e1000e: Fix TSO with non-accelerated vlans
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61 [board_82571] = &e1000_82571_info,
62 [board_82572] = &e1000_82572_info,
63 [board_82573] = &e1000_82573_info,
64 [board_82574] = &e1000_82574_info,
65 [board_82583] = &e1000_82583_info,
66 [board_80003es2lan] = &e1000_es2_info,
67 [board_ich8lan] = &e1000_ich8_info,
68 [board_ich9lan] = &e1000_ich9_info,
69 [board_ich10lan] = &e1000_ich10_info,
70 [board_pchlan] = &e1000_pch_info,
71 [board_pch2lan] = &e1000_pch2_info,
72 [board_pch_lpt] = &e1000_pch_lpt_info,
73 };
74
75 struct e1000_reg_info {
76 u32 ofs;
77 char *name;
78 };
79
80 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
81 /* General Registers */
82 {E1000_CTRL, "CTRL"},
83 {E1000_STATUS, "STATUS"},
84 {E1000_CTRL_EXT, "CTRL_EXT"},
85
86 /* Interrupt Registers */
87 {E1000_ICR, "ICR"},
88
89 /* Rx Registers */
90 {E1000_RCTL, "RCTL"},
91 {E1000_RDLEN(0), "RDLEN"},
92 {E1000_RDH(0), "RDH"},
93 {E1000_RDT(0), "RDT"},
94 {E1000_RDTR, "RDTR"},
95 {E1000_RXDCTL(0), "RXDCTL"},
96 {E1000_ERT, "ERT"},
97 {E1000_RDBAL(0), "RDBAL"},
98 {E1000_RDBAH(0), "RDBAH"},
99 {E1000_RDFH, "RDFH"},
100 {E1000_RDFT, "RDFT"},
101 {E1000_RDFHS, "RDFHS"},
102 {E1000_RDFTS, "RDFTS"},
103 {E1000_RDFPC, "RDFPC"},
104
105 /* Tx Registers */
106 {E1000_TCTL, "TCTL"},
107 {E1000_TDBAL(0), "TDBAL"},
108 {E1000_TDBAH(0), "TDBAH"},
109 {E1000_TDLEN(0), "TDLEN"},
110 {E1000_TDH(0), "TDH"},
111 {E1000_TDT(0), "TDT"},
112 {E1000_TIDV, "TIDV"},
113 {E1000_TXDCTL(0), "TXDCTL"},
114 {E1000_TADV, "TADV"},
115 {E1000_TARC(0), "TARC"},
116 {E1000_TDFH, "TDFH"},
117 {E1000_TDFT, "TDFT"},
118 {E1000_TDFHS, "TDFHS"},
119 {E1000_TDFTS, "TDFTS"},
120 {E1000_TDFPC, "TDFPC"},
121
122 /* List Terminator */
123 {0, NULL}
124 };
125
126 /**
127 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
128 * @hw: pointer to the HW structure
129 *
130 * When updating the MAC CSR registers, the Manageability Engine (ME) could
131 * be accessing the registers at the same time. Normally, this is handled in
132 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
133 * accesses later than it should which could result in the register to have
134 * an incorrect value. Workaround this by checking the FWSM register which
135 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
136 * and try again a number of times.
137 **/
138 s32 __ew32_prepare(struct e1000_hw *hw)
139 {
140 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
141
142 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
143 udelay(50);
144
145 return i;
146 }
147
148 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
149 {
150 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
151 __ew32_prepare(hw);
152
153 writel(val, hw->hw_addr + reg);
154 }
155
156 /**
157 * e1000_regdump - register printout routine
158 * @hw: pointer to the HW structure
159 * @reginfo: pointer to the register info table
160 **/
161 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
162 {
163 int n = 0;
164 char rname[16];
165 u32 regs[8];
166
167 switch (reginfo->ofs) {
168 case E1000_RXDCTL(0):
169 for (n = 0; n < 2; n++)
170 regs[n] = __er32(hw, E1000_RXDCTL(n));
171 break;
172 case E1000_TXDCTL(0):
173 for (n = 0; n < 2; n++)
174 regs[n] = __er32(hw, E1000_TXDCTL(n));
175 break;
176 case E1000_TARC(0):
177 for (n = 0; n < 2; n++)
178 regs[n] = __er32(hw, E1000_TARC(n));
179 break;
180 default:
181 pr_info("%-15s %08x\n",
182 reginfo->name, __er32(hw, reginfo->ofs));
183 return;
184 }
185
186 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
187 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
188 }
189
190 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
191 struct e1000_buffer *bi)
192 {
193 int i;
194 struct e1000_ps_page *ps_page;
195
196 for (i = 0; i < adapter->rx_ps_pages; i++) {
197 ps_page = &bi->ps_pages[i];
198
199 if (ps_page->page) {
200 pr_info("packet dump for ps_page %d:\n", i);
201 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
202 16, 1, page_address(ps_page->page),
203 PAGE_SIZE, true);
204 }
205 }
206 }
207
208 /**
209 * e1000e_dump - Print registers, Tx-ring and Rx-ring
210 * @adapter: board private structure
211 **/
212 static void e1000e_dump(struct e1000_adapter *adapter)
213 {
214 struct net_device *netdev = adapter->netdev;
215 struct e1000_hw *hw = &adapter->hw;
216 struct e1000_reg_info *reginfo;
217 struct e1000_ring *tx_ring = adapter->tx_ring;
218 struct e1000_tx_desc *tx_desc;
219 struct my_u0 {
220 __le64 a;
221 __le64 b;
222 } *u0;
223 struct e1000_buffer *buffer_info;
224 struct e1000_ring *rx_ring = adapter->rx_ring;
225 union e1000_rx_desc_packet_split *rx_desc_ps;
226 union e1000_rx_desc_extended *rx_desc;
227 struct my_u1 {
228 __le64 a;
229 __le64 b;
230 __le64 c;
231 __le64 d;
232 } *u1;
233 u32 staterr;
234 int i = 0;
235
236 if (!netif_msg_hw(adapter))
237 return;
238
239 /* Print netdevice Info */
240 if (netdev) {
241 dev_info(&adapter->pdev->dev, "Net device Info\n");
242 pr_info("Device Name state trans_start last_rx\n");
243 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
244 netdev->state, netdev->trans_start, netdev->last_rx);
245 }
246
247 /* Print Registers */
248 dev_info(&adapter->pdev->dev, "Register Dump\n");
249 pr_info(" Register Name Value\n");
250 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
251 reginfo->name; reginfo++) {
252 e1000_regdump(hw, reginfo);
253 }
254
255 /* Print Tx Ring Summary */
256 if (!netdev || !netif_running(netdev))
257 return;
258
259 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
260 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
261 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
262 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
263 0, tx_ring->next_to_use, tx_ring->next_to_clean,
264 (unsigned long long)buffer_info->dma,
265 buffer_info->length,
266 buffer_info->next_to_watch,
267 (unsigned long long)buffer_info->time_stamp);
268
269 /* Print Tx Ring */
270 if (!netif_msg_tx_done(adapter))
271 goto rx_ring_summary;
272
273 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
274
275 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
276 *
277 * Legacy Transmit Descriptor
278 * +--------------------------------------------------------------+
279 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
280 * +--------------------------------------------------------------+
281 * 8 | Special | CSS | Status | CMD | CSO | Length |
282 * +--------------------------------------------------------------+
283 * 63 48 47 36 35 32 31 24 23 16 15 0
284 *
285 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
286 * 63 48 47 40 39 32 31 16 15 8 7 0
287 * +----------------------------------------------------------------+
288 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
289 * +----------------------------------------------------------------+
290 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
291 * +----------------------------------------------------------------+
292 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
293 *
294 * Extended Data Descriptor (DTYP=0x1)
295 * +----------------------------------------------------------------+
296 * 0 | Buffer Address [63:0] |
297 * +----------------------------------------------------------------+
298 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
299 * +----------------------------------------------------------------+
300 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
301 */
302 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
303 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
304 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
305 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
306 const char *next_desc;
307 tx_desc = E1000_TX_DESC(*tx_ring, i);
308 buffer_info = &tx_ring->buffer_info[i];
309 u0 = (struct my_u0 *)tx_desc;
310 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
311 next_desc = " NTC/U";
312 else if (i == tx_ring->next_to_use)
313 next_desc = " NTU";
314 else if (i == tx_ring->next_to_clean)
315 next_desc = " NTC";
316 else
317 next_desc = "";
318 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
319 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
320 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
321 i,
322 (unsigned long long)le64_to_cpu(u0->a),
323 (unsigned long long)le64_to_cpu(u0->b),
324 (unsigned long long)buffer_info->dma,
325 buffer_info->length, buffer_info->next_to_watch,
326 (unsigned long long)buffer_info->time_stamp,
327 buffer_info->skb, next_desc);
328
329 if (netif_msg_pktdata(adapter) && buffer_info->skb)
330 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
331 16, 1, buffer_info->skb->data,
332 buffer_info->skb->len, true);
333 }
334
335 /* Print Rx Ring Summary */
336 rx_ring_summary:
337 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
338 pr_info("Queue [NTU] [NTC]\n");
339 pr_info(" %5d %5X %5X\n",
340 0, rx_ring->next_to_use, rx_ring->next_to_clean);
341
342 /* Print Rx Ring */
343 if (!netif_msg_rx_status(adapter))
344 return;
345
346 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
347 switch (adapter->rx_ps_pages) {
348 case 1:
349 case 2:
350 case 3:
351 /* [Extended] Packet Split Receive Descriptor Format
352 *
353 * +-----------------------------------------------------+
354 * 0 | Buffer Address 0 [63:0] |
355 * +-----------------------------------------------------+
356 * 8 | Buffer Address 1 [63:0] |
357 * +-----------------------------------------------------+
358 * 16 | Buffer Address 2 [63:0] |
359 * +-----------------------------------------------------+
360 * 24 | Buffer Address 3 [63:0] |
361 * +-----------------------------------------------------+
362 */
363 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
364 /* [Extended] Receive Descriptor (Write-Back) Format
365 *
366 * 63 48 47 32 31 13 12 8 7 4 3 0
367 * +------------------------------------------------------+
368 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
369 * | Checksum | Ident | | Queue | | Type |
370 * +------------------------------------------------------+
371 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
372 * +------------------------------------------------------+
373 * 63 48 47 32 31 20 19 0
374 */
375 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
376 for (i = 0; i < rx_ring->count; i++) {
377 const char *next_desc;
378 buffer_info = &rx_ring->buffer_info[i];
379 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
380 u1 = (struct my_u1 *)rx_desc_ps;
381 staterr =
382 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
383
384 if (i == rx_ring->next_to_use)
385 next_desc = " NTU";
386 else if (i == rx_ring->next_to_clean)
387 next_desc = " NTC";
388 else
389 next_desc = "";
390
391 if (staterr & E1000_RXD_STAT_DD) {
392 /* Descriptor Done */
393 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
394 "RWB", i,
395 (unsigned long long)le64_to_cpu(u1->a),
396 (unsigned long long)le64_to_cpu(u1->b),
397 (unsigned long long)le64_to_cpu(u1->c),
398 (unsigned long long)le64_to_cpu(u1->d),
399 buffer_info->skb, next_desc);
400 } else {
401 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
402 "R ", i,
403 (unsigned long long)le64_to_cpu(u1->a),
404 (unsigned long long)le64_to_cpu(u1->b),
405 (unsigned long long)le64_to_cpu(u1->c),
