Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jesse/openvswitch
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / 82571.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
44 */
45
46 #include "e1000.h"
47
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
53
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55 #define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
56 #define E1000_BASE1000T_STATUS 10
57 #define E1000_IDLE_ERROR_COUNT_MASK 0xFF
58 #define E1000_RECEIVE_ERROR_COUNTER 21
59 #define E1000_RECEIVE_ERROR_MAX 0xFFFF
60
61 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
62
63 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
64 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
65 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
66 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
67 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
68 u16 words, u16 *data);
69 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
70 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
71 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
72 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
73 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
74 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
75 static s32 e1000_led_on_82574(struct e1000_hw *hw);
76 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
77 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
78 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
79 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
80 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
81 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
82 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
83
84 /**
85 * e1000_init_phy_params_82571 - Init PHY func ptrs.
86 * @hw: pointer to the HW structure
87 **/
88 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
89 {
90 struct e1000_phy_info *phy = &hw->phy;
91 s32 ret_val;
92
93 if (hw->phy.media_type != e1000_media_type_copper) {
94 phy->type = e1000_phy_none;
95 return 0;
96 }
97
98 phy->addr = 1;
99 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
100 phy->reset_delay_us = 100;
101
102 phy->ops.power_up = e1000_power_up_phy_copper;
103 phy->ops.power_down = e1000_power_down_phy_copper_82571;
104
105 switch (hw->mac.type) {
106 case e1000_82571:
107 case e1000_82572:
108 phy->type = e1000_phy_igp_2;
109 break;
110 case e1000_82573:
111 phy->type = e1000_phy_m88;
112 break;
113 case e1000_82574:
114 case e1000_82583:
115 phy->type = e1000_phy_bm;
116 phy->ops.acquire = e1000_get_hw_semaphore_82574;
117 phy->ops.release = e1000_put_hw_semaphore_82574;
118 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
119 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
120 break;
121 default:
122 return -E1000_ERR_PHY;
123 break;
124 }
125
126 /* This can only be done after all function pointers are setup. */
127 ret_val = e1000_get_phy_id_82571(hw);
128 if (ret_val) {
129 e_dbg("Error getting PHY ID\n");
130 return ret_val;
131 }
132
133 /* Verify phy id */
134 switch (hw->mac.type) {
135 case e1000_82571:
136 case e1000_82572:
137 if (phy->id != IGP01E1000_I_PHY_ID)
138 ret_val = -E1000_ERR_PHY;
139 break;
140 case e1000_82573:
141 if (phy->id != M88E1111_I_PHY_ID)
142 ret_val = -E1000_ERR_PHY;
143 break;
144 case e1000_82574:
145 case e1000_82583:
146 if (phy->id != BME1000_E_PHY_ID_R2)
147 ret_val = -E1000_ERR_PHY;
148 break;
149 default:
150 ret_val = -E1000_ERR_PHY;
151 break;
152 }
153
154 if (ret_val)
155 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
156
157 return ret_val;
158 }
159
160 /**
161 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
162 * @hw: pointer to the HW structure
163 **/
164 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
165 {
166 struct e1000_nvm_info *nvm = &hw->nvm;
167 u32 eecd = er32(EECD);
168 u16 size;
169
170 nvm->opcode_bits = 8;
171 nvm->delay_usec = 1;
172 switch (nvm->override) {
173 case e1000_nvm_override_spi_large:
174 nvm->page_size = 32;
175 nvm->address_bits = 16;
176 break;
177 case e1000_nvm_override_spi_small:
178 nvm->page_size = 8;
179 nvm->address_bits = 8;
180 break;
181 default:
182 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
183 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
184 break;
185 }
186
187 switch (hw->mac.type) {
188 case e1000_82573:
189 case e1000_82574:
190 case e1000_82583:
191 if (((eecd >> 15) & 0x3) == 0x3) {
192 nvm->type = e1000_nvm_flash_hw;
193 nvm->word_size = 2048;
194 /*
195 * Autonomous Flash update bit must be cleared due
196 * to Flash update issue.
197 */
198 eecd &= ~E1000_EECD_AUPDEN;
199 ew32(EECD, eecd);
200 break;
201 }
202 /* Fall Through */
203 default:
204 nvm->type = e1000_nvm_eeprom_spi;
205 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
206 E1000_EECD_SIZE_EX_SHIFT);
207 /*
208 * Added to a constant, "size" becomes the left-shift value
209 * for setting word_size.
210 */
211 size += NVM_WORD_SIZE_BASE_SHIFT;
212
213 /* EEPROM access above 16k is unsupported */
214 if (size > 14)
215 size = 14;
216 nvm->word_size = 1 << size;
217 break;
218 }
219
220 /* Function Pointers */
221 switch (hw->mac.type) {
222 case e1000_82574:
223 case e1000_82583:
224 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
225 nvm->ops.release = e1000_put_hw_semaphore_82574;
226 break;
227 default:
228 break;
229 }
230
231 return 0;
232 }
233
234 /**
235 * e1000_init_mac_params_82571 - Init MAC func ptrs.
236 * @hw: pointer to the HW structure
237 **/
238 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
239 {
240 struct e1000_mac_info *mac = &hw->mac;
241 u32 swsm = 0;
242 u32 swsm2 = 0;
243 bool force_clear_smbi = false;
244
245 /* Set media type and media-dependent function pointers */
246 switch (hw->adapter->pdev->device) {
247 case E1000_DEV_ID_82571EB_FIBER:
248 case E1000_DEV_ID_82572EI_FIBER:
249 case E1000_DEV_ID_82571EB_QUAD_FIBER:
250 hw->phy.media_type = e1000_media_type_fiber;
251 mac->ops.setup_physical_interface =
252 e1000_setup_fiber_serdes_link_82571;
253 mac->ops.check_for_link = e1000e_check_for_fiber_link;
254 mac->ops.get_link_up_info =
255 e1000e_get_speed_and_duplex_fiber_serdes;
256 break;
257 case E1000_DEV_ID_82571EB_SERDES:
258 case E1000_DEV_ID_82571EB_SERDES_DUAL:
259 case E1000_DEV_ID_82571EB_SERDES_QUAD:
260 case E1000_DEV_ID_82572EI_SERDES:
261 hw->phy.media_type = e1000_media_type_internal_serdes;
262 mac->ops.setup_physical_interface =
263 e1000_setup_fiber_serdes_link_82571;
264 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
265 mac->ops.get_link_up_info =
266 e1000e_get_speed_and_duplex_fiber_serdes;
267 break;
268 default:
269 hw->phy.media_type = e1000_media_type_copper;
270 mac->ops.setup_physical_interface =
271 e1000_setup_copper_link_82571;
272 mac->ops.check_for_link = e1000e_check_for_copper_link;
273 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
274 break;
275 }
276
277 /* Set mta register count */
278 mac->mta_reg_count = 128;
279 /* Set rar entry count */
280 mac->rar_entry_count = E1000_RAR_ENTRIES;
281 /* Adaptive IFS supported */
282 mac->adaptive_ifs = true;
283
284 /* MAC-specific function pointers */
285 switch (hw->mac.type) {
286 case e1000_82573:
287 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
288 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
289 mac->ops.led_on = e1000e_led_on_generic;
290 mac->ops.blink_led = e1000e_blink_led_generic;
291
292 /* FWSM register */
293 mac->has_fwsm = true;
294 /*
295 * ARC supported; valid only if manageability features are
296 * enabled.
297 */
298 mac->arc_subsystem_valid = !!(er32(FWSM) &
299 E1000_FWSM_MODE_MASK);
300 break;
301 case e1000_82574:
302 case e1000_82583:
303 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
304 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
305 mac->ops.led_on = e1000_led_on_82574;
306 break;
307 default:
308 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
309 mac->ops.led_on = e1000e_led_on_generic;
310 mac->ops.blink_led = e1000e_blink_led_generic;
311
312 /* FWSM register */
313 mac->has_fwsm = true;
314 break;
315 }
316
317 /*
318 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
319 * first NVM or PHY access. This should be done for single-port
320 * devices, and for one port only on dual-port devices so that
321 * for those devices we can still use the SMBI lock to synchronize
322 * inter-port accesses to the PHY & NVM.
