e1000e: cleanup PARENTHESIS_ALIGNMENT checkpatch checks
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* 82562G 10/100 Network Connection
30 * 82562G-2 10/100 Network Connection
31 * 82562GT 10/100 Network Connection
32 * 82562GT-2 10/100 Network Connection
33 * 82562V 10/100 Network Connection
34 * 82562V-2 10/100 Network Connection
35 * 82566DC-2 Gigabit Network Connection
36 * 82566DC Gigabit Network Connection
37 * 82566DM-2 Gigabit Network Connection
38 * 82566DM Gigabit Network Connection
39 * 82566MC Gigabit Network Connection
40 * 82566MM Gigabit Network Connection
41 * 82567LM Gigabit Network Connection
42 * 82567LF Gigabit Network Connection
43 * 82567V Gigabit Network Connection
44 * 82567LM-2 Gigabit Network Connection
45 * 82567LF-2 Gigabit Network Connection
46 * 82567V-2 Gigabit Network Connection
47 * 82567LF-3 Gigabit Network Connection
48 * 82567LM-3 Gigabit Network Connection
49 * 82567LM-4 Gigabit Network Connection
50 * 82577LM Gigabit Network Connection
51 * 82577LC Gigabit Network Connection
52 * 82578DM Gigabit Network Connection
53 * 82578DC Gigabit Network Connection
54 * 82579LM Gigabit Network Connection
55 * 82579V Gigabit Network Connection
56 */
57
58 #include "e1000.h"
59
60 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
61 /* Offset 04h HSFSTS */
62 union ich8_hws_flash_status {
63 struct ich8_hsfsts {
64 u16 flcdone:1; /* bit 0 Flash Cycle Done */
65 u16 flcerr:1; /* bit 1 Flash Cycle Error */
66 u16 dael:1; /* bit 2 Direct Access error Log */
67 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
68 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
69 u16 reserved1:2; /* bit 13:6 Reserved */
70 u16 reserved2:6; /* bit 13:6 Reserved */
71 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
72 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
73 } hsf_status;
74 u16 regval;
75 };
76
77 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
78 /* Offset 06h FLCTL */
79 union ich8_hws_flash_ctrl {
80 struct ich8_hsflctl {
81 u16 flcgo:1; /* 0 Flash Cycle Go */
82 u16 flcycle:2; /* 2:1 Flash Cycle */
83 u16 reserved:5; /* 7:3 Reserved */
84 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
85 u16 flockdn:6; /* 15:10 Reserved */
86 } hsf_ctrl;
87 u16 regval;
88 };
89
90 /* ICH Flash Region Access Permissions */
91 union ich8_hws_flash_regacc {
92 struct ich8_flracc {
93 u32 grra:8; /* 0:7 GbE region Read Access */
94 u32 grwa:8; /* 8:15 GbE region Write Access */
95 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
96 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
97 } hsf_flregacc;
98 u16 regval;
99 };
100
101 /* ICH Flash Protected Region */
102 union ich8_flash_protected_range {
103 struct ich8_pr {
104 u32 base:13; /* 0:12 Protected Range Base */
105 u32 reserved1:2; /* 13:14 Reserved */
106 u32 rpe:1; /* 15 Read Protection Enable */
107 u32 limit:13; /* 16:28 Protected Range Limit */
108 u32 reserved2:2; /* 29:30 Reserved */
109 u32 wpe:1; /* 31 Write Protection Enable */
110 } range;
111 u32 regval;
112 };
113
114 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
115 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
116 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
117 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
118 u32 offset, u8 byte);
119 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
120 u8 *data);
121 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
122 u16 *data);
123 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
124 u8 size, u16 *data);
125 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
126 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
127 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
129 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
130 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
131 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
132 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
133 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
134 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
135 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
136 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
138 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
139 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
140 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
141 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
142 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
143 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
144 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
145
146 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 return readw(hw->flash_address + reg);
149 }
150
151 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
152 {
153 return readl(hw->flash_address + reg);
154 }
155
156 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
157 {
158 writew(val, hw->flash_address + reg);
159 }
160
161 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
162 {
163 writel(val, hw->flash_address + reg);
164 }
165
166 #define er16flash(reg) __er16flash(hw, (reg))
167 #define er32flash(reg) __er32flash(hw, (reg))
168 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
169 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
170
171 /**
172 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
173 * @hw: pointer to the HW structure
174 *
175 * Test access to the PHY registers by reading the PHY ID registers. If
176 * the PHY ID is already known (e.g. resume path) compare it with known ID,
177 * otherwise assume the read PHY ID is correct if it is valid.
178 *
179 * Assumes the sw/fw/hw semaphore is already acquired.
180 **/
181 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
182 {
183 u16 phy_reg = 0;
184 u32 phy_id = 0;
185 s32 ret_val;
186 u16 retry_count;
187
188 for (retry_count = 0; retry_count < 2; retry_count++) {
189 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
190 if (ret_val || (phy_reg == 0xFFFF))
191 continue;
192 phy_id = (u32)(phy_reg << 16);
193
194 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
195 if (ret_val || (phy_reg == 0xFFFF)) {
196 phy_id = 0;
197 continue;
198 }
199 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
200 break;
201 }
202
203 if (hw->phy.id) {
204 if (hw->phy.id == phy_id)
205 return true;
206 } else if (phy_id) {
207 hw->phy.id = phy_id;
208 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
209 return true;
210 }
211
212 /* In case the PHY needs to be in mdio slow mode,
213 * set slow mode and try to get the PHY id again.
214 */
215 hw->phy.ops.release(hw);
216 ret_val = e1000_set_mdio_slow_mode_hv(hw);
217 if (!ret_val)
218 ret_val = e1000e_get_phy_id(hw);
219 hw->phy.ops.acquire(hw);
220
221 return !ret_val;
222 }
223
224 /**
225 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
226 * @hw: pointer to the HW structure
227 *
228 * Workarounds/flow necessary for PHY initialization during driver load
229 * and resume paths.
230 **/
231 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
232 {
233 u32 mac_reg, fwsm = er32(FWSM);
234 s32 ret_val;
235 u16 phy_reg;
236
237 /* Gate automatic PHY configuration by hardware on managed and
238 * non-managed 82579 and newer adapters.
239 */
240 e1000_gate_hw_phy_config_ich8lan(hw, true);
241
242 ret_val = hw->phy.ops.acquire(hw);
243 if (ret_val) {
244 e_dbg("Failed to initialize PHY flow\n");
245 goto out;
246 }
247
248 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
249 * inaccessible and resetting the PHY is not blocked, toggle the
250 * LANPHYPC Value bit to force the interconnect to PCIe mode.
251 */
252 switch (hw->mac.type) {
253 case e1000_pch_lpt:
254 if (e1000_phy_is_accessible_pchlan(hw))
255 break;
256
257 /* Before toggling LANPHYPC, see if PHY is accessible by
258 * forcing MAC to SMBus mode first.
259 */
260 mac_reg = er32(CTRL_EXT);
261 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
262 ew32(CTRL_EXT, mac_reg);
263
264 /* fall-through */
265 case e1000_pch2lan:
266 if (e1000_phy_is_accessible_pchlan(hw)) {
267 if (hw->mac.type == e1000_pch_lpt) {
268 /* Unforce SMBus mode in PHY */
269 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
270 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
271 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
272
273 /* Unforce SMBus mode in MAC */
274 mac_reg = er32(CTRL_EXT);
275 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
276 ew32(CTRL_EXT, mac_reg);
277 }
278 break;
279 }
280
281 /* fall-through */
282 case e1000_pchlan:
283 if ((hw->mac.type == e1000_pchlan) &&
284 (fwsm & E1000_ICH_FWSM_FW_VALID))
285 break;
286
287 if (hw->phy.ops.check_reset_block(hw)) {
288 e_dbg("Required LANPHYPC toggle blocked by ME\n");
289 break;
290 }
291
292 e_dbg("Toggling LANPHYPC\n");
293
294 /* Set Phy Config Counter to 50msec */
295 mac_reg = er32(FEXTNVM3);
296 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
297 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
298 ew32(FEXTNVM3, mac_reg);
299
300 if (hw->mac.type == e1000_pch_lpt) {
301 /* Toggling LANPHYPC brings the PHY out of SMBus mode
302 * So ensure that the MAC is also out of SMBus mode
303 */
304 mac_reg = er32(CTRL_EXT);
305 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
306 ew32(CTRL_EXT, mac_reg);
307 }
308
309 /* Toggle LANPHYPC Value bit */
310 mac_reg = er32(CTRL);
311 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
312 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
313 ew32(CTRL, mac_reg);
314 e1e_flush();
315 udelay(10);
316 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
317 ew32(CTRL, mac_reg);
318 e1e_flush();
319 if (hw->mac.type < e1000_pch_lpt) {
320 msleep(50);
321 } else {
322 u16 count = 20;
323 do {
324 usleep_range(5000, 10000);
325 } while (!(er32(CTRL_EXT) &
326 E1000_CTRL_EXT_LPCD) && count--);
327 }
328 break;
329 default:
330 break;
331 }
332
333 hw->phy.ops.release(hw);
334
335 /* Reset the PHY before any access to it. Doing so, ensures
336 * that the PHY is in a known good state before we read/write
337 * PHY registers. The generic reset is sufficient here,
338 * because we haven't determined the PHY type yet.
339 */
340 ret_val = e1000e_phy_hw_reset_generic(hw);
341
342 out:
343 /* Ungate automatic PHY configuration on non-managed 82579 */
344 if ((hw->mac.type == e1000_pch2lan) &&
345 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
346 usleep_range(10000, 20000);
347 e1000_gate_hw_phy_config_ich8lan(hw, false);
348 }
349
350 return ret_val;
351 }
352
353 /**
354 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
355 * @hw: pointer to the HW structure
356 *
357 * Initialize family-specific PHY parameters and function pointers.
358 **/
359 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
360 {
361 struct e1000_phy_info *phy = &hw->phy;
362 s32 ret_val;
363
364 phy->addr = 1;
365 phy->reset_delay_us = 100;
366
367 phy->ops.set_page = e1000_set_page_igp;
368 phy->ops.read_reg = e1000_read_phy_reg_hv;
369 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
370 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
371 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
372 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
373 phy->ops.write_reg = e1000_write_phy_reg_hv;
374 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
375 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
376 phy->ops.power_up = e1000_power_up_phy_copper;
377 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
378 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
379
380 phy->id = e1000_phy_unknown;
381
382 ret_val = e1000_init_phy_workarounds_pchlan(hw);
383 if (ret_val)
384 return ret_val;
385
386 if (phy->id == e1000_phy_unknown)
387 switch (hw->mac.type) {
388 default:
389 ret_val = e1000e_get_phy_id(hw);
390 if (ret_val)
391 return ret_val;
392 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
393 break;
394 /* fall-through */
395 case e1000_pch2lan:
396 case e1000_pch_lpt:
397 /* In case the PHY needs to be in mdio slow mode,
398 * set slow mode and try to get the PHY id again.
399 */
400 ret_val = e1000_set_mdio_slow_mode_hv(hw);
401 if (ret_val)
402 return ret_val;
403 ret_val = e1000e_get_phy_id(hw);
404 if (ret_val)
405 return ret_val;
406 break;
407 }
408 phy->type = e1000e_get_phy_type_from_id(phy->id);
409
410 switch (phy->type) {
411 case e1000_phy_82577:
412 case e1000_phy_82579:
413 case e1000_phy_i217:
414 phy->ops.check_polarity = e1000_check_polarity_82577;
415 phy->ops.force_speed_duplex =
416 e1000_phy_force_speed_duplex_82577;
417 phy->ops.get_cable_length = e1000_get_cable_length_82577;
418 phy->ops.get_info = e1000_get_phy_info_82577;
419 phy->ops.commit = e1000e_phy_sw_reset;
420 break;
421 case e1000_phy_82578:
422 phy->ops.check_polarity = e1000_check_polarity_m88;
423 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
424 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
425 phy->ops.get_info = e1000e_get_phy_info_m88;
426 break;
427 default:
428 ret_val = -E1000_ERR_PHY;
429 break;
430 }
431
432 return ret_val;
433 }
434
435 /**
436 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
437 * @hw: pointer to the HW structure
438 *
439 * Initialize family-specific PHY parameters and function pointers.
440 **/
441 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
442 {
443 struct e1000_phy_info *phy = &hw->phy;
444 s32 ret_val;
445 u16 i = 0;
446
447 phy->addr = 1;
448 phy->reset_delay_us = 100;
449
450 phy->ops.power_up = e1000_power_up_phy_copper;
451 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
452
453 /* We may need to do this twice - once for IGP and if that fails,
454 * we'll set BM func pointers and try again
455 */
456 ret_val = e1000e_determine_phy_address(hw);
457 if (ret_val) {
458 phy->ops.write_reg = e1000e_write_phy_reg_bm;
459 phy->ops.read_reg = e1000e_read_phy_reg_bm;
460 ret_val = e1000e_determine_phy_address(hw);
461 if (ret_val) {
462 e_dbg("Cannot determine PHY addr. Erroring out\n");
463 return ret_val;
464 }
465 }
466
467 phy->id = 0;
468 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
469 (i++ < 100)) {
470 usleep_range(1000, 2000);
471 ret_val = e1000e_get_phy_id(hw);
472 if (ret_val)
473 return ret_val;
474 }
475
476 /* Verify phy id */
477 switch (phy->id) {
478 case IGP03E1000_E_PHY_ID:
479 phy->type = e1000_phy_igp_3;
480 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
481 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
482 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
483 phy->ops.get_info = e1000e_get_phy_info_igp;
484 phy->ops.check_polarity = e1000_check_polarity_igp;
485 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
486 break;
487 case IFE_E_PHY_ID:
488 case IFE_PLUS_E_PHY_ID:
489 case IFE_C_E_PHY_ID:
490 phy->type = e1000_phy_ife;
491 phy->autoneg_mask = E1000_ALL_NOT_GIG;
492 phy->ops.get_info = e1000_get_phy_info_ife;
493 phy->ops.check_polarity = e1000_check_polarity_ife;
494 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
495 break;
496 case BME1000_E_PHY_ID:
497 phy->type = e1000_phy_bm;
498 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
499 phy->ops.read_reg = e1000e_read_phy_reg_bm;
500 phy->ops.write_reg = e1000e_write_phy_reg_bm;
501 phy->ops.commit = e1000e_phy_sw_reset;
502 phy->ops.get_info = e1000e_get_phy_info_m88;
503 phy->ops.check_polarity = e1000_check_polarity_m88;
504 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
505 break;
506 default:
507 return -E1000_ERR_PHY;
508 break;
509 }
510
511 return 0;
512 }
513
514 /**
515 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
516 * @hw: pointer to the HW structure
517 *
518 * Initialize family-specific NVM parameters and function
519 * pointers.
520 **/
521 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
522 {
523 struct e1000_nvm_info *nvm = &hw->nvm;
524 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
525 u32 gfpreg, sector_base_addr, sector_end_addr;
526 u16 i;
527
528 /* Can't read flash registers if the register set isn't mapped. */
529 if (!hw->flash_address) {
530 e_dbg("ERROR: Flash registers not mapped\n");
531 return -E1000_ERR_CONFIG;
532 }
533
534 nvm->type = e1000_nvm_flash_sw;
535
536 gfpreg = er32flash(ICH_FLASH_GFPREG);
537
538 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
539 * Add 1 to sector_end_addr since this sector is included in
540 * the overall size.
541 */
542 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
543 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
544
545 /* flash_base_addr is byte-aligned */
546 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
547
548 /* find total size of the NVM, then cut in half since the total
549 * size represents two separate NVM banks.
550 */
551 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
552 << FLASH_SECTOR_ADDR_SHIFT);
553 nvm->flash_bank_size /= 2;
554 /* Adjust to word count */
555 nvm->flash_bank_size /= sizeof(u16);
556
557 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
558
559 /* Clear shadow ram */
560 for (i = 0; i < nvm->word_size; i++) {
561 dev_spec->shadow_ram[i].modified = false;
562 dev_spec->shadow_ram[i].value = 0xFFFF;
563 }
564
565 return 0;
566 }
567
568 /**
569 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
570 * @hw: pointer to the HW structure
571 *
572 * Initialize family-specific MAC parameters and function
573 * pointers.
