAGS_VLAN;
3240 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3241 }
3242
3243 first = tx_ring->next_to_use;
3244
3245 tso = e1000_tso(adapter, tx_ring, skb);
3246 if (tso < 0) {
3247 dev_kfree_skb_any(skb);
3248 return NETDEV_TX_OK;
3249 }
3250
3251 if (likely(tso)) {
3252 if (likely(hw->mac_type != e1000_82544))
3253 tx_ring->last_tx_tso = true;
3254 tx_flags |= E1000_TX_FLAGS_TSO;
3255 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3256 tx_flags |= E1000_TX_FLAGS_CSUM;
3257
3258 if (likely(skb->protocol == htons(ETH_P_IP)))
3259 tx_flags |= E1000_TX_FLAGS_IPV4;
3260
3261 if (unlikely(skb->no_fcs))
3262 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3263
3264 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3265 nr_frags, mss);
3266
3267 if (count) {
3268 skb_tx_timestamp(skb);
3269
3270 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3271 /* Make sure there is space in the ring for the next send. */
3272 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3273
3274 } else {
3275 dev_kfree_skb_any(skb);
3276 tx_ring->buffer_info[first].time_stamp = 0;
3277 tx_ring->next_to_use = first;
3278 }
3279
3280 return NETDEV_TX_OK;
3281 }
3282
3283 #define NUM_REGS 38 /* 1 based count */
3284 static void e1000_regdump(struct e1000_adapter *adapter)
3285 {
3286 struct e1000_hw *hw = &adapter->hw;
3287 u32 regs[NUM_REGS];
3288 u32 *regs_buff = regs;
3289 int i = 0;
3290
3291 static const char * const reg_name[] = {
3292 "CTRL", "STATUS",
3293 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3294 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3295 "TIDV", "TXDCTL", "TADV", "TARC0",
3296 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3297 "TXDCTL1", "TARC1",
3298 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3299 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3300 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3301 };
3302
3303 regs_buff[0] = er32(CTRL);
3304 regs_buff[1] = er32(STATUS);
3305
3306 regs_buff[2] = er32(RCTL);
3307 regs_buff[3] = er32(RDLEN);
3308 regs_buff[4] = er32(RDH);
3309 regs_buff[5] = er32(RDT);
3310 regs_buff[6] = er32(RDTR);
3311
3312 regs_buff[7] = er32(TCTL);
3313 regs_buff[8] = er32(TDBAL);
3314 regs_buff[9] = er32(TDBAH);
3315 regs_buff[10] = er32(TDLEN);
3316 regs_buff[11] = er32(TDH);
3317 regs_buff[12] = er32(TDT);
3318 regs_buff[13] = er32(TIDV);
3319 regs_buff[14] = er32(TXDCTL);
3320 regs_buff[15] = er32(TADV);
3321 regs_buff[16] = er32(TARC0);
3322
3323 regs_buff[17] = er32(TDBAL1);
3324 regs_buff[18] = er32(TDBAH1);
3325 regs_buff[19] = er32(TDLEN1);
3326 regs_buff[20] = er32(TDH1);
3327 regs_buff[21] = er32(TDT1);
3328 regs_buff[22] = er32(TXDCTL1);
3329 regs_buff[23] = er32(TARC1);
3330 regs_buff[24] = er32(CTRL_EXT);
3331 regs_buff[25] = er32(ERT);
3332 regs_buff[26] = er32(RDBAL0);
3333 regs_buff[27] = er32(RDBAH0);
3334 regs_buff[28] = er32(TDFH);
3335 regs_buff[29] = er32(TDFT);
3336 regs_buff[30] = er32(TDFHS);
3337 regs_buff[31] = er32(TDFTS);
3338 regs_buff[32] = er32(TDFPC);
3339 regs_buff[33] = er32(RDFH);
3340 regs_buff[34] = er32(RDFT);
3341 regs_buff[35] = er32(RDFHS);
3342 regs_buff[36] = er32(RDFTS);
3343 regs_buff[37] = er32(RDFPC);
3344
3345 pr_info("Register dump\n");
3346 for (i = 0; i < NUM_REGS; i++)
3347 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3348 }
3349
3350 /*
3351 * e1000_dump: Print registers, tx ring and rx ring
3352 */
3353 static void e1000_dump(struct e1000_adapter *adapter)
3354 {
3355 /* this code doesn't handle multiple rings */
3356 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3357 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3358 int i;
3359
3360 if (!netif_msg_hw(adapter))
3361 return;
3362
3363 /* Print Registers */
3364 e1000_regdump(adapter);
3365
3366 /*
3367 * transmit dump
3368 */
3369 pr_info("TX Desc ring0 dump\n");
3370
3371 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3372 *
3373 * Legacy Transmit Descriptor
3374 * +--------------------------------------------------------------+
3375 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3376 * +--------------------------------------------------------------+
3377 * 8 | Special | CSS | Status | CMD | CSO | Length |
3378 * +--------------------------------------------------------------+
3379 * 63 48 47 36 35 32 31 24 23 16 15 0
3380 *
3381 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3382 * 63 48 47 40 39 32 31 16 15 8 7 0
3383 * +----------------------------------------------------------------+
3384 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3385 * +----------------------------------------------------------------+
3386 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3387 * +----------------------------------------------------------------+
3388 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3389 *
3390 * Extended Data Descriptor (DTYP=0x1)
3391 * +----------------------------------------------------------------+
3392 * 0 | Buffer Address [63:0] |
3393 * +----------------------------------------------------------------+
3394 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3395 * +----------------------------------------------------------------+
3396 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3397 */
3398 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3399 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3400
3401 if (!netif_msg_tx_done(adapter))
3402 goto rx_ring_summary;
3403
3404 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3405 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3406 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3407 struct my_u { __le64 a; __le64 b; };
3408 struct my_u *u = (struct my_u *)tx_desc;
3409 const char *type;
3410
3411 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3412 type = "NTC/U";
3413 else if (i == tx_ring->next_to_use)
3414 type = "NTU";
3415 else if (i == tx_ring->next_to_clean)
3416 type = "NTC";
3417 else
3418 type = "";
3419
3420 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3421 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3422 le64_to_cpu(u->a), le64_to_cpu(u->b),
3423 (u64)buffer_info->dma, buffer_info->length,
3424 buffer_info->next_to_watch,
3425 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3426 }
3427
3428 rx_ring_summary:
3429 /*
3430 * receive dump
3431 */
3432 pr_info("\nRX Desc ring dump\n");
3433
3434 /* Legacy Receive Descriptor Format
3435 *
3436 * +-----------------------------------------------------+
3437 * | Buffer Address [63:0] |
3438 * +-----------------------------------------------------+
3439 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440 * +-----------------------------------------------------+
3441 * 63 48 47 40 39 32 31 16 15 0
3442 */
3443 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3444
3445 if (!netif_msg_rx_status(adapter))
3446 goto exit;
3447
3448 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3451 struct my_u { __le64 a; __le64 b; };
3452 struct my_u *u = (struct my_u *)rx_desc;
3453 const char *type;
3454
3455 if (i == rx_ring->next_to_use)
3456 type = "NTU";
3457 else if (i == rx_ring->next_to_clean)
3458 type = "NTC";
3459 else
3460 type = "";
3461
3462 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3463 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464 (u64)buffer_info->dma, buffer_info->skb, type);
3465 } /* for */
3466
3467 /* dump the descriptor caches */
3468 /* rx */
3469 pr_info("Rx descriptor cache in 64bit format\n");
3470 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472 i,
3473 readl(adapter->hw.hw_addr + i+4),
3474 readl(adapter->hw.hw_addr + i),
3475 readl(adapter->hw.hw_addr + i+12),
3476 readl(adapter->hw.hw_addr + i+8));
3477 }
3478 /* tx */
3479 pr_info("Tx descriptor cache in 64bit format\n");
3480 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482 i,
3483 readl(adapter->hw.hw_addr + i+4),
3484 readl(adapter->hw.hw_addr + i),
3485 readl(adapter->hw.hw_addr + i+12),
3486 readl(adapter->hw.hw_addr + i+8));
3487 }
3488 exit:
3489 return;
3490 }
3491
3492 /**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 **/
3496
3497 static void e1000_tx_timeout(struct net_device *netdev)
3498 {
3499 struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501 /* Do the reset outside of interrupt context */
3502 adapter->tx_timeout_count++;
3503 schedule_work(&adapter->reset_task);
3504 }
3505
3506 static void e1000_reset_task(struct work_struct *work)
3507 {
3508 struct e1000_adapter *adapter =
3509 container_of(work, struct e1000_adapter, reset_task);
3510
3511 if (test_bit(__E1000_DOWN, &adapter->flags))
3512 return;
3513 e_err(drv, "Reset adapter\n");
3514 e1000_reinit_safe(adapter);
3515 }
3516
3517 /**
3518 * e1000_get_stats - Get System Network Statistics
3519 * @netdev: network interface device structure
3520 *
3521 * Returns the address of the device statistics structure.
