Merge tag 'fbdev-fixes-for-3.5-1' of git://github.com/schandinat/linux-2.6
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / 82571.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
44 */
45
46 #include "e1000.h"
47
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
53
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55 #define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
56 #define E1000_BASE1000T_STATUS 10
57 #define E1000_IDLE_ERROR_COUNT_MASK 0xFF
58 #define E1000_RECEIVE_ERROR_COUNTER 21
59 #define E1000_RECEIVE_ERROR_MAX 0xFFFF
60
61 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
62
63 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
64 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
65 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
66 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
67 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
68 u16 words, u16 *data);
69 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
70 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
71 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
72 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
73 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
74 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
75 static s32 e1000_led_on_82574(struct e1000_hw *hw);
76 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
77 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
78 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
79 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
80 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
81 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
82 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
83
84 /**
85 * e1000_init_phy_params_82571 - Init PHY func ptrs.
86 * @hw: pointer to the HW structure
87 **/
88 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
89 {
90 struct e1000_phy_info *phy = &hw->phy;
91 s32 ret_val;
92
93 if (hw->phy.media_type != e1000_media_type_copper) {
94 phy->type = e1000_phy_none;
95 return 0;
96 }
97
98 phy->addr = 1;
99 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
100 phy->reset_delay_us = 100;
101
102 phy->ops.power_up = e1000_power_up_phy_copper;
103 phy->ops.power_down = e1000_power_down_phy_copper_82571;
104
105 switch (hw->mac.type) {
106 case e1000_82571:
107 case e1000_82572:
108 phy->type = e1000_phy_igp_2;
109 break;
110 case e1000_82573:
111 phy->type = e1000_phy_m88;
112 break;
113 case e1000_82574:
114 case e1000_82583:
115 phy->type = e1000_phy_bm;
116 phy->ops.acquire = e1000_get_hw_semaphore_82574;
117 phy->ops.release = e1000_put_hw_semaphore_82574;
118 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
119 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
120 break;
121 default:
122 return -E1000_ERR_PHY;
123 break;
124 }
125
126 /* This can only be done after all function pointers are setup. */
127 ret_val = e1000_get_phy_id_82571(hw);
128 if (ret_val) {
129 e_dbg("Error getting PHY ID\n");
130 return ret_val;
131 }
132
133 /* Verify phy id */
134 switch (hw->mac.type) {
135 case e1000_82571:
136 case e1000_82572:
137 if (phy->id != IGP01E1000_I_PHY_ID)
138 ret_val = -E1000_ERR_PHY;
139 break;
140 case e1000_82573:
141 if (phy->id != M88E1111_I_PHY_ID)
142 ret_val = -E1000_ERR_PHY;
143 break;
144 case e1000_82574:
145 case e1000_82583:
146 if (phy->id != BME1000_E_PHY_ID_R2)
147 ret_val = -E1000_ERR_PHY;
148 break;
149 default:
150 ret_val = -E1000_ERR_PHY;
151 break;
152 }
153
154 if (ret_val)
155 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
156
157 return ret_val;
158 }
159
160 /**
161 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
162 * @hw: pointer to the HW structure
163 **/
164 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
165 {
166 struct e1000_nvm_info *nvm = &hw->nvm;
167 u32 eecd = er32(EECD);
168 u16 size;
169
170 nvm->opcode_bits = 8;
171 nvm->delay_usec = 1;
172 switch (nvm->override) {
173 case e1000_nvm_override_spi_large:
174 nvm->page_size = 32;
175 nvm->address_bits = 16;
176 break;
177 case e1000_nvm_override_spi_small:
178 nvm->page_size = 8;
179 nvm->address_bits = 8;
180 break;
181 default:
182 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
183 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
184 break;
185 }
186
187 switch (hw->mac.type) {
188 case e1000_82573:
189 case e1000_82574:
190 case e1000_82583:
191 if (((eecd >> 15) & 0x3) == 0x3) {
192 nvm->type = e1000_nvm_flash_hw;
193 nvm->word_size = 2048;
194 /*
195 * Autonomous Flash update bit must be cleared due
196 * to Flash update issue.
197 */
198 eecd &= ~E1000_EECD_AUPDEN;
199 ew32(EECD, eecd);
200 break;
201 }
202 /* Fall Through */
203 default:
204 nvm->type = e1000_nvm_eeprom_spi;
205 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
206 E1000_EECD_SIZE_EX_SHIFT);
207 /*
208 * Added to a constant, "size" becomes the left-shift value
209 * for setting word_size.
210 */
211 size += NVM_WORD_SIZE_BASE_SHIFT;
212
213 /* EEPROM access above 16k is unsupported */
214 if (size > 14)
215 size = 14;
216 nvm->word_size = 1 << size;
217 break;
218 }
219
220 /* Function Pointers */
221 switch (hw->mac.type) {
222 case e1000_82574:
223 case e1000_82583:
224 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
225 nvm->ops.release = e1000_put_hw_semaphore_82574;
226 break;
227 default:
228 break;
229 }
230
231 return 0;
232 }
233
234 /**
235 * e1000_init_mac_params_82571 - Init MAC func ptrs.
236 * @hw: pointer to the HW structure
237 **/
238 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
239 {
240 struct e1000_mac_info *mac = &hw->mac;
241 u32 swsm = 0;
242 u32 swsm2 = 0;
243 bool force_clear_smbi = false;
244
245 /* Set media type and media-dependent function pointers */
246 switch (hw->adapter->pdev->device) {
247 case E1000_DEV_ID_82571EB_FIBER:
248 case E1000_DEV_ID_82572EI_FIBER:
249 case E1000_DEV_ID_82571EB_QUAD_FIBER:
250 hw->phy.media_type = e1000_media_type_fiber;
251 mac->ops.setup_physical_interface =
252 e1000_setup_fiber_serdes_link_82571;
253 mac->ops.check_for_link = e1000e_check_for_fiber_link;
254 mac->ops.get_link_up_info =
255 e1000e_get_speed_and_duplex_fiber_serdes;
256 break;
257 case E1000_DEV_ID_82571EB_SERDES:
258 case E1000_DEV_ID_82571EB_SERDES_DUAL:
259 case E1000_DEV_ID_82571EB_SERDES_QUAD:
260 case E1000_DEV_ID_82572EI_SERDES:
261 hw->phy.media_type = e1000_media_type_internal_serdes;
262 mac->ops.setup_physical_interface =
263 e1000_setup_fiber_serdes_link_82571;
264 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
265 mac->ops.get_link_up_info =
266 e1000e_get_speed_and_duplex_fiber_serdes;
267 break;
268 default:
269 hw->phy.media_type = e1000_media_type_copper;
270 mac->ops.setup_physical_interface =
271 e1000_setup_copper_link_82571;
272 mac->ops.check_for_link = e1000e_check_for_copper_link;
273 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
274 break;
275 }
276
277 /* Set mta register count */
278 mac->mta_reg_count = 128;
279 /* Set rar entry count */
280 mac->rar_entry_count = E1000_RAR_ENTRIES;
281 /* Adaptive IFS supported */
282 mac->adaptive_ifs = true;
283
284 /* MAC-specific function pointers */
285 switch (hw->mac.type) {
286 case e1000_82573:
287 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
288 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
289 mac->ops.led_on = e1000e_led_on_generic;
290 mac->ops.blink_led = e1000e_blink_led_generic;
291
292 /* FWSM register */
293 mac->has_fwsm = true;
294 /*
295 * ARC supported; valid only if manageability features are
296 * enabled.
297 */
298 mac->arc_subsystem_valid = !!(er32(FWSM) &
299 E1000_FWSM_MODE_MASK);
300 break;
301 case e1000_82574:
302 case e1000_82583:
303 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
304 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
305 mac->ops.led_on = e1000_led_on_82574;
306 break;
307 default:
308 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
309 mac->ops.led_on = e1000e_led_on_generic;
310 mac->ops.blink_led = e1000e_blink_led_generic;
311
312 /* FWSM register */
313 mac->has_fwsm = true;
314 break;
315 }
316
317 /*
318 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
319 * first NVM or PHY access. This should be done for single-port
320 * devices, and for one port only on dual-port devices so that
321 * for those devices we can still use the SMBI lock to synchronize
322 * inter-port accesses to the PHY & NVM.