574 **/
575 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
576 {
577 struct e1000_mac_info *mac = &hw->mac;
578
579 /* Set media type function pointer */
580 hw->phy.media_type = e1000_media_type_copper;
581
582 /* Set mta register count */
583 mac->mta_reg_count = 32;
584 /* Set rar entry count */
585 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
586 if (mac->type == e1000_ich8lan)
587 mac->rar_entry_count--;
588 /* FWSM register */
589 mac->has_fwsm = true;
590 /* ARC subsystem not supported */
591 mac->arc_subsystem_valid = false;
592 /* Adaptive IFS supported */
593 mac->adaptive_ifs = true;
594
595 /* LED and other operations */
596 switch (mac->type) {
597 case e1000_ich8lan:
598 case e1000_ich9lan:
599 case e1000_ich10lan:
600 /* check management mode */
601 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
602 /* ID LED init */
603 mac->ops.id_led_init = e1000e_id_led_init_generic;
604 /* blink LED */
605 mac->ops.blink_led = e1000e_blink_led_generic;
606 /* setup LED */
607 mac->ops.setup_led = e1000e_setup_led_generic;
608 /* cleanup LED */
609 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
610 /* turn on/off LED */
611 mac->ops.led_on = e1000_led_on_ich8lan;
612 mac->ops.led_off = e1000_led_off_ich8lan;
613 break;
614 case e1000_pch2lan:
615 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
616 mac->ops.rar_set = e1000_rar_set_pch2lan;
617 /* fall-through */
618 case e1000_pch_lpt:
619 case e1000_pchlan:
620 /* check management mode */
621 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
622 /* ID LED init */
623 mac->ops.id_led_init = e1000_id_led_init_pchlan;
624 /* setup LED */
625 mac->ops.setup_led = e1000_setup_led_pchlan;
626 /* cleanup LED */
627 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
628 /* turn on/off LED */
629 mac->ops.led_on = e1000_led_on_pchlan;
630 mac->ops.led_off = e1000_led_off_pchlan;
631 break;
632 default:
633 break;
634 }
635
636 if (mac->type == e1000_pch_lpt) {
637 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
638 mac->ops.rar_set = e1000_rar_set_pch_lpt;
639 }
640
641 /* Enable PCS Lock-loss workaround for ICH8 */
642 if (mac->type == e1000_ich8lan)
643 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
644
645 return 0;
646 }
647
648 /**
649 * __e1000_access_emi_reg_locked - Read/write EMI register
650 * @hw: pointer to the HW structure
651 * @addr: EMI address to program
652 * @data: pointer to value to read/write from/to the EMI address
653 * @read: boolean flag to indicate read or write
654 *
655 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
656 **/
657 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
658 u16 *data, bool read)
659 {
660 s32 ret_val;
661
662 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
663 if (ret_val)
664 return ret_val;
665
666 if (read)
667 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
668 else
669 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
670
671 return ret_val;
672 }
673
674 /**
675 * e1000_read_emi_reg_locked - Read Extended Management Interface register
676 * @hw: pointer to the HW structure
677 * @addr: EMI address to program
678 * @data: value to be read from the EMI address
679 *
680 * Assumes the SW/FW/HW Semaphore is already acquired.
681 **/
682 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
683 {
684 return __e1000_access_emi_reg_locked(hw, addr, data, true);
685 }
686
687 /**
688 * e1000_write_emi_reg_locked - Write Extended Management Interface register
689 * @hw: pointer to the HW structure
690 * @addr: EMI address to program
691 * @data: value to be written to the EMI address
692 *
693 * Assumes the SW/FW/HW Semaphore is already acquired.
694 **/
695 static s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
696 {
697 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
698 }
699
700 /**
701 * e1000_set_eee_pchlan - Enable/disable EEE support
702 * @hw: pointer to the HW structure
703 *
704 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
705 * the link and the EEE capabilities of the link partner. The LPI Control
706 * register bits will remain set only if/when link is up.
707 **/
708 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
709 {
710 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
711 s32 ret_val;
712 u16 lpi_ctrl;
713
714 if ((hw->phy.type != e1000_phy_82579) &&
715 (hw->phy.type != e1000_phy_i217))
716 return 0;
717
718 ret_val = hw->phy.ops.acquire(hw);
719 if (ret_val)
720 return ret_val;
721
722 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
723 if (ret_val)
724 goto release;
725
726 /* Clear bits that enable EEE in various speeds */
727 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
728
729 /* Enable EEE if not disabled by user */
730 if (!dev_spec->eee_disable) {
731 u16 lpa, pcs_status, data;
732
733 /* Save off link partner's EEE ability */
734 switch (hw->phy.type) {
735 case e1000_phy_82579:
736 lpa = I82579_EEE_LP_ABILITY;
737 pcs_status = I82579_EEE_PCS_STATUS;
738 break;
739 case e1000_phy_i217:
740 lpa = I217_EEE_LP_ABILITY;
741 pcs_status = I217_EEE_PCS_STATUS;
742 break;
743 default:
744 ret_val = -E1000_ERR_PHY;
745 goto release;
746 }
747 ret_val = e1000_read_emi_reg_locked(hw, lpa,
748 &dev_spec->eee_lp_ability);
749 if (ret_val)
750 goto release;
751
752 /* Enable EEE only for speeds in which the link partner is
753 * EEE capable.
754 */
755 if (dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
756 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
757
758 if (dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
759 e1e_rphy_locked(hw, MII_LPA, &data);
760 if (data & LPA_100FULL)
761 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
762 else
763 /* EEE is not supported in 100Half, so ignore
764 * partner's EEE in 100 ability if full-duplex
765 * is not advertised.
766 */
767 dev_spec->eee_lp_ability &=
768 ~I82579_EEE_100_SUPPORTED;
769 }
770
771 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
772 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
773 if (ret_val)
774 goto release;
775 }
776
777 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
778 release:
779 hw->phy.ops.release(hw);
780
781 return ret_val;
782 }
783
784 /**
785 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
786 * @hw: pointer to the HW structure
787 *
788 * Checks to see of the link status of the hardware has changed. If a
789 * change in link status has been detected, then we read the PHY registers
790 * to get the current speed/duplex if link exists.
791 **/
792 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
793 {
794 struct e1000_mac_info *mac = &hw->mac;
795 s32 ret_val;
796 bool link;
797 u16 phy_reg;
798
799 /* We only want to go out to the PHY registers to see if Auto-Neg
800 * has completed and/or if our link status has changed. The
801 * get_link_status flag is set upon receiving a Link Status
802 * Change or Rx Sequence Error interrupt.
803 */
804 if (!mac->get_link_status)
805 return 0;
806
807 /* First we want to see if the MII Status Register reports
808 * link. If so, then we want to get the current speed/duplex
809 * of the PHY.
810 */
811 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
812 if (ret_val)
813 return ret_val;
814
815 if (hw->mac.type == e1000_pchlan) {
816 ret_val = e1000_k1_gig_workaround_hv(hw, link);
817 if (ret_val)
818 return ret_val;
819 }
820
821 /* Clear link partner's EEE ability */
822 hw->dev_spec.ich8lan.eee_lp_ability = 0;
823
824 if (!link)
825 return 0; /* No link detected */
826
827 mac->get_link_status = false;
828
829 switch (hw->mac.type) {
830 case e1000_pch2lan:
831 ret_val = e1000_k1_workaround_lv(hw);
832 if (ret_val)
833 return ret_val;
834 /* fall-thru */
835 case e1000_pchlan:
836 if (hw->phy.type == e1000_phy_82578) {
837 ret_val = e1000_link_stall_workaround_hv(hw);
838 if (ret_val)
839 return ret_val;
840 }
841
842 /* Workaround for PCHx parts in half-duplex:
843 * Set the number of preambles removed from the packet
844 * when it is passed from the PHY to the MAC to prevent
845 * the MAC from misinterpreting the packet type.
846 */
847 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
848 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
849
850 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
851 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
852
853 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
854 break;
855 default:
856 break;
857 }
858
859 /* Check if there was DownShift, must be checked
860 * immediately after link-up
861 */
862 e1000e_check_downshift(hw);
863
864 /* Enable/Disable EEE after link up */
865 ret_val = e1000_set_eee_pchlan(hw);
866 if (ret_val)
867 return ret_val;
868
869 /* If we are forcing speed/duplex, then we simply return since
870 * we have already determined whether we have link or not.
871 */
872 if (!mac->autoneg)
873 return -E1000_ERR_CONFIG;
874
875 /* Auto-Neg is enabled. Auto Speed Detection takes care
876 * of MAC speed/duplex configuration. So we only need to
877 * configure Collision Distance in the MAC.
878 */
879 mac->ops.config_collision_dist(hw);
880
881 /* Configure Flow Control now that Auto-Neg has completed.
882 * First, we need to restore the desired flow control
883 * settings because we may have had to re-autoneg with a
884 * different link partner.
885 */
886 ret_val = e1000e_config_fc_after_link_up(hw);
887 if (ret_val)
888 e_dbg("Error configuring flow control\n");
889
890 return ret_val;
891 }
892
893 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
894 {
895 struct e1000_hw *hw = &adapter->hw;
896 s32 rc;
897
898 rc = e1000_init_mac_params_ich8lan(hw);
899 if (rc)
900 return rc;
901
902 rc = e1000_init_nvm_params_ich8lan(hw);
903 if (rc)
904 return rc;
905
906 switch (hw->mac.type) {
907 case e1000_ich8lan:
908 case e1000_ich9lan:
909 case e1000_ich10lan:
910 rc = e1000_init_phy_params_ich8lan(hw);
911 break;
912 case e1000_pchlan:
913 case e1000_pch2lan:
914 case e1000_pch_lpt:
915 rc = e1000_init_phy_params_pchlan(hw);
916 break;
917 default:
918 break;
919 }
920 if (rc)
921 return rc;
922
923 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
924 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
925 */
926 if ((adapter->hw.phy.type == e1000_phy_ife) ||
927 ((adapter->hw.mac.type >= e1000_pch2lan) &&
928 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
929 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
930 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
931
932 hw->mac.ops.blink_led = NULL;
933 }
934
935 if ((adapter->hw.mac.type == e1000_ich8lan) &&
936 (adapter->hw.phy.type != e1000_phy_ife))
937 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
938
939 /* Enable workaround for 82579 w/ ME enabled */
940 if ((adapter->hw.mac.type == e1000_pch2lan) &&
941 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
942 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
943
944 /* Disable EEE by default until IEEE802.3az spec is finalized */
945 if (adapter->flags2 & FLAG2_HAS_EEE)
946 adapter->hw.dev_spec.ich8lan.eee_disable = true;
947
948 return 0;
949 }
950
951 static DEFINE_MUTEX(nvm_mutex);
952
953 /**
954 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
955 * @hw: pointer to the HW structure
956 *
957 * Acquires the mutex for performing NVM operations.
958 **/
959 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
960 {
961 mutex_lock(&nvm_mutex);
962
963 return 0;
964 }
965
966 /**
967 * e1000_release_nvm_ich8lan - Release NVM mutex
968 * @hw: pointer to the HW structure
969 *
970 * Releases the mutex used while performing NVM operations.
971 **/
972 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
973 {
974 mutex_unlock(&nvm_mutex);
975 }
976
977 /**
978 * e1000_acquire_swflag_ich8lan - Acquire software control flag
979 * @hw: pointer to the HW structure
980 *
981 * Acquires the software control flag for performing PHY and select
982 * MAC CSR accesses.
983 **/
984 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
985 {
986 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
987 s32 ret_val = 0;
988
989 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
990 &hw->adapter->state)) {
991 e_dbg("contention for Phy access\n");
992 return -E1000_ERR_PHY;
993 }
994
995 while (timeout) {
996 extcnf_ctrl = er32(EXTCNF_CTRL);
997 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
998 break;
999
1000 mdelay(1);
1001 timeout--;
1002 }
1003
1004 if (!timeout) {
1005 e_dbg("SW has already locked the resource.\n");
1006 ret_val = -E1000_ERR_CONFIG;
1007 goto out;
1008 }
1009
1010 timeout = SW_FLAG_TIMEOUT;
1011
1012 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1013 ew32(EXTCNF_CTRL, extcnf_ctrl);
1014
1015 while (timeout) {
1016 extcnf_ctrl = er32(EXTCNF_CTRL);
1017 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1018 break;
1019
1020 mdelay(1);
1021 timeout--;
1022 }
1023
1024 if (!timeout) {
1025 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1026 er32(FWSM), extcnf_ctrl);
1027 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1028 ew32(EXTCNF_CTRL, extcnf_ctrl);
1029 ret_val = -E1000_ERR_CONFIG;
1030 goto out;
1031 }
1032
1033 out:
1034 if (ret_val)
1035 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1036
1037 return ret_val;
1038 }
1039
1040 /**
1041 * e1000_release_swflag_ich8lan - Release software control flag
1042 * @hw: pointer to the HW structure
1043 *
1044 * Releases the software control flag for performing PHY and select
1045 * MAC CSR accesses.
1046 **/
1047 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1048 {
1049 u32 extcnf_ctrl;
1050
1051 extcnf_ctrl = er32(EXTCNF_CTRL);
1052
1053 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1054 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1055 ew32(EXTCNF_CTRL, extcnf_ctrl);
1056 } else {
1057 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1058 }
1059
1060 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1061 }
1062
1063 /**
1064 * e1000_check_mng_mode_ich8lan - Checks management mode
1065 * @hw: pointer to the HW structure
1066 *
1067 * This checks if the adapter has any manageability enabled.
1068 * This is a function pointer entry point only called by read/write
1069 * routines for the PHY and NVM parts.
1070 **/
1071 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1072 {
1073 u32 fwsm;
1074
1075 fwsm = er32(FWSM);
1076 return ((fwsm & E1000_ICH_FWSM_FW_VALID) &&
1077 ((fwsm & E1000_FWSM_MODE_MASK) ==
1078 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)));
1079 }
1080
1081 /**
1082 * e1000_check_mng_mode_pchlan - Checks management mode
1083 * @hw: pointer to the HW structure
1084 *
1085 * This checks if the adapter has iAMT enabled.
1086 * This is a function pointer entry point only called by read/write
1087 * routines for the PHY and NVM parts.
1088 **/
1089 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1090 {
1091 u32 fwsm;
1092
1093 fwsm = er32(FWSM);
1094 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1095 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1096 }
1097
1098 /**
1099 * e1000_rar_set_pch2lan - Set receive address register
1100 * @hw: pointer to the HW structure
1101 * @addr: pointer to the receive address
1102 * @index: receive address array register
1103 *
1104 * Sets the receive address array register at index to the address passed
1105 * in by addr. For 82579, RAR[0] is the base address register that is to
1106 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1107 * Use SHRA[0-3] in place of those reserved for ME.
1108 **/
1109 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1110 {
1111 u32 rar_low, rar_high;
1112
1113 /* HW expects these in little endian so we reverse the byte order
1114 * from network order (big endian) to little endian
1115 */
1116 rar_low = ((u32)addr[0] |
1117 ((u32)addr[1] << 8) |
1118 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1119
1120 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1121
1122 /* If MAC address zero, no need to set the AV bit */
1123 if (rar_low || rar_high)
1124 rar_high |= E1000_RAH_AV;
1125
1126 if (index == 0) {
1127 ew32(RAL(index), rar_low);
1128 e1e_flush();
1129 ew32(RAH(index), rar_high);
1130 e1e_flush();
1131 return;
1132 }
1133
1134 if (index < hw->mac.rar_entry_count) {
1135 s32 ret_val;
1136
1137 ret_val = e1000_acquire_swflag_ich8lan(hw);
1138 if (ret_val)
1139 goto out;
1140
1141 ew32(SHRAL(index - 1), rar_low);
1142 e1e_flush();
1143 ew32(SHRAH(index - 1), rar_high);
1144 e1e_flush();
1145
1146 e1000_release_swflag_ich8lan(hw);
1147
1148 /* verify the register updates */
1149 if ((er32(SHRAL(index - 1)) == rar_low) &&
1150 (er32(SHRAH(index - 1)) == rar_high))
1151 return;
1152
1153 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1154 (index - 1), er32(FWSM));
1155 }
1156
1157 out:
1158 e_dbg("Failed to write receive address at index %d\n", index);
1159 }
1160
1161 /**
1162 * e1000_rar_set_pch_lpt - Set receive address registers
1163 * @hw: pointer to the HW structure
1164 * @addr: pointer to the receive address
1165 * @index: receive address array register
1166 *
1167 * Sets the receive address register array at index to the address passed
1168 * in by addr. For LPT, RAR[0] is the base address register that is to
1169 * contain the MAC address. SHRA[0-10] are the shared receive address
1170 * registers that are shared between the Host and manageability engine (ME).
