at86rf230: mask irq's before deregister device
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / 80003es2lan.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
30 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
31 */
32
33 #include "e1000.h"
34
35 /* A table for the GG82563 cable length where the range is defined
36 * with a lower bound at "index" and the upper bound at
37 * "index + 5".
38 */
39 static const u16 e1000_gg82563_cable_length_table[] = {
40 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
41 };
42
43 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
44 ARRAY_SIZE(e1000_gg82563_cable_length_table)
45
46 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
47 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
48 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
49 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
50 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
51 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
52 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
53 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
54 u16 *data);
55 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
56 u16 data);
57 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
58
59 /**
60 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
61 * @hw: pointer to the HW structure
62 **/
63 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
64 {
65 struct e1000_phy_info *phy = &hw->phy;
66 s32 ret_val;
67
68 if (hw->phy.media_type != e1000_media_type_copper) {
69 phy->type = e1000_phy_none;
70 return 0;
71 } else {
72 phy->ops.power_up = e1000_power_up_phy_copper;
73 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
74 }
75
76 phy->addr = 1;
77 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
78 phy->reset_delay_us = 100;
79 phy->type = e1000_phy_gg82563;
80
81 /* This can only be done after all function pointers are setup. */
82 ret_val = e1000e_get_phy_id(hw);
83
84 /* Verify phy id */
85 if (phy->id != GG82563_E_PHY_ID)
86 return -E1000_ERR_PHY;
87
88 return ret_val;
89 }
90
91 /**
92 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
93 * @hw: pointer to the HW structure
94 **/
95 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
96 {
97 struct e1000_nvm_info *nvm = &hw->nvm;
98 u32 eecd = er32(EECD);
99 u16 size;
100
101 nvm->opcode_bits = 8;
102 nvm->delay_usec = 1;
103 switch (nvm->override) {
104 case e1000_nvm_override_spi_large:
105 nvm->page_size = 32;
106 nvm->address_bits = 16;
107 break;
108 case e1000_nvm_override_spi_small:
109 nvm->page_size = 8;
110 nvm->address_bits = 8;
111 break;
112 default:
113 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
114 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
115 break;
116 }
117
118 nvm->type = e1000_nvm_eeprom_spi;
119
120 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
121 E1000_EECD_SIZE_EX_SHIFT);
122
123 /* Added to a constant, "size" becomes the left-shift value
124 * for setting word_size.
125 */
126 size += NVM_WORD_SIZE_BASE_SHIFT;
127
128 /* EEPROM access above 16k is unsupported */
129 if (size > 14)
130 size = 14;
131 nvm->word_size = 1 << size;
132
133 return 0;
134 }
135
136 /**
137 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
138 * @hw: pointer to the HW structure
139 **/
140 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
141 {
142 struct e1000_mac_info *mac = &hw->mac;
143
144 /* Set media type and media-dependent function pointers */
145 switch (hw->adapter->pdev->device) {
146 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
147 hw->phy.media_type = e1000_media_type_internal_serdes;
148 mac->ops.check_for_link = e1000e_check_for_serdes_link;
149 mac->ops.setup_physical_interface =
150 e1000e_setup_fiber_serdes_link;
151 break;
152 default:
153 hw->phy.media_type = e1000_media_type_copper;
154 mac->ops.check_for_link = e1000e_check_for_copper_link;
155 mac->ops.setup_physical_interface =
156 e1000_setup_copper_link_80003es2lan;
157 break;
158 }
159
160 /* Set mta register count */
161 mac->mta_reg_count = 128;
162 /* Set rar entry count */
163 mac->rar_entry_count = E1000_RAR_ENTRIES;
164 /* FWSM register */
165 mac->has_fwsm = true;
166 /* ARC supported; valid only if manageability features are enabled. */
167 mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
168 /* Adaptive IFS not supported */
169 mac->adaptive_ifs = false;
170
171 /* set lan id for port to determine which phy lock to use */
172 hw->mac.ops.set_lan_id(hw);
173
174 return 0;
175 }
176
177 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
178 {
179 struct e1000_hw *hw = &adapter->hw;
180 s32 rc;
181
182 rc = e1000_init_mac_params_80003es2lan(hw);
183 if (rc)
184 return rc;
185
186 rc = e1000_init_nvm_params_80003es2lan(hw);
187 if (rc)
188 return rc;
189
190 rc = e1000_init_phy_params_80003es2lan(hw);
191 if (rc)
192 return rc;
193
194 return 0;
195 }
196
197 /**
198 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
199 * @hw: pointer to the HW structure
200 *
201 * A wrapper to acquire access rights to the correct PHY.
