e1000e: Cleanup handling of VLAN_HLEN as a part of max frame size
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22 /* 82562G 10/100 Network Connection
23 * 82562G-2 10/100 Network Connection
24 * 82562GT 10/100 Network Connection
25 * 82562GT-2 10/100 Network Connection
26 * 82562V 10/100 Network Connection
27 * 82562V-2 10/100 Network Connection
28 * 82566DC-2 Gigabit Network Connection
29 * 82566DC Gigabit Network Connection
30 * 82566DM-2 Gigabit Network Connection
31 * 82566DM Gigabit Network Connection
32 * 82566MC Gigabit Network Connection
33 * 82566MM Gigabit Network Connection
34 * 82567LM Gigabit Network Connection
35 * 82567LF Gigabit Network Connection
36 * 82567V Gigabit Network Connection
37 * 82567LM-2 Gigabit Network Connection
38 * 82567LF-2 Gigabit Network Connection
39 * 82567V-2 Gigabit Network Connection
40 * 82567LF-3 Gigabit Network Connection
41 * 82567LM-3 Gigabit Network Connection
42 * 82567LM-4 Gigabit Network Connection
43 * 82577LM Gigabit Network Connection
44 * 82577LC Gigabit Network Connection
45 * 82578DM Gigabit Network Connection
46 * 82578DC Gigabit Network Connection
47 * 82579LM Gigabit Network Connection
48 * 82579V Gigabit Network Connection
49 * Ethernet Connection I217-LM
50 * Ethernet Connection I217-V
51 * Ethernet Connection I218-V
52 * Ethernet Connection I218-LM
53 * Ethernet Connection (2) I218-LM
54 * Ethernet Connection (2) I218-V
55 * Ethernet Connection (3) I218-LM
56 * Ethernet Connection (3) I218-V
57 */
58
59 #include "e1000.h"
60
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 struct ich8_hsfsts {
65 u16 flcdone:1; /* bit 0 Flash Cycle Done */
66 u16 flcerr:1; /* bit 1 Flash Cycle Error */
67 u16 dael:1; /* bit 2 Direct Access error Log */
68 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
69 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
70 u16 reserved1:2; /* bit 13:6 Reserved */
71 u16 reserved2:6; /* bit 13:6 Reserved */
72 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
73 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
74 } hsf_status;
75 u16 regval;
76 };
77
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 struct ich8_hsflctl {
82 u16 flcgo:1; /* 0 Flash Cycle Go */
83 u16 flcycle:2; /* 2:1 Flash Cycle */
84 u16 reserved:5; /* 7:3 Reserved */
85 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
86 u16 flockdn:6; /* 15:10 Reserved */
87 } hsf_ctrl;
88 u16 regval;
89 };
90
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 struct ich8_flracc {
94 u32 grra:8; /* 0:7 GbE region Read Access */
95 u32 grwa:8; /* 8:15 GbE region Write Access */
96 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
97 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
98 } hsf_flregacc;
99 u16 regval;
100 };
101
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 struct ich8_pr {
105 u32 base:13; /* 0:12 Protected Range Base */
106 u32 reserved1:2; /* 13:14 Reserved */
107 u32 rpe:1; /* 15 Read Protection Enable */
108 u32 limit:13; /* 16:28 Protected Range Limit */
109 u32 reserved2:2; /* 29:30 Reserved */
110 u32 wpe:1; /* 31 Write Protection Enable */
111 } range;
112 u32 regval;
113 };
114
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127 u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158
159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160 {
161 return readw(hw->flash_address + reg);
162 }
163
164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165 {
166 return readl(hw->flash_address + reg);
167 }
168
169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170 {
171 writew(val, hw->flash_address + reg);
172 }
173
174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175 {
176 writel(val, hw->flash_address + reg);
177 }
178
179 #define er16flash(reg) __er16flash(hw, (reg))
180 #define er32flash(reg) __er32flash(hw, (reg))
181 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
183
184 /**
185 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186 * @hw: pointer to the HW structure
187 *
188 * Test access to the PHY registers by reading the PHY ID registers. If
189 * the PHY ID is already known (e.g. resume path) compare it with known ID,
190 * otherwise assume the read PHY ID is correct if it is valid.
191 *
192 * Assumes the sw/fw/hw semaphore is already acquired.
193 **/
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195 {
196 u16 phy_reg = 0;
197 u32 phy_id = 0;
198 s32 ret_val = 0;
199 u16 retry_count;
200 u32 mac_reg = 0;
201
202 for (retry_count = 0; retry_count < 2; retry_count++) {
203 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 if (ret_val || (phy_reg == 0xFFFF))
205 continue;
206 phy_id = (u32)(phy_reg << 16);
207
208 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 if (ret_val || (phy_reg == 0xFFFF)) {
210 phy_id = 0;
211 continue;
212 }
213 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214 break;
215 }
216
217 if (hw->phy.id) {
218 if (hw->phy.id == phy_id)
219 goto out;
220 } else if (phy_id) {
221 hw->phy.id = phy_id;
222 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223 goto out;
224 }
225
226 /* In case the PHY needs to be in mdio slow mode,
227 * set slow mode and try to get the PHY id again.
228 */
229 if (hw->mac.type < e1000_pch_lpt) {
230 hw->phy.ops.release(hw);
231 ret_val = e1000_set_mdio_slow_mode_hv(hw);
232 if (!ret_val)
233 ret_val = e1000e_get_phy_id(hw);
234 hw->phy.ops.acquire(hw);
235 }
236
237 if (ret_val)
238 return false;
239 out:
240 if ((hw->mac.type == e1000_pch_lpt) ||
241 (hw->mac.type == e1000_pch_spt)) {
242 /* Unforce SMBus mode in PHY */
243 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
244 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
245 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
246
247 /* Unforce SMBus mode in MAC */
248 mac_reg = er32(CTRL_EXT);
249 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
250 ew32(CTRL_EXT, mac_reg);
251 }
252
253 return true;
254 }
255
256 /**
257 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
258 * @hw: pointer to the HW structure
259 *
260 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
261 * used to reset the PHY to a quiescent state when necessary.
262 **/
263 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
264 {
265 u32 mac_reg;
266
267 /* Set Phy Config Counter to 50msec */
268 mac_reg = er32(FEXTNVM3);
269 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
270 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
271 ew32(FEXTNVM3, mac_reg);
272
273 /* Toggle LANPHYPC Value bit */
274 mac_reg = er32(CTRL);
275 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
276 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
277 ew32(CTRL, mac_reg);
278 e1e_flush();
279 usleep_range(10, 20);
280 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
281 ew32(CTRL, mac_reg);
282 e1e_flush();
283
284 if (hw->mac.type < e1000_pch_lpt) {
285 msleep(50);
286 } else {
287 u16 count = 20;
288
289 do {
290 usleep_range(5000, 10000);
291 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
292
293 msleep(30);
294 }
295 }
296
297 /**
298 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
299 * @hw: pointer to the HW structure
300 *
301 * Workarounds/flow necessary for PHY initialization during driver load
302 * and resume paths.
303 **/
304 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
305 {
306 struct e1000_adapter *adapter = hw->adapter;
307 u32 mac_reg, fwsm = er32(FWSM);
308 s32 ret_val;
309
310 /* Gate automatic PHY configuration by hardware on managed and
311 * non-managed 82579 and newer adapters.
312 */
313 e1000_gate_hw_phy_config_ich8lan(hw, true);
314
315 /* It is not possible to be certain of the current state of ULP
316 * so forcibly disable it.
317 */
318 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
319 e1000_disable_ulp_lpt_lp(hw, true);
320
321 ret_val = hw->phy.ops.acquire(hw);
322 if (ret_val) {
323 e_dbg("Failed to initialize PHY flow\n");
324 goto out;
325 }
326
327 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
328 * inaccessible and resetting the PHY is not blocked, toggle the
329 * LANPHYPC Value bit to force the interconnect to PCIe mode.
330 */
331 switch (hw->mac.type) {
332 case e1000_pch_lpt:
333 case e1000_pch_spt:
334 if (e1000_phy_is_accessible_pchlan(hw))
335 break;
336
337 /* Before toggling LANPHYPC, see if PHY is accessible by
338 * forcing MAC to SMBus mode first.
339 */
340 mac_reg = er32(CTRL_EXT);
341 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
342 ew32(CTRL_EXT, mac_reg);
343
344 /* Wait 50 milliseconds for MAC to finish any retries
345 * that it might be trying to perform from previous
346 * attempts to acknowledge any phy read requests.
347 */
348 msleep(50);
349
350 /* fall-through */
351 case e1000_pch2lan:
352 if (e1000_phy_is_accessible_pchlan(hw))
353 break;
354
355 /* fall-through */
356 case e1000_pchlan:
357 if ((hw->mac.type == e1000_pchlan) &&
358 (fwsm & E1000_ICH_FWSM_FW_VALID))
359 break;
360
361 if (hw->phy.ops.check_reset_block(hw)) {
362 e_dbg("Required LANPHYPC toggle blocked by ME\n");
363 ret_val = -E1000_ERR_PHY;
364 break;
365 }
366
367 /* Toggle LANPHYPC Value bit */
368 e1000_toggle_lanphypc_pch_lpt(hw);
369 if (hw->mac.type >= e1000_pch_lpt) {
370 if (e1000_phy_is_accessible_pchlan(hw))
371 break;
372
373 /* Toggling LANPHYPC brings the PHY out of SMBus mode
374 * so ensure that the MAC is also out of SMBus mode
375 */
376 mac_reg = er32(CTRL_EXT);
377 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
378 ew32(CTRL_EXT, mac_reg);
379
380 if (e1000_phy_is_accessible_pchlan(hw))
381 break;
382
383 ret_val = -E1000_ERR_PHY;
384 }
385 break;
386 default:
387 break;
388 }
389
390 hw->phy.ops.release(hw);
391 if (!ret_val) {
392
393 /* Check to see if able to reset PHY. Print error if not */
394 if (hw->phy.ops.check_reset_block(hw)) {
395 e_err("Reset blocked by ME\n");
396 goto out;
397 }
398
399 /* Reset the PHY before any access to it. Doing so, ensures
400 * that the PHY is in a known good state before we read/write
401 * PHY registers. The generic reset is sufficient here,
402 * because we haven't determined the PHY type yet.
403 */
404 ret_val = e1000e_phy_hw_reset_generic(hw);
405 if (ret_val)
406 goto out;
407
408 /* On a successful reset, possibly need to wait for the PHY
409 * to quiesce to an accessible state before returning control
410 * to the calling function. If the PHY does not quiesce, then
411 * return E1000E_BLK_PHY_RESET, as this is the condition that
412 * the PHY is in.
413 */
414 ret_val = hw->phy.ops.check_reset_block(hw);
415 if (ret_val)
416 e_err("ME blocked access to PHY after reset\n");
417 }
418
419 out:
420 /* Ungate automatic PHY configuration on non-managed 82579 */
421 if ((hw->mac.type == e1000_pch2lan) &&
422 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
423 usleep_range(10000, 20000);
424 e1000_gate_hw_phy_config_ich8lan(hw, false);
425 }
426
427 return ret_val;
428 }
429
430 /**
431 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
432 * @hw: pointer to the HW structure
433 *
434 * Initialize family-specific PHY parameters and function pointers.
435 **/
436 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
437 {
438 struct e1000_phy_info *phy = &hw->phy;
439 s32 ret_val;
440
441 phy->addr = 1;
442 phy->reset_delay_us = 100;
443
444 phy->ops.set_page = e1000_set_page_igp;
445 phy->ops.read_reg = e1000_read_phy_reg_hv;
446 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
447 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
448 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
449 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
450 phy->ops.write_reg = e1000_write_phy_reg_hv;
451 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
452 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
453 phy->ops.power_up = e1000_power_up_phy_copper;
454 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
455 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
456
457 phy->id = e1000_phy_unknown;
458
459 ret_val = e1000_init_phy_workarounds_pchlan(hw);
460 if (ret_val)
461 return ret_val;
462
463 if (phy->id == e1000_phy_unknown)
464 switch (hw->mac.type) {
465 default:
466 ret_val = e1000e_get_phy_id(hw);
467 if (ret_val)
468 return ret_val;
469 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
470 break;
471 /* fall-through */
472 case e1000_pch2lan:
473 case e1000_pch_lpt:
474 case e1000_pch_spt:
475 /* In case the PHY needs to be in mdio slow mode,
476 * set slow mode and try to get the PHY id again.
477 */
478 ret_val = e1000_set_mdio_slow_mode_hv(hw);
479 if (ret_val)
480 return ret_val;
481 ret_val = e1000e_get_phy_id(hw);
482 if (ret_val)
483 return ret_val;
484 break;
485 }
486 phy->type = e1000e_get_phy_type_from_id(phy->id);
487
488 switch (phy->type) {
489 case e1000_phy_82577:
490 case e1000_phy_82579:
491 case e1000_phy_i217:
492 phy->ops.check_polarity = e1000_check_polarity_82577;
493 phy->ops.force_speed_duplex =
494 e1000_phy_force_speed_duplex_82577;
495 phy->ops.get_cable_length = e1000_get_cable_length_82577;
496 phy->ops.get_info = e1000_get_phy_info_82577;
497 phy->ops.commit = e1000e_phy_sw_reset;
498 break;
499 case e1000_phy_82578:
500 phy->ops.check_polarity = e1000_check_polarity_m88;
501 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
502 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
503 phy->ops.get_info = e1000e_get_phy_info_m88;
504 break;
505 default:
506 ret_val = -E1000_ERR_PHY;
507 break;
508 }
509
510 return ret_val;
511 }
512
513 /**
514 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
515 * @hw: pointer to the HW structure
516 *
517 * Initialize family-specific PHY parameters and function pointers.
518 **/
519 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
520 {
521 struct e1000_phy_info *phy = &hw->phy;
522 s32 ret_val;
523 u16 i = 0;
524
525 phy->addr = 1;
526 phy->reset_delay_us = 100;
527
528 phy->ops.power_up = e1000_power_up_phy_copper;
529 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
530
531 /* We may need to do this twice - once for IGP and if that fails,
532 * we'll set BM func pointers and try again
533 */
534 ret_val = e1000e_determine_phy_address(hw);
535 if (ret_val) {
536 phy->ops.write_reg = e1000e_write_phy_reg_bm;
537 phy->ops.read_reg = e1000e_read_phy_reg_bm;
538 ret_val = e1000e_determine_phy_address(hw);
539 if (ret_val) {
540 e_dbg("Cannot determine PHY addr. Erroring out\n");
541 return ret_val;
542 }
543 }
544
545 phy->id = 0;
546 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
547 (i++ < 100)) {
548 usleep_range(1000, 2000);
549 ret_val = e1000e_get_phy_id(hw);
550 if (ret_val)
551 return ret_val;
552 }
553
554 /* Verify phy id */
555 switch (phy->id) {
556 case IGP03E1000_E_PHY_ID:
557 phy->type = e1000_phy_igp_3;
558 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
559 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
560 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
561 phy->ops.get_info = e1000e_get_phy_info_igp;
562 phy->ops.check_polarity = e1000_check_polarity_igp;
563 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
564 break;
565 case IFE_E_PHY_ID:
566 case IFE_PLUS_E_PHY_ID:
567 case IFE_C_E_PHY_ID:
568 phy->type = e1000_phy_ife;
569 phy->autoneg_mask = E1000_ALL_NOT_GIG;
570 phy->ops.get_info = e1000_get_phy_info_ife;
571 phy->ops.check_polarity = e1000_check_polarity_ife;
572 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
573 break;
574 case BME1000_E_PHY_ID:
575 phy->type = e1000_phy_bm;
576 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
577 phy->ops.read_reg = e1000e_read_phy_reg_bm;
578 phy->ops.write_reg = e1000e_write_phy_reg_bm;
579 phy->ops.commit = e1000e_phy_sw_reset;
580 phy->ops.get_info = e1000e_get_phy_info_m88;
581 phy->ops.check_polarity = e1000_check_polarity_m88;
582 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
583 break;
584 default:
585 return -E1000_ERR_PHY;
586 }
587
588 return 0;
589 }
590
591 /**
592 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
593 * @hw: pointer to the HW structure
594 *
595 * Initialize family-specific NVM parameters and function
596 * pointers.
597 **/
598 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
599 {
600 struct e1000_nvm_info *nvm = &hw->nvm;
601 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
602 u32 gfpreg, sector_base_addr, sector_end_addr;
603 u16 i;
604 u32 nvm_size;
605
606 nvm->type = e1000_nvm_flash_sw;
607
608 if (hw->mac.type == e1000_pch_spt) {
609 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
610 * STRAP register. This is because in SPT the GbE Flash region
611 * is no longer accessed through the flash registers. Instead,
612 * the mechanism has changed, and the Flash region access
613 * registers are now implemented in GbE memory space.
614 */
615 nvm->flash_base_addr = 0;
616 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
617 * NVM_SIZE_MULTIPLIER;
618 nvm->flash_bank_size = nvm_size / 2;
619 /* Adjust to word count */
620 nvm->flash_bank_size /= sizeof(u16);
621 /* Set the base address for flash register access */
622 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
623 } else {
624 /* Can't read flash registers if register set isn't mapped. */
625 if (!hw->flash_address) {
626 e_dbg("ERROR: Flash registers not mapped\n");
627 return -E1000_ERR_CONFIG;
628 }
629
630 gfpreg = er32flash(ICH_FLASH_GFPREG);
631
632 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
633 * Add 1 to sector_end_addr since this sector is included in
634 * the overall size.
635 */
636 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638
639 /* flash_base_addr is byte-aligned */
640 nvm->flash_base_addr = sector_base_addr
641 << FLASH_SECTOR_ADDR_SHIFT;
642
643 /* find total size of the NVM, then cut in half since the total
644 * size represents two separate NVM banks.
645 */
646 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
647 << FLASH_SECTOR_ADDR_SHIFT);
648 nvm->flash_bank_size /= 2;
649 /* Adjust to word count */
650 nvm->flash_bank_size /= sizeof(u16);
651 }
652
653 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
654
655 /* Clear shadow ram */
656 for (i = 0; i < nvm->word_size; i++) {
657 dev_spec->shadow_ram[i].modified = false;
658 dev_spec->shadow_ram[i].value = 0xFFFF;
659 }
660
661 return 0;
662 }
663
664 /**
665 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
666 * @hw: pointer to the HW structure
667 *
668 * Initialize family-specific MAC parameters and function
669 * pointers.
670 **/
671 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
672 {
673 struct e1000_mac_info *mac = &hw->mac;
674
675 /* Set media type function pointer */
676 hw->phy.media_type = e1000_media_type_copper;
677
678 /* Set mta register count */
679 mac->mta_reg_count = 32;
680 /* Set rar entry count */
681 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
682 if (mac->type == e1000_ich8lan)
683 mac->rar_entry_count--;
684 /* FWSM register */
685 mac->has_fwsm = true;
686 /* ARC subsystem not supported */
687 mac->arc_subsystem_valid = false;
688 /* Adaptive IFS supported */
689 mac->adaptive_ifs = true;
690
691 /* LED and other operations */
692 switch (mac->type) {
693 case e1000_ich8lan:
694 case e1000_ich9lan:
695 case e1000_ich10lan:
696 /* check management mode */
697 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
698 /* ID LED init */
699 mac->ops.id_led_init = e1000e_id_led_init_generic;
700 /* blink LED */
701 mac->ops.blink_led = e1000e_blink_led_generic;
702 /* setup LED */
703 mac->ops.setup_led = e1000e_setup_led_generic;
704 /* cleanup LED */
705 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
706 /* turn on/off LED */
707 mac->ops.led_on = e1000_led_on_ich8lan;
708 mac->ops.led_off = e1000_led_off_ich8lan;
709 break;
710 case e1000_pch2lan:
711 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
712 mac->ops.rar_set = e1000_rar_set_pch2lan;
713 /* fall-through */
714 case e1000_pch_lpt:
715 case e1000_pch_spt:
716 case e1000_pchlan:
717 /* check management mode */
718 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
719 /* ID LED init */
720 mac->ops.id_led_init = e1000_id_led_init_pchlan;
721 /* setup LED */
722 mac->ops.setup_led = e1000_setup_led_pchlan;
723 /* cleanup LED */
724 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
725 /* turn on/off LED */
726 mac->ops.led_on = e1000_led_on_pchlan;
727 mac->ops.led_off = e1000_led_off_pchlan;
728 break;
729 default:
730 break;
731 }
732
733 if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
734 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
735 mac->ops.rar_set = e1000_rar_set_pch_lpt;
736 mac->ops.setup_physical_interface =
737 e1000_setup_copper_link_pch_lpt;
738 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
739 }
740
741 /* Enable PCS Lock-loss workaround for ICH8 */
742 if (mac->type == e1000_ich8lan)
743 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
744
745 return 0;
746 }
747
748 /**
749 * __e1000_access_emi_reg_locked - Read/write EMI register
750 * @hw: pointer to the HW structure
751 * @addr: EMI address to program
752 * @data: pointer to value to read/write from/to the EMI address
753 * @read: boolean flag to indicate read or write
754 *
755 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
756 **/
757 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
758 u16 *data, bool read)
759 {
760 s32 ret_val;
761
762 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
763 if (ret_val)
764 return ret_val;
765
766 if (read)
767 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
768 else
769 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
770
771 return ret_val;
772 }
773
774 /**
775 * e1000_read_emi_reg_locked - Read Extended Management Interface register
776 * @hw: pointer to the HW structure
777 * @addr: EMI address to program
778 * @data: value to be read from the EMI address
779 *
780 * Assumes the SW/FW/HW Semaphore is already acquired.