1171 **/
1172 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1173 {
1174 u32 rar_low, rar_high;
1175 u32 wlock_mac;
1176
1177 /* HW expects these in little endian so we reverse the byte order
1178 * from network order (big endian) to little endian
1179 */
1180 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1181 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1182
1183 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1184
1185 /* If MAC address zero, no need to set the AV bit */
1186 if (rar_low || rar_high)
1187 rar_high |= E1000_RAH_AV;
1188
1189 if (index == 0) {
1190 ew32(RAL(index), rar_low);
1191 e1e_flush();
1192 ew32(RAH(index), rar_high);
1193 e1e_flush();
1194 return;
1195 }
1196
1197 /* The manageability engine (ME) can lock certain SHRAR registers that
1198 * it is using - those registers are unavailable for use.
1199 */
1200 if (index < hw->mac.rar_entry_count) {
1201 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1202 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1203
1204 /* Check if all SHRAR registers are locked */
1205 if (wlock_mac == 1)
1206 goto out;
1207
1208 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1209 s32 ret_val;
1210
1211 ret_val = e1000_acquire_swflag_ich8lan(hw);
1212
1213 if (ret_val)
1214 goto out;
1215
1216 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1217 e1e_flush();
1218 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1219 e1e_flush();
1220
1221 e1000_release_swflag_ich8lan(hw);
1222
1223 /* verify the register updates */
1224 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1225 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1226 return;
1227 }
1228 }
1229
1230 out:
1231 e_dbg("Failed to write receive address at index %d\n", index);
1232 }
1233
1234 /**
1235 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1236 * @hw: pointer to the HW structure
1237 *
1238 * Checks if firmware is blocking the reset of the PHY.
1239 * This is a function pointer entry point only called by
1240 * reset routines.
1241 **/
1242 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1243 {
1244 u32 fwsm;
1245
1246 fwsm = er32(FWSM);
1247
1248 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1249 }
1250
1251 /**
1252 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1253 * @hw: pointer to the HW structure
1254 *
1255 * Assumes semaphore already acquired.
1256 *
1257 **/
1258 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1259 {
1260 u16 phy_data;
1261 u32 strap = er32(STRAP);
1262 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1263 E1000_STRAP_SMT_FREQ_SHIFT;
1264 s32 ret_val;
1265
1266 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1267
1268 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1269 if (ret_val)
1270 return ret_val;
1271
1272 phy_data &= ~HV_SMB_ADDR_MASK;
1273 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1274 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1275
1276 if (hw->phy.type == e1000_phy_i217) {
1277 /* Restore SMBus frequency */
1278 if (freq--) {
1279 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1280 phy_data |= (freq & (1 << 0)) <<
1281 HV_SMB_ADDR_FREQ_LOW_SHIFT;
1282 phy_data |= (freq & (1 << 1)) <<
1283 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1284 } else {
1285 e_dbg("Unsupported SMB frequency in PHY\n");
1286 }
1287 }
1288
1289 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1290 }
1291
1292 /**
1293 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1294 * @hw: pointer to the HW structure
1295 *
1296 * SW should configure the LCD from the NVM extended configuration region
1297 * as a workaround for certain parts.
1298 **/
1299 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1300 {
1301 struct e1000_phy_info *phy = &hw->phy;
1302 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1303 s32 ret_val = 0;
1304 u16 word_addr, reg_data, reg_addr, phy_page = 0;
1305
1306 /* Initialize the PHY from the NVM on ICH platforms. This
1307 * is needed due to an issue where the NVM configuration is
1308 * not properly autoloaded after power transitions.
1309 * Therefore, after each PHY reset, we will load the
1310 * configuration data out of the NVM manually.
1311 */
1312 switch (hw->mac.type) {
1313 case e1000_ich8lan:
1314 if (phy->type != e1000_phy_igp_3)
1315 return ret_val;
1316
1317 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1318 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1319 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1320 break;
1321 }
1322 /* Fall-thru */
1323 case e1000_pchlan:
1324 case e1000_pch2lan:
1325 case e1000_pch_lpt:
1326 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1327 break;
1328 default:
1329 return ret_val;
1330 }
1331
1332 ret_val = hw->phy.ops.acquire(hw);
1333 if (ret_val)
1334 return ret_val;
1335
1336 data = er32(FEXTNVM);
1337 if (!(data & sw_cfg_mask))
1338 goto release;
1339
1340 /* Make sure HW does not configure LCD from PHY
1341 * extended configuration before SW configuration
1342 */
1343 data = er32(EXTCNF_CTRL);
1344 if ((hw->mac.type < e1000_pch2lan) &&
1345 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1346 goto release;
1347
1348 cnf_size = er32(EXTCNF_SIZE);
1349 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1350 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1351 if (!cnf_size)
1352 goto release;
1353
1354 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1355 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1356
1357 if (((hw->mac.type == e1000_pchlan) &&
1358 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1359 (hw->mac.type > e1000_pchlan)) {
1360 /* HW configures the SMBus address and LEDs when the
1361 * OEM and LCD Write Enable bits are set in the NVM.
1362 * When both NVM bits are cleared, SW will configure
1363 * them instead.
1364 */
1365 ret_val = e1000_write_smbus_addr(hw);
1366 if (ret_val)
1367 goto release;
1368
1369 data = er32(LEDCTL);
1370 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1371 (u16)data);
1372 if (ret_val)
1373 goto release;
1374 }
1375
1376 /* Configure LCD from extended configuration region. */
1377
1378 /* cnf_base_addr is in DWORD */
1379 word_addr = (u16)(cnf_base_addr << 1);
1380
1381 for (i = 0; i < cnf_size; i++) {
1382 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1383 &reg_data);
1384 if (ret_val)
1385 goto release;
1386
1387 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1388 1, &reg_addr);
1389 if (ret_val)
1390 goto release;
1391
1392 /* Save off the PHY page for future writes. */
1393 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1394 phy_page = reg_data;
1395 continue;
1396 }
1397
1398 reg_addr &= PHY_REG_MASK;
1399 reg_addr |= phy_page;
1400
1401 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1402 if (ret_val)
1403 goto release;
1404 }
1405
1406 release:
1407 hw->phy.ops.release(hw);
1408 return ret_val;
1409 }
1410
1411 /**
1412 * e1000_k1_gig_workaround_hv - K1 Si workaround
1413 * @hw: pointer to the HW structure
1414 * @link: link up bool flag
1415 *
1416 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1417 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1418 * If link is down, the function will restore the default K1 setting located
1419 * in the NVM.
1420 **/
1421 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1422 {
1423 s32 ret_val = 0;
1424 u16 status_reg = 0;
1425 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1426
1427 if (hw->mac.type != e1000_pchlan)
1428 return 0;
1429
1430 /* Wrap the whole flow with the sw flag */
1431 ret_val = hw->phy.ops.acquire(hw);
1432 if (ret_val)
1433 return ret_val;
1434
1435 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1436 if (link) {
1437 if (hw->phy.type == e1000_phy_82578) {
1438 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1439 &status_reg);
1440 if (ret_val)
1441 goto release;
1442
1443 status_reg &= (BM_CS_STATUS_LINK_UP |
1444 BM_CS_STATUS_RESOLVED |
1445 BM_CS_STATUS_SPEED_MASK);
1446
1447 if (status_reg == (BM_CS_STATUS_LINK_UP |
1448 BM_CS_STATUS_RESOLVED |
1449 BM_CS_STATUS_SPEED_1000))
1450 k1_enable = false;
1451 }
1452
1453 if (hw->phy.type == e1000_phy_82577) {
1454 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1455 if (ret_val)
1456 goto release;
1457
1458 status_reg &= (HV_M_STATUS_LINK_UP |
1459 HV_M_STATUS_AUTONEG_COMPLETE |
1460 HV_M_STATUS_SPEED_MASK);
1461
1462 if (status_reg == (HV_M_STATUS_LINK_UP |
1463 HV_M_STATUS_AUTONEG_COMPLETE |
1464 HV_M_STATUS_SPEED_1000))
1465 k1_enable = false;
1466 }
1467
1468 /* Link stall fix for link up */
1469 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1470 if (ret_val)
1471 goto release;
1472
1473 } else {
1474 /* Link stall fix for link down */
1475 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1476 if (ret_val)
1477 goto release;
1478 }
1479
1480 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1481
1482 release:
1483 hw->phy.ops.release(hw);
1484
1485 return ret_val;
1486 }
1487
1488 /**
1489 * e1000_configure_k1_ich8lan - Configure K1 power state
1490 * @hw: pointer to the HW structure
1491 * @enable: K1 state to configure
1492 *
1493 * Configure the K1 power state based on the provided parameter.
1494 * Assumes semaphore already acquired.
1495 *
1496 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1497 **/
1498 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1499 {
1500 s32 ret_val;
1501 u32 ctrl_reg = 0;
1502 u32 ctrl_ext = 0;
1503 u32 reg = 0;
1504 u16 kmrn_reg = 0;
1505
1506 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1507 &kmrn_reg);
1508 if (ret_val)
1509 return ret_val;
1510
1511 if (k1_enable)
1512 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1513 else
1514 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1515
1516 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1517 kmrn_reg);
1518 if (ret_val)
1519 return ret_val;
1520
1521 udelay(20);
1522 ctrl_ext = er32(CTRL_EXT);
1523 ctrl_reg = er32(CTRL);
1524
1525 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1526 reg |= E1000_CTRL_FRCSPD;
1527 ew32(CTRL, reg);
1528
1529 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1530 e1e_flush();
1531 udelay(20);
1532 ew32(CTRL, ctrl_reg);
1533 ew32(CTRL_EXT, ctrl_ext);
1534 e1e_flush();
1535 udelay(20);
1536
1537 return 0;
1538 }
1539
1540 /**
1541 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1542 * @hw: pointer to the HW structure
1543 * @d0_state: boolean if entering d0 or d3 device state
1544 *
1545 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1546 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1547 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1548 **/
1549 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1550 {
1551 s32 ret_val = 0;
1552 u32 mac_reg;
1553 u16 oem_reg;
1554
1555 if (hw->mac.type < e1000_pchlan)
1556 return ret_val;
1557
1558 ret_val = hw->phy.ops.acquire(hw);
1559 if (ret_val)
1560 return ret_val;
1561
1562 if (hw->mac.type == e1000_pchlan) {
1563 mac_reg = er32(EXTCNF_CTRL);
1564 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1565 goto release;
1566 }
1567
1568 mac_reg = er32(FEXTNVM);
1569 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1570 goto release;
1571
1572 mac_reg = er32(PHY_CTRL);
1573
1574 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1575 if (ret_val)
1576 goto release;
1577
1578 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1579
1580 if (d0_state) {
1581 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1582 oem_reg |= HV_OEM_BITS_GBE_DIS;
1583
1584 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1585 oem_reg |= HV_OEM_BITS_LPLU;
1586 } else {
1587 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1588 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1589 oem_reg |= HV_OEM_BITS_GBE_DIS;
1590
1591 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1592 E1000_PHY_CTRL_NOND0A_LPLU))
1593 oem_reg |= HV_OEM_BITS_LPLU;
1594 }
1595
1596 /* Set Restart auto-neg to activate the bits */
1597 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1598 !hw->phy.ops.check_reset_block(hw))
1599 oem_reg |= HV_OEM_BITS_RESTART_AN;
1600
1601 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1602
1603 release:
1604 hw->phy.ops.release(hw);
1605
1606 return ret_val;
1607 }
1608
1609
1610 /**
1611 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1612 * @hw: pointer to the HW structure
1613 **/
1614 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1615 {
1616 s32 ret_val;
1617 u16 data;
1618
1619 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1620 if (ret_val)
1621 return ret_val;
1622
1623 data |= HV_KMRN_MDIO_SLOW;
1624
1625 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1626
1627 return ret_val;
1628 }
1629
1630 /**
1631 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1632 * done after every PHY reset.
1633 **/
1634 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1635 {
1636 s32 ret_val = 0;
1637 u16 phy_data;
1638
1639 if (hw->mac.type != e1000_pchlan)
1640 return 0;
1641
1642 /* Set MDIO slow mode before any other MDIO access */
1643 if (hw->phy.type == e1000_phy_82577) {
1644 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1645 if (ret_val)
1646 return ret_val;
1647 }
1648
1649 if (((hw->phy.type == e1000_phy_82577) &&
1650 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1651 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1652 /* Disable generation of early preamble */
1653 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1654 if (ret_val)
1655 return ret_val;
1656
1657 /* Preamble tuning for SSC */
1658 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1659 if (ret_val)
1660 return ret_val;
1661 }
1662
1663 if (hw->phy.type == e1000_phy_82578) {
1664 /* Return registers to default by doing a soft reset then
1665 * writing 0x3140 to the control register.
1666 */
1667 if (hw->phy.revision < 2) {
1668 e1000e_phy_sw_reset(hw);
1669 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
1670 }
1671 }
1672
1673 /* Select page 0 */
1674 ret_val = hw->phy.ops.acquire(hw);
1675 if (ret_val)
1676 return ret_val;
1677
1678 hw->phy.addr = 1;
1679 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1680 hw->phy.ops.release(hw);
1681 if (ret_val)
1682 return ret_val;
1683
1684 /* Configure the K1 Si workaround during phy reset assuming there is
1685 * link so that it disables K1 if link is in 1Gbps.