406 (unsigned long long)le64_to_cpu(u1->d),
407 (unsigned long long)buffer_info->dma,
408 buffer_info->skb, next_desc);
409
410 if (netif_msg_pktdata(adapter))
411 e1000e_dump_ps_pages(adapter,
412 buffer_info);
413 }
414 }
415 break;
416 default:
417 case 0:
418 /* Extended Receive Descriptor (Read) Format
419 *
420 * +-----------------------------------------------------+
421 * 0 | Buffer Address [63:0] |
422 * +-----------------------------------------------------+
423 * 8 | Reserved |
424 * +-----------------------------------------------------+
425 */
426 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
427 /* Extended Receive Descriptor (Write-Back) Format
428 *
429 * 63 48 47 32 31 24 23 4 3 0
430 * +------------------------------------------------------+
431 * | RSS Hash | | | |
432 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
433 * | Packet | IP | | | Type |
434 * | Checksum | Ident | | | |
435 * +------------------------------------------------------+
436 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
437 * +------------------------------------------------------+
438 * 63 48 47 32 31 20 19 0
439 */
440 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
441
442 for (i = 0; i < rx_ring->count; i++) {
443 const char *next_desc;
444
445 buffer_info = &rx_ring->buffer_info[i];
446 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
447 u1 = (struct my_u1 *)rx_desc;
448 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
449
450 if (i == rx_ring->next_to_use)
451 next_desc = " NTU";
452 else if (i == rx_ring->next_to_clean)
453 next_desc = " NTC";
454 else
455 next_desc = "";
456
457 if (staterr & E1000_RXD_STAT_DD) {
458 /* Descriptor Done */
459 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
460 "RWB", i,
461 (unsigned long long)le64_to_cpu(u1->a),
462 (unsigned long long)le64_to_cpu(u1->b),
463 buffer_info->skb, next_desc);
464 } else {
465 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
466 "R ", i,
467 (unsigned long long)le64_to_cpu(u1->a),
468 (unsigned long long)le64_to_cpu(u1->b),
469 (unsigned long long)buffer_info->dma,
470 buffer_info->skb, next_desc);
471
472 if (netif_msg_pktdata(adapter) &&
473 buffer_info->skb)
474 print_hex_dump(KERN_INFO, "",
475 DUMP_PREFIX_ADDRESS, 16,
476 1,
477 buffer_info->skb->data,
478 adapter->rx_buffer_len,
479 true);
480 }
481 }
482 }
483 }
484
485 /**
486 * e1000_desc_unused - calculate if we have unused descriptors
487 **/
488 static int e1000_desc_unused(struct e1000_ring *ring)
489 {
490 if (ring->next_to_clean > ring->next_to_use)
491 return ring->next_to_clean - ring->next_to_use - 1;
492
493 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
494 }
495
496 /**
497 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
498 * @adapter: board private structure
499 * @hwtstamps: time stamp structure to update
500 * @systim: unsigned 64bit system time value.
501 *
502 * Convert the system time value stored in the RX/TXSTMP registers into a
503 * hwtstamp which can be used by the upper level time stamping functions.
504 *
505 * The 'systim_lock' spinlock is used to protect the consistency of the
506 * system time value. This is needed because reading the 64 bit time
507 * value involves reading two 32 bit registers. The first read latches the
508 * value.
509 **/
510 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
511 struct skb_shared_hwtstamps *hwtstamps,
512 u64 systim)
513 {
514 u64 ns;
515 unsigned long flags;
516
517 spin_lock_irqsave(&adapter->systim_lock, flags);
518 ns = timecounter_cyc2time(&adapter->tc, systim);
519 spin_unlock_irqrestore(&adapter->systim_lock, flags);
520
521 memset(hwtstamps, 0, sizeof(*hwtstamps));
522 hwtstamps->hwtstamp = ns_to_ktime(ns);
523 }
524
525 /**
526 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
527 * @adapter: board private structure
528 * @status: descriptor extended error and status field
529 * @skb: particular skb to include time stamp
530 *
531 * If the time stamp is valid, convert it into the timecounter ns value
532 * and store that result into the shhwtstamps structure which is passed
533 * up the network stack.
534 **/
535 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
536 struct sk_buff *skb)
537 {
538 struct e1000_hw *hw = &adapter->hw;
539 u64 rxstmp;
540
541 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
542 !(status & E1000_RXDEXT_STATERR_TST) ||
543 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
544 return;
545
546 /* The Rx time stamp registers contain the time stamp. No other
547 * received packet will be time stamped until the Rx time stamp
548 * registers are read. Because only one packet can be time stamped
549 * at a time, the register values must belong to this packet and
550 * therefore none of the other additional attributes need to be
551 * compared.
552 */
553 rxstmp = (u64)er32(RXSTMPL);
554 rxstmp |= (u64)er32(RXSTMPH) << 32;
555 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
556
557 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
558 }
559
560 /**
561 * e1000_receive_skb - helper function to handle Rx indications
562 * @adapter: board private structure
563 * @staterr: descriptor extended error and status field as written by hardware
564 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
565 * @skb: pointer to sk_buff to be indicated to stack
566 **/
567 static void e1000_receive_skb(struct e1000_adapter *adapter,
568 struct net_device *netdev, struct sk_buff *skb,
569 u32 staterr, __le16 vlan)
570 {
571 u16 tag = le16_to_cpu(vlan);
572
573 e1000e_rx_hwtstamp(adapter, staterr, skb);
574
575 skb->protocol = eth_type_trans(skb, netdev);
576
577 if (staterr & E1000_RXD_STAT_VP)
578 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
579
580 napi_gro_receive(&adapter->napi, skb);
581 }
582
583 /**
584 * e1000_rx_checksum - Receive Checksum Offload
585 * @adapter: board private structure
586 * @status_err: receive descriptor status and error fields
587 * @csum: receive descriptor csum field
588 * @sk_buff: socket buffer with received data
589 **/
590 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
591 struct sk_buff *skb)
592 {
593 u16 status = (u16)status_err;
594 u8 errors = (u8)(status_err >> 24);
595
596 skb_checksum_none_assert(skb);
597
598 /* Rx checksum disabled */
599 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
600 return;
601
602 /* Ignore Checksum bit is set */
603 if (status & E1000_RXD_STAT_IXSM)
604 return;
605
606 /* TCP/UDP checksum error bit or IP checksum error bit is set */
607 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
608 /* let the stack verify checksum errors */
609 adapter->hw_csum_err++;
610 return;
611 }
612
613 /* TCP/UDP Checksum has not been calculated */
614 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
615 return;
616
617 /* It must be a TCP or UDP packet with a valid checksum */
618 skb->ip_summed = CHECKSUM_UNNECESSARY;
619 adapter->hw_csum_good++;
620 }
621
622 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
623 {
624 struct e1000_adapter *adapter = rx_ring->adapter;
625 struct e1000_hw *hw = &adapter->hw;
626 s32 ret_val = __ew32_prepare(hw);
627
628 writel(i, rx_ring->tail);
629
630 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
631 u32 rctl = er32(RCTL);
632
633 ew32(RCTL, rctl & ~E1000_RCTL_EN);
634 e_err("ME firmware caused invalid RDT - resetting\n");
635 schedule_work(&adapter->reset_task);
636 }
637 }
638
639 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
640 {
641 struct e1000_adapter *adapter = tx_ring->adapter;
642 struct e1000_hw *hw = &adapter->hw;
643 s32 ret_val = __ew32_prepare(hw);
644
645 writel(i, tx_ring->tail);
646
647 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
648 u32 tctl = er32(TCTL);
649
650 ew32(TCTL, tctl & ~E1000_TCTL_EN);
651 e_err("ME firmware caused invalid TDT - resetting\n");
652 schedule_work(&adapter->reset_task);
653 }
654 }
655
656 /**
657 * e1000_alloc_rx_buffers - Replace used receive buffers
658 * @rx_ring: Rx descriptor ring
659 **/
660 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
661 int cleaned_count, gfp_t gfp)
662 {
663 struct e1000_adapter *adapter = rx_ring->adapter;
664 struct net_device *netdev = adapter->netdev;
665 struct pci_dev *pdev = adapter->pdev;
666 union e1000_rx_desc_extended *rx_desc;
667 struct e1000_buffer *buffer_info;
668 struct sk_buff *skb;
669 unsigned int i;
670 unsigned int bufsz = adapter->rx_buffer_len;
671
672 i = rx_ring->next_to_use;
673 buffer_info = &rx_ring->buffer_info[i];
674
675 while (cleaned_count--) {
676 skb = buffer_info->skb;
677 if (skb) {
678 skb_trim(skb, 0);
679 goto map_skb;
680 }
681
682 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
683 if (!skb) {
684 /* Better luck next round */
685 adapter->alloc_rx_buff_failed++;
686 break;
687 }
688
689 buffer_info->skb = skb;
690 map_skb:
691 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
692 adapter->rx_buffer_len,
693 DMA_FROM_DEVICE);
694 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
695 dev_err(&pdev->dev, "Rx DMA map failed\n");
696 adapter->rx_dma_failed++;
697 break;
698 }
699
700 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
701 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
702
703 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
704 /* Force memory writes to complete before letting h/w
705 * know there are new descriptors to fetch. (Only
706 * applicable for weak-ordered memory model archs,
707 * such as IA-64).
708 */
709 wmb();
710 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
711 e1000e_update_rdt_wa(rx_ring, i);
712 else
713 writel(i, rx_ring->tail);
714 }
715 i++;
716 if (i == rx_ring->count)
717 i = 0;
718 buffer_info = &rx_ring->buffer_info[i];
719 }
720
721 rx_ring->next_to_use = i;
722 }
723
724 /**
725 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
726 * @rx_ring: Rx descriptor ring
727 **/
728 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
729 int cleaned_count, gfp_t gfp)
730 {
731 struct e1000_adapter *adapter = rx_ring->adapter;
732 struct net_device *netdev = adapter->netdev;
733 struct pci_dev *pdev = adapter->pdev;
734 union e1000_rx_desc_packet_split *rx_desc;
735 struct e1000_buffer *buffer_info;
736 struct e1000_ps_page *ps_page;
737 struct sk_buff *skb;
738 unsigned int i, j;
739
740 i = rx_ring->next_to_use;
741 buffer_info = &rx_ring->buffer_info[i];
742
743 while (cleaned_count--) {
744 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
745
746 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
747 ps_page = &buffer_info->ps_pages[j];
748 if (j >= adapter->rx_ps_pages) {
749 /* all unused desc entries get hw null ptr */
750 rx_desc->read.buffer_addr[j + 1] =
751 ~cpu_to_le64(0);
752 continue;
753 }
754 if (!ps_page->page) {
755 ps_page->page = alloc_page(gfp);
756 if (!ps_page->page) {
757 adapter->alloc_rx_buff_failed++;
758 goto no_buffers;
759 }
760 ps_page->dma = dma_map_page(&pdev->dev,
761 ps_page->page,
762 0, PAGE_SIZE,
763 DMA_FROM_DEVICE);
764 if (dma_mapping_error(&pdev->dev,
765 ps_page->dma)) {
766 dev_err(&adapter->pdev->dev,
767 "Rx DMA page map failed\n");
768 adapter->rx_dma_failed++;
769 goto no_buffers;
770 }
771 }
772 /* Refresh the desc even if buffer_addrs
773 * didn't change because each write-back
774 * erases this info.