323 */
324 switch (hw->mac.type) {
325 case e1000_82571:
326 case e1000_82572:
327 swsm2 = er32(SWSM2);
328
329 if (!(swsm2 & E1000_SWSM2_LOCK)) {
330 /* Only do this for the first interface on this card */
331 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
332 force_clear_smbi = true;
333 } else {
334 force_clear_smbi = false;
335 }
336 break;
337 default:
338 force_clear_smbi = true;
339 break;
340 }
341
342 if (force_clear_smbi) {
343 /* Make sure SWSM.SMBI is clear */
344 swsm = er32(SWSM);
345 if (swsm & E1000_SWSM_SMBI) {
346 /* This bit should not be set on a first interface, and
347 * indicates that the bootagent or EFI code has
348 * improperly left this bit enabled
349 */
350 e_dbg("Please update your 82571 Bootagent\n");
351 }
352 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
353 }
354
355 /*
356 * Initialize device specific counter of SMBI acquisition
357 * timeouts.
358 */
359 hw->dev_spec.e82571.smb_counter = 0;
360
361 return 0;
362 }
363
364 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
365 {
366 struct e1000_hw *hw = &adapter->hw;
367 static int global_quad_port_a; /* global port a indication */
368 struct pci_dev *pdev = adapter->pdev;
369 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
370 s32 rc;
371
372 rc = e1000_init_mac_params_82571(hw);
373 if (rc)
374 return rc;
375
376 rc = e1000_init_nvm_params_82571(hw);
377 if (rc)
378 return rc;
379
380 rc = e1000_init_phy_params_82571(hw);
381 if (rc)
382 return rc;
383
384 /* tag quad port adapters first, it's used below */
385 switch (pdev->device) {
386 case E1000_DEV_ID_82571EB_QUAD_COPPER:
387 case E1000_DEV_ID_82571EB_QUAD_FIBER:
388 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
389 case E1000_DEV_ID_82571PT_QUAD_COPPER:
390 adapter->flags |= FLAG_IS_QUAD_PORT;
391 /* mark the first port */
392 if (global_quad_port_a == 0)
393 adapter->flags |= FLAG_IS_QUAD_PORT_A;
394 /* Reset for multiple quad port adapters */
395 global_quad_port_a++;
396 if (global_quad_port_a == 4)
397 global_quad_port_a = 0;
398 break;
399 default:
400 break;
401 }
402
403 switch (adapter->hw.mac.type) {
404 case e1000_82571:
405 /* these dual ports don't have WoL on port B at all */
406 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
407 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
408 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
409 (is_port_b))
410 adapter->flags &= ~FLAG_HAS_WOL;
411 /* quad ports only support WoL on port A */
412 if (adapter->flags & FLAG_IS_QUAD_PORT &&
413 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
414 adapter->flags &= ~FLAG_HAS_WOL;
415 /* Does not support WoL on any port */
416 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
417 adapter->flags &= ~FLAG_HAS_WOL;
418 break;
419 case e1000_82573:
420 if (pdev->device == E1000_DEV_ID_82573L) {
421 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
422 adapter->max_hw_frame_size = DEFAULT_JUMBO;
423 }
424 break;
425 default:
426 break;
427 }
428
429 return 0;
430 }
431
432 /**
433 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
434 * @hw: pointer to the HW structure
435 *
436 * Reads the PHY registers and stores the PHY ID and possibly the PHY
437 * revision in the hardware structure.
438 **/
439 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
440 {
441 struct e1000_phy_info *phy = &hw->phy;
442 s32 ret_val;
443 u16 phy_id = 0;
444
445 switch (hw->mac.type) {
446 case e1000_82571:
447 case e1000_82572:
448 /*
449 * The 82571 firmware may still be configuring the PHY.
450 * In this case, we cannot access the PHY until the
451 * configuration is done. So we explicitly set the
452 * PHY ID.
453 */
454 phy->id = IGP01E1000_I_PHY_ID;
455 break;
456 case e1000_82573:
457 return e1000e_get_phy_id(hw);
458 break;
459 case e1000_82574:
460 case e1000_82583:
461 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
462 if (ret_val)
463 return ret_val;
464
465 phy->id = (u32)(phy_id << 16);
466 udelay(20);
467 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
468 if (ret_val)
469 return ret_val;
470
471 phy->id |= (u32)(phy_id);
472 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
473 break;
474 default:
475 return -E1000_ERR_PHY;
476 break;
477 }
478
479 return 0;
480 }
481
482 /**
483 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
484 * @hw: pointer to the HW structure
485 *
486 * Acquire the HW semaphore to access the PHY or NVM
487 **/
488 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
489 {
490 u32 swsm;
491 s32 sw_timeout = hw->nvm.word_size + 1;
492 s32 fw_timeout = hw->nvm.word_size + 1;
493 s32 i = 0;
494
495 /*
496 * If we have timedout 3 times on trying to acquire
497 * the inter-port SMBI semaphore, there is old code
498 * operating on the other port, and it is not
499 * releasing SMBI. Modify the number of times that
500 * we try for the semaphore to interwork with this
501 * older code.
502 */
503 if (hw->dev_spec.e82571.smb_counter > 2)
504 sw_timeout = 1;
505
506 /* Get the SW semaphore */
507 while (i < sw_timeout) {
508 swsm = er32(SWSM);
509 if (!(swsm & E1000_SWSM_SMBI))
510 break;
511
512 udelay(50);
513 i++;
514 }
515
516 if (i == sw_timeout) {
517 e_dbg("Driver can't access device - SMBI bit is set.\n");
518 hw->dev_spec.e82571.smb_counter++;
519 }
520 /* Get the FW semaphore. */
521 for (i = 0; i < fw_timeout; i++) {
522 swsm = er32(SWSM);
523 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
524
525 /* Semaphore acquired if bit latched */
526 if (er32(SWSM) & E1000_SWSM_SWESMBI)
527 break;
528
529 udelay(50);
530 }
531
532 if (i == fw_timeout) {
533 /* Release semaphores */
534 e1000_put_hw_semaphore_82571(hw);
535 e_dbg("Driver can't access the NVM\n");
536 return -E1000_ERR_NVM;
537 }
538
539 return 0;
540 }
541
542 /**
543 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
544 * @hw: pointer to the HW structure
545 *
546 * Release hardware semaphore used to access the PHY or NVM
547 **/
548 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
549 {
550 u32 swsm;
551
552 swsm = er32(SWSM);
553 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
554 ew32(SWSM, swsm);
555 }
556 /**
557 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
558 * @hw: pointer to the HW structure
559 *
560 * Acquire the HW semaphore during reset.
561 *
562 **/
563 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
564 {
565 u32 extcnf_ctrl;
566 s32 i = 0;
567
568 extcnf_ctrl = er32(EXTCNF_CTRL);
569 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
570 do {
571 ew32(EXTCNF_CTRL, extcnf_ctrl);
572 extcnf_ctrl = er32(EXTCNF_CTRL);
573
574 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
575 break;
576
577 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
578
579 usleep_range(2000, 4000);
580 i++;
581 } while (i < MDIO_OWNERSHIP_TIMEOUT);
582
583 if (i == MDIO_OWNERSHIP_TIMEOUT) {
584 /* Release semaphores */
585 e1000_put_hw_semaphore_82573(hw);
586 e_dbg("Driver can't access the PHY\n");
587 return -E1000_ERR_PHY;
588 }
589
590 return 0;
591 }
592
593 /**
594 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
595 * @hw: pointer to the HW structure
596 *
597 * Release hardware semaphore used during reset.