1686 */
1687 ret_val = e1000_k1_gig_workaround_hv(hw, true);
1688 if (ret_val)
1689 return ret_val;
1690
1691 /* Workaround for link disconnects on a busy hub in half duplex */
1692 ret_val = hw->phy.ops.acquire(hw);
1693 if (ret_val)
1694 return ret_val;
1695 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1696 if (ret_val)
1697 goto release;
1698 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
1699 if (ret_val)
1700 goto release;
1701
1702 /* set MSE higher to enable link to stay up when noise is high */
1703 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
1704 release:
1705 hw->phy.ops.release(hw);
1706
1707 return ret_val;
1708 }
1709
1710 /**
1711 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1712 * @hw: pointer to the HW structure
1713 **/
1714 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1715 {
1716 u32 mac_reg;
1717 u16 i, phy_reg = 0;
1718 s32 ret_val;
1719
1720 ret_val = hw->phy.ops.acquire(hw);
1721 if (ret_val)
1722 return;
1723 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1724 if (ret_val)
1725 goto release;
1726
1727 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1728 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1729 mac_reg = er32(RAL(i));
1730 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1731 (u16)(mac_reg & 0xFFFF));
1732 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1733 (u16)((mac_reg >> 16) & 0xFFFF));
1734
1735 mac_reg = er32(RAH(i));
1736 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1737 (u16)(mac_reg & 0xFFFF));
1738 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1739 (u16)((mac_reg & E1000_RAH_AV)
1740 >> 16));
1741 }
1742
1743 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1744
1745 release:
1746 hw->phy.ops.release(hw);
1747 }
1748
1749 /**
1750 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1751 * with 82579 PHY
1752 * @hw: pointer to the HW structure
1753 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1754 **/
1755 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1756 {
1757 s32 ret_val = 0;
1758 u16 phy_reg, data;
1759 u32 mac_reg;
1760 u16 i;
1761
1762 if (hw->mac.type < e1000_pch2lan)
1763 return 0;
1764
1765 /* disable Rx path while enabling/disabling workaround */
1766 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1767 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1768 if (ret_val)
1769 return ret_val;
1770
1771 if (enable) {
1772 /* Write Rx addresses (rar_entry_count for RAL/H, +4 for
1773 * SHRAL/H) and initial CRC values to the MAC
1774 */
1775 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1776 u8 mac_addr[ETH_ALEN] = { 0 };
1777 u32 addr_high, addr_low;
1778
1779 addr_high = er32(RAH(i));
1780 if (!(addr_high & E1000_RAH_AV))
1781 continue;
1782 addr_low = er32(RAL(i));
1783 mac_addr[0] = (addr_low & 0xFF);
1784 mac_addr[1] = ((addr_low >> 8) & 0xFF);
1785 mac_addr[2] = ((addr_low >> 16) & 0xFF);
1786 mac_addr[3] = ((addr_low >> 24) & 0xFF);
1787 mac_addr[4] = (addr_high & 0xFF);
1788 mac_addr[5] = ((addr_high >> 8) & 0xFF);
1789
1790 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1791 }
1792
1793 /* Write Rx addresses to the PHY */
1794 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1795
1796 /* Enable jumbo frame workaround in the MAC */
1797 mac_reg = er32(FFLT_DBG);
1798 mac_reg &= ~(1 << 14);
1799 mac_reg |= (7 << 15);
1800 ew32(FFLT_DBG, mac_reg);
1801
1802 mac_reg = er32(RCTL);
1803 mac_reg |= E1000_RCTL_SECRC;
1804 ew32(RCTL, mac_reg);
1805
1806 ret_val = e1000e_read_kmrn_reg(hw,
1807 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1808 &data);
1809 if (ret_val)
1810 return ret_val;
1811 ret_val = e1000e_write_kmrn_reg(hw,
1812 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1813 data | (1 << 0));
1814 if (ret_val)
1815 return ret_val;
1816 ret_val = e1000e_read_kmrn_reg(hw,
1817 E1000_KMRNCTRLSTA_HD_CTRL,
1818 &data);
1819 if (ret_val)
1820 return ret_val;
1821 data &= ~(0xF << 8);
1822 data |= (0xB << 8);
1823 ret_val = e1000e_write_kmrn_reg(hw,
1824 E1000_KMRNCTRLSTA_HD_CTRL,
1825 data);
1826 if (ret_val)
1827 return ret_val;
1828
1829 /* Enable jumbo frame workaround in the PHY */
1830 e1e_rphy(hw, PHY_REG(769, 23), &data);
1831 data &= ~(0x7F << 5);
1832 data |= (0x37 << 5);
1833 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1834 if (ret_val)
1835 return ret_val;
1836 e1e_rphy(hw, PHY_REG(769, 16), &data);
1837 data &= ~(1 << 13);
1838 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1839 if (ret_val)
1840 return ret_val;
1841 e1e_rphy(hw, PHY_REG(776, 20), &data);
1842 data &= ~(0x3FF << 2);
1843 data |= (0x1A << 2);
1844 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1845 if (ret_val)
1846 return ret_val;
1847 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1848 if (ret_val)
1849 return ret_val;
1850 e1e_rphy(hw, HV_PM_CTRL, &data);
1851 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1852 if (ret_val)
1853 return ret_val;
1854 } else {
1855 /* Write MAC register values back to h/w defaults */
1856 mac_reg = er32(FFLT_DBG);
1857 mac_reg &= ~(0xF << 14);
1858 ew32(FFLT_DBG, mac_reg);
1859
1860 mac_reg = er32(RCTL);
1861 mac_reg &= ~E1000_RCTL_SECRC;
1862 ew32(RCTL, mac_reg);
1863
1864 ret_val = e1000e_read_kmrn_reg(hw,
1865 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1866 &data);
1867 if (ret_val)
1868 return ret_val;
1869 ret_val = e1000e_write_kmrn_reg(hw,
1870 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1871 data & ~(1 << 0));
1872 if (ret_val)
1873 return ret_val;
1874 ret_val = e1000e_read_kmrn_reg(hw,
1875 E1000_KMRNCTRLSTA_HD_CTRL,
1876 &data);
1877 if (ret_val)
1878 return ret_val;
1879 data &= ~(0xF << 8);
1880 data |= (0xB << 8);
1881 ret_val = e1000e_write_kmrn_reg(hw,
1882 E1000_KMRNCTRLSTA_HD_CTRL,
1883 data);
1884 if (ret_val)
1885 return ret_val;
1886
1887 /* Write PHY register values back to h/w defaults */
1888 e1e_rphy(hw, PHY_REG(769, 23), &data);
1889 data &= ~(0x7F << 5);
1890 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1891 if (ret_val)
1892 return ret_val;
1893 e1e_rphy(hw, PHY_REG(769, 16), &data);
1894 data |= (1 << 13);
1895 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1896 if (ret_val)
1897 return ret_val;
1898 e1e_rphy(hw, PHY_REG(776, 20), &data);
1899 data &= ~(0x3FF << 2);
1900 data |= (0x8 << 2);
1901 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1902 if (ret_val)
1903 return ret_val;
1904 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1905 if (ret_val)
1906 return ret_val;
1907 e1e_rphy(hw, HV_PM_CTRL, &data);
1908 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1909 if (ret_val)
1910 return ret_val;
1911 }
1912
1913 /* re-enable Rx path after enabling/disabling workaround */
1914 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1915 }
1916
1917 /**
1918 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1919 * done after every PHY reset.
1920 **/
1921 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1922 {
1923 s32 ret_val = 0;
1924
1925 if (hw->mac.type != e1000_pch2lan)
1926 return 0;
1927
1928 /* Set MDIO slow mode before any other MDIO access */
1929 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1930 if (ret_val)
1931 return ret_val;
1932
1933 ret_val = hw->phy.ops.acquire(hw);
1934 if (ret_val)
1935 return ret_val;
1936 /* set MSE higher to enable link to stay up when noise is high */
1937 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
1938 if (ret_val)
1939 goto release;
1940 /* drop link after 5 times MSE threshold was reached */
1941 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
1942 release:
1943 hw->phy.ops.release(hw);
1944
1945 return ret_val;
1946 }
1947
1948 /**
1949 * e1000_k1_gig_workaround_lv - K1 Si workaround
1950 * @hw: pointer to the HW structure
1951 *
1952 * Workaround to set the K1 beacon duration for 82579 parts
1953 **/
1954 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1955 {
1956 s32 ret_val = 0;
1957 u16 status_reg = 0;
1958 u32 mac_reg;
1959 u16 phy_reg;
1960
1961 if (hw->mac.type != e1000_pch2lan)
1962 return 0;
1963
1964 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1965 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1966 if (ret_val)
1967 return ret_val;
1968
1969 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1970 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1971 mac_reg = er32(FEXTNVM4);
1972 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1973
1974 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1975 if (ret_val)
1976 return ret_val;
1977
1978 if (status_reg & HV_M_STATUS_SPEED_1000) {
1979 u16 pm_phy_reg;
1980
1981 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1982 phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1983 /* LV 1G Packet drop issue wa */
1984 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
1985 if (ret_val)
1986 return ret_val;
1987 pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
1988 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
1989 if (ret_val)
1990 return ret_val;
1991 } else {
1992 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1993 phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1994 }
1995 ew32(FEXTNVM4, mac_reg);
1996 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1997 }
1998
1999 return ret_val;
2000 }
2001
2002 /**
2003 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2004 * @hw: pointer to the HW structure
2005 * @gate: boolean set to true to gate, false to ungate
2006 *
2007 * Gate/ungate the automatic PHY configuration via hardware; perform
2008 * the configuration via software instead.
2009 **/
2010 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2011 {
2012 u32 extcnf_ctrl;
2013
2014 if (hw->mac.type < e1000_pch2lan)
2015 return;
2016
2017 extcnf_ctrl = er32(EXTCNF_CTRL);
2018
2019 if (gate)
2020 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2021 else
2022 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2023
2024 ew32(EXTCNF_CTRL, extcnf_ctrl);
2025 }
2026
2027 /**
2028 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2029 * @hw: pointer to the HW structure
2030 *
2031 * Check the appropriate indication the MAC has finished configuring the
2032 * PHY after a software reset.
2033 **/
2034 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2035 {
2036 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2037
2038 /* Wait for basic configuration completes before proceeding */
2039 do {
2040 data = er32(STATUS);
2041 data &= E1000_STATUS_LAN_INIT_DONE;
2042 udelay(100);
2043 } while ((!data) && --loop);
2044
2045 /* If basic configuration is incomplete before the above loop
2046 * count reaches 0, loading the configuration from NVM will
2047 * leave the PHY in a bad state possibly resulting in no link.
2048 */
2049 if (loop == 0)
2050 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2051
2052 /* Clear the Init Done bit for the next init event */
2053 data = er32(STATUS);
2054 data &= ~E1000_STATUS_LAN_INIT_DONE;
2055 ew32(STATUS, data);
2056 }
2057
2058 /**
2059 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2060 * @hw: pointer to the HW structure
2061 **/
2062 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2063 {
2064 s32 ret_val = 0;
2065 u16 reg;
2066
2067 if (hw->phy.ops.check_reset_block(hw))
2068 return 0;
2069
2070 /* Allow time for h/w to get to quiescent state after reset */
2071 usleep_range(10000, 20000);
2072
2073 /* Perform any necessary post-reset workarounds */
2074 switch (hw->mac.type) {
2075 case e1000_pchlan:
2076 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2077 if (ret_val)
2078 return ret_val;
2079 break;
2080 case e1000_pch2lan:
2081 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2082 if (ret_val)
2083 return ret_val;
2084 break;
2085 default:
2086 break;
2087 }
2088
2089 /* Clear the host wakeup bit after lcd reset */
2090 if (hw->mac.type >= e1000_pchlan) {
2091 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2092 reg &= ~BM_WUC_HOST_WU_BIT;
2093 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2094 }
2095
2096 /* Configure the LCD with the extended configuration region in NVM */
2097 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2098 if (ret_val)
2099 return ret_val;
2100
2101 /* Configure the LCD with the OEM bits in NVM */
2102 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2103
2104 if (hw->mac.type == e1000_pch2lan) {
2105 /* Ungate automatic PHY configuration on non-managed 82579 */
2106 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2107 usleep_range(10000, 20000);
2108 e1000_gate_hw_phy_config_ich8lan(hw, false);
2109 }
2110
2111 /* Set EEE LPI Update Timer to 200usec */
2112 ret_val = hw->phy.ops.acquire(hw);
2113 if (ret_val)
2114 return ret_val;
2115 ret_val = e1000_write_emi_reg_locked(hw,
2116 I82579_LPI_UPDATE_TIMER,
2117 0x1387);
2118 hw->phy.ops.release(hw);
2119 }
2120
2121 return ret_val;
2122 }
2123
2124 /**
2125 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2126 * @hw: pointer to the HW structure
2127 *
2128 * Resets the PHY
2129 * This is a function pointer entry point called by drivers
2130 * or other shared routines.
2131 **/
2132 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2133 {
2134 s32 ret_val = 0;
2135
2136 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2137 if ((hw->mac.type == e1000_pch2lan) &&
2138 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2139 e1000_gate_hw_phy_config_ich8lan(hw, true);
2140
2141 ret_val = e1000e_phy_hw_reset_generic(hw);
2142 if (ret_val)
2143 return ret_val;
2144
2145 return e1000_post_phy_reset_ich8lan(hw);
2146 }
2147
2148 /**
2149 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2150 * @hw: pointer to the HW structure
2151 * @active: true to enable LPLU, false to disable
2152 *
2153 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2154 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2155 * the phy speed. This function will manually set the LPLU bit and restart
2156 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2157 * since it configures the same bit.
2158 **/
2159 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2160 {
2161 s32 ret_val;
2162 u16 oem_reg;
2163
2164 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2165 if (ret_val)
2166 return ret_val;
2167
2168 if (active)
2169 oem_reg |= HV_OEM_BITS_LPLU;
2170 else
2171 oem_reg &= ~HV_OEM_BITS_LPLU;
2172
2173 if (!hw->phy.ops.check_reset_block(hw))
2174 oem_reg |= HV_OEM_BITS_RESTART_AN;
2175
2176 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2177 }
2178
2179 /**
2180 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2181 * @hw: pointer to the HW structure
2182 * @active: true to enable LPLU, false to disable
2183 *
2184 * Sets the LPLU D0 state according to the active flag. When
2185 * activating LPLU this function also disables smart speed
2186 * and vice versa. LPLU will not be activated unless the
2187 * device autonegotiation advertisement meets standards of
2188 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2189 * This is a function pointer entry point only called by
2190 * PHY setup routines.
2191 **/
2192 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2193 {
2194 struct e1000_phy_info *phy = &hw->phy;
2195 u32 phy_ctrl;
2196 s32 ret_val = 0;
2197 u16 data;
2198
2199 if (phy->type == e1000_phy_ife)
2200 return 0;
2201
2202 phy_ctrl = er32(PHY_CTRL);
2203
2204 if (active) {
2205 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2206 ew32(PHY_CTRL, phy_ctrl);
2207
2208 if (phy->type != e1000_phy_igp_3)
2209 return 0;
2210
2211 /* Call gig speed drop workaround on LPLU before accessing
2212 * any PHY registers
2213 */
2214 if (hw->mac.type == e1000_ich8lan)
2215 e1000e_gig_downshift_workaround_ich8lan(hw);
2216
2217 /* When LPLU is enabled, we should disable SmartSpeed */
2218 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2219 if (ret_val)
2220 return ret_val;
2221 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2222 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2223 if (ret_val)
2224 return ret_val;
2225 } else {
2226 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2227 ew32(PHY_CTRL, phy_ctrl);
2228
2229 if (phy->type != e1000_phy_igp_3)
2230 return 0;
2231
2232 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
2233 * during Dx states where the power conservation is most
2234 * important. During driver activity we should enable
2235 * SmartSpeed, so performance is maintained.
2236 */
2237 if (phy->smart_speed == e1000_smart_speed_on) {
2238 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2239 &data);
2240 if (ret_val)
2241 return ret_val;
2242
2243 data |= IGP01E1000_PSCFR_SMART_SPEED;
2244 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2245 data);
2246 if (ret_val)
2247 return ret_val;
2248 } else if (phy->smart_speed == e1000_smart_speed_off) {
2249 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2250 &data);
2251 if (ret_val)
2252 return ret_val;
2253
2254 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2255 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2256 data);
2257 if (ret_val)
2258 return ret_val;
2259 }
2260 }
2261
2262 return 0;
2263 }
2264
2265 /**
2266 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2267 * @hw: pointer to the HW structure
2268 * @active: true to enable LPLU, false to disable
2269 *
2270 * Sets the LPLU D3 state according to the active flag. When
2271 * activating LPLU this function also disables smart speed
2272 * and vice versa. LPLU will not be activated unless the
2273 * device autonegotiation advertisement meets standards of
2274 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2275 * This is a function pointer entry point only called by
2276 * PHY setup routines.
2277 **/
2278 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2279 {
2280 struct e1000_phy_info *phy = &hw->phy;
2281 u32 phy_ctrl;
2282 s32 ret_val = 0;
2283 u16 data;
2284
2285 phy_ctrl = er32(PHY_CTRL);
2286
2287 if (!active) {
2288 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2289 ew32(PHY_CTRL, phy_ctrl);
2290
2291 if (phy->type != e1000_phy_igp_3)
2292 return 0;
2293
2294 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
2295 * during Dx states where the power conservation is most
2296 * important. During driver activity we should enable
2297 * SmartSpeed, so performance is maintained.
2298 */
2299 if (phy->smart_speed == e1000_smart_speed_on) {
2300 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2301 &data);
2302 if (ret_val)
2303 return ret_val;
2304
2305 data |= IGP01E1000_PSCFR_SMART_SPEED;
2306 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2307 data);
2308 if (ret_val)
2309 return ret_val;
2310 } else if (phy->smart_speed == e1000_smart_speed_off) {
2311 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2312 &data);
2313 if (ret_val)
2314 return ret_val;
2315
2316 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2317 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2318 data);
2319 if (ret_val)
2320 return ret_val;
2321 }
2322 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2323 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2324 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2325 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2326 ew32(PHY_CTRL, phy_ctrl);
2327
2328 if (phy->type != e1000_phy_igp_3)
2329 return 0;
2330
2331 /* Call gig speed drop workaround on LPLU before accessing
2332 * any PHY registers
2333 */
2334 if (hw->mac.type == e1000_ich8lan)
2335 e1000e_gig_downshift_workaround_ich8lan(hw);
2336
2337 /* When LPLU is enabled, we should disable SmartSpeed */
2338 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2339 if (ret_val)
2340 return ret_val;
2341
2342 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2343 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2344 }
2345
2346 return ret_val;
2347 }
2348
2349 /**
2350 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2351 * @hw: pointer to the HW structure
2352 * @bank: pointer to the variable that returns the active bank
2353 *
2354 * Reads signature byte from the NVM using the flash access registers.
2355 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2356 **/
2357 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2358 {
2359 u32 eecd;
2360 struct e1000_nvm_info *nvm = &hw->nvm;
2361 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2362 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2363 u8 sig_byte = 0;
2364 s32 ret_val;
2365
2366 switch (hw->mac.type) {
2367 case e1000_ich8lan:
2368 case e1000_ich9lan:
2369 eecd = er32(EECD);
2370 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2371 E1000_EECD_SEC1VAL_VALID_MASK) {
2372 if (eecd & E1000_EECD_SEC1VAL)
2373 *bank = 1;
2374 else
2375 *bank = 0;
2376
2377 return 0;
2378 }
2379 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2380 /* fall-thru */
2381 default:
2382 /* set bank to 0 in case flash read fails */
2383 *bank = 0;
2384
2385 /* Check bank 0 */
2386 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2387 &sig_byte);
2388 if (ret_val)
2389 return ret_val;
2390 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2391 E1000_ICH_NVM_SIG_VALUE) {
2392 *bank = 0;
2393 return 0;
2394 }
2395
2396 /* Check bank 1 */
2397 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2398 bank1_offset,
2399 &sig_byte);
2400 if (ret_val)
2401 return ret_val;
2402 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2403 E1000_ICH_NVM_SIG_VALUE) {
2404 *bank = 1;
2405 return 0;
2406 }
2407
2408 e_dbg("ERROR: No valid NVM bank present\n");
2409 return -E1000_ERR_NVM;
2410 }
2411 }
2412
2413 /**
2414 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2415 * @hw: pointer to the HW structure
2416 * @offset: The offset (in bytes) of the word(s) to read.