3522 * The statistics are actually updated from the watchdog.
3523 **/
3524
3525 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3526 {
3527 /* only return the current stats */
3528 return &netdev->stats;
3529 }
3530
3531 /**
3532 * e1000_change_mtu - Change the Maximum Transfer Unit
3533 * @netdev: network interface device structure
3534 * @new_mtu: new value for maximum frame size
3535 *
3536 * Returns 0 on success, negative on failure
3537 **/
3538
3539 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3540 {
3541 struct e1000_adapter *adapter = netdev_priv(netdev);
3542 struct e1000_hw *hw = &adapter->hw;
3543 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3544
3545 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3546 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3547 e_err(probe, "Invalid MTU setting\n");
3548 return -EINVAL;
3549 }
3550
3551 /* Adapter-specific max frame size limits. */
3552 switch (hw->mac_type) {
3553 case e1000_undefined ... e1000_82542_rev2_1:
3554 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3555 e_err(probe, "Jumbo Frames not supported.\n");
3556 return -EINVAL;
3557 }
3558 break;
3559 default:
3560 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3561 break;
3562 }
3563
3564 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3565 msleep(1);
3566 /* e1000_down has a dependency on max_frame_size */
3567 hw->max_frame_size = max_frame;
3568 if (netif_running(netdev))
3569 e1000_down(adapter);
3570
3571 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3572 * means we reserve 2 more, this pushes us to allocate from the next
3573 * larger slab size.
3574 * i.e. RXBUFFER_2048 --> size-4096 slab
3575 * however with the new *_jumbo_rx* routines, jumbo receives will use
3576 * fragmented skbs */
3577
3578 if (max_frame <= E1000_RXBUFFER_2048)
3579 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3580 else
3581 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3582 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3583 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3584 adapter->rx_buffer_len = PAGE_SIZE;
3585 #endif
3586
3587 /* adjust allocation if LPE protects us, and we aren't using SBP */
3588 if (!hw->tbi_compatibility_on &&
3589 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3590 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3591 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3592
3593 pr_info("%s changing MTU from %d to %d\n",
3594 netdev->name, netdev->mtu, new_mtu);
3595 netdev->mtu = new_mtu;
3596
3597 if (netif_running(netdev))
3598 e1000_up(adapter);
3599 else
3600 e1000_reset(adapter);
3601
3602 clear_bit(__E1000_RESETTING, &adapter->flags);
3603
3604 return 0;
3605 }
3606
3607 /**
3608 * e1000_update_stats - Update the board statistics counters
3609 * @adapter: board private structure
3610 **/
3611
3612 void e1000_update_stats(struct e1000_adapter *adapter)
3613 {
3614 struct net_device *netdev = adapter->netdev;
3615 struct e1000_hw *hw = &adapter->hw;
3616 struct pci_dev *pdev = adapter->pdev;
3617 unsigned long flags;
3618 u16 phy_tmp;
3619
3620 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3621
3622 /*
3623 * Prevent stats update while adapter is being reset, or if the pci
3624 * connection is down.
3625 */
3626 if (adapter->link_speed == 0)
3627 return;
3628 if (pci_channel_offline(pdev))
3629 return;
3630
3631 spin_lock_irqsave(&adapter->stats_lock, flags);
3632
3633 /* these counters are modified from e1000_tbi_adjust_stats,
3634 * called from the interrupt context, so they must only
3635 * be written while holding adapter->stats_lock
3636 */
3637
3638 adapter->stats.crcerrs += er32(CRCERRS);
3639 adapter->stats.gprc += er32(GPRC);
3640 adapter->stats.gorcl += er32(GORCL);
3641 adapter->stats.gorch += er32(GORCH);
3642 adapter->stats.bprc += er32(BPRC);
3643 adapter->stats.mprc += er32(MPRC);
3644 adapter->stats.roc += er32(ROC);
3645
3646 adapter->stats.prc64 += er32(PRC64);
3647 adapter->stats.prc127 += er32(PRC127);
3648 adapter->stats.prc255 += er32(PRC255);
3649 adapter->stats.prc511 += er32(PRC511);
3650 adapter->stats.prc1023 += er32(PRC1023);
3651 adapter->stats.prc1522 += er32(PRC1522);
3652
3653 adapter->stats.symerrs += er32(SYMERRS);
3654 adapter->stats.mpc += er32(MPC);
3655 adapter->stats.scc += er32(SCC);
3656 adapter->stats.ecol += er32(ECOL);
3657 adapter->stats.mcc += er32(MCC);
3658 adapter->stats.latecol += er32(LATECOL);
3659 adapter->stats.dc += er32(DC);
3660 adapter->stats.sec += er32(SEC);
3661 adapter->stats.rlec += er32(RLEC);
3662 adapter->stats.xonrxc += er32(XONRXC);
3663 adapter->stats.xontxc += er32(XONTXC);
3664 adapter->stats.xoffrxc += er32(XOFFRXC);
3665 adapter->stats.xofftxc += er32(XOFFTXC);
3666 adapter->stats.fcruc += er32(FCRUC);
3667 adapter->stats.gptc += er32(GPTC);
3668 adapter->stats.gotcl += er32(GOTCL);
3669 adapter->stats.gotch += er32(GOTCH);
3670 adapter->stats.rnbc += er32(RNBC);
3671 adapter->stats.ruc += er32(RUC);
3672 adapter->stats.rfc += er32(RFC);
3673 adapter->stats.rjc += er32(RJC);
3674 adapter->stats.torl += er32(TORL);
3675 adapter->stats.torh += er32(TORH);
3676 adapter->stats.totl += er32(TOTL);
3677 adapter->stats.toth += er32(TOTH);
3678 adapter->stats.tpr += er32(TPR);
3679
3680 adapter->stats.ptc64 += er32(PTC64);
3681 adapter->stats.ptc127 += er32(PTC127);
3682 adapter->stats.ptc255 += er32(PTC255);
3683 adapter->stats.ptc511 += er32(PTC511);
3684 adapter->stats.ptc1023 += er32(PTC1023);
3685 adapter->stats.ptc1522 += er32(PTC1522);
3686
3687 adapter->stats.mptc += er32(MPTC);
3688 adapter->stats.bptc += er32(BPTC);
3689
3690 /* used for adaptive IFS */
3691
3692 hw->tx_packet_delta = er32(TPT);
3693 adapter->stats.tpt += hw->tx_packet_delta;
3694 hw->collision_delta = er32(COLC);
3695 adapter->stats.colc += hw->collision_delta;
3696
3697 if (hw->mac_type >= e1000_82543) {
3698 adapter->stats.algnerrc += er32(ALGNERRC);
3699 adapter->stats.rxerrc += er32(RXERRC);
3700 adapter->stats.tncrs += er32(TNCRS);
3701 adapter->stats.cexterr += er32(CEXTERR);
3702 adapter->stats.tsctc += er32(TSCTC);
3703 adapter->stats.tsctfc += er32(TSCTFC);
3704 }