323 */
324 switch (hw->mac.type) {
325 case e1000_82571:
326 case e1000_82572:
327 swsm2 = er32(SWSM2);
328
329 if (!(swsm2 & E1000_SWSM2_LOCK)) {
330 /* Only do this for the first interface on this card */
331 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
332 force_clear_smbi = true;
333 } else {
334 force_clear_smbi = false;
335 }
336 break;
337 default:
338 force_clear_smbi = true;
339 break;
340 }
341
342 if (force_clear_smbi) {
343 /* Make sure SWSM.SMBI is clear */
344 swsm = er32(SWSM);
345 if (swsm & E1000_SWSM_SMBI) {
346 /* This bit should not be set on a first interface, and
347 * indicates that the bootagent or EFI code has
348 * improperly left this bit enabled
349 */
350 e_dbg("Please update your 82571 Bootagent\n");
351 }
352 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
353 }
354
355 /*
356 * Initialize device specific counter of SMBI acquisition
357 * timeouts.
358 */
359 hw->dev_spec.e82571.smb_counter = 0;
360
361 return 0;
362 }
363
364 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
365 {
366 struct e1000_hw *hw = &adapter->hw;
367 static int global_quad_port_a; /* global port a indication */
368 struct pci_dev *pdev = adapter->pdev;
369 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
370 s32 rc;
371
372 rc = e1000_init_mac_params_82571(hw);
373 if (rc)
374 return rc;
375
376 rc = e1000_init_nvm_params_82571(hw);
377 if (rc)
378 return rc;
379
380 rc = e1000_init_phy_params_82571(hw);
381 if (rc)
382 return rc;
383
384 /* tag quad port adapters first, it's used below */
385 switch (pdev->device) {
386 case E1000_DEV_ID_82571EB_QUAD_COPPER:
387 case E1000_DEV_ID_82571EB_QUAD_FIBER:
388 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
389 case E1000_DEV_ID_82571PT_QUAD_COPPER:
390 adapter->flags |= FLAG_IS_QUAD_PORT;
391 /* mark the first port */
392 if (global_quad_port_a == 0)
393 adapter->flags |= FLAG_IS_QUAD_PORT_A;
394 /* Reset for multiple quad port adapters */
395 global_quad_port_a++;
396 if (global_quad_port_a == 4)
397 global_quad_port_a = 0;
398 break;
399 default:
400 break;
401 }
402
403 switch (adapter->hw.mac.type) {
404 case e1000_82571:
405 /* these dual ports don't have WoL on port B at all */
406 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
407 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
408 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
409 (is_port_b))
410 adapter->flags &= ~FLAG_HAS_WOL;
411 /* quad ports only support WoL on port A */
412 if (adapter->flags & FLAG_IS_QUAD_PORT &&
413 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
414 adapter->flags &= ~FLAG_HAS_WOL;
415 /* Does not support WoL on any port */
416 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
417 adapter->flags &= ~FLAG_HAS_WOL;
418 break;
419 case e1000_82573:
420 if (pdev->device == E1000_DEV_ID_82573L) {
421 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
422 adapter->max_hw_frame_size = DEFAULT_JUMBO;
423 }
424 break;
425 default:
426 break;
427 }
428
429 return 0;
430 }
431
432 /**
433 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
434 * @hw: pointer to the HW structure
435 *
436 * Reads the PHY registers and stores the PHY ID and possibly the PHY
437 * revision in the hardware structure.
438 **/
439 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
440 {
441 struct e1000_phy_info *phy = &hw->phy;
442 s32 ret_val;
443 u16 phy_id = 0;
444
445 switch (hw->mac.type) {
446 case e1000_82571:
447 case e1000_82572:
448 /*
449 * The 82571 firmware may still be configuring the PHY.
450 * In this case, we cannot access the PHY until the
451 * configuration is done. So we explicitly set the
452 * PHY ID.
453 */
454 phy->id = IGP01E1000_I_PHY_ID;
455 break;
456 case e1000_82573:
457 return e1000e_get_phy_id(hw);
458 break;
459 case e1000_82574:
460 case e1000_82583:
461 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
462 if (ret_val)
463 return ret_val;
464
465 phy->id = (u32)(phy_id << 16);
466 udelay(20);
467 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
468 if (ret_val)
469 return ret_val;
470
471 phy->id |= (u32)(phy_id);
472 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
473 break;
474 default:
475 return -E1000_ERR_PHY;
476 break;
477 }
478
479 return 0;
480 }
481
482 /**
483 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
484 * @hw: pointer to the HW structure
485 *
486 * Acquire the HW semaphore to access the PHY or NVM
487 **/
488 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
489 {
490 u32 swsm;
491 s32 sw_timeout = hw->nvm.word_size + 1;
492 s32 fw_timeout = hw->nvm.word_size + 1;
493 s32 i = 0;
494
495 /*
496 * If we have timedout 3 times on trying to acquire
497 * the inter-port SMBI semaphore, there is old code
498 * operating on the other port, and it is not
499 * releasing SMBI. Modify the number of times that
500 * we try for the semaphore to interwork with this
501 * older code.
502 */
503 if (hw->dev_spec.e82571.smb_counter > 2)
504 sw_timeout = 1;
505
506 /* Get the SW semaphore */
507 while (i < sw_timeout) {
508 swsm = er32(SWSM);
509 if (!(swsm & E1000_SWSM_SMBI))
510 break;
511
512 udelay(50);
513 i++;
514 }
515
516 if (i == sw_timeout) {
517 e_dbg("Driver can't access device - SMBI bit is set.\n");
518 hw->dev_spec.e82571.smb_counter++;
519 }
520 /* Get the FW semaphore. */
521 for (i = 0; i < fw_timeout; i++) {
522 swsm = er32(SWSM);
523 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
524
525 /* Semaphore acquired if bit latched */
526 if (er32(SWSM) & E1000_SWSM_SWESMBI)
527 break;
528
529 udelay(50);
530 }
531
532 if (i == fw_timeout) {
533 /* Release semaphores */
534 e1000_put_hw_semaphore_82571(hw);
535 e_dbg("Driver can't access the NVM\n");
536 return -E1000_ERR_NVM;
537 }
538
539 return 0;
540 }
541
542 /**
543 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
544 * @hw: pointer to the HW structure
545 *
546 * Release hardware semaphore used to access the PHY or NVM
547 **/
548 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
549 {
550 u32 swsm;
551
552 swsm = er32(SWSM);
553 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
554 ew32(SWSM, swsm);
555 }
556 /**
557 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
558 * @hw: pointer to the HW structure
559 *
560 * Acquire the HW semaphore during reset.
561 *
562 **/
563 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
564 {
565 u32 extcnf_ctrl;
566 s32 i = 0;
567
568 extcnf_ctrl = er32(EXTCNF_CTRL);
569 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
570 do {
571 ew32(EXTCNF_CTRL, extcnf_ctrl);
572 extcnf_ctrl = er32(EXTCNF_CTRL);
573
574 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
575 break;
576
577 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
578
579 usleep_range(2000, 4000);
580 i++;
581 } while (i < MDIO_OWNERSHIP_TIMEOUT);
582
583 if (i == MDIO_OWNERSHIP_TIMEOUT) {
584 /* Release semaphores */
585 e1000_put_hw_semaphore_82573(hw);
586 e_dbg("Driver can't access the PHY\n");
587 return -E1000_ERR_PHY;
588 }
589
590 return 0;
591 }
592
593 /**
594 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
595 * @hw: pointer to the HW structure
596 *
597 * Release hardware semaphore used during reset.
598 *
599 **/
600 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
601 {
602 u32 extcnf_ctrl;
603
604 extcnf_ctrl = er32(EXTCNF_CTRL);
605 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
606 ew32(EXTCNF_CTRL, extcnf_ctrl);
607 }
608
609 static DEFINE_MUTEX(swflag_mutex);
610
611 /**
612 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
613 * @hw: pointer to the HW structure
614 *
615 * Acquire the HW semaphore to access the PHY or NVM.