2417 * @words: Size of data to read in words
2418 * @data: Pointer to the word(s) to read at offset.
2419 *
2420 * Reads a word(s) from the NVM using the flash access registers.
2421 **/
2422 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2423 u16 *data)
2424 {
2425 struct e1000_nvm_info *nvm = &hw->nvm;
2426 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2427 u32 act_offset;
2428 s32 ret_val = 0;
2429 u32 bank = 0;
2430 u16 i, word;
2431
2432 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2433 (words == 0)) {
2434 e_dbg("nvm parameter(s) out of bounds\n");
2435 ret_val = -E1000_ERR_NVM;
2436 goto out;
2437 }
2438
2439 nvm->ops.acquire(hw);
2440
2441 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2442 if (ret_val) {
2443 e_dbg("Could not detect valid bank, assuming bank 0\n");
2444 bank = 0;
2445 }
2446
2447 act_offset = (bank) ? nvm->flash_bank_size : 0;
2448 act_offset += offset;
2449
2450 ret_val = 0;
2451 for (i = 0; i < words; i++) {
2452 if (dev_spec->shadow_ram[offset + i].modified) {
2453 data[i] = dev_spec->shadow_ram[offset + i].value;
2454 } else {
2455 ret_val = e1000_read_flash_word_ich8lan(hw,
2456 act_offset + i,
2457 &word);
2458 if (ret_val)
2459 break;
2460 data[i] = word;
2461 }
2462 }
2463
2464 nvm->ops.release(hw);
2465
2466 out:
2467 if (ret_val)
2468 e_dbg("NVM read error: %d\n", ret_val);
2469
2470 return ret_val;
2471 }
2472
2473 /**
2474 * e1000_flash_cycle_init_ich8lan - Initialize flash
2475 * @hw: pointer to the HW structure
2476 *
2477 * This function does initial flash setup so that a new read/write/erase cycle
2478 * can be started.
2479 **/
2480 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2481 {
2482 union ich8_hws_flash_status hsfsts;
2483 s32 ret_val = -E1000_ERR_NVM;
2484
2485 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2486
2487 /* Check if the flash descriptor is valid */
2488 if (!hsfsts.hsf_status.fldesvalid) {
2489 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
2490 return -E1000_ERR_NVM;
2491 }
2492
2493 /* Clear FCERR and DAEL in hw status by writing 1 */
2494 hsfsts.hsf_status.flcerr = 1;
2495 hsfsts.hsf_status.dael = 1;
2496
2497 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2498
2499 /* Either we should have a hardware SPI cycle in progress
2500 * bit to check against, in order to start a new cycle or
2501 * FDONE bit should be changed in the hardware so that it
2502 * is 1 after hardware reset, which can then be used as an
2503 * indication whether a cycle is in progress or has been
2504 * completed.
2505 */
2506
2507 if (!hsfsts.hsf_status.flcinprog) {
2508 /* There is no cycle running at present,
2509 * so we can start a cycle.
2510 * Begin by setting Flash Cycle Done.
2511 */
2512 hsfsts.hsf_status.flcdone = 1;
2513 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2514 ret_val = 0;
2515 } else {
2516 s32 i;
2517
2518 /* Otherwise poll for sometime so the current
2519 * cycle has a chance to end before giving up.
2520 */
2521 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2522 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2523 if (!hsfsts.hsf_status.flcinprog) {
2524 ret_val = 0;
2525 break;
2526 }
2527 udelay(1);
2528 }
2529 if (!ret_val) {
2530 /* Successful in waiting for previous cycle to timeout,
2531 * now set the Flash Cycle Done.
2532 */
2533 hsfsts.hsf_status.flcdone = 1;
2534 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2535 } else {
2536 e_dbg("Flash controller busy, cannot get access\n");
2537 }
2538 }
2539
2540 return ret_val;
2541 }
2542
2543 /**
2544 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2545 * @hw: pointer to the HW structure
2546 * @timeout: maximum time to wait for completion
2547 *
2548 * This function starts a flash cycle and waits for its completion.
2549 **/
2550 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2551 {
2552 union ich8_hws_flash_ctrl hsflctl;
2553 union ich8_hws_flash_status hsfsts;
2554 u32 i = 0;
2555
2556 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2557 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2558 hsflctl.hsf_ctrl.flcgo = 1;
2559 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2560
2561 /* wait till FDONE bit is set to 1 */
2562 do {
2563 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2564 if (hsfsts.hsf_status.flcdone)
2565 break;
2566 udelay(1);
2567 } while (i++ < timeout);
2568
2569 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2570 return 0;
2571
2572 return -E1000_ERR_NVM;
2573 }
2574
2575 /**
2576 * e1000_read_flash_word_ich8lan - Read word from flash
2577 * @hw: pointer to the HW structure
2578 * @offset: offset to data location
2579 * @data: pointer to the location for storing the data
2580 *
2581 * Reads the flash word at offset into data. Offset is converted
2582 * to bytes before read.
2583 **/
2584 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2585 u16 *data)
2586 {
2587 /* Must convert offset into bytes. */
2588 offset <<= 1;
2589
2590 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2591 }
2592
2593 /**
2594 * e1000_read_flash_byte_ich8lan - Read byte from flash
2595 * @hw: pointer to the HW structure
2596 * @offset: The offset of the byte to read.
2597 * @data: Pointer to a byte to store the value read.
2598 *
2599 * Reads a single byte from the NVM using the flash access registers.
2600 **/
2601 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2602 u8 *data)
2603 {
2604 s32 ret_val;
2605 u16 word = 0;
2606
2607 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2608 if (ret_val)
2609 return ret_val;
2610
2611 *data = (u8)word;
2612
2613 return 0;
2614 }
2615
2616 /**
2617 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2618 * @hw: pointer to the HW structure
2619 * @offset: The offset (in bytes) of the byte or word to read.
2620 * @size: Size of data to read, 1=byte 2=word
2621 * @data: Pointer to the word to store the value read.
2622 *
2623 * Reads a byte or word from the NVM using the flash access registers.
2624 **/
2625 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2626 u8 size, u16 *data)
2627 {
2628 union ich8_hws_flash_status hsfsts;
2629 union ich8_hws_flash_ctrl hsflctl;
2630 u32 flash_linear_addr;
2631 u32 flash_data = 0;
2632 s32 ret_val = -E1000_ERR_NVM;
2633 u8 count = 0;
2634
2635 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2636 return -E1000_ERR_NVM;
2637
2638 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2639 hw->nvm.flash_base_addr);
2640
2641 do {
2642 udelay(1);
2643 /* Steps */
2644 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2645 if (ret_val)
2646 break;
2647
2648 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2649 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2650 hsflctl.hsf_ctrl.fldbcount = size - 1;
2651 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2652 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2653
2654 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2655
2656 ret_val =
2657 e1000_flash_cycle_ich8lan(hw,
2658 ICH_FLASH_READ_COMMAND_TIMEOUT);
2659
2660 /* Check if FCERR is set to 1, if set to 1, clear it
2661 * and try the whole sequence a few more times, else
2662 * read in (shift in) the Flash Data0, the order is
2663 * least significant byte first msb to lsb
2664 */
2665 if (!ret_val) {
2666 flash_data = er32flash(ICH_FLASH_FDATA0);
2667 if (size == 1)
2668 *data = (u8)(flash_data & 0x000000FF);
2669 else if (size == 2)
2670 *data = (u16)(flash_data & 0x0000FFFF);
2671 break;
2672 } else {
2673 /* If we've gotten here, then things are probably
2674 * completely hosed, but if the error condition is
2675 * detected, it won't hurt to give it another try...
2676 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2677 */
2678 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2679 if (hsfsts.hsf_status.flcerr) {
2680 /* Repeat for some time before giving up. */
2681 continue;
2682 } else if (!hsfsts.hsf_status.flcdone) {
2683 e_dbg("Timeout error - flash cycle did not complete.\n");
2684 break;
2685 }
2686 }
2687 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2688
2689 return ret_val;
2690 }
2691
2692 /**
2693 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2694 * @hw: pointer to the HW structure
2695 * @offset: The offset (in bytes) of the word(s) to write.
2696 * @words: Size of data to write in words
2697 * @data: Pointer to the word(s) to write at offset.
2698 *
2699 * Writes a byte or word to the NVM using the flash access registers.
2700 **/
2701 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2702 u16 *data)
2703 {
2704 struct e1000_nvm_info *nvm = &hw->nvm;
2705 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2706 u16 i;
2707
2708 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2709 (words == 0)) {
2710 e_dbg("nvm parameter(s) out of bounds\n");
2711 return -E1000_ERR_NVM;
2712 }
2713
2714 nvm->ops.acquire(hw);
2715
2716 for (i = 0; i < words; i++) {
2717 dev_spec->shadow_ram[offset + i].modified = true;
2718 dev_spec->shadow_ram[offset + i].value = data[i];
2719 }
2720
2721 nvm->ops.release(hw);
2722
2723 return 0;
2724 }
2725
2726 /**
2727 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2728 * @hw: pointer to the HW structure
2729 *
2730 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2731 * which writes the checksum to the shadow ram. The changes in the shadow
2732 * ram are then committed to the EEPROM by processing each bank at a time
2733 * checking for the modified bit and writing only the pending changes.
2734 * After a successful commit, the shadow ram is cleared and is ready for
2735 * future writes.
2736 **/
2737 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2738 {
2739 struct e1000_nvm_info *nvm = &hw->nvm;
2740 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2741 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2742 s32 ret_val;
2743 u16 data;
2744
2745 ret_val = e1000e_update_nvm_checksum_generic(hw);
2746 if (ret_val)
2747 goto out;
2748
2749 if (nvm->type != e1000_nvm_flash_sw)
2750 goto out;
2751
2752 nvm->ops.acquire(hw);
2753
2754 /* We're writing to the opposite bank so if we're on bank 1,
2755 * write to bank 0 etc. We also need to erase the segment that
2756 * is going to be written
2757 */
2758 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2759 if (ret_val) {
2760 e_dbg("Could not detect valid bank, assuming bank 0\n");
2761 bank = 0;
2762 }
2763
2764 if (bank == 0) {
2765 new_bank_offset = nvm->flash_bank_size;
2766 old_bank_offset = 0;
2767 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2768 if (ret_val)
2769 goto release;
2770 } else {
2771 old_bank_offset = nvm->flash_bank_size;
2772 new_bank_offset = 0;
2773 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2774 if (ret_val)
2775 goto release;
2776 }
2777
2778 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2779 /* Determine whether to write the value stored
2780 * in the other NVM bank or a modified value stored
2781 * in the shadow RAM
2782 */
2783 if (dev_spec->shadow_ram[i].modified) {
2784 data = dev_spec->shadow_ram[i].value;
2785 } else {
2786 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2787 old_bank_offset,
2788 &data);
2789 if (ret_val)
2790 break;
2791 }
2792
2793 /* If the word is 0x13, then make sure the signature bits
2794 * (15:14) are 11b until the commit has completed.
2795 * This will allow us to write 10b which indicates the
2796 * signature is valid. We want to do this after the write
2797 * has completed so that we don't mark the segment valid
2798 * while the write is still in progress
2799 */
2800 if (i == E1000_ICH_NVM_SIG_WORD)
2801 data |= E1000_ICH_NVM_SIG_MASK;
2802
2803 /* Convert offset to bytes. */
2804 act_offset = (i + new_bank_offset) << 1;
2805
2806 udelay(100);
2807 /* Write the bytes to the new bank. */
2808 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2809 act_offset,
2810 (u8)data);
2811 if (ret_val)
2812 break;
2813
2814 udelay(100);
2815 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2816 act_offset + 1,
2817 (u8)(data >> 8));
2818 if (ret_val)
2819 break;
2820 }
2821
2822 /* Don't bother writing the segment valid bits if sector
2823 * programming failed.
2824 */
2825 if (ret_val) {
2826 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2827 e_dbg("Flash commit failed.\n");
2828 goto release;
2829 }
2830
2831 /* Finally validate the new segment by setting bit 15:14
2832 * to 10b in word 0x13 , this can be done without an
2833 * erase as well since these bits are 11 to start with
2834 * and we need to change bit 14 to 0b
2835 */
2836 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2837 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2838 if (ret_val)
2839 goto release;
2840
2841 data &= 0xBFFF;
2842 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2843 act_offset * 2 + 1,
2844 (u8)(data >> 8));
2845 if (ret_val)
2846 goto release;
2847
2848 /* And invalidate the previously valid segment by setting
2849 * its signature word (0x13) high_byte to 0b. This can be
2850 * done without an erase because flash erase sets all bits
2851 * to 1's. We can write 1's to 0's without an erase
2852 */
2853 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2854 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2855 if (ret_val)
2856 goto release;
2857
2858 /* Great! Everything worked, we can now clear the cached entries. */
2859 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2860 dev_spec->shadow_ram[i].modified = false;
2861 dev_spec->shadow_ram[i].value = 0xFFFF;
2862 }
2863
2864 release:
2865 nvm->ops.release(hw);
2866
2867 /* Reload the EEPROM, or else modifications will not appear
2868 * until after the next adapter reset.
2869 */
2870 if (!ret_val) {
2871 nvm->ops.reload(hw);
2872 usleep_range(10000, 20000);
2873 }
2874
2875 out:
2876 if (ret_val)
2877 e_dbg("NVM update error: %d\n", ret_val);
2878
2879 return ret_val;
2880 }
2881
2882 /**
2883 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2884 * @hw: pointer to the HW structure
2885 *
2886 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2887 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2888 * calculated, in which case we need to calculate the checksum and set bit 6.
2889 **/
2890 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2891 {
2892 s32 ret_val;
2893 u16 data;
2894 u16 word;
2895 u16 valid_csum_mask;
2896
2897 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
2898 * the checksum needs to be fixed. This bit is an indication that
2899 * the NVM was prepared by OEM software and did not calculate
2900 * the checksum...a likely scenario.
2901 */
2902 switch (hw->mac.type) {
2903 case e1000_pch_lpt:
2904 word = NVM_COMPAT;
2905 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
2906 break;
2907 default:
2908 word = NVM_FUTURE_INIT_WORD1;
2909 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
2910 break;
2911 }
2912
2913 ret_val = e1000_read_nvm(hw, word, 1, &data);
2914 if (ret_val)
2915 return ret_val;
2916
2917 if (!(data & valid_csum_mask)) {
2918 data |= valid_csum_mask;
2919 ret_val = e1000_write_nvm(hw, word, 1, &data);
2920 if (ret_val)
2921 return ret_val;
2922 ret_val = e1000e_update_nvm_checksum(hw);
2923 if (ret_val)
2924 return ret_val;
2925 }
2926
2927 return e1000e_validate_nvm_checksum_generic(hw);
2928 }
2929
2930 /**
2931 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2932 * @hw: pointer to the HW structure
2933 *
2934 * To prevent malicious write/erase of the NVM, set it to be read-only
2935 * so that the hardware ignores all write/erase cycles of the NVM via
2936 * the flash control registers. The shadow-ram copy of the NVM will
2937 * still be updated, however any updates to this copy will not stick
2938 * across driver reloads.
2939 **/
2940 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2941 {
2942 struct e1000_nvm_info *nvm = &hw->nvm;
2943 union ich8_flash_protected_range pr0;
2944 union ich8_hws_flash_status hsfsts;
2945 u32 gfpreg;
2946
2947 nvm->ops.acquire(hw);
2948
2949 gfpreg = er32flash(ICH_FLASH_GFPREG);
2950
2951 /* Write-protect GbE Sector of NVM */
2952 pr0.regval = er32flash(ICH_FLASH_PR0);
2953 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2954 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2955 pr0.range.wpe = true;
2956 ew32flash(ICH_FLASH_PR0, pr0.regval);
2957
2958 /* Lock down a subset of GbE Flash Control Registers, e.g.
2959 * PR0 to prevent the write-protection from being lifted.