598 *
599 **/
600 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
601 {
602 u32 extcnf_ctrl;
603
604 extcnf_ctrl = er32(EXTCNF_CTRL);
605 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
606 ew32(EXTCNF_CTRL, extcnf_ctrl);
607 }
608
609 static DEFINE_MUTEX(swflag_mutex);
610
611 /**
612 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
613 * @hw: pointer to the HW structure
614 *
615 * Acquire the HW semaphore to access the PHY or NVM.
616 *
617 **/
618 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
619 {
620 s32 ret_val;
621
622 mutex_lock(&swflag_mutex);
623 ret_val = e1000_get_hw_semaphore_82573(hw);
624 if (ret_val)
625 mutex_unlock(&swflag_mutex);
626 return ret_val;
627 }
628
629 /**
630 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
631 * @hw: pointer to the HW structure
632 *
633 * Release hardware semaphore used to access the PHY or NVM
634 *
635 **/
636 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
637 {
638 e1000_put_hw_semaphore_82573(hw);
639 mutex_unlock(&swflag_mutex);
640 }
641
642 /**
643 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
644 * @hw: pointer to the HW structure
645 * @active: true to enable LPLU, false to disable
646 *
647 * Sets the LPLU D0 state according to the active flag.
648 * LPLU will not be activated unless the
649 * device autonegotiation advertisement meets standards of
650 * either 10 or 10/100 or 10/100/1000 at all duplexes.
651 * This is a function pointer entry point only called by
652 * PHY setup routines.
653 **/
654 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
655 {
656 u16 data = er32(POEMB);
657
658 if (active)
659 data |= E1000_PHY_CTRL_D0A_LPLU;
660 else
661 data &= ~E1000_PHY_CTRL_D0A_LPLU;
662
663 ew32(POEMB, data);
664 return 0;
665 }
666
667 /**
668 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
669 * @hw: pointer to the HW structure
670 * @active: boolean used to enable/disable lplu
671 *
672 * The low power link up (lplu) state is set to the power management level D3
673 * when active is true, else clear lplu for D3. LPLU
674 * is used during Dx states where the power conservation is most important.
675 * During driver activity, SmartSpeed should be enabled so performance is
676 * maintained.
677 **/
678 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
679 {
680 u16 data = er32(POEMB);
681
682 if (!active) {
683 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
684 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
685 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
686 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
687 data |= E1000_PHY_CTRL_NOND0A_LPLU;
688 }
689
690 ew32(POEMB, data);
691 return 0;
692 }
693
694 /**
695 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
696 * @hw: pointer to the HW structure
697 *
698 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
699 * Then for non-82573 hardware, set the EEPROM access request bit and wait
700 * for EEPROM access grant bit. If the access grant bit is not set, release
701 * hardware semaphore.
702 **/
703 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
704 {
705 s32 ret_val;
706
707 ret_val = e1000_get_hw_semaphore_82571(hw);
708 if (ret_val)
709 return ret_val;
710
711 switch (hw->mac.type) {
712 case e1000_82573:
713 break;
714 default:
715 ret_val = e1000e_acquire_nvm(hw);
716 break;
717 }
718
719 if (ret_val)
720 e1000_put_hw_semaphore_82571(hw);
721
722 return ret_val;
723 }
724
725 /**
726 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
727 * @hw: pointer to the HW structure
728 *
729 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
730 **/
731 static void e1000_release_nvm_82571(struct e1000_hw *hw)
732 {
733 e1000e_release_nvm(hw);
734 e1000_put_hw_semaphore_82571(hw);
735 }
736
737 /**
738 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
739 * @hw: pointer to the HW structure
740 * @offset: offset within the EEPROM to be written to
741 * @words: number of words to write
742 * @data: 16 bit word(s) to be written to the EEPROM
743 *
744 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
745 *
746 * If e1000e_update_nvm_checksum is not called after this function, the
747 * EEPROM will most likely contain an invalid checksum.
748 **/
749 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
750 u16 *data)
751 {
752 s32 ret_val;
753
754 switch (hw->mac.type) {
755 case e1000_82573:
756 case e1000_82574:
757 case e1000_82583:
758 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
759 break;
760 case e1000_82571:
761 case e1000_82572:
762 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
763 break;
764 default:
765 ret_val = -E1000_ERR_NVM;
766 break;
767 }
768
769 return ret_val;
770 }
771
772 /**
773 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
774 * @hw: pointer to the HW structure
775 *
776 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
777 * up to the checksum. Then calculates the EEPROM checksum and writes the
778 * value to the EEPROM.
779 **/
780 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
781 {
782 u32 eecd;
783 s32 ret_val;
784 u16 i;
785
786 ret_val = e1000e_update_nvm_checksum_generic(hw);
787 if (ret_val)
788 return ret_val;
789
790 /*
791 * If our nvm is an EEPROM, then we're done
792 * otherwise, commit the checksum to the flash NVM.
793 */
794 if (hw->nvm.type != e1000_nvm_flash_hw)
795 return 0;
796
797 /* Check for pending operations. */
798 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
799 usleep_range(1000, 2000);
800 if (!(er32(EECD) & E1000_EECD_FLUPD))
801 break;
802 }
803
804 if (i == E1000_FLASH_UPDATES)
805 return -E1000_ERR_NVM;
806
807 /* Reset the firmware if using STM opcode. */
808 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
809 /*
810 * The enabling of and the actual reset must be done
811 * in two write cycles.
812 */
813 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
814 e1e_flush();
815 ew32(HICR, E1000_HICR_FW_RESET);
816 }
817
818 /* Commit the write to flash */
819 eecd = er32(EECD) | E1000_EECD_FLUPD;
820 ew32(EECD, eecd);
821
822 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
823 usleep_range(1000, 2000);
824 if (!(er32(EECD) & E1000_EECD_FLUPD))
825 break;
826 }
827
828 if (i == E1000_FLASH_UPDATES)
829 return -E1000_ERR_NVM;
830
831 return 0;
832 }
833
834 /**
835 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
836 * @hw: pointer to the HW structure
837 *
838 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
839 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
840 **/
841 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
842 {
843 if (hw->nvm.type == e1000_nvm_flash_hw)
844 e1000_fix_nvm_checksum_82571(hw);
845
846 return e1000e_validate_nvm_checksum_generic(hw);
847 }
848
849 /**
850 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
851 * @hw: pointer to the HW structure
852 * @offset: offset within the EEPROM to be written to
853 * @words: number of words to write
854 * @data: 16 bit word(s) to be written to the EEPROM
855 *
856 * After checking for invalid values, poll the EEPROM to ensure the previous
857 * command has completed before trying to write the next word. After write
858 * poll for completion.
859 *
860 * If e1000e_update_nvm_checksum is not called after this function, the
861 * EEPROM will most likely contain an invalid checksum.
862 **/
863 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
864 u16 words, u16 *data)
865 {
866 struct e1000_nvm_info *nvm = &hw->nvm;
867 u32 i, eewr = 0;
868 s32 ret_val = 0;
869
870 /*
871 * A check for invalid values: offset too large, too many words,
872 * and not enough words.
873 */
874 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
875 (words == 0)) {
876 e_dbg("nvm parameter(s) out of bounds\n");
877 return -E1000_ERR_NVM;
878 }
879
880 for (i = 0; i < words; i++) {
881 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
882 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
883 E1000_NVM_RW_REG_START;
884
885 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
886 if (ret_val)
887 break;
888
889 ew32(EEWR, eewr);
890
891 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
892 if (ret_val)
893 break;
894 }
895
896 return ret_val;
897 }
898
899 /**
900 * e1000_get_cfg_done_82571 - Poll for configuration done
901 * @hw: pointer to the HW structure
902 *
903 * Reads the management control register for the config done bit to be set.