3705
3706 /* Fill out the OS statistics structure */
3707 netdev->stats.multicast = adapter->stats.mprc;
3708 netdev->stats.collisions = adapter->stats.colc;
3709
3710 /* Rx Errors */
3711
3712 /* RLEC on some newer hardware can be incorrect so build
3713 * our own version based on RUC and ROC */
3714 netdev->stats.rx_errors = adapter->stats.rxerrc +
3715 adapter->stats.crcerrs + adapter->stats.algnerrc +
3716 adapter->stats.ruc + adapter->stats.roc +
3717 adapter->stats.cexterr;
3718 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3719 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3720 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3721 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3722 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3723
3724 /* Tx Errors */
3725 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3726 netdev->stats.tx_errors = adapter->stats.txerrc;
3727 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3728 netdev->stats.tx_window_errors = adapter->stats.latecol;
3729 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3730 if (hw->bad_tx_carr_stats_fd &&
3731 adapter->link_duplex == FULL_DUPLEX) {
3732 netdev->stats.tx_carrier_errors = 0;
3733 adapter->stats.tncrs = 0;
3734 }
3735
3736 /* Tx Dropped needs to be maintained elsewhere */
3737
3738 /* Phy Stats */
3739 if (hw->media_type == e1000_media_type_copper) {
3740 if ((adapter->link_speed == SPEED_1000) &&
3741 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3742 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3743 adapter->phy_stats.idle_errors += phy_tmp;
3744 }
3745
3746 if ((hw->mac_type <= e1000_82546) &&
3747 (hw->phy_type == e1000_phy_m88) &&
3748 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3749 adapter->phy_stats.receive_errors += phy_tmp;
3750 }
3751
3752 /* Management Stats */
3753 if (hw->has_smbus) {
3754 adapter->stats.mgptc += er32(MGTPTC);
3755 adapter->stats.mgprc += er32(MGTPRC);
3756 adapter->stats.mgpdc += er32(MGTPDC);
3757 }
3758
3759 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3760 }
3761
3762 /**
3763 * e1000_intr - Interrupt Handler
3764 * @irq: interrupt number
3765 * @data: pointer to a network interface device structure
3766 **/
3767
3768 static irqreturn_t e1000_intr(int irq, void *data)
3769 {
3770 struct net_device *netdev = data;
3771 struct e1000_adapter *adapter = netdev_priv(netdev);
3772 struct e1000_hw *hw = &adapter->hw;
3773 u32 icr = er32(ICR);
3774
3775 if (unlikely((!icr)))
3776 return IRQ_NONE; /* Not our interrupt */
3777
3778 /*
3779 * we might have caused the interrupt, but the above
3780 * read cleared it, and just in case the driver is
3781 * down there is nothing to do so return handled
3782 */
3783 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3784 return IRQ_HANDLED;
3785
3786 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3787 hw->get_link_status = 1;
3788 /* guard against interrupt when we're going down */
3789 if (!test_bit(__E1000_DOWN, &adapter->flags))
3790 schedule_delayed_work(&adapter->watchdog_task, 1);
3791 }
3792
3793 /* disable interrupts, without the synchronize_irq bit */
3794 ew32(IMC, ~0);
3795 E1000_WRITE_FLUSH();
3796
3797 if (likely(napi_schedule_prep(&adapter->napi))) {
3798 adapter->total_tx_bytes = 0;
3799 adapter->total_tx_packets = 0;
3800 adapter->total_rx_bytes = 0;
3801 adapter->total_rx_packets = 0;
3802 __napi_schedule(&adapter->napi);
3803 } else {
3804 /* this really should not happen! if it does it is basically a
3805 * bug, but not a hard error, so enable ints and continue */
3806 if (!test_bit(__E1000_DOWN, &adapter->flags))
3807 e1000_irq_enable(adapter);
3808 }
3809
3810 return IRQ_HANDLED;
3811 }
3812
3813 /**
3814 * e1000_clean - NAPI Rx polling callback
3815 * @adapter: board private structure
3816 **/
3817 static int e1000_clean(struct napi_struct *napi, int budget)
3818 {
3819 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3820 int tx_clean_complete = 0, work_done = 0;
3821
3822 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3823
3824 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3825
3826 if (!tx_clean_complete)
3827 work_done = budget;
3828
3829 /* If budget not fully consumed, exit the polling mode */
3830 if (work_done < budget) {
3831 if (likely(adapter->itr_setting & 3))
3832 e1000_set_itr(adapter);
3833 napi_complete(napi);
3834 if (!test_bit(__E1000_DOWN, &adapter->flags))
3835 e1000_irq_enable(adapter);
3836 }
3837
3838 return work_done;
3839 }
3840
3841 /**
3842 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3843 * @adapter: board private structure
3844 **/
3845 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3846 struct e1000_tx_ring *tx_ring)
3847 {
3848 struct e1000_hw *hw = &adapter->hw;
3849 struct net_device *netdev = adapter->netdev;
3850 struct e1000_tx_desc *tx_desc, *eop_desc;
3851 struct e1000_buffer *buffer_info;
3852 unsigned int i, eop;
3853 unsigned int count = 0;
3854 unsigned int total_tx_bytes=0, total_tx_packets=0;
3855
3856 i = tx_ring->next_to_clean;
3857 eop = tx_ring->buffer_info[i].next_to_watch;
3858 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3859
3860 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3861 (count < tx_ring->count)) {
3862 bool cleaned = false;
3863 rmb(); /* read buffer_info after eop_desc */
3864 for ( ; !cleaned; count++) {
3865 tx_desc = E1000_TX_DESC(*tx_ring, i);
3866 buffer_info = &tx_ring->buffer_info[i];
3867 cleaned = (i == eop);
3868
3869 if (cleaned) {
3870 total_tx_packets += buffer_info->segs;
3871 total_tx_bytes += buffer_info->bytecount;
3872 }
3873 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3874 tx_desc->upper.data = 0;
3875
3876 if (unlikely(++i == tx_ring->count)) i = 0;
3877 }
3878
3879 eop = tx_ring->buffer_info[i].next_to_watch;
3880 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3881 }
3882
3883 tx_ring->next_to_clean = i;
3884
3885 #define TX_WAKE_THRESHOLD 32
3886 if (unlikely(count && netif_carrier_ok(netdev) &&
3887 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3888 /* Make sure that anybody stopping the queue after this
3889 * sees the new next_to_clean.