616 *
617 **/
618 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
619 {
620 s32 ret_val;
621
622 mutex_lock(&swflag_mutex);
623 ret_val = e1000_get_hw_semaphore_82573(hw);
624 if (ret_val)
625 mutex_unlock(&swflag_mutex);
626 return ret_val;
627 }
628
629 /**
630 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
631 * @hw: pointer to the HW structure
632 *
633 * Release hardware semaphore used to access the PHY or NVM
634 *
635 **/
636 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
637 {
638 e1000_put_hw_semaphore_82573(hw);
639 mutex_unlock(&swflag_mutex);
640 }
641
642 /**
643 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
644 * @hw: pointer to the HW structure
645 * @active: true to enable LPLU, false to disable
646 *
647 * Sets the LPLU D0 state according to the active flag.
648 * LPLU will not be activated unless the
649 * device autonegotiation advertisement meets standards of
650 * either 10 or 10/100 or 10/100/1000 at all duplexes.
651 * This is a function pointer entry point only called by
652 * PHY setup routines.
653 **/
654 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
655 {
656 u16 data = er32(POEMB);
657
658 if (active)
659 data |= E1000_PHY_CTRL_D0A_LPLU;
660 else
661 data &= ~E1000_PHY_CTRL_D0A_LPLU;
662
663 ew32(POEMB, data);
664 return 0;
665 }
666
667 /**
668 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
669 * @hw: pointer to the HW structure
670 * @active: boolean used to enable/disable lplu
671 *
672 * The low power link up (lplu) state is set to the power management level D3
673 * when active is true, else clear lplu for D3. LPLU
674 * is used during Dx states where the power conservation is most important.
675 * During driver activity, SmartSpeed should be enabled so performance is
676 * maintained.
677 **/
678 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
679 {
680 u16 data = er32(POEMB);
681
682 if (!active) {
683 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
684 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
685 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
686 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
687 data |= E1000_PHY_CTRL_NOND0A_LPLU;
688 }
689
690 ew32(POEMB, data);
691 return 0;
692 }
693
694 /**
695 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
696 * @hw: pointer to the HW structure
697 *
698 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
699 * Then for non-82573 hardware, set the EEPROM access request bit and wait
700 * for EEPROM access grant bit. If the access grant bit is not set, release
701 * hardware semaphore.
702 **/
703 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
704 {
705 s32 ret_val;
706
707 ret_val = e1000_get_hw_semaphore_82571(hw);
708 if (ret_val)
709 return ret_val;
710
711 switch (hw->mac.type) {
712 case e1000_82573:
713 break;
714 default:
715 ret_val = e1000e_acquire_nvm(hw);
716 break;
717 }
718
719 if (ret_val)
720 e1000_put_hw_semaphore_82571(hw);
721
722 return ret_val;
723 }
724
725 /**
726 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
727 * @hw: pointer to the HW structure
728 *
729 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
730 **/
731 static void e1000_release_nvm_82571(struct e1000_hw *hw)
732 {
733 e1000e_release_nvm(hw);
734 e1000_put_hw_semaphore_82571(hw);
735 }
736
737 /**
738 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
739 * @hw: pointer to the HW structure
740 * @offset: offset within the EEPROM to be written to
741 * @words: number of words to write
742 * @data: 16 bit word(s) to be written to the EEPROM
743 *
744 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
745 *
746 * If e1000e_update_nvm_checksum is not called after this function, the
747 * EEPROM will most likely contain an invalid checksum.
748 **/
749 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
750 u16 *data)
751 {
752 s32 ret_val;
753
754 switch (hw->mac.type) {
755 case e1000_82573:
756 case e1000_82574:
757 case e1000_82583:
758 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
759 break;
760 case e1000_82571:
761 case e1000_82572:
762 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
763 break;
764 default:
765 ret_val = -E1000_ERR_NVM;
766 break;
767 }
768
769 return ret_val;
770 }
771
772 /**
773 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
774 * @hw: pointer to the HW structure
775 *
776 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
777 * up to the checksum. Then calculates the EEPROM checksum and writes the
778 * value to the EEPROM.
779 **/
780 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
781 {
782 u32 eecd;
783 s32 ret_val;
784 u16 i;
785
786 ret_val = e1000e_update_nvm_checksum_generic(hw);
787 if (ret_val)
788 return ret_val;
789
790 /*
791 * If our nvm is an EEPROM, then we're done
792 * otherwise, commit the checksum to the flash NVM.
793 */
794 if (hw->nvm.type != e1000_nvm_flash_hw)
795 return 0;
796
797 /* Check for pending operations. */
798 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
799 usleep_range(1000, 2000);
800 if (!(er32(EECD) & E1000_EECD_FLUPD))
801 break;
802 }
803
804 if (i == E1000_FLASH_UPDATES)
805 return -E1000_ERR_NVM;
806
807 /* Reset the firmware if using STM opcode. */
808 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
809 /*
810 * The enabling of and the actual reset must be done
811 * in two write cycles.
812 */
813 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
814 e1e_flush();
815 ew32(HICR, E1000_HICR_FW_RESET);
816 }
817
818 /* Commit the write to flash */
819 eecd = er32(EECD) | E1000_EECD_FLUPD;
820 ew32(EECD, eecd);
821
822 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
823 usleep_range(1000, 2000);
824 if (!(er32(EECD) & E1000_EECD_FLUPD))
825 break;
826 }
827
828 if (i == E1000_FLASH_UPDATES)
829 return -E1000_ERR_NVM;
830
831 return 0;
832 }
833
834 /**
835 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
836 * @hw: pointer to the HW structure
837 *
838 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
839 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
840 **/
841 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
842 {
843 if (hw->nvm.type == e1000_nvm_flash_hw)
844 e1000_fix_nvm_checksum_82571(hw);
845
846 return e1000e_validate_nvm_checksum_generic(hw);
847 }
848
849 /**
850 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
851 * @hw: pointer to the HW structure
852 * @offset: offset within the EEPROM to be written to
853 * @words: number of words to write
854 * @data: 16 bit word(s) to be written to the EEPROM
855 *
856 * After checking for invalid values, poll the EEPROM to ensure the previous
857 * command has completed before trying to write the next word. After write
858 * poll for completion.
859 *
860 * If e1000e_update_nvm_checksum is not called after this function, the
861 * EEPROM will most likely contain an invalid checksum.
862 **/
863 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
864 u16 words, u16 *data)
865 {
866 struct e1000_nvm_info *nvm = &hw->nvm;
867 u32 i, eewr = 0;
868 s32 ret_val = 0;
869
870 /*
871 * A check for invalid values: offset too large, too many words,
872 * and not enough words.
873 */
874 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
875 (words == 0)) {
876 e_dbg("nvm parameter(s) out of bounds\n");
877 return -E1000_ERR_NVM;
878 }
879
880 for (i = 0; i < words; i++) {
881 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
882 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
883 E1000_NVM_RW_REG_START;
884
885 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
886 if (ret_val)
887 break;
888
889 ew32(EEWR, eewr);
890
891 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
892 if (ret_val)
893 break;
894 }
895
896 return ret_val;
897 }
898
899 /**
900 * e1000_get_cfg_done_82571 - Poll for configuration done
901 * @hw: pointer to the HW structure
902 *
903 * Reads the management control register for the config done bit to be set.
904 **/
905 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
906 {
907 s32 timeout = PHY_CFG_TIMEOUT;
908
909 while (timeout) {
910 if (er32(EEMNGCTL) &
911 E1000_NVM_CFG_DONE_PORT_0)
912 break;
913 usleep_range(1000, 2000);
914 timeout--;
915 }
916 if (!timeout) {
917 e_dbg("MNG configuration cycle has not completed.\n");
918 return -E1000_ERR_RESET;
919 }
920
921 return 0;
922 }
923
924 /**
925 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
926 * @hw: pointer to the HW structure
927 * @active: true to enable LPLU, false to disable
928 *
929 * Sets the LPLU D0 state according to the active flag. When activating LPLU
930 * this function also disables smart speed and vice versa. LPLU will not be
931 * activated unless the device autonegotiation advertisement meets standards
932 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
933 * pointer entry point only called by PHY setup routines.