781 **/
782 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
783 {
784 return __e1000_access_emi_reg_locked(hw, addr, data, true);
785 }
786
787 /**
788 * e1000_write_emi_reg_locked - Write Extended Management Interface register
789 * @hw: pointer to the HW structure
790 * @addr: EMI address to program
791 * @data: value to be written to the EMI address
792 *
793 * Assumes the SW/FW/HW Semaphore is already acquired.
794 **/
795 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
796 {
797 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
798 }
799
800 /**
801 * e1000_set_eee_pchlan - Enable/disable EEE support
802 * @hw: pointer to the HW structure
803 *
804 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
805 * the link and the EEE capabilities of the link partner. The LPI Control
806 * register bits will remain set only if/when link is up.
807 *
808 * EEE LPI must not be asserted earlier than one second after link is up.
809 * On 82579, EEE LPI should not be enabled until such time otherwise there
810 * can be link issues with some switches. Other devices can have EEE LPI
811 * enabled immediately upon link up since they have a timer in hardware which
812 * prevents LPI from being asserted too early.
813 **/
814 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
815 {
816 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
817 s32 ret_val;
818 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
819
820 switch (hw->phy.type) {
821 case e1000_phy_82579:
822 lpa = I82579_EEE_LP_ABILITY;
823 pcs_status = I82579_EEE_PCS_STATUS;
824 adv_addr = I82579_EEE_ADVERTISEMENT;
825 break;
826 case e1000_phy_i217:
827 lpa = I217_EEE_LP_ABILITY;
828 pcs_status = I217_EEE_PCS_STATUS;
829 adv_addr = I217_EEE_ADVERTISEMENT;
830 break;
831 default:
832 return 0;
833 }
834
835 ret_val = hw->phy.ops.acquire(hw);
836 if (ret_val)
837 return ret_val;
838
839 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
840 if (ret_val)
841 goto release;
842
843 /* Clear bits that enable EEE in various speeds */
844 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
845
846 /* Enable EEE if not disabled by user */
847 if (!dev_spec->eee_disable) {
848 /* Save off link partner's EEE ability */
849 ret_val = e1000_read_emi_reg_locked(hw, lpa,
850 &dev_spec->eee_lp_ability);
851 if (ret_val)
852 goto release;
853
854 /* Read EEE advertisement */
855 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
856 if (ret_val)
857 goto release;
858
859 /* Enable EEE only for speeds in which the link partner is
860 * EEE capable and for which we advertise EEE.
861 */
862 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
863 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
864
865 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
866 e1e_rphy_locked(hw, MII_LPA, &data);
867 if (data & LPA_100FULL)
868 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
869 else
870 /* EEE is not supported in 100Half, so ignore
871 * partner's EEE in 100 ability if full-duplex
872 * is not advertised.
873 */
874 dev_spec->eee_lp_ability &=
875 ~I82579_EEE_100_SUPPORTED;
876 }
877 }
878
879 if (hw->phy.type == e1000_phy_82579) {
880 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
881 &data);
882 if (ret_val)
883 goto release;
884
885 data &= ~I82579_LPI_100_PLL_SHUT;
886 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
887 data);
888 }
889
890 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
891 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
892 if (ret_val)
893 goto release;
894
895 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
896 release:
897 hw->phy.ops.release(hw);
898
899 return ret_val;
900 }
901
902 /**
903 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
904 * @hw: pointer to the HW structure
905 * @link: link up bool flag
906 *
907 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
908 * preventing further DMA write requests. Workaround the issue by disabling
909 * the de-assertion of the clock request when in 1Gpbs mode.
910 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
911 * speeds in order to avoid Tx hangs.
912 **/
913 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
914 {
915 u32 fextnvm6 = er32(FEXTNVM6);
916 u32 status = er32(STATUS);
917 s32 ret_val = 0;
918 u16 reg;
919
920 if (link && (status & E1000_STATUS_SPEED_1000)) {
921 ret_val = hw->phy.ops.acquire(hw);
922 if (ret_val)
923 return ret_val;
924
925 ret_val =
926 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
927 &reg);
928 if (ret_val)
929 goto release;
930
931 ret_val =
932 e1000e_write_kmrn_reg_locked(hw,
933 E1000_KMRNCTRLSTA_K1_CONFIG,
934 reg &
935 ~E1000_KMRNCTRLSTA_K1_ENABLE);
936 if (ret_val)
937 goto release;
938
939 usleep_range(10, 20);
940
941 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
942
943 ret_val =
944 e1000e_write_kmrn_reg_locked(hw,
945 E1000_KMRNCTRLSTA_K1_CONFIG,
946 reg);
947 release:
948 hw->phy.ops.release(hw);
949 } else {
950 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
951 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
952
953 if ((hw->phy.revision > 5) || !link ||
954 ((status & E1000_STATUS_SPEED_100) &&
955 (status & E1000_STATUS_FD)))
956 goto update_fextnvm6;
957
958 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
959 if (ret_val)
960 return ret_val;
961
962 /* Clear link status transmit timeout */
963 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
964
965 if (status & E1000_STATUS_SPEED_100) {
966 /* Set inband Tx timeout to 5x10us for 100Half */
967 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
968
969 /* Do not extend the K1 entry latency for 100Half */
970 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
971 } else {
972 /* Set inband Tx timeout to 50x10us for 10Full/Half */
973 reg |= 50 <<
974 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
975
976 /* Extend the K1 entry latency for 10 Mbps */
977 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
978 }
979
980 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
981 if (ret_val)
982 return ret_val;
983
984 update_fextnvm6:
985 ew32(FEXTNVM6, fextnvm6);
986 }
987
988 return ret_val;
989 }
990
991 /**
992 * e1000_platform_pm_pch_lpt - Set platform power management values
993 * @hw: pointer to the HW structure
994 * @link: bool indicating link status
995 *
996 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
997 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
998 * when link is up (which must not exceed the maximum latency supported
999 * by the platform), otherwise specify there is no LTR requirement.
1000 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1001 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1002 * Capability register set, on this device LTR is set by writing the
1003 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1004 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1005 * message to the PMC.
1006 **/
1007 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1008 {
1009 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1010 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1011 u16 lat_enc = 0; /* latency encoded */
1012
1013 if (link) {
1014 u16 speed, duplex, scale = 0;
1015 u16 max_snoop, max_nosnoop;
1016 u16 max_ltr_enc; /* max LTR latency encoded */
1017 s64 lat_ns; /* latency (ns) */
1018 s64 value;
1019 u32 rxa;
1020
1021 if (!hw->adapter->max_frame_size) {
1022 e_dbg("max_frame_size not set.\n");
1023 return -E1000_ERR_CONFIG;
1024 }
1025
1026 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1027 if (!speed) {
1028 e_dbg("Speed not set.\n");
1029 return -E1000_ERR_CONFIG;
1030 }
1031
1032 /* Rx Packet Buffer Allocation size (KB) */
1033 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1034
1035 /* Determine the maximum latency tolerated by the device.
1036 *
1037 * Per the PCIe spec, the tolerated latencies are encoded as
1038 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1039 * a 10-bit value (0-1023) to provide a range from 1 ns to
1040 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1041 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1042 */
1043 lat_ns = ((s64)rxa * 1024 -
1044 (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
1045 if (lat_ns < 0)
1046 lat_ns = 0;
1047 else
1048 do_div(lat_ns, speed);
1049
1050 value = lat_ns;
1051 while (value > PCI_LTR_VALUE_MASK) {
1052 scale++;
1053 value = DIV_ROUND_UP(value, (1 << 5));
1054 }
1055 if (scale > E1000_LTRV_SCALE_MAX) {
1056 e_dbg("Invalid LTR latency scale %d\n", scale);
1057 return -E1000_ERR_CONFIG;
1058 }
1059 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1060
1061 /* Determine the maximum latency tolerated by the platform */
1062 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1063 &max_snoop);
1064 pci_read_config_word(hw->adapter->pdev,
1065 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1066 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1067
1068 if (lat_enc > max_ltr_enc)
1069 lat_enc = max_ltr_enc;
1070 }
1071
1072 /* Set Snoop and No-Snoop latencies the same */
1073 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1074 ew32(LTRV, reg);
1075
1076 return 0;
1077 }
1078
1079 /**
1080 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1081 * @hw: pointer to the HW structure
1082 * @to_sx: boolean indicating a system power state transition to Sx
1083 *
1084 * When link is down, configure ULP mode to significantly reduce the power
1085 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1086 * ME firmware to start the ULP configuration. If not on an ME enabled
1087 * system, configure the ULP mode by software.
1088 */
1089 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1090 {
1091 u32 mac_reg;
1092 s32 ret_val = 0;
1093 u16 phy_reg;
1094
1095 if ((hw->mac.type < e1000_pch_lpt) ||
1096 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1097 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1098 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1099 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1100 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1101 return 0;
1102
1103 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1104 /* Request ME configure ULP mode in the PHY */
1105 mac_reg = er32(H2ME);
1106 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1107 ew32(H2ME, mac_reg);
1108
1109 goto out;
1110 }
1111
1112 if (!to_sx) {
1113 int i = 0;
1114
1115 /* Poll up to 5 seconds for Cable Disconnected indication */
1116 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1117 /* Bail if link is re-acquired */
1118 if (er32(STATUS) & E1000_STATUS_LU)
1119 return -E1000_ERR_PHY;
1120
1121 if (i++ == 100)
1122 break;
1123
1124 msleep(50);
1125 }
1126 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1127 (er32(FEXT) &
1128 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1129 }
1130
1131 ret_val = hw->phy.ops.acquire(hw);
1132 if (ret_val)
1133 goto out;
1134
1135 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1136 * LPLU and disable Gig speed when entering ULP
1137 */
1138 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1139 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1140 &phy_reg);
1141 if (ret_val)
1142 goto release;
1143 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1144 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1145 phy_reg);
1146 if (ret_val)
1147 goto release;
1148 }
1149
1150 /* Force SMBus mode in PHY */
1151 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1152 if (ret_val)
1153 goto release;
1154 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1155 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1156
1157 /* Force SMBus mode in MAC */
1158 mac_reg = er32(CTRL_EXT);
1159 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1160 ew32(CTRL_EXT, mac_reg);
1161
1162 /* Set Inband ULP Exit, Reset to SMBus mode and
1163 * Disable SMBus Release on PERST# in PHY
1164 */
1165 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1166 if (ret_val)
1167 goto release;
1168 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1169 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1170 if (to_sx) {
1171 if (er32(WUFC) & E1000_WUFC_LNKC)
1172 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1173
1174 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1175 } else {
1176 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1177 }
1178 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1179
1180 /* Set Disable SMBus Release on PERST# in MAC */
1181 mac_reg = er32(FEXTNVM7);
1182 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1183 ew32(FEXTNVM7, mac_reg);
1184
1185 /* Commit ULP changes in PHY by starting auto ULP configuration */
1186 phy_reg |= I218_ULP_CONFIG1_START;
1187 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1188 release:
1189 hw->phy.ops.release(hw);
1190 out:
1191 if (ret_val)
1192 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1193 else
1194 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1195
1196 return ret_val;
1197 }
1198
1199 /**
1200 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1201 * @hw: pointer to the HW structure
1202 * @force: boolean indicating whether or not to force disabling ULP
1203 *
1204 * Un-configure ULP mode when link is up, the system is transitioned from
1205 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1206 * system, poll for an indication from ME that ULP has been un-configured.
1207 * If not on an ME enabled system, un-configure the ULP mode by software.
1208 *
1209 * During nominal operation, this function is called when link is acquired
1210 * to disable ULP mode (force=false); otherwise, for example when unloading
1211 * the driver or during Sx->S0 transitions, this is called with force=true
1212 * to forcibly disable ULP.
1213 */
1214 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1215 {
1216 s32 ret_val = 0;
1217 u32 mac_reg;
1218 u16 phy_reg;
1219 int i = 0;
1220
1221 if ((hw->mac.type < e1000_pch_lpt) ||
1222 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1223 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1224 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1225 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1226 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1227 return 0;
1228
1229 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1230 if (force) {
1231 /* Request ME un-configure ULP mode in the PHY */
1232 mac_reg = er32(H2ME);
1233 mac_reg &= ~E1000_H2ME_ULP;
1234 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1235 ew32(H2ME, mac_reg);
1236 }
1237
1238 /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1239 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1240 if (i++ == 10) {
1241 ret_val = -E1000_ERR_PHY;
1242 goto out;
1243 }
1244
1245 usleep_range(10000, 20000);
1246 }
1247 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1248
1249 if (force) {
1250 mac_reg = er32(H2ME);
1251 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1252 ew32(H2ME, mac_reg);
1253 } else {
1254 /* Clear H2ME.ULP after ME ULP configuration */
1255 mac_reg = er32(H2ME);
1256 mac_reg &= ~E1000_H2ME_ULP;
1257 ew32(H2ME, mac_reg);
1258 }
1259
1260 goto out;
1261 }
1262
1263 ret_val = hw->phy.ops.acquire(hw);
1264 if (ret_val)
1265 goto out;
1266
1267 if (force)
1268 /* Toggle LANPHYPC Value bit */
1269 e1000_toggle_lanphypc_pch_lpt(hw);
1270
1271 /* Unforce SMBus mode in PHY */
1272 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1273 if (ret_val) {
1274 /* The MAC might be in PCIe mode, so temporarily force to
1275 * SMBus mode in order to access the PHY.
1276 */
1277 mac_reg = er32(CTRL_EXT);
1278 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1279 ew32(CTRL_EXT, mac_reg);
1280
1281 msleep(50);
1282
1283 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1284 &phy_reg);
1285 if (ret_val)
1286 goto release;
1287 }
1288 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1289 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1290
1291 /* Unforce SMBus mode in MAC */
1292 mac_reg = er32(CTRL_EXT);
1293 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1294 ew32(CTRL_EXT, mac_reg);
1295
1296 /* When ULP mode was previously entered, K1 was disabled by the
1297 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1298 */
1299 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1300 if (ret_val)
1301 goto release;
1302 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1303 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1304
1305 /* Clear ULP enabled configuration */
1306 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1307 if (ret_val)
1308 goto release;
1309 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1310 I218_ULP_CONFIG1_STICKY_ULP |
1311 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1312 I218_ULP_CONFIG1_WOL_HOST |
1313 I218_ULP_CONFIG1_INBAND_EXIT |
1314 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1315 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1316
1317 /* Commit ULP changes by starting auto ULP configuration */
1318 phy_reg |= I218_ULP_CONFIG1_START;
1319 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1320
1321 /* Clear Disable SMBus Release on PERST# in MAC */
1322 mac_reg = er32(FEXTNVM7);
1323 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1324 ew32(FEXTNVM7, mac_reg);
1325
1326 release:
1327 hw->phy.ops.release(hw);
1328 if (force) {
1329 e1000_phy_hw_reset(hw);
1330 msleep(50);
1331 }
1332 out:
1333 if (ret_val)
1334 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1335 else
1336 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1337
1338 return ret_val;
1339 }
1340
1341 /**
1342 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1343 * @hw: pointer to the HW structure
1344 *
1345 * Checks to see of the link status of the hardware has changed. If a
1346 * change in link status has been detected, then we read the PHY registers
1347 * to get the current speed/duplex if link exists.
1348 **/
1349 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1350 {
1351 struct e1000_mac_info *mac = &hw->mac;
1352 s32 ret_val, tipg_reg = 0;
1353 u16 emi_addr, emi_val = 0;
1354 bool link;
1355 u16 phy_reg;
1356
1357 /* We only want to go out to the PHY registers to see if Auto-Neg
1358 * has completed and/or if our link status has changed. The
1359 * get_link_status flag is set upon receiving a Link Status
1360 * Change or Rx Sequence Error interrupt.
1361 */
1362 if (!mac->get_link_status)
1363 return 0;
1364
1365 /* First we want to see if the MII Status Register reports
1366 * link. If so, then we want to get the current speed/duplex
1367 * of the PHY.
1368 */
1369 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1370 if (ret_val)
1371 return ret_val;
1372
1373 if (hw->mac.type == e1000_pchlan) {
1374 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1375 if (ret_val)
1376 return ret_val;
1377 }
1378
1379 /* When connected at 10Mbps half-duplex, some parts are excessively
1380 * aggressive resulting in many collisions. To avoid this, increase
1381 * the IPG and reduce Rx latency in the PHY.
1382 */
1383 if (((hw->mac.type == e1000_pch2lan) ||
1384 (hw->mac.type == e1000_pch_lpt) ||
1385 (hw->mac.type == e1000_pch_spt)) && link) {
1386 u32 reg;
1387
1388 reg = er32(STATUS);
1389 tipg_reg = er32(TIPG);
1390 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1391
1392 if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1393 tipg_reg |= 0xFF;
1394 /* Reduce Rx latency in analog PHY */
1395 emi_val = 0;
1396 } else {
1397
1398 /* Roll back the default values */
1399 tipg_reg |= 0x08;
1400 emi_val = 1;
1401 }
1402
1403 ew32(TIPG, tipg_reg);
1404
1405 ret_val = hw->phy.ops.acquire(hw);
1406 if (ret_val)
1407 return ret_val;
1408
1409 if (hw->mac.type == e1000_pch2lan)
1410 emi_addr = I82579_RX_CONFIG;
1411 else
1412 emi_addr = I217_RX_CONFIG;
1413 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1414
1415 hw->phy.ops.release(hw);
1416
1417 if (ret_val)
1418 return ret_val;
1419 }
1420
1421 /* Work-around I218 hang issue */
1422 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1423 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1424 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1425 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3) ||
1426 (hw->mac.type == e1000_pch_spt)) {
1427 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1428 if (ret_val)
1429 return ret_val;
1430 }
1431 if ((hw->mac.type == e1000_pch_lpt) ||
1432 (hw->mac.type == e1000_pch_spt)) {
1433 /* Set platform power management values for
1434 * Latency Tolerance Reporting (LTR)
1435 */
1436 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1437 if (ret_val)
1438 return ret_val;
1439 }
1440
1441 /* Clear link partner's EEE ability */
1442 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1443
1444 /* FEXTNVM6 K1-off workaround */
1445 if (hw->mac.type == e1000_pch_spt) {
1446 u32 pcieanacfg = er32(PCIEANACFG);
1447 u32 fextnvm6 = er32(FEXTNVM6);
1448
1449 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1450 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1451 else
1452 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1453
1454 ew32(FEXTNVM6, fextnvm6);
1455 }
1456
1457 if (!link)
1458 return 0; /* No link detected */
1459
1460 mac->get_link_status = false;
1461
1462 switch (hw->mac.type) {
1463 case e1000_pch2lan:
1464 ret_val = e1000_k1_workaround_lv(hw);
1465 if (ret_val)
1466 return ret_val;
1467 /* fall-thru */
1468 case e1000_pchlan:
1469 if (hw->phy.type == e1000_phy_82578) {
1470 ret_val = e1000_link_stall_workaround_hv(hw);
1471 if (ret_val)
1472 return ret_val;
1473 }
1474
1475 /* Workaround for PCHx parts in half-duplex:
1476 * Set the number of preambles removed from the packet
1477 * when it is passed from the PHY to the MAC to prevent
1478 * the MAC from misinterpreting the packet type.
1479 */
1480 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1481 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1482
1483 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1484 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1485
1486 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1487 break;
1488 default:
1489 break;
1490 }
1491
1492 /* Check if there was DownShift, must be checked
1493 * immediately after link-up
1494 */
1495 e1000e_check_downshift(hw);
1496
1497 /* Enable/Disable EEE after link up */
1498 if (hw->phy.type > e1000_phy_82579) {
1499 ret_val = e1000_set_eee_pchlan(hw);
1500 if (ret_val)
1501 return ret_val;
1502 }
1503
1504 /* If we are forcing speed/duplex, then we simply return since
1505 * we have already determined whether we have link or not.
1506 */
1507 if (!mac->autoneg)
1508 return -E1000_ERR_CONFIG;
1509
1510 /* Auto-Neg is enabled. Auto Speed Detection takes care
1511 * of MAC speed/duplex configuration. So we only need to
1512 * configure Collision Distance in the MAC.
1513 */
1514 mac->ops.config_collision_dist(hw);
1515
1516 /* Configure Flow Control now that Auto-Neg has completed.