202 **/
203 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
204 {
205 u16 mask;
206
207 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
208 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
209 }
210
211 /**
212 * e1000_release_phy_80003es2lan - Release rights to access PHY
213 * @hw: pointer to the HW structure
214 *
215 * A wrapper to release access rights to the correct PHY.
216 **/
217 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
218 {
219 u16 mask;
220
221 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
222 e1000_release_swfw_sync_80003es2lan(hw, mask);
223 }
224
225 /**
226 * e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
227 * @hw: pointer to the HW structure
228 *
229 * Acquire the semaphore to access the Kumeran interface.
230 *
231 **/
232 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
233 {
234 u16 mask;
235
236 mask = E1000_SWFW_CSR_SM;
237
238 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
239 }
240
241 /**
242 * e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
243 * @hw: pointer to the HW structure
244 *
245 * Release the semaphore used to access the Kumeran interface
246 **/
247 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
248 {
249 u16 mask;
250
251 mask = E1000_SWFW_CSR_SM;
252
253 e1000_release_swfw_sync_80003es2lan(hw, mask);
254 }
255
256 /**
257 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
258 * @hw: pointer to the HW structure
259 *
260 * Acquire the semaphore to access the EEPROM.
261 **/
262 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
263 {
264 s32 ret_val;
265
266 ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
267 if (ret_val)
268 return ret_val;
269
270 ret_val = e1000e_acquire_nvm(hw);
271
272 if (ret_val)
273 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
274
275 return ret_val;
276 }
277
278 /**
279 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
280 * @hw: pointer to the HW structure
281 *
282 * Release the semaphore used to access the EEPROM.
283 **/
284 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
285 {
286 e1000e_release_nvm(hw);
287 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
288 }
289
290 /**
291 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
292 * @hw: pointer to the HW structure
293 * @mask: specifies which semaphore to acquire
294 *
295 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
296 * will also specify which port we're acquiring the lock for.
297 **/
298 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
299 {
300 u32 swfw_sync;
301 u32 swmask = mask;
302 u32 fwmask = mask << 16;
303 s32 i = 0;
304 s32 timeout = 50;
305
306 while (i < timeout) {
307 if (e1000e_get_hw_semaphore(hw))
308 return -E1000_ERR_SWFW_SYNC;
309
310 swfw_sync = er32(SW_FW_SYNC);
311 if (!(swfw_sync & (fwmask | swmask)))
312 break;
313
314 /* Firmware currently using resource (fwmask)
315 * or other software thread using resource (swmask)
316 */
317 e1000e_put_hw_semaphore(hw);
318 mdelay(5);
319 i++;
320 }
321
322 if (i == timeout) {
323 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
324 return -E1000_ERR_SWFW_SYNC;
325 }
326
327 swfw_sync |= swmask;
328 ew32(SW_FW_SYNC, swfw_sync);
329
330 e1000e_put_hw_semaphore(hw);
331
332 return 0;
333 }
334
335 /**
336 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
337 * @hw: pointer to the HW structure
338 * @mask: specifies which semaphore to acquire
339 *
340 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
341 * will also specify which port we're releasing the lock for.
342 **/
343 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
344 {
345 u32 swfw_sync;
346
347 while (e1000e_get_hw_semaphore(hw) != 0)
348 ; /* Empty */
349
350 swfw_sync = er32(SW_FW_SYNC);
351 swfw_sync &= ~mask;
352 ew32(SW_FW_SYNC, swfw_sync);
353
354 e1000e_put_hw_semaphore(hw);
355 }
356
357 /**
358 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
359 * @hw: pointer to the HW structure
360 * @offset: offset of the register to read
361 * @data: pointer to the data returned from the operation
362 *
363 * Read the GG82563 PHY register.
364 **/
365 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
366 u32 offset, u16 *data)
367 {
368 s32 ret_val;
369 u32 page_select;
370 u16 temp;
371
372 ret_val = e1000_acquire_phy_80003es2lan(hw);
373 if (ret_val)
374 return ret_val;
375
376 /* Select Configuration Page */
377 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
378 page_select = GG82563_PHY_PAGE_SELECT;
379 } else {
380 /* Use Alternative Page Select register to access
381 * registers 30 and 31
382 */
383 page_select = GG82563_PHY_PAGE_SELECT_ALT;
384 }
385
386 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
387 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
388 if (ret_val) {
389 e1000_release_phy_80003es2lan(hw);
390 return ret_val;
391 }
392
393 if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
394 /* The "ready" bit in the MDIC register may be incorrectly set
395 * before the device has completed the "Page Select" MDI
396 * transaction. So we wait 200us after each MDI command...