3890 */
3891 smp_mb();
3892
3893 if (netif_queue_stopped(netdev) &&
3894 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3895 netif_wake_queue(netdev);
3896 ++adapter->restart_queue;
3897 }
3898 }
3899
3900 if (adapter->detect_tx_hung) {
3901 /* Detect a transmit hang in hardware, this serializes the
3902 * check with the clearing of time_stamp and movement of i */
3903 adapter->detect_tx_hung = false;
3904 if (tx_ring->buffer_info[eop].time_stamp &&
3905 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3906 (adapter->tx_timeout_factor * HZ)) &&
3907 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3908
3909 /* detected Tx unit hang */
3910 e_err(drv, "Detected Tx Unit Hang\n"
3911 " Tx Queue <%lu>\n"
3912 " TDH <%x>\n"
3913 " TDT <%x>\n"
3914 " next_to_use <%x>\n"
3915 " next_to_clean <%x>\n"
3916 "buffer_info[next_to_clean]\n"
3917 " time_stamp <%lx>\n"
3918 " next_to_watch <%x>\n"
3919 " jiffies <%lx>\n"
3920 " next_to_watch.status <%x>\n",
3921 (unsigned long)((tx_ring - adapter->tx_ring) /
3922 sizeof(struct e1000_tx_ring)),
3923 readl(hw->hw_addr + tx_ring->tdh),
3924 readl(hw->hw_addr + tx_ring->tdt),
3925 tx_ring->next_to_use,
3926 tx_ring->next_to_clean,
3927 tx_ring->buffer_info[eop].time_stamp,
3928 eop,
3929 jiffies,
3930 eop_desc->upper.fields.status);
3931 e1000_dump(adapter);
3932 netif_stop_queue(netdev);
3933 }
3934 }
3935 adapter->total_tx_bytes += total_tx_bytes;
3936 adapter->total_tx_packets += total_tx_packets;
3937 netdev->stats.tx_bytes += total_tx_bytes;
3938 netdev->stats.tx_packets += total_tx_packets;
3939 return count < tx_ring->count;
3940 }
3941
3942 /**
3943 * e1000_rx_checksum - Receive Checksum Offload for 82543
3944 * @adapter: board private structure
3945 * @status_err: receive descriptor status and error fields
3946 * @csum: receive descriptor csum field
3947 * @sk_buff: socket buffer with received data
3948 **/
3949
3950 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3951 u32 csum, struct sk_buff *skb)
3952 {
3953 struct e1000_hw *hw = &adapter->hw;
3954 u16 status = (u16)status_err;
3955 u8 errors = (u8)(status_err >> 24);
3956
3957 skb_checksum_none_assert(skb);
3958
3959 /* 82543 or newer only */
3960 if (unlikely(hw->mac_type < e1000_82543)) return;
3961 /* Ignore Checksum bit is set */
3962 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3963 /* TCP/UDP checksum error bit is set */
3964 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3965 /* let the stack verify checksum errors */
3966 adapter->hw_csum_err++;
3967 return;
3968 }
3969 /* TCP/UDP Checksum has not been calculated */
3970 if (!(status & E1000_RXD_STAT_TCPCS))
3971 return;
3972
3973 /* It must be a TCP or UDP packet with a valid checksum */
3974 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3975 /* TCP checksum is good */
3976 skb->ip_summed = CHECKSUM_UNNECESSARY;
3977 }
3978 adapter->hw_csum_good++;
3979 }
3980
3981 /**
3982 * e1000_consume_page - helper function
3983 **/
3984 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3985 u16 length)
3986 {
3987 bi->page = NULL;
3988 skb->len += length;
3989 skb->data_len += length;
3990 skb->truesize += PAGE_SIZE;
3991 }
3992
3993 /**
3994 * e1000_receive_skb - helper function to handle rx indications
3995 * @adapter: board private structure
3996 * @status: descriptor status field as written by hardware
3997 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3998 * @skb: pointer to sk_buff to be indicated to stack
3999 */
4000 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4001 __le16 vlan, struct sk_buff *skb)
4002 {
4003 skb->protocol = eth_type_trans(skb, adapter->netdev);
4004
4005 if (status & E1000_RXD_STAT_VP) {
4006 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4007
4008 __vlan_hwaccel_put_tag(skb, vid);
4009 }
4010 napi_gro_receive(&adapter->napi, skb);
4011 }
4012
4013 /**
4014 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4015 * @adapter: board private structure
4016 * @rx_ring: ring to clean
4017 * @work_done: amount of napi work completed this call
4018 * @work_to_do: max amount of work allowed for this call to do
4019 *
4020 * the return value indicates whether actual cleaning was done, there
4021 * is no guarantee that everything was cleaned
4022 */
4023 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4024 struct e1000_rx_ring *rx_ring,
4025 int *work_done, int work_to_do)
4026 {
4027 struct e1000_hw *hw = &adapter->hw;
4028 struct net_device *netdev = adapter->netdev;
4029 struct pci_dev *pdev = adapter->pdev;
4030 struct e1000_rx_desc *rx_desc, *next_rxd;
4031 struct e1000_buffer *buffer_info, *next_buffer;
4032 unsigned long irq_flags;
4033 u32 length;
4034 unsigned int i;
4035 int cleaned_count = 0;
4036 bool cleaned = false;
4037 unsigned int total_rx_bytes=0, total_rx_packets=0;
4038
4039 i = rx_ring->next_to_clean;
4040 rx_desc = E1000_RX_DESC(*rx_ring, i);
4041 buffer_info = &rx_ring->buffer_info[i];
4042
4043 while (rx_desc->status & E1000_RXD_STAT_DD) {
4044 struct sk_buff *skb;
4045 u8 status;
4046
4047 if (*work_done >= work_to_do)
4048 break;
4049 (*work_done)++;
4050 rmb(); /* read descriptor and rx_buffer_info after status DD */
4051
4052 status = rx_desc->status;
4053 skb = buffer_info->skb;
4054 buffer_info->skb = NULL;
4055
4056 if (++i == rx_ring->count) i = 0;
4057 next_rxd = E1000_RX_DESC(*rx_ring, i);
4058 prefetch(next_rxd);
4059
4060 next_buffer = &rx_ring->buffer_info[i];
4061
4062 cleaned = true;
4063 cleaned_count++;
4064 dma_unmap_page(&pdev->dev, buffer_info->dma,
4065 buffer_info->length, DMA_FROM_DEVICE);
4066 buffer_info->dma = 0;
4067
4068 length = le16_to_cpu(rx_desc->length);
4069
4070 /* errors is only valid for DD + EOP descriptors */
4071 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4072 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4073 u8 *mapped;
4074 u8 last_byte;
4075
4076 mapped = page_address(buffer_info->page);
4077 last_byte = *(mapped + length - 1);
4078 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4079 last_byte)) {
4080 spin_lock_irqsave(&adapter->stats_lock,
4081 irq_flags);
4082 e1000_tbi_adjust_stats(hw, &adapter->stats,
4083 length, mapped);
4084 spin_unlock_irqrestore(&adapter->stats_lock,
4085 irq_flags);
4086 length--;
4087 } else {
4088 if (netdev->features & NETIF_F_RXALL)
4089 goto process_skb;
4090 /* recycle both page and skb */
4091 buffer_info->skb = skb;
4092 /* an error means any chain goes out the window
4093 * too */
4094 if (rx_ring->rx_skb_top)
4095 dev_kfree_skb(rx_ring->rx_skb_top);
4096 rx_ring->rx_skb_top = NULL;
4097 goto next_desc;
4098 }
4099 }
4100
4101 #define rxtop rx_ring->rx_skb_top
4102 process_skb:
4103 if (!(status & E1000_RXD_STAT_EOP)) {
4104 /* this descriptor is only the beginning (or middle) */
4105 if (!rxtop) {
4106 /* this is the beginning of a chain */
4107 rxtop = skb;
4108 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4109 0, length);
4110 } else {
4111 /* this is the middle of a chain */
4112 skb_fill_page_desc(rxtop,
4113 skb_shinfo(rxtop)->nr_frags,
4114 buffer_info->page, 0, length);
4115 /* re-use the skb, only consumed the page */
4116 buffer_info->skb = skb;
4117 }
4118 e1000_consume_page(buffer_info, rxtop, length);
4119 goto next_desc;
4120 } else {
4121 if (rxtop) {
4122 /* end of the chain */
4123 skb_fill_page_desc(rxtop,
4124 skb_shinfo(rxtop)->nr_frags,
4125 buffer_info->page, 0, length);
4126 /* re-use the current skb, we only consumed the
4127 * page */
4128 buffer_info->skb = skb;
4129 skb = rxtop;
4130 rxtop = NULL;
4131 e1000_consume_page(buffer_info, skb, length);
4132 } else {