1517 * First, we need to restore the desired flow control
1518 * settings because we may have had to re-autoneg with a
1519 * different link partner.
1520 */
1521 ret_val = e1000e_config_fc_after_link_up(hw);
1522 if (ret_val)
1523 e_dbg("Error configuring flow control\n");
1524
1525 return ret_val;
1526 }
1527
1528 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1529 {
1530 struct e1000_hw *hw = &adapter->hw;
1531 s32 rc;
1532
1533 rc = e1000_init_mac_params_ich8lan(hw);
1534 if (rc)
1535 return rc;
1536
1537 rc = e1000_init_nvm_params_ich8lan(hw);
1538 if (rc)
1539 return rc;
1540
1541 switch (hw->mac.type) {
1542 case e1000_ich8lan:
1543 case e1000_ich9lan:
1544 case e1000_ich10lan:
1545 rc = e1000_init_phy_params_ich8lan(hw);
1546 break;
1547 case e1000_pchlan:
1548 case e1000_pch2lan:
1549 case e1000_pch_lpt:
1550 case e1000_pch_spt:
1551 rc = e1000_init_phy_params_pchlan(hw);
1552 break;
1553 default:
1554 break;
1555 }
1556 if (rc)
1557 return rc;
1558
1559 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1560 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1561 */
1562 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1563 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1564 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1565 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1566 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1567
1568 hw->mac.ops.blink_led = NULL;
1569 }
1570
1571 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1572 (adapter->hw.phy.type != e1000_phy_ife))
1573 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1574
1575 /* Enable workaround for 82579 w/ ME enabled */
1576 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1577 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1578 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1579
1580 return 0;
1581 }
1582
1583 static DEFINE_MUTEX(nvm_mutex);
1584
1585 /**
1586 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1587 * @hw: pointer to the HW structure
1588 *
1589 * Acquires the mutex for performing NVM operations.
1590 **/
1591 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1592 {
1593 mutex_lock(&nvm_mutex);
1594
1595 return 0;
1596 }
1597
1598 /**
1599 * e1000_release_nvm_ich8lan - Release NVM mutex
1600 * @hw: pointer to the HW structure
1601 *
1602 * Releases the mutex used while performing NVM operations.
1603 **/
1604 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1605 {
1606 mutex_unlock(&nvm_mutex);
1607 }
1608
1609 /**
1610 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1611 * @hw: pointer to the HW structure
1612 *
1613 * Acquires the software control flag for performing PHY and select
1614 * MAC CSR accesses.
1615 **/
1616 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1617 {
1618 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1619 s32 ret_val = 0;
1620
1621 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1622 &hw->adapter->state)) {
1623 e_dbg("contention for Phy access\n");
1624 return -E1000_ERR_PHY;
1625 }
1626
1627 while (timeout) {
1628 extcnf_ctrl = er32(EXTCNF_CTRL);
1629 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1630 break;
1631
1632 mdelay(1);
1633 timeout--;
1634 }
1635
1636 if (!timeout) {
1637 e_dbg("SW has already locked the resource.\n");
1638 ret_val = -E1000_ERR_CONFIG;
1639 goto out;
1640 }
1641
1642 timeout = SW_FLAG_TIMEOUT;
1643
1644 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1645 ew32(EXTCNF_CTRL, extcnf_ctrl);
1646
1647 while (timeout) {
1648 extcnf_ctrl = er32(EXTCNF_CTRL);
1649 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1650 break;
1651
1652 mdelay(1);
1653 timeout--;
1654 }
1655
1656 if (!timeout) {
1657 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1658 er32(FWSM), extcnf_ctrl);
1659 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1660 ew32(EXTCNF_CTRL, extcnf_ctrl);
1661 ret_val = -E1000_ERR_CONFIG;
1662 goto out;
1663 }
1664
1665 out:
1666 if (ret_val)
1667 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1668
1669 return ret_val;
1670 }
1671
1672 /**
1673 * e1000_release_swflag_ich8lan - Release software control flag
1674 * @hw: pointer to the HW structure
1675 *
1676 * Releases the software control flag for performing PHY and select
1677 * MAC CSR accesses.
1678 **/
1679 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1680 {
1681 u32 extcnf_ctrl;
1682
1683 extcnf_ctrl = er32(EXTCNF_CTRL);
1684
1685 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1686 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1687 ew32(EXTCNF_CTRL, extcnf_ctrl);
1688 } else {
1689 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1690 }
1691
1692 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1693 }
1694
1695 /**
1696 * e1000_check_mng_mode_ich8lan - Checks management mode
1697 * @hw: pointer to the HW structure
1698 *
1699 * This checks if the adapter has any manageability enabled.
1700 * This is a function pointer entry point only called by read/write
1701 * routines for the PHY and NVM parts.
1702 **/
1703 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1704 {
1705 u32 fwsm;
1706
1707 fwsm = er32(FWSM);
1708 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1709 ((fwsm & E1000_FWSM_MODE_MASK) ==
1710 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1711 }
1712
1713 /**
1714 * e1000_check_mng_mode_pchlan - Checks management mode
1715 * @hw: pointer to the HW structure
1716 *
1717 * This checks if the adapter has iAMT enabled.
1718 * This is a function pointer entry point only called by read/write
1719 * routines for the PHY and NVM parts.
1720 **/
1721 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1722 {
1723 u32 fwsm;
1724
1725 fwsm = er32(FWSM);
1726 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1727 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1728 }
1729
1730 /**
1731 * e1000_rar_set_pch2lan - Set receive address register
1732 * @hw: pointer to the HW structure
1733 * @addr: pointer to the receive address
1734 * @index: receive address array register
1735 *
1736 * Sets the receive address array register at index to the address passed
1737 * in by addr. For 82579, RAR[0] is the base address register that is to
1738 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1739 * Use SHRA[0-3] in place of those reserved for ME.
1740 **/
1741 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1742 {
1743 u32 rar_low, rar_high;
1744
1745 /* HW expects these in little endian so we reverse the byte order
1746 * from network order (big endian) to little endian
1747 */
1748 rar_low = ((u32)addr[0] |
1749 ((u32)addr[1] << 8) |
1750 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1751
1752 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1753
1754 /* If MAC address zero, no need to set the AV bit */
1755 if (rar_low || rar_high)
1756 rar_high |= E1000_RAH_AV;
1757
1758 if (index == 0) {
1759 ew32(RAL(index), rar_low);
1760 e1e_flush();
1761 ew32(RAH(index), rar_high);
1762 e1e_flush();
1763 return 0;
1764 }
1765
1766 /* RAR[1-6] are owned by manageability. Skip those and program the
1767 * next address into the SHRA register array.
1768 */
1769 if (index < (u32)(hw->mac.rar_entry_count)) {
1770 s32 ret_val;
1771
1772 ret_val = e1000_acquire_swflag_ich8lan(hw);
1773 if (ret_val)
1774 goto out;
1775
1776 ew32(SHRAL(index - 1), rar_low);
1777 e1e_flush();
1778 ew32(SHRAH(index - 1), rar_high);
1779 e1e_flush();
1780
1781 e1000_release_swflag_ich8lan(hw);
1782
1783 /* verify the register updates */
1784 if ((er32(SHRAL(index - 1)) == rar_low) &&
1785 (er32(SHRAH(index - 1)) == rar_high))
1786 return 0;
1787
1788 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1789 (index - 1), er32(FWSM));
1790 }
1791
1792 out:
1793 e_dbg("Failed to write receive address at index %d\n", index);
1794 return -E1000_ERR_CONFIG;
1795 }
1796
1797 /**
1798 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1799 * @hw: pointer to the HW structure
1800 *
1801 * Get the number of available receive registers that the Host can
1802 * program. SHRA[0-10] are the shared receive address registers
1803 * that are shared between the Host and manageability engine (ME).
1804 * ME can reserve any number of addresses and the host needs to be
1805 * able to tell how many available registers it has access to.
1806 **/
1807 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1808 {
1809 u32 wlock_mac;
1810 u32 num_entries;
1811
1812 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1813 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1814
1815 switch (wlock_mac) {
1816 case 0:
1817 /* All SHRA[0..10] and RAR[0] available */
1818 num_entries = hw->mac.rar_entry_count;
1819 break;
1820 case 1:
1821 /* Only RAR[0] available */
1822 num_entries = 1;
1823 break;
1824 default:
1825 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1826 num_entries = wlock_mac + 1;
1827 break;
1828 }
1829
1830 return num_entries;
1831 }
1832
1833 /**
1834 * e1000_rar_set_pch_lpt - Set receive address registers
1835 * @hw: pointer to the HW structure
1836 * @addr: pointer to the receive address
1837 * @index: receive address array register
1838 *
1839 * Sets the receive address register array at index to the address passed
1840 * in by addr. For LPT, RAR[0] is the base address register that is to
1841 * contain the MAC address. SHRA[0-10] are the shared receive address
1842 * registers that are shared between the Host and manageability engine (ME).
1843 **/
1844 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1845 {
1846 u32 rar_low, rar_high;
1847 u32 wlock_mac;
1848
1849 /* HW expects these in little endian so we reverse the byte order
1850 * from network order (big endian) to little endian
1851 */
1852 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1853 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1854
1855 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1856
1857 /* If MAC address zero, no need to set the AV bit */
1858 if (rar_low || rar_high)
1859 rar_high |= E1000_RAH_AV;
1860
1861 if (index == 0) {
1862 ew32(RAL(index), rar_low);
1863 e1e_flush();
1864 ew32(RAH(index), rar_high);
1865 e1e_flush();
1866 return 0;
1867 }
1868
1869 /* The manageability engine (ME) can lock certain SHRAR registers that
1870 * it is using - those registers are unavailable for use.
1871 */
1872 if (index < hw->mac.rar_entry_count) {
1873 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1874 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1875
1876 /* Check if all SHRAR registers are locked */
1877 if (wlock_mac == 1)
1878 goto out;
1879
1880 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1881 s32 ret_val;
1882
1883 ret_val = e1000_acquire_swflag_ich8lan(hw);
1884
1885 if (ret_val)
1886 goto out;
1887
1888 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1889 e1e_flush();
1890 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1891 e1e_flush();
1892
1893 e1000_release_swflag_ich8lan(hw);
1894
1895 /* verify the register updates */
1896 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1897 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1898 return 0;
1899 }
1900 }
1901
1902 out:
1903 e_dbg("Failed to write receive address at index %d\n", index);
1904 return -E1000_ERR_CONFIG;
1905 }
1906
1907 /**
1908 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1909 * @hw: pointer to the HW structure
1910 *
1911 * Checks if firmware is blocking the reset of the PHY.
1912 * This is a function pointer entry point only called by
1913 * reset routines.
1914 **/
1915 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1916 {
1917 bool blocked = false;
1918 int i = 0;
1919
1920 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
1921 (i++ < 10))
1922 usleep_range(10000, 20000);
1923 return blocked ? E1000_BLK_PHY_RESET : 0;
1924 }
1925
1926 /**
1927 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1928 * @hw: pointer to the HW structure
1929 *
1930 * Assumes semaphore already acquired.
1931 *
1932 **/
1933 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1934 {
1935 u16 phy_data;
1936 u32 strap = er32(STRAP);
1937 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1938 E1000_STRAP_SMT_FREQ_SHIFT;
1939 s32 ret_val;
1940
1941 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1942
1943 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1944 if (ret_val)
1945 return ret_val;
1946
1947 phy_data &= ~HV_SMB_ADDR_MASK;
1948 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1949 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1950
1951 if (hw->phy.type == e1000_phy_i217) {
1952 /* Restore SMBus frequency */
1953 if (freq--) {
1954 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1955 phy_data |= (freq & (1 << 0)) <<
1956 HV_SMB_ADDR_FREQ_LOW_SHIFT;
1957 phy_data |= (freq & (1 << 1)) <<
1958 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1959 } else {
1960 e_dbg("Unsupported SMB frequency in PHY\n");
1961 }
1962 }
1963
1964 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1965 }
1966
1967 /**
1968 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1969 * @hw: pointer to the HW structure
1970 *
1971 * SW should configure the LCD from the NVM extended configuration region
1972 * as a workaround for certain parts.
1973 **/
1974 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1975 {
1976 struct e1000_phy_info *phy = &hw->phy;
1977 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1978 s32 ret_val = 0;
1979 u16 word_addr, reg_data, reg_addr, phy_page = 0;
1980
1981 /* Initialize the PHY from the NVM on ICH platforms. This
1982 * is needed due to an issue where the NVM configuration is
1983 * not properly autoloaded after power transitions.
1984 * Therefore, after each PHY reset, we will load the
1985 * configuration data out of the NVM manually.
1986 */
1987 switch (hw->mac.type) {
1988 case e1000_ich8lan:
1989 if (phy->type != e1000_phy_igp_3)
1990 return ret_val;
1991
1992 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1993 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1994 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1995 break;
1996 }
1997 /* Fall-thru */
1998 case e1000_pchlan:
1999 case e1000_pch2lan:
2000 case e1000_pch_lpt:
2001 case e1000_pch_spt:
2002 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2003 break;
2004 default:
2005 return ret_val;
2006 }
2007
2008 ret_val = hw->phy.ops.acquire(hw);
2009 if (ret_val)
2010 return ret_val;
2011
2012 data = er32(FEXTNVM);
2013 if (!(data & sw_cfg_mask))
2014 goto release;
2015
2016 /* Make sure HW does not configure LCD from PHY
2017 * extended configuration before SW configuration
2018 */
2019 data = er32(EXTCNF_CTRL);
2020 if ((hw->mac.type < e1000_pch2lan) &&
2021 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2022 goto release;
2023
2024 cnf_size = er32(EXTCNF_SIZE);
2025 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2026 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2027 if (!cnf_size)
2028 goto release;
2029
2030 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2031 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2032
2033 if (((hw->mac.type == e1000_pchlan) &&
2034 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2035 (hw->mac.type > e1000_pchlan)) {
2036 /* HW configures the SMBus address and LEDs when the
2037 * OEM and LCD Write Enable bits are set in the NVM.
2038 * When both NVM bits are cleared, SW will configure
2039 * them instead.
2040 */
2041 ret_val = e1000_write_smbus_addr(hw);
2042 if (ret_val)
2043 goto release;
2044
2045 data = er32(LEDCTL);
2046 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2047 (u16)data);
2048 if (ret_val)
2049 goto release;
2050 }
2051
2052 /* Configure LCD from extended configuration region. */
2053
2054 /* cnf_base_addr is in DWORD */
2055 word_addr = (u16)(cnf_base_addr << 1);
2056
2057 for (i = 0; i < cnf_size; i++) {
2058 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2059 if (ret_val)
2060 goto release;
2061
2062 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2063 1, &reg_addr);
2064 if (ret_val)
2065 goto release;
2066
2067 /* Save off the PHY page for future writes. */
2068 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2069 phy_page = reg_data;
2070 continue;
2071 }
2072
2073 reg_addr &= PHY_REG_MASK;
2074 reg_addr |= phy_page;
2075
2076 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2077 if (ret_val)
2078 goto release;
2079 }
2080
2081 release:
2082 hw->phy.ops.release(hw);
2083 return ret_val;
2084 }
2085
2086 /**
2087 * e1000_k1_gig_workaround_hv - K1 Si workaround
2088 * @hw: pointer to the HW structure
2089 * @link: link up bool flag
2090 *
2091 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2092 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2093 * If link is down, the function will restore the default K1 setting located
2094 * in the NVM.
2095 **/
2096 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2097 {
2098 s32 ret_val = 0;
2099 u16 status_reg = 0;
2100 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2101
2102 if (hw->mac.type != e1000_pchlan)
2103 return 0;
2104
2105 /* Wrap the whole flow with the sw flag */
2106 ret_val = hw->phy.ops.acquire(hw);
2107 if (ret_val)
2108 return ret_val;
2109
2110 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2111 if (link) {
2112 if (hw->phy.type == e1000_phy_82578) {
2113 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2114 &status_reg);
2115 if (ret_val)
2116 goto release;
2117
2118 status_reg &= (BM_CS_STATUS_LINK_UP |
2119 BM_CS_STATUS_RESOLVED |
2120 BM_CS_STATUS_SPEED_MASK);
2121
2122 if (status_reg == (BM_CS_STATUS_LINK_UP |
2123 BM_CS_STATUS_RESOLVED |
2124 BM_CS_STATUS_SPEED_1000))
2125 k1_enable = false;
2126 }
2127
2128 if (hw->phy.type == e1000_phy_82577) {
2129 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2130 if (ret_val)
2131 goto release;
2132
2133 status_reg &= (HV_M_STATUS_LINK_UP |
2134 HV_M_STATUS_AUTONEG_COMPLETE |
2135 HV_M_STATUS_SPEED_MASK);
2136
2137 if (status_reg == (HV_M_STATUS_LINK_UP |
2138 HV_M_STATUS_AUTONEG_COMPLETE |
2139 HV_M_STATUS_SPEED_1000))
2140 k1_enable = false;
2141 }
2142
2143 /* Link stall fix for link up */
2144 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2145 if (ret_val)
2146 goto release;
2147
2148 } else {
2149 /* Link stall fix for link down */
2150 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2151 if (ret_val)
2152 goto release;
2153 }
2154
2155 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2156
2157 release:
2158 hw->phy.ops.release(hw);
2159
2160 return ret_val;
2161 }
2162
2163 /**
2164 * e1000_configure_k1_ich8lan - Configure K1 power state
2165 * @hw: pointer to the HW structure
2166 * @enable: K1 state to configure
2167 *
2168 * Configure the K1 power state based on the provided parameter.
2169 * Assumes semaphore already acquired.
2170 *
2171 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2172 **/
2173 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2174 {
2175 s32 ret_val;
2176 u32 ctrl_reg = 0;
2177 u32 ctrl_ext = 0;
2178 u32 reg = 0;
2179 u16 kmrn_reg = 0;
2180
2181 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2182 &kmrn_reg);
2183 if (ret_val)
2184 return ret_val;
2185
2186 if (k1_enable)
2187 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2188 else
2189 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2190
2191 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2192 kmrn_reg);
2193 if (ret_val)
2194 return ret_val;
2195
2196 usleep_range(20, 40);
2197 ctrl_ext = er32(CTRL_EXT);
2198 ctrl_reg = er32(CTRL);
2199
2200 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2201 reg |= E1000_CTRL_FRCSPD;
2202 ew32(CTRL, reg);
2203
2204 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2205 e1e_flush();
2206 usleep_range(20, 40);
2207 ew32(CTRL, ctrl_reg);
2208 ew32(CTRL_EXT, ctrl_ext);
2209 e1e_flush();
2210 usleep_range(20, 40);
2211
2212 return 0;
2213 }
2214
2215 /**
2216 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2217 * @hw: pointer to the HW structure
2218 * @d0_state: boolean if entering d0 or d3 device state
2219 *
2220 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2221 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2222 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2223 **/
2224 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2225 {
2226 s32 ret_val = 0;
2227 u32 mac_reg;
2228 u16 oem_reg;
2229
2230 if (hw->mac.type < e1000_pchlan)
2231 return ret_val;
2232
2233 ret_val = hw->phy.ops.acquire(hw);
2234 if (ret_val)
2235 return ret_val;
2236
2237 if (hw->mac.type == e1000_pchlan) {
2238 mac_reg = er32(EXTCNF_CTRL);
2239 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2240 goto release;
2241 }
2242
2243 mac_reg = er32(FEXTNVM);
2244 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2245 goto release;
2246
2247 mac_reg = er32(PHY_CTRL);
2248
2249 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2250 if (ret_val)
2251 goto release;
2252
2253 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2254
2255 if (d0_state) {
2256 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2257 oem_reg |= HV_OEM_BITS_GBE_DIS;
2258
2259 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2260 oem_reg |= HV_OEM_BITS_LPLU;
2261 } else {
2262 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2263 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2264 oem_reg |= HV_OEM_BITS_GBE_DIS;
2265
2266 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2267 E1000_PHY_CTRL_NOND0A_LPLU))
2268 oem_reg |= HV_OEM_BITS_LPLU;
2269 }
2270
2271 /* Set Restart auto-neg to activate the bits */
2272 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2273 !hw->phy.ops.check_reset_block(hw))
2274 oem_reg |= HV_OEM_BITS_RESTART_AN;
2275
2276 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2277
2278 release:
2279 hw->phy.ops.release(hw);
2280
2281 return ret_val;
2282 }
2283
2284 /**
2285 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2286 * @hw: pointer to the HW structure
2287 **/
2288 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2289 {
2290 s32 ret_val;
2291 u16 data;
2292
2293 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2294 if (ret_val)
2295 return ret_val;
2296
2297 data |= HV_KMRN_MDIO_SLOW;
2298
2299 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2300
2301 return ret_val;
2302 }
2303
2304 /**
2305 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2306 * done after every PHY reset.