775 */
776 rx_desc->read.buffer_addr[j + 1] =
777 cpu_to_le64(ps_page->dma);
778 }
779
780 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
781 gfp);
782
783 if (!skb) {
784 adapter->alloc_rx_buff_failed++;
785 break;
786 }
787
788 buffer_info->skb = skb;
789 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
790 adapter->rx_ps_bsize0,
791 DMA_FROM_DEVICE);
792 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
793 dev_err(&pdev->dev, "Rx DMA map failed\n");
794 adapter->rx_dma_failed++;
795 /* cleanup skb */
796 dev_kfree_skb_any(skb);
797 buffer_info->skb = NULL;
798 break;
799 }
800
801 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
802
803 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
804 /* Force memory writes to complete before letting h/w
805 * know there are new descriptors to fetch. (Only
806 * applicable for weak-ordered memory model archs,
807 * such as IA-64).
808 */
809 wmb();
810 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
811 e1000e_update_rdt_wa(rx_ring, i << 1);
812 else
813 writel(i << 1, rx_ring->tail);
814 }
815
816 i++;
817 if (i == rx_ring->count)
818 i = 0;
819 buffer_info = &rx_ring->buffer_info[i];
820 }
821
822 no_buffers:
823 rx_ring->next_to_use = i;
824 }
825
826 /**
827 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
828 * @rx_ring: Rx descriptor ring
829 * @cleaned_count: number of buffers to allocate this pass
830 **/
831
832 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
833 int cleaned_count, gfp_t gfp)
834 {
835 struct e1000_adapter *adapter = rx_ring->adapter;
836 struct net_device *netdev = adapter->netdev;
837 struct pci_dev *pdev = adapter->pdev;
838 union e1000_rx_desc_extended *rx_desc;
839 struct e1000_buffer *buffer_info;
840 struct sk_buff *skb;
841 unsigned int i;
842 unsigned int bufsz = 256 - 16; /* for skb_reserve */
843
844 i = rx_ring->next_to_use;
845 buffer_info = &rx_ring->buffer_info[i];
846
847 while (cleaned_count--) {
848 skb = buffer_info->skb;
849 if (skb) {
850 skb_trim(skb, 0);
851 goto check_page;
852 }
853
854 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
855 if (unlikely(!skb)) {
856 /* Better luck next round */
857 adapter->alloc_rx_buff_failed++;
858 break;
859 }
860
861 buffer_info->skb = skb;
862 check_page:
863 /* allocate a new page if necessary */
864 if (!buffer_info->page) {
865 buffer_info->page = alloc_page(gfp);
866 if (unlikely(!buffer_info->page)) {
867 adapter->alloc_rx_buff_failed++;
868 break;
869 }
870 }
871
872 if (!buffer_info->dma) {
873 buffer_info->dma = dma_map_page(&pdev->dev,
874 buffer_info->page, 0,
875 PAGE_SIZE,
876 DMA_FROM_DEVICE);
877 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
878 adapter->alloc_rx_buff_failed++;
879 break;
880 }
881 }
882
883 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
884 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
885
886 if (unlikely(++i == rx_ring->count))
887 i = 0;
888 buffer_info = &rx_ring->buffer_info[i];
889 }
890
891 if (likely(rx_ring->next_to_use != i)) {
892 rx_ring->next_to_use = i;
893 if (unlikely(i-- == 0))
894 i = (rx_ring->count - 1);
895
896 /* Force memory writes to complete before letting h/w
897 * know there are new descriptors to fetch. (Only
898 * applicable for weak-ordered memory model archs,
899 * such as IA-64).
900 */
901 wmb();
902 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
903 e1000e_update_rdt_wa(rx_ring, i);
904 else
905 writel(i, rx_ring->tail);
906 }
907 }
908
909 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
910 struct sk_buff *skb)
911 {
912 if (netdev->features & NETIF_F_RXHASH)
913 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
914 }
915
916 /**
917 * e1000_clean_rx_irq - Send received data up the network stack
918 * @rx_ring: Rx descriptor ring
919 *
920 * the return value indicates whether actual cleaning was done, there
921 * is no guarantee that everything was cleaned
922 **/
923 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
924 int work_to_do)
925 {
926 struct e1000_adapter *adapter = rx_ring->adapter;
927 struct net_device *netdev = adapter->netdev;
928 struct pci_dev *pdev = adapter->pdev;
929 struct e1000_hw *hw = &adapter->hw;
930 union e1000_rx_desc_extended *rx_desc, *next_rxd;
931 struct e1000_buffer *buffer_info, *next_buffer;
932 u32 length, staterr;
933 unsigned int i;
934 int cleaned_count = 0;
935 bool cleaned = false;
936 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
937
938 i = rx_ring->next_to_clean;
939 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
940 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
941 buffer_info = &rx_ring->buffer_info[i];
942
943 while (staterr & E1000_RXD_STAT_DD) {
944 struct sk_buff *skb;
945
946 if (*work_done >= work_to_do)
947 break;
948 (*work_done)++;
949 rmb(); /* read descriptor and rx_buffer_info after status DD */
950
951 skb = buffer_info->skb;
952 buffer_info->skb = NULL;
953
954 prefetch(skb->data - NET_IP_ALIGN);
955
956 i++;
957 if (i == rx_ring->count)
958 i = 0;
959 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
960 prefetch(next_rxd);
961
962 next_buffer = &rx_ring->buffer_info[i];
963
964 cleaned = true;
965 cleaned_count++;
966 dma_unmap_single(&pdev->dev, buffer_info->dma,
967 adapter->rx_buffer_len, DMA_FROM_DEVICE);
968 buffer_info->dma = 0;
969
970 length = le16_to_cpu(rx_desc->wb.upper.length);
971
972 /* !EOP means multiple descriptors were used to store a single
973 * packet, if that's the case we need to toss it. In fact, we
974 * need to toss every packet with the EOP bit clear and the
975 * next frame that _does_ have the EOP bit set, as it is by
976 * definition only a frame fragment
977 */
978 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
979 adapter->flags2 |= FLAG2_IS_DISCARDING;
980
981 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
982 /* All receives must fit into a single buffer */
983 e_dbg("Receive packet consumed multiple buffers\n");
984 /* recycle */
985 buffer_info->skb = skb;
986 if (staterr & E1000_RXD_STAT_EOP)
987 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
988 goto next_desc;
989 }
990
991 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
992 !(netdev->features & NETIF_F_RXALL))) {
993 /* recycle */
994 buffer_info->skb = skb;
995 goto next_desc;
996 }
997
998 /* adjust length to remove Ethernet CRC */
999 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1000 /* If configured to store CRC, don't subtract FCS,
1001 * but keep the FCS bytes out of the total_rx_bytes
1002 * counter
1003 */
1004 if (netdev->features & NETIF_F_RXFCS)
1005 total_rx_bytes -= 4;
1006 else
1007 length -= 4;
1008 }
1009
1010 total_rx_bytes += length;
1011 total_rx_packets++;
1012
1013 /* code added for copybreak, this should improve
1014 * performance for small packets with large amounts
1015 * of reassembly being done in the stack
1016 */
1017 if (length < copybreak) {
1018 struct sk_buff *new_skb =
1019 netdev_alloc_skb_ip_align(netdev, length);
1020 if (new_skb) {
1021 skb_copy_to_linear_data_offset(new_skb,
1022 -NET_IP_ALIGN,
1023 (skb->data -
1024 NET_IP_ALIGN),
1025 (length +
1026 NET_IP_ALIGN));
1027 /* save the skb in buffer_info as good */
1028 buffer_info->skb = skb;
1029 skb = new_skb;
1030 }
1031 /* else just continue with the old one */
1032 }
1033 /* end copybreak code */
1034 skb_put(skb, length);
1035
1036 /* Receive Checksum Offload */
1037 e1000_rx_checksum(adapter, staterr, skb);
1038
1039 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1040
1041 e1000_receive_skb(adapter, netdev, skb, staterr,
1042 rx_desc->wb.upper.vlan);
1043
1044 next_desc:
1045 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1046
1047 /* return some buffers to hardware, one at a time is too slow */
1048 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1049 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1050 GFP_ATOMIC);
1051 cleaned_count = 0;
1052 }
1053
1054 /* use prefetched values */
1055 rx_desc = next_rxd;
1056 buffer_info = next_buffer;
1057
1058 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1059 }
1060 rx_ring->next_to_clean = i;
1061
1062 cleaned_count = e1000_desc_unused(rx_ring);
1063 if (cleaned_count)
1064 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1065
1066 adapter->total_rx_bytes += total_rx_bytes;
1067 adapter->total_rx_packets += total_rx_packets;
1068 return cleaned;
1069 }
1070
1071 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1072 struct e1000_buffer *buffer_info)
1073 {
1074 struct e1000_adapter *adapter = tx_ring->adapter;
1075
1076 if (buffer_info->dma) {
1077 if (buffer_info->mapped_as_page)
1078 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1079 buffer_info->length, DMA_TO_DEVICE);
1080 else
1081 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1082 buffer_info->length, DMA_TO_DEVICE);
1083 buffer_info->dma = 0;
1084 }
1085 if (buffer_info->skb) {
1086 dev_kfree_skb_any(buffer_info->skb);
1087 buffer_info->skb = NULL;
1088 }
1089 buffer_info->time_stamp = 0;
1090 }
1091
1092 static void e1000_print_hw_hang(struct work_struct *work)
1093 {
1094 struct e1000_adapter *adapter = container_of(work,
1095 struct e1000_adapter,
1096 print_hang_task);
1097 struct net_device *netdev = adapter->netdev;
1098 struct e1000_ring *tx_ring = adapter->tx_ring;
1099 unsigned int i = tx_ring->next_to_clean;
1100 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1101 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1102 struct e1000_hw *hw = &adapter->hw;
1103 u16 phy_status, phy_1000t_status, phy_ext_status;
1104 u16 pci_status;
1105
1106 if (test_bit(__E1000_DOWN, &adapter->state))
1107 return;
1108
1109 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1110 /* May be block on write-back, flush and detect again
1111 * flush pending descriptor writebacks to memory
1112 */
1113 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1114 /* execute the writes immediately */
1115 e1e_flush();
1116 /* Due to rare timing issues, write to TIDV again to ensure
1117 * the write is successful
1118 */
1119 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1120 /* execute the writes immediately */
1121 e1e_flush();
1122 adapter->tx_hang_recheck = true;
1123 return;
1124 }
1125 adapter->tx_hang_recheck = false;
1126
1127 if (er32(TDH(0)) == er32(TDT(0))) {
1128 e_dbg("false hang detected, ignoring\n");
1129 return;
1130 }
1131
1132 /* Real hang detected */
1133 netif_stop_queue(netdev);
1134
1135 e1e_rphy(hw, MII_BMSR, &phy_status);
1136 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1137 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1138
1139 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1140
1141 /* detected Hardware unit hang */
1142 e_err("Detected Hardware Unit Hang:\n"
1143 " TDH <%x>\n"
1144 " TDT <%x>\n"
1145 " next_to_use <%x>\n"
1146 " next_to_clean <%x>\n"
1147 "buffer_info[next_to_clean]:\n"
1148 " time_stamp <%lx>\n"
1149 " next_to_watch <%x>\n"
1150 " jiffies <%lx>\n"
1151 " next_to_watch.status <%x>\n"
1152 "MAC Status <%x>\n"
1153 "PHY Status <%x>\n"
1154 "PHY 1000BASE-T Status <%x>\n"
1155 "PHY Extended Status <%x>\n"
1156 "PCI Status <%x>\n",
1157 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1158 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1159 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1160 phy_status, phy_1000t_status, phy_ext_status, pci_status);
1161
1162 e1000e_dump(adapter);
1163
1164 /* Suggest workaround for known h/w issue */
1165 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1166 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1167 }
1168
1169 /**
1170 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1171 * @work: pointer to work struct
1172 *
1173 * This work function polls the TSYNCTXCTL valid bit to determine when a
1174 * timestamp has been taken for the current stored skb. The timestamp must
1175 * be for this skb because only one such packet is allowed in the queue.