397 */
398 usleep_range(200, 400);
399
400 /* ...and verify the command was successful. */
401 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
402
403 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
404 e1000_release_phy_80003es2lan(hw);
405 return -E1000_ERR_PHY;
406 }
407
408 usleep_range(200, 400);
409
410 ret_val = e1000e_read_phy_reg_mdic(hw,
411 MAX_PHY_REG_ADDRESS & offset,
412 data);
413
414 usleep_range(200, 400);
415 } else {
416 ret_val = e1000e_read_phy_reg_mdic(hw,
417 MAX_PHY_REG_ADDRESS & offset,
418 data);
419 }
420
421 e1000_release_phy_80003es2lan(hw);
422
423 return ret_val;
424 }
425
426 /**
427 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
428 * @hw: pointer to the HW structure
429 * @offset: offset of the register to read
430 * @data: value to write to the register
431 *
432 * Write to the GG82563 PHY register.
433 **/
434 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
435 u32 offset, u16 data)
436 {
437 s32 ret_val;
438 u32 page_select;
439 u16 temp;
440
441 ret_val = e1000_acquire_phy_80003es2lan(hw);
442 if (ret_val)
443 return ret_val;
444
445 /* Select Configuration Page */
446 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
447 page_select = GG82563_PHY_PAGE_SELECT;
448 } else {
449 /* Use Alternative Page Select register to access
450 * registers 30 and 31
451 */
452 page_select = GG82563_PHY_PAGE_SELECT_ALT;
453 }
454
455 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
456 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
457 if (ret_val) {
458 e1000_release_phy_80003es2lan(hw);
459 return ret_val;
460 }
461
462 if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
463 /* The "ready" bit in the MDIC register may be incorrectly set
464 * before the device has completed the "Page Select" MDI
465 * transaction. So we wait 200us after each MDI command...
466 */
467 usleep_range(200, 400);
468
469 /* ...and verify the command was successful. */
470 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
471
472 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
473 e1000_release_phy_80003es2lan(hw);
474 return -E1000_ERR_PHY;
475 }
476
477 usleep_range(200, 400);
478
479 ret_val = e1000e_write_phy_reg_mdic(hw,
480 MAX_PHY_REG_ADDRESS &
481 offset, data);
482
483 usleep_range(200, 400);
484 } else {
485 ret_val = e1000e_write_phy_reg_mdic(hw,
486 MAX_PHY_REG_ADDRESS &
487 offset, data);
488 }
489
490 e1000_release_phy_80003es2lan(hw);
491
492 return ret_val;
493 }
494
495 /**
496 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
497 * @hw: pointer to the HW structure
498 * @offset: offset of the register to read
499 * @words: number of words to write
500 * @data: buffer of data to write to the NVM
501 *
502 * Write "words" of data to the ESB2 NVM.
503 **/
504 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
505 u16 words, u16 *data)
506 {
507 return e1000e_write_nvm_spi(hw, offset, words, data);
508 }
509
510 /**
511 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
512 * @hw: pointer to the HW structure
513 *
514 * Wait a specific amount of time for manageability processes to complete.
515 * This is a function pointer entry point called by the phy module.
516 **/
517 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
518 {
519 s32 timeout = PHY_CFG_TIMEOUT;
520 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
521
522 if (hw->bus.func == 1)
523 mask = E1000_NVM_CFG_DONE_PORT_1;
524
525 while (timeout) {
526 if (er32(EEMNGCTL) & mask)
527 break;
528 usleep_range(1000, 2000);
529 timeout--;
530 }
531 if (!timeout) {
532 e_dbg("MNG configuration cycle has not completed.\n");
533 return -E1000_ERR_RESET;
534 }
535
536 return 0;
537 }
538
539 /**
540 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
541 * @hw: pointer to the HW structure
542 *
543 * Force the speed and duplex settings onto the PHY. This is a
544 * function pointer entry point called by the phy module.
545 **/
546 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
547 {
548 s32 ret_val;
549 u16 phy_data;
550 bool link;
551
552 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
553 * forced whenever speed and duplex are forced.
554 */
555 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
556 if (ret_val)
557 return ret_val;
558
559 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
560 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
561 if (ret_val)
562 return ret_val;
563
564 e_dbg("GG82563 PSCR: %X\n", phy_data);
565
566 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
567 if (ret_val)
568 return ret_val;
569
570 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
571
572 /* Reset the phy to commit changes. */
573 phy_data |= BMCR_RESET;
574
575 ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
576 if (ret_val)
577 return ret_val;
578
579 udelay(1);
580
581 if (hw->phy.autoneg_wait_to_complete) {
582 e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
583
584 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
585 100000, &link);
586 if (ret_val)
587 return ret_val;
588
589 if (!link) {
590 /* We didn't get link.
591 * Reset the DSP and cross our fingers.