934 **/
935 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
936 {
937 struct e1000_phy_info *phy = &hw->phy;
938 s32 ret_val;
939 u16 data;
940
941 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
942 if (ret_val)
943 return ret_val;
944
945 if (active) {
946 data |= IGP02E1000_PM_D0_LPLU;
947 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
948 if (ret_val)
949 return ret_val;
950
951 /* When LPLU is enabled, we should disable SmartSpeed */
952 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
953 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
954 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
955 if (ret_val)
956 return ret_val;
957 } else {
958 data &= ~IGP02E1000_PM_D0_LPLU;
959 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
960 /*
961 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
962 * during Dx states where the power conservation is most
963 * important. During driver activity we should enable
964 * SmartSpeed, so performance is maintained.
965 */
966 if (phy->smart_speed == e1000_smart_speed_on) {
967 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
968 &data);
969 if (ret_val)
970 return ret_val;
971
972 data |= IGP01E1000_PSCFR_SMART_SPEED;
973 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
974 data);
975 if (ret_val)
976 return ret_val;
977 } else if (phy->smart_speed == e1000_smart_speed_off) {
978 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
979 &data);
980 if (ret_val)
981 return ret_val;
982
983 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
984 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
985 data);
986 if (ret_val)
987 return ret_val;
988 }
989 }
990
991 return 0;
992 }
993
994 /**
995 * e1000_reset_hw_82571 - Reset hardware
996 * @hw: pointer to the HW structure
997 *
998 * This resets the hardware into a known state.
999 **/
1000 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
1001 {
1002 u32 ctrl, ctrl_ext, eecd, tctl;
1003 s32 ret_val;
1004
1005 /*
1006 * Prevent the PCI-E bus from sticking if there is no TLP connection
1007 * on the last TLP read/write transaction when MAC is reset.
1008 */
1009 ret_val = e1000e_disable_pcie_master(hw);
1010 if (ret_val)
1011 e_dbg("PCI-E Master disable polling has failed.\n");
1012
1013 e_dbg("Masking off all interrupts\n");
1014 ew32(IMC, 0xffffffff);
1015
1016 ew32(RCTL, 0);
1017 tctl = er32(TCTL);
1018 tctl &= ~E1000_TCTL_EN;
1019 ew32(TCTL, tctl);
1020 e1e_flush();
1021
1022 usleep_range(10000, 20000);
1023
1024 /*
1025 * Must acquire the MDIO ownership before MAC reset.
1026 * Ownership defaults to firmware after a reset.
1027 */
1028 switch (hw->mac.type) {
1029 case e1000_82573:
1030 ret_val = e1000_get_hw_semaphore_82573(hw);
1031 break;
1032 case e1000_82574:
1033 case e1000_82583:
1034 ret_val = e1000_get_hw_semaphore_82574(hw);
1035 break;
1036 default:
1037 break;
1038 }
1039 if (ret_val)
1040 e_dbg("Cannot acquire MDIO ownership\n");
1041
1042 ctrl = er32(CTRL);
1043
1044 e_dbg("Issuing a global reset to MAC\n");
1045 ew32(CTRL, ctrl | E1000_CTRL_RST);
1046
1047 /* Must release MDIO ownership and mutex after MAC reset. */
1048 switch (hw->mac.type) {
1049 case e1000_82574:
1050 case e1000_82583:
1051 e1000_put_hw_semaphore_82574(hw);
1052 break;
1053 default:
1054 break;
1055 }
1056
1057 if (hw->nvm.type == e1000_nvm_flash_hw) {
1058 udelay(10);
1059 ctrl_ext = er32(CTRL_EXT);
1060 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1061 ew32(CTRL_EXT, ctrl_ext);
1062 e1e_flush();
1063 }
1064
1065 ret_val = e1000e_get_auto_rd_done(hw);
1066 if (ret_val)
1067 /* We don't want to continue accessing MAC registers. */
1068 return ret_val;
1069
1070 /*
1071 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1072 * Need to wait for Phy configuration completion before accessing
1073 * NVM and Phy.
1074 */
1075
1076 switch (hw->mac.type) {
1077 case e1000_82571:
1078 case e1000_82572:
1079 /*
1080 * REQ and GNT bits need to be cleared when using AUTO_RD
1081 * to access the EEPROM.
1082 */
1083 eecd = er32(EECD);
1084 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1085 ew32(EECD, eecd);
1086 break;
1087 case e1000_82573:
1088 case e1000_82574:
1089 case e1000_82583:
1090 msleep(25);
1091 break;
1092 default:
1093 break;
1094 }
1095
1096 /* Clear any pending interrupt events. */
1097 ew32(IMC, 0xffffffff);
1098 er32(ICR);
1099
1100 if (hw->mac.type == e1000_82571) {
1101 /* Install any alternate MAC address into RAR0 */
1102 ret_val = e1000_check_alt_mac_addr_generic(hw);
1103 if (ret_val)
1104 return ret_val;
1105
1106 e1000e_set_laa_state_82571(hw, true);
1107 }
1108
1109 /* Reinitialize the 82571 serdes link state machine */
1110 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1111 hw->mac.serdes_link_state = e1000_serdes_link_down;
1112
1113 return 0;
1114 }
1115
1116 /**
1117 * e1000_init_hw_82571 - Initialize hardware
1118 * @hw: pointer to the HW structure
1119 *
1120 * This inits the hardware readying it for operation.
1121 **/
1122 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1123 {
1124 struct e1000_mac_info *mac = &hw->mac;
1125 u32 reg_data;
1126 s32 ret_val;
1127 u16 i, rar_count = mac->rar_entry_count;
1128
1129 e1000_initialize_hw_bits_82571(hw);
1130
1131 /* Initialize identification LED */
1132 ret_val = mac->ops.id_led_init(hw);
1133 if (ret_val)
1134 e_dbg("Error initializing identification LED\n");
1135 /* This is not fatal and we should not stop init due to this */
1136
1137 /* Disabling VLAN filtering */
1138 e_dbg("Initializing the IEEE VLAN\n");
1139 mac->ops.clear_vfta(hw);
1140
1141 /* Setup the receive address. */
1142 /*
1143 * If, however, a locally administered address was assigned to the
1144 * 82571, we must reserve a RAR for it to work around an issue where
1145 * resetting one port will reload the MAC on the other port.
1146 */
1147 if (e1000e_get_laa_state_82571(hw))
1148 rar_count--;
1149 e1000e_init_rx_addrs(hw, rar_count);
1150
1151 /* Zero out the Multicast HASH table */
1152 e_dbg("Zeroing the MTA\n");
1153 for (i = 0; i < mac->mta_reg_count; i++)
1154 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1155
1156 /* Setup link and flow control */
1157 ret_val = mac->ops.setup_link(hw);
1158
1159 /* Set the transmit descriptor write-back policy */
1160 reg_data = er32(TXDCTL(0));
1161 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1162 E1000_TXDCTL_FULL_TX_DESC_WB |
1163 E1000_TXDCTL_COUNT_DESC;
1164 ew32(TXDCTL(0), reg_data);
1165
1166 /* ...for both queues. */
1167 switch (mac->type) {
1168 case e1000_82573:
1169 e1000e_enable_tx_pkt_filtering(hw);
1170 /* fall through */
1171 case e1000_82574:
1172 case e1000_82583:
1173 reg_data = er32(GCR);
1174 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1175 ew32(GCR, reg_data);
1176 break;
1177 default:
1178 reg_data = er32(TXDCTL(1));
1179 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1180 E1000_TXDCTL_FULL_TX_DESC_WB |
1181 E1000_TXDCTL_COUNT_DESC;
1182 ew32(TXDCTL(1), reg_data);
1183 break;
1184 }
1185
1186 /*
1187 * Clear all of the statistics registers (clear on read). It is
1188 * important that we do this after we have tried to establish link
1189 * because the symbol error count will increment wildly if there
1190 * is no link.