4133 /* no chain, got EOP, this buf is the packet
4134 * copybreak to save the put_page/alloc_page */
4135 if (length <= copybreak &&
4136 skb_tailroom(skb) >= length) {
4137 u8 *vaddr;
4138 vaddr = kmap_atomic(buffer_info->page);
4139 memcpy(skb_tail_pointer(skb), vaddr, length);
4140 kunmap_atomic(vaddr);
4141 /* re-use the page, so don't erase
4142 * buffer_info->page */
4143 skb_put(skb, length);
4144 } else {
4145 skb_fill_page_desc(skb, 0,
4146 buffer_info->page, 0,
4147 length);
4148 e1000_consume_page(buffer_info, skb,
4149 length);
4150 }
4151 }
4152 }
4153
4154 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4155 e1000_rx_checksum(adapter,
4156 (u32)(status) |
4157 ((u32)(rx_desc->errors) << 24),
4158 le16_to_cpu(rx_desc->csum), skb);
4159
4160 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4161 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4162 pskb_trim(skb, skb->len - 4);
4163 total_rx_packets++;
4164
4165 /* eth type trans needs skb->data to point to something */
4166 if (!pskb_may_pull(skb, ETH_HLEN)) {
4167 e_err(drv, "pskb_may_pull failed.\n");
4168 dev_kfree_skb(skb);
4169 goto next_desc;
4170 }
4171
4172 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4173
4174 next_desc:
4175 rx_desc->status = 0;
4176
4177 /* return some buffers to hardware, one at a time is too slow */
4178 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4179 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4180 cleaned_count = 0;
4181 }
4182
4183 /* use prefetched values */
4184 rx_desc = next_rxd;
4185 buffer_info = next_buffer;
4186 }
4187 rx_ring->next_to_clean = i;
4188
4189 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4190 if (cleaned_count)
4191 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4192
4193 adapter->total_rx_packets += total_rx_packets;
4194 adapter->total_rx_bytes += total_rx_bytes;
4195 netdev->stats.rx_bytes += total_rx_bytes;
4196 netdev->stats.rx_packets += total_rx_packets;
4197 return cleaned;
4198 }
4199
4200 /*
4201 * this should improve performance for small packets with large amounts
4202 * of reassembly being done in the stack
4203 */
4204 static void e1000_check_copybreak(struct net_device *netdev,
4205 struct e1000_buffer *buffer_info,
4206 u32 length, struct sk_buff **skb)
4207 {
4208 struct sk_buff *new_skb;
4209
4210 if (length > copybreak)
4211 return;
4212
4213 new_skb = netdev_alloc_skb_ip_align(netdev, length);
4214 if (!new_skb)
4215 return;
4216
4217 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4218 (*skb)->data - NET_IP_ALIGN,
4219 length + NET_IP_ALIGN);
4220 /* save the skb in buffer_info as good */
4221 buffer_info->skb = *skb;
4222 *skb = new_skb;
4223 }
4224
4225 /**
4226 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4227 * @adapter: board private structure
4228 * @rx_ring: ring to clean
4229 * @work_done: amount of napi work completed this call
4230 * @work_to_do: max amount of work allowed for this call to do
4231 */
4232 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4233 struct e1000_rx_ring *rx_ring,
4234 int *work_done, int work_to_do)
4235 {
4236 struct e1000_hw *hw = &adapter->hw;
4237 struct net_device *netdev = adapter->netdev;
4238 struct pci_dev *pdev = adapter->pdev;
4239 struct e1000_rx_desc *rx_desc, *next_rxd;
4240 struct e1000_buffer *buffer_info, *next_buffer;
4241 unsigned long flags;
4242 u32 length;
4243 unsigned int i;
4244 int cleaned_count = 0;
4245 bool cleaned = false;
4246 unsigned int total_rx_bytes=0, total_rx_packets=0;
4247
4248 i = rx_ring->next_to_clean;
4249 rx_desc = E1000_RX_DESC(*rx_ring, i);
4250 buffer_info = &rx_ring->buffer_info[i];
4251
4252 while (rx_desc->status & E1000_RXD_STAT_DD) {
4253 struct sk_buff *skb;
4254 u8 status;
4255
4256 if (*work_done >= work_to_do)
4257 break;
4258 (*work_done)++;
4259 rmb(); /* read descriptor and rx_buffer_info after status DD */
4260
4261 status = rx_desc->status;
4262 skb = buffer_info->skb;
4263 buffer_info->skb = NULL;
4264
4265 prefetch(skb->data - NET_IP_ALIGN);
4266
4267 if (++i == rx_ring->count) i = 0;
4268 next_rxd = E1000_RX_DESC(*rx_ring, i);
4269 prefetch(next_rxd);
4270
4271 next_buffer = &rx_ring->buffer_info[i];
4272
4273 cleaned = true;
4274 cleaned_count++;
4275 dma_unmap_single(&pdev->dev, buffer_info->dma,
4276 buffer_info->length, DMA_FROM_DEVICE);
4277 buffer_info->dma = 0;
4278
4279 length = le16_to_cpu(rx_desc->length);
4280 /* !EOP means multiple descriptors were used to store a single
4281 * packet, if thats the case we need to toss it. In fact, we
4282 * to toss every packet with the EOP bit clear and the next
4283 * frame that _does_ have the EOP bit set, as it is by
4284 * definition only a frame fragment
4285 */
4286 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4287 adapter->discarding = true;
4288
4289 if (adapter->discarding) {
4290 /* All receives must fit into a single buffer */
4291 e_dbg("Receive packet consumed multiple buffers\n");
4292 /* recycle */
4293 buffer_info->skb = skb;
4294 if (status & E1000_RXD_STAT_EOP)
4295 adapter->discarding = false;
4296 goto next_desc;
4297 }
4298
4299 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4300 u8 last_byte = *(skb->data + length - 1);
4301 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4302 last_byte)) {
4303 spin_lock_irqsave(&adapter->stats_lock, flags);
4304 e1000_tbi_adjust_stats(hw, &adapter->stats,
4305 length, skb->data);
4306 spin_unlock_irqrestore(&adapter->stats_lock,
4307 flags);
4308 length--;
4309 } else {
4310 if (netdev->features & NETIF_F_RXALL)
4311 goto process_skb;
4312 /* recycle */
4313 buffer_info->skb = skb;
4314 goto next_desc;
4315 }
4316 }
4317
4318 process_skb:
4319 total_rx_bytes += (length - 4); /* don't count FCS */
4320 total_rx_packets++;
4321
4322 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4323 /* adjust length to remove Ethernet CRC, this must be
4324 * done after the TBI_ACCEPT workaround above
4325 */
4326 length -= 4;
4327
4328 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4329
4330 skb_put(skb, length);
4331
4332 /* Receive Checksum Offload */
4333 e1000_rx_checksum(adapter,
4334 (u32)(status) |
4335 ((u32)(rx_desc->errors) << 24),
4336 le16_to_cpu(rx_desc->csum), skb);
4337
4338 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4339
4340 next_desc:
4341 rx_desc->status = 0;
4342
4343 /* return some buffers to hardware, one at a time is too slow */
4344 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4345 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4346 cleaned_count = 0;
4347 }
4348
4349 /* use prefetched values */
4350 rx_desc = next_rxd;
4351 buffer_info = next_buffer;
4352 }
4353 rx_ring->next_to_clean = i;
4354
4355 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4356 if (cleaned_count)
4357 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4358
4359 adapter->total_rx_packets += total_rx_packets;
4360 adapter->total_rx_bytes += total_rx_bytes;
4361 netdev->stats.rx_bytes += total_rx_bytes;
4362 netdev->stats.rx_packets += total_rx_packets;
4363 return cleaned;
4364 }
4365
4366 /**
4367 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4368 * @adapter: address of board private structure
4369 * @rx_ring: pointer to receive ring structure
4370 * @cleaned_count: number of buffers to allocate this pass
4371 **/
4372
4373 static void
4374 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4375 struct e1000_rx_ring *rx_ring, int cleaned_count)
4376 {
4377 struct net_device *netdev = adapter->netdev;
4378 struct pci_dev *pdev = adapter->pdev;
4379 struct e1000_rx_desc *rx_desc;
4380 struct e1000_buffer *buffer_info;
4381 struct sk_buff *skb;