592 */
593 ret_val = e1000e_phy_reset_dsp(hw);
594 if (ret_val)
595 return ret_val;
596 }
597
598 /* Try once more */
599 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
600 100000, &link);
601 if (ret_val)
602 return ret_val;
603 }
604
605 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
606 if (ret_val)
607 return ret_val;
608
609 /* Resetting the phy means we need to verify the TX_CLK corresponds
610 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
611 */
612 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
613 if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
614 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
615 else
616 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
617
618 /* In addition, we must re-enable CRS on Tx for both half and full
619 * duplex.
620 */
621 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
622 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
623
624 return ret_val;
625 }
626
627 /**
628 * e1000_get_cable_length_80003es2lan - Set approximate cable length
629 * @hw: pointer to the HW structure
630 *
631 * Find the approximate cable length as measured by the GG82563 PHY.
632 * This is a function pointer entry point called by the phy module.
633 **/
634 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
635 {
636 struct e1000_phy_info *phy = &hw->phy;
637 s32 ret_val;
638 u16 phy_data, index;
639
640 ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
641 if (ret_val)
642 return ret_val;
643
644 index = phy_data & GG82563_DSPD_CABLE_LENGTH;
645
646 if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
647 return -E1000_ERR_PHY;
648
649 phy->min_cable_length = e1000_gg82563_cable_length_table[index];
650 phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
651
652 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
653
654 return 0;
655 }
656
657 /**
658 * e1000_get_link_up_info_80003es2lan - Report speed and duplex
659 * @hw: pointer to the HW structure
660 * @speed: pointer to speed buffer
661 * @duplex: pointer to duplex buffer
662 *
663 * Retrieve the current speed and duplex configuration.
664 **/
665 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
666 u16 *duplex)
667 {
668 s32 ret_val;
669
670 if (hw->phy.media_type == e1000_media_type_copper) {
671 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
672 hw->phy.ops.cfg_on_link_up(hw);
673 } else {
674 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
675 speed,
676 duplex);
677 }
678
679 return ret_val;
680 }
681
682 /**
683 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
684 * @hw: pointer to the HW structure
685 *
686 * Perform a global reset to the ESB2 controller.
687 **/
688 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
689 {
690 u32 ctrl;
691 s32 ret_val;
692 u16 kum_reg_data;
693
694 /* Prevent the PCI-E bus from sticking if there is no TLP connection
695 * on the last TLP read/write transaction when MAC is reset.
696 */
697 ret_val = e1000e_disable_pcie_master(hw);
698 if (ret_val)
699 e_dbg("PCI-E Master disable polling has failed.\n");
700
701 e_dbg("Masking off all interrupts\n");
702 ew32(IMC, 0xffffffff);
703
704 ew32(RCTL, 0);
705 ew32(TCTL, E1000_TCTL_PSP);
706 e1e_flush();
707
708 usleep_range(10000, 20000);
709
710 ctrl = er32(CTRL);
711
712 ret_val = e1000_acquire_phy_80003es2lan(hw);
713 if (ret_val)
714 return ret_val;
715
716 e_dbg("Issuing a global reset to MAC\n");
717 ew32(CTRL, ctrl | E1000_CTRL_RST);
718 e1000_release_phy_80003es2lan(hw);
719
720 /* Disable IBIST slave mode (far-end loopback) */
721 ret_val =
722 e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
723 &kum_reg_data);
724 if (ret_val)
725 return ret_val;
726 kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
727 e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
728 kum_reg_data);
729
730 ret_val = e1000e_get_auto_rd_done(hw);
731 if (ret_val)
732 /* We don't want to continue accessing MAC registers. */
733 return ret_val;
734
735 /* Clear any pending interrupt events. */
736 ew32(IMC, 0xffffffff);
737 er32(ICR);
738
739 return e1000_check_alt_mac_addr_generic(hw);
740 }
741
742 /**
743 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
744 * @hw: pointer to the HW structure
745 *
746 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
747 **/
748 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
749 {
750 struct e1000_mac_info *mac = &hw->mac;
751 u32 reg_data;
752 s32 ret_val;
753 u16 kum_reg_data;
754 u16 i;
755
756 e1000_initialize_hw_bits_80003es2lan(hw);
757
758 /* Initialize identification LED */
759 ret_val = mac->ops.id_led_init(hw);
760 /* An error is not fatal and we should not stop init due to this */
761 if (ret_val)
762 e_dbg("Error initializing identification LED\n");
763
764 /* Disabling VLAN filtering */
765 e_dbg("Initializing the IEEE VLAN\n");
766 mac->ops.clear_vfta(hw);
767
768 /* Setup the receive address. */
769 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
770
771 /* Zero out the Multicast HASH table */
772 e_dbg("Zeroing the MTA\n");
773 for (i = 0; i < mac->mta_reg_count; i++)
774 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
775
776 /* Setup link and flow control */
777 ret_val = mac->ops.setup_link(hw);
778 if (ret_val)
779 return ret_val;
780
781 /* Disable IBIST slave mode (far-end loopback) */
782 e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
783 &kum_reg_data);
784 kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
785 e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
786 kum_reg_data);
787
788 /* Set the transmit descriptor write-back policy */
789 reg_data = er32(TXDCTL(0));
790 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
791 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
792 ew32(TXDCTL(0), reg_data);
793
794 /* ...for both queues. */
795 reg_data = er32(TXDCTL(1));
796 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
797 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