1191 */
1192 e1000_clear_hw_cntrs_82571(hw);
1193
1194 return ret_val;
1195 }
1196
1197 /**
1198 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1199 * @hw: pointer to the HW structure
1200 *
1201 * Initializes required hardware-dependent bits needed for normal operation.
1202 **/
1203 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1204 {
1205 u32 reg;
1206
1207 /* Transmit Descriptor Control 0 */
1208 reg = er32(TXDCTL(0));
1209 reg |= (1 << 22);
1210 ew32(TXDCTL(0), reg);
1211
1212 /* Transmit Descriptor Control 1 */
1213 reg = er32(TXDCTL(1));
1214 reg |= (1 << 22);
1215 ew32(TXDCTL(1), reg);
1216
1217 /* Transmit Arbitration Control 0 */
1218 reg = er32(TARC(0));
1219 reg &= ~(0xF << 27); /* 30:27 */
1220 switch (hw->mac.type) {
1221 case e1000_82571:
1222 case e1000_82572:
1223 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1224 break;
1225 case e1000_82574:
1226 case e1000_82583:
1227 reg |= (1 << 26);
1228 break;
1229 default:
1230 break;
1231 }
1232 ew32(TARC(0), reg);
1233
1234 /* Transmit Arbitration Control 1 */
1235 reg = er32(TARC(1));
1236 switch (hw->mac.type) {
1237 case e1000_82571:
1238 case e1000_82572:
1239 reg &= ~((1 << 29) | (1 << 30));
1240 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1241 if (er32(TCTL) & E1000_TCTL_MULR)
1242 reg &= ~(1 << 28);
1243 else
1244 reg |= (1 << 28);
1245 ew32(TARC(1), reg);
1246 break;
1247 default:
1248 break;
1249 }
1250
1251 /* Device Control */
1252 switch (hw->mac.type) {
1253 case e1000_82573:
1254 case e1000_82574:
1255 case e1000_82583:
1256 reg = er32(CTRL);
1257 reg &= ~(1 << 29);
1258 ew32(CTRL, reg);
1259 break;
1260 default:
1261 break;
1262 }
1263
1264 /* Extended Device Control */
1265 switch (hw->mac.type) {
1266 case e1000_82573:
1267 case e1000_82574:
1268 case e1000_82583:
1269 reg = er32(CTRL_EXT);
1270 reg &= ~(1 << 23);
1271 reg |= (1 << 22);
1272 ew32(CTRL_EXT, reg);
1273 break;
1274 default:
1275 break;
1276 }
1277
1278 if (hw->mac.type == e1000_82571) {
1279 reg = er32(PBA_ECC);
1280 reg |= E1000_PBA_ECC_CORR_EN;
1281 ew32(PBA_ECC, reg);
1282 }
1283
1284 /*
1285 * Workaround for hardware errata.
1286 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1287 */
1288 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1289 reg = er32(CTRL_EXT);
1290 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1291 ew32(CTRL_EXT, reg);
1292 }
1293
1294 /*
1295 * Disable IPv6 extension header parsing because some malformed
1296 * IPv6 headers can hang the Rx.
1297 */
1298 if (hw->mac.type <= e1000_82573) {
1299 reg = er32(RFCTL);
1300 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1301 ew32(RFCTL, reg);
1302 }
1303
1304 /* PCI-Ex Control Registers */
1305 switch (hw->mac.type) {
1306 case e1000_82574:
1307 case e1000_82583:
1308 reg = er32(GCR);
1309 reg |= (1 << 22);
1310 ew32(GCR, reg);
1311
1312 /*
1313 * Workaround for hardware errata.
1314 * apply workaround for hardware errata documented in errata
1315 * docs Fixes issue where some error prone or unreliable PCIe
1316 * completions are occurring, particularly with ASPM enabled.
1317 * Without fix, issue can cause Tx timeouts.
1318 */
1319 reg = er32(GCR2);
1320 reg |= 1;
1321 ew32(GCR2, reg);
1322 break;
1323 default:
1324 break;
1325 }
1326 }
1327
1328 /**
1329 * e1000_clear_vfta_82571 - Clear VLAN filter table
1330 * @hw: pointer to the HW structure
1331 *
1332 * Clears the register array which contains the VLAN filter table by
1333 * setting all the values to 0.
1334 **/
1335 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1336 {
1337 u32 offset;
1338 u32 vfta_value = 0;
1339 u32 vfta_offset = 0;
1340 u32 vfta_bit_in_reg = 0;
1341
1342 switch (hw->mac.type) {
1343 case e1000_82573:
1344 case e1000_82574:
1345 case e1000_82583:
1346 if (hw->mng_cookie.vlan_id != 0) {
1347 /*
1348 * The VFTA is a 4096b bit-field, each identifying
1349 * a single VLAN ID. The following operations
1350 * determine which 32b entry (i.e. offset) into the
1351 * array we want to set the VLAN ID (i.e. bit) of
1352 * the manageability unit.
1353 */
1354 vfta_offset = (hw->mng_cookie.vlan_id >>
1355 E1000_VFTA_ENTRY_SHIFT) &
1356 E1000_VFTA_ENTRY_MASK;
1357 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1358 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1359 }
1360 break;
1361 default:
1362 break;
1363 }
1364 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1365 /*
1366 * If the offset we want to clear is the same offset of the
1367 * manageability VLAN ID, then clear all bits except that of
1368 * the manageability unit.
1369 */
1370 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1371 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1372 e1e_flush();
1373 }
1374 }
1375
1376 /**
1377 * e1000_check_mng_mode_82574 - Check manageability is enabled
1378 * @hw: pointer to the HW structure
1379 *
1380 * Reads the NVM Initialization Control Word 2 and returns true
1381 * (>0) if any manageability is enabled, else false (0).
1382 **/
1383 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1384 {
1385 u16 data;
1386
1387 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1388 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1389 }
1390
1391 /**
1392 * e1000_led_on_82574 - Turn LED on
1393 * @hw: pointer to the HW structure
1394 *
1395 * Turn LED on.
1396 **/
1397 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1398 {
1399 u32 ctrl;
1400 u32 i;
1401
1402 ctrl = hw->mac.ledctl_mode2;
1403 if (!(E1000_STATUS_LU & er32(STATUS))) {
1404 /*
1405 * If no link, then turn LED on by setting the invert bit
1406 * for each LED that's "on" (0x0E) in ledctl_mode2.
1407 */
1408 for (i = 0; i < 4; i++)
1409 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1410 E1000_LEDCTL_MODE_LED_ON)
1411 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1412 }
1413 ew32(LEDCTL, ctrl);
1414
1415 return 0;
1416 }
1417
1418 /**
1419 * e1000_check_phy_82574 - check 82574 phy hung state
1420 * @hw: pointer to the HW structure
1421 *
1422 * Returns whether phy is hung or not
1423 **/
1424 bool e1000_check_phy_82574(struct e1000_hw *hw)
1425 {
1426 u16 status_1kbt = 0;
1427 u16 receive_errors = 0;
1428 s32 ret_val = 0;
1429
1430 /*
1431 * Read PHY Receive Error counter first, if its is max - all F's then
1432 * read the Base1000T status register If both are max then PHY is hung.
1433 */
1434 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1435 if (ret_val)
1436 return false;
1437 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1438 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1439 if (ret_val)
1440 return false;
1441 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1442 E1000_IDLE_ERROR_COUNT_MASK)
1443 return true;
1444 }
1445
1446 return false;
1447 }
1448
1449 /**
1450 * e1000_setup_link_82571 - Setup flow control and link settings
1451 * @hw: pointer to the HW structure
1452 *
1453 * Determines which flow control settings to use, then configures flow
1454 * control. Calls the appropriate media-specific link configuration
1455 * function. Assuming the adapter has a valid link partner, a valid link
1456 * should be established. Assumes the hardware has previously been reset
1457 * and the transmitter and receiver are not enabled.