4382 unsigned int i;
4383 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4384
4385 i = rx_ring->next_to_use;
4386 buffer_info = &rx_ring->buffer_info[i];
4387
4388 while (cleaned_count--) {
4389 skb = buffer_info->skb;
4390 if (skb) {
4391 skb_trim(skb, 0);
4392 goto check_page;
4393 }
4394
4395 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4396 if (unlikely(!skb)) {
4397 /* Better luck next round */
4398 adapter->alloc_rx_buff_failed++;
4399 break;
4400 }
4401
4402 buffer_info->skb = skb;
4403 buffer_info->length = adapter->rx_buffer_len;
4404 check_page:
4405 /* allocate a new page if necessary */
4406 if (!buffer_info->page) {
4407 buffer_info->page = alloc_page(GFP_ATOMIC);
4408 if (unlikely(!buffer_info->page)) {
4409 adapter->alloc_rx_buff_failed++;
4410 break;
4411 }
4412 }
4413
4414 if (!buffer_info->dma) {
4415 buffer_info->dma = dma_map_page(&pdev->dev,
4416 buffer_info->page, 0,
4417 buffer_info->length,
4418 DMA_FROM_DEVICE);
4419 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4420 put_page(buffer_info->page);
4421 dev_kfree_skb(skb);
4422 buffer_info->page = NULL;
4423 buffer_info->skb = NULL;
4424 buffer_info->dma = 0;
4425 adapter->alloc_rx_buff_failed++;
4426 break; /* while !buffer_info->skb */
4427 }
4428 }
4429
4430 rx_desc = E1000_RX_DESC(*rx_ring, i);
4431 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4432
4433 if (unlikely(++i == rx_ring->count))
4434 i = 0;
4435 buffer_info = &rx_ring->buffer_info[i];
4436 }
4437
4438 if (likely(rx_ring->next_to_use != i)) {
4439 rx_ring->next_to_use = i;
4440 if (unlikely(i-- == 0))
4441 i = (rx_ring->count - 1);
4442
4443 /* Force memory writes to complete before letting h/w
4444 * know there are new descriptors to fetch. (Only
4445 * applicable for weak-ordered memory model archs,
4446 * such as IA-64). */
4447 wmb();
4448 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4449 }
4450 }
4451
4452 /**
4453 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4454 * @adapter: address of board private structure
4455 **/
4456
4457 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4458 struct e1000_rx_ring *rx_ring,
4459 int cleaned_count)
4460 {
4461 struct e1000_hw *hw = &adapter->hw;
4462 struct net_device *netdev = adapter->netdev;
4463 struct pci_dev *pdev = adapter->pdev;
4464 struct e1000_rx_desc *rx_desc;
4465 struct e1000_buffer *buffer_info;
4466 struct sk_buff *skb;
4467 unsigned int i;
4468 unsigned int bufsz = adapter->rx_buffer_len;
4469
4470 i = rx_ring->next_to_use;
4471 buffer_info = &rx_ring->buffer_info[i];
4472
4473 while (cleaned_count--) {
4474 skb = buffer_info->skb;
4475 if (skb) {
4476 skb_trim(skb, 0);
4477 goto map_skb;
4478 }
4479
4480 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4481 if (unlikely(!skb)) {
4482 /* Better luck next round */
4483 adapter->alloc_rx_buff_failed++;
4484 break;
4485 }
4486
4487 /* Fix for errata 23, can't cross 64kB boundary */
4488 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4489 struct sk_buff *oldskb = skb;
4490 e_err(rx_err, "skb align check failed: %u bytes at "
4491 "%p\n", bufsz, skb->data);
4492 /* Try again, without freeing the previous */
4493 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4494 /* Failed allocation, critical failure */
4495 if (!skb) {
4496 dev_kfree_skb(oldskb);
4497 adapter->alloc_rx_buff_failed++;
4498 break;
4499 }
4500
4501 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4502 /* give up */
4503 dev_kfree_skb(skb);
4504 dev_kfree_skb(oldskb);
4505 adapter->alloc_rx_buff_failed++;
4506 break; /* while !buffer_info->skb */
4507 }
4508
4509 /* Use new allocation */
4510 dev_kfree_skb(oldskb);
4511 }
4512 buffer_info->skb = skb;
4513 buffer_info->length = adapter->rx_buffer_len;
4514 map_skb:
4515 buffer_info->dma = dma_map_single(&pdev->dev,
4516 skb->data,
4517 buffer_info->length,
4518 DMA_FROM_DEVICE);
4519 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4520 dev_kfree_skb(skb);
4521 buffer_info->skb = NULL;
4522 buffer_info->dma = 0;
4523 adapter->alloc_rx_buff_failed++;
4524 break; /* while !buffer_info->skb */
4525 }
4526
4527 /*
4528 * XXX if it was allocated cleanly it will never map to a
4529 * boundary crossing
4530 */
4531
4532 /* Fix for errata 23, can't cross 64kB boundary */
4533 if (!e1000_check_64k_bound(adapter,
4534 (void *)(unsigned long)buffer_info->dma,
4535 adapter->rx_buffer_len)) {
4536 e_err(rx_err, "dma align check failed: %u bytes at "
4537 "%p\n", adapter->rx_buffer_len,
4538 (void *)(unsigned long)buffer_info->dma);
4539 dev_kfree_skb(skb);
4540 buffer_info->skb = NULL;
4541
4542 dma_unmap_single(&pdev->dev, buffer_info->dma,
4543 adapter->rx_buffer_len,
4544 DMA_FROM_DEVICE);
4545 buffer_info->dma = 0;
4546
4547 adapter->alloc_rx_buff_failed++;
4548 break; /* while !buffer_info->skb */
4549 }
4550 rx_desc = E1000_RX_DESC(*rx_ring, i);
4551 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4552
4553 if (unlikely(++i == rx_ring->count))
4554 i = 0;
4555 buffer_info = &rx_ring->buffer_info[i];
4556 }
4557
4558 if (likely(rx_ring->next_to_use != i)) {
4559 rx_ring->next_to_use = i;
4560 if (unlikely(i-- == 0))
4561 i = (rx_ring->count - 1);
4562
4563 /* Force memory writes to complete before letting h/w
4564 * know there are new descriptors to fetch. (Only
4565 * applicable for weak-ordered memory model archs,
4566 * such as IA-64). */
4567 wmb();
4568 writel(i, hw->hw_addr + rx_ring->rdt);
4569 }
4570 }
4571
4572 /**
4573 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4574 * @adapter:
4575 **/
4576
4577 static void e1000_smartspeed(struct e1000_adapter *adapter)
4578 {
4579 struct e1000_hw *hw = &adapter->hw;
4580 u16 phy_status;
4581 u16 phy_ctrl;
4582
4583 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4584 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4585 return;
4586
4587 if (adapter->smartspeed == 0) {
4588 /* If Master/Slave config fault is asserted twice,
4589 * we assume back-to-back */
4590 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4591 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4592 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4593 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4594 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4595 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4596 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4597 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4598 phy_ctrl);
4599 adapter->smartspeed++;
4600 if (!e1000_phy_setup_autoneg(hw) &&
4601 !e1000_read_phy_reg(hw, PHY_CTRL,
4602 &phy_ctrl)) {
4603 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4604 MII_CR_RESTART_AUTO_NEG);
4605 e1000_write_phy_reg(hw, PHY_CTRL,
4606 phy_ctrl);
4607 }
4608 }
4609 return;
4610 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4611 /* If still no link, perhaps using 2/3 pair cable */
4612 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4613 phy_ctrl |= CR_1000T_MS_ENABLE;
4614 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4615 if (!e1000_phy_setup_autoneg(hw) &&
4616 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4617 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4618 MII_CR_RESTART_AUTO_NEG);
4619 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4620 }
4621 }
4622 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4623 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4624 adapter->smartspeed = 0;
4625 }
4626
4627 /**
4628 * e1000_ioctl -
4629 * @netdev:
4630 * @ifreq:
4631 * @cmd:
4632 **/
4633
4634 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4635 {
4636 switch (cmd) {