2307 **/
2308 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2309 {
2310 s32 ret_val = 0;
2311 u16 phy_data;
2312
2313 if (hw->mac.type != e1000_pchlan)
2314 return 0;
2315
2316 /* Set MDIO slow mode before any other MDIO access */
2317 if (hw->phy.type == e1000_phy_82577) {
2318 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2319 if (ret_val)
2320 return ret_val;
2321 }
2322
2323 if (((hw->phy.type == e1000_phy_82577) &&
2324 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2325 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2326 /* Disable generation of early preamble */
2327 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2328 if (ret_val)
2329 return ret_val;
2330
2331 /* Preamble tuning for SSC */
2332 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2333 if (ret_val)
2334 return ret_val;
2335 }
2336
2337 if (hw->phy.type == e1000_phy_82578) {
2338 /* Return registers to default by doing a soft reset then
2339 * writing 0x3140 to the control register.
2340 */
2341 if (hw->phy.revision < 2) {
2342 e1000e_phy_sw_reset(hw);
2343 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2344 }
2345 }
2346
2347 /* Select page 0 */
2348 ret_val = hw->phy.ops.acquire(hw);
2349 if (ret_val)
2350 return ret_val;
2351
2352 hw->phy.addr = 1;
2353 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2354 hw->phy.ops.release(hw);
2355 if (ret_val)
2356 return ret_val;
2357
2358 /* Configure the K1 Si workaround during phy reset assuming there is
2359 * link so that it disables K1 if link is in 1Gbps.
2360 */
2361 ret_val = e1000_k1_gig_workaround_hv(hw, true);
2362 if (ret_val)
2363 return ret_val;
2364
2365 /* Workaround for link disconnects on a busy hub in half duplex */
2366 ret_val = hw->phy.ops.acquire(hw);
2367 if (ret_val)
2368 return ret_val;
2369 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2370 if (ret_val)
2371 goto release;
2372 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2373 if (ret_val)
2374 goto release;
2375
2376 /* set MSE higher to enable link to stay up when noise is high */
2377 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2378 release:
2379 hw->phy.ops.release(hw);
2380
2381 return ret_val;
2382 }
2383
2384 /**
2385 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2386 * @hw: pointer to the HW structure
2387 **/
2388 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2389 {
2390 u32 mac_reg;
2391 u16 i, phy_reg = 0;
2392 s32 ret_val;
2393
2394 ret_val = hw->phy.ops.acquire(hw);
2395 if (ret_val)
2396 return;
2397 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2398 if (ret_val)
2399 goto release;
2400
2401 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2402 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2403 mac_reg = er32(RAL(i));
2404 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2405 (u16)(mac_reg & 0xFFFF));
2406 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2407 (u16)((mac_reg >> 16) & 0xFFFF));
2408
2409 mac_reg = er32(RAH(i));
2410 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2411 (u16)(mac_reg & 0xFFFF));
2412 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2413 (u16)((mac_reg & E1000_RAH_AV)
2414 >> 16));
2415 }
2416
2417 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2418
2419 release:
2420 hw->phy.ops.release(hw);
2421 }
2422
2423 /**
2424 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2425 * with 82579 PHY
2426 * @hw: pointer to the HW structure
2427 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2428 **/
2429 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2430 {
2431 s32 ret_val = 0;
2432 u16 phy_reg, data;
2433 u32 mac_reg;
2434 u16 i;
2435
2436 if (hw->mac.type < e1000_pch2lan)
2437 return 0;
2438
2439 /* disable Rx path while enabling/disabling workaround */
2440 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2441 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2442 if (ret_val)
2443 return ret_val;
2444
2445 if (enable) {
2446 /* Write Rx addresses (rar_entry_count for RAL/H, and
2447 * SHRAL/H) and initial CRC values to the MAC
2448 */
2449 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2450 u8 mac_addr[ETH_ALEN] = { 0 };
2451 u32 addr_high, addr_low;
2452
2453 addr_high = er32(RAH(i));
2454 if (!(addr_high & E1000_RAH_AV))
2455 continue;
2456 addr_low = er32(RAL(i));
2457 mac_addr[0] = (addr_low & 0xFF);
2458 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2459 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2460 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2461 mac_addr[4] = (addr_high & 0xFF);
2462 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2463
2464 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2465 }
2466
2467 /* Write Rx addresses to the PHY */
2468 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2469
2470 /* Enable jumbo frame workaround in the MAC */
2471 mac_reg = er32(FFLT_DBG);
2472 mac_reg &= ~(1 << 14);
2473 mac_reg |= (7 << 15);
2474 ew32(FFLT_DBG, mac_reg);
2475
2476 mac_reg = er32(RCTL);
2477 mac_reg |= E1000_RCTL_SECRC;
2478 ew32(RCTL, mac_reg);
2479
2480 ret_val = e1000e_read_kmrn_reg(hw,
2481 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2482 &data);
2483 if (ret_val)
2484 return ret_val;
2485 ret_val = e1000e_write_kmrn_reg(hw,
2486 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2487 data | (1 << 0));
2488 if (ret_val)
2489 return ret_val;
2490 ret_val = e1000e_read_kmrn_reg(hw,
2491 E1000_KMRNCTRLSTA_HD_CTRL,
2492 &data);
2493 if (ret_val)
2494 return ret_val;
2495 data &= ~(0xF << 8);
2496 data |= (0xB << 8);
2497 ret_val = e1000e_write_kmrn_reg(hw,
2498 E1000_KMRNCTRLSTA_HD_CTRL,
2499 data);
2500 if (ret_val)
2501 return ret_val;
2502
2503 /* Enable jumbo frame workaround in the PHY */
2504 e1e_rphy(hw, PHY_REG(769, 23), &data);
2505 data &= ~(0x7F << 5);
2506 data |= (0x37 << 5);
2507 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2508 if (ret_val)
2509 return ret_val;
2510 e1e_rphy(hw, PHY_REG(769, 16), &data);
2511 data &= ~(1 << 13);
2512 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2513 if (ret_val)
2514 return ret_val;
2515 e1e_rphy(hw, PHY_REG(776, 20), &data);
2516 data &= ~(0x3FF << 2);
2517 data |= (E1000_TX_PTR_GAP << 2);
2518 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2519 if (ret_val)
2520 return ret_val;
2521 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2522 if (ret_val)
2523 return ret_val;
2524 e1e_rphy(hw, HV_PM_CTRL, &data);
2525 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2526 if (ret_val)
2527 return ret_val;
2528 } else {
2529 /* Write MAC register values back to h/w defaults */
2530 mac_reg = er32(FFLT_DBG);
2531 mac_reg &= ~(0xF << 14);
2532 ew32(FFLT_DBG, mac_reg);
2533
2534 mac_reg = er32(RCTL);
2535 mac_reg &= ~E1000_RCTL_SECRC;
2536 ew32(RCTL, mac_reg);
2537
2538 ret_val = e1000e_read_kmrn_reg(hw,
2539 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2540 &data);
2541 if (ret_val)
2542 return ret_val;
2543 ret_val = e1000e_write_kmrn_reg(hw,
2544 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2545 data & ~(1 << 0));
2546 if (ret_val)
2547 return ret_val;
2548 ret_val = e1000e_read_kmrn_reg(hw,
2549 E1000_KMRNCTRLSTA_HD_CTRL,
2550 &data);
2551 if (ret_val)
2552 return ret_val;
2553 data &= ~(0xF << 8);
2554 data |= (0xB << 8);
2555 ret_val = e1000e_write_kmrn_reg(hw,
2556 E1000_KMRNCTRLSTA_HD_CTRL,
2557 data);
2558 if (ret_val)
2559 return ret_val;
2560
2561 /* Write PHY register values back to h/w defaults */
2562 e1e_rphy(hw, PHY_REG(769, 23), &data);
2563 data &= ~(0x7F << 5);
2564 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2565 if (ret_val)
2566 return ret_val;
2567 e1e_rphy(hw, PHY_REG(769, 16), &data);
2568 data |= (1 << 13);
2569 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2570 if (ret_val)
2571 return ret_val;
2572 e1e_rphy(hw, PHY_REG(776, 20), &data);
2573 data &= ~(0x3FF << 2);
2574 data |= (0x8 << 2);
2575 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2576 if (ret_val)
2577 return ret_val;
2578 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2579 if (ret_val)
2580 return ret_val;
2581 e1e_rphy(hw, HV_PM_CTRL, &data);
2582 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2583 if (ret_val)
2584 return ret_val;
2585 }
2586
2587 /* re-enable Rx path after enabling/disabling workaround */
2588 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2589 }
2590
2591 /**
2592 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2593 * done after every PHY reset.
2594 **/
2595 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2596 {
2597 s32 ret_val = 0;
2598
2599 if (hw->mac.type != e1000_pch2lan)
2600 return 0;
2601
2602 /* Set MDIO slow mode before any other MDIO access */
2603 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2604 if (ret_val)
2605 return ret_val;
2606
2607 ret_val = hw->phy.ops.acquire(hw);
2608 if (ret_val)
2609 return ret_val;
2610 /* set MSE higher to enable link to stay up when noise is high */
2611 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2612 if (ret_val)
2613 goto release;
2614 /* drop link after 5 times MSE threshold was reached */
2615 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2616 release:
2617 hw->phy.ops.release(hw);
2618
2619 return ret_val;
2620 }
2621
2622 /**
2623 * e1000_k1_gig_workaround_lv - K1 Si workaround
2624 * @hw: pointer to the HW structure
2625 *
2626 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2627 * Disable K1 in 1000Mbps and 100Mbps
2628 **/
2629 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2630 {
2631 s32 ret_val = 0;
2632 u16 status_reg = 0;
2633
2634 if (hw->mac.type != e1000_pch2lan)
2635 return 0;
2636
2637 /* Set K1 beacon duration based on 10Mbs speed */
2638 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2639 if (ret_val)
2640 return ret_val;
2641
2642 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2643 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2644 if (status_reg &
2645 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2646 u16 pm_phy_reg;
2647
2648 /* LV 1G/100 Packet drop issue wa */
2649 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2650 if (ret_val)
2651 return ret_val;
2652 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2653 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2654 if (ret_val)
2655 return ret_val;
2656 } else {
2657 u32 mac_reg;
2658
2659 mac_reg = er32(FEXTNVM4);
2660 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2661 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2662 ew32(FEXTNVM4, mac_reg);
2663 }
2664 }
2665
2666 return ret_val;
2667 }
2668
2669 /**
2670 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2671 * @hw: pointer to the HW structure
2672 * @gate: boolean set to true to gate, false to ungate
2673 *
2674 * Gate/ungate the automatic PHY configuration via hardware; perform
2675 * the configuration via software instead.
2676 **/
2677 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2678 {
2679 u32 extcnf_ctrl;
2680
2681 if (hw->mac.type < e1000_pch2lan)
2682 return;
2683
2684 extcnf_ctrl = er32(EXTCNF_CTRL);
2685
2686 if (gate)
2687 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2688 else
2689 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2690
2691 ew32(EXTCNF_CTRL, extcnf_ctrl);
2692 }
2693
2694 /**
2695 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2696 * @hw: pointer to the HW structure
2697 *
2698 * Check the appropriate indication the MAC has finished configuring the
2699 * PHY after a software reset.
2700 **/
2701 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2702 {
2703 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2704
2705 /* Wait for basic configuration completes before proceeding */
2706 do {
2707 data = er32(STATUS);
2708 data &= E1000_STATUS_LAN_INIT_DONE;
2709 usleep_range(100, 200);
2710 } while ((!data) && --loop);
2711
2712 /* If basic configuration is incomplete before the above loop
2713 * count reaches 0, loading the configuration from NVM will
2714 * leave the PHY in a bad state possibly resulting in no link.
2715 */
2716 if (loop == 0)
2717 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2718
2719 /* Clear the Init Done bit for the next init event */
2720 data = er32(STATUS);
2721 data &= ~E1000_STATUS_LAN_INIT_DONE;
2722 ew32(STATUS, data);
2723 }
2724
2725 /**
2726 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2727 * @hw: pointer to the HW structure
2728 **/
2729 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2730 {
2731 s32 ret_val = 0;
2732 u16 reg;
2733
2734 if (hw->phy.ops.check_reset_block(hw))
2735 return 0;
2736
2737 /* Allow time for h/w to get to quiescent state after reset */
2738 usleep_range(10000, 20000);
2739
2740 /* Perform any necessary post-reset workarounds */
2741 switch (hw->mac.type) {
2742 case e1000_pchlan:
2743 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2744 if (ret_val)
2745 return ret_val;
2746 break;
2747 case e1000_pch2lan:
2748 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2749 if (ret_val)
2750 return ret_val;
2751 break;
2752 default:
2753 break;
2754 }
2755
2756 /* Clear the host wakeup bit after lcd reset */
2757 if (hw->mac.type >= e1000_pchlan) {
2758 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2759 reg &= ~BM_WUC_HOST_WU_BIT;
2760 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2761 }
2762
2763 /* Configure the LCD with the extended configuration region in NVM */
2764 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2765 if (ret_val)
2766 return ret_val;
2767
2768 /* Configure the LCD with the OEM bits in NVM */
2769 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2770
2771 if (hw->mac.type == e1000_pch2lan) {
2772 /* Ungate automatic PHY configuration on non-managed 82579 */
2773 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2774 usleep_range(10000, 20000);
2775 e1000_gate_hw_phy_config_ich8lan(hw, false);
2776 }
2777
2778 /* Set EEE LPI Update Timer to 200usec */
2779 ret_val = hw->phy.ops.acquire(hw);
2780 if (ret_val)
2781 return ret_val;
2782 ret_val = e1000_write_emi_reg_locked(hw,
2783 I82579_LPI_UPDATE_TIMER,
2784 0x1387);
2785 hw->phy.ops.release(hw);
2786 }
2787
2788 return ret_val;
2789 }
2790
2791 /**
2792 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2793 * @hw: pointer to the HW structure
2794 *
2795 * Resets the PHY
2796 * This is a function pointer entry point called by drivers
2797 * or other shared routines.
2798 **/
2799 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2800 {
2801 s32 ret_val = 0;
2802
2803 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2804 if ((hw->mac.type == e1000_pch2lan) &&
2805 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2806 e1000_gate_hw_phy_config_ich8lan(hw, true);
2807
2808 ret_val = e1000e_phy_hw_reset_generic(hw);
2809 if (ret_val)
2810 return ret_val;
2811
2812 return e1000_post_phy_reset_ich8lan(hw);
2813 }
2814
2815 /**
2816 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2817 * @hw: pointer to the HW structure
2818 * @active: true to enable LPLU, false to disable
2819 *
2820 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2821 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2822 * the phy speed. This function will manually set the LPLU bit and restart
2823 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2824 * since it configures the same bit.
2825 **/
2826 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2827 {
2828 s32 ret_val;
2829 u16 oem_reg;
2830
2831 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2832 if (ret_val)
2833 return ret_val;
2834
2835 if (active)
2836 oem_reg |= HV_OEM_BITS_LPLU;
2837 else
2838 oem_reg &= ~HV_OEM_BITS_LPLU;
2839
2840 if (!hw->phy.ops.check_reset_block(hw))
2841 oem_reg |= HV_OEM_BITS_RESTART_AN;
2842
2843 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2844 }
2845
2846 /**
2847 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2848 * @hw: pointer to the HW structure
2849 * @active: true to enable LPLU, false to disable
2850 *
2851 * Sets the LPLU D0 state according to the active flag. When
2852 * activating LPLU this function also disables smart speed
2853 * and vice versa. LPLU will not be activated unless the
2854 * device autonegotiation advertisement meets standards of
2855 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2856 * This is a function pointer entry point only called by
2857 * PHY setup routines.
2858 **/
2859 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2860 {
2861 struct e1000_phy_info *phy = &hw->phy;
2862 u32 phy_ctrl;
2863 s32 ret_val = 0;
2864 u16 data;
2865
2866 if (phy->type == e1000_phy_ife)
2867 return 0;
2868
2869 phy_ctrl = er32(PHY_CTRL);
2870
2871 if (active) {
2872 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2873 ew32(PHY_CTRL, phy_ctrl);
2874
2875 if (phy->type != e1000_phy_igp_3)
2876 return 0;
2877
2878 /* Call gig speed drop workaround on LPLU before accessing
2879 * any PHY registers
2880 */
2881 if (hw->mac.type == e1000_ich8lan)
2882 e1000e_gig_downshift_workaround_ich8lan(hw);
2883
2884 /* When LPLU is enabled, we should disable SmartSpeed */
2885 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2886 if (ret_val)
2887 return ret_val;
2888 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2889 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2890 if (ret_val)
2891 return ret_val;
2892 } else {
2893 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2894 ew32(PHY_CTRL, phy_ctrl);
2895
2896 if (phy->type != e1000_phy_igp_3)
2897 return 0;
2898
2899 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
2900 * during Dx states where the power conservation is most
2901 * important. During driver activity we should enable
2902 * SmartSpeed, so performance is maintained.
2903 */
2904 if (phy->smart_speed == e1000_smart_speed_on) {
2905 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2906 &data);
2907 if (ret_val)
2908 return ret_val;
2909
2910 data |= IGP01E1000_PSCFR_SMART_SPEED;
2911 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2912 data);
2913 if (ret_val)
2914 return ret_val;
2915 } else if (phy->smart_speed == e1000_smart_speed_off) {
2916 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2917 &data);
2918 if (ret_val)
2919 return ret_val;
2920
2921 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2922 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2923 data);
2924 if (ret_val)
2925 return ret_val;
2926 }
2927 }
2928
2929 return 0;
2930 }
2931
2932 /**
2933 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2934 * @hw: pointer to the HW structure
2935 * @active: true to enable LPLU, false to disable
2936 *
2937 * Sets the LPLU D3 state according to the active flag. When
2938 * activating LPLU this function also disables smart speed
2939 * and vice versa. LPLU will not be activated unless the
2940 * device autonegotiation advertisement meets standards of
2941 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2942 * This is a function pointer entry point only called by
2943 * PHY setup routines.
2944 **/
2945 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2946 {
2947 struct e1000_phy_info *phy = &hw->phy;
2948 u32 phy_ctrl;
2949 s32 ret_val = 0;
2950 u16 data;
2951
2952 phy_ctrl = er32(PHY_CTRL);
2953
2954 if (!active) {
2955 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2956 ew32(PHY_CTRL, phy_ctrl);
2957
2958 if (phy->type != e1000_phy_igp_3)
2959 return 0;
2960
2961 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
2962 * during Dx states where the power conservation is most
2963 * important. During driver activity we should enable
2964 * SmartSpeed, so performance is maintained.
2965 */
2966 if (phy->smart_speed == e1000_smart_speed_on) {
2967 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2968 &data);
2969 if (ret_val)
2970 return ret_val;
2971
2972 data |= IGP01E1000_PSCFR_SMART_SPEED;
2973 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2974 data);
2975 if (ret_val)
2976 return ret_val;
2977 } else if (phy->smart_speed == e1000_smart_speed_off) {
2978 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2979 &data);
2980 if (ret_val)
2981 return ret_val;
2982
2983 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2984 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2985 data);
2986 if (ret_val)
2987 return ret_val;
2988 }
2989 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2990 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2991 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2992 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2993 ew32(PHY_CTRL, phy_ctrl);
2994
2995 if (phy->type != e1000_phy_igp_3)
2996 return 0;
2997
2998 /* Call gig speed drop workaround on LPLU before accessing
2999 * any PHY registers
3000 */
3001 if (hw->mac.type == e1000_ich8lan)
3002 e1000e_gig_downshift_workaround_ich8lan(hw);
3003
3004 /* When LPLU is enabled, we should disable SmartSpeed */
3005 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3006 if (ret_val)
3007 return ret_val;
3008
3009 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3010 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3011 }
3012
3013 return ret_val;
3014 }
3015
3016 /**
3017 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3018 * @hw: pointer to the HW structure
3019 * @bank: pointer to the variable that returns the active bank
3020 *
3021 * Reads signature byte from the NVM using the flash access registers.