904 **/
905 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
906 {
907 s32 timeout = PHY_CFG_TIMEOUT;
908
909 while (timeout) {
910 if (er32(EEMNGCTL) &
911 E1000_NVM_CFG_DONE_PORT_0)
912 break;
913 usleep_range(1000, 2000);
914 timeout--;
915 }
916 if (!timeout) {
917 e_dbg("MNG configuration cycle has not completed.\n");
918 return -E1000_ERR_RESET;
919 }
920
921 return 0;
922 }
923
924 /**
925 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
926 * @hw: pointer to the HW structure
927 * @active: true to enable LPLU, false to disable
928 *
929 * Sets the LPLU D0 state according to the active flag. When activating LPLU
930 * this function also disables smart speed and vice versa. LPLU will not be
931 * activated unless the device autonegotiation advertisement meets standards
932 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
933 * pointer entry point only called by PHY setup routines.
934 **/
935 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
936 {
937 struct e1000_phy_info *phy = &hw->phy;
938 s32 ret_val;
939 u16 data;
940
941 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
942 if (ret_val)
943 return ret_val;
944
945 if (active) {
946 data |= IGP02E1000_PM_D0_LPLU;
947 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
948 if (ret_val)
949 return ret_val;
950
951 /* When LPLU is enabled, we should disable SmartSpeed */
952 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
953 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
954 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
955 if (ret_val)
956 return ret_val;
957 } else {
958 data &= ~IGP02E1000_PM_D0_LPLU;
959 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
960 /*
961 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
962 * during Dx states where the power conservation is most
963 * important. During driver activity we should enable
964 * SmartSpeed, so performance is maintained.
965 */
966 if (phy->smart_speed == e1000_smart_speed_on) {
967 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
968 &data);
969 if (ret_val)
970 return ret_val;
971
972 data |= IGP01E1000_PSCFR_SMART_SPEED;
973 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
974 data);
975 if (ret_val)
976 return ret_val;
977 } else if (phy->smart_speed == e1000_smart_speed_off) {
978 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
979 &data);
980 if (ret_val)
981 return ret_val;
982
983 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
984 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
985 data);
986 if (ret_val)
987 return ret_val;
988 }
989 }
990
991 return 0;
992 }
993
994 /**
995 * e1000_reset_hw_82571 - Reset hardware
996 * @hw: pointer to the HW structure
997 *
998 * This resets the hardware into a known state.
999 **/
1000 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
1001 {
1002 u32 ctrl, ctrl_ext, eecd;
1003 s32 ret_val;
1004
1005 /*
1006 * Prevent the PCI-E bus from sticking if there is no TLP connection
1007 * on the last TLP read/write transaction when MAC is reset.
1008 */
1009 ret_val = e1000e_disable_pcie_master(hw);
1010 if (ret_val)
1011 e_dbg("PCI-E Master disable polling has failed.\n");
1012
1013 e_dbg("Masking off all interrupts\n");
1014 ew32(IMC, 0xffffffff);
1015
1016 ew32(RCTL, 0);
1017 ew32(TCTL, E1000_TCTL_PSP);
1018 e1e_flush();
1019
1020 usleep_range(10000, 20000);
1021
1022 /*
1023 * Must acquire the MDIO ownership before MAC reset.
1024 * Ownership defaults to firmware after a reset.
1025 */
1026 switch (hw->mac.type) {
1027 case e1000_82573:
1028 ret_val = e1000_get_hw_semaphore_82573(hw);
1029 break;
1030 case e1000_82574:
1031 case e1000_82583:
1032 ret_val = e1000_get_hw_semaphore_82574(hw);
1033 break;
1034 default:
1035 break;
1036 }
1037 if (ret_val)
1038 e_dbg("Cannot acquire MDIO ownership\n");
1039
1040 ctrl = er32(CTRL);
1041
1042 e_dbg("Issuing a global reset to MAC\n");
1043 ew32(CTRL, ctrl | E1000_CTRL_RST);
1044
1045 /* Must release MDIO ownership and mutex after MAC reset. */
1046 switch (hw->mac.type) {
1047 case e1000_82574:
1048 case e1000_82583:
1049 e1000_put_hw_semaphore_82574(hw);
1050 break;
1051 default:
1052 break;
1053 }
1054
1055 if (hw->nvm.type == e1000_nvm_flash_hw) {
1056 udelay(10);
1057 ctrl_ext = er32(CTRL_EXT);
1058 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1059 ew32(CTRL_EXT, ctrl_ext);
1060 e1e_flush();
1061 }
1062
1063 ret_val = e1000e_get_auto_rd_done(hw);
1064 if (ret_val)
1065 /* We don't want to continue accessing MAC registers. */
1066 return ret_val;
1067
1068 /*
1069 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1070 * Need to wait for Phy configuration completion before accessing
1071 * NVM and Phy.
1072 */
1073
1074 switch (hw->mac.type) {
1075 case e1000_82571:
1076 case e1000_82572:
1077 /*
1078 * REQ and GNT bits need to be cleared when using AUTO_RD
1079 * to access the EEPROM.
1080 */
1081 eecd = er32(EECD);
1082 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1083 ew32(EECD, eecd);
1084 break;
1085 case e1000_82573:
1086 case e1000_82574:
1087 case e1000_82583:
1088 msleep(25);
1089 break;
1090 default:
1091 break;
1092 }
1093
1094 /* Clear any pending interrupt events. */
1095 ew32(IMC, 0xffffffff);
1096 er32(ICR);
1097
1098 if (hw->mac.type == e1000_82571) {
1099 /* Install any alternate MAC address into RAR0 */
1100 ret_val = e1000_check_alt_mac_addr_generic(hw);
1101 if (ret_val)
1102 return ret_val;
1103
1104 e1000e_set_laa_state_82571(hw, true);
1105 }
1106
1107 /* Reinitialize the 82571 serdes link state machine */
1108 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1109 hw->mac.serdes_link_state = e1000_serdes_link_down;
1110
1111 return 0;
1112 }
1113
1114 /**
1115 * e1000_init_hw_82571 - Initialize hardware
1116 * @hw: pointer to the HW structure
1117 *
1118 * This inits the hardware readying it for operation.
1119 **/
1120 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1121 {
1122 struct e1000_mac_info *mac = &hw->mac;
1123 u32 reg_data;
1124 s32 ret_val;
1125 u16 i, rar_count = mac->rar_entry_count;
1126
1127 e1000_initialize_hw_bits_82571(hw);
1128
1129 /* Initialize identification LED */
1130 ret_val = mac->ops.id_led_init(hw);
1131 if (ret_val)
1132 e_dbg("Error initializing identification LED\n");
1133 /* This is not fatal and we should not stop init due to this */
1134
1135 /* Disabling VLAN filtering */
1136 e_dbg("Initializing the IEEE VLAN\n");
1137 mac->ops.clear_vfta(hw);
1138
1139 /* Setup the receive address. */
1140 /*
1141 * If, however, a locally administered address was assigned to the
1142 * 82571, we must reserve a RAR for it to work around an issue where
1143 * resetting one port will reload the MAC on the other port.
1144 */
1145 if (e1000e_get_laa_state_82571(hw))
1146 rar_count--;
1147 e1000e_init_rx_addrs(hw, rar_count);
1148
1149 /* Zero out the Multicast HASH table */
1150 e_dbg("Zeroing the MTA\n");
1151 for (i = 0; i < mac->mta_reg_count; i++)
1152 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1153
1154 /* Setup link and flow control */
1155 ret_val = mac->ops.setup_link(hw);
1156
1157 /* Set the transmit descriptor write-back policy */
1158 reg_data = er32(TXDCTL(0));
1159 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1160 E1000_TXDCTL_FULL_TX_DESC_WB |
1161 E1000_TXDCTL_COUNT_DESC;
1162 ew32(TXDCTL(0), reg_data);
1163
1164 /* ...for both queues. */
1165 switch (mac->type) {
1166 case e1000_82573:
1167 e1000e_enable_tx_pkt_filtering(hw);
1168 /* fall through */
1169 case e1000_82574:
1170 case e1000_82583:
1171 reg_data = er32(GCR);
1172 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1173 ew32(GCR, reg_data);
1174 break;
1175 default:
1176 reg_data = er32(TXDCTL(1));
1177 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1178 E1000_TXDCTL_FULL_TX_DESC_WB |
1179 E1000_TXDCTL_COUNT_DESC;
1180 ew32(TXDCTL(1), reg_data);
1181 break;
1182 }
1183
1184 /*
1185 * Clear all of the statistics registers (clear on read). It is
1186 * important that we do this after we have tried to establish link
1187 * because the symbol error count will increment wildly if there
1188 * is no link.
