e1000e: cosmetic move of function prototypes to the new mac.h
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / e1000.h
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* Linux PRO/1000 Ethernet Driver main header file */
30
31 #ifndef _E1000_H_
32 #define _E1000_H_
33
34 #include <linux/bitops.h>
35 #include <linux/types.h>
36 #include <linux/timer.h>
37 #include <linux/workqueue.h>
38 #include <linux/io.h>
39 #include <linux/netdevice.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/crc32.h>
43 #include <linux/if_vlan.h>
44 #include <linux/clocksource.h>
45 #include <linux/net_tstamp.h>
46 #include <linux/ptp_clock_kernel.h>
47 #include <linux/ptp_classify.h>
48 #include <linux/mii.h>
49 #include "hw.h"
50
51 struct e1000_info;
52
53 #define e_dbg(format, arg...) \
54 netdev_dbg(hw->adapter->netdev, format, ## arg)
55 #define e_err(format, arg...) \
56 netdev_err(adapter->netdev, format, ## arg)
57 #define e_info(format, arg...) \
58 netdev_info(adapter->netdev, format, ## arg)
59 #define e_warn(format, arg...) \
60 netdev_warn(adapter->netdev, format, ## arg)
61 #define e_notice(format, arg...) \
62 netdev_notice(adapter->netdev, format, ## arg)
63
64
65 /* Interrupt modes, as used by the IntMode parameter */
66 #define E1000E_INT_MODE_LEGACY 0
67 #define E1000E_INT_MODE_MSI 1
68 #define E1000E_INT_MODE_MSIX 2
69
70 /* Tx/Rx descriptor defines */
71 #define E1000_DEFAULT_TXD 256
72 #define E1000_MAX_TXD 4096
73 #define E1000_MIN_TXD 64
74
75 #define E1000_DEFAULT_RXD 256
76 #define E1000_MAX_RXD 4096
77 #define E1000_MIN_RXD 64
78
79 #define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */
80 #define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */
81
82 #define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */
83
84 /* How many Tx Descriptors do we need to call netif_wake_queue ? */
85 /* How many Rx Buffers do we bundle into one write to the hardware ? */
86 #define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */
87
88 #define AUTO_ALL_MODES 0
89 #define E1000_EEPROM_APME 0x0400
90
91 #define E1000_MNG_VLAN_NONE (-1)
92
93 /* Number of packet split data buffers (not including the header buffer) */
94 #define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1)
95
96 #define DEFAULT_JUMBO 9234
97
98 /* BM/HV Specific Registers */
99 #define BM_PORT_CTRL_PAGE 769
100
101 #define PHY_UPPER_SHIFT 21
102 #define BM_PHY_REG(page, reg) \
103 (((reg) & MAX_PHY_REG_ADDRESS) |\
104 (((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\
105 (((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)))
106
107 /* BM PHY Copper Specific Status */
108 #define BM_CS_STATUS 17
109 #define BM_CS_STATUS_LINK_UP 0x0400
110 #define BM_CS_STATUS_RESOLVED 0x0800
111 #define BM_CS_STATUS_SPEED_MASK 0xC000
112 #define BM_CS_STATUS_SPEED_1000 0x8000
113
114 /* 82577 Mobile Phy Status Register */
115 #define HV_M_STATUS 26
116 #define HV_M_STATUS_AUTONEG_COMPLETE 0x1000
117 #define HV_M_STATUS_SPEED_MASK 0x0300
118 #define HV_M_STATUS_SPEED_1000 0x0200
119 #define HV_M_STATUS_LINK_UP 0x0040
120
121 /* Time to wait before putting the device into D3 if there's no link (in ms). */
122 #define LINK_TIMEOUT 100
123
124 /* Count for polling __E1000_RESET condition every 10-20msec.
125 * Experimentation has shown the reset can take approximately 210msec.