1176 */
1177 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1178 {
1179 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1180 tx_hwtstamp_work);
1181 struct e1000_hw *hw = &adapter->hw;
1182
1183 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1184 struct skb_shared_hwtstamps shhwtstamps;
1185 u64 txstmp;
1186
1187 txstmp = er32(TXSTMPL);
1188 txstmp |= (u64)er32(TXSTMPH) << 32;
1189
1190 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1191
1192 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1193 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1194 adapter->tx_hwtstamp_skb = NULL;
1195 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1196 + adapter->tx_timeout_factor * HZ)) {
1197 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1198 adapter->tx_hwtstamp_skb = NULL;
1199 adapter->tx_hwtstamp_timeouts++;
1200 e_warn("clearing Tx timestamp hang\n");
1201 } else {
1202 /* reschedule to check later */
1203 schedule_work(&adapter->tx_hwtstamp_work);
1204 }
1205 }
1206
1207 /**
1208 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1209 * @tx_ring: Tx descriptor ring
1210 *
1211 * the return value indicates whether actual cleaning was done, there
1212 * is no guarantee that everything was cleaned
1213 **/
1214 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1215 {
1216 struct e1000_adapter *adapter = tx_ring->adapter;
1217 struct net_device *netdev = adapter->netdev;
1218 struct e1000_hw *hw = &adapter->hw;
1219 struct e1000_tx_desc *tx_desc, *eop_desc;
1220 struct e1000_buffer *buffer_info;
1221 unsigned int i, eop;
1222 unsigned int count = 0;
1223 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1224 unsigned int bytes_compl = 0, pkts_compl = 0;
1225
1226 i = tx_ring->next_to_clean;
1227 eop = tx_ring->buffer_info[i].next_to_watch;
1228 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1229
1230 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1231 (count < tx_ring->count)) {
1232 bool cleaned = false;
1233
1234 rmb(); /* read buffer_info after eop_desc */
1235 for (; !cleaned; count++) {
1236 tx_desc = E1000_TX_DESC(*tx_ring, i);
1237 buffer_info = &tx_ring->buffer_info[i];
1238 cleaned = (i == eop);
1239
1240 if (cleaned) {
1241 total_tx_packets += buffer_info->segs;
1242 total_tx_bytes += buffer_info->bytecount;
1243 if (buffer_info->skb) {
1244 bytes_compl += buffer_info->skb->len;
1245 pkts_compl++;
1246 }
1247 }
1248
1249 e1000_put_txbuf(tx_ring, buffer_info);
1250 tx_desc->upper.data = 0;
1251
1252 i++;
1253 if (i == tx_ring->count)
1254 i = 0;
1255 }
1256
1257 if (i == tx_ring->next_to_use)
1258 break;
1259 eop = tx_ring->buffer_info[i].next_to_watch;
1260 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1261 }
1262
1263 tx_ring->next_to_clean = i;
1264
1265 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1266
1267 #define TX_WAKE_THRESHOLD 32
1268 if (count && netif_carrier_ok(netdev) &&
1269 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1270 /* Make sure that anybody stopping the queue after this
1271 * sees the new next_to_clean.
1272 */
1273 smp_mb();
1274
1275 if (netif_queue_stopped(netdev) &&
1276 !(test_bit(__E1000_DOWN, &adapter->state))) {
1277 netif_wake_queue(netdev);
1278 ++adapter->restart_queue;
1279 }
1280 }
1281
1282 if (adapter->detect_tx_hung) {
1283 /* Detect a transmit hang in hardware, this serializes the
1284 * check with the clearing of time_stamp and movement of i
1285 */
1286 adapter->detect_tx_hung = false;
1287 if (tx_ring->buffer_info[i].time_stamp &&
1288 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1289 + (adapter->tx_timeout_factor * HZ)) &&
1290 !(er32(STATUS) & E1000_STATUS_TXOFF))
1291 schedule_work(&adapter->print_hang_task);
1292 else
1293 adapter->tx_hang_recheck = false;
1294 }
1295 adapter->total_tx_bytes += total_tx_bytes;
1296 adapter->total_tx_packets += total_tx_packets;
1297 return count < tx_ring->count;
1298 }
1299
1300 /**
1301 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1302 * @rx_ring: Rx descriptor ring
1303 *
1304 * the return value indicates whether actual cleaning was done, there
1305 * is no guarantee that everything was cleaned
1306 **/
1307 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1308 int work_to_do)
1309 {
1310 struct e1000_adapter *adapter = rx_ring->adapter;
1311 struct e1000_hw *hw = &adapter->hw;
1312 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1313 struct net_device *netdev = adapter->netdev;
1314 struct pci_dev *pdev = adapter->pdev;
1315 struct e1000_buffer *buffer_info, *next_buffer;
1316 struct e1000_ps_page *ps_page;
1317 struct sk_buff *skb;
1318 unsigned int i, j;
1319 u32 length, staterr;
1320 int cleaned_count = 0;
1321 bool cleaned = false;
1322 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1323
1324 i = rx_ring->next_to_clean;
1325 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1326 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1327 buffer_info = &rx_ring->buffer_info[i];
1328
1329 while (staterr & E1000_RXD_STAT_DD) {
1330 if (*work_done >= work_to_do)
1331 break;
1332 (*work_done)++;
1333 skb = buffer_info->skb;
1334 rmb(); /* read descriptor and rx_buffer_info after status DD */
1335
1336 /* in the packet split case this is header only */
1337 prefetch(skb->data - NET_IP_ALIGN);
1338
1339 i++;
1340 if (i == rx_ring->count)
1341 i = 0;
1342 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1343 prefetch(next_rxd);
1344
1345 next_buffer = &rx_ring->buffer_info[i];
1346
1347 cleaned = true;
1348 cleaned_count++;
1349 dma_unmap_single(&pdev->dev, buffer_info->dma,
1350 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1351 buffer_info->dma = 0;
1352
1353 /* see !EOP comment in other Rx routine */
1354 if (!(staterr & E1000_RXD_STAT_EOP))
1355 adapter->flags2 |= FLAG2_IS_DISCARDING;
1356
1357 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1358 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1359 dev_kfree_skb_irq(skb);
1360 if (staterr & E1000_RXD_STAT_EOP)
1361 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1362 goto next_desc;
1363 }
1364
1365 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1366 !(netdev->features & NETIF_F_RXALL))) {
1367 dev_kfree_skb_irq(skb);
1368 goto next_desc;
1369 }
1370
1371 length = le16_to_cpu(rx_desc->wb.middle.length0);
1372
1373 if (!length) {
1374 e_dbg("Last part of the packet spanning multiple descriptors\n");
1375 dev_kfree_skb_irq(skb);
1376 goto next_desc;
1377 }
1378
1379 /* Good Receive */
1380 skb_put(skb, length);
1381
1382 {
1383 /* this looks ugly, but it seems compiler issues make
1384 * it more efficient than reusing j
1385 */
1386 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1387
1388 /* page alloc/put takes too long and effects small
1389 * packet throughput, so unsplit small packets and
1390 * save the alloc/put only valid in softirq (napi)
1391 * context to call kmap_*
1392 */
1393 if (l1 && (l1 <= copybreak) &&
1394 ((length + l1) <= adapter->rx_ps_bsize0)) {
1395 u8 *vaddr;
1396
1397 ps_page = &buffer_info->ps_pages[0];
1398
1399 /* there is no documentation about how to call
1400 * kmap_atomic, so we can't hold the mapping
1401 * very long
1402 */
1403 dma_sync_single_for_cpu(&pdev->dev,
1404 ps_page->dma,
1405 PAGE_SIZE,
1406 DMA_FROM_DEVICE);
1407 vaddr = kmap_atomic(ps_page->page);
1408 memcpy(skb_tail_pointer(skb), vaddr, l1);
1409 kunmap_atomic(vaddr);
1410 dma_sync_single_for_device(&pdev->dev,
1411 ps_page->dma,
1412 PAGE_SIZE,
1413 DMA_FROM_DEVICE);
1414
1415 /* remove the CRC */
1416 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1417 if (!(netdev->features & NETIF_F_RXFCS))
1418 l1 -= 4;
1419 }
1420
1421 skb_put(skb, l1);
1422 goto copydone;
1423 } /* if */
1424 }
1425
1426 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1427 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1428 if (!length)
1429 break;
1430
1431 ps_page = &buffer_info->ps_pages[j];
1432 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1433 DMA_FROM_DEVICE);
1434 ps_page->dma = 0;
1435 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1436 ps_page->page = NULL;
1437 skb->len += length;
1438 skb->data_len += length;
1439 skb->truesize += PAGE_SIZE;
1440 }
1441
1442 /* strip the ethernet crc, problem is we're using pages now so
1443 * this whole operation can get a little cpu intensive
1444 */
1445 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1446 if (!(netdev->features & NETIF_F_RXFCS))
1447 pskb_trim(skb, skb->len - 4);
1448 }
1449
1450 copydone:
1451 total_rx_bytes += skb->len;
1452 total_rx_packets++;
1453
1454 e1000_rx_checksum(adapter, staterr, skb);
1455
1456 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1457
1458 if (rx_desc->wb.upper.header_status &
1459 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1460 adapter->rx_hdr_split++;
1461
1462 e1000_receive_skb(adapter, netdev, skb, staterr,
1463 rx_desc->wb.middle.vlan);
1464
1465 next_desc:
1466 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1467 buffer_info->skb = NULL;
1468
1469 /* return some buffers to hardware, one at a time is too slow */
1470 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1471 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1472 GFP_ATOMIC);
1473 cleaned_count = 0;
1474 }
1475
1476 /* use prefetched values */
1477 rx_desc = next_rxd;
1478 buffer_info = next_buffer;
1479
1480 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1481 }
1482 rx_ring->next_to_clean = i;
1483
1484 cleaned_count = e1000_desc_unused(rx_ring);
1485 if (cleaned_count)
1486 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1487
1488 adapter->total_rx_bytes += total_rx_bytes;