2960 * Once FLOCKDN is set, the registers protected by it cannot
2961 * be written until FLOCKDN is cleared by a hardware reset.
2962 */
2963 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2964 hsfsts.hsf_status.flockdn = true;
2965 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2966
2967 nvm->ops.release(hw);
2968 }
2969
2970 /**
2971 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2972 * @hw: pointer to the HW structure
2973 * @offset: The offset (in bytes) of the byte/word to read.
2974 * @size: Size of data to read, 1=byte 2=word
2975 * @data: The byte(s) to write to the NVM.
2976 *
2977 * Writes one/two bytes to the NVM using the flash access registers.
2978 **/
2979 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2980 u8 size, u16 data)
2981 {
2982 union ich8_hws_flash_status hsfsts;
2983 union ich8_hws_flash_ctrl hsflctl;
2984 u32 flash_linear_addr;
2985 u32 flash_data = 0;
2986 s32 ret_val;
2987 u8 count = 0;
2988
2989 if (size < 1 || size > 2 || data > size * 0xff ||
2990 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2991 return -E1000_ERR_NVM;
2992
2993 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2994 hw->nvm.flash_base_addr);
2995
2996 do {
2997 udelay(1);
2998 /* Steps */
2999 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3000 if (ret_val)
3001 break;
3002
3003 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3004 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3005 hsflctl.hsf_ctrl.fldbcount = size - 1;
3006 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3007 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3008
3009 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3010
3011 if (size == 1)
3012 flash_data = (u32)data & 0x00FF;
3013 else
3014 flash_data = (u32)data;
3015
3016 ew32flash(ICH_FLASH_FDATA0, flash_data);
3017
3018 /* check if FCERR is set to 1 , if set to 1, clear it
3019 * and try the whole sequence a few more times else done
3020 */
3021 ret_val =
3022 e1000_flash_cycle_ich8lan(hw,
3023 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3024 if (!ret_val)
3025 break;
3026
3027 /* If we're here, then things are most likely
3028 * completely hosed, but if the error condition
3029 * is detected, it won't hurt to give it another
3030 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3031 */
3032 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3033 if (hsfsts.hsf_status.flcerr)
3034 /* Repeat for some time before giving up. */
3035 continue;
3036 if (!hsfsts.hsf_status.flcdone) {
3037 e_dbg("Timeout error - flash cycle did not complete.\n");
3038 break;
3039 }
3040 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3041
3042 return ret_val;
3043 }
3044
3045 /**
3046 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3047 * @hw: pointer to the HW structure
3048 * @offset: The index of the byte to read.
3049 * @data: The byte to write to the NVM.
3050 *
3051 * Writes a single byte to the NVM using the flash access registers.
3052 **/
3053 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3054 u8 data)
3055 {
3056 u16 word = (u16)data;
3057
3058 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3059 }
3060
3061 /**
3062 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3063 * @hw: pointer to the HW structure
3064 * @offset: The offset of the byte to write.
3065 * @byte: The byte to write to the NVM.
3066 *
3067 * Writes a single byte to the NVM using the flash access registers.
3068 * Goes through a retry algorithm before giving up.
3069 **/
3070 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3071 u32 offset, u8 byte)
3072 {
3073 s32 ret_val;
3074 u16 program_retries;
3075
3076 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3077 if (!ret_val)
3078 return ret_val;
3079
3080 for (program_retries = 0; program_retries < 100; program_retries++) {
3081 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3082 udelay(100);
3083 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3084 if (!ret_val)
3085 break;
3086 }
3087 if (program_retries == 100)
3088 return -E1000_ERR_NVM;
3089
3090 return 0;
3091 }
3092
3093 /**
3094 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3095 * @hw: pointer to the HW structure
3096 * @bank: 0 for first bank, 1 for second bank, etc.
3097 *
3098 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3099 * bank N is 4096 * N + flash_reg_addr.
3100 **/
3101 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3102 {
3103 struct e1000_nvm_info *nvm = &hw->nvm;
3104 union ich8_hws_flash_status hsfsts;
3105 union ich8_hws_flash_ctrl hsflctl;
3106 u32 flash_linear_addr;
3107 /* bank size is in 16bit words - adjust to bytes */
3108 u32 flash_bank_size = nvm->flash_bank_size * 2;
3109 s32 ret_val;
3110 s32 count = 0;
3111 s32 j, iteration, sector_size;
3112
3113 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3114
3115 /* Determine HW Sector size: Read BERASE bits of hw flash status
3116 * register
3117 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3118 * consecutive sectors. The start index for the nth Hw sector
3119 * can be calculated as = bank * 4096 + n * 256
3120 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3121 * The start index for the nth Hw sector can be calculated
3122 * as = bank * 4096
3123 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3124 * (ich9 only, otherwise error condition)
3125 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3126 */
3127 switch (hsfsts.hsf_status.berasesz) {
3128 case 0:
3129 /* Hw sector size 256 */
3130 sector_size = ICH_FLASH_SEG_SIZE_256;
3131 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3132 break;
3133 case 1:
3134 sector_size = ICH_FLASH_SEG_SIZE_4K;
3135 iteration = 1;
3136 break;
3137 case 2:
3138 sector_size = ICH_FLASH_SEG_SIZE_8K;
3139 iteration = 1;
3140 break;
3141 case 3:
3142 sector_size = ICH_FLASH_SEG_SIZE_64K;
3143 iteration = 1;
3144 break;
3145 default:
3146 return -E1000_ERR_NVM;
3147 }
3148
3149 /* Start with the base address, then add the sector offset. */
3150 flash_linear_addr = hw->nvm.flash_base_addr;
3151 flash_linear_addr += (bank) ? flash_bank_size : 0;
3152
3153 for (j = 0; j < iteration ; j++) {
3154 do {
3155 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
3156
3157 /* Steps */
3158 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3159 if (ret_val)
3160 return ret_val;
3161
3162 /* Write a value 11 (block Erase) in Flash
3163 * Cycle field in hw flash control
3164 */
3165 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3166 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3167 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3168
3169 /* Write the last 24 bits of an index within the
3170 * block into Flash Linear address field in Flash
3171 * Address.
3172 */
3173 flash_linear_addr += (j * sector_size);
3174 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3175
3176 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
3177 if (!ret_val)
3178 break;
3179
3180 /* Check if FCERR is set to 1. If 1,
3181 * clear it and try the whole sequence
3182 * a few more times else Done
3183 */
3184 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3185 if (hsfsts.hsf_status.flcerr)
3186 /* repeat for some time before giving up */
3187 continue;
3188 else if (!hsfsts.hsf_status.flcdone)
3189 return ret_val;
3190 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3191 }
3192
3193 return 0;
3194 }
3195
3196 /**
3197 * e1000_valid_led_default_ich8lan - Set the default LED settings
3198 * @hw: pointer to the HW structure
3199 * @data: Pointer to the LED settings
3200 *
3201 * Reads the LED default settings from the NVM to data. If the NVM LED
3202 * settings is all 0's or F's, set the LED default to a valid LED default
3203 * setting.
3204 **/
3205 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3206 {
3207 s32 ret_val;
3208
3209 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3210 if (ret_val) {
3211 e_dbg("NVM Read Error\n");
3212 return ret_val;
3213 }
3214
3215 if (*data == ID_LED_RESERVED_0000 ||
3216 *data == ID_LED_RESERVED_FFFF)
3217 *data = ID_LED_DEFAULT_ICH8LAN;
3218
3219 return 0;
3220 }
3221
3222 /**
3223 * e1000_id_led_init_pchlan - store LED configurations
3224 * @hw: pointer to the HW structure
3225 *
3226 * PCH does not control LEDs via the LEDCTL register, rather it uses
3227 * the PHY LED configuration register.
3228 *
3229 * PCH also does not have an "always on" or "always off" mode which
3230 * complicates the ID feature. Instead of using the "on" mode to indicate
3231 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3232 * use "link_up" mode. The LEDs will still ID on request if there is no
3233 * link based on logic in e1000_led_[on|off]_pchlan().
3234 **/
3235 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3236 {
3237 struct e1000_mac_info *mac = &hw->mac;
3238 s32 ret_val;
3239 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3240 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3241 u16 data, i, temp, shift;
3242
3243 /* Get default ID LED modes */
3244 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3245 if (ret_val)
3246 return ret_val;
3247
3248 mac->ledctl_default = er32(LEDCTL);
3249 mac->ledctl_mode1 = mac->ledctl_default;
3250 mac->ledctl_mode2 = mac->ledctl_default;
3251
3252 for (i = 0; i < 4; i++) {
3253 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3254 shift = (i * 5);
3255 switch (temp) {
3256 case ID_LED_ON1_DEF2:
3257 case ID_LED_ON1_ON2:
3258 case ID_LED_ON1_OFF2:
3259 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3260 mac->ledctl_mode1 |= (ledctl_on << shift);
3261 break;
3262 case ID_LED_OFF1_DEF2:
3263 case ID_LED_OFF1_ON2:
3264 case ID_LED_OFF1_OFF2:
3265 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3266 mac->ledctl_mode1 |= (ledctl_off << shift);
3267 break;
3268 default:
3269 /* Do nothing */
3270 break;
3271 }
3272 switch (temp) {
3273 case ID_LED_DEF1_ON2:
3274 case ID_LED_ON1_ON2:
3275 case ID_LED_OFF1_ON2:
3276 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3277 mac->ledctl_mode2 |= (ledctl_on << shift);
3278 break;
3279 case ID_LED_DEF1_OFF2:
3280 case ID_LED_ON1_OFF2:
3281 case ID_LED_OFF1_OFF2:
3282 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3283 mac->ledctl_mode2 |= (ledctl_off << shift);
3284 break;
3285 default:
3286 /* Do nothing */
3287 break;
3288 }
3289 }
3290
3291 return 0;
3292 }
3293
3294 /**
3295 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3296 * @hw: pointer to the HW structure
3297 *
3298 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3299 * register, so the the bus width is hard coded.
3300 **/
3301 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3302 {
3303 struct e1000_bus_info *bus = &hw->bus;
3304 s32 ret_val;
3305
3306 ret_val = e1000e_get_bus_info_pcie(hw);
3307
3308 /* ICH devices are "PCI Express"-ish. They have
3309 * a configuration space, but do not contain
3310 * PCI Express Capability registers, so bus width
3311 * must be hardcoded.
3312 */
3313 if (bus->width == e1000_bus_width_unknown)
3314 bus->width = e1000_bus_width_pcie_x1;
3315
3316 return ret_val;
3317 }
3318
3319 /**
3320 * e1000_reset_hw_ich8lan - Reset the hardware
3321 * @hw: pointer to the HW structure
3322 *
3323 * Does a full reset of the hardware which includes a reset of the PHY and
3324 * MAC.
3325 **/
3326 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3327 {
3328 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3329 u16 kum_cfg;
3330 u32 ctrl, reg;
3331 s32 ret_val;
3332
3333 /* Prevent the PCI-E bus from sticking if there is no TLP connection
3334 * on the last TLP read/write transaction when MAC is reset.
3335 */
3336 ret_val = e1000e_disable_pcie_master(hw);
3337 if (ret_val)
3338 e_dbg("PCI-E Master disable polling has failed.\n");
3339
3340 e_dbg("Masking off all interrupts\n");
3341 ew32(IMC, 0xffffffff);
3342
3343 /* Disable the Transmit and Receive units. Then delay to allow
3344 * any pending transactions to complete before we hit the MAC
3345 * with the global reset.
3346 */
3347 ew32(RCTL, 0);
3348 ew32(TCTL, E1000_TCTL_PSP);
3349 e1e_flush();
3350
3351 usleep_range(10000, 20000);
3352
3353 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3354 if (hw->mac.type == e1000_ich8lan) {
3355 /* Set Tx and Rx buffer allocation to 8k apiece. */
3356 ew32(PBA, E1000_PBA_8K);
3357 /* Set Packet Buffer Size to 16k. */
3358 ew32(PBS, E1000_PBS_16K);
3359 }
3360
3361 if (hw->mac.type == e1000_pchlan) {
3362 /* Save the NVM K1 bit setting */
3363 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3364 if (ret_val)
3365 return ret_val;
3366
3367 if (kum_cfg & E1000_NVM_K1_ENABLE)
3368 dev_spec->nvm_k1_enabled = true;
3369 else
3370 dev_spec->nvm_k1_enabled = false;
3371 }
3372
3373 ctrl = er32(CTRL);
3374
3375 if (!hw->phy.ops.check_reset_block(hw)) {
3376 /* Full-chip reset requires MAC and PHY reset at the same
3377 * time to make sure the interface between MAC and the
3378 * external PHY is reset.
3379 */
3380 ctrl |= E1000_CTRL_PHY_RST;
3381
3382 /* Gate automatic PHY configuration by hardware on
3383 * non-managed 82579
3384 */
3385 if ((hw->mac.type == e1000_pch2lan) &&
3386 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3387 e1000_gate_hw_phy_config_ich8lan(hw, true);
3388 }
3389 ret_val = e1000_acquire_swflag_ich8lan(hw);
3390 e_dbg("Issuing a global reset to ich8lan\n");
3391 ew32(CTRL, (ctrl | E1000_CTRL_RST));
3392 /* cannot issue a flush here because it hangs the hardware */
3393 msleep(20);
3394
3395 /* Set Phy Config Counter to 50msec */
3396 if (hw->mac.type == e1000_pch2lan) {
3397 reg = er32(FEXTNVM3);
3398 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3399 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3400 ew32(FEXTNVM3, reg);
3401 }
3402
3403 if (!ret_val)
3404 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3405
3406 if (ctrl & E1000_CTRL_PHY_RST) {
3407 ret_val = hw->phy.ops.get_cfg_done(hw);
3408 if (ret_val)
3409 return ret_val;
3410
3411 ret_val = e1000_post_phy_reset_ich8lan(hw);
3412 if (ret_val)
3413 return ret_val;
3414 }
3415
3416 /* For PCH, this write will make sure that any noise
3417 * will be detected as a CRC error and be dropped rather than show up
3418 * as a bad packet to the DMA engine.
3419 */
3420 if (hw->mac.type == e1000_pchlan)
3421 ew32(CRC_OFFSET, 0x65656565);
3422
3423 ew32(IMC, 0xffffffff);
3424 er32(ICR);
3425
3426 reg = er32(KABGTXD);
3427 reg |= E1000_KABGTXD_BGSQLBIAS;
3428 ew32(KABGTXD, reg);
3429
3430 return 0;
3431 }
3432
3433 /**
3434 * e1000_init_hw_ich8lan - Initialize the hardware
3435 * @hw: pointer to the HW structure
3436 *
3437 * Prepares the hardware for transmit and receive by doing the following:
3438 * - initialize hardware bits
3439 * - initialize LED identification
3440 * - setup receive address registers
3441 * - setup flow control
3442 * - setup transmit descriptors
3443 * - clear statistics
3444 **/
3445 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3446 {
3447 struct e1000_mac_info *mac = &hw->mac;
3448 u32 ctrl_ext, txdctl, snoop;
3449 s32 ret_val;
3450 u16 i;
3451
3452 e1000_initialize_hw_bits_ich8lan(hw);
3453
3454 /* Initialize identification LED */
3455 ret_val = mac->ops.id_led_init(hw);
3456 if (ret_val)
3457 e_dbg("Error initializing identification LED\n");
3458 /* This is not fatal and we should not stop init due to this */
3459
3460 /* Setup the receive address. */
3461 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3462
3463 /* Zero out the Multicast HASH table */
3464 e_dbg("Zeroing the MTA\n");
3465 for (i = 0; i < mac->mta_reg_count; i++)
3466 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3467
3468 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
3469 * the ME. Disable wakeup by clearing the host wakeup bit.
3470 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3471 */
3472 if (hw->phy.type == e1000_phy_82578) {
3473 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3474 i &= ~BM_WUC_HOST_WU_BIT;
3475 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3476 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3477 if (ret_val)
3478 return ret_val;
3479 }
3480
3481 /* Setup link and flow control */
3482 ret_val = mac->ops.setup_link(hw);
3483
3484 /* Set the transmit descriptor write-back policy for both queues */
3485 txdctl = er32(TXDCTL(0));
3486 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
3487 E1000_TXDCTL_FULL_TX_DESC_WB);
3488 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
3489 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
3490 ew32(TXDCTL(0), txdctl);
3491 txdctl = er32(TXDCTL(1));
3492 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
3493 E1000_TXDCTL_FULL_TX_DESC_WB);
3494 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
3495 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
3496 ew32(TXDCTL(1), txdctl);
3497
3498 /* ICH8 has opposite polarity of no_snoop bits.