1189 */
1190 e1000_clear_hw_cntrs_82571(hw);
1191
1192 return ret_val;
1193 }
1194
1195 /**
1196 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1197 * @hw: pointer to the HW structure
1198 *
1199 * Initializes required hardware-dependent bits needed for normal operation.
1200 **/
1201 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1202 {
1203 u32 reg;
1204
1205 /* Transmit Descriptor Control 0 */
1206 reg = er32(TXDCTL(0));
1207 reg |= (1 << 22);
1208 ew32(TXDCTL(0), reg);
1209
1210 /* Transmit Descriptor Control 1 */
1211 reg = er32(TXDCTL(1));
1212 reg |= (1 << 22);
1213 ew32(TXDCTL(1), reg);
1214
1215 /* Transmit Arbitration Control 0 */
1216 reg = er32(TARC(0));
1217 reg &= ~(0xF << 27); /* 30:27 */
1218 switch (hw->mac.type) {
1219 case e1000_82571:
1220 case e1000_82572:
1221 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1222 break;
1223 case e1000_82574:
1224 case e1000_82583:
1225 reg |= (1 << 26);
1226 break;
1227 default:
1228 break;
1229 }
1230 ew32(TARC(0), reg);
1231
1232 /* Transmit Arbitration Control 1 */
1233 reg = er32(TARC(1));
1234 switch (hw->mac.type) {
1235 case e1000_82571:
1236 case e1000_82572:
1237 reg &= ~((1 << 29) | (1 << 30));
1238 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1239 if (er32(TCTL) & E1000_TCTL_MULR)
1240 reg &= ~(1 << 28);
1241 else
1242 reg |= (1 << 28);
1243 ew32(TARC(1), reg);
1244 break;
1245 default:
1246 break;
1247 }
1248
1249 /* Device Control */
1250 switch (hw->mac.type) {
1251 case e1000_82573:
1252 case e1000_82574:
1253 case e1000_82583:
1254 reg = er32(CTRL);
1255 reg &= ~(1 << 29);
1256 ew32(CTRL, reg);
1257 break;
1258 default:
1259 break;
1260 }
1261
1262 /* Extended Device Control */
1263 switch (hw->mac.type) {
1264 case e1000_82573:
1265 case e1000_82574:
1266 case e1000_82583:
1267 reg = er32(CTRL_EXT);
1268 reg &= ~(1 << 23);
1269 reg |= (1 << 22);
1270 ew32(CTRL_EXT, reg);
1271 break;
1272 default:
1273 break;
1274 }
1275
1276 if (hw->mac.type == e1000_82571) {
1277 reg = er32(PBA_ECC);
1278 reg |= E1000_PBA_ECC_CORR_EN;
1279 ew32(PBA_ECC, reg);
1280 }
1281
1282 /*
1283 * Workaround for hardware errata.
1284 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1285 */
1286 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1287 reg = er32(CTRL_EXT);
1288 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1289 ew32(CTRL_EXT, reg);
1290 }
1291
1292 /*
1293 * Disable IPv6 extension header parsing because some malformed
1294 * IPv6 headers can hang the Rx.
1295 */
1296 if (hw->mac.type <= e1000_82573) {
1297 reg = er32(RFCTL);
1298 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1299 ew32(RFCTL, reg);
1300 }
1301
1302 /* PCI-Ex Control Registers */
1303 switch (hw->mac.type) {
1304 case e1000_82574:
1305 case e1000_82583:
1306 reg = er32(GCR);
1307 reg |= (1 << 22);
1308 ew32(GCR, reg);
1309
1310 /*
1311 * Workaround for hardware errata.
1312 * apply workaround for hardware errata documented in errata
1313 * docs Fixes issue where some error prone or unreliable PCIe
1314 * completions are occurring, particularly with ASPM enabled.
1315 * Without fix, issue can cause Tx timeouts.
1316 */
1317 reg = er32(GCR2);
1318 reg |= 1;
1319 ew32(GCR2, reg);
1320 break;
1321 default:
1322 break;
1323 }
1324 }
1325
1326 /**
1327 * e1000_clear_vfta_82571 - Clear VLAN filter table
1328 * @hw: pointer to the HW structure
1329 *
1330 * Clears the register array which contains the VLAN filter table by
1331 * setting all the values to 0.
1332 **/
1333 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1334 {
1335 u32 offset;
1336 u32 vfta_value = 0;
1337 u32 vfta_offset = 0;
1338 u32 vfta_bit_in_reg = 0;
1339
1340 switch (hw->mac.type) {
1341 case e1000_82573:
1342 case e1000_82574:
1343 case e1000_82583:
1344 if (hw->mng_cookie.vlan_id != 0) {
1345 /*
1346 * The VFTA is a 4096b bit-field, each identifying
1347 * a single VLAN ID. The following operations
1348 * determine which 32b entry (i.e. offset) into the
1349 * array we want to set the VLAN ID (i.e. bit) of
1350 * the manageability unit.
1351 */
1352 vfta_offset = (hw->mng_cookie.vlan_id >>
1353 E1000_VFTA_ENTRY_SHIFT) &
1354 E1000_VFTA_ENTRY_MASK;
1355 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1356 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1357 }
1358 break;
1359 default:
1360 break;
1361 }
1362 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1363 /*
1364 * If the offset we want to clear is the same offset of the
1365 * manageability VLAN ID, then clear all bits except that of
1366 * the manageability unit.
1367 */
1368 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1369 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1370 e1e_flush();
1371 }
1372 }
1373
1374 /**
1375 * e1000_check_mng_mode_82574 - Check manageability is enabled
1376 * @hw: pointer to the HW structure
1377 *
1378 * Reads the NVM Initialization Control Word 2 and returns true
1379 * (>0) if any manageability is enabled, else false (0).
1380 **/
1381 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1382 {
1383 u16 data;
1384
1385 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1386 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1387 }
1388
1389 /**
1390 * e1000_led_on_82574 - Turn LED on
1391 * @hw: pointer to the HW structure
1392 *
1393 * Turn LED on.
1394 **/
1395 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1396 {
1397 u32 ctrl;
1398 u32 i;
1399
1400 ctrl = hw->mac.ledctl_mode2;
1401 if (!(E1000_STATUS_LU & er32(STATUS))) {
1402 /*
1403 * If no link, then turn LED on by setting the invert bit
1404 * for each LED that's "on" (0x0E) in ledctl_mode2.
1405 */
1406 for (i = 0; i < 4; i++)
1407 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1408 E1000_LEDCTL_MODE_LED_ON)
1409 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1410 }
1411 ew32(LEDCTL, ctrl);
1412
1413 return 0;
1414 }
1415
1416 /**
1417 * e1000_check_phy_82574 - check 82574 phy hung state
1418 * @hw: pointer to the HW structure
1419 *
1420 * Returns whether phy is hung or not
1421 **/
1422 bool e1000_check_phy_82574(struct e1000_hw *hw)
1423 {
1424 u16 status_1kbt = 0;
1425 u16 receive_errors = 0;
1426 s32 ret_val = 0;
1427
1428 /*
1429 * Read PHY Receive Error counter first, if its is max - all F's then
1430 * read the Base1000T status register If both are max then PHY is hung.
1431 */
1432 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1433 if (ret_val)
1434 return false;
1435 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1436 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1437 if (ret_val)
1438 return false;
1439 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1440 E1000_IDLE_ERROR_COUNT_MASK)
1441 return true;
1442 }
1443
1444 return false;
1445 }
1446
1447 /**
1448 * e1000_setup_link_82571 - Setup flow control and link settings
1449 * @hw: pointer to the HW structure
1450 *
1451 * Determines which flow control settings to use, then configures flow
1452 * control. Calls the appropriate media-specific link configuration
1453 * function. Assuming the adapter has a valid link partner, a valid link
1454 * should be established. Assumes the hardware has previously been reset
1455 * and the transmitter and receiver are not enabled.