1489 adapter->total_rx_packets += total_rx_packets;
1490 return cleaned;
1491 }
1492
1493 /**
1494 * e1000_consume_page - helper function
1495 **/
1496 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1497 u16 length)
1498 {
1499 bi->page = NULL;
1500 skb->len += length;
1501 skb->data_len += length;
1502 skb->truesize += PAGE_SIZE;
1503 }
1504
1505 /**
1506 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1507 * @adapter: board private structure
1508 *
1509 * the return value indicates whether actual cleaning was done, there
1510 * is no guarantee that everything was cleaned
1511 **/
1512 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1513 int work_to_do)
1514 {
1515 struct e1000_adapter *adapter = rx_ring->adapter;
1516 struct net_device *netdev = adapter->netdev;
1517 struct pci_dev *pdev = adapter->pdev;
1518 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1519 struct e1000_buffer *buffer_info, *next_buffer;
1520 u32 length, staterr;
1521 unsigned int i;
1522 int cleaned_count = 0;
1523 bool cleaned = false;
1524 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1525 struct skb_shared_info *shinfo;
1526
1527 i = rx_ring->next_to_clean;
1528 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1529 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1530 buffer_info = &rx_ring->buffer_info[i];
1531
1532 while (staterr & E1000_RXD_STAT_DD) {
1533 struct sk_buff *skb;
1534
1535 if (*work_done >= work_to_do)
1536 break;
1537 (*work_done)++;
1538 rmb(); /* read descriptor and rx_buffer_info after status DD */
1539
1540 skb = buffer_info->skb;
1541 buffer_info->skb = NULL;
1542
1543 ++i;
1544 if (i == rx_ring->count)
1545 i = 0;
1546 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1547 prefetch(next_rxd);
1548
1549 next_buffer = &rx_ring->buffer_info[i];
1550
1551 cleaned = true;
1552 cleaned_count++;
1553 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1554 DMA_FROM_DEVICE);
1555 buffer_info->dma = 0;
1556
1557 length = le16_to_cpu(rx_desc->wb.upper.length);
1558
1559 /* errors is only valid for DD + EOP descriptors */
1560 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1561 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1562 !(netdev->features & NETIF_F_RXALL)))) {
1563 /* recycle both page and skb */
1564 buffer_info->skb = skb;
1565 /* an error means any chain goes out the window too */
1566 if (rx_ring->rx_skb_top)
1567 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1568 rx_ring->rx_skb_top = NULL;
1569 goto next_desc;
1570 }
1571 #define rxtop (rx_ring->rx_skb_top)
1572 if (!(staterr & E1000_RXD_STAT_EOP)) {
1573 /* this descriptor is only the beginning (or middle) */
1574 if (!rxtop) {
1575 /* this is the beginning of a chain */
1576 rxtop = skb;
1577 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1578 0, length);
1579 } else {
1580 /* this is the middle of a chain */
1581 shinfo = skb_shinfo(rxtop);
1582 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1583 buffer_info->page, 0,
1584 length);
1585 /* re-use the skb, only consumed the page */
1586 buffer_info->skb = skb;
1587 }
1588 e1000_consume_page(buffer_info, rxtop, length);
1589 goto next_desc;
1590 } else {
1591 if (rxtop) {
1592 /* end of the chain */
1593 shinfo = skb_shinfo(rxtop);
1594 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1595 buffer_info->page, 0,
1596 length);
1597 /* re-use the current skb, we only consumed the
1598 * page
1599 */
1600 buffer_info->skb = skb;
1601 skb = rxtop;
1602 rxtop = NULL;
1603 e1000_consume_page(buffer_info, skb, length);
1604 } else {
1605 /* no chain, got EOP, this buf is the packet
1606 * copybreak to save the put_page/alloc_page
1607 */
1608 if (length <= copybreak &&
1609 skb_tailroom(skb) >= length) {
1610 u8 *vaddr;
1611 vaddr = kmap_atomic(buffer_info->page);
1612 memcpy(skb_tail_pointer(skb), vaddr,
1613 length);
1614 kunmap_atomic(vaddr);
1615 /* re-use the page, so don't erase
1616 * buffer_info->page
1617 */
1618 skb_put(skb, length);
1619 } else {
1620 skb_fill_page_desc(skb, 0,
1621 buffer_info->page, 0,
1622 length);
1623 e1000_consume_page(buffer_info, skb,
1624 length);
1625 }
1626 }
1627 }
1628
1629 /* Receive Checksum Offload */
1630 e1000_rx_checksum(adapter, staterr, skb);
1631
1632 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1633
1634 /* probably a little skewed due to removing CRC */
1635 total_rx_bytes += skb->len;
1636 total_rx_packets++;
1637
1638 /* eth type trans needs skb->data to point to something */
1639 if (!pskb_may_pull(skb, ETH_HLEN)) {
1640 e_err("pskb_may_pull failed.\n");
1641 dev_kfree_skb_irq(skb);
1642 goto next_desc;
1643 }
1644
1645 e1000_receive_skb(adapter, netdev, skb, staterr,
1646 rx_desc->wb.upper.vlan);
1647
1648 next_desc:
1649 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1650
1651 /* return some buffers to hardware, one at a time is too slow */
1652 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1653 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1654 GFP_ATOMIC);
1655 cleaned_count = 0;
1656 }
1657
1658 /* use prefetched values */
1659 rx_desc = next_rxd;
1660 buffer_info = next_buffer;
1661
1662 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1663 }
1664 rx_ring->next_to_clean = i;
1665
1666 cleaned_count = e1000_desc_unused(rx_ring);
1667 if (cleaned_count)
1668 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1669
1670 adapter->total_rx_bytes += total_rx_bytes;
1671 adapter->total_rx_packets += total_rx_packets;
1672 return cleaned;
1673 }
1674
1675 /**
1676 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1677 * @rx_ring: Rx descriptor ring
1678 **/
1679 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1680 {
1681 struct e1000_adapter *adapter = rx_ring->adapter;
1682 struct e1000_buffer *buffer_info;
1683 struct e1000_ps_page *ps_page;
1684 struct pci_dev *pdev = adapter->pdev;
1685 unsigned int i, j;
1686
1687 /* Free all the Rx ring sk_buffs */
1688 for (i = 0; i < rx_ring->count; i++) {
1689 buffer_info = &rx_ring->buffer_info[i];
1690 if (buffer_info->dma) {
1691 if (adapter->clean_rx == e1000_clean_rx_irq)
1692 dma_unmap_single(&pdev->dev, buffer_info->dma,
1693 adapter->rx_buffer_len,
1694 DMA_FROM_DEVICE);
1695 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1696 dma_unmap_page(&pdev->dev, buffer_info->dma,
1697 PAGE_SIZE, DMA_FROM_DEVICE);
1698 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1699 dma_unmap_single(&pdev->dev, buffer_info->dma,
1700 adapter->rx_ps_bsize0,
1701 DMA_FROM_DEVICE);
1702 buffer_info->dma = 0;
1703 }
1704
1705 if (buffer_info->page) {
1706 put_page(buffer_info->page);
1707 buffer_info->page = NULL;
1708 }
1709
1710 if (buffer_info->skb) {
1711 dev_kfree_skb(buffer_info->skb);
1712 buffer_info->skb = NULL;
1713 }
1714
1715 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1716 ps_page = &buffer_info->ps_pages[j];
1717 if (!ps_page->page)
1718 break;
1719 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1720 DMA_FROM_DEVICE);
1721 ps_page->dma = 0;
1722 put_page(ps_page->page);
1723 ps_page->page = NULL;
1724 }
1725 }
1726
1727 /* there also may be some cached data from a chained receive */
1728 if (rx_ring->rx_skb_top) {
1729 dev_kfree_skb(rx_ring->rx_skb_top);
1730 rx_ring->rx_skb_top = NULL;
1731 }
1732
1733 /* Zero out the descriptor ring */
1734 memset(rx_ring->desc, 0, rx_ring->size);
1735
1736 rx_ring->next_to_clean = 0;
1737 rx_ring->next_to_use = 0;
1738 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1739
1740 writel(0, rx_ring->head);
1741 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1742 e1000e_update_rdt_wa(rx_ring, 0);
1743 else
1744 writel(0, rx_ring->tail);
1745 }
1746
1747 static void e1000e_downshift_workaround(struct work_struct *work)
1748 {
1749 struct e1000_adapter *adapter = container_of(work,
1750 struct e1000_adapter,
1751 downshift_task);
1752
1753 if (test_bit(__E1000_DOWN, &adapter->state))
1754 return;
1755
1756 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1757 }
1758
1759 /**
1760 * e1000_intr_msi - Interrupt Handler
1761 * @irq: interrupt number
1762 * @data: pointer to a network interface device structure
1763 **/
1764 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1765 {
1766 struct net_device *netdev = data;
1767 struct e1000_adapter *adapter = netdev_priv(netdev);
1768 struct e1000_hw *hw = &adapter->hw;
1769 u32 icr = er32(ICR);
1770
1771 /* read ICR disables interrupts using IAM */
1772 if (icr & E1000_ICR_LSC) {
1773 hw->mac.get_link_status = true;
1774 /* ICH8 workaround-- Call gig speed drop workaround on cable
1775 * disconnect (LSC) before accessing any PHY registers
1776 */
1777 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1778 (!(er32(STATUS) & E1000_STATUS_LU)))
1779 schedule_work(&adapter->downshift_task);
1780
1781 /* 80003ES2LAN workaround-- For packet buffer work-around on
1782 * link down event; disable receives here in the ISR and reset
1783 * adapter in watchdog
1784 */
1785 if (netif_carrier_ok(netdev) &&
1786 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1787 /* disable receives */
1788 u32 rctl = er32(RCTL);
1789
1790 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1791 adapter->flags |= FLAG_RESTART_NOW;
1792 }
1793 /* guard against interrupt when we're going down */
1794 if (!test_bit(__E1000_DOWN, &adapter->state))
1795 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1796 }
1797
1798 /* Reset on uncorrectable ECC error */
1799 if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1800 u32 pbeccsts = er32(PBECCSTS);
1801
1802 adapter->corr_errors +=
1803 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1804 adapter->uncorr_errors +=