126 */
127 #define E1000_CHECK_RESET_COUNT 25
128
129 #define DEFAULT_RDTR 0
130 #define DEFAULT_RADV 8
131 #define BURST_RDTR 0x20
132 #define BURST_RADV 0x20
133
134 /* in the case of WTHRESH, it appears at least the 82571/2 hardware
135 * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
136 * WTHRESH=4, so a setting of 5 gives the most efficient bus
137 * utilization but to avoid possible Tx stalls, set it to 1
138 */
139 #define E1000_TXDCTL_DMA_BURST_ENABLE \
140 (E1000_TXDCTL_GRAN | /* set descriptor granularity */ \
141 E1000_TXDCTL_COUNT_DESC | \
142 (1 << 16) | /* wthresh must be +1 more than desired */\
143 (1 << 8) | /* hthresh */ \
144 0x1f) /* pthresh */
145
146 #define E1000_RXDCTL_DMA_BURST_ENABLE \
147 (0x01000000 | /* set descriptor granularity */ \
148 (4 << 16) | /* set writeback threshold */ \
149 (4 << 8) | /* set prefetch threshold */ \
150 0x20) /* set hthresh */
151
152 #define E1000_TIDV_FPD (1 << 31)
153 #define E1000_RDTR_FPD (1 << 31)
154
155 enum e1000_boards {
156 board_82571,
157 board_82572,
158 board_82573,
159 board_82574,
160 board_82583,
161 board_80003es2lan,
162 board_ich8lan,
163 board_ich9lan,
164 board_ich10lan,
165 board_pchlan,
166 board_pch2lan,
167 board_pch_lpt,
168 };
169
170 struct e1000_ps_page {
171 struct page *page;
172 u64 dma; /* must be u64 - written to hw */
173 };
174
175 /* wrappers around a pointer to a socket buffer,
176 * so a DMA handle can be stored along with the buffer
177 */
178 struct e1000_buffer {
179 dma_addr_t dma;
180 struct sk_buff *skb;
181 union {
182 /* Tx */
183 struct {
184 unsigned long time_stamp;
185 u16 length;
186 u16 next_to_watch;
187 unsigned int segs;
188 unsigned int bytecount;
189 u16 mapped_as_page;
190 };
191 /* Rx */
192 struct {
193 /* arrays of page information for packet split */
194 struct e1000_ps_page *ps_pages;
195 struct page *page;
196 };
197 };
198 };
199
200 struct e1000_ring {
201 struct e1000_adapter *adapter; /* back pointer to adapter */
202 void *desc; /* pointer to ring memory */
203 dma_addr_t dma; /* phys address of ring */
204 unsigned int size; /* length of ring in bytes */
205 unsigned int count; /* number of desc. in ring */
206
207 u16 next_to_use;
208 u16 next_to_clean;
209
210 void __iomem *head;
211 void __iomem *tail;
212
213 /* array of buffer information structs */
214 struct e1000_buffer *buffer_info;
215
216 char name[IFNAMSIZ + 5];
217 u32 ims_val;
218 u32 itr_val;
219 void __iomem *itr_register;
220 int set_itr;
221
222 struct sk_buff *rx_skb_top;
223 };
224
225 /* PHY register snapshot values */
226 struct e1000_phy_regs {
227 u16 bmcr; /* basic mode control register */
228 u16 bmsr; /* basic mode status register */
229 u16 advertise; /* auto-negotiation advertisement */
230 u16 lpa; /* link partner ability register */
231 u16 expansion; /* auto-negotiation expansion reg */
232 u16 ctrl1000; /* 1000BASE-T control register */
233 u16 stat1000; /* 1000BASE-T status register */
234 u16 estatus; /* extended status register */
235 };
236
237 /* board specific private data structure */
238 struct e1000_adapter {
239 struct timer_list watchdog_timer;
240 struct timer_list phy_info_timer;
241 struct timer_list blink_timer;
242
243 struct work_struct reset_task;
244 struct work_struct watchdog_task;
245
246 const struct e1000_info *ei;
247
248 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
249 u32 bd_number;
250 u32 rx_buffer_len;
251 u16 mng_vlan_id;
252 u16 link_speed;
253 u16 link_duplex;
254 u16 eeprom_vers;
255
256 /* track device up/down/testing state */
257 unsigned long state;
258
259 /* Interrupt Throttle Rate */
260 u32 itr;
261 u32 itr_setting;
262 u16 tx_itr;
263 u16 rx_itr;
264
265 /* Tx */
266 struct e1000_ring *tx_ring /* One per active queue */
267 ____cacheline_aligned_in_smp;
268 u32 tx_fifo_limit;
269