1456 **/
1457 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1458 {
1459 /*
1460 * 82573 does not have a word in the NVM to determine
1461 * the default flow control setting, so we explicitly
1462 * set it to full.
1463 */
1464 switch (hw->mac.type) {
1465 case e1000_82573:
1466 case e1000_82574:
1467 case e1000_82583:
1468 if (hw->fc.requested_mode == e1000_fc_default)
1469 hw->fc.requested_mode = e1000_fc_full;
1470 break;
1471 default:
1472 break;
1473 }
1474
1475 return e1000e_setup_link_generic(hw);
1476 }
1477
1478 /**
1479 * e1000_setup_copper_link_82571 - Configure copper link settings
1480 * @hw: pointer to the HW structure
1481 *
1482 * Configures the link for auto-neg or forced speed and duplex. Then we check
1483 * for link, once link is established calls to configure collision distance
1484 * and flow control are called.
1485 **/
1486 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1487 {
1488 u32 ctrl;
1489 s32 ret_val;
1490
1491 ctrl = er32(CTRL);
1492 ctrl |= E1000_CTRL_SLU;
1493 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1494 ew32(CTRL, ctrl);
1495
1496 switch (hw->phy.type) {
1497 case e1000_phy_m88:
1498 case e1000_phy_bm:
1499 ret_val = e1000e_copper_link_setup_m88(hw);
1500 break;
1501 case e1000_phy_igp_2:
1502 ret_val = e1000e_copper_link_setup_igp(hw);
1503 break;
1504 default:
1505 return -E1000_ERR_PHY;
1506 break;
1507 }
1508
1509 if (ret_val)
1510 return ret_val;
1511
1512 return e1000e_setup_copper_link(hw);
1513 }
1514
1515 /**
1516 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1517 * @hw: pointer to the HW structure
1518 *
1519 * Configures collision distance and flow control for fiber and serdes links.
1520 * Upon successful setup, poll for link.
1521 **/
1522 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1523 {
1524 switch (hw->mac.type) {
1525 case e1000_82571:
1526 case e1000_82572:
1527 /*
1528 * If SerDes loopback mode is entered, there is no form
1529 * of reset to take the adapter out of that mode. So we
1530 * have to explicitly take the adapter out of loopback
1531 * mode. This prevents drivers from twiddling their thumbs
1532 * if another tool failed to take it out of loopback mode.
1533 */
1534 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1535 break;
1536 default:
1537 break;
1538 }
1539
1540 return e1000e_setup_fiber_serdes_link(hw);
1541 }
1542
1543 /**
1544 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1545 * @hw: pointer to the HW structure
1546 *
1547 * Reports the link state as up or down.
1548 *
1549 * If autonegotiation is supported by the link partner, the link state is
1550 * determined by the result of autonegotiation. This is the most likely case.
1551 * If autonegotiation is not supported by the link partner, and the link
1552 * has a valid signal, force the link up.
1553 *
1554 * The link state is represented internally here by 4 states:
1555 *
1556 * 1) down
1557 * 2) autoneg_progress
1558 * 3) autoneg_complete (the link successfully autonegotiated)
1559 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1560 *
1561 **/
1562 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1563 {
1564 struct e1000_mac_info *mac = &hw->mac;
1565 u32 rxcw;
1566 u32 ctrl;
1567 u32 status;
1568 u32 txcw;
1569 u32 i;
1570 s32 ret_val = 0;
1571
1572 ctrl = er32(CTRL);
1573 status = er32(STATUS);
1574 rxcw = er32(RXCW);
1575
1576 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1577
1578 /* Receiver is synchronized with no invalid bits. */
1579 switch (mac->serdes_link_state) {
1580 case e1000_serdes_link_autoneg_complete:
1581 if (!(status & E1000_STATUS_LU)) {
1582 /*
1583 * We have lost link, retry autoneg before
1584 * reporting link failure
1585 */
1586 mac->serdes_link_state =
1587 e1000_serdes_link_autoneg_progress;
1588 mac->serdes_has_link = false;
1589 e_dbg("AN_UP -> AN_PROG\n");
1590 } else {
1591 mac->serdes_has_link = true;
1592 }
1593 break;
1594
1595 case e1000_serdes_link_forced_up:
1596 /*
1597 * If we are receiving /C/ ordered sets, re-enable
1598 * auto-negotiation in the TXCW register and disable
1599 * forced link in the Device Control register in an
1600 * attempt to auto-negotiate with our link partner.
1601 * If the partner code word is null, stop forcing
1602 * and restart auto negotiation.
1603 */
1604 if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) {
1605 /* Enable autoneg, and unforce link up */
1606 ew32(TXCW, mac->txcw);
1607 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1608 mac->serdes_link_state =
1609 e1000_serdes_link_autoneg_progress;
1610 mac->serdes_has_link = false;
1611 e_dbg("FORCED_UP -> AN_PROG\n");
1612 } else {
1613 mac->serdes_has_link = true;
1614 }
1615 break;
1616
1617 case e1000_serdes_link_autoneg_progress:
1618 if (rxcw & E1000_RXCW_C) {
1619 /*
1620 * We received /C/ ordered sets, meaning the
1621 * link partner has autonegotiated, and we can
1622 * trust the Link Up (LU) status bit.
1623 */
1624 if (status & E1000_STATUS_LU) {
1625 mac->serdes_link_state =
1626 e1000_serdes_link_autoneg_complete;
1627 e_dbg("AN_PROG -> AN_UP\n");
1628 mac->serdes_has_link = true;
1629 } else {
1630 /* Autoneg completed, but failed. */
1631 mac->serdes_link_state =
1632 e1000_serdes_link_down;
1633 e_dbg("AN_PROG -> DOWN\n");
1634 }
1635 } else {
1636 /*
1637 * The link partner did not autoneg.
1638 * Force link up and full duplex, and change
1639 * state to forced.
1640 */
1641 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1642 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1643 ew32(CTRL, ctrl);
1644
1645 /* Configure Flow Control after link up. */
1646 ret_val = e1000e_config_fc_after_link_up(hw);
1647 if (ret_val) {
1648 e_dbg("Error config flow control\n");
1649 break;
1650 }
1651 mac->serdes_link_state =
1652 e1000_serdes_link_forced_up;
1653 mac->serdes_has_link = true;
1654 e_dbg("AN_PROG -> FORCED_UP\n");
1655 }
1656 break;
1657
1658 case e1000_serdes_link_down:
1659 default:
1660 /*
1661 * The link was down but the receiver has now gained
1662 * valid sync, so lets see if we can bring the link
1663 * up.
1664 */
1665 ew32(TXCW, mac->txcw);
1666 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1667 mac->serdes_link_state =
1668 e1000_serdes_link_autoneg_progress;
1669 mac->serdes_has_link = false;
1670 e_dbg("DOWN -> AN_PROG\n");
1671 break;
1672 }
1673 } else {
1674 if (!(rxcw & E1000_RXCW_SYNCH)) {
1675 mac->serdes_has_link = false;
1676 mac->serdes_link_state = e1000_serdes_link_down;
1677 e_dbg("ANYSTATE -> DOWN\n");
1678 } else {
1679 /*
1680 * Check several times, if Sync and Config
1681 * both are consistently 1 then simply ignore
1682 * the Invalid bit and restart Autoneg
1683 */
1684 for (i = 0; i < AN_RETRY_COUNT; i++) {
1685 udelay(10);
1686 rxcw = er32(RXCW);
1687 if ((rxcw & E1000_RXCW_IV) &&
1688 !((rxcw & E1000_RXCW_SYNCH) &&
1689 (rxcw & E1000_RXCW_C))) {
1690 mac->serdes_has_link = false;
1691 mac->serdes_link_state =
1692 e1000_serdes_link_down;
1693 e_dbg("ANYSTATE -> DOWN\n");
1694 break;
1695 }
1696 }
1697
1698 if (i == AN_RETRY_COUNT) {
1699 txcw = er32(TXCW);
1700 txcw |= E1000_TXCW_ANE;
1701 ew32(TXCW, txcw);
1702 mac->serdes_link_state =
1703 e1000_serdes_link_autoneg_progress;
1704 mac->serdes_has_link = false;
1705 e_dbg("ANYSTATE -> AN_PROG\n");
1706 }
1707 }
1708 }
1709
1710 return ret_val;
1711 }
1712
1713 /**
1714 * e1000_valid_led_default_82571 - Verify a valid default LED config
1715 * @hw: pointer to the HW structure
1716 * @data: pointer to the NVM (EEPROM)
1717 *
1718 * Read the EEPROM for the current default LED configuration. If the
1719 * LED configuration is not valid, set to a valid LED configuration.