798 ew32(TXDCTL(1), reg_data);
799
800 /* Enable retransmit on late collisions */
801 reg_data = er32(TCTL);
802 reg_data |= E1000_TCTL_RTLC;
803 ew32(TCTL, reg_data);
804
805 /* Configure Gigabit Carry Extend Padding */
806 reg_data = er32(TCTL_EXT);
807 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
808 reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
809 ew32(TCTL_EXT, reg_data);
810
811 /* Configure Transmit Inter-Packet Gap */
812 reg_data = er32(TIPG);
813 reg_data &= ~E1000_TIPG_IPGT_MASK;
814 reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
815 ew32(TIPG, reg_data);
816
817 reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
818 reg_data &= ~0x00100000;
819 E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
820
821 /* default to true to enable the MDIC W/A */
822 hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
823
824 ret_val =
825 e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
826 E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
827 if (!ret_val) {
828 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
829 E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
830 hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
831 }
832
833 /* Clear all of the statistics registers (clear on read). It is
834 * important that we do this after we have tried to establish link
835 * because the symbol error count will increment wildly if there
836 * is no link.
837 */
838 e1000_clear_hw_cntrs_80003es2lan(hw);
839
840 return ret_val;
841 }
842
843 /**
844 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
845 * @hw: pointer to the HW structure
846 *
847 * Initializes required hardware-dependent bits needed for normal operation.
848 **/
849 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
850 {
851 u32 reg;
852
853 /* Transmit Descriptor Control 0 */
854 reg = er32(TXDCTL(0));
855 reg |= (1 << 22);
856 ew32(TXDCTL(0), reg);
857
858 /* Transmit Descriptor Control 1 */
859 reg = er32(TXDCTL(1));
860 reg |= (1 << 22);
861 ew32(TXDCTL(1), reg);
862
863 /* Transmit Arbitration Control 0 */
864 reg = er32(TARC(0));
865 reg &= ~(0xF << 27); /* 30:27 */
866 if (hw->phy.media_type != e1000_media_type_copper)
867 reg &= ~(1 << 20);
868 ew32(TARC(0), reg);
869
870 /* Transmit Arbitration Control 1 */
871 reg = er32(TARC(1));
872 if (er32(TCTL) & E1000_TCTL_MULR)
873 reg &= ~(1 << 28);
874 else
875 reg |= (1 << 28);
876 ew32(TARC(1), reg);
877
878 /* Disable IPv6 extension header parsing because some malformed
879 * IPv6 headers can hang the Rx.
880 */
881 reg = er32(RFCTL);
882 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
883 ew32(RFCTL, reg);
884 }
885
886 /**
887 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
888 * @hw: pointer to the HW structure
889 *
890 * Setup some GG82563 PHY registers for obtaining link
891 **/
892 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
893 {
894 struct e1000_phy_info *phy = &hw->phy;
895 s32 ret_val;
896 u32 reg;
897 u16 data;
898
899 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
900 if (ret_val)
901 return ret_val;
902
903 data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
904 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
905 data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
906
907 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
908 if (ret_val)
909 return ret_val;
910
911 /* Options:
912 * MDI/MDI-X = 0 (default)
913 * 0 - Auto for all speeds
914 * 1 - MDI mode
915 * 2 - MDI-X mode
916 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
917 */
918 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
919 if (ret_val)
920 return ret_val;
921
922 data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
923
924 switch (phy->mdix) {
925 case 1:
926 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
927 break;
928 case 2:
929 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
930 break;
931 case 0:
932 default:
933 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
934 break;
935 }
936
937 /* Options:
938 * disable_polarity_correction = 0 (default)
939 * Automatic Correction for Reversed Cable Polarity
940 * 0 - Disabled
941 * 1 - Enabled
942 */
943 data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
944 if (phy->disable_polarity_correction)
945 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
946
947 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
948 if (ret_val)
949 return ret_val;
950
951 /* SW Reset the PHY so all changes take effect */
952 ret_val = hw->phy.ops.commit(hw);
953 if (ret_val) {
954 e_dbg("Error Resetting the PHY\n");
955 return ret_val;
956 }
957
958 /* Bypass Rx and Tx FIFO's */
959 reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
960 data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
961 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
962 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
963 if (ret_val)
964 return ret_val;
965
966 reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
967 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
968 if (ret_val)
969 return ret_val;
970 data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
971 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
972 if (ret_val)
973 return ret_val;
974
975 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
976 if (ret_val)
977 return ret_val;
978
979 data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
980 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
981 if (ret_val)
982 return ret_val;
983
984 reg = er32(CTRL_EXT);
985 reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
986 ew32(CTRL_EXT, reg);
987
988 ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
989 if (ret_val)
990 return ret_val;
991
992 /* Do not init these registers when the HW is in IAMT mode, since the
993 * firmware will have already initialized them. We only initialize
994 * them if the HW is not in IAMT mode.