270 struct napi_struct napi;
271
272 unsigned int uncorr_errors; /* uncorrectable ECC errors */
273 unsigned int corr_errors; /* correctable ECC errors */
274 unsigned int restart_queue;
275 u32 txd_cmd;
276
277 bool detect_tx_hung;
278 bool tx_hang_recheck;
279 u8 tx_timeout_factor;
280
281 u32 tx_int_delay;
282 u32 tx_abs_int_delay;
283
284 unsigned int total_tx_bytes;
285 unsigned int total_tx_packets;
286 unsigned int total_rx_bytes;
287 unsigned int total_rx_packets;
288
289 /* Tx stats */
290 u64 tpt_old;
291 u64 colc_old;
292 u32 gotc;
293 u64 gotc_old;
294 u32 tx_timeout_count;
295 u32 tx_fifo_head;
296 u32 tx_head_addr;
297 u32 tx_fifo_size;
298 u32 tx_dma_failed;
299
300 /* Rx */
301 bool (*clean_rx) (struct e1000_ring *ring, int *work_done,
302 int work_to_do) ____cacheline_aligned_in_smp;
303 void (*alloc_rx_buf) (struct e1000_ring *ring, int cleaned_count,
304 gfp_t gfp);
305 struct e1000_ring *rx_ring;
306
307 u32 rx_int_delay;
308 u32 rx_abs_int_delay;
309
310 /* Rx stats */
311 u64 hw_csum_err;
312 u64 hw_csum_good;
313 u64 rx_hdr_split;
314 u32 gorc;
315 u64 gorc_old;
316 u32 alloc_rx_buff_failed;
317 u32 rx_dma_failed;
318 u32 rx_hwtstamp_cleared;
319
320 unsigned int rx_ps_pages;
321 u16 rx_ps_bsize0;
322 u32 max_frame_size;
323 u32 min_frame_size;
324
325 /* OS defined structs */
326 struct net_device *netdev;
327 struct pci_dev *pdev;
328
329 /* structs defined in e1000_hw.h */
330 struct e1000_hw hw;
331
332 spinlock_t stats64_lock; /* protects statistics counters */
333 struct e1000_hw_stats stats;
334 struct e1000_phy_info phy_info;
335 struct e1000_phy_stats phy_stats;
336
337 /* Snapshot of PHY registers */
338 struct e1000_phy_regs phy_regs;
339
340 struct e1000_ring test_tx_ring;
341 struct e1000_ring test_rx_ring;
342 u32 test_icr;
343
344 u32 msg_enable;
345 unsigned int num_vectors;
346 struct msix_entry *msix_entries;
347 int int_mode;
348 u32 eiac_mask;
349
350 u32 eeprom_wol;
351 u32 wol;
352 u32 pba;
353 u32 max_hw_frame_size;
354
355 bool fc_autoneg;
356
357 unsigned int flags;
358 unsigned int flags2;
359 struct work_struct downshift_task;
360 struct work_struct update_phy_task;
361 struct work_struct print_hang_task;
362
363 bool idle_check;
364 int phy_hang_count;
365
366 u16 tx_ring_count;
367 u16 rx_ring_count;
368
369 struct hwtstamp_config hwtstamp_config;
370 struct delayed_work systim_overflow_work;
371 struct sk_buff *tx_hwtstamp_skb;
372 struct work_struct tx_hwtstamp_work;
373 spinlock_t systim_lock; /* protects SYSTIML/H regsters */
374 struct cyclecounter cc;
375 struct timecounter tc;
376 struct ptp_clock *ptp_clock;
377 struct ptp_clock_info ptp_clock_info;
378 };
379
380 struct e1000_info {
381 enum e1000_mac_type mac;
382 unsigned int flags;
383 unsigned int flags2;
384 u32 pba;
385 u32 max_hw_frame_size;
386 s32 (*get_variants)(struct e1000_adapter *);
387 const struct e1000_mac_operations *mac_ops;
388 const struct e1000_phy_operations *phy_ops;
389 const struct e1000_nvm_operations *nvm_ops;
390 };
391
392 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca);
393
394 /* The system time is maintained by a 64-bit counter comprised of the 32-bit
395 * SYSTIMH and SYSTIML registers. How the counter increments (and therefore
396 * its resolution) is based on the contents of the TIMINCA register - it
397 * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0).
398 * For the best accuracy, the incperiod should be as small as possible. The
399 * incvalue is scaled by a factor as large as possible (while still fitting
400 * in bits 23:0) so that relatively small clock corrections can be made.
401 *
402 * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of
403 * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n)
404 * bits to count nanoseconds leaving the rest for fractional nonseconds.