3022 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3023 **/
3024 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3025 {
3026 u32 eecd;
3027 struct e1000_nvm_info *nvm = &hw->nvm;
3028 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3029 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3030 u8 sig_byte = 0;
3031 s32 ret_val;
3032
3033 switch (hw->mac.type) {
3034 /* In SPT, read from the CTRL_EXT reg instead of
3035 * accessing the sector valid bits from the nvm
3036 */
3037 case e1000_pch_spt:
3038 *bank = er32(CTRL_EXT)
3039 & E1000_CTRL_EXT_NVMVS;
3040 if ((*bank == 0) || (*bank == 1)) {
3041 e_dbg("ERROR: No valid NVM bank present\n");
3042 return -E1000_ERR_NVM;
3043 } else {
3044 *bank = *bank - 2;
3045 return 0;
3046 }
3047 break;
3048 case e1000_ich8lan:
3049 case e1000_ich9lan:
3050 eecd = er32(EECD);
3051 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3052 E1000_EECD_SEC1VAL_VALID_MASK) {
3053 if (eecd & E1000_EECD_SEC1VAL)
3054 *bank = 1;
3055 else
3056 *bank = 0;
3057
3058 return 0;
3059 }
3060 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3061 /* fall-thru */
3062 default:
3063 /* set bank to 0 in case flash read fails */
3064 *bank = 0;
3065
3066 /* Check bank 0 */
3067 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3068 &sig_byte);
3069 if (ret_val)
3070 return ret_val;
3071 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3072 E1000_ICH_NVM_SIG_VALUE) {
3073 *bank = 0;
3074 return 0;
3075 }
3076
3077 /* Check bank 1 */
3078 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3079 bank1_offset,
3080 &sig_byte);
3081 if (ret_val)
3082 return ret_val;
3083 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3084 E1000_ICH_NVM_SIG_VALUE) {
3085 *bank = 1;
3086 return 0;
3087 }
3088
3089 e_dbg("ERROR: No valid NVM bank present\n");
3090 return -E1000_ERR_NVM;
3091 }
3092 }
3093
3094 /**
3095 * e1000_read_nvm_spt - NVM access for SPT
3096 * @hw: pointer to the HW structure
3097 * @offset: The offset (in bytes) of the word(s) to read.
3098 * @words: Size of data to read in words.
3099 * @data: pointer to the word(s) to read at offset.
3100 *
3101 * Reads a word(s) from the NVM
3102 **/
3103 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3104 u16 *data)
3105 {
3106 struct e1000_nvm_info *nvm = &hw->nvm;
3107 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3108 u32 act_offset;
3109 s32 ret_val = 0;
3110 u32 bank = 0;
3111 u32 dword = 0;
3112 u16 offset_to_read;
3113 u16 i;
3114
3115 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3116 (words == 0)) {
3117 e_dbg("nvm parameter(s) out of bounds\n");
3118 ret_val = -E1000_ERR_NVM;
3119 goto out;
3120 }
3121
3122 nvm->ops.acquire(hw);
3123
3124 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3125 if (ret_val) {
3126 e_dbg("Could not detect valid bank, assuming bank 0\n");
3127 bank = 0;
3128 }
3129
3130 act_offset = (bank) ? nvm->flash_bank_size : 0;
3131 act_offset += offset;
3132
3133 ret_val = 0;
3134
3135 for (i = 0; i < words; i += 2) {
3136 if (words - i == 1) {
3137 if (dev_spec->shadow_ram[offset + i].modified) {
3138 data[i] =
3139 dev_spec->shadow_ram[offset + i].value;
3140 } else {
3141 offset_to_read = act_offset + i -
3142 ((act_offset + i) % 2);
3143 ret_val =
3144 e1000_read_flash_dword_ich8lan(hw,
3145 offset_to_read,
3146 &dword);
3147 if (ret_val)
3148 break;
3149 if ((act_offset + i) % 2 == 0)
3150 data[i] = (u16)(dword & 0xFFFF);
3151 else
3152 data[i] = (u16)((dword >> 16) & 0xFFFF);
3153 }
3154 } else {
3155 offset_to_read = act_offset + i;
3156 if (!(dev_spec->shadow_ram[offset + i].modified) ||
3157 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3158 ret_val =
3159 e1000_read_flash_dword_ich8lan(hw,
3160 offset_to_read,
3161 &dword);
3162 if (ret_val)
3163 break;
3164 }
3165 if (dev_spec->shadow_ram[offset + i].modified)
3166 data[i] =
3167 dev_spec->shadow_ram[offset + i].value;
3168 else
3169 data[i] = (u16)(dword & 0xFFFF);
3170 if (dev_spec->shadow_ram[offset + i].modified)
3171 data[i + 1] =
3172 dev_spec->shadow_ram[offset + i + 1].value;
3173 else
3174 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3175 }
3176 }
3177
3178 nvm->ops.release(hw);
3179
3180 out:
3181 if (ret_val)
3182 e_dbg("NVM read error: %d\n", ret_val);
3183
3184 return ret_val;
3185 }
3186
3187 /**
3188 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3189 * @hw: pointer to the HW structure
3190 * @offset: The offset (in bytes) of the word(s) to read.
3191 * @words: Size of data to read in words
3192 * @data: Pointer to the word(s) to read at offset.
3193 *
3194 * Reads a word(s) from the NVM using the flash access registers.
3195 **/
3196 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3197 u16 *data)
3198 {
3199 struct e1000_nvm_info *nvm = &hw->nvm;
3200 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3201 u32 act_offset;
3202 s32 ret_val = 0;
3203 u32 bank = 0;
3204 u16 i, word;
3205
3206 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3207 (words == 0)) {
3208 e_dbg("nvm parameter(s) out of bounds\n");
3209 ret_val = -E1000_ERR_NVM;
3210 goto out;
3211 }
3212
3213 nvm->ops.acquire(hw);
3214
3215 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3216 if (ret_val) {
3217 e_dbg("Could not detect valid bank, assuming bank 0\n");
3218 bank = 0;
3219 }
3220
3221 act_offset = (bank) ? nvm->flash_bank_size : 0;
3222 act_offset += offset;
3223
3224 ret_val = 0;
3225 for (i = 0; i < words; i++) {
3226 if (dev_spec->shadow_ram[offset + i].modified) {
3227 data[i] = dev_spec->shadow_ram[offset + i].value;
3228 } else {
3229 ret_val = e1000_read_flash_word_ich8lan(hw,
3230 act_offset + i,
3231 &word);
3232 if (ret_val)
3233 break;
3234 data[i] = word;
3235 }
3236 }
3237
3238 nvm->ops.release(hw);
3239
3240 out:
3241 if (ret_val)
3242 e_dbg("NVM read error: %d\n", ret_val);
3243
3244 return ret_val;
3245 }
3246
3247 /**
3248 * e1000_flash_cycle_init_ich8lan - Initialize flash
3249 * @hw: pointer to the HW structure
3250 *
3251 * This function does initial flash setup so that a new read/write/erase cycle
3252 * can be started.
3253 **/
3254 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3255 {
3256 union ich8_hws_flash_status hsfsts;
3257 s32 ret_val = -E1000_ERR_NVM;
3258
3259 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3260
3261 /* Check if the flash descriptor is valid */
3262 if (!hsfsts.hsf_status.fldesvalid) {
3263 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3264 return -E1000_ERR_NVM;
3265 }
3266
3267 /* Clear FCERR and DAEL in hw status by writing 1 */
3268 hsfsts.hsf_status.flcerr = 1;
3269 hsfsts.hsf_status.dael = 1;
3270 if (hw->mac.type == e1000_pch_spt)
3271 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3272 else
3273 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3274
3275 /* Either we should have a hardware SPI cycle in progress
3276 * bit to check against, in order to start a new cycle or
3277 * FDONE bit should be changed in the hardware so that it
3278 * is 1 after hardware reset, which can then be used as an
3279 * indication whether a cycle is in progress or has been
3280 * completed.
3281 */
3282
3283 if (!hsfsts.hsf_status.flcinprog) {
3284 /* There is no cycle running at present,
3285 * so we can start a cycle.
3286 * Begin by setting Flash Cycle Done.
3287 */
3288 hsfsts.hsf_status.flcdone = 1;
3289 if (hw->mac.type == e1000_pch_spt)
3290 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3291 else
3292 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3293 ret_val = 0;
3294 } else {
3295 s32 i;
3296
3297 /* Otherwise poll for sometime so the current
3298 * cycle has a chance to end before giving up.
3299 */
3300 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3301 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3302 if (!hsfsts.hsf_status.flcinprog) {
3303 ret_val = 0;
3304 break;
3305 }
3306 udelay(1);
3307 }
3308 if (!ret_val) {
3309 /* Successful in waiting for previous cycle to timeout,
3310 * now set the Flash Cycle Done.
3311 */
3312 hsfsts.hsf_status.flcdone = 1;
3313 if (hw->mac.type == e1000_pch_spt)
3314 ew32flash(ICH_FLASH_HSFSTS,
3315 hsfsts.regval & 0xFFFF);
3316 else
3317 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3318 } else {
3319 e_dbg("Flash controller busy, cannot get access\n");
3320 }
3321 }
3322
3323 return ret_val;
3324 }
3325
3326 /**
3327 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3328 * @hw: pointer to the HW structure
3329 * @timeout: maximum time to wait for completion
3330 *
3331 * This function starts a flash cycle and waits for its completion.
3332 **/
3333 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3334 {
3335 union ich8_hws_flash_ctrl hsflctl;
3336 union ich8_hws_flash_status hsfsts;
3337 u32 i = 0;
3338
3339 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3340 if (hw->mac.type == e1000_pch_spt)
3341 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3342 else
3343 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3344 hsflctl.hsf_ctrl.flcgo = 1;
3345
3346 if (hw->mac.type == e1000_pch_spt)
3347 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3348 else
3349 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3350
3351 /* wait till FDONE bit is set to 1 */
3352 do {
3353 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3354 if (hsfsts.hsf_status.flcdone)
3355 break;
3356 udelay(1);
3357 } while (i++ < timeout);
3358
3359 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3360 return 0;
3361
3362 return -E1000_ERR_NVM;
3363 }
3364
3365 /**
3366 * e1000_read_flash_dword_ich8lan - Read dword from flash
3367 * @hw: pointer to the HW structure
3368 * @offset: offset to data location
3369 * @data: pointer to the location for storing the data
3370 *
3371 * Reads the flash dword at offset into data. Offset is converted
3372 * to bytes before read.
3373 **/
3374 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3375 u32 *data)
3376 {
3377 /* Must convert word offset into bytes. */
3378 offset <<= 1;
3379 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3380 }
3381
3382 /**
3383 * e1000_read_flash_word_ich8lan - Read word from flash
3384 * @hw: pointer to the HW structure
3385 * @offset: offset to data location
3386 * @data: pointer to the location for storing the data
3387 *
3388 * Reads the flash word at offset into data. Offset is converted
3389 * to bytes before read.
3390 **/
3391 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3392 u16 *data)
3393 {
3394 /* Must convert offset into bytes. */
3395 offset <<= 1;
3396
3397 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3398 }
3399
3400 /**
3401 * e1000_read_flash_byte_ich8lan - Read byte from flash
3402 * @hw: pointer to the HW structure
3403 * @offset: The offset of the byte to read.
3404 * @data: Pointer to a byte to store the value read.
3405 *
3406 * Reads a single byte from the NVM using the flash access registers.
3407 **/
3408 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3409 u8 *data)
3410 {
3411 s32 ret_val;
3412 u16 word = 0;
3413
3414 /* In SPT, only 32 bits access is supported,
3415 * so this function should not be called.
3416 */
3417 if (hw->mac.type == e1000_pch_spt)
3418 return -E1000_ERR_NVM;
3419 else
3420 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3421
3422 if (ret_val)
3423 return ret_val;
3424
3425 *data = (u8)word;
3426
3427 return 0;
3428 }
3429
3430 /**
3431 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3432 * @hw: pointer to the HW structure
3433 * @offset: The offset (in bytes) of the byte or word to read.
3434 * @size: Size of data to read, 1=byte 2=word
3435 * @data: Pointer to the word to store the value read.
3436 *
3437 * Reads a byte or word from the NVM using the flash access registers.
3438 **/
3439 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3440 u8 size, u16 *data)
3441 {
3442 union ich8_hws_flash_status hsfsts;
3443 union ich8_hws_flash_ctrl hsflctl;
3444 u32 flash_linear_addr;
3445 u32 flash_data = 0;
3446 s32 ret_val = -E1000_ERR_NVM;
3447 u8 count = 0;
3448
3449 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3450 return -E1000_ERR_NVM;
3451
3452 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3453 hw->nvm.flash_base_addr);
3454
3455 do {
3456 udelay(1);
3457 /* Steps */
3458 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3459 if (ret_val)
3460 break;
3461
3462 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3463 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3464 hsflctl.hsf_ctrl.fldbcount = size - 1;
3465 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3466 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3467
3468 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3469
3470 ret_val =
3471 e1000_flash_cycle_ich8lan(hw,
3472 ICH_FLASH_READ_COMMAND_TIMEOUT);
3473
3474 /* Check if FCERR is set to 1, if set to 1, clear it
3475 * and try the whole sequence a few more times, else
3476 * read in (shift in) the Flash Data0, the order is
3477 * least significant byte first msb to lsb
3478 */
3479 if (!ret_val) {
3480 flash_data = er32flash(ICH_FLASH_FDATA0);
3481 if (size == 1)
3482 *data = (u8)(flash_data & 0x000000FF);
3483 else if (size == 2)
3484 *data = (u16)(flash_data & 0x0000FFFF);
3485 break;
3486 } else {
3487 /* If we've gotten here, then things are probably
3488 * completely hosed, but if the error condition is
3489 * detected, it won't hurt to give it another try...
3490 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3491 */
3492 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3493 if (hsfsts.hsf_status.flcerr) {
3494 /* Repeat for some time before giving up. */
3495 continue;
3496 } else if (!hsfsts.hsf_status.flcdone) {
3497 e_dbg("Timeout error - flash cycle did not complete.\n");
3498 break;
3499 }
3500 }
3501 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3502
3503 return ret_val;
3504 }
3505
3506 /**
3507 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3508 * @hw: pointer to the HW structure
3509 * @offset: The offset (in bytes) of the dword to read.
3510 * @data: Pointer to the dword to store the value read.
3511 *
3512 * Reads a byte or word from the NVM using the flash access registers.
3513 **/
3514
3515 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3516 u32 *data)
3517 {
3518 union ich8_hws_flash_status hsfsts;
3519 union ich8_hws_flash_ctrl hsflctl;
3520 u32 flash_linear_addr;
3521 s32 ret_val = -E1000_ERR_NVM;
3522 u8 count = 0;
3523
3524 if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3525 hw->mac.type != e1000_pch_spt)
3526 return -E1000_ERR_NVM;
3527 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3528 hw->nvm.flash_base_addr);
3529
3530 do {
3531 udelay(1);
3532 /* Steps */
3533 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3534 if (ret_val)
3535 break;
3536 /* In SPT, This register is in Lan memory space, not flash.
3537 * Therefore, only 32 bit access is supported
3538 */
3539 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3540
3541 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3542 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3543 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3544 /* In SPT, This register is in Lan memory space, not flash.
3545 * Therefore, only 32 bit access is supported
3546 */
3547 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3548 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3549
3550 ret_val =
3551 e1000_flash_cycle_ich8lan(hw,
3552 ICH_FLASH_READ_COMMAND_TIMEOUT);
3553
3554 /* Check if FCERR is set to 1, if set to 1, clear it
3555 * and try the whole sequence a few more times, else
3556 * read in (shift in) the Flash Data0, the order is
3557 * least significant byte first msb to lsb
3558 */
3559 if (!ret_val) {
3560 *data = er32flash(ICH_FLASH_FDATA0);
3561 break;
3562 } else {
3563 /* If we've gotten here, then things are probably
3564 * completely hosed, but if the error condition is
3565 * detected, it won't hurt to give it another try...
3566 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3567 */
3568 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3569 if (hsfsts.hsf_status.flcerr) {
3570 /* Repeat for some time before giving up. */
3571 continue;
3572 } else if (!hsfsts.hsf_status.flcdone) {
3573 e_dbg("Timeout error - flash cycle did not complete.\n");
3574 break;
3575 }
3576 }
3577 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3578
3579 return ret_val;
3580 }
3581
3582 /**
3583 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3584 * @hw: pointer to the HW structure
3585 * @offset: The offset (in bytes) of the word(s) to write.
3586 * @words: Size of data to write in words
3587 * @data: Pointer to the word(s) to write at offset.
3588 *
3589 * Writes a byte or word to the NVM using the flash access registers.
3590 **/
3591 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3592 u16 *data)
3593 {
3594 struct e1000_nvm_info *nvm = &hw->nvm;
3595 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3596 u16 i;
3597
3598 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3599 (words == 0)) {
3600 e_dbg("nvm parameter(s) out of bounds\n");
3601 return -E1000_ERR_NVM;
3602 }
3603
3604 nvm->ops.acquire(hw);
3605
3606 for (i = 0; i < words; i++) {
3607 dev_spec->shadow_ram[offset + i].modified = true;
3608 dev_spec->shadow_ram[offset + i].value = data[i];
3609 }
3610
3611 nvm->ops.release(hw);
3612
3613 return 0;
3614 }
3615
3616 /**
3617 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3618 * @hw: pointer to the HW structure
3619 *
3620 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3621 * which writes the checksum to the shadow ram. The changes in the shadow
3622 * ram are then committed to the EEPROM by processing each bank at a time
3623 * checking for the modified bit and writing only the pending changes.
3624 * After a successful commit, the shadow ram is cleared and is ready for
3625 * future writes.
3626 **/
3627 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3628 {
3629 struct e1000_nvm_info *nvm = &hw->nvm;
3630 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3631 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3632 s32 ret_val;
3633 u32 dword = 0;
3634
3635 ret_val = e1000e_update_nvm_checksum_generic(hw);
3636 if (ret_val)
3637 goto out;
3638
3639 if (nvm->type != e1000_nvm_flash_sw)
3640 goto out;
3641
3642 nvm->ops.acquire(hw);
3643
3644 /* We're writing to the opposite bank so if we're on bank 1,
3645 * write to bank 0 etc. We also need to erase the segment that
3646 * is going to be written
3647 */
3648 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3649 if (ret_val) {
3650 e_dbg("Could not detect valid bank, assuming bank 0\n");
3651 bank = 0;
3652 }
3653
3654 if (bank == 0) {
3655 new_bank_offset = nvm->flash_bank_size;
3656 old_bank_offset = 0;
3657 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3658 if (ret_val)
3659 goto release;
3660 } else {
3661 old_bank_offset = nvm->flash_bank_size;
3662 new_bank_offset = 0;
3663 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3664 if (ret_val)
3665 goto release;
3666 }
3667 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3668 /* Determine whether to write the value stored
3669 * in the other NVM bank or a modified value stored
3670 * in the shadow RAM
3671 */
3672 ret_val = e1000_read_flash_dword_ich8lan(hw,
3673 i + old_bank_offset,
3674 &dword);
3675
3676 if (dev_spec->shadow_ram[i].modified) {
3677 dword &= 0xffff0000;
3678 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3679 }
3680 if (dev_spec->shadow_ram[i + 1].modified) {
3681 dword &= 0x0000ffff;
3682 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3683 << 16);
3684 }
3685 if (ret_val)
3686 break;
3687
3688 /* If the word is 0x13, then make sure the signature bits
3689 * (15:14) are 11b until the commit has completed.
3690 * This will allow us to write 10b which indicates the
3691 * signature is valid. We want to do this after the write
3692 * has completed so that we don't mark the segment valid
3693 * while the write is still in progress
3694 */
3695 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3696 dword |= E1000_ICH_NVM_SIG_MASK << 16;
3697
3698 /* Convert offset to bytes. */
3699 act_offset = (i + new_bank_offset) << 1;
3700
3701 usleep_range(100, 200);
3702
3703 /* Write the data to the new bank. Offset in words */
3704 act_offset = i + new_bank_offset;
3705 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3706 dword);
3707 if (ret_val)
3708 break;
3709 }
3710
3711 /* Don't bother writing the segment valid bits if sector
3712 * programming failed.
3713 */
3714 if (ret_val) {
3715 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3716 e_dbg("Flash commit failed.\n");
3717 goto release;
3718 }
3719
3720 /* Finally validate the new segment by setting bit 15:14
3721 * to 10b in word 0x13 , this can be done without an
3722 * erase as well since these bits are 11 to start with
3723 * and we need to change bit 14 to 0b
3724 */
3725 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3726
3727 /*offset in words but we read dword */
3728 --act_offset;
3729 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3730
3731 if (ret_val)
3732 goto release;
3733
3734 dword &= 0xBFFFFFFF;
3735 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3736
3737 if (ret_val)
3738 goto release;
3739
3740 /* And invalidate the previously valid segment by setting
3741 * its signature word (0x13) high_byte to 0b. This can be
3742 * done without an erase because flash erase sets all bits
3743 * to 1's. We can write 1's to 0's without an erase
3744 */
3745 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3746
3747 /* offset in words but we read dword */
3748 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3749 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3750
3751 if (ret_val)
3752 goto release;
3753
3754 dword &= 0x00FFFFFF;
3755 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3756
3757 if (ret_val)
3758 goto release;
3759
3760 /* Great! Everything worked, we can now clear the cached entries. */
3761 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3762 dev_spec->shadow_ram[i].modified = false;
3763 dev_spec->shadow_ram[i].value = 0xFFFF;
3764 }
3765
3766 release:
3767 nvm->ops.release(hw);
3768
3769 /* Reload the EEPROM, or else modifications will not appear
3770 * until after the next adapter reset.