1458 **/
1459 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1460 {
1461 /*
1462 * 82573 does not have a word in the NVM to determine
1463 * the default flow control setting, so we explicitly
1464 * set it to full.
1465 */
1466 switch (hw->mac.type) {
1467 case e1000_82573:
1468 case e1000_82574:
1469 case e1000_82583:
1470 if (hw->fc.requested_mode == e1000_fc_default)
1471 hw->fc.requested_mode = e1000_fc_full;
1472 break;
1473 default:
1474 break;
1475 }
1476
1477 return e1000e_setup_link_generic(hw);
1478 }
1479
1480 /**
1481 * e1000_setup_copper_link_82571 - Configure copper link settings
1482 * @hw: pointer to the HW structure
1483 *
1484 * Configures the link for auto-neg or forced speed and duplex. Then we check
1485 * for link, once link is established calls to configure collision distance
1486 * and flow control are called.
1487 **/
1488 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1489 {
1490 u32 ctrl;
1491 s32 ret_val;
1492
1493 ctrl = er32(CTRL);
1494 ctrl |= E1000_CTRL_SLU;
1495 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1496 ew32(CTRL, ctrl);
1497
1498 switch (hw->phy.type) {
1499 case e1000_phy_m88:
1500 case e1000_phy_bm:
1501 ret_val = e1000e_copper_link_setup_m88(hw);
1502 break;
1503 case e1000_phy_igp_2:
1504 ret_val = e1000e_copper_link_setup_igp(hw);
1505 break;
1506 default:
1507 return -E1000_ERR_PHY;
1508 break;
1509 }
1510
1511 if (ret_val)
1512 return ret_val;
1513
1514 return e1000e_setup_copper_link(hw);
1515 }
1516
1517 /**
1518 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1519 * @hw: pointer to the HW structure
1520 *
1521 * Configures collision distance and flow control for fiber and serdes links.
1522 * Upon successful setup, poll for link.
1523 **/
1524 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1525 {
1526 switch (hw->mac.type) {
1527 case e1000_82571:
1528 case e1000_82572:
1529 /*
1530 * If SerDes loopback mode is entered, there is no form
1531 * of reset to take the adapter out of that mode. So we
1532 * have to explicitly take the adapter out of loopback
1533 * mode. This prevents drivers from twiddling their thumbs
1534 * if another tool failed to take it out of loopback mode.
1535 */
1536 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1537 break;
1538 default:
1539 break;
1540 }
1541
1542 return e1000e_setup_fiber_serdes_link(hw);
1543 }
1544
1545 /**
1546 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1547 * @hw: pointer to the HW structure
1548 *
1549 * Reports the link state as up or down.
1550 *
1551 * If autonegotiation is supported by the link partner, the link state is
1552 * determined by the result of autonegotiation. This is the most likely case.
1553 * If autonegotiation is not supported by the link partner, and the link
1554 * has a valid signal, force the link up.
1555 *
1556 * The link state is represented internally here by 4 states:
1557 *
1558 * 1) down
1559 * 2) autoneg_progress
1560 * 3) autoneg_complete (the link successfully autonegotiated)
1561 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1562 *
1563 **/
1564 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1565 {
1566 struct e1000_mac_info *mac = &hw->mac;
1567 u32 rxcw;
1568 u32 ctrl;
1569 u32 status;
1570 u32 txcw;
1571 u32 i;
1572 s32 ret_val = 0;
1573
1574 ctrl = er32(CTRL);
1575 status = er32(STATUS);
1576 rxcw = er32(RXCW);
1577 /* SYNCH bit and IV bit are sticky */
1578 udelay(10);
1579 rxcw = er32(RXCW);
1580
1581 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1582
1583 /* Receiver is synchronized with no invalid bits. */
1584 switch (mac->serdes_link_state) {
1585 case e1000_serdes_link_autoneg_complete:
1586 if (!(status & E1000_STATUS_LU)) {
1587 /*
1588 * We have lost link, retry autoneg before
1589 * reporting link failure
1590 */
1591 mac->serdes_link_state =
1592 e1000_serdes_link_autoneg_progress;
1593 mac->serdes_has_link = false;
1594 e_dbg("AN_UP -> AN_PROG\n");
1595 } else {
1596 mac->serdes_has_link = true;
1597 }
1598 break;
1599
1600 case e1000_serdes_link_forced_up:
1601 /*
1602 * If we are receiving /C/ ordered sets, re-enable
1603 * auto-negotiation in the TXCW register and disable
1604 * forced link in the Device Control register in an
1605 * attempt to auto-negotiate with our link partner.
1606 */
1607 if (rxcw & E1000_RXCW_C) {
1608 /* Enable autoneg, and unforce link up */
1609 ew32(TXCW, mac->txcw);
1610 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1611 mac->serdes_link_state =
1612 e1000_serdes_link_autoneg_progress;
1613 mac->serdes_has_link = false;
1614 e_dbg("FORCED_UP -> AN_PROG\n");
1615 } else {
1616 mac->serdes_has_link = true;
1617 }
1618 break;
1619
1620 case e1000_serdes_link_autoneg_progress:
1621 if (rxcw & E1000_RXCW_C) {
1622 /*
1623 * We received /C/ ordered sets, meaning the
1624 * link partner has autonegotiated, and we can
1625 * trust the Link Up (LU) status bit.
1626 */
1627 if (status & E1000_STATUS_LU) {
1628 mac->serdes_link_state =
1629 e1000_serdes_link_autoneg_complete;
1630 e_dbg("AN_PROG -> AN_UP\n");
1631 mac->serdes_has_link = true;
1632 } else {
1633 /* Autoneg completed, but failed. */
1634 mac->serdes_link_state =
1635 e1000_serdes_link_down;
1636 e_dbg("AN_PROG -> DOWN\n");
1637 }
1638 } else {
1639 /*
1640 * The link partner did not autoneg.
1641 * Force link up and full duplex, and change
1642 * state to forced.
1643 */
1644 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1645 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1646 ew32(CTRL, ctrl);
1647
1648 /* Configure Flow Control after link up. */
1649 ret_val = e1000e_config_fc_after_link_up(hw);
1650 if (ret_val) {
1651 e_dbg("Error config flow control\n");
1652 break;
1653 }
1654 mac->serdes_link_state =
1655 e1000_serdes_link_forced_up;
1656 mac->serdes_has_link = true;
1657 e_dbg("AN_PROG -> FORCED_UP\n");
1658 }
1659 break;
1660
1661 case e1000_serdes_link_down:
1662 default:
1663 /*
1664 * The link was down but the receiver has now gained
1665 * valid sync, so lets see if we can bring the link
1666 * up.
1667 */
1668 ew32(TXCW, mac->txcw);
1669 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1670 mac->serdes_link_state =
1671 e1000_serdes_link_autoneg_progress;
1672 mac->serdes_has_link = false;
1673 e_dbg("DOWN -> AN_PROG\n");
1674 break;
1675 }
1676 } else {
1677 if (!(rxcw & E1000_RXCW_SYNCH)) {
1678 mac->serdes_has_link = false;
1679 mac->serdes_link_state = e1000_serdes_link_down;
1680 e_dbg("ANYSTATE -> DOWN\n");
1681 } else {
1682 /*
1683 * Check several times, if SYNCH bit and CONFIG
1684 * bit both are consistently 1 then simply ignore
1685 * the IV bit and restart Autoneg
1686 */
1687 for (i = 0; i < AN_RETRY_COUNT; i++) {
1688 udelay(10);
1689 rxcw = er32(RXCW);
1690 if ((rxcw & E1000_RXCW_SYNCH) &&
1691 (rxcw & E1000_RXCW_C))
1692 continue;
1693
1694 if (rxcw & E1000_RXCW_IV) {
1695 mac->serdes_has_link = false;
1696 mac->serdes_link_state =
1697 e1000_serdes_link_down;
1698 e_dbg("ANYSTATE -> DOWN\n");
1699 break;
1700 }
1701 }
1702
1703 if (i == AN_RETRY_COUNT) {
1704 txcw = er32(TXCW);
1705 txcw |= E1000_TXCW_ANE;
1706 ew32(TXCW, txcw);
1707 mac->serdes_link_state =
1708 e1000_serdes_link_autoneg_progress;
1709 mac->serdes_has_link = false;
1710 e_dbg("ANYSTATE -> AN_PROG\n");
1711 }
1712 }
1713 }
1714
1715 return ret_val;
1716 }
1717
1718 /**
1719 * e1000_valid_led_default_82571 - Verify a valid default LED config
1720 * @hw: pointer to the HW structure
1721 * @data: pointer to the NVM (EEPROM)
1722 *
1723 * Read the EEPROM for the current default LED configuration. If the
1724 * LED configuration is not valid, set to a valid LED configuration.