405 */
406 #define INCVALUE_96MHz 125
407 #define INCVALUE_SHIFT_96MHz 17
408 #define INCPERIOD_SHIFT_96MHz 2
409 #define INCPERIOD_96MHz (12 >> INCPERIOD_SHIFT_96MHz)
410
411 #define INCVALUE_25MHz 40
412 #define INCVALUE_SHIFT_25MHz 18
413 #define INCPERIOD_25MHz 1
414
415 /* Another drawback of scaling the incvalue by a large factor is the
416 * 64-bit SYSTIM register overflows more quickly. This is dealt with
417 * by simply reading the clock before it overflows.
418 *
419 * Clock ns bits Overflows after
420 * ~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~
421 * 96MHz 47-bit 2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs
422 * 25MHz 46-bit 2^46 / 10^9 / 3600 = 19.55 hours
423 */
424 #define E1000_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 60 * 4)
425
426 /* hardware capability, feature, and workaround flags */
427 #define FLAG_HAS_AMT (1 << 0)
428 #define FLAG_HAS_FLASH (1 << 1)
429 #define FLAG_HAS_HW_VLAN_FILTER (1 << 2)
430 #define FLAG_HAS_WOL (1 << 3)
431 /* reserved bit4 */
432 #define FLAG_HAS_CTRLEXT_ON_LOAD (1 << 5)
433 #define FLAG_HAS_SWSM_ON_LOAD (1 << 6)
434 #define FLAG_HAS_JUMBO_FRAMES (1 << 7)
435 #define FLAG_READ_ONLY_NVM (1 << 8)
436 #define FLAG_IS_ICH (1 << 9)
437 #define FLAG_HAS_MSIX (1 << 10)
438 #define FLAG_HAS_SMART_POWER_DOWN (1 << 11)
439 #define FLAG_IS_QUAD_PORT_A (1 << 12)
440 #define FLAG_IS_QUAD_PORT (1 << 13)
441 #define FLAG_HAS_HW_TIMESTAMP (1 << 14)
442 #define FLAG_APME_IN_WUC (1 << 15)
443 #define FLAG_APME_IN_CTRL3 (1 << 16)
444 #define FLAG_APME_CHECK_PORT_B (1 << 17)
445 #define FLAG_DISABLE_FC_PAUSE_TIME (1 << 18)
446 #define FLAG_NO_WAKE_UCAST (1 << 19)
447 #define FLAG_MNG_PT_ENABLED (1 << 20)
448 #define FLAG_RESET_OVERWRITES_LAA (1 << 21)
449 #define FLAG_TARC_SPEED_MODE_BIT (1 << 22)
450 #define FLAG_TARC_SET_BIT_ZERO (1 << 23)
451 #define FLAG_RX_NEEDS_RESTART (1 << 24)
452 #define FLAG_LSC_GIG_SPEED_DROP (1 << 25)
453 #define FLAG_SMART_POWER_DOWN (1 << 26)
454 #define FLAG_MSI_ENABLED (1 << 27)
455 /* reserved (1 << 28) */
456 #define FLAG_TSO_FORCE (1 << 29)
457 #define FLAG_RESTART_NOW (1 << 30)
458 #define FLAG_MSI_TEST_FAILED (1 << 31)
459
460 #define FLAG2_CRC_STRIPPING (1 << 0)
461 #define FLAG2_HAS_PHY_WAKEUP (1 << 1)
462 #define FLAG2_IS_DISCARDING (1 << 2)
463 #define FLAG2_DISABLE_ASPM_L1 (1 << 3)
464 #define FLAG2_HAS_PHY_STATS (1 << 4)
465 #define FLAG2_HAS_EEE (1 << 5)
466 #define FLAG2_DMA_BURST (1 << 6)
467 #define FLAG2_DISABLE_ASPM_L0S (1 << 7)
468 #define FLAG2_DISABLE_AIM (1 << 8)
469 #define FLAG2_CHECK_PHY_HANG (1 << 9)
470 #define FLAG2_NO_DISABLE_RX (1 << 10)
471 #define FLAG2_PCIM2PCI_ARBITER_WA (1 << 11)
472 #define FLAG2_DFLT_CRC_STRIPPING (1 << 12)
473 #define FLAG2_CHECK_RX_HWTSTAMP (1 << 13)
474
475 #define E1000_RX_DESC_PS(R, i) \
476 (&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
477 #define E1000_RX_DESC_EXT(R, i) \
478 (&(((union e1000_rx_desc_extended *)((R).desc))[i]))
479 #define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i]))
480 #define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc)
481 #define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc)
482
483 enum e1000_state_t {
484 __E1000_TESTING,
485 __E1000_RESETTING,
486 __E1000_ACCESS_SHARED_RESOURCE,
487 __E1000_DOWN
488 };
489
490 enum latency_range {
491 lowest_latency = 0,
492 low_latency = 1,
493 bulk_latency = 2,
494 latency_invalid = 255
495 };
496
497 extern char e1000e_driver_name[];
498 extern const char e1000e_driver_version[];
499
500 extern void e1000e_check_options(struct e1000_adapter *adapter);
501 extern void e1000e_set_ethtool_ops(struct net_device *netdev);
502
503 extern int e1000e_up(struct e1000_adapter *adapter);
504 extern void e1000e_down(struct e1000_adapter *adapter);
505 extern void e1000e_reinit_locked(struct e1000_adapter *adapter);
506 extern void e1000e_reset(struct e1000_adapter *adapter);
507 extern void e1000e_power_up_phy(struct e1000_adapter *adapter);
508 extern int e1000e_setup_rx_resources(struct e1000_ring *ring);
509 extern int e1000e_setup_tx_resources(struct e1000_ring *ring);
510 extern void e1000e_free_rx_resources(struct e1000_ring *ring);
511 extern void e1000e_free_tx_resources(struct e1000_ring *ring);
512 extern struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
513 struct rtnl_link_stats64
514 *stats);
515 extern void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
516 extern void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
517 extern void e1000e_get_hw_control(struct e1000_adapter *adapter);
518 extern void e1000e_release_hw_control(struct e1000_adapter *adapter);