3771 */
3772 if (!ret_val) {
3773 nvm->ops.reload(hw);
3774 usleep_range(10000, 20000);
3775 }
3776
3777 out:
3778 if (ret_val)
3779 e_dbg("NVM update error: %d\n", ret_val);
3780
3781 return ret_val;
3782 }
3783
3784 /**
3785 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3786 * @hw: pointer to the HW structure
3787 *
3788 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3789 * which writes the checksum to the shadow ram. The changes in the shadow
3790 * ram are then committed to the EEPROM by processing each bank at a time
3791 * checking for the modified bit and writing only the pending changes.
3792 * After a successful commit, the shadow ram is cleared and is ready for
3793 * future writes.
3794 **/
3795 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3796 {
3797 struct e1000_nvm_info *nvm = &hw->nvm;
3798 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3799 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3800 s32 ret_val;
3801 u16 data = 0;
3802
3803 ret_val = e1000e_update_nvm_checksum_generic(hw);
3804 if (ret_val)
3805 goto out;
3806
3807 if (nvm->type != e1000_nvm_flash_sw)
3808 goto out;
3809
3810 nvm->ops.acquire(hw);
3811
3812 /* We're writing to the opposite bank so if we're on bank 1,
3813 * write to bank 0 etc. We also need to erase the segment that
3814 * is going to be written
3815 */
3816 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3817 if (ret_val) {
3818 e_dbg("Could not detect valid bank, assuming bank 0\n");
3819 bank = 0;
3820 }
3821
3822 if (bank == 0) {
3823 new_bank_offset = nvm->flash_bank_size;
3824 old_bank_offset = 0;
3825 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3826 if (ret_val)
3827 goto release;
3828 } else {
3829 old_bank_offset = nvm->flash_bank_size;
3830 new_bank_offset = 0;
3831 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3832 if (ret_val)
3833 goto release;
3834 }
3835 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3836 if (dev_spec->shadow_ram[i].modified) {
3837 data = dev_spec->shadow_ram[i].value;
3838 } else {
3839 ret_val = e1000_read_flash_word_ich8lan(hw, i +
3840 old_bank_offset,
3841 &data);
3842 if (ret_val)
3843 break;
3844 }
3845
3846 /* If the word is 0x13, then make sure the signature bits
3847 * (15:14) are 11b until the commit has completed.
3848 * This will allow us to write 10b which indicates the
3849 * signature is valid. We want to do this after the write
3850 * has completed so that we don't mark the segment valid
3851 * while the write is still in progress
3852 */
3853 if (i == E1000_ICH_NVM_SIG_WORD)
3854 data |= E1000_ICH_NVM_SIG_MASK;
3855
3856 /* Convert offset to bytes. */
3857 act_offset = (i + new_bank_offset) << 1;
3858
3859 usleep_range(100, 200);
3860 /* Write the bytes to the new bank. */
3861 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3862 act_offset,
3863 (u8)data);
3864 if (ret_val)
3865 break;
3866
3867 usleep_range(100, 200);
3868 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3869 act_offset + 1,
3870 (u8)(data >> 8));
3871 if (ret_val)
3872 break;
3873 }
3874
3875 /* Don't bother writing the segment valid bits if sector
3876 * programming failed.
3877 */
3878 if (ret_val) {
3879 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3880 e_dbg("Flash commit failed.\n");
3881 goto release;
3882 }
3883
3884 /* Finally validate the new segment by setting bit 15:14
3885 * to 10b in word 0x13 , this can be done without an
3886 * erase as well since these bits are 11 to start with
3887 * and we need to change bit 14 to 0b
3888 */
3889 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3890 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3891 if (ret_val)
3892 goto release;
3893
3894 data &= 0xBFFF;
3895 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3896 act_offset * 2 + 1,
3897 (u8)(data >> 8));
3898 if (ret_val)
3899 goto release;
3900
3901 /* And invalidate the previously valid segment by setting
3902 * its signature word (0x13) high_byte to 0b. This can be
3903 * done without an erase because flash erase sets all bits
3904 * to 1's. We can write 1's to 0's without an erase
3905 */
3906 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3907 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3908 if (ret_val)
3909 goto release;
3910
3911 /* Great! Everything worked, we can now clear the cached entries. */
3912 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3913 dev_spec->shadow_ram[i].modified = false;
3914 dev_spec->shadow_ram[i].value = 0xFFFF;
3915 }
3916
3917 release:
3918 nvm->ops.release(hw);
3919
3920 /* Reload the EEPROM, or else modifications will not appear
3921 * until after the next adapter reset.
3922 */
3923 if (!ret_val) {
3924 nvm->ops.reload(hw);
3925 usleep_range(10000, 20000);
3926 }
3927
3928 out:
3929 if (ret_val)
3930 e_dbg("NVM update error: %d\n", ret_val);
3931
3932 return ret_val;
3933 }
3934
3935 /**
3936 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3937 * @hw: pointer to the HW structure
3938 *
3939 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3940 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
3941 * calculated, in which case we need to calculate the checksum and set bit 6.
3942 **/
3943 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3944 {
3945 s32 ret_val;
3946 u16 data;
3947 u16 word;
3948 u16 valid_csum_mask;
3949
3950 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
3951 * the checksum needs to be fixed. This bit is an indication that
3952 * the NVM was prepared by OEM software and did not calculate
3953 * the checksum...a likely scenario.
3954 */
3955 switch (hw->mac.type) {
3956 case e1000_pch_lpt:
3957 case e1000_pch_spt:
3958 word = NVM_COMPAT;
3959 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3960 break;
3961 default:
3962 word = NVM_FUTURE_INIT_WORD1;
3963 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3964 break;
3965 }
3966
3967 ret_val = e1000_read_nvm(hw, word, 1, &data);
3968 if (ret_val)
3969 return ret_val;
3970
3971 if (!(data & valid_csum_mask)) {
3972 data |= valid_csum_mask;
3973 ret_val = e1000_write_nvm(hw, word, 1, &data);
3974 if (ret_val)
3975 return ret_val;
3976 ret_val = e1000e_update_nvm_checksum(hw);
3977 if (ret_val)
3978 return ret_val;
3979 }
3980
3981 return e1000e_validate_nvm_checksum_generic(hw);
3982 }
3983
3984 /**
3985 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3986 * @hw: pointer to the HW structure
3987 *
3988 * To prevent malicious write/erase of the NVM, set it to be read-only
3989 * so that the hardware ignores all write/erase cycles of the NVM via
3990 * the flash control registers. The shadow-ram copy of the NVM will
3991 * still be updated, however any updates to this copy will not stick
3992 * across driver reloads.
3993 **/
3994 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3995 {
3996 struct e1000_nvm_info *nvm = &hw->nvm;
3997 union ich8_flash_protected_range pr0;
3998 union ich8_hws_flash_status hsfsts;
3999 u32 gfpreg;
4000
4001 nvm->ops.acquire(hw);
4002
4003 gfpreg = er32flash(ICH_FLASH_GFPREG);
4004
4005 /* Write-protect GbE Sector of NVM */
4006 pr0.regval = er32flash(ICH_FLASH_PR0);
4007 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4008 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4009 pr0.range.wpe = true;
4010 ew32flash(ICH_FLASH_PR0, pr0.regval);
4011
4012 /* Lock down a subset of GbE Flash Control Registers, e.g.
4013 * PR0 to prevent the write-protection from being lifted.
4014 * Once FLOCKDN is set, the registers protected by it cannot
4015 * be written until FLOCKDN is cleared by a hardware reset.
4016 */
4017 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4018 hsfsts.hsf_status.flockdn = true;
4019 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4020
4021 nvm->ops.release(hw);
4022 }
4023
4024 /**
4025 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4026 * @hw: pointer to the HW structure
4027 * @offset: The offset (in bytes) of the byte/word to read.
4028 * @size: Size of data to read, 1=byte 2=word
4029 * @data: The byte(s) to write to the NVM.
4030 *
4031 * Writes one/two bytes to the NVM using the flash access registers.
4032 **/
4033 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4034 u8 size, u16 data)
4035 {
4036 union ich8_hws_flash_status hsfsts;
4037 union ich8_hws_flash_ctrl hsflctl;
4038 u32 flash_linear_addr;
4039 u32 flash_data = 0;
4040 s32 ret_val;
4041 u8 count = 0;
4042
4043 if (hw->mac.type == e1000_pch_spt) {
4044 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4045 return -E1000_ERR_NVM;
4046 } else {
4047 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4048 return -E1000_ERR_NVM;
4049 }
4050
4051 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4052 hw->nvm.flash_base_addr);
4053
4054 do {
4055 udelay(1);
4056 /* Steps */
4057 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4058 if (ret_val)
4059 break;
4060 /* In SPT, This register is in Lan memory space, not
4061 * flash. Therefore, only 32 bit access is supported
4062 */
4063 if (hw->mac.type == e1000_pch_spt)
4064 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4065 else
4066 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4067
4068 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4069 hsflctl.hsf_ctrl.fldbcount = size - 1;
4070 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4071 /* In SPT, This register is in Lan memory space,
4072 * not flash. Therefore, only 32 bit access is
4073 * supported
4074 */
4075 if (hw->mac.type == e1000_pch_spt)
4076 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4077 else
4078 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4079
4080 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4081
4082 if (size == 1)
4083 flash_data = (u32)data & 0x00FF;
4084 else
4085 flash_data = (u32)data;
4086
4087 ew32flash(ICH_FLASH_FDATA0, flash_data);
4088
4089 /* check if FCERR is set to 1 , if set to 1, clear it
4090 * and try the whole sequence a few more times else done
4091 */
4092 ret_val =
4093 e1000_flash_cycle_ich8lan(hw,
4094 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4095 if (!ret_val)
4096 break;
4097
4098 /* If we're here, then things are most likely
4099 * completely hosed, but if the error condition
4100 * is detected, it won't hurt to give it another
4101 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4102 */
4103 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4104 if (hsfsts.hsf_status.flcerr)
4105 /* Repeat for some time before giving up. */
4106 continue;
4107 if (!hsfsts.hsf_status.flcdone) {
4108 e_dbg("Timeout error - flash cycle did not complete.\n");
4109 break;
4110 }
4111 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4112
4113 return ret_val;
4114 }
4115
4116 /**
4117 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4118 * @hw: pointer to the HW structure
4119 * @offset: The offset (in bytes) of the dwords to read.
4120 * @data: The 4 bytes to write to the NVM.
4121 *
4122 * Writes one/two/four bytes to the NVM using the flash access registers.
4123 **/
4124 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4125 u32 data)
4126 {
4127 union ich8_hws_flash_status hsfsts;
4128 union ich8_hws_flash_ctrl hsflctl;
4129 u32 flash_linear_addr;
4130 s32 ret_val;
4131 u8 count = 0;
4132
4133 if (hw->mac.type == e1000_pch_spt) {
4134 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4135 return -E1000_ERR_NVM;
4136 }
4137 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4138 hw->nvm.flash_base_addr);
4139 do {
4140 udelay(1);
4141 /* Steps */
4142 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4143 if (ret_val)
4144 break;
4145
4146 /* In SPT, This register is in Lan memory space, not
4147 * flash. Therefore, only 32 bit access is supported
4148 */
4149 if (hw->mac.type == e1000_pch_spt)
4150 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4151 >> 16;
4152 else
4153 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4154
4155 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4156 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4157
4158 /* In SPT, This register is in Lan memory space,
4159 * not flash. Therefore, only 32 bit access is
4160 * supported
4161 */
4162 if (hw->mac.type == e1000_pch_spt)
4163 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4164 else
4165 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4166
4167 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4168
4169 ew32flash(ICH_FLASH_FDATA0, data);
4170
4171 /* check if FCERR is set to 1 , if set to 1, clear it
4172 * and try the whole sequence a few more times else done
4173 */
4174 ret_val =
4175 e1000_flash_cycle_ich8lan(hw,
4176 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4177
4178 if (!ret_val)
4179 break;
4180
4181 /* If we're here, then things are most likely
4182 * completely hosed, but if the error condition
4183 * is detected, it won't hurt to give it another
4184 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4185 */
4186 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4187
4188 if (hsfsts.hsf_status.flcerr)
4189 /* Repeat for some time before giving up. */
4190 continue;
4191 if (!hsfsts.hsf_status.flcdone) {
4192 e_dbg("Timeout error - flash cycle did not complete.\n");
4193 break;
4194 }
4195 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4196
4197 return ret_val;
4198 }
4199
4200 /**
4201 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4202 * @hw: pointer to the HW structure
4203 * @offset: The index of the byte to read.
4204 * @data: The byte to write to the NVM.
4205 *
4206 * Writes a single byte to the NVM using the flash access registers.
4207 **/
4208 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4209 u8 data)
4210 {
4211 u16 word = (u16)data;
4212
4213 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4214 }
4215
4216 /**
4217 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4218 * @hw: pointer to the HW structure
4219 * @offset: The offset of the word to write.
4220 * @dword: The dword to write to the NVM.
4221 *
4222 * Writes a single dword to the NVM using the flash access registers.
4223 * Goes through a retry algorithm before giving up.
4224 **/
4225 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4226 u32 offset, u32 dword)
4227 {
4228 s32 ret_val;
4229 u16 program_retries;
4230
4231 /* Must convert word offset into bytes. */
4232 offset <<= 1;
4233 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4234
4235 if (!ret_val)
4236 return ret_val;
4237 for (program_retries = 0; program_retries < 100; program_retries++) {
4238 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4239 usleep_range(100, 200);
4240 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4241 if (!ret_val)
4242 break;
4243 }
4244 if (program_retries == 100)
4245 return -E1000_ERR_NVM;
4246
4247 return 0;
4248 }
4249
4250 /**
4251 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4252 * @hw: pointer to the HW structure
4253 * @offset: The offset of the byte to write.
4254 * @byte: The byte to write to the NVM.
4255 *
4256 * Writes a single byte to the NVM using the flash access registers.
4257 * Goes through a retry algorithm before giving up.
4258 **/
4259 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4260 u32 offset, u8 byte)
4261 {
4262 s32 ret_val;
4263 u16 program_retries;
4264
4265 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4266 if (!ret_val)
4267 return ret_val;
4268
4269 for (program_retries = 0; program_retries < 100; program_retries++) {
4270 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4271 usleep_range(100, 200);
4272 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4273 if (!ret_val)
4274 break;
4275 }
4276 if (program_retries == 100)
4277 return -E1000_ERR_NVM;
4278
4279 return 0;
4280 }
4281
4282 /**
4283 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4284 * @hw: pointer to the HW structure
4285 * @bank: 0 for first bank, 1 for second bank, etc.
4286 *
4287 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4288 * bank N is 4096 * N + flash_reg_addr.
4289 **/
4290 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4291 {
4292 struct e1000_nvm_info *nvm = &hw->nvm;
4293 union ich8_hws_flash_status hsfsts;
4294 union ich8_hws_flash_ctrl hsflctl;
4295 u32 flash_linear_addr;
4296 /* bank size is in 16bit words - adjust to bytes */
4297 u32 flash_bank_size = nvm->flash_bank_size * 2;
4298 s32 ret_val;
4299 s32 count = 0;
4300 s32 j, iteration, sector_size;
4301
4302 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4303
4304 /* Determine HW Sector size: Read BERASE bits of hw flash status
4305 * register
4306 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4307 * consecutive sectors. The start index for the nth Hw sector
4308 * can be calculated as = bank * 4096 + n * 256
4309 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4310 * The start index for the nth Hw sector can be calculated
4311 * as = bank * 4096
4312 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4313 * (ich9 only, otherwise error condition)
4314 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4315 */
4316 switch (hsfsts.hsf_status.berasesz) {
4317 case 0:
4318 /* Hw sector size 256 */
4319 sector_size = ICH_FLASH_SEG_SIZE_256;
4320 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4321 break;
4322 case 1:
4323 sector_size = ICH_FLASH_SEG_SIZE_4K;
4324 iteration = 1;
4325 break;
4326 case 2:
4327 sector_size = ICH_FLASH_SEG_SIZE_8K;
4328 iteration = 1;
4329 break;
4330 case 3:
4331 sector_size = ICH_FLASH_SEG_SIZE_64K;
4332 iteration = 1;
4333 break;
4334 default:
4335 return -E1000_ERR_NVM;
4336 }
4337
4338 /* Start with the base address, then add the sector offset. */
4339 flash_linear_addr = hw->nvm.flash_base_addr;
4340 flash_linear_addr += (bank) ? flash_bank_size : 0;
4341
4342 for (j = 0; j < iteration; j++) {
4343 do {
4344 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4345
4346 /* Steps */
4347 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4348 if (ret_val)
4349 return ret_val;
4350
4351 /* Write a value 11 (block Erase) in Flash
4352 * Cycle field in hw flash control
4353 */
4354 if (hw->mac.type == e1000_pch_spt)
4355 hsflctl.regval =
4356 er32flash(ICH_FLASH_HSFSTS) >> 16;
4357 else
4358 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4359
4360 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4361 if (hw->mac.type == e1000_pch_spt)
4362 ew32flash(ICH_FLASH_HSFSTS,
4363 hsflctl.regval << 16);
4364 else
4365 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4366
4367 /* Write the last 24 bits of an index within the
4368 * block into Flash Linear address field in Flash
4369 * Address.
4370 */
4371 flash_linear_addr += (j * sector_size);
4372 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4373
4374 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4375 if (!ret_val)
4376 break;
4377
4378 /* Check if FCERR is set to 1. If 1,
4379 * clear it and try the whole sequence
4380 * a few more times else Done
4381 */
4382 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4383 if (hsfsts.hsf_status.flcerr)
4384 /* repeat for some time before giving up */
4385 continue;
4386 else if (!hsfsts.hsf_status.flcdone)
4387 return ret_val;
4388 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4389 }
4390
4391 return 0;
4392 }
4393
4394 /**
4395 * e1000_valid_led_default_ich8lan - Set the default LED settings
4396 * @hw: pointer to the HW structure
4397 * @data: Pointer to the LED settings
4398 *
4399 * Reads the LED default settings from the NVM to data. If the NVM LED
4400 * settings is all 0's or F's, set the LED default to a valid LED default
4401 * setting.
4402 **/
4403 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4404 {
4405 s32 ret_val;
4406
4407 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4408 if (ret_val) {
4409 e_dbg("NVM Read Error\n");
4410 return ret_val;
4411 }
4412
4413 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4414 *data = ID_LED_DEFAULT_ICH8LAN;
4415
4416 return 0;
4417 }
4418
4419 /**
4420 * e1000_id_led_init_pchlan - store LED configurations
4421 * @hw: pointer to the HW structure
4422 *
4423 * PCH does not control LEDs via the LEDCTL register, rather it uses
4424 * the PHY LED configuration register.
4425 *
4426 * PCH also does not have an "always on" or "always off" mode which
4427 * complicates the ID feature. Instead of using the "on" mode to indicate
4428 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4429 * use "link_up" mode. The LEDs will still ID on request if there is no
4430 * link based on logic in e1000_led_[on|off]_pchlan().
4431 **/
4432 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4433 {
4434 struct e1000_mac_info *mac = &hw->mac;
4435 s32 ret_val;
4436 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4437 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4438 u16 data, i, temp, shift;
4439
4440 /* Get default ID LED modes */
4441 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4442 if (ret_val)
4443 return ret_val;
4444
4445 mac->ledctl_default = er32(LEDCTL);
4446 mac->ledctl_mode1 = mac->ledctl_default;
4447 mac->ledctl_mode2 = mac->ledctl_default;
4448
4449 for (i = 0; i < 4; i++) {
4450 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4451 shift = (i * 5);
4452 switch (temp) {
4453 case ID_LED_ON1_DEF2:
4454 case ID_LED_ON1_ON2:
4455 case ID_LED_ON1_OFF2:
4456 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4457 mac->ledctl_mode1 |= (ledctl_on << shift);
4458 break;
4459 case ID_LED_OFF1_DEF2:
4460 case ID_LED_OFF1_ON2:
4461 case ID_LED_OFF1_OFF2:
4462 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4463 mac->ledctl_mode1 |= (ledctl_off << shift);
4464 break;
4465 default:
4466 /* Do nothing */
4467 break;
4468 }
4469 switch (temp) {
4470 case ID_LED_DEF1_ON2:
4471 case ID_LED_ON1_ON2:
4472 case ID_LED_OFF1_ON2:
4473 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4474 mac->ledctl_mode2 |= (ledctl_on << shift);
4475 break;
4476 case ID_LED_DEF1_OFF2:
4477 case ID_LED_ON1_OFF2:
4478 case ID_LED_OFF1_OFF2:
4479 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4480 mac->ledctl_mode2 |= (ledctl_off << shift);
4481 break;
4482 default:
4483 /* Do nothing */
4484 break;
4485 }
4486 }
4487
4488 return 0;
4489 }
4490
4491 /**
4492 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4493 * @hw: pointer to the HW structure
4494 *
4495 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4496 * register, so the the bus width is hard coded.