3499 * By default, we should use snoop behavior.
3500 */
3501 if (mac->type == e1000_ich8lan)
3502 snoop = PCIE_ICH8_SNOOP_ALL;
3503 else
3504 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3505 e1000e_set_pcie_no_snoop(hw, snoop);
3506
3507 ctrl_ext = er32(CTRL_EXT);
3508 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3509 ew32(CTRL_EXT, ctrl_ext);
3510
3511 /* Clear all of the statistics registers (clear on read). It is
3512 * important that we do this after we have tried to establish link
3513 * because the symbol error count will increment wildly if there
3514 * is no link.
3515 */
3516 e1000_clear_hw_cntrs_ich8lan(hw);
3517
3518 return ret_val;
3519 }
3520 /**
3521 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3522 * @hw: pointer to the HW structure
3523 *
3524 * Sets/Clears required hardware bits necessary for correctly setting up the
3525 * hardware for transmit and receive.
3526 **/
3527 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3528 {
3529 u32 reg;
3530
3531 /* Extended Device Control */
3532 reg = er32(CTRL_EXT);
3533 reg |= (1 << 22);
3534 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3535 if (hw->mac.type >= e1000_pchlan)
3536 reg |= E1000_CTRL_EXT_PHYPDEN;
3537 ew32(CTRL_EXT, reg);
3538
3539 /* Transmit Descriptor Control 0 */
3540 reg = er32(TXDCTL(0));
3541 reg |= (1 << 22);
3542 ew32(TXDCTL(0), reg);
3543
3544 /* Transmit Descriptor Control 1 */
3545 reg = er32(TXDCTL(1));
3546 reg |= (1 << 22);
3547 ew32(TXDCTL(1), reg);
3548
3549 /* Transmit Arbitration Control 0 */
3550 reg = er32(TARC(0));
3551 if (hw->mac.type == e1000_ich8lan)
3552 reg |= (1 << 28) | (1 << 29);
3553 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3554 ew32(TARC(0), reg);
3555
3556 /* Transmit Arbitration Control 1 */
3557 reg = er32(TARC(1));
3558 if (er32(TCTL) & E1000_TCTL_MULR)
3559 reg &= ~(1 << 28);
3560 else
3561 reg |= (1 << 28);
3562 reg |= (1 << 24) | (1 << 26) | (1 << 30);
3563 ew32(TARC(1), reg);
3564
3565 /* Device Status */
3566 if (hw->mac.type == e1000_ich8lan) {
3567 reg = er32(STATUS);
3568 reg &= ~(1 << 31);
3569 ew32(STATUS, reg);
3570 }
3571
3572 /* work-around descriptor data corruption issue during nfs v2 udp
3573 * traffic, just disable the nfs filtering capability
3574 */
3575 reg = er32(RFCTL);
3576 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3577
3578 /* Disable IPv6 extension header parsing because some malformed
3579 * IPv6 headers can hang the Rx.
3580 */
3581 if (hw->mac.type == e1000_ich8lan)
3582 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3583 ew32(RFCTL, reg);
3584
3585 /* Enable ECC on Lynxpoint */
3586 if (hw->mac.type == e1000_pch_lpt) {
3587 reg = er32(PBECCSTS);
3588 reg |= E1000_PBECCSTS_ECC_ENABLE;
3589 ew32(PBECCSTS, reg);
3590
3591 reg = er32(CTRL);
3592 reg |= E1000_CTRL_MEHE;
3593 ew32(CTRL, reg);
3594 }
3595 }
3596
3597 /**
3598 * e1000_setup_link_ich8lan - Setup flow control and link settings
3599 * @hw: pointer to the HW structure
3600 *
3601 * Determines which flow control settings to use, then configures flow
3602 * control. Calls the appropriate media-specific link configuration
3603 * function. Assuming the adapter has a valid link partner, a valid link
3604 * should be established. Assumes the hardware has previously been reset
3605 * and the transmitter and receiver are not enabled.
3606 **/
3607 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3608 {
3609 s32 ret_val;
3610
3611 if (hw->phy.ops.check_reset_block(hw))
3612 return 0;
3613
3614 /* ICH parts do not have a word in the NVM to determine
3615 * the default flow control setting, so we explicitly
3616 * set it to full.
3617 */
3618 if (hw->fc.requested_mode == e1000_fc_default) {
3619 /* Workaround h/w hang when Tx flow control enabled */
3620 if (hw->mac.type == e1000_pchlan)
3621 hw->fc.requested_mode = e1000_fc_rx_pause;
3622 else
3623 hw->fc.requested_mode = e1000_fc_full;
3624 }
3625
3626 /* Save off the requested flow control mode for use later. Depending
3627 * on the link partner's capabilities, we may or may not use this mode.
3628 */
3629 hw->fc.current_mode = hw->fc.requested_mode;
3630
3631 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
3632
3633 /* Continue to configure the copper link. */
3634 ret_val = hw->mac.ops.setup_physical_interface(hw);
3635 if (ret_val)
3636 return ret_val;
3637
3638 ew32(FCTTV, hw->fc.pause_time);
3639 if ((hw->phy.type == e1000_phy_82578) ||
3640 (hw->phy.type == e1000_phy_82579) ||
3641 (hw->phy.type == e1000_phy_i217) ||
3642 (hw->phy.type == e1000_phy_82577)) {
3643 ew32(FCRTV_PCH, hw->fc.refresh_time);
3644
3645 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3646 hw->fc.pause_time);
3647 if (ret_val)
3648 return ret_val;
3649 }
3650
3651 return e1000e_set_fc_watermarks(hw);
3652 }
3653
3654 /**
3655 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3656 * @hw: pointer to the HW structure
3657 *
3658 * Configures the kumeran interface to the PHY to wait the appropriate time
3659 * when polling the PHY, then call the generic setup_copper_link to finish
3660 * configuring the copper link.
3661 **/
3662 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3663 {
3664 u32 ctrl;
3665 s32 ret_val;
3666 u16 reg_data;
3667
3668 ctrl = er32(CTRL);
3669 ctrl |= E1000_CTRL_SLU;
3670 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3671 ew32(CTRL, ctrl);
3672
3673 /* Set the mac to wait the maximum time between each iteration
3674 * and increase the max iterations when polling the phy;
3675 * this fixes erroneous timeouts at 10Mbps.
3676 */
3677 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3678 if (ret_val)
3679 return ret_val;
3680 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3681 &reg_data);
3682 if (ret_val)
3683 return ret_val;
3684 reg_data |= 0x3F;
3685 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3686 reg_data);
3687 if (ret_val)
3688 return ret_val;
3689
3690 switch (hw->phy.type) {
3691 case e1000_phy_igp_3:
3692 ret_val = e1000e_copper_link_setup_igp(hw);
3693 if (ret_val)
3694 return ret_val;
3695 break;
3696 case e1000_phy_bm:
3697 case e1000_phy_82578:
3698 ret_val = e1000e_copper_link_setup_m88(hw);
3699 if (ret_val)
3700 return ret_val;
3701 break;
3702 case e1000_phy_82577:
3703 case e1000_phy_82579:
3704 case e1000_phy_i217:
3705 ret_val = e1000_copper_link_setup_82577(hw);
3706 if (ret_val)
3707 return ret_val;
3708 break;
3709 case e1000_phy_ife:
3710 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3711 if (ret_val)
3712 return ret_val;
3713
3714 reg_data &= ~IFE_PMC_AUTO_MDIX;
3715
3716 switch (hw->phy.mdix) {
3717 case 1:
3718 reg_data &= ~IFE_PMC_FORCE_MDIX;
3719 break;
3720 case 2:
3721 reg_data |= IFE_PMC_FORCE_MDIX;
3722 break;
3723 case 0:
3724 default:
3725 reg_data |= IFE_PMC_AUTO_MDIX;
3726 break;
3727 }
3728 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3729 if (ret_val)
3730 return ret_val;
3731 break;
3732 default:
3733 break;
3734 }
3735
3736 return e1000e_setup_copper_link(hw);
3737 }
3738
3739 /**
3740 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3741 * @hw: pointer to the HW structure
3742 * @speed: pointer to store current link speed
3743 * @duplex: pointer to store the current link duplex
3744 *
3745 * Calls the generic get_speed_and_duplex to retrieve the current link
3746 * information and then calls the Kumeran lock loss workaround for links at
3747 * gigabit speeds.
3748 **/
3749 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3750 u16 *duplex)
3751 {
3752 s32 ret_val;
3753
3754 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3755 if (ret_val)
3756 return ret_val;
3757
3758 if ((hw->mac.type == e1000_ich8lan) &&
3759 (hw->phy.type == e1000_phy_igp_3) &&
3760 (*speed == SPEED_1000)) {
3761 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3762 }
3763
3764 return ret_val;
3765 }
3766
3767 /**
3768 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3769 * @hw: pointer to the HW structure
3770 *
3771 * Work-around for 82566 Kumeran PCS lock loss:
3772 * On link status change (i.e. PCI reset, speed change) and link is up and
3773 * speed is gigabit-
3774 * 0) if workaround is optionally disabled do nothing
3775 * 1) wait 1ms for Kumeran link to come up
3776 * 2) check Kumeran Diagnostic register PCS lock loss bit
3777 * 3) if not set the link is locked (all is good), otherwise...
3778 * 4) reset the PHY
3779 * 5) repeat up to 10 times
3780 * Note: this is only called for IGP3 copper when speed is 1gb.
3781 **/
3782 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3783 {
3784 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3785 u32 phy_ctrl;
3786 s32 ret_val;
3787 u16 i, data;
3788 bool link;
3789
3790 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3791 return 0;
3792
3793 /* Make sure link is up before proceeding. If not just return.
3794 * Attempting this while link is negotiating fouled up link
3795 * stability
3796 */
3797 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3798 if (!link)
3799 return 0;
3800
3801 for (i = 0; i < 10; i++) {
3802 /* read once to clear */
3803 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3804 if (ret_val)
3805 return ret_val;
3806 /* and again to get new status */
3807 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3808 if (ret_val)
3809 return ret_val;
3810
3811 /* check for PCS lock */
3812 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3813 return 0;
3814
3815 /* Issue PHY reset */
3816 e1000_phy_hw_reset(hw);
3817 mdelay(5);
3818 }
3819 /* Disable GigE link negotiation */
3820 phy_ctrl = er32(PHY_CTRL);
3821 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3822 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3823 ew32(PHY_CTRL, phy_ctrl);
3824
3825 /* Call gig speed drop workaround on Gig disable before accessing
3826 * any PHY registers
3827 */
3828 e1000e_gig_downshift_workaround_ich8lan(hw);
3829
3830 /* unable to acquire PCS lock */
3831 return -E1000_ERR_PHY;
3832 }
3833
3834 /**
3835 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3836 * @hw: pointer to the HW structure
3837 * @state: boolean value used to set the current Kumeran workaround state
3838 *
3839 * If ICH8, set the current Kumeran workaround state (enabled - true
3840 * /disabled - false).
3841 **/
3842 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3843 bool state)
3844 {
3845 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3846
3847 if (hw->mac.type != e1000_ich8lan) {
3848 e_dbg("Workaround applies to ICH8 only.\n");
3849 return;
3850 }
3851
3852 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3853 }
3854
3855 /**
3856 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3857 * @hw: pointer to the HW structure
3858 *
3859 * Workaround for 82566 power-down on D3 entry:
3860 * 1) disable gigabit link
3861 * 2) write VR power-down enable
3862 * 3) read it back
3863 * Continue if successful, else issue LCD reset and repeat
3864 **/
3865 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3866 {
3867 u32 reg;
3868 u16 data;
3869 u8 retry = 0;
3870
3871 if (hw->phy.type != e1000_phy_igp_3)
3872 return;
3873
3874 /* Try the workaround twice (if needed) */
3875 do {
3876 /* Disable link */
3877 reg = er32(PHY_CTRL);
3878 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3879 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3880 ew32(PHY_CTRL, reg);
3881
3882 /* Call gig speed drop workaround on Gig disable before
3883 * accessing any PHY registers
3884 */
3885 if (hw->mac.type == e1000_ich8lan)
3886 e1000e_gig_downshift_workaround_ich8lan(hw);
3887
3888 /* Write VR power-down enable */
3889 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3890 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3891 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3892
3893 /* Read it back and test */
3894 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3895 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3896 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3897 break;
3898
3899 /* Issue PHY reset and repeat at most one more time */
3900 reg = er32(CTRL);
3901 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3902 retry++;
3903 } while (retry);
3904 }
3905
3906 /**
3907 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3908 * @hw: pointer to the HW structure
3909 *
3910 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3911 * LPLU, Gig disable, MDIC PHY reset):
3912 * 1) Set Kumeran Near-end loopback
3913 * 2) Clear Kumeran Near-end loopback
3914 * Should only be called for ICH8[m] devices with any 1G Phy.
3915 **/
3916 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3917 {
3918 s32 ret_val;
3919 u16 reg_data;
3920
3921 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3922 return;
3923
3924 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3925 &reg_data);
3926 if (ret_val)
3927 return;
3928 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3929 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3930 reg_data);
3931 if (ret_val)
3932 return;
3933 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3934 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
3935 }
3936
3937 /**
3938 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3939 * @hw: pointer to the HW structure
3940 *
3941 * During S0 to Sx transition, it is possible the link remains at gig
3942 * instead of negotiating to a lower speed. Before going to Sx, set
3943 * 'Gig Disable' to force link speed negotiation to a lower speed based on
3944 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
3945 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
3946 * needs to be written.
3947 * Parts that support (and are linked to a partner which support) EEE in
3948 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
3949 * than 10Mbps w/o EEE.
3950 **/
3951 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3952 {
3953 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3954 u32 phy_ctrl;
3955 s32 ret_val;
3956
3957 phy_ctrl = er32(PHY_CTRL);
3958 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
3959 if (hw->phy.type == e1000_phy_i217) {
3960 u16 phy_reg;
3961
3962 ret_val = hw->phy.ops.acquire(hw);
3963 if (ret_val)
3964 goto out;
3965
3966 if (!dev_spec->eee_disable) {
3967 u16 eee_advert;
3968
3969 ret_val =
3970 e1000_read_emi_reg_locked(hw,
3971 I217_EEE_ADVERTISEMENT,
3972 &eee_advert);
3973 if (ret_val)
3974 goto release;
3975
3976 /* Disable LPLU if both link partners support 100BaseT
3977 * EEE and 100Full is advertised on both ends of the
3978 * link.
3979 */
3980 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
3981 (dev_spec->eee_lp_ability &
3982 I82579_EEE_100_SUPPORTED) &&
3983 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
3984 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
3985 E1000_PHY_CTRL_NOND0A_LPLU);
3986 }
3987
3988 /* For i217 Intel Rapid Start Technology support,
3989 * when the system is going into Sx and no manageability engine
3990 * is present, the driver must configure proxy to reset only on
3991 * power good. LPI (Low Power Idle) state must also reset only
3992 * on power good, as well as the MTA (Multicast table array).
3993 * The SMBus release must also be disabled on LCD reset.
3994 */
3995 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
3996 /* Enable proxy to reset only on power good. */
3997 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
3998 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
3999 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4000
4001 /* Set bit enable LPI (EEE) to reset only on
4002 * power good.
4003 */
4004 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4005 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4006 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4007
4008 /* Disable the SMB release on LCD reset. */
4009 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4010 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4011 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4012 }
4013
4014 /* Enable MTA to reset for Intel Rapid Start Technology
4015 * Support
4016 */
4017 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4018 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4019 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4020
4021 release:
4022 hw->phy.ops.release(hw);
4023 }
4024 out:
4025 ew32(PHY_CTRL, phy_ctrl);
4026
4027 if (hw->mac.type == e1000_ich8lan)
4028 e1000e_gig_downshift_workaround_ich8lan(hw);
4029
4030 if (hw->mac.type >= e1000_pchlan) {
4031 e1000_oem_bits_config_ich8lan(hw, false);
4032
4033 /* Reset PHY to activate OEM bits on 82577/8 */
4034 if (hw->mac.type == e1000_pchlan)
4035 e1000e_phy_hw_reset_generic(hw);
4036
4037 ret_val = hw->phy.ops.acquire(hw);
4038 if (ret_val)
4039 return;
4040 e1000_write_smbus_addr(hw);
4041 hw->phy.ops.release(hw);
4042 }
4043 }
4044
4045 /**
4046 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4047 * @hw: pointer to the HW structure
4048 *
4049 * During Sx to S0 transitions on non-managed devices or managed devices
4050 * on which PHY resets are not blocked, if the PHY registers cannot be
4051 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
4052 * the PHY.