519 extern void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr);
520
521 extern unsigned int copybreak;
522
523 extern const struct e1000_info e1000_82571_info;
524 extern const struct e1000_info e1000_82572_info;
525 extern const struct e1000_info e1000_82573_info;
526 extern const struct e1000_info e1000_82574_info;
527 extern const struct e1000_info e1000_82583_info;
528 extern const struct e1000_info e1000_ich8_info;
529 extern const struct e1000_info e1000_ich9_info;
530 extern const struct e1000_info e1000_ich10_info;
531 extern const struct e1000_info e1000_pch_info;
532 extern const struct e1000_info e1000_pch2_info;
533 extern const struct e1000_info e1000_pch_lpt_info;
534 extern const struct e1000_info e1000_es2_info;
535
536 extern s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
537 u32 pba_num_size);
538
539 extern bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw);
540
541 extern s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw);
542 extern s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw);
543 extern s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data);
544 extern s32 e1000e_setup_copper_link(struct e1000_hw *hw);
545 extern s32 e1000e_get_phy_id(struct e1000_hw *hw);
546 extern s32 e1000e_check_reset_block_generic(struct e1000_hw *hw);
547 extern s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw);
548 extern s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw);
549 extern s32 e1000e_get_phy_info_igp(struct e1000_hw *hw);
550 extern s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page);
551 extern s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
552 extern s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset,
553 u16 *data);
554 extern s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw);
555 extern s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active);
556 extern s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
557 extern s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset,
558 u16 data);
559 extern s32 e1000e_phy_sw_reset(struct e1000_hw *hw);
560 extern s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw);
561 extern s32 e1000e_get_cfg_done_generic(struct e1000_hw *hw);
562 extern s32 e1000e_get_cable_length_m88(struct e1000_hw *hw);
563 extern s32 e1000e_get_phy_info_m88(struct e1000_hw *hw);
564 extern s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
565 extern s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
566 extern s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw);
567 extern enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id);
568 extern s32 e1000e_determine_phy_address(struct e1000_hw *hw);
569 extern s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data);
570 extern s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data);
571 extern s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw,
572 u16 *phy_reg);
573 extern s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw,
574 u16 *phy_reg);
575 extern s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data);
576 extern s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data);
577 extern void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
578 extern s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
579 extern s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset,
580 u16 data);
581 extern s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
582 extern s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset,
583 u16 *data);
584 extern s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
585 u32 usec_interval, bool *success);
586 extern s32 e1000e_phy_reset_dsp(struct e1000_hw *hw);
587 extern void e1000_power_up_phy_copper(struct e1000_hw *hw);
588 extern void e1000_power_down_phy_copper(struct e1000_hw *hw);
589 extern s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data);
590 extern s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
591 extern s32 e1000e_check_downshift(struct e1000_hw *hw);
592 extern s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data);
593 extern s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset,
594 u16 *data);
595 extern s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset,
596 u16 *data);
597 extern s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data);
598 extern s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset,
599 u16 data);
600 extern s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset,
601 u16 data);
602 extern s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw);
603 extern s32 e1000_copper_link_setup_82577(struct e1000_hw *hw);