1720 **/
1721 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1722 {
1723 s32 ret_val;
1724
1725 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1726 if (ret_val) {
1727 e_dbg("NVM Read Error\n");
1728 return ret_val;
1729 }
1730
1731 switch (hw->mac.type) {
1732 case e1000_82573:
1733 case e1000_82574:
1734 case e1000_82583:
1735 if (*data == ID_LED_RESERVED_F746)
1736 *data = ID_LED_DEFAULT_82573;
1737 break;
1738 default:
1739 if (*data == ID_LED_RESERVED_0000 ||
1740 *data == ID_LED_RESERVED_FFFF)
1741 *data = ID_LED_DEFAULT;
1742 break;
1743 }
1744
1745 return 0;
1746 }
1747
1748 /**
1749 * e1000e_get_laa_state_82571 - Get locally administered address state
1750 * @hw: pointer to the HW structure
1751 *
1752 * Retrieve and return the current locally administered address state.
1753 **/
1754 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1755 {
1756 if (hw->mac.type != e1000_82571)
1757 return false;
1758
1759 return hw->dev_spec.e82571.laa_is_present;
1760 }
1761
1762 /**
1763 * e1000e_set_laa_state_82571 - Set locally administered address state
1764 * @hw: pointer to the HW structure
1765 * @state: enable/disable locally administered address
1766 *
1767 * Enable/Disable the current locally administered address state.
1768 **/
1769 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1770 {
1771 if (hw->mac.type != e1000_82571)
1772 return;
1773
1774 hw->dev_spec.e82571.laa_is_present = state;
1775
1776 /* If workaround is activated... */
1777 if (state)
1778 /*
1779 * Hold a copy of the LAA in RAR[14] This is done so that
1780 * between the time RAR[0] gets clobbered and the time it
1781 * gets fixed, the actual LAA is in one of the RARs and no
1782 * incoming packets directed to this port are dropped.
1783 * Eventually the LAA will be in RAR[0] and RAR[14].
1784 */
1785 hw->mac.ops.rar_set(hw, hw->mac.addr,
1786 hw->mac.rar_entry_count - 1);
1787 }
1788
1789 /**
1790 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1791 * @hw: pointer to the HW structure
1792 *
1793 * Verifies that the EEPROM has completed the update. After updating the
1794 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1795 * the checksum fix is not implemented, we need to set the bit and update
1796 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1797 * we need to return bad checksum.
1798 **/
1799 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1800 {
1801 struct e1000_nvm_info *nvm = &hw->nvm;
1802 s32 ret_val;
1803 u16 data;
1804
1805 if (nvm->type != e1000_nvm_flash_hw)
1806 return 0;
1807
1808 /*
1809 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1810 * 10h-12h. Checksum may need to be fixed.
1811 */
1812 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1813 if (ret_val)
1814 return ret_val;
1815
1816 if (!(data & 0x10)) {
1817 /*
1818 * Read 0x23 and check bit 15. This bit is a 1
1819 * when the checksum has already been fixed. If
1820 * the checksum is still wrong and this bit is a
1821 * 1, we need to return bad checksum. Otherwise,
1822 * we need to set this bit to a 1 and update the
1823 * checksum.
1824 */
1825 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1826 if (ret_val)
1827 return ret_val;
1828
1829 if (!(data & 0x8000)) {
1830 data |= 0x8000;
1831 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1832 if (ret_val)
1833 return ret_val;
1834 ret_val = e1000e_update_nvm_checksum(hw);
1835 }
1836 }
1837
1838 return 0;
1839 }
1840
1841 /**
1842 * e1000_read_mac_addr_82571 - Read device MAC address
1843 * @hw: pointer to the HW structure
1844 **/
1845 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1846 {
1847 if (hw->mac.type == e1000_82571) {
1848 s32 ret_val = 0;
1849
1850 /*
1851 * If there's an alternate MAC address place it in RAR0
1852 * so that it will override the Si installed default perm
1853 * address.
1854 */
1855 ret_val = e1000_check_alt_mac_addr_generic(hw);
1856 if (ret_val)
1857 return ret_val;
1858 }
1859
1860 return e1000_read_mac_addr_generic(hw);
1861 }
1862
1863 /**
1864 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1865 * @hw: pointer to the HW structure
1866 *
1867 * In the case of a PHY power down to save power, or to turn off link during a
1868 * driver unload, or wake on lan is not enabled, remove the link.
1869 **/
1870 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1871 {
1872 struct e1000_phy_info *phy = &hw->phy;
1873 struct e1000_mac_info *mac = &hw->mac;
1874
1875 if (!phy->ops.check_reset_block)
1876 return;
1877
1878 /* If the management interface is not enabled, then power down */
1879 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1880 e1000_power_down_phy_copper(hw);
1881 }
1882
1883 /**
1884 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1885 * @hw: pointer to the HW structure
1886 *
1887 * Clears the hardware counters by reading the counter registers.