4497 **/
4498 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4499 {
4500 struct e1000_bus_info *bus = &hw->bus;
4501 s32 ret_val;
4502
4503 ret_val = e1000e_get_bus_info_pcie(hw);
4504
4505 /* ICH devices are "PCI Express"-ish. They have
4506 * a configuration space, but do not contain
4507 * PCI Express Capability registers, so bus width
4508 * must be hardcoded.
4509 */
4510 if (bus->width == e1000_bus_width_unknown)
4511 bus->width = e1000_bus_width_pcie_x1;
4512
4513 return ret_val;
4514 }
4515
4516 /**
4517 * e1000_reset_hw_ich8lan - Reset the hardware
4518 * @hw: pointer to the HW structure
4519 *
4520 * Does a full reset of the hardware which includes a reset of the PHY and
4521 * MAC.
4522 **/
4523 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4524 {
4525 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4526 u16 kum_cfg;
4527 u32 ctrl, reg;
4528 s32 ret_val;
4529
4530 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4531 * on the last TLP read/write transaction when MAC is reset.
4532 */
4533 ret_val = e1000e_disable_pcie_master(hw);
4534 if (ret_val)
4535 e_dbg("PCI-E Master disable polling has failed.\n");
4536
4537 e_dbg("Masking off all interrupts\n");
4538 ew32(IMC, 0xffffffff);
4539
4540 /* Disable the Transmit and Receive units. Then delay to allow
4541 * any pending transactions to complete before we hit the MAC
4542 * with the global reset.
4543 */
4544 ew32(RCTL, 0);
4545 ew32(TCTL, E1000_TCTL_PSP);
4546 e1e_flush();
4547
4548 usleep_range(10000, 20000);
4549
4550 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4551 if (hw->mac.type == e1000_ich8lan) {
4552 /* Set Tx and Rx buffer allocation to 8k apiece. */
4553 ew32(PBA, E1000_PBA_8K);
4554 /* Set Packet Buffer Size to 16k. */
4555 ew32(PBS, E1000_PBS_16K);
4556 }
4557
4558 if (hw->mac.type == e1000_pchlan) {
4559 /* Save the NVM K1 bit setting */
4560 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4561 if (ret_val)
4562 return ret_val;
4563
4564 if (kum_cfg & E1000_NVM_K1_ENABLE)
4565 dev_spec->nvm_k1_enabled = true;
4566 else
4567 dev_spec->nvm_k1_enabled = false;
4568 }
4569
4570 ctrl = er32(CTRL);
4571
4572 if (!hw->phy.ops.check_reset_block(hw)) {
4573 /* Full-chip reset requires MAC and PHY reset at the same
4574 * time to make sure the interface between MAC and the
4575 * external PHY is reset.
4576 */
4577 ctrl |= E1000_CTRL_PHY_RST;
4578
4579 /* Gate automatic PHY configuration by hardware on
4580 * non-managed 82579
4581 */
4582 if ((hw->mac.type == e1000_pch2lan) &&
4583 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4584 e1000_gate_hw_phy_config_ich8lan(hw, true);
4585 }
4586 ret_val = e1000_acquire_swflag_ich8lan(hw);
4587 e_dbg("Issuing a global reset to ich8lan\n");
4588 ew32(CTRL, (ctrl | E1000_CTRL_RST));
4589 /* cannot issue a flush here because it hangs the hardware */
4590 msleep(20);
4591
4592 /* Set Phy Config Counter to 50msec */
4593 if (hw->mac.type == e1000_pch2lan) {
4594 reg = er32(FEXTNVM3);
4595 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4596 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4597 ew32(FEXTNVM3, reg);
4598 }
4599
4600 if (!ret_val)
4601 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4602
4603 if (ctrl & E1000_CTRL_PHY_RST) {
4604 ret_val = hw->phy.ops.get_cfg_done(hw);
4605 if (ret_val)
4606 return ret_val;
4607
4608 ret_val = e1000_post_phy_reset_ich8lan(hw);
4609 if (ret_val)
4610 return ret_val;
4611 }
4612
4613 /* For PCH, this write will make sure that any noise
4614 * will be detected as a CRC error and be dropped rather than show up
4615 * as a bad packet to the DMA engine.
4616 */
4617 if (hw->mac.type == e1000_pchlan)
4618 ew32(CRC_OFFSET, 0x65656565);
4619
4620 ew32(IMC, 0xffffffff);
4621 er32(ICR);
4622
4623 reg = er32(KABGTXD);
4624 reg |= E1000_KABGTXD_BGSQLBIAS;
4625 ew32(KABGTXD, reg);
4626
4627 return 0;
4628 }
4629
4630 /**
4631 * e1000_init_hw_ich8lan - Initialize the hardware
4632 * @hw: pointer to the HW structure
4633 *
4634 * Prepares the hardware for transmit and receive by doing the following:
4635 * - initialize hardware bits
4636 * - initialize LED identification
4637 * - setup receive address registers
4638 * - setup flow control
4639 * - setup transmit descriptors
4640 * - clear statistics
4641 **/
4642 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4643 {
4644 struct e1000_mac_info *mac = &hw->mac;
4645 u32 ctrl_ext, txdctl, snoop;
4646 s32 ret_val;
4647 u16 i;
4648
4649 e1000_initialize_hw_bits_ich8lan(hw);
4650
4651 /* Initialize identification LED */
4652 ret_val = mac->ops.id_led_init(hw);
4653 /* An error is not fatal and we should not stop init due to this */
4654 if (ret_val)
4655 e_dbg("Error initializing identification LED\n");
4656
4657 /* Setup the receive address. */
4658 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4659
4660 /* Zero out the Multicast HASH table */
4661 e_dbg("Zeroing the MTA\n");
4662 for (i = 0; i < mac->mta_reg_count; i++)
4663 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4664
4665 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4666 * the ME. Disable wakeup by clearing the host wakeup bit.
4667 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4668 */
4669 if (hw->phy.type == e1000_phy_82578) {
4670 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4671 i &= ~BM_WUC_HOST_WU_BIT;
4672 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4673 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4674 if (ret_val)
4675 return ret_val;
4676 }
4677
4678 /* Setup link and flow control */
4679 ret_val = mac->ops.setup_link(hw);
4680
4681 /* Set the transmit descriptor write-back policy for both queues */
4682 txdctl = er32(TXDCTL(0));
4683 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4684 E1000_TXDCTL_FULL_TX_DESC_WB);
4685 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4686 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4687 ew32(TXDCTL(0), txdctl);
4688 txdctl = er32(TXDCTL(1));
4689 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4690 E1000_TXDCTL_FULL_TX_DESC_WB);
4691 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4692 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4693 ew32(TXDCTL(1), txdctl);
4694
4695 /* ICH8 has opposite polarity of no_snoop bits.
4696 * By default, we should use snoop behavior.
4697 */
4698 if (mac->type == e1000_ich8lan)
4699 snoop = PCIE_ICH8_SNOOP_ALL;
4700 else
4701 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4702 e1000e_set_pcie_no_snoop(hw, snoop);
4703
4704 ctrl_ext = er32(CTRL_EXT);
4705 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4706 ew32(CTRL_EXT, ctrl_ext);
4707
4708 /* Clear all of the statistics registers (clear on read). It is
4709 * important that we do this after we have tried to establish link
4710 * because the symbol error count will increment wildly if there
4711 * is no link.
4712 */
4713 e1000_clear_hw_cntrs_ich8lan(hw);
4714
4715 return ret_val;
4716 }
4717
4718 /**
4719 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4720 * @hw: pointer to the HW structure
4721 *
4722 * Sets/Clears required hardware bits necessary for correctly setting up the
4723 * hardware for transmit and receive.
4724 **/
4725 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4726 {
4727 u32 reg;
4728
4729 /* Extended Device Control */
4730 reg = er32(CTRL_EXT);
4731 reg |= (1 << 22);
4732 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4733 if (hw->mac.type >= e1000_pchlan)
4734 reg |= E1000_CTRL_EXT_PHYPDEN;
4735 ew32(CTRL_EXT, reg);
4736
4737 /* Transmit Descriptor Control 0 */
4738 reg = er32(TXDCTL(0));
4739 reg |= (1 << 22);
4740 ew32(TXDCTL(0), reg);
4741
4742 /* Transmit Descriptor Control 1 */
4743 reg = er32(TXDCTL(1));
4744 reg |= (1 << 22);
4745 ew32(TXDCTL(1), reg);
4746
4747 /* Transmit Arbitration Control 0 */
4748 reg = er32(TARC(0));
4749 if (hw->mac.type == e1000_ich8lan)
4750 reg |= (1 << 28) | (1 << 29);
4751 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4752 ew32(TARC(0), reg);
4753
4754 /* Transmit Arbitration Control 1 */
4755 reg = er32(TARC(1));
4756 if (er32(TCTL) & E1000_TCTL_MULR)
4757 reg &= ~(1 << 28);
4758 else
4759 reg |= (1 << 28);
4760 reg |= (1 << 24) | (1 << 26) | (1 << 30);
4761 ew32(TARC(1), reg);
4762
4763 /* Device Status */
4764 if (hw->mac.type == e1000_ich8lan) {
4765 reg = er32(STATUS);
4766 reg &= ~(1 << 31);
4767 ew32(STATUS, reg);
4768 }
4769
4770 /* work-around descriptor data corruption issue during nfs v2 udp
4771 * traffic, just disable the nfs filtering capability
4772 */
4773 reg = er32(RFCTL);
4774 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4775
4776 /* Disable IPv6 extension header parsing because some malformed
4777 * IPv6 headers can hang the Rx.
4778 */
4779 if (hw->mac.type == e1000_ich8lan)
4780 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4781 ew32(RFCTL, reg);
4782
4783 /* Enable ECC on Lynxpoint */
4784 if ((hw->mac.type == e1000_pch_lpt) ||
4785 (hw->mac.type == e1000_pch_spt)) {
4786 reg = er32(PBECCSTS);
4787 reg |= E1000_PBECCSTS_ECC_ENABLE;
4788 ew32(PBECCSTS, reg);
4789
4790 reg = er32(CTRL);
4791 reg |= E1000_CTRL_MEHE;
4792 ew32(CTRL, reg);
4793 }
4794 }
4795
4796 /**
4797 * e1000_setup_link_ich8lan - Setup flow control and link settings
4798 * @hw: pointer to the HW structure
4799 *
4800 * Determines which flow control settings to use, then configures flow
4801 * control. Calls the appropriate media-specific link configuration
4802 * function. Assuming the adapter has a valid link partner, a valid link
4803 * should be established. Assumes the hardware has previously been reset
4804 * and the transmitter and receiver are not enabled.
4805 **/
4806 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4807 {
4808 s32 ret_val;
4809
4810 if (hw->phy.ops.check_reset_block(hw))
4811 return 0;
4812
4813 /* ICH parts do not have a word in the NVM to determine
4814 * the default flow control setting, so we explicitly
4815 * set it to full.
4816 */
4817 if (hw->fc.requested_mode == e1000_fc_default) {
4818 /* Workaround h/w hang when Tx flow control enabled */
4819 if (hw->mac.type == e1000_pchlan)
4820 hw->fc.requested_mode = e1000_fc_rx_pause;
4821 else
4822 hw->fc.requested_mode = e1000_fc_full;
4823 }
4824
4825 /* Save off the requested flow control mode for use later. Depending
4826 * on the link partner's capabilities, we may or may not use this mode.
4827 */
4828 hw->fc.current_mode = hw->fc.requested_mode;
4829
4830 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4831
4832 /* Continue to configure the copper link. */
4833 ret_val = hw->mac.ops.setup_physical_interface(hw);
4834 if (ret_val)
4835 return ret_val;
4836
4837 ew32(FCTTV, hw->fc.pause_time);
4838 if ((hw->phy.type == e1000_phy_82578) ||
4839 (hw->phy.type == e1000_phy_82579) ||
4840 (hw->phy.type == e1000_phy_i217) ||
4841 (hw->phy.type == e1000_phy_82577)) {
4842 ew32(FCRTV_PCH, hw->fc.refresh_time);
4843
4844 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4845 hw->fc.pause_time);
4846 if (ret_val)
4847 return ret_val;
4848 }
4849
4850 return e1000e_set_fc_watermarks(hw);
4851 }
4852
4853 /**
4854 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4855 * @hw: pointer to the HW structure
4856 *
4857 * Configures the kumeran interface to the PHY to wait the appropriate time
4858 * when polling the PHY, then call the generic setup_copper_link to finish
4859 * configuring the copper link.
4860 **/
4861 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4862 {
4863 u32 ctrl;
4864 s32 ret_val;
4865 u16 reg_data;
4866
4867 ctrl = er32(CTRL);
4868 ctrl |= E1000_CTRL_SLU;
4869 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4870 ew32(CTRL, ctrl);
4871
4872 /* Set the mac to wait the maximum time between each iteration
4873 * and increase the max iterations when polling the phy;
4874 * this fixes erroneous timeouts at 10Mbps.
4875 */
4876 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4877 if (ret_val)
4878 return ret_val;
4879 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4880 &reg_data);
4881 if (ret_val)
4882 return ret_val;
4883 reg_data |= 0x3F;
4884 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4885 reg_data);
4886 if (ret_val)
4887 return ret_val;
4888
4889 switch (hw->phy.type) {
4890 case e1000_phy_igp_3:
4891 ret_val = e1000e_copper_link_setup_igp(hw);
4892 if (ret_val)
4893 return ret_val;
4894 break;
4895 case e1000_phy_bm:
4896 case e1000_phy_82578:
4897 ret_val = e1000e_copper_link_setup_m88(hw);
4898 if (ret_val)
4899 return ret_val;
4900 break;
4901 case e1000_phy_82577:
4902 case e1000_phy_82579:
4903 ret_val = e1000_copper_link_setup_82577(hw);
4904 if (ret_val)
4905 return ret_val;
4906 break;
4907 case e1000_phy_ife:
4908 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4909 if (ret_val)
4910 return ret_val;
4911
4912 reg_data &= ~IFE_PMC_AUTO_MDIX;
4913
4914 switch (hw->phy.mdix) {
4915 case 1:
4916 reg_data &= ~IFE_PMC_FORCE_MDIX;
4917 break;
4918 case 2:
4919 reg_data |= IFE_PMC_FORCE_MDIX;
4920 break;
4921 case 0:
4922 default:
4923 reg_data |= IFE_PMC_AUTO_MDIX;
4924 break;
4925 }
4926 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
4927 if (ret_val)
4928 return ret_val;
4929 break;
4930 default:
4931 break;
4932 }
4933
4934 return e1000e_setup_copper_link(hw);
4935 }
4936
4937 /**
4938 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4939 * @hw: pointer to the HW structure
4940 *
4941 * Calls the PHY specific link setup function and then calls the
4942 * generic setup_copper_link to finish configuring the link for
4943 * Lynxpoint PCH devices
4944 **/
4945 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4946 {
4947 u32 ctrl;
4948 s32 ret_val;
4949
4950 ctrl = er32(CTRL);
4951 ctrl |= E1000_CTRL_SLU;
4952 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4953 ew32(CTRL, ctrl);
4954
4955 ret_val = e1000_copper_link_setup_82577(hw);
4956 if (ret_val)
4957 return ret_val;
4958
4959 return e1000e_setup_copper_link(hw);
4960 }
4961
4962 /**
4963 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4964 * @hw: pointer to the HW structure
4965 * @speed: pointer to store current link speed
4966 * @duplex: pointer to store the current link duplex
4967 *
4968 * Calls the generic get_speed_and_duplex to retrieve the current link
4969 * information and then calls the Kumeran lock loss workaround for links at
4970 * gigabit speeds.
4971 **/
4972 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4973 u16 *duplex)
4974 {
4975 s32 ret_val;
4976
4977 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
4978 if (ret_val)
4979 return ret_val;
4980
4981 if ((hw->mac.type == e1000_ich8lan) &&
4982 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
4983 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4984 }
4985
4986 return ret_val;
4987 }
4988
4989 /**
4990 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4991 * @hw: pointer to the HW structure
4992 *
4993 * Work-around for 82566 Kumeran PCS lock loss:
4994 * On link status change (i.e. PCI reset, speed change) and link is up and
4995 * speed is gigabit-
4996 * 0) if workaround is optionally disabled do nothing
4997 * 1) wait 1ms for Kumeran link to come up
4998 * 2) check Kumeran Diagnostic register PCS lock loss bit
4999 * 3) if not set the link is locked (all is good), otherwise...
5000 * 4) reset the PHY
5001 * 5) repeat up to 10 times
5002 * Note: this is only called for IGP3 copper when speed is 1gb.
5003 **/
5004 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5005 {
5006 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5007 u32 phy_ctrl;
5008 s32 ret_val;
5009 u16 i, data;
5010 bool link;
5011
5012 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5013 return 0;
5014
5015 /* Make sure link is up before proceeding. If not just return.
5016 * Attempting this while link is negotiating fouled up link
5017 * stability
5018 */
5019 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5020 if (!link)
5021 return 0;
5022
5023 for (i = 0; i < 10; i++) {
5024 /* read once to clear */
5025 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5026 if (ret_val)
5027 return ret_val;
5028 /* and again to get new status */
5029 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5030 if (ret_val)
5031 return ret_val;
5032
5033 /* check for PCS lock */
5034 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5035 return 0;
5036
5037 /* Issue PHY reset */
5038 e1000_phy_hw_reset(hw);
5039 mdelay(5);
5040 }
5041 /* Disable GigE link negotiation */
5042 phy_ctrl = er32(PHY_CTRL);
5043 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5044 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5045 ew32(PHY_CTRL, phy_ctrl);
5046
5047 /* Call gig speed drop workaround on Gig disable before accessing
5048 * any PHY registers
5049 */
5050 e1000e_gig_downshift_workaround_ich8lan(hw);
5051
5052 /* unable to acquire PCS lock */
5053 return -E1000_ERR_PHY;
5054 }
5055
5056 /**
5057 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5058 * @hw: pointer to the HW structure
5059 * @state: boolean value used to set the current Kumeran workaround state
5060 *
5061 * If ICH8, set the current Kumeran workaround state (enabled - true
5062 * /disabled - false).
5063 **/
5064 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5065 bool state)
5066 {
5067 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5068
5069 if (hw->mac.type != e1000_ich8lan) {
5070 e_dbg("Workaround applies to ICH8 only.\n");
5071 return;
5072 }
5073
5074 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5075 }
5076
5077 /**
5078 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5079 * @hw: pointer to the HW structure
5080 *
5081 * Workaround for 82566 power-down on D3 entry:
5082 * 1) disable gigabit link
5083 * 2) write VR power-down enable
5084 * 3) read it back
5085 * Continue if successful, else issue LCD reset and repeat
5086 **/
5087 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5088 {
5089 u32 reg;
5090 u16 data;
5091 u8 retry = 0;
5092
5093 if (hw->phy.type != e1000_phy_igp_3)
5094 return;
5095
5096 /* Try the workaround twice (if needed) */
5097 do {
5098 /* Disable link */
5099 reg = er32(PHY_CTRL);
5100 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5101 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5102 ew32(PHY_CTRL, reg);
5103
5104 /* Call gig speed drop workaround on Gig disable before
5105 * accessing any PHY registers
5106 */
5107 if (hw->mac.type == e1000_ich8lan)
5108 e1000e_gig_downshift_workaround_ich8lan(hw);
5109
5110 /* Write VR power-down enable */
5111 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5112 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5113 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5114
5115 /* Read it back and test */
5116 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5117 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5118 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5119 break;
5120
5121 /* Issue PHY reset and repeat at most one more time */
5122 reg = er32(CTRL);
5123 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5124 retry++;
5125 } while (retry);
5126 }
5127
5128 /**
5129 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5130 * @hw: pointer to the HW structure
5131 *
5132 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5133 * LPLU, Gig disable, MDIC PHY reset):
5134 * 1) Set Kumeran Near-end loopback
5135 * 2) Clear Kumeran Near-end loopback
5136 * Should only be called for ICH8[m] devices with any 1G Phy.
5137 **/
5138 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5139 {
5140 s32 ret_val;
5141 u16 reg_data;
5142
5143 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5144 return;
5145
5146 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5147 &reg_data);
5148 if (ret_val)
5149 return;
5150 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5151 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5152 reg_data);
5153 if (ret_val)
5154 return;
5155 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5156 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5157 }
5158
5159 /**
5160 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5161 * @hw: pointer to the HW structure
5162 *
5163 * During S0 to Sx transition, it is possible the link remains at gig
5164 * instead of negotiating to a lower speed. Before going to Sx, set
5165 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5166 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5167 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5168 * needs to be written.
5169 * Parts that support (and are linked to a partner which support) EEE in
5170 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5171 * than 10Mbps w/o EEE.