4637 case SIOCGMIIPHY:
4638 case SIOCGMIIREG:
4639 case SIOCSMIIREG:
4640 return e1000_mii_ioctl(netdev, ifr, cmd);
4641 default:
4642 return -EOPNOTSUPP;
4643 }
4644 }
4645
4646 /**
4647 * e1000_mii_ioctl -
4648 * @netdev:
4649 * @ifreq:
4650 * @cmd:
4651 **/
4652
4653 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4654 int cmd)
4655 {
4656 struct e1000_adapter *adapter = netdev_priv(netdev);
4657 struct e1000_hw *hw = &adapter->hw;
4658 struct mii_ioctl_data *data = if_mii(ifr);
4659 int retval;
4660 u16 mii_reg;
4661 unsigned long flags;
4662
4663 if (hw->media_type != e1000_media_type_copper)
4664 return -EOPNOTSUPP;
4665
4666 switch (cmd) {
4667 case SIOCGMIIPHY:
4668 data->phy_id = hw->phy_addr;
4669 break;
4670 case SIOCGMIIREG:
4671 spin_lock_irqsave(&adapter->stats_lock, flags);
4672 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4673 &data->val_out)) {
4674 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4675 return -EIO;
4676 }
4677 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4678 break;
4679 case SIOCSMIIREG:
4680 if (data->reg_num & ~(0x1F))
4681 return -EFAULT;
4682 mii_reg = data->val_in;
4683 spin_lock_irqsave(&adapter->stats_lock, flags);
4684 if (e1000_write_phy_reg(hw, data->reg_num,
4685 mii_reg)) {
4686 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4687 return -EIO;
4688 }
4689 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4690 if (hw->media_type == e1000_media_type_copper) {
4691 switch (data->reg_num) {
4692 case PHY_CTRL:
4693 if (mii_reg & MII_CR_POWER_DOWN)
4694 break;
4695 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4696 hw->autoneg = 1;
4697 hw->autoneg_advertised = 0x2F;
4698 } else {
4699 u32 speed;
4700 if (mii_reg & 0x40)
4701 speed = SPEED_1000;
4702 else if (mii_reg & 0x2000)
4703 speed = SPEED_100;
4704 else
4705 speed = SPEED_10;
4706 retval = e1000_set_spd_dplx(
4707 adapter, speed,
4708 ((mii_reg & 0x100)
4709 ? DUPLEX_FULL :
4710 DUPLEX_HALF));
4711 if (retval)
4712 return retval;
4713 }
4714 if (netif_running(adapter->netdev))
4715 e1000_reinit_locked(adapter);
4716 else
4717 e1000_reset(adapter);
4718 break;
4719 case M88E1000_PHY_SPEC_CTRL:
4720 case M88E1000_EXT_PHY_SPEC_CTRL:
4721 if (e1000_phy_reset(hw))
4722 return -EIO;
4723 break;
4724 }
4725 } else {
4726 switch (data->reg_num) {
4727 case PHY_CTRL:
4728 if (mii_reg & MII_CR_POWER_DOWN)
4729 break;
4730 if (netif_running(adapter->netdev))
4731 e1000_reinit_locked(adapter);
4732 else
4733 e1000_reset(adapter);
4734 break;
4735 }
4736 }
4737 break;
4738 default:
4739 return -EOPNOTSUPP;
4740 }
4741 return E1000_SUCCESS;
4742 }
4743
4744 void e1000_pci_set_mwi(struct e1000_hw *hw)
4745 {
4746 struct e1000_adapter *adapter = hw->back;
4747 int ret_val = pci_set_mwi(adapter->pdev);
4748
4749 if (ret_val)
4750 e_err(probe, "Error in setting MWI\n");
4751 }
4752
4753 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4754 {
4755 struct e1000_adapter *adapter = hw->back;
4756
4757 pci_clear_mwi(adapter->pdev);
4758 }
4759
4760 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4761 {
4762 struct e1000_adapter *adapter = hw->back;
4763 return pcix_get_mmrbc(adapter->pdev);
4764 }
4765
4766 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4767 {
4768 struct e1000_adapter *adapter = hw->back;
4769 pcix_set_mmrbc(adapter->pdev, mmrbc);
4770 }
4771
4772 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4773 {
4774 outl(value, port);
4775 }
4776
4777 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4778 {
4779 u16 vid;
4780
4781 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4782 return true;
4783 return false;
4784 }
4785
4786 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4787 netdev_features_t features)
4788 {
4789 struct e1000_hw *hw = &adapter->hw;
4790 u32 ctrl;
4791
4792 ctrl = er32(CTRL);
4793 if (features & NETIF_F_HW_VLAN_RX) {
4794 /* enable VLAN tag insert/strip */
4795 ctrl |= E1000_CTRL_VME;
4796 } else {
4797 /* disable VLAN tag insert/strip */
4798 ctrl &= ~E1000_CTRL_VME;
4799 }
4800 ew32(CTRL, ctrl);
4801 }
4802 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4803 bool filter_on)
4804 {
4805 struct e1000_hw *hw = &adapter->hw;
4806 u32 rctl;
4807
4808 if (!test_bit(__E1000_DOWN, &adapter->flags))
4809 e1000_irq_disable(adapter);
4810
4811 __e1000_vlan_mode(adapter, adapter->netdev->features);
4812 if (filter_on) {
4813 /* enable VLAN receive filtering */
4814 rctl = er32(RCTL);
4815 rctl &= ~E1000_RCTL_CFIEN;
4816 if (!(adapter->netdev->flags & IFF_PROMISC))
4817 rctl |= E1000_RCTL_VFE;
4818 ew32(RCTL, rctl);
4819 e1000_update_mng_vlan(adapter);
4820 } else {
4821 /* disable VLAN receive filtering */
4822 rctl = er32(RCTL);
4823 rctl &= ~E1000_RCTL_VFE;
4824 ew32(RCTL, rctl);
4825 }
4826
4827 if (!test_bit(__E1000_DOWN, &adapter->flags))
4828 e1000_irq_enable(adapter);
4829 }
4830
4831 static void e1000_vlan_mode(struct net_device *netdev,
4832 netdev_features_t features)
4833 {
4834 struct e1000_adapter *adapter = netdev_priv(netdev);
4835
4836 if (!test_bit(__E1000_DOWN, &adapter->flags))
4837 e1000_irq_disable(adapter);
4838
4839 __e1000_vlan_mode(adapter, features);
4840
4841 if (!test_bit(__E1000_DOWN, &adapter->flags))
4842 e1000_irq_enable(adapter);
4843 }
4844
4845 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4846 {
4847 struct e1000_adapter *adapter = netdev_priv(netdev);
4848 struct e1000_hw *hw = &adapter->hw;
4849 u32 vfta, index;
4850
4851 if ((hw->mng_cookie.status &
4852 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4853 (vid == adapter->mng_vlan_id))
4854 return 0;
4855
4856 if (!e1000_vlan_used(adapter))
4857 e1000_vlan_filter_on_off(adapter, true);
4858
4859 /* add VID to filter table */
4860 index = (vid >> 5) & 0x7F;
4861 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4862 vfta |= (1 << (vid & 0x1F));
4863 e1000_write_vfta(hw, index, vfta);
4864
4865 set_bit(vid, adapter->active_vlans);
4866
4867 return 0;
4868 }
4869
4870 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4871 {
4872 struct e1000_adapter *adapter = netdev_priv(netdev);
4873 struct e1000_hw *hw = &adapter->hw;
4874 u32 vfta, index;
4875
4876 if (!test_bit(__E1000_DOWN, &adapter->flags))
4877 e1000_irq_disable(adapter);
4878 if (!test_bit(__E1000_DOWN, &adapter->flags))
4879 e1000_irq_enable(adapter);
4880
4881 /* remove VID from filter table */
4882 index = (vid >> 5) & 0x7F;
4883 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4884 vfta &= ~(1 << (vid & 0x1F));
4885 e1000_write_vfta(hw, index, vfta);
4886
4887 clear_bit(vid, adapter->active_vlans);
4888
4889 if (!e1000_vlan_used(adapter))
4890 e1000_vlan_filter_on_off(adapter, false);
4891
4892 return 0;
4893 }
4894
4895 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4896 {
4897 u16 vid;
4898
4899 if (!e1000_vlan_used(adapter))
4900 return;
4901
4902 e1000_vlan_filter_on_off(adapter, true);
4903 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4904 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4905 }
4906
4907 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4908 {
4909 struct e1000_hw *hw = &adapter->hw;
4910
4911 hw->autoneg = 0;
4912
4913 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4914 * for the switch() below to work */
4915 if ((spd & 1) || (dplx & ~1))
4916 goto err_inval;
4917
4918 /* Fiber NICs only allow 1000 gbps Full duplex */
4919 if ((hw->media_type == e1000_media_type_fiber) &&
4920 spd != SPEED_1000 &&
4921 dplx != DUPLEX_FULL)
4922 goto err_inval;
4923
4924 switch (spd + dplx) {
4925 case SPEED_10 + DUPLEX_HALF:
4926 hw->forced_speed_duplex = e1000_10_half;
4927 break;