1725 **/
1726 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1727 {
1728 s32 ret_val;
1729
1730 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1731 if (ret_val) {
1732 e_dbg("NVM Read Error\n");
1733 return ret_val;
1734 }
1735
1736 switch (hw->mac.type) {
1737 case e1000_82573:
1738 case e1000_82574:
1739 case e1000_82583:
1740 if (*data == ID_LED_RESERVED_F746)
1741 *data = ID_LED_DEFAULT_82573;
1742 break;
1743 default:
1744 if (*data == ID_LED_RESERVED_0000 ||
1745 *data == ID_LED_RESERVED_FFFF)
1746 *data = ID_LED_DEFAULT;
1747 break;
1748 }
1749
1750 return 0;
1751 }
1752
1753 /**
1754 * e1000e_get_laa_state_82571 - Get locally administered address state
1755 * @hw: pointer to the HW structure
1756 *
1757 * Retrieve and return the current locally administered address state.
1758 **/
1759 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1760 {
1761 if (hw->mac.type != e1000_82571)
1762 return false;
1763
1764 return hw->dev_spec.e82571.laa_is_present;
1765 }
1766
1767 /**
1768 * e1000e_set_laa_state_82571 - Set locally administered address state
1769 * @hw: pointer to the HW structure
1770 * @state: enable/disable locally administered address
1771 *
1772 * Enable/Disable the current locally administered address state.
1773 **/
1774 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1775 {
1776 if (hw->mac.type != e1000_82571)
1777 return;
1778
1779 hw->dev_spec.e82571.laa_is_present = state;
1780
1781 /* If workaround is activated... */
1782 if (state)
1783 /*
1784 * Hold a copy of the LAA in RAR[14] This is done so that
1785 * between the time RAR[0] gets clobbered and the time it
1786 * gets fixed, the actual LAA is in one of the RARs and no
1787 * incoming packets directed to this port are dropped.
1788 * Eventually the LAA will be in RAR[0] and RAR[14].
1789 */
1790 hw->mac.ops.rar_set(hw, hw->mac.addr,
1791 hw->mac.rar_entry_count - 1);
1792 }
1793
1794 /**
1795 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1796 * @hw: pointer to the HW structure
1797 *
1798 * Verifies that the EEPROM has completed the update. After updating the
1799 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1800 * the checksum fix is not implemented, we need to set the bit and update
1801 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1802 * we need to return bad checksum.
1803 **/
1804 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1805 {
1806 struct e1000_nvm_info *nvm = &hw->nvm;
1807 s32 ret_val;
1808 u16 data;
1809
1810 if (nvm->type != e1000_nvm_flash_hw)
1811 return 0;
1812
1813 /*
1814 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1815 * 10h-12h. Checksum may need to be fixed.
1816 */
1817 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1818 if (ret_val)
1819 return ret_val;
1820
1821 if (!(data & 0x10)) {
1822 /*
1823 * Read 0x23 and check bit 15. This bit is a 1
1824 * when the checksum has already been fixed. If
1825 * the checksum is still wrong and this bit is a
1826 * 1, we need to return bad checksum. Otherwise,
1827 * we need to set this bit to a 1 and update the
1828 * checksum.
1829 */
1830 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1831 if (ret_val)
1832 return ret_val;
1833
1834 if (!(data & 0x8000)) {
1835 data |= 0x8000;
1836 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1837 if (ret_val)
1838 return ret_val;
1839 ret_val = e1000e_update_nvm_checksum(hw);
1840 }
1841 }
1842
1843 return 0;
1844 }
1845
1846 /**
1847 * e1000_read_mac_addr_82571 - Read device MAC address
1848 * @hw: pointer to the HW structure
1849 **/
1850 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1851 {
1852 if (hw->mac.type == e1000_82571) {
1853 s32 ret_val = 0;
1854
1855 /*
1856 * If there's an alternate MAC address place it in RAR0
1857 * so that it will override the Si installed default perm
1858 * address.
1859 */
1860 ret_val = e1000_check_alt_mac_addr_generic(hw);
1861 if (ret_val)
1862 return ret_val;
1863 }
1864
1865 return e1000_read_mac_addr_generic(hw);
1866 }
1867
1868 /**
1869 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1870 * @hw: pointer to the HW structure
1871 *
1872 * In the case of a PHY power down to save power, or to turn off link during a
1873 * driver unload, or wake on lan is not enabled, remove the link.
1874 **/
1875 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1876 {
1877 struct e1000_phy_info *phy = &hw->phy;
1878 struct e1000_mac_info *mac = &hw->mac;
1879
1880 if (!phy->ops.check_reset_block)
1881 return;
1882
1883 /* If the management interface is not enabled, then power down */
1884 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1885 e1000_power_down_phy_copper(hw);
1886 }
1887
1888 /**
1889 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1890 * @hw: pointer to the HW structure
1891 *
1892 * Clears the hardware counters by reading the counter registers.