995 */
996 if (!hw->mac.ops.check_mng_mode(hw)) {
997 /* Enable Electrical Idle on the PHY */
998 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
999 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1000 if (ret_val)
1001 return ret_val;
1002
1003 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1004 if (ret_val)
1005 return ret_val;
1006
1007 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1008 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1009 if (ret_val)
1010 return ret_val;
1011 }
1012
1013 /* Workaround: Disable padding in Kumeran interface in the MAC
1014 * and in the PHY to avoid CRC errors.
1015 */
1016 ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1017 if (ret_val)
1018 return ret_val;
1019
1020 data |= GG82563_ICR_DIS_PADDING;
1021 ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1022 if (ret_val)
1023 return ret_val;
1024
1025 return 0;
1026 }
1027
1028 /**
1029 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1030 * @hw: pointer to the HW structure
1031 *
1032 * Essentially a wrapper for setting up all things "copper" related.
1033 * This is a function pointer entry point called by the mac module.
1034 **/
1035 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1036 {
1037 u32 ctrl;
1038 s32 ret_val;
1039 u16 reg_data;
1040
1041 ctrl = er32(CTRL);
1042 ctrl |= E1000_CTRL_SLU;
1043 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1044 ew32(CTRL, ctrl);
1045
1046 /* Set the mac to wait the maximum time between each
1047 * iteration and increase the max iterations when
1048 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1049 */
1050 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1051 0xFFFF);
1052 if (ret_val)
1053 return ret_val;
1054 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1055 &reg_data);
1056 if (ret_val)
1057 return ret_val;
1058 reg_data |= 0x3F;
1059 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1060 reg_data);
1061 if (ret_val)
1062 return ret_val;
1063 ret_val =
1064 e1000_read_kmrn_reg_80003es2lan(hw,
1065 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1066 &reg_data);
1067 if (ret_val)
1068 return ret_val;
1069 reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1070 ret_val =
1071 e1000_write_kmrn_reg_80003es2lan(hw,
1072 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1073 reg_data);
1074 if (ret_val)
1075 return ret_val;
1076
1077 ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1078 if (ret_val)
1079 return ret_val;
1080
1081 return e1000e_setup_copper_link(hw);
1082 }
1083
1084 /**
1085 * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1086 * @hw: pointer to the HW structure
1087 * @duplex: current duplex setting
1088 *
1089 * Configure the KMRN interface by applying last minute quirks for
1090 * 10/100 operation.
1091 **/
1092 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1093 {
1094 s32 ret_val = 0;
1095 u16 speed;
1096 u16 duplex;
1097
1098 if (hw->phy.media_type == e1000_media_type_copper) {
1099 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1100 &duplex);
1101 if (ret_val)
1102 return ret_val;
1103
1104 if (speed == SPEED_1000)
1105 ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1106 else
1107 ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1108 }
1109
1110 return ret_val;
1111 }
1112
1113 /**
1114 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1115 * @hw: pointer to the HW structure
1116 * @duplex: current duplex setting
1117 *
1118 * Configure the KMRN interface by applying last minute quirks for
1119 * 10/100 operation.
1120 **/
1121 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1122 {
1123 s32 ret_val;
1124 u32 tipg;
1125 u32 i = 0;
1126 u16 reg_data, reg_data2;
1127
1128 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1129 ret_val =
1130 e1000_write_kmrn_reg_80003es2lan(hw,
1131 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1132 reg_data);
1133 if (ret_val)
1134 return ret_val;
1135
1136 /* Configure Transmit Inter-Packet Gap */
1137 tipg = er32(TIPG);
1138 tipg &= ~E1000_TIPG_IPGT_MASK;
1139 tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1140 ew32(TIPG, tipg);
1141
1142 do {
1143 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1144 if (ret_val)
1145 return ret_val;
1146
1147 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1148 if (ret_val)
1149 return ret_val;
1150 i++;
1151 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1152
1153 if (duplex == HALF_DUPLEX)
1154 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1155 else
1156 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1157
1158 return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1159 }
1160
1161 /**
1162 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1163 * @hw: pointer to the HW structure
1164 *
1165 * Configure the KMRN interface by applying last minute quirks for
1166 * gigabit operation.