604 extern s32 e1000_check_polarity_82577(struct e1000_hw *hw);
605 extern s32 e1000_get_phy_info_82577(struct e1000_hw *hw);
606 extern s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw);
607 extern s32 e1000_get_cable_length_82577(struct e1000_hw *hw);
608
609 extern s32 e1000_check_polarity_m88(struct e1000_hw *hw);
610 extern s32 e1000_get_phy_info_ife(struct e1000_hw *hw);
611 extern s32 e1000_check_polarity_ife(struct e1000_hw *hw);
612 extern s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw);
613 extern s32 e1000_check_polarity_igp(struct e1000_hw *hw);
614 extern void e1000e_ptp_init(struct e1000_adapter *adapter);
615 extern void e1000e_ptp_remove(struct e1000_adapter *adapter);
616
617 static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
618 {
619 return hw->phy.ops.reset(hw);
620 }
621
622 static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
623 {
624 return hw->phy.ops.read_reg(hw, offset, data);
625 }
626
627 static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data)
628 {
629 return hw->phy.ops.read_reg_locked(hw, offset, data);
630 }
631
632 static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
633 {
634 return hw->phy.ops.write_reg(hw, offset, data);
635 }
636
637 static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data)
638 {
639 return hw->phy.ops.write_reg_locked(hw, offset, data);
640 }
641
642 extern s32 e1000e_acquire_nvm(struct e1000_hw *hw);
643 extern s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
644 extern s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw);
645 extern s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
646 extern s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
647 extern s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw);
648 extern void e1000e_release_nvm(struct e1000_hw *hw);
649 extern void e1000e_reload_nvm_generic(struct e1000_hw *hw);
650 extern s32 e1000_read_mac_addr_generic(struct e1000_hw *hw);
651
652 static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
653 {
654 if (hw->mac.ops.read_mac_addr)
655 return hw->mac.ops.read_mac_addr(hw);
656
657 return e1000_read_mac_addr_generic(hw);
658 }
659
660 static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
661 {
662 return hw->nvm.ops.validate(hw);
663 }
664
665 static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
666 {
667 return hw->nvm.ops.update(hw);
668 }
669
670 static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
671 {
672 return hw->nvm.ops.read(hw, offset, words, data);
673 }
674
675 static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
676 {
677 return hw->nvm.ops.write(hw, offset, words, data);
678 }
679
680 static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
681 {
682 return hw->phy.ops.get_info(hw);
683 }
684
685 extern bool e1000e_check_mng_mode_generic(struct e1000_hw *hw);
686 extern bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw);
687 extern s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length);
688
689 static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
690 {
691 return readl(hw->hw_addr + reg);
692 }
693
694 #define er32(reg) __er32(hw, E1000_##reg)
695
696 /**
697 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
698 * @hw: pointer to the HW structure
699 *
700 * When updating the MAC CSR registers, the Manageability Engine (ME) could
701 * be accessing the registers at the same time. Normally, this is handled in
702 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
703 * accesses later than it should which could result in the register to have
704 * an incorrect value. Workaround this by checking the FWSM register which
705 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
706 * and try again a number of times.
707 **/
708 static inline s32 __ew32_prepare(struct e1000_hw *hw)
709 {
710 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
711
712 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
713 udelay(50);
714
715 return i;
716 }
717
718 static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
719 {
720 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
721 __ew32_prepare(hw);
722
723 writel(val, hw->hw_addr + reg);
724 }
725
726 #define ew32(reg, val) __ew32(hw, E1000_##reg, (val))
727
728 #define e1e_flush() er32(STATUS)
729
730 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
731 (__ew32((a), (reg + ((offset) << 2)), (value)))
732
733 #define E1000_READ_REG_ARRAY(a, reg, offset) \
734 (readl((a)->hw_addr + reg + ((offset) << 2)))
735
736 #endif /* _E1000_H_ */
This page took 0.087721 seconds and 5 git commands to generate.