5172 **/
5173 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5174 {
5175 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5176 u32 phy_ctrl;
5177 s32 ret_val;
5178
5179 phy_ctrl = er32(PHY_CTRL);
5180 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5181
5182 if (hw->phy.type == e1000_phy_i217) {
5183 u16 phy_reg, device_id = hw->adapter->pdev->device;
5184
5185 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5186 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5187 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5188 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5189 (hw->mac.type == e1000_pch_spt)) {
5190 u32 fextnvm6 = er32(FEXTNVM6);
5191
5192 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5193 }
5194
5195 ret_val = hw->phy.ops.acquire(hw);
5196 if (ret_val)
5197 goto out;
5198
5199 if (!dev_spec->eee_disable) {
5200 u16 eee_advert;
5201
5202 ret_val =
5203 e1000_read_emi_reg_locked(hw,
5204 I217_EEE_ADVERTISEMENT,
5205 &eee_advert);
5206 if (ret_val)
5207 goto release;
5208
5209 /* Disable LPLU if both link partners support 100BaseT
5210 * EEE and 100Full is advertised on both ends of the
5211 * link, and enable Auto Enable LPI since there will
5212 * be no driver to enable LPI while in Sx.
5213 */
5214 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5215 (dev_spec->eee_lp_ability &
5216 I82579_EEE_100_SUPPORTED) &&
5217 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5218 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5219 E1000_PHY_CTRL_NOND0A_LPLU);
5220
5221 /* Set Auto Enable LPI after link up */
5222 e1e_rphy_locked(hw,
5223 I217_LPI_GPIO_CTRL, &phy_reg);
5224 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5225 e1e_wphy_locked(hw,
5226 I217_LPI_GPIO_CTRL, phy_reg);
5227 }
5228 }
5229
5230 /* For i217 Intel Rapid Start Technology support,
5231 * when the system is going into Sx and no manageability engine
5232 * is present, the driver must configure proxy to reset only on
5233 * power good. LPI (Low Power Idle) state must also reset only
5234 * on power good, as well as the MTA (Multicast table array).
5235 * The SMBus release must also be disabled on LCD reset.
5236 */
5237 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5238 /* Enable proxy to reset only on power good. */
5239 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5240 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5241 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5242
5243 /* Set bit enable LPI (EEE) to reset only on
5244 * power good.
5245 */
5246 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5247 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5248 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5249
5250 /* Disable the SMB release on LCD reset. */
5251 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5252 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5253 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5254 }
5255
5256 /* Enable MTA to reset for Intel Rapid Start Technology
5257 * Support
5258 */
5259 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5260 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5261 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5262
5263 release:
5264 hw->phy.ops.release(hw);
5265 }
5266 out:
5267 ew32(PHY_CTRL, phy_ctrl);
5268
5269 if (hw->mac.type == e1000_ich8lan)
5270 e1000e_gig_downshift_workaround_ich8lan(hw);
5271
5272 if (hw->mac.type >= e1000_pchlan) {
5273 e1000_oem_bits_config_ich8lan(hw, false);
5274
5275 /* Reset PHY to activate OEM bits on 82577/8 */
5276 if (hw->mac.type == e1000_pchlan)
5277 e1000e_phy_hw_reset_generic(hw);
5278
5279 ret_val = hw->phy.ops.acquire(hw);
5280 if (ret_val)
5281 return;
5282 e1000_write_smbus_addr(hw);
5283 hw->phy.ops.release(hw);
5284 }
5285 }
5286
5287 /**
5288 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5289 * @hw: pointer to the HW structure
5290 *
5291 * During Sx to S0 transitions on non-managed devices or managed devices
5292 * on which PHY resets are not blocked, if the PHY registers cannot be
5293 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5294 * the PHY.
5295 * On i217, setup Intel Rapid Start Technology.
5296 **/
5297 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5298 {
5299 s32 ret_val;
5300
5301 if (hw->mac.type < e1000_pch2lan)
5302 return;
5303
5304 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5305 if (ret_val) {
5306 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5307 return;
5308 }
5309
5310 /* For i217 Intel Rapid Start Technology support when the system
5311 * is transitioning from Sx and no manageability engine is present
5312 * configure SMBus to restore on reset, disable proxy, and enable
5313 * the reset on MTA (Multicast table array).
5314 */
5315 if (hw->phy.type == e1000_phy_i217) {
5316 u16 phy_reg;
5317
5318 ret_val = hw->phy.ops.acquire(hw);
5319 if (ret_val) {
5320 e_dbg("Failed to setup iRST\n");
5321 return;
5322 }
5323
5324 /* Clear Auto Enable LPI after link up */
5325 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5326 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5327 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5328
5329 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5330 /* Restore clear on SMB if no manageability engine
5331 * is present
5332 */
5333 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5334 if (ret_val)
5335 goto release;
5336 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5337 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5338
5339 /* Disable Proxy */
5340 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5341 }
5342 /* Enable reset on MTA */
5343 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5344 if (ret_val)
5345 goto release;
5346 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5347 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5348 release:
5349 if (ret_val)
5350 e_dbg("Error %d in resume workarounds\n", ret_val);
5351 hw->phy.ops.release(hw);
5352 }
5353 }
5354
5355 /**
5356 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5357 * @hw: pointer to the HW structure
5358 *
5359 * Return the LED back to the default configuration.
5360 **/
5361 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5362 {
5363 if (hw->phy.type == e1000_phy_ife)
5364 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5365
5366 ew32(LEDCTL, hw->mac.ledctl_default);
5367 return 0;
5368 }
5369
5370 /**
5371 * e1000_led_on_ich8lan - Turn LEDs on
5372 * @hw: pointer to the HW structure
5373 *
5374 * Turn on the LEDs.
5375 **/
5376 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5377 {
5378 if (hw->phy.type == e1000_phy_ife)
5379 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5380 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5381
5382 ew32(LEDCTL, hw->mac.ledctl_mode2);
5383 return 0;
5384 }
5385
5386 /**
5387 * e1000_led_off_ich8lan - Turn LEDs off
5388 * @hw: pointer to the HW structure
5389 *
5390 * Turn off the LEDs.
5391 **/
5392 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5393 {
5394 if (hw->phy.type == e1000_phy_ife)
5395 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5396 (IFE_PSCL_PROBE_MODE |
5397 IFE_PSCL_PROBE_LEDS_OFF));
5398
5399 ew32(LEDCTL, hw->mac.ledctl_mode1);
5400 return 0;
5401 }
5402
5403 /**
5404 * e1000_setup_led_pchlan - Configures SW controllable LED
5405 * @hw: pointer to the HW structure
5406 *
5407 * This prepares the SW controllable LED for use.
5408 **/
5409 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5410 {
5411 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5412 }
5413
5414 /**
5415 * e1000_cleanup_led_pchlan - Restore the default LED operation
5416 * @hw: pointer to the HW structure
5417 *
5418 * Return the LED back to the default configuration.
5419 **/
5420 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5421 {
5422 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5423 }
5424
5425 /**
5426 * e1000_led_on_pchlan - Turn LEDs on
5427 * @hw: pointer to the HW structure
5428 *
5429 * Turn on the LEDs.
5430 **/
5431 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5432 {
5433 u16 data = (u16)hw->mac.ledctl_mode2;
5434 u32 i, led;
5435
5436 /* If no link, then turn LED on by setting the invert bit
5437 * for each LED that's mode is "link_up" in ledctl_mode2.
5438 */
5439 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5440 for (i = 0; i < 3; i++) {
5441 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5442 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5443 E1000_LEDCTL_MODE_LINK_UP)
5444 continue;
5445 if (led & E1000_PHY_LED0_IVRT)
5446 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5447 else
5448 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5449 }
5450 }
5451
5452 return e1e_wphy(hw, HV_LED_CONFIG, data);
5453 }
5454
5455 /**
5456 * e1000_led_off_pchlan - Turn LEDs off
5457 * @hw: pointer to the HW structure
5458 *
5459 * Turn off the LEDs.
5460 **/
5461 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5462 {
5463 u16 data = (u16)hw->mac.ledctl_mode1;
5464 u32 i, led;
5465
5466 /* If no link, then turn LED off by clearing the invert bit
5467 * for each LED that's mode is "link_up" in ledctl_mode1.
5468 */
5469 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5470 for (i = 0; i < 3; i++) {
5471 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5472 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5473 E1000_LEDCTL_MODE_LINK_UP)
5474 continue;
5475 if (led & E1000_PHY_LED0_IVRT)
5476 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5477 else
5478 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5479 }
5480 }
5481
5482 return e1e_wphy(hw, HV_LED_CONFIG, data);
5483 }
5484
5485 /**
5486 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5487 * @hw: pointer to the HW structure
5488 *
5489 * Read appropriate register for the config done bit for completion status
5490 * and configure the PHY through s/w for EEPROM-less parts.
5491 *
5492 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5493 * config done bit, so only an error is logged and continues. If we were
5494 * to return with error, EEPROM-less silicon would not be able to be reset
5495 * or change link.
5496 **/
5497 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5498 {
5499 s32 ret_val = 0;
5500 u32 bank = 0;
5501 u32 status;
5502
5503 e1000e_get_cfg_done_generic(hw);
5504
5505 /* Wait for indication from h/w that it has completed basic config */
5506 if (hw->mac.type >= e1000_ich10lan) {
5507 e1000_lan_init_done_ich8lan(hw);
5508 } else {
5509 ret_val = e1000e_get_auto_rd_done(hw);
5510 if (ret_val) {
5511 /* When auto config read does not complete, do not
5512 * return with an error. This can happen in situations
5513 * where there is no eeprom and prevents getting link.
5514 */
5515 e_dbg("Auto Read Done did not complete\n");
5516 ret_val = 0;
5517 }
5518 }
5519
5520 /* Clear PHY Reset Asserted bit */
5521 status = er32(STATUS);
5522 if (status & E1000_STATUS_PHYRA)
5523 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5524 else
5525 e_dbg("PHY Reset Asserted not set - needs delay\n");
5526
5527 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5528 if (hw->mac.type <= e1000_ich9lan) {
5529 if (!(er32(EECD) & E1000_EECD_PRES) &&
5530 (hw->phy.type == e1000_phy_igp_3)) {
5531 e1000e_phy_init_script_igp3(hw);
5532 }
5533 } else {
5534 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5535 /* Maybe we should do a basic PHY config */
5536 e_dbg("EEPROM not present\n");
5537 ret_val = -E1000_ERR_CONFIG;
5538 }
5539 }
5540
5541 return ret_val;
5542 }
5543
5544 /**
5545 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5546 * @hw: pointer to the HW structure
5547 *
5548 * In the case of a PHY power down to save power, or to turn off link during a
5549 * driver unload, or wake on lan is not enabled, remove the link.
5550 **/
5551 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5552 {
5553 /* If the management interface is not enabled, then power down */
5554 if (!(hw->mac.ops.check_mng_mode(hw) ||
5555 hw->phy.ops.check_reset_block(hw)))
5556 e1000_power_down_phy_copper(hw);
5557 }
5558
5559 /**
5560 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5561 * @hw: pointer to the HW structure
5562 *
5563 * Clears hardware counters specific to the silicon family and calls
5564 * clear_hw_cntrs_generic to clear all general purpose counters.
5565 **/
5566 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5567 {
5568 u16 phy_data;
5569 s32 ret_val;
5570
5571 e1000e_clear_hw_cntrs_base(hw);
5572
5573 er32(ALGNERRC);
5574 er32(RXERRC);
5575 er32(TNCRS);
5576 er32(CEXTERR);
5577 er32(TSCTC);
5578 er32(TSCTFC);
5579
5580 er32(MGTPRC);
5581 er32(MGTPDC);
5582 er32(MGTPTC);
5583
5584 er32(IAC);
5585 er32(ICRXOC);
5586
5587 /* Clear PHY statistics registers */
5588 if ((hw->phy.type == e1000_phy_82578) ||
5589 (hw->phy.type == e1000_phy_82579) ||
5590 (hw->phy.type == e1000_phy_i217) ||
5591 (hw->phy.type == e1000_phy_82577)) {
5592 ret_val = hw->phy.ops.acquire(hw);
5593 if (ret_val)
5594 return;
5595 ret_val = hw->phy.ops.set_page(hw,
5596 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5597 if (ret_val)
5598 goto release;
5599 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5600 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5601 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5602 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5603 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5604 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5605 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5606 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5607 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5608 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5609 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5610 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5611 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5612 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5613 release:
5614 hw->phy.ops.release(hw);
5615 }
5616 }
5617
5618 static const struct e1000_mac_operations ich8_mac_ops = {
5619 /* check_mng_mode dependent on mac type */
5620 .check_for_link = e1000_check_for_copper_link_ich8lan,
5621 /* cleanup_led dependent on mac type */
5622 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
5623 .get_bus_info = e1000_get_bus_info_ich8lan,
5624 .set_lan_id = e1000_set_lan_id_single_port,
5625 .get_link_up_info = e1000_get_link_up_info_ich8lan,
5626 /* led_on dependent on mac type */
5627 /* led_off dependent on mac type */
5628 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
5629 .reset_hw = e1000_reset_hw_ich8lan,
5630 .init_hw = e1000_init_hw_ich8lan,
5631 .setup_link = e1000_setup_link_ich8lan,
5632 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5633 /* id_led_init dependent on mac type */
5634 .config_collision_dist = e1000e_config_collision_dist_generic,
5635 .rar_set = e1000e_rar_set_generic,
5636 .rar_get_count = e1000e_rar_get_count_generic,
5637 };
5638
5639 static const struct e1000_phy_operations ich8_phy_ops = {
5640 .acquire = e1000_acquire_swflag_ich8lan,
5641 .check_reset_block = e1000_check_reset_block_ich8lan,
5642 .commit = NULL,
5643 .get_cfg_done = e1000_get_cfg_done_ich8lan,
5644 .get_cable_length = e1000e_get_cable_length_igp_2,
5645 .read_reg = e1000e_read_phy_reg_igp,
5646 .release = e1000_release_swflag_ich8lan,
5647 .reset = e1000_phy_hw_reset_ich8lan,
5648 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
5649 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
5650 .write_reg = e1000e_write_phy_reg_igp,
5651 };
5652
5653 static const struct e1000_nvm_operations ich8_nvm_ops = {
5654 .acquire = e1000_acquire_nvm_ich8lan,
5655 .read = e1000_read_nvm_ich8lan,
5656 .release = e1000_release_nvm_ich8lan,
5657 .reload = e1000e_reload_nvm_generic,
5658 .update = e1000_update_nvm_checksum_ich8lan,
5659 .valid_led_default = e1000_valid_led_default_ich8lan,
5660 .validate = e1000_validate_nvm_checksum_ich8lan,
5661 .write = e1000_write_nvm_ich8lan,
5662 };
5663
5664 static const struct e1000_nvm_operations spt_nvm_ops = {
5665 .acquire = e1000_acquire_nvm_ich8lan,
5666 .release = e1000_release_nvm_ich8lan,
5667 .read = e1000_read_nvm_spt,
5668 .update = e1000_update_nvm_checksum_spt,
5669 .reload = e1000e_reload_nvm_generic,
5670 .valid_led_default = e1000_valid_led_default_ich8lan,
5671 .validate = e1000_validate_nvm_checksum_ich8lan,
5672 .write = e1000_write_nvm_ich8lan,
5673 };
5674
5675 const struct e1000_info e1000_ich8_info = {
5676 .mac = e1000_ich8lan,
5677 .flags = FLAG_HAS_WOL
5678 | FLAG_IS_ICH
5679 | FLAG_HAS_CTRLEXT_ON_LOAD
5680 | FLAG_HAS_AMT
5681 | FLAG_HAS_FLASH
5682 | FLAG_APME_IN_WUC,
5683 .pba = 8,
5684 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5685 .get_variants = e1000_get_variants_ich8lan,
5686 .mac_ops = &ich8_mac_ops,
5687 .phy_ops = &ich8_phy_ops,
5688 .nvm_ops = &ich8_nvm_ops,
5689 };
5690
5691 const struct e1000_info e1000_ich9_info = {
5692 .mac = e1000_ich9lan,
5693 .flags = FLAG_HAS_JUMBO_FRAMES
5694 | FLAG_IS_ICH
5695 | FLAG_HAS_WOL
5696 | FLAG_HAS_CTRLEXT_ON_LOAD
5697 | FLAG_HAS_AMT
5698 | FLAG_HAS_FLASH
5699 | FLAG_APME_IN_WUC,
5700 .pba = 18,
5701 .max_hw_frame_size = DEFAULT_JUMBO,
5702 .get_variants = e1000_get_variants_ich8lan,
5703 .mac_ops = &ich8_mac_ops,
5704 .phy_ops = &ich8_phy_ops,
5705 .nvm_ops = &ich8_nvm_ops,
5706 };
5707
5708 const struct e1000_info e1000_ich10_info = {
5709 .mac = e1000_ich10lan,
5710 .flags = FLAG_HAS_JUMBO_FRAMES
5711 | FLAG_IS_ICH
5712 | FLAG_HAS_WOL
5713 | FLAG_HAS_CTRLEXT_ON_LOAD
5714 | FLAG_HAS_AMT
5715 | FLAG_HAS_FLASH
5716 | FLAG_APME_IN_WUC,
5717 .pba = 18,
5718 .max_hw_frame_size = DEFAULT_JUMBO,
5719 .get_variants = e1000_get_variants_ich8lan,
5720 .mac_ops = &ich8_mac_ops,
5721 .phy_ops = &ich8_phy_ops,
5722 .nvm_ops = &ich8_nvm_ops,
5723 };
5724
5725 const struct e1000_info e1000_pch_info = {
5726 .mac = e1000_pchlan,
5727 .flags = FLAG_IS_ICH
5728 | FLAG_HAS_WOL
5729 | FLAG_HAS_CTRLEXT_ON_LOAD
5730 | FLAG_HAS_AMT
5731 | FLAG_HAS_FLASH
5732 | FLAG_HAS_JUMBO_FRAMES
5733 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5734 | FLAG_APME_IN_WUC,
5735 .flags2 = FLAG2_HAS_PHY_STATS,
5736 .pba = 26,
5737 .max_hw_frame_size = 4096,
5738 .get_variants = e1000_get_variants_ich8lan,
5739 .mac_ops = &ich8_mac_ops,
5740 .phy_ops = &ich8_phy_ops,
5741 .nvm_ops = &ich8_nvm_ops,
5742 };
5743
5744 const struct e1000_info e1000_pch2_info = {
5745 .mac = e1000_pch2lan,
5746 .flags = FLAG_IS_ICH
5747 | FLAG_HAS_WOL
5748 | FLAG_HAS_HW_TIMESTAMP
5749 | FLAG_HAS_CTRLEXT_ON_LOAD
5750 | FLAG_HAS_AMT
5751 | FLAG_HAS_FLASH
5752 | FLAG_HAS_JUMBO_FRAMES
5753 | FLAG_APME_IN_WUC,
5754 .flags2 = FLAG2_HAS_PHY_STATS
5755 | FLAG2_HAS_EEE,
5756 .pba = 26,
5757 .max_hw_frame_size = 9022,
5758 .get_variants = e1000_get_variants_ich8lan,
5759 .mac_ops = &ich8_mac_ops,
5760 .phy_ops = &ich8_phy_ops,
5761 .nvm_ops = &ich8_nvm_ops,
5762 };
5763
5764 const struct e1000_info e1000_pch_lpt_info = {
5765 .mac = e1000_pch_lpt,
5766 .flags = FLAG_IS_ICH
5767 | FLAG_HAS_WOL
5768 | FLAG_HAS_HW_TIMESTAMP
5769 | FLAG_HAS_CTRLEXT_ON_LOAD
5770 | FLAG_HAS_AMT
5771 | FLAG_HAS_FLASH
5772 | FLAG_HAS_JUMBO_FRAMES
5773 | FLAG_APME_IN_WUC,
5774 .flags2 = FLAG2_HAS_PHY_STATS
5775 | FLAG2_HAS_EEE,
5776 .pba = 26,
5777 .max_hw_frame_size = 9022,
5778 .get_variants = e1000_get_variants_ich8lan,
5779 .mac_ops = &ich8_mac_ops,
5780 .phy_ops = &ich8_phy_ops,
5781 .nvm_ops = &ich8_nvm_ops,
5782 };
5783
5784 const struct e1000_info e1000_pch_spt_info = {
5785 .mac = e1000_pch_spt,
5786 .flags = FLAG_IS_ICH
5787 | FLAG_HAS_WOL
5788 | FLAG_HAS_HW_TIMESTAMP
5789 | FLAG_HAS_CTRLEXT_ON_LOAD
5790 | FLAG_HAS_AMT
5791 | FLAG_HAS_FLASH
5792 | FLAG_HAS_JUMBO_FRAMES
5793 | FLAG_APME_IN_WUC,
5794 .flags2 = FLAG2_HAS_PHY_STATS
5795 | FLAG2_HAS_EEE,
5796 .pba = 26,
5797 .max_hw_frame_size = 9022,
5798 .get_variants = e1000_get_variants_ich8lan,
5799 .mac_ops = &ich8_mac_ops,
5800 .phy_ops = &ich8_phy_ops,
5801 .nvm_ops = &spt_nvm_ops,
5802 };
This page took 0.235453 seconds and 5 git commands to generate.