1167 **/
1168 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1169 {
1170 s32 ret_val;
1171 u16 reg_data, reg_data2;
1172 u32 tipg;
1173 u32 i = 0;
1174
1175 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1176 ret_val =
1177 e1000_write_kmrn_reg_80003es2lan(hw,
1178 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1179 reg_data);
1180 if (ret_val)
1181 return ret_val;
1182
1183 /* Configure Transmit Inter-Packet Gap */
1184 tipg = er32(TIPG);
1185 tipg &= ~E1000_TIPG_IPGT_MASK;
1186 tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1187 ew32(TIPG, tipg);
1188
1189 do {
1190 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1191 if (ret_val)
1192 return ret_val;
1193
1194 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1195 if (ret_val)
1196 return ret_val;
1197 i++;
1198 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1199
1200 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1201
1202 return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1203 }
1204
1205 /**
1206 * e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1207 * @hw: pointer to the HW structure
1208 * @offset: register offset to be read
1209 * @data: pointer to the read data
1210 *
1211 * Acquire semaphore, then read the PHY register at offset
1212 * using the kumeran interface. The information retrieved is stored in data.
1213 * Release the semaphore before exiting.
1214 **/
1215 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1216 u16 *data)
1217 {
1218 u32 kmrnctrlsta;
1219 s32 ret_val;
1220
1221 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1222 if (ret_val)
1223 return ret_val;
1224
1225 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1226 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1227 ew32(KMRNCTRLSTA, kmrnctrlsta);
1228 e1e_flush();
1229
1230 udelay(2);
1231
1232 kmrnctrlsta = er32(KMRNCTRLSTA);
1233 *data = (u16)kmrnctrlsta;
1234
1235 e1000_release_mac_csr_80003es2lan(hw);
1236
1237 return ret_val;
1238 }
1239
1240 /**
1241 * e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1242 * @hw: pointer to the HW structure
1243 * @offset: register offset to write to
1244 * @data: data to write at register offset
1245 *
1246 * Acquire semaphore, then write the data to PHY register
1247 * at the offset using the kumeran interface. Release semaphore
1248 * before exiting.
1249 **/
1250 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1251 u16 data)
1252 {
1253 u32 kmrnctrlsta;
1254 s32 ret_val;
1255
1256 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1257 if (ret_val)
1258 return ret_val;
1259
1260 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1261 E1000_KMRNCTRLSTA_OFFSET) | data;
1262 ew32(KMRNCTRLSTA, kmrnctrlsta);
1263 e1e_flush();
1264
1265 udelay(2);
1266
1267 e1000_release_mac_csr_80003es2lan(hw);
1268
1269 return ret_val;
1270 }
1271
1272 /**
1273 * e1000_read_mac_addr_80003es2lan - Read device MAC address
1274 * @hw: pointer to the HW structure
1275 **/
1276 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1277 {
1278 s32 ret_val;
1279
1280 /* If there's an alternate MAC address place it in RAR0
1281 * so that it will override the Si installed default perm
1282 * address.
1283 */
1284 ret_val = e1000_check_alt_mac_addr_generic(hw);
1285 if (ret_val)
1286 return ret_val;
1287
1288 return e1000_read_mac_addr_generic(hw);
1289 }
1290
1291 /**
1292 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1293 * @hw: pointer to the HW structure
1294 *
1295 * In the case of a PHY power down to save power, or to turn off link during a
1296 * driver unload, or wake on lan is not enabled, remove the link.
1297 **/
1298 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1299 {
1300 /* If the management interface is not enabled, then power down */
1301 if (!(hw->mac.ops.check_mng_mode(hw) ||
1302 hw->phy.ops.check_reset_block(hw)))
1303 e1000_power_down_phy_copper(hw);
1304 }
1305
1306 /**
1307 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1308 * @hw: pointer to the HW structure
1309 *
1310 * Clears the hardware counters by reading the counter registers.