4928 case SPEED_10 + DUPLEX_FULL:
4929 hw->forced_speed_duplex = e1000_10_full;
4930 break;
4931 case SPEED_100 + DUPLEX_HALF:
4932 hw->forced_speed_duplex = e1000_100_half;
4933 break;
4934 case SPEED_100 + DUPLEX_FULL:
4935 hw->forced_speed_duplex = e1000_100_full;
4936 break;
4937 case SPEED_1000 + DUPLEX_FULL:
4938 hw->autoneg = 1;
4939 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4940 break;
4941 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4942 default:
4943 goto err_inval;
4944 }
4945 return 0;
4946
4947 err_inval:
4948 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4949 return -EINVAL;
4950 }
4951
4952 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4953 {
4954 struct net_device *netdev = pci_get_drvdata(pdev);
4955 struct e1000_adapter *adapter = netdev_priv(netdev);
4956 struct e1000_hw *hw = &adapter->hw;
4957 u32 ctrl, ctrl_ext, rctl, status;
4958 u32 wufc = adapter->wol;
4959 #ifdef CONFIG_PM
4960 int retval = 0;
4961 #endif
4962
4963 netif_device_detach(netdev);
4964
4965 if (netif_running(netdev)) {
4966 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4967 e1000_down(adapter);
4968 }
4969
4970 #ifdef CONFIG_PM
4971 retval = pci_save_state(pdev);
4972 if (retval)
4973 return retval;
4974 #endif
4975
4976 status = er32(STATUS);
4977 if (status & E1000_STATUS_LU)
4978 wufc &= ~E1000_WUFC_LNKC;
4979
4980 if (wufc) {
4981 e1000_setup_rctl(adapter);
4982 e1000_set_rx_mode(netdev);
4983
4984 rctl = er32(RCTL);
4985
4986 /* turn on all-multi mode if wake on multicast is enabled */
4987 if (wufc & E1000_WUFC_MC)
4988 rctl |= E1000_RCTL_MPE;
4989
4990 /* enable receives in the hardware */
4991 ew32(RCTL, rctl | E1000_RCTL_EN);
4992
4993 if (hw->mac_type >= e1000_82540) {
4994 ctrl = er32(CTRL);
4995 /* advertise wake from D3Cold */
4996 #define E1000_CTRL_ADVD3WUC 0x00100000
4997 /* phy power management enable */
4998 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4999 ctrl |= E1000_CTRL_ADVD3WUC |
5000 E1000_CTRL_EN_PHY_PWR_MGMT;
5001 ew32(CTRL, ctrl);
5002 }
5003
5004 if (hw->media_type == e1000_media_type_fiber ||
5005 hw->media_type == e1000_media_type_internal_serdes) {
5006 /* keep the laser running in D3 */
5007 ctrl_ext = er32(CTRL_EXT);
5008 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5009 ew32(CTRL_EXT, ctrl_ext);
5010 }
5011
5012 ew32(WUC, E1000_WUC_PME_EN);
5013 ew32(WUFC, wufc);
5014 } else {
5015 ew32(WUC, 0);
5016 ew32(WUFC, 0);
5017 }
5018
5019 e1000_release_manageability(adapter);
5020
5021 *enable_wake = !!wufc;
5022
5023 /* make sure adapter isn't asleep if manageability is enabled */
5024 if (adapter->en_mng_pt)
5025 *enable_wake = true;
5026
5027 if (netif_running(netdev))
5028 e1000_free_irq(adapter);
5029
5030 pci_disable_device(pdev);
5031
5032 return 0;
5033 }
5034
5035 #ifdef CONFIG_PM
5036 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5037 {
5038 int retval;
5039 bool wake;
5040
5041 retval = __e1000_shutdown(pdev, &wake);
5042 if (retval)
5043 return retval;
5044
5045 if (wake) {
5046 pci_prepare_to_sleep(pdev);
5047 } else {
5048 pci_wake_from_d3(pdev, false);
5049 pci_set_power_state(pdev, PCI_D3hot);
5050 }
5051
5052 return 0;
5053 }
5054
5055 static int e1000_resume(struct pci_dev *pdev)
5056 {
5057 struct net_device *netdev = pci_get_drvdata(pdev);
5058 struct e1000_adapter *adapter = netdev_priv(netdev);
5059 struct e1000_hw *hw = &adapter->hw;
5060 u32 err;
5061
5062 pci_set_power_state(pdev, PCI_D0);
5063 pci_restore_state(pdev);
5064 pci_save_state(pdev);
5065
5066 if (adapter->need_ioport)
5067 err = pci_enable_device(pdev);
5068 else
5069 err = pci_enable_device_mem(pdev);
5070 if (err) {
5071 pr_err("Cannot enable PCI device from suspend\n");
5072 return err;
5073 }
5074 pci_set_master(pdev);
5075
5076 pci_enable_wake(pdev, PCI_D3hot, 0);
5077 pci_enable_wake(pdev, PCI_D3cold, 0);
5078
5079 if (netif_running(netdev)) {
5080 err = e1000_request_irq(adapter);
5081 if (err)
5082 return err;
5083 }
5084
5085 e1000_power_up_phy(adapter);
5086 e1000_reset(adapter);
5087 ew32(WUS, ~0);
5088
5089 e1000_init_manageability(adapter);
5090
5091 if (netif_running(netdev))
5092 e1000_up(adapter);
5093
5094 netif_device_attach(netdev);
5095
5096 return 0;
5097 }
5098 #endif
5099
5100 static void e1000_shutdown(struct pci_dev *pdev)
5101 {
5102 bool wake;
5103
5104 __e1000_shutdown(pdev, &wake);
5105
5106 if (system_state == SYSTEM_POWER_OFF) {
5107 pci_wake_from_d3(pdev, wake);
5108 pci_set_power_state(pdev, PCI_D3hot);
5109 }
5110 }
5111
5112 #ifdef CONFIG_NET_POLL_CONTROLLER
5113 /*
5114 * Polling 'interrupt' - used by things like netconsole to send skbs
5115 * without having to re-enable interrupts. It's not called while
5116 * the interrupt routine is executing.
5117 */
5118 static void e1000_netpoll(struct net_device *netdev)
5119 {
5120 struct e1000_adapter *adapter = netdev_priv(netdev);
5121
5122 disable_irq(adapter->pdev->irq);
5123 e1000_intr(adapter->pdev->irq, netdev);
5124 enable_irq(adapter->pdev->irq);
5125 }
5126 #endif
5127
5128 /**
5129 * e1000_io_error_detected - called when PCI error is detected
5130 * @pdev: Pointer to PCI device
5131 * @state: The current pci connection state
5132 *
5133 * This function is called after a PCI bus error affecting
5134 * this device has been detected.
5135 */
5136 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5137 pci_channel_state_t state)
5138 {
5139 struct net_device *netdev = pci_get_drvdata(pdev);
5140 struct e1000_adapter *adapter = netdev_priv(netdev);
5141
5142 netif_device_detach(netdev);
5143
5144 if (state == pci_channel_io_perm_failure)
5145 return PCI_ERS_RESULT_DISCONNECT;
5146
5147 if (netif_running(netdev))
5148 e1000_down(adapter);
5149 pci_disable_device(pdev);
5150
5151 /* Request a slot slot reset. */
5152 return PCI_ERS_RESULT_NEED_RESET;
5153 }
5154
5155 /**
5156 * e1000_io_slot_reset - called after the pci bus has been reset.
5157 * @pdev: Pointer to PCI device
5158 *
5159 * Restart the card from scratch, as if from a cold-boot. Implementation
5160 * resembles the first-half of the e1000_resume routine.
5161 */
5162 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5163 {
5164 struct net_device *netdev = pci_get_drvdata(pdev);
5165 struct e1000_adapter *adapter = netdev_priv(netdev);
5166 struct e1000_hw *hw = &adapter->hw;
5167 int err;
5168
5169 if (adapter->need_ioport)
5170 err = pci_enable_device(pdev);
5171 else
5172 err = pci_enable_device_mem(pdev);
5173 if (err) {
5174 pr_err("Cannot re-enable PCI device after reset.\n");
5175 return PCI_ERS_RESULT_DISCONNECT;
5176 }
5177 pci_set_master(pdev);
5178
5179 pci_enable_wake(pdev, PCI_D3hot, 0);
5180 pci_enable_wake(pdev, PCI_D3cold, 0);
5181
5182 e1000_reset(adapter);
5183 ew32(WUS, ~0);
5184
5185 return PCI_ERS_RESULT_RECOVERED;
5186 }
5187
5188 /**
5189 * e1000_io_resume - called when traffic can start flowing again.
5190 * @pdev: Pointer to PCI device
5191 *
5192 * This callback is called when the error recovery driver tells us that
5193 * its OK to resume normal operation. Implementation resembles the
5194 * second-half of the e1000_resume routine.
5195 */
5196 static void e1000_io_resume(struct pci_dev *pdev)
5197 {
5198 struct net_device *netdev = pci_get_drvdata(pdev);
5199 struct e1000_adapter *adapter = netdev_priv(netdev);
5200
5201 e1000_init_manageability(adapter);
5202
5203 if (netif_running(netdev)) {
5204 if (e1000_up(adapter)) {
5205 pr_info("can't bring device back up after reset\n");
5206 return;
5207 }
5208 }
5209
5210 netif_device_attach(netdev);
5211 }
5212
5213 /* e1000_main.c */
This page took 0.137498 seconds and 6 git commands to generate.