1893 **/
1894 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1895 {
1896 e1000e_clear_hw_cntrs_base(hw);
1897
1898 er32(PRC64);
1899 er32(PRC127);
1900 er32(PRC255);
1901 er32(PRC511);
1902 er32(PRC1023);
1903 er32(PRC1522);
1904 er32(PTC64);
1905 er32(PTC127);
1906 er32(PTC255);
1907 er32(PTC511);
1908 er32(PTC1023);
1909 er32(PTC1522);
1910
1911 er32(ALGNERRC);
1912 er32(RXERRC);
1913 er32(TNCRS);
1914 er32(CEXTERR);
1915 er32(TSCTC);
1916 er32(TSCTFC);
1917
1918 er32(MGTPRC);
1919 er32(MGTPDC);
1920 er32(MGTPTC);
1921
1922 er32(IAC);
1923 er32(ICRXOC);
1924
1925 er32(ICRXPTC);
1926 er32(ICRXATC);
1927 er32(ICTXPTC);
1928 er32(ICTXATC);
1929 er32(ICTXQEC);
1930 er32(ICTXQMTC);
1931 er32(ICRXDMTC);
1932 }
1933
1934 static const struct e1000_mac_operations e82571_mac_ops = {
1935 /* .check_mng_mode: mac type dependent */
1936 /* .check_for_link: media type dependent */
1937 .id_led_init = e1000e_id_led_init_generic,
1938 .cleanup_led = e1000e_cleanup_led_generic,
1939 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1940 .get_bus_info = e1000e_get_bus_info_pcie,
1941 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1942 /* .get_link_up_info: media type dependent */
1943 /* .led_on: mac type dependent */
1944 .led_off = e1000e_led_off_generic,
1945 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1946 .write_vfta = e1000_write_vfta_generic,
1947 .clear_vfta = e1000_clear_vfta_82571,
1948 .reset_hw = e1000_reset_hw_82571,
1949 .init_hw = e1000_init_hw_82571,
1950 .setup_link = e1000_setup_link_82571,
1951 /* .setup_physical_interface: media type dependent */
1952 .setup_led = e1000e_setup_led_generic,
1953 .config_collision_dist = e1000e_config_collision_dist_generic,
1954 .read_mac_addr = e1000_read_mac_addr_82571,
1955 .rar_set = e1000e_rar_set_generic,
1956 };
1957
1958 static const struct e1000_phy_operations e82_phy_ops_igp = {
1959 .acquire = e1000_get_hw_semaphore_82571,
1960 .check_polarity = e1000_check_polarity_igp,
1961 .check_reset_block = e1000e_check_reset_block_generic,
1962 .commit = NULL,
1963 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1964 .get_cfg_done = e1000_get_cfg_done_82571,
1965 .get_cable_length = e1000e_get_cable_length_igp_2,
1966 .get_info = e1000e_get_phy_info_igp,
1967 .read_reg = e1000e_read_phy_reg_igp,
1968 .release = e1000_put_hw_semaphore_82571,
1969 .reset = e1000e_phy_hw_reset_generic,
1970 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1971 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1972 .write_reg = e1000e_write_phy_reg_igp,
1973 .cfg_on_link_up = NULL,
1974 };
1975
1976 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1977 .acquire = e1000_get_hw_semaphore_82571,
1978 .check_polarity = e1000_check_polarity_m88,
1979 .check_reset_block = e1000e_check_reset_block_generic,
1980 .commit = e1000e_phy_sw_reset,
1981 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1982 .get_cfg_done = e1000e_get_cfg_done,
1983 .get_cable_length = e1000e_get_cable_length_m88,
1984 .get_info = e1000e_get_phy_info_m88,
1985 .read_reg = e1000e_read_phy_reg_m88,
1986 .release = e1000_put_hw_semaphore_82571,
1987 .reset = e1000e_phy_hw_reset_generic,
1988 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1989 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1990 .write_reg = e1000e_write_phy_reg_m88,
1991 .cfg_on_link_up = NULL,
1992 };
1993
1994 static const struct e1000_phy_operations e82_phy_ops_bm = {
1995 .acquire = e1000_get_hw_semaphore_82571,
1996 .check_polarity = e1000_check_polarity_m88,
1997 .check_reset_block = e1000e_check_reset_block_generic,
1998 .commit = e1000e_phy_sw_reset,
1999 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
2000 .get_cfg_done = e1000e_get_cfg_done,
2001 .get_cable_length = e1000e_get_cable_length_m88,
2002 .get_info = e1000e_get_phy_info_m88,
2003 .read_reg = e1000e_read_phy_reg_bm2,
2004 .release = e1000_put_hw_semaphore_82571,
2005 .reset = e1000e_phy_hw_reset_generic,
2006 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
2007 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
2008 .write_reg = e1000e_write_phy_reg_bm2,
2009 .cfg_on_link_up = NULL,
2010 };
2011
2012 static const struct e1000_nvm_operations e82571_nvm_ops = {
2013 .acquire = e1000_acquire_nvm_82571,
2014 .read = e1000e_read_nvm_eerd,
2015 .release = e1000_release_nvm_82571,
2016 .reload = e1000e_reload_nvm_generic,
2017 .update = e1000_update_nvm_checksum_82571,
2018 .valid_led_default = e1000_valid_led_default_82571,
2019 .validate = e1000_validate_nvm_checksum_82571,
2020 .write = e1000_write_nvm_82571,
2021 };
2022
2023 const struct e1000_info e1000_82571_info = {
2024 .mac = e1000_82571,
2025 .flags = FLAG_HAS_HW_VLAN_FILTER
2026 | FLAG_HAS_JUMBO_FRAMES
2027 | FLAG_HAS_WOL
2028 | FLAG_APME_IN_CTRL3
2029 | FLAG_HAS_CTRLEXT_ON_LOAD
2030 | FLAG_HAS_SMART_POWER_DOWN
2031 | FLAG_RESET_OVERWRITES_LAA /* errata */
2032 | FLAG_TARC_SPEED_MODE_BIT /* errata */
2033 | FLAG_APME_CHECK_PORT_B,
2034 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2035 | FLAG2_DMA_BURST,
2036 .pba = 38,
2037 .max_hw_frame_size = DEFAULT_JUMBO,
2038 .get_variants = e1000_get_variants_82571,
2039 .mac_ops = &e82571_mac_ops,
2040 .phy_ops = &e82_phy_ops_igp,
2041 .nvm_ops = &e82571_nvm_ops,
2042 };
2043
2044 const struct e1000_info e1000_82572_info = {
2045 .mac = e1000_82572,
2046 .flags = FLAG_HAS_HW_VLAN_FILTER
2047 | FLAG_HAS_JUMBO_FRAMES
2048 | FLAG_HAS_WOL
2049 | FLAG_APME_IN_CTRL3
2050 | FLAG_HAS_CTRLEXT_ON_LOAD
2051 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
2052 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2053 | FLAG2_DMA_BURST,
2054 .pba = 38,
2055 .max_hw_frame_size = DEFAULT_JUMBO,
2056 .get_variants = e1000_get_variants_82571,
2057 .mac_ops = &e82571_mac_ops,
2058 .phy_ops = &e82_phy_ops_igp,
2059 .nvm_ops = &e82571_nvm_ops,
2060 };
2061
2062 const struct e1000_info e1000_82573_info = {
2063 .mac = e1000_82573,
2064 .flags = FLAG_HAS_HW_VLAN_FILTER
2065 | FLAG_HAS_WOL
2066 | FLAG_APME_IN_CTRL3
2067 | FLAG_HAS_SMART_POWER_DOWN
2068 | FLAG_HAS_AMT
2069 | FLAG_HAS_SWSM_ON_LOAD,
2070 .flags2 = FLAG2_DISABLE_ASPM_L1
2071 | FLAG2_DISABLE_ASPM_L0S,
2072 .pba = 20,
2073 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
2074 .get_variants = e1000_get_variants_82571,
2075 .mac_ops = &e82571_mac_ops,
2076 .phy_ops = &e82_phy_ops_m88,
2077 .nvm_ops = &e82571_nvm_ops,
2078 };
2079
2080 const struct e1000_info e1000_82574_info = {
2081 .mac = e1000_82574,
2082 .flags = FLAG_HAS_HW_VLAN_FILTER
2083 | FLAG_HAS_MSIX
2084 | FLAG_HAS_JUMBO_FRAMES
2085 | FLAG_HAS_WOL
2086 | FLAG_APME_IN_CTRL3
2087 | FLAG_HAS_SMART_POWER_DOWN
2088 | FLAG_HAS_AMT
2089 | FLAG_HAS_CTRLEXT_ON_LOAD,
2090 .flags2 = FLAG2_CHECK_PHY_HANG
2091 | FLAG2_DISABLE_ASPM_L0S
2092 | FLAG2_DISABLE_ASPM_L1
2093 | FLAG2_NO_DISABLE_RX
2094 | FLAG2_DMA_BURST,
2095 .pba = 32,
2096 .max_hw_frame_size = DEFAULT_JUMBO,
2097 .get_variants = e1000_get_variants_82571,
2098 .mac_ops = &e82571_mac_ops,
2099 .phy_ops = &e82_phy_ops_bm,
2100 .nvm_ops = &e82571_nvm_ops,
2101 };
2102
2103 const struct e1000_info e1000_82583_info = {
2104 .mac = e1000_82583,
2105 .flags = FLAG_HAS_HW_VLAN_FILTER
2106 | FLAG_HAS_WOL
2107 | FLAG_APME_IN_CTRL3
2108 | FLAG_HAS_SMART_POWER_DOWN
2109 | FLAG_HAS_AMT
2110 | FLAG_HAS_JUMBO_FRAMES
2111 | FLAG_HAS_CTRLEXT_ON_LOAD,
2112 .flags2 = FLAG2_DISABLE_ASPM_L0S
2113 | FLAG2_NO_DISABLE_RX,
2114 .pba = 32,
2115 .max_hw_frame_size = DEFAULT_JUMBO,
2116 .get_variants = e1000_get_variants_82571,
2117 .mac_ops = &e82571_mac_ops,
2118 .phy_ops = &e82_phy_ops_bm,
2119 .nvm_ops = &e82571_nvm_ops,
2120 };
2121
This page took 0.092926 seconds and 5 git commands to generate.