1311 **/
1312 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1313 {
1314 e1000e_clear_hw_cntrs_base(hw);
1315
1316 er32(PRC64);
1317 er32(PRC127);
1318 er32(PRC255);
1319 er32(PRC511);
1320 er32(PRC1023);
1321 er32(PRC1522);
1322 er32(PTC64);
1323 er32(PTC127);
1324 er32(PTC255);
1325 er32(PTC511);
1326 er32(PTC1023);
1327 er32(PTC1522);
1328
1329 er32(ALGNERRC);
1330 er32(RXERRC);
1331 er32(TNCRS);
1332 er32(CEXTERR);
1333 er32(TSCTC);
1334 er32(TSCTFC);
1335
1336 er32(MGTPRC);
1337 er32(MGTPDC);
1338 er32(MGTPTC);
1339
1340 er32(IAC);
1341 er32(ICRXOC);
1342
1343 er32(ICRXPTC);
1344 er32(ICRXATC);
1345 er32(ICTXPTC);
1346 er32(ICTXATC);
1347 er32(ICTXQEC);
1348 er32(ICTXQMTC);
1349 er32(ICRXDMTC);
1350 }
1351
1352 static const struct e1000_mac_operations es2_mac_ops = {
1353 .read_mac_addr = e1000_read_mac_addr_80003es2lan,
1354 .id_led_init = e1000e_id_led_init_generic,
1355 .blink_led = e1000e_blink_led_generic,
1356 .check_mng_mode = e1000e_check_mng_mode_generic,
1357 /* check_for_link dependent on media type */
1358 .cleanup_led = e1000e_cleanup_led_generic,
1359 .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
1360 .get_bus_info = e1000e_get_bus_info_pcie,
1361 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1362 .get_link_up_info = e1000_get_link_up_info_80003es2lan,
1363 .led_on = e1000e_led_on_generic,
1364 .led_off = e1000e_led_off_generic,
1365 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1366 .write_vfta = e1000_write_vfta_generic,
1367 .clear_vfta = e1000_clear_vfta_generic,
1368 .reset_hw = e1000_reset_hw_80003es2lan,
1369 .init_hw = e1000_init_hw_80003es2lan,
1370 .setup_link = e1000e_setup_link_generic,
1371 /* setup_physical_interface dependent on media type */
1372 .setup_led = e1000e_setup_led_generic,
1373 .config_collision_dist = e1000e_config_collision_dist_generic,
1374 .rar_set = e1000e_rar_set_generic,
1375 };
1376
1377 static const struct e1000_phy_operations es2_phy_ops = {
1378 .acquire = e1000_acquire_phy_80003es2lan,
1379 .check_polarity = e1000_check_polarity_m88,
1380 .check_reset_block = e1000e_check_reset_block_generic,
1381 .commit = e1000e_phy_sw_reset,
1382 .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
1383 .get_cfg_done = e1000_get_cfg_done_80003es2lan,
1384 .get_cable_length = e1000_get_cable_length_80003es2lan,
1385 .get_info = e1000e_get_phy_info_m88,
1386 .read_reg = e1000_read_phy_reg_gg82563_80003es2lan,
1387 .release = e1000_release_phy_80003es2lan,
1388 .reset = e1000e_phy_hw_reset_generic,
1389 .set_d0_lplu_state = NULL,
1390 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1391 .write_reg = e1000_write_phy_reg_gg82563_80003es2lan,
1392 .cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan,
1393 };
1394
1395 static const struct e1000_nvm_operations es2_nvm_ops = {
1396 .acquire = e1000_acquire_nvm_80003es2lan,
1397 .read = e1000e_read_nvm_eerd,
1398 .release = e1000_release_nvm_80003es2lan,
1399 .reload = e1000e_reload_nvm_generic,
1400 .update = e1000e_update_nvm_checksum_generic,
1401 .valid_led_default = e1000e_valid_led_default,
1402 .validate = e1000e_validate_nvm_checksum_generic,
1403 .write = e1000_write_nvm_80003es2lan,
1404 };
1405
1406 const struct e1000_info e1000_es2_info = {
1407 .mac = e1000_80003es2lan,
1408 .flags = FLAG_HAS_HW_VLAN_FILTER
1409 | FLAG_HAS_JUMBO_FRAMES
1410 | FLAG_HAS_WOL
1411 | FLAG_APME_IN_CTRL3
1412 | FLAG_HAS_CTRLEXT_ON_LOAD
1413 | FLAG_RX_NEEDS_RESTART /* errata */
1414 | FLAG_TARC_SET_BIT_ZERO /* errata */
1415 | FLAG_APME_CHECK_PORT_B
1416 | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1417 .flags2 = FLAG2_DMA_BURST,
1418 .pba = 38,
1419 .max_hw_frame_size = DEFAULT_JUMBO,
1420 .get_variants = e1000_get_variants_80003es2lan,
1421 .mac_ops = &es2_mac_ops,
1422 .phy_ops = &es2_phy_ops,
1423 .nvm_ops = &es2_nvm_ops,
1424 };
This page took 0.082285 seconds and 5 git commands to generate.