1805 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1806 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1807
1808 /* Do the reset outside of interrupt context */
1809 schedule_work(&adapter->reset_task);
1810
1811 /* return immediately since reset is imminent */
1812 return IRQ_HANDLED;
1813 }
1814
1815 if (napi_schedule_prep(&adapter->napi)) {
1816 adapter->total_tx_bytes = 0;
1817 adapter->total_tx_packets = 0;
1818 adapter->total_rx_bytes = 0;
1819 adapter->total_rx_packets = 0;
1820 __napi_schedule(&adapter->napi);
1821 }
1822
1823 return IRQ_HANDLED;
1824 }
1825
1826 /**
1827 * e1000_intr - Interrupt Handler
1828 * @irq: interrupt number
1829 * @data: pointer to a network interface device structure
1830 **/
1831 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1832 {
1833 struct net_device *netdev = data;
1834 struct e1000_adapter *adapter = netdev_priv(netdev);
1835 struct e1000_hw *hw = &adapter->hw;
1836 u32 rctl, icr = er32(ICR);
1837
1838 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1839 return IRQ_NONE; /* Not our interrupt */
1840
1841 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1842 * not set, then the adapter didn't send an interrupt
1843 */
1844 if (!(icr & E1000_ICR_INT_ASSERTED))
1845 return IRQ_NONE;
1846
1847 /* Interrupt Auto-Mask...upon reading ICR,
1848 * interrupts are masked. No need for the
1849 * IMC write
1850 */
1851
1852 if (icr & E1000_ICR_LSC) {
1853 hw->mac.get_link_status = true;
1854 /* ICH8 workaround-- Call gig speed drop workaround on cable
1855 * disconnect (LSC) before accessing any PHY registers
1856 */
1857 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1858 (!(er32(STATUS) & E1000_STATUS_LU)))
1859 schedule_work(&adapter->downshift_task);
1860
1861 /* 80003ES2LAN workaround--
1862 * For packet buffer work-around on link down event;
1863 * disable receives here in the ISR and
1864 * reset adapter in watchdog
1865 */
1866 if (netif_carrier_ok(netdev) &&
1867 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1868 /* disable receives */
1869 rctl = er32(RCTL);
1870 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1871 adapter->flags |= FLAG_RESTART_NOW;
1872 }
1873 /* guard against interrupt when we're going down */
1874 if (!test_bit(__E1000_DOWN, &adapter->state))
1875 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1876 }
1877
1878 /* Reset on uncorrectable ECC error */
1879 if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1880 u32 pbeccsts = er32(PBECCSTS);
1881
1882 adapter->corr_errors +=
1883 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1884 adapter->uncorr_errors +=
1885 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1886 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1887
1888 /* Do the reset outside of interrupt context */
1889 schedule_work(&adapter->reset_task);
1890
1891 /* return immediately since reset is imminent */
1892 return IRQ_HANDLED;
1893 }
1894
1895 if (napi_schedule_prep(&adapter->napi)) {
1896 adapter->total_tx_bytes = 0;
1897 adapter->total_tx_packets = 0;
1898 adapter->total_rx_bytes = 0;
1899 adapter->total_rx_packets = 0;
1900 __napi_schedule(&adapter->napi);
1901 }
1902
1903 return IRQ_HANDLED;
1904 }
1905
1906 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1907 {
1908 struct net_device *netdev = data;
1909 struct e1000_adapter *adapter = netdev_priv(netdev);
1910 struct e1000_hw *hw = &adapter->hw;
1911 u32 icr = er32(ICR);
1912
1913 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1914 if (!test_bit(__E1000_DOWN, &adapter->state))
1915 ew32(IMS, E1000_IMS_OTHER);
1916 return IRQ_NONE;
1917 }
1918
1919 if (icr & adapter->eiac_mask)
1920 ew32(ICS, (icr & adapter->eiac_mask));
1921
1922 if (icr & E1000_ICR_OTHER) {
1923 if (!(icr & E1000_ICR_LSC))
1924 goto no_link_interrupt;
1925 hw->mac.get_link_status = true;
1926 /* guard against interrupt when we're going down */
1927 if (!test_bit(__E1000_DOWN, &adapter->state))
1928 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1929 }
1930
1931 no_link_interrupt:
1932 if (!test_bit(__E1000_DOWN, &adapter->state))
1933 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1934
1935 return IRQ_HANDLED;
1936 }
1937
1938 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1939 {
1940 struct net_device *netdev = data;
1941 struct e1000_adapter *adapter = netdev_priv(netdev);
1942 struct e1000_hw *hw = &adapter->hw;
1943 struct e1000_ring *tx_ring = adapter->tx_ring;
1944
1945 adapter->total_tx_bytes = 0;
1946 adapter->total_tx_packets = 0;
1947
1948 if (!e1000_clean_tx_irq(tx_ring))
1949 /* Ring was not completely cleaned, so fire another interrupt */
1950 ew32(ICS, tx_ring->ims_val);
1951
1952 return IRQ_HANDLED;
1953 }
1954
1955 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1956 {
1957 struct net_device *netdev = data;
1958 struct e1000_adapter *adapter = netdev_priv(netdev);
1959 struct e1000_ring *rx_ring = adapter->rx_ring;
1960
1961 /* Write the ITR value calculated at the end of the
1962 * previous interrupt.
1963 */
1964 if (rx_ring->set_itr) {
1965 writel(1000000000 / (rx_ring->itr_val * 256),
1966 rx_ring->itr_register);
1967 rx_ring->set_itr = 0;
1968 }
1969
1970 if (napi_schedule_prep(&adapter->napi)) {
1971 adapter->total_rx_bytes = 0;
1972 adapter->total_rx_packets = 0;
1973 __napi_schedule(&adapter->napi);
1974 }
1975 return IRQ_HANDLED;
1976 }
1977
1978 /**
1979 * e1000_configure_msix - Configure MSI-X hardware
1980 *
1981 * e1000_configure_msix sets up the hardware to properly
1982 * generate MSI-X interrupts.
1983 **/
1984 static void e1000_configure_msix(struct e1000_adapter *adapter)
1985 {
1986 struct e1000_hw *hw = &adapter->hw;
1987 struct e1000_ring *rx_ring = adapter->rx_ring;
1988 struct e1000_ring *tx_ring = adapter->tx_ring;
1989 int vector = 0;
1990 u32 ctrl_ext, ivar = 0;
1991
1992 adapter->eiac_mask = 0;
1993
1994 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1995 if (hw->mac.type == e1000_82574) {
1996 u32 rfctl = er32(RFCTL);
1997
1998 rfctl |= E1000_RFCTL_ACK_DIS;
1999 ew32(RFCTL, rfctl);
2000 }
2001
2002 /* Configure Rx vector */
2003 rx_ring->ims_val = E1000_IMS_RXQ0;
2004 adapter->eiac_mask |= rx_ring->ims_val;
2005 if (rx_ring->itr_val)
2006 writel(1000000000 / (rx_ring->itr_val * 256),
2007 rx_ring->itr_register);
2008 else
2009 writel(1, rx_ring->itr_register);
2010 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2011
2012 /* Configure Tx vector */
2013 tx_ring->ims_val = E1000_IMS_TXQ0;
2014 vector++;
2015 if (tx_ring->itr_val)
2016 writel(1000000000 / (tx_ring->itr_val * 256),
2017 tx_ring->itr_register);
2018 else
2019 writel(1, tx_ring->itr_register);
2020 adapter->eiac_mask |= tx_ring->ims_val;
2021 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2022
2023 /* set vector for Other Causes, e.g. link changes */
2024 vector++;
2025 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2026 if (rx_ring->itr_val)
2027 writel(1000000000 / (rx_ring->itr_val * 256),
2028 hw->hw_addr + E1000_EITR_82574(vector));
2029 else
2030 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2031
2032 /* Cause Tx interrupts on every write back */
2033 ivar |= (1 << 31);
2034
2035 ew32(IVAR, ivar);
2036
2037 /* enable MSI-X PBA support */
2038 ctrl_ext = er32(CTRL_EXT);
2039 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2040
2041 /* Auto-Mask Other interrupts upon ICR read */
2042 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2043 ctrl_ext |= E1000_CTRL_EXT_EIAME;
2044 ew32(CTRL_EXT, ctrl_ext);
2045 e1e_flush();
2046 }
2047
2048 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2049 {
2050 if (adapter->msix_entries) {
2051 pci_disable_msix(adapter->pdev);
2052 kfree(adapter->msix_entries);
2053 adapter->msix_entries = NULL;
2054 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2055 pci_disable_msi(adapter->pdev);
2056 adapter->flags &= ~FLAG_MSI_ENABLED;
2057 }
2058 }
2059
2060 /**
2061 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2062 *
2063 * Attempt to configure interrupts using the best available
2064 * capabilities of the hardware and kernel.
2065 **/
2066 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2067 {
2068 int err;
2069 int i;
2070
2071 switch (adapter->int_mode) {
2072 case E1000E_INT_MODE_MSIX:
2073 if (adapter->flags & FLAG_HAS_MSIX) {
2074 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2075 adapter->msix_entries = kcalloc(adapter->num_vectors,
2076 sizeof(struct
2077 msix_entry),
2078 GFP_KERNEL);
2079 if (adapter->msix_entries) {
2080 struct e1000_adapter *a = adapter;
2081
2082 for (i = 0; i < adapter->num_vectors; i++)
2083 adapter->msix_entries[i].entry = i;
2084
2085 err = pci_enable_msix_range(a->pdev,
2086 a->msix_entries,
2087 a->num_vectors,
2088 a->num_vectors);
2089 if (err > 0)
2090 return;
2091 }
2092 /* MSI-X failed, so fall through and try MSI */
2093 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2094 e1000e_reset_interrupt_capability(adapter);
2095 }
2096 adapter->int_mode = E1000E_INT_MODE_MSI;
2097 /* Fall through */
2098 case E1000E_INT_MODE_MSI:
2099 if (!pci_enable_msi(adapter->pdev)) {
2100 adapter->flags |= FLAG_MSI_ENABLED;
2101 } else {
2102 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2103 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2104 }
2105 /* Fall through */
2106 case E1000E_INT_MODE_LEGACY:
2107 /* Don't do anything; this is the system default */
2108 break;
2109 }
2110
2111 /* store the number of vectors being used */
2112 adapter->num_vectors = 1;
2113 }
2114
2115 /**
2116 * e1000_request_msix - Initialize MSI-X interrupts
2117 *
2118 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2119 * kernel.