4053 * On i217, setup Intel Rapid Start Technology.
4054 **/
4055 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4056 {
4057 s32 ret_val;
4058
4059 if (hw->mac.type < e1000_pch2lan)
4060 return;
4061
4062 ret_val = e1000_init_phy_workarounds_pchlan(hw);
4063 if (ret_val) {
4064 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4065 return;
4066 }
4067
4068 /* For i217 Intel Rapid Start Technology support when the system
4069 * is transitioning from Sx and no manageability engine is present
4070 * configure SMBus to restore on reset, disable proxy, and enable
4071 * the reset on MTA (Multicast table array).
4072 */
4073 if (hw->phy.type == e1000_phy_i217) {
4074 u16 phy_reg;
4075
4076 ret_val = hw->phy.ops.acquire(hw);
4077 if (ret_val) {
4078 e_dbg("Failed to setup iRST\n");
4079 return;
4080 }
4081
4082 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4083 /* Restore clear on SMB if no manageability engine
4084 * is present
4085 */
4086 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4087 if (ret_val)
4088 goto release;
4089 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4090 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4091
4092 /* Disable Proxy */
4093 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4094 }
4095 /* Enable reset on MTA */
4096 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4097 if (ret_val)
4098 goto release;
4099 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4100 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4101 release:
4102 if (ret_val)
4103 e_dbg("Error %d in resume workarounds\n", ret_val);
4104 hw->phy.ops.release(hw);
4105 }
4106 }
4107
4108 /**
4109 * e1000_cleanup_led_ich8lan - Restore the default LED operation
4110 * @hw: pointer to the HW structure
4111 *
4112 * Return the LED back to the default configuration.
4113 **/
4114 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4115 {
4116 if (hw->phy.type == e1000_phy_ife)
4117 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4118
4119 ew32(LEDCTL, hw->mac.ledctl_default);
4120 return 0;
4121 }
4122
4123 /**
4124 * e1000_led_on_ich8lan - Turn LEDs on
4125 * @hw: pointer to the HW structure
4126 *
4127 * Turn on the LEDs.
4128 **/
4129 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4130 {
4131 if (hw->phy.type == e1000_phy_ife)
4132 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4133 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4134
4135 ew32(LEDCTL, hw->mac.ledctl_mode2);
4136 return 0;
4137 }
4138
4139 /**
4140 * e1000_led_off_ich8lan - Turn LEDs off
4141 * @hw: pointer to the HW structure
4142 *
4143 * Turn off the LEDs.
4144 **/
4145 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4146 {
4147 if (hw->phy.type == e1000_phy_ife)
4148 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4149 (IFE_PSCL_PROBE_MODE |
4150 IFE_PSCL_PROBE_LEDS_OFF));
4151
4152 ew32(LEDCTL, hw->mac.ledctl_mode1);
4153 return 0;
4154 }
4155
4156 /**
4157 * e1000_setup_led_pchlan - Configures SW controllable LED
4158 * @hw: pointer to the HW structure
4159 *
4160 * This prepares the SW controllable LED for use.
4161 **/
4162 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4163 {
4164 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4165 }
4166
4167 /**
4168 * e1000_cleanup_led_pchlan - Restore the default LED operation
4169 * @hw: pointer to the HW structure
4170 *
4171 * Return the LED back to the default configuration.
4172 **/
4173 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4174 {
4175 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4176 }
4177
4178 /**
4179 * e1000_led_on_pchlan - Turn LEDs on
4180 * @hw: pointer to the HW structure
4181 *
4182 * Turn on the LEDs.
4183 **/
4184 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4185 {
4186 u16 data = (u16)hw->mac.ledctl_mode2;
4187 u32 i, led;
4188
4189 /* If no link, then turn LED on by setting the invert bit
4190 * for each LED that's mode is "link_up" in ledctl_mode2.
4191 */
4192 if (!(er32(STATUS) & E1000_STATUS_LU)) {
4193 for (i = 0; i < 3; i++) {
4194 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4195 if ((led & E1000_PHY_LED0_MODE_MASK) !=
4196 E1000_LEDCTL_MODE_LINK_UP)
4197 continue;
4198 if (led & E1000_PHY_LED0_IVRT)
4199 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4200 else
4201 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4202 }
4203 }
4204
4205 return e1e_wphy(hw, HV_LED_CONFIG, data);
4206 }
4207
4208 /**
4209 * e1000_led_off_pchlan - Turn LEDs off
4210 * @hw: pointer to the HW structure
4211 *
4212 * Turn off the LEDs.
4213 **/
4214 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4215 {
4216 u16 data = (u16)hw->mac.ledctl_mode1;
4217 u32 i, led;
4218
4219 /* If no link, then turn LED off by clearing the invert bit
4220 * for each LED that's mode is "link_up" in ledctl_mode1.
4221 */
4222 if (!(er32(STATUS) & E1000_STATUS_LU)) {
4223 for (i = 0; i < 3; i++) {
4224 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4225 if ((led & E1000_PHY_LED0_MODE_MASK) !=
4226 E1000_LEDCTL_MODE_LINK_UP)
4227 continue;
4228 if (led & E1000_PHY_LED0_IVRT)
4229 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4230 else
4231 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4232 }
4233 }
4234
4235 return e1e_wphy(hw, HV_LED_CONFIG, data);
4236 }
4237
4238 /**
4239 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4240 * @hw: pointer to the HW structure
4241 *
4242 * Read appropriate register for the config done bit for completion status
4243 * and configure the PHY through s/w for EEPROM-less parts.
4244 *
4245 * NOTE: some silicon which is EEPROM-less will fail trying to read the
4246 * config done bit, so only an error is logged and continues. If we were
4247 * to return with error, EEPROM-less silicon would not be able to be reset
4248 * or change link.
4249 **/
4250 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4251 {
4252 s32 ret_val = 0;
4253 u32 bank = 0;
4254 u32 status;
4255
4256 e1000e_get_cfg_done_generic(hw);
4257
4258 /* Wait for indication from h/w that it has completed basic config */
4259 if (hw->mac.type >= e1000_ich10lan) {
4260 e1000_lan_init_done_ich8lan(hw);
4261 } else {
4262 ret_val = e1000e_get_auto_rd_done(hw);
4263 if (ret_val) {
4264 /* When auto config read does not complete, do not
4265 * return with an error. This can happen in situations
4266 * where there is no eeprom and prevents getting link.
4267 */
4268 e_dbg("Auto Read Done did not complete\n");
4269 ret_val = 0;
4270 }
4271 }
4272
4273 /* Clear PHY Reset Asserted bit */
4274 status = er32(STATUS);
4275 if (status & E1000_STATUS_PHYRA)
4276 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4277 else
4278 e_dbg("PHY Reset Asserted not set - needs delay\n");
4279
4280 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
4281 if (hw->mac.type <= e1000_ich9lan) {
4282 if (!(er32(EECD) & E1000_EECD_PRES) &&
4283 (hw->phy.type == e1000_phy_igp_3)) {
4284 e1000e_phy_init_script_igp3(hw);
4285 }
4286 } else {
4287 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4288 /* Maybe we should do a basic PHY config */
4289 e_dbg("EEPROM not present\n");
4290 ret_val = -E1000_ERR_CONFIG;
4291 }
4292 }
4293
4294 return ret_val;
4295 }
4296
4297 /**
4298 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4299 * @hw: pointer to the HW structure
4300 *
4301 * In the case of a PHY power down to save power, or to turn off link during a
4302 * driver unload, or wake on lan is not enabled, remove the link.
4303 **/
4304 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4305 {
4306 /* If the management interface is not enabled, then power down */
4307 if (!(hw->mac.ops.check_mng_mode(hw) ||
4308 hw->phy.ops.check_reset_block(hw)))
4309 e1000_power_down_phy_copper(hw);
4310 }
4311
4312 /**
4313 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4314 * @hw: pointer to the HW structure
4315 *
4316 * Clears hardware counters specific to the silicon family and calls
4317 * clear_hw_cntrs_generic to clear all general purpose counters.
4318 **/
4319 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4320 {
4321 u16 phy_data;
4322 s32 ret_val;
4323
4324 e1000e_clear_hw_cntrs_base(hw);
4325
4326 er32(ALGNERRC);
4327 er32(RXERRC);
4328 er32(TNCRS);
4329 er32(CEXTERR);
4330 er32(TSCTC);
4331 er32(TSCTFC);
4332
4333 er32(MGTPRC);
4334 er32(MGTPDC);
4335 er32(MGTPTC);
4336
4337 er32(IAC);
4338 er32(ICRXOC);
4339
4340 /* Clear PHY statistics registers */
4341 if ((hw->phy.type == e1000_phy_82578) ||
4342 (hw->phy.type == e1000_phy_82579) ||
4343 (hw->phy.type == e1000_phy_i217) ||
4344 (hw->phy.type == e1000_phy_82577)) {
4345 ret_val = hw->phy.ops.acquire(hw);
4346 if (ret_val)
4347 return;
4348 ret_val = hw->phy.ops.set_page(hw,
4349 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4350 if (ret_val)
4351 goto release;
4352 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4353 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4354 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4355 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4356 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4357 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4358 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4359 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4360 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4361 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4362 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4363 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4364 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4365 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4366 release:
4367 hw->phy.ops.release(hw);
4368 }
4369 }
4370
4371 static const struct e1000_mac_operations ich8_mac_ops = {
4372 /* check_mng_mode dependent on mac type */
4373 .check_for_link = e1000_check_for_copper_link_ich8lan,
4374 /* cleanup_led dependent on mac type */
4375 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
4376 .get_bus_info = e1000_get_bus_info_ich8lan,
4377 .set_lan_id = e1000_set_lan_id_single_port,
4378 .get_link_up_info = e1000_get_link_up_info_ich8lan,
4379 /* led_on dependent on mac type */
4380 /* led_off dependent on mac type */
4381 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
4382 .reset_hw = e1000_reset_hw_ich8lan,
4383 .init_hw = e1000_init_hw_ich8lan,
4384 .setup_link = e1000_setup_link_ich8lan,
4385 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
4386 /* id_led_init dependent on mac type */
4387 .config_collision_dist = e1000e_config_collision_dist_generic,
4388 .rar_set = e1000e_rar_set_generic,
4389 };
4390
4391 static const struct e1000_phy_operations ich8_phy_ops = {
4392 .acquire = e1000_acquire_swflag_ich8lan,
4393 .check_reset_block = e1000_check_reset_block_ich8lan,
4394 .commit = NULL,
4395 .get_cfg_done = e1000_get_cfg_done_ich8lan,
4396 .get_cable_length = e1000e_get_cable_length_igp_2,
4397 .read_reg = e1000e_read_phy_reg_igp,
4398 .release = e1000_release_swflag_ich8lan,
4399 .reset = e1000_phy_hw_reset_ich8lan,
4400 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
4401 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
4402 .write_reg = e1000e_write_phy_reg_igp,
4403 };
4404
4405 static const struct e1000_nvm_operations ich8_nvm_ops = {
4406 .acquire = e1000_acquire_nvm_ich8lan,
4407 .read = e1000_read_nvm_ich8lan,
4408 .release = e1000_release_nvm_ich8lan,
4409 .reload = e1000e_reload_nvm_generic,
4410 .update = e1000_update_nvm_checksum_ich8lan,
4411 .valid_led_default = e1000_valid_led_default_ich8lan,
4412 .validate = e1000_validate_nvm_checksum_ich8lan,
4413 .write = e1000_write_nvm_ich8lan,
4414 };
4415
4416 const struct e1000_info e1000_ich8_info = {
4417 .mac = e1000_ich8lan,
4418 .flags = FLAG_HAS_WOL
4419 | FLAG_IS_ICH
4420 | FLAG_HAS_CTRLEXT_ON_LOAD
4421 | FLAG_HAS_AMT
4422 | FLAG_HAS_FLASH
4423 | FLAG_APME_IN_WUC,
4424 .pba = 8,
4425 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
4426 .get_variants = e1000_get_variants_ich8lan,
4427 .mac_ops = &ich8_mac_ops,
4428 .phy_ops = &ich8_phy_ops,
4429 .nvm_ops = &ich8_nvm_ops,
4430 };
4431
4432 const struct e1000_info e1000_ich9_info = {
4433 .mac = e1000_ich9lan,
4434 .flags = FLAG_HAS_JUMBO_FRAMES
4435 | FLAG_IS_ICH
4436 | FLAG_HAS_WOL
4437 | FLAG_HAS_CTRLEXT_ON_LOAD
4438 | FLAG_HAS_AMT
4439 | FLAG_HAS_FLASH
4440 | FLAG_APME_IN_WUC,
4441 .pba = 18,
4442 .max_hw_frame_size = DEFAULT_JUMBO,
4443 .get_variants = e1000_get_variants_ich8lan,
4444 .mac_ops = &ich8_mac_ops,
4445 .phy_ops = &ich8_phy_ops,
4446 .nvm_ops = &ich8_nvm_ops,
4447 };
4448
4449 const struct e1000_info e1000_ich10_info = {
4450 .mac = e1000_ich10lan,
4451 .flags = FLAG_HAS_JUMBO_FRAMES
4452 | FLAG_IS_ICH
4453 | FLAG_HAS_WOL
4454 | FLAG_HAS_CTRLEXT_ON_LOAD
4455 | FLAG_HAS_AMT
4456 | FLAG_HAS_FLASH
4457 | FLAG_APME_IN_WUC,
4458 .pba = 18,
4459 .max_hw_frame_size = DEFAULT_JUMBO,
4460 .get_variants = e1000_get_variants_ich8lan,
4461 .mac_ops = &ich8_mac_ops,
4462 .phy_ops = &ich8_phy_ops,
4463 .nvm_ops = &ich8_nvm_ops,
4464 };
4465
4466 const struct e1000_info e1000_pch_info = {
4467 .mac = e1000_pchlan,
4468 .flags = FLAG_IS_ICH
4469 | FLAG_HAS_WOL
4470 | FLAG_HAS_CTRLEXT_ON_LOAD
4471 | FLAG_HAS_AMT
4472 | FLAG_HAS_FLASH
4473 | FLAG_HAS_JUMBO_FRAMES
4474 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4475 | FLAG_APME_IN_WUC,
4476 .flags2 = FLAG2_HAS_PHY_STATS,
4477 .pba = 26,
4478 .max_hw_frame_size = 4096,
4479 .get_variants = e1000_get_variants_ich8lan,
4480 .mac_ops = &ich8_mac_ops,
4481 .phy_ops = &ich8_phy_ops,
4482 .nvm_ops = &ich8_nvm_ops,
4483 };
4484
4485 const struct e1000_info e1000_pch2_info = {
4486 .mac = e1000_pch2lan,
4487 .flags = FLAG_IS_ICH
4488 | FLAG_HAS_WOL
4489 | FLAG_HAS_HW_TIMESTAMP
4490 | FLAG_HAS_CTRLEXT_ON_LOAD
4491 | FLAG_HAS_AMT
4492 | FLAG_HAS_FLASH
4493 | FLAG_HAS_JUMBO_FRAMES
4494 | FLAG_APME_IN_WUC,
4495 .flags2 = FLAG2_HAS_PHY_STATS
4496 | FLAG2_HAS_EEE,
4497 .pba = 26,
4498 .max_hw_frame_size = 9018,
4499 .get_variants = e1000_get_variants_ich8lan,
4500 .mac_ops = &ich8_mac_ops,
4501 .phy_ops = &ich8_phy_ops,
4502 .nvm_ops = &ich8_nvm_ops,
4503 };
4504
4505 const struct e1000_info e1000_pch_lpt_info = {
4506 .mac = e1000_pch_lpt,
4507 .flags = FLAG_IS_ICH
4508 | FLAG_HAS_WOL
4509 | FLAG_HAS_HW_TIMESTAMP
4510 | FLAG_HAS_CTRLEXT_ON_LOAD
4511 | FLAG_HAS_AMT
4512 | FLAG_HAS_FLASH
4513 | FLAG_HAS_JUMBO_FRAMES
4514 | FLAG_APME_IN_WUC,
4515 .flags2 = FLAG2_HAS_PHY_STATS
4516 | FLAG2_HAS_EEE,
4517 .pba = 26,
4518 .max_hw_frame_size = 9018,
4519 .get_variants = e1000_get_variants_ich8lan,
4520 .mac_ops = &ich8_mac_ops,
4521 .phy_ops = &ich8_phy_ops,
4522 .nvm_ops = &ich8_nvm_ops,
4523 };
This page took 0.128497 seconds and 5 git commands to generate.