1888 **/
1889 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1890 {
1891 e1000e_clear_hw_cntrs_base(hw);
1892
1893 er32(PRC64);
1894 er32(PRC127);
1895 er32(PRC255);
1896 er32(PRC511);
1897 er32(PRC1023);
1898 er32(PRC1522);
1899 er32(PTC64);
1900 er32(PTC127);
1901 er32(PTC255);
1902 er32(PTC511);
1903 er32(PTC1023);
1904 er32(PTC1522);
1905
1906 er32(ALGNERRC);
1907 er32(RXERRC);
1908 er32(TNCRS);
1909 er32(CEXTERR);
1910 er32(TSCTC);
1911 er32(TSCTFC);
1912
1913 er32(MGTPRC);
1914 er32(MGTPDC);
1915 er32(MGTPTC);
1916
1917 er32(IAC);
1918 er32(ICRXOC);
1919
1920 er32(ICRXPTC);
1921 er32(ICRXATC);
1922 er32(ICTXPTC);
1923 er32(ICTXATC);
1924 er32(ICTXQEC);
1925 er32(ICTXQMTC);
1926 er32(ICRXDMTC);
1927 }
1928
1929 static const struct e1000_mac_operations e82571_mac_ops = {
1930 /* .check_mng_mode: mac type dependent */
1931 /* .check_for_link: media type dependent */
1932 .id_led_init = e1000e_id_led_init_generic,
1933 .cleanup_led = e1000e_cleanup_led_generic,
1934 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1935 .get_bus_info = e1000e_get_bus_info_pcie,
1936 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1937 /* .get_link_up_info: media type dependent */
1938 /* .led_on: mac type dependent */
1939 .led_off = e1000e_led_off_generic,
1940 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1941 .write_vfta = e1000_write_vfta_generic,
1942 .clear_vfta = e1000_clear_vfta_82571,
1943 .reset_hw = e1000_reset_hw_82571,
1944 .init_hw = e1000_init_hw_82571,
1945 .setup_link = e1000_setup_link_82571,
1946 /* .setup_physical_interface: media type dependent */
1947 .setup_led = e1000e_setup_led_generic,
1948 .config_collision_dist = e1000e_config_collision_dist_generic,
1949 .read_mac_addr = e1000_read_mac_addr_82571,
1950 .rar_set = e1000e_rar_set_generic,
1951 };
1952
1953 static const struct e1000_phy_operations e82_phy_ops_igp = {
1954 .acquire = e1000_get_hw_semaphore_82571,
1955 .check_polarity = e1000_check_polarity_igp,
1956 .check_reset_block = e1000e_check_reset_block_generic,
1957 .commit = NULL,
1958 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1959 .get_cfg_done = e1000_get_cfg_done_82571,
1960 .get_cable_length = e1000e_get_cable_length_igp_2,
1961 .get_info = e1000e_get_phy_info_igp,
1962 .read_reg = e1000e_read_phy_reg_igp,
1963 .release = e1000_put_hw_semaphore_82571,
1964 .reset = e1000e_phy_hw_reset_generic,
1965 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1966 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1967 .write_reg = e1000e_write_phy_reg_igp,
1968 .cfg_on_link_up = NULL,
1969 };
1970
1971 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1972 .acquire = e1000_get_hw_semaphore_82571,
1973 .check_polarity = e1000_check_polarity_m88,
1974 .check_reset_block = e1000e_check_reset_block_generic,
1975 .commit = e1000e_phy_sw_reset,
1976 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1977 .get_cfg_done = e1000e_get_cfg_done,
1978 .get_cable_length = e1000e_get_cable_length_m88,
1979 .get_info = e1000e_get_phy_info_m88,
1980 .read_reg = e1000e_read_phy_reg_m88,
1981 .release = e1000_put_hw_semaphore_82571,
1982 .reset = e1000e_phy_hw_reset_generic,
1983 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1984 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1985 .write_reg = e1000e_write_phy_reg_m88,
1986 .cfg_on_link_up = NULL,
1987 };
1988
1989 static const struct e1000_phy_operations e82_phy_ops_bm = {
1990 .acquire = e1000_get_hw_semaphore_82571,
1991 .check_polarity = e1000_check_polarity_m88,
1992 .check_reset_block = e1000e_check_reset_block_generic,
1993 .commit = e1000e_phy_sw_reset,
1994 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1995 .get_cfg_done = e1000e_get_cfg_done,
1996 .get_cable_length = e1000e_get_cable_length_m88,
1997 .get_info = e1000e_get_phy_info_m88,
1998 .read_reg = e1000e_read_phy_reg_bm2,
1999 .release = e1000_put_hw_semaphore_82571,
2000 .reset = e1000e_phy_hw_reset_generic,
2001 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
2002 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
2003 .write_reg = e1000e_write_phy_reg_bm2,
2004 .cfg_on_link_up = NULL,
2005 };
2006
2007 static const struct e1000_nvm_operations e82571_nvm_ops = {
2008 .acquire = e1000_acquire_nvm_82571,
2009 .read = e1000e_read_nvm_eerd,
2010 .release = e1000_release_nvm_82571,
2011 .reload = e1000e_reload_nvm_generic,
2012 .update = e1000_update_nvm_checksum_82571,
2013 .valid_led_default = e1000_valid_led_default_82571,
2014 .validate = e1000_validate_nvm_checksum_82571,
2015 .write = e1000_write_nvm_82571,
2016 };
2017
2018 const struct e1000_info e1000_82571_info = {
2019 .mac = e1000_82571,
2020 .flags = FLAG_HAS_HW_VLAN_FILTER
2021 | FLAG_HAS_JUMBO_FRAMES
2022 | FLAG_HAS_WOL
2023 | FLAG_APME_IN_CTRL3
2024 | FLAG_HAS_CTRLEXT_ON_LOAD
2025 | FLAG_HAS_SMART_POWER_DOWN
2026 | FLAG_RESET_OVERWRITES_LAA /* errata */
2027 | FLAG_TARC_SPEED_MODE_BIT /* errata */
2028 | FLAG_APME_CHECK_PORT_B,
2029 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2030 | FLAG2_DMA_BURST,
2031 .pba = 38,
2032 .max_hw_frame_size = DEFAULT_JUMBO,
2033 .get_variants = e1000_get_variants_82571,
2034 .mac_ops = &e82571_mac_ops,
2035 .phy_ops = &e82_phy_ops_igp,
2036 .nvm_ops = &e82571_nvm_ops,
2037 };
2038
2039 const struct e1000_info e1000_82572_info = {
2040 .mac = e1000_82572,
2041 .flags = FLAG_HAS_HW_VLAN_FILTER
2042 | FLAG_HAS_JUMBO_FRAMES
2043 | FLAG_HAS_WOL
2044 | FLAG_APME_IN_CTRL3
2045 | FLAG_HAS_CTRLEXT_ON_LOAD
2046 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
2047 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2048 | FLAG2_DMA_BURST,
2049 .pba = 38,
2050 .max_hw_frame_size = DEFAULT_JUMBO,
2051 .get_variants = e1000_get_variants_82571,
2052 .mac_ops = &e82571_mac_ops,
2053 .phy_ops = &e82_phy_ops_igp,
2054 .nvm_ops = &e82571_nvm_ops,
2055 };
2056
2057 const struct e1000_info e1000_82573_info = {
2058 .mac = e1000_82573,
2059 .flags = FLAG_HAS_HW_VLAN_FILTER
2060 | FLAG_HAS_WOL
2061 | FLAG_APME_IN_CTRL3
2062 | FLAG_HAS_SMART_POWER_DOWN
2063 | FLAG_HAS_AMT
2064 | FLAG_HAS_SWSM_ON_LOAD,
2065 .flags2 = FLAG2_DISABLE_ASPM_L1
2066 | FLAG2_DISABLE_ASPM_L0S,
2067 .pba = 20,
2068 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
2069 .get_variants = e1000_get_variants_82571,
2070 .mac_ops = &e82571_mac_ops,
2071 .phy_ops = &e82_phy_ops_m88,
2072 .nvm_ops = &e82571_nvm_ops,
2073 };
2074
2075 const struct e1000_info e1000_82574_info = {
2076 .mac = e1000_82574,
2077 .flags = FLAG_HAS_HW_VLAN_FILTER
2078 | FLAG_HAS_MSIX
2079 | FLAG_HAS_JUMBO_FRAMES
2080 | FLAG_HAS_WOL
2081 | FLAG_APME_IN_CTRL3
2082 | FLAG_HAS_SMART_POWER_DOWN
2083 | FLAG_HAS_AMT
2084 | FLAG_HAS_CTRLEXT_ON_LOAD,
2085 .flags2 = FLAG2_CHECK_PHY_HANG
2086 | FLAG2_DISABLE_ASPM_L0S
2087 | FLAG2_DISABLE_ASPM_L1
2088 | FLAG2_NO_DISABLE_RX
2089 | FLAG2_DMA_BURST,
2090 .pba = 32,
2091 .max_hw_frame_size = DEFAULT_JUMBO,
2092 .get_variants = e1000_get_variants_82571,
2093 .mac_ops = &e82571_mac_ops,
2094 .phy_ops = &e82_phy_ops_bm,
2095 .nvm_ops = &e82571_nvm_ops,
2096 };
2097
2098 const struct e1000_info e1000_82583_info = {
2099 .mac = e1000_82583,
2100 .flags = FLAG_HAS_HW_VLAN_FILTER
2101 | FLAG_HAS_WOL
2102 | FLAG_APME_IN_CTRL3
2103 | FLAG_HAS_SMART_POWER_DOWN
2104 | FLAG_HAS_AMT
2105 | FLAG_HAS_JUMBO_FRAMES
2106 | FLAG_HAS_CTRLEXT_ON_LOAD,
2107 .flags2 = FLAG2_DISABLE_ASPM_L0S
2108 | FLAG2_NO_DISABLE_RX,
2109 .pba = 32,
2110 .max_hw_frame_size = DEFAULT_JUMBO,
2111 .get_variants = e1000_get_variants_82571,
2112 .mac_ops = &e82571_mac_ops,
2113 .phy_ops = &e82_phy_ops_bm,
2114 .nvm_ops = &e82571_nvm_ops,
2115 };
2116
This page took 0.072511 seconds and 6 git commands to generate.