2120 **/
2121 static int e1000_request_msix(struct e1000_adapter *adapter)
2122 {
2123 struct net_device *netdev = adapter->netdev;
2124 int err = 0, vector = 0;
2125
2126 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2127 snprintf(adapter->rx_ring->name,
2128 sizeof(adapter->rx_ring->name) - 1,
2129 "%s-rx-0", netdev->name);
2130 else
2131 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2132 err = request_irq(adapter->msix_entries[vector].vector,
2133 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2134 netdev);
2135 if (err)
2136 return err;
2137 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2138 E1000_EITR_82574(vector);
2139 adapter->rx_ring->itr_val = adapter->itr;
2140 vector++;
2141
2142 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2143 snprintf(adapter->tx_ring->name,
2144 sizeof(adapter->tx_ring->name) - 1,
2145 "%s-tx-0", netdev->name);
2146 else
2147 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2148 err = request_irq(adapter->msix_entries[vector].vector,
2149 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2150 netdev);
2151 if (err)
2152 return err;
2153 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2154 E1000_EITR_82574(vector);
2155 adapter->tx_ring->itr_val = adapter->itr;
2156 vector++;
2157
2158 err = request_irq(adapter->msix_entries[vector].vector,
2159 e1000_msix_other, 0, netdev->name, netdev);
2160 if (err)
2161 return err;
2162
2163 e1000_configure_msix(adapter);
2164
2165 return 0;
2166 }
2167
2168 /**
2169 * e1000_request_irq - initialize interrupts
2170 *
2171 * Attempts to configure interrupts using the best available
2172 * capabilities of the hardware and kernel.
2173 **/
2174 static int e1000_request_irq(struct e1000_adapter *adapter)
2175 {
2176 struct net_device *netdev = adapter->netdev;
2177 int err;
2178
2179 if (adapter->msix_entries) {
2180 err = e1000_request_msix(adapter);
2181 if (!err)
2182 return err;
2183 /* fall back to MSI */
2184 e1000e_reset_interrupt_capability(adapter);
2185 adapter->int_mode = E1000E_INT_MODE_MSI;
2186 e1000e_set_interrupt_capability(adapter);
2187 }
2188 if (adapter->flags & FLAG_MSI_ENABLED) {
2189 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2190 netdev->name, netdev);
2191 if (!err)
2192 return err;
2193
2194 /* fall back to legacy interrupt */
2195 e1000e_reset_interrupt_capability(adapter);
2196 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2197 }
2198
2199 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2200 netdev->name, netdev);
2201 if (err)
2202 e_err("Unable to allocate interrupt, Error: %d\n", err);
2203
2204 return err;
2205 }
2206
2207 static void e1000_free_irq(struct e1000_adapter *adapter)
2208 {
2209 struct net_device *netdev = adapter->netdev;
2210
2211 if (adapter->msix_entries) {
2212 int vector = 0;
2213
2214 free_irq(adapter->msix_entries[vector].vector, netdev);
2215 vector++;
2216
2217 free_irq(adapter->msix_entries[vector].vector, netdev);
2218 vector++;
2219
2220 /* Other Causes interrupt vector */
2221 free_irq(adapter->msix_entries[vector].vector, netdev);
2222 return;
2223 }
2224
2225 free_irq(adapter->pdev->irq, netdev);
2226 }
2227
2228 /**
2229 * e1000_irq_disable - Mask off interrupt generation on the NIC
2230 **/
2231 static void e1000_irq_disable(struct e1000_adapter *adapter)
2232 {
2233 struct e1000_hw *hw = &adapter->hw;
2234
2235 ew32(IMC, ~0);
2236 if (adapter->msix_entries)
2237 ew32(EIAC_82574, 0);
2238 e1e_flush();
2239
2240 if (adapter->msix_entries) {
2241 int i;
2242
2243 for (i = 0; i < adapter->num_vectors; i++)
2244 synchronize_irq(adapter->msix_entries[i].vector);
2245 } else {
2246 synchronize_irq(adapter->pdev->irq);
2247 }
2248 }
2249
2250 /**
2251 * e1000_irq_enable - Enable default interrupt generation settings
2252 **/
2253 static void e1000_irq_enable(struct e1000_adapter *adapter)
2254 {
2255 struct e1000_hw *hw = &adapter->hw;
2256
2257 if (adapter->msix_entries) {
2258 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2259 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2260 } else if (hw->mac.type == e1000_pch_lpt) {
2261 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2262 } else {
2263 ew32(IMS, IMS_ENABLE_MASK);
2264 }
2265 e1e_flush();
2266 }
2267
2268 /**
2269 * e1000e_get_hw_control - get control of the h/w from f/w
2270 * @adapter: address of board private structure
2271 *
2272 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2273 * For ASF and Pass Through versions of f/w this means that
2274 * the driver is loaded. For AMT version (only with 82573)
2275 * of the f/w this means that the network i/f is open.
2276 **/
2277 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2278 {
2279 struct e1000_hw *hw = &adapter->hw;
2280 u32 ctrl_ext;
2281 u32 swsm;
2282
2283 /* Let firmware know the driver has taken over */
2284 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2285 swsm = er32(SWSM);
2286 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2287 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2288 ctrl_ext = er32(CTRL_EXT);
2289 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2290 }
2291 }
2292
2293 /**
2294 * e1000e_release_hw_control - release control of the h/w to f/w
2295 * @adapter: address of board private structure
2296 *
2297 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2298 * For ASF and Pass Through versions of f/w this means that the
2299 * driver is no longer loaded. For AMT version (only with 82573) i
2300 * of the f/w this means that the network i/f is closed.
2301 *
2302 **/
2303 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2304 {
2305 struct e1000_hw *hw = &adapter->hw;
2306 u32 ctrl_ext;
2307 u32 swsm;
2308
2309 /* Let firmware taken over control of h/w */
2310 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2311 swsm = er32(SWSM);
2312 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2313 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2314 ctrl_ext = er32(CTRL_EXT);
2315 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2316 }
2317 }
2318
2319 /**
2320 * e1000_alloc_ring_dma - allocate memory for a ring structure
2321 **/
2322 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2323 struct e1000_ring *ring)
2324 {
2325 struct pci_dev *pdev = adapter->pdev;
2326
2327 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2328 GFP_KERNEL);
2329 if (!ring->desc)
2330 return -ENOMEM;
2331
2332 return 0;
2333 }
2334
2335 /**
2336 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2337 * @tx_ring: Tx descriptor ring
2338 *
2339 * Return 0 on success, negative on failure
2340 **/
2341 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2342 {
2343 struct e1000_adapter *adapter = tx_ring->adapter;
2344 int err = -ENOMEM, size;
2345
2346 size = sizeof(struct e1000_buffer) * tx_ring->count;
2347 tx_ring->buffer_info = vzalloc(size);
2348 if (!tx_ring->buffer_info)
2349 goto err;
2350
2351 /* round up to nearest 4K */
2352 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2353 tx_ring->size = ALIGN(tx_ring->size, 4096);
2354
2355 err = e1000_alloc_ring_dma(adapter, tx_ring);
2356 if (err)
2357 goto err;
2358
2359 tx_ring->next_to_use = 0;
2360 tx_ring->next_to_clean = 0;
2361
2362 return 0;
2363 err:
2364 vfree(tx_ring->buffer_info);
2365 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2366 return err;
2367 }
2368
2369 /**
2370 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2371 * @rx_ring: Rx descriptor ring
2372 *
2373 * Returns 0 on success, negative on failure
2374 **/
2375 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2376 {
2377 struct e1000_adapter *adapter = rx_ring->adapter;
2378 struct e1000_buffer *buffer_info;
2379 int i, size, desc_len, err = -ENOMEM;
2380
2381 size = sizeof(struct e1000_buffer) * rx_ring->count;
2382 rx_ring->buffer_info = vzalloc(size);
2383 if (!rx_ring->buffer_info)
2384 goto err;
2385
2386 for (i = 0; i < rx_ring->count; i++) {
2387 buffer_info = &rx_ring->buffer_info[i];
2388 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2389 sizeof(struct e1000_ps_page),
2390 GFP_KERNEL);
2391 if (!buffer_info->ps_pages)
2392 goto err_pages;
2393 }
2394
2395 desc_len = sizeof(union e1000_rx_desc_packet_split);
2396
2397 /* Round up to nearest 4K */
2398 rx_ring->size = rx_ring->count * desc_len;
2399 rx_ring->size = ALIGN(rx_ring->size, 4096);
2400
2401 err = e1000_alloc_ring_dma(adapter, rx_ring);
2402 if (err)
2403 goto err_pages;
2404
2405 rx_ring->next_to_clean = 0;
2406 rx_ring->next_to_use = 0;
2407 rx_ring->rx_skb_top = NULL;
2408
2409 return 0;
2410
2411 err_pages:
2412 for (i = 0; i < rx_ring->count; i++) {
2413 buffer_info = &rx_ring->buffer_info[i];
2414 kfree(buffer_info->ps_pages);
2415 }
2416 err:
2417 vfree(rx_ring->buffer_info);
2418 e_err("Unable to allocate memory for the receive descriptor ring\n");
2419 return err;
2420 }
2421
2422 /**
2423 * e1000_clean_tx_ring - Free Tx Buffers
2424 * @tx_ring: Tx descriptor ring
2425 **/
2426 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2427 {
2428 struct e1000_adapter *adapter = tx_ring->adapter;
2429 struct e1000_buffer *buffer_info;
2430 unsigned long size;
2431 unsigned int i;
2432
2433 for (i = 0; i < tx_ring->count; i++) {
2434 buffer_info = &tx_ring->buffer_info[i];
2435 e1000_put_txbuf(tx_ring, buffer_info);
2436 }
2437
2438 netdev_reset_queue(adapter->netdev);
2439 size = sizeof(struct e1000_buffer) * tx_ring->count;
2440 memset(tx_ring->buffer_info, 0, size);
2441
2442 memset(tx_ring->desc, 0, tx_ring->size);
2443
2444 tx_ring->next_to_use = 0;
2445 tx_ring->next_to_clean = 0;
2446
2447 writel(0, tx_ring->head);
2448 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2449 e1000e_update_tdt_wa(tx_ring, 0);
2450 else
2451 writel(0, tx_ring->tail);
2452 }
2453
2454 /**
2455 * e1000e_free_tx_resources - Free Tx Resources per Queue
2456 * @tx_ring: Tx descriptor ring
2457 *
2458 * Free all transmit software resources
2459 **/
2460 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2461 {
2462 struct e1000_adapter *adapter = tx_ring->adapter;
2463 struct pci_dev *pdev = adapter->pdev;
2464
2465 e1000_clean_tx_ring(tx_ring);
2466
2467 vfree(tx_ring->buffer_info);
2468 tx_ring->buffer_info = NULL;
2469
2470 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2471 tx_ring->dma);
2472 tx_ring->desc = NULL;
2473 }
2474
2475 /**
2476 * e1000e_free_rx_resources - Free Rx Resources
2477 * @rx_ring: Rx descriptor ring
2478 *
2479 * Free all receive software resources
2480 **/
2481 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2482 {
2483 struct e1000_adapter *adapter = rx_ring->adapter;
2484 struct pci_dev *pdev = adapter->pdev;
2485 int i;
2486
2487 e1000_clean_rx_ring(rx_ring);
2488
2489 for (i = 0; i < rx_ring->count; i++)
2490 kfree(rx_ring->buffer_info[i].ps_pages);
2491
2492 vfree(rx_ring->buffer_info);
2493 rx_ring->buffer_info = NULL;
2494
2495 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2496 rx_ring->dma);
2497 rx_ring->desc = NULL;
2498 }
2499
2500 /**
2501 * e1000_update_itr - update the dynamic ITR value based on statistics
2502 * @adapter: pointer to adapter
2503 * @itr_setting: current adapter->itr
2504 * @packets: the number of packets during this measurement interval
2505 * @bytes: the number of bytes during this measurement interval
2506 *
2507 * Stores a new ITR value based on packets and byte
2508 * counts during the last interrupt. The advantage of per interrupt
2509 * computation is faster updates and more accurate ITR for the current
2510 * traffic pattern. Constants in this function were computed
2511 * based on theoretical maximum wire speed and thresholds were set based
2512 * on testing data as well as attempting to minimize response time
2513 * while increasing bulk throughput. This functionality is controlled
2514 * by the InterruptThrottleRate module parameter.
2515 **/
2516 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2517 {
2518 unsigned int retval = itr_setting;
2519
2520 if (packets == 0)
2521 return itr_setting;
2522
2523 switch (itr_setting) {
2524 case lowest_latency:
2525 /* handle TSO and jumbo frames */
2526 if (bytes / packets > 8000)
2527 retval = bulk_latency;
2528 else if ((packets < 5) && (bytes > 512))
2529 retval = low_latency;
2530 break;
2531 case low_latency: /* 50 usec aka 20000 ints/s */
2532 if (bytes > 10000) {
2533 /* this if handles the TSO accounting */
2534 if (bytes / packets > 8000)
2535 retval = bulk_latency;
2536 else if ((packets < 10) || ((bytes / packets) > 1200))
2537 retval = bulk_latency;
2538 else if ((packets > 35))
2539 retval = lowest_latency;
2540 } else if (bytes / packets > 2000) {
2541 retval = bulk_latency;
2542 } else if (packets <= 2 && bytes < 512) {
2543 retval = lowest_latency;
2544 }
2545 break;
2546 case bulk_latency: /* 250 usec aka 4000 ints/s */
2547 if (bytes > 25000) {
2548 if (packets > 35)
2549 retval = low_latency;
2550 } else if (bytes < 6000) {
2551 retval = low_latency;
2552 }
2553 break;
2554 }
2555
2556 return retval;
2557 }
2558
2559 static void e1000_set_itr(struct e1000_adapter *adapter)
2560 {
2561 u16 current_itr;
2562 u32 new_itr = adapter->itr;
2563
2564 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2565 if (adapter->link_speed != SPEED_1000) {
2566 current_itr = 0;
2567 new_itr = 4000;
2568 goto set_itr_now;
2569 }
2570
2571 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2572 new_itr = 0;
2573 goto set_itr_now;
2574 }
2575
2576 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2577 adapter->total_tx_packets,
2578 adapter->total_tx_bytes);
2579 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2580 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2581 adapter->tx_itr = low_latency;
2582
2583 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2584 adapter->total_rx_packets,
2585 adapter->total_rx_bytes);
2586 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2587 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2588 adapter->rx_itr = low_latency;
2589
2590 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2591
2592 /* counts and packets in update_itr are dependent on these numbers */
2593 switch (current_itr) {
2594 case lowest_latency:
2595 new_itr = 70000;
2596 break;
2597 case low_latency:
2598 new_itr = 20000; /* aka hwitr = ~200 */
2599 break;
2600 case bulk_latency:
2601 new_itr = 4000;
2602 break;
2603 default:
2604 break;
2605 }
2606
2607 set_itr_now:
2608 if (new_itr != adapter->itr) {
2609 /* this attempts to bias the interrupt rate towards Bulk
2610 * by adding intermediate steps when interrupt rate is
2611 * increasing
2612 */
2613 new_itr = new_itr > adapter->itr ?
2614 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2615 adapter->itr = new_itr;
2616 adapter->rx_ring->itr_val = new_itr;
2617 if (adapter->msix_entries)
2618 adapter->rx_ring->set_itr = 1;
2619 else
2620 e1000e_write_itr(adapter, new_itr);
2621 }
2622 }
2623
2624 /**
2625 * e1000e_write_itr - write the ITR value to the appropriate registers
2626 * @adapter: address of board private structure
2627 * @itr: new ITR value to program
2628 *
2629 * e1000e_write_itr determines if the adapter is in MSI-X mode
2630 * and, if so, writes the EITR registers with the ITR value.
2631 * Otherwise, it writes the ITR value into the ITR register.
2632 **/
2633 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2634 {
2635 struct e1000_hw *hw = &adapter->hw;
2636 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2637
2638 if (adapter->msix_entries) {
2639 int vector;
2640
2641 for (vector = 0; vector < adapter->num_vectors; vector++)
2642 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2643 } else {
2644 ew32(ITR, new_itr);
2645 }
2646 }
2647
2648 /**
2649 * e1000_alloc_queues - Allocate memory for all rings
2650 * @adapter: board private structure to initialize
2651 **/
2652 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2653 {
2654 int size = sizeof(struct e1000_ring);
2655
2656 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2657 if (!adapter->tx_ring)
2658 goto err;
2659 adapter->tx_ring->count = adapter->tx_ring_count;
2660 adapter->tx_ring->adapter = adapter;
2661
2662 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2663 if (!adapter->rx_ring)
2664 goto err;
2665 adapter->rx_ring->count = adapter->rx_ring_count;
2666 adapter->rx_ring->adapter = adapter;
2667
2668 return 0;
2669 err:
2670 e_err("Unable to allocate memory for queues\n");
2671 kfree(adapter->rx_ring);
2672 kfree(adapter->tx_ring);
2673 return -ENOMEM;
2674 }
2675
2676 /**
2677 * e1000e_poll - NAPI Rx polling callback
2678 * @napi: struct associated with this polling callback
2679 * @weight: number of packets driver is allowed to process this poll
2680 **/
2681 static int e1000e_poll(struct napi_struct *napi, int weight)
2682 {
2683 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2684 napi);
2685 struct e1000_hw *hw = &adapter->hw;
2686 struct net_device *poll_dev = adapter->netdev;
2687 int tx_cleaned = 1, work_done = 0;
2688
2689 adapter = netdev_priv(poll_dev);
2690
2691 if (!adapter->msix_entries ||
2692 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2693 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2694
2695 adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2696
2697 if (!tx_cleaned)
2698 work_done = weight;
2699
2700 /* If weight not fully consumed, exit the polling mode */
2701 if (work_done < weight) {
2702 if (adapter->itr_setting & 3)
2703 e1000_set_itr(adapter);
2704 napi_complete(napi);
2705 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2706 if (adapter->msix_entries)
2707 ew32(IMS, adapter->rx_ring->ims_val);
2708 else
2709 e1000_irq_enable(adapter);
2710 }
2711 }
2712
2713 return work_done;
2714 }
2715
2716 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2717 __always_unused __be16 proto, u16 vid)
2718 {
2719 struct e1000_adapter *adapter = netdev_priv(netdev);
2720 struct e1000_hw *hw = &adapter->hw;
2721 u32 vfta, index;
2722
2723 /* don't update vlan cookie if already programmed */
2724 if ((adapter->hw.mng_cookie.status &
2725 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2726 (vid == adapter->mng_vlan_id))
2727 return 0;
2728
2729 /* add VID to filter table */
2730 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2731 index = (vid >> 5) & 0x7F;
2732 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2733 vfta |= (1 << (vid & 0x1F));
2734 hw->mac.ops.write_vfta(hw, index, vfta);
2735 }
2736
2737 set_bit(vid, adapter->active_vlans);
2738
2739 return 0;
2740 }
2741
2742 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2743 __always_unused __be16 proto, u16 vid)
2744 {
2745 struct e1000_adapter *adapter = netdev_priv(netdev);
2746 struct e1000_hw *hw = &adapter->hw;
2747 u32 vfta, index;
2748
2749 if ((adapter->hw.mng_cookie.status &
2750 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2751 (vid == adapter->mng_vlan_id)) {
2752 /* release control to f/w */
2753 e1000e_release_hw_control(adapter);
2754 return 0;
2755 }
2756
2757 /* remove VID from filter table */
2758 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2759 index = (vid >> 5) & 0x7F;
2760 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2761 vfta &= ~(1 << (vid & 0x1F));
2762 hw->mac.ops.write_vfta(hw, index, vfta);
2763 }
2764
2765 clear_bit(vid, adapter->active_vlans);
2766
2767 return 0;
2768 }
2769
2770 /**
2771 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2772 * @adapter: board private structure to initialize
2773 **/
2774 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2775 {
2776 struct net_device *netdev = adapter->netdev;
2777 struct e1000_hw *hw = &adapter->hw;
2778 u32 rctl;
2779
2780 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2781 /* disable VLAN receive filtering */
2782 rctl = er32(RCTL);
2783 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2784 ew32(RCTL, rctl);
2785
2786 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2787 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2788 adapter->mng_vlan_id);
2789 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2790 }
2791 }
2792 }
2793
2794 /**
2795 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2796 * @adapter: board private structure to initialize
2797 **/
2798 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2799 {
2800 struct e1000_hw *hw = &adapter->hw;
2801 u32 rctl;
2802
2803 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2804 /* enable VLAN receive filtering */
2805 rctl = er32(RCTL);
2806 rctl |= E1000_RCTL_VFE;
2807 rctl &= ~E1000_RCTL_CFIEN;
2808 ew32(RCTL, rctl);
2809 }
2810 }
2811
2812 /**
2813 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2814 * @adapter: board private structure to initialize
2815 **/
2816 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2817 {
2818 struct e1000_hw *hw = &adapter->hw;
2819 u32 ctrl;
2820
2821 /* disable VLAN tag insert/strip */
2822 ctrl = er32(CTRL);
2823 ctrl &= ~E1000_CTRL_VME;
2824 ew32(CTRL, ctrl);
2825 }
2826
2827 /**
2828 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2829 * @adapter: board private structure to initialize
2830 **/
2831 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2832 {
2833 struct e1000_hw *hw = &adapter->hw;
2834 u32 ctrl;
2835
2836 /* enable VLAN tag insert/strip */
2837 ctrl = er32(CTRL);
2838 ctrl |= E1000_CTRL_VME;
2839 ew32(CTRL, ctrl);
2840 }
2841
2842 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2843 {
2844 struct net_device *netdev = adapter->netdev;
2845 u16 vid = adapter->hw.mng_cookie.vlan_id;
2846 u16 old_vid = adapter->mng_vlan_id;
2847
2848 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2849 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2850 adapter->mng_vlan_id = vid;
2851 }
2852
2853 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2854 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2855 }
2856
2857 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2858 {
2859 u16 vid;
2860
2861 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2862
2863 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2864 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2865 }
2866
2867 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2868 {
2869 struct e1000_hw *hw = &adapter->hw;
2870 u32 manc, manc2h, mdef, i, j;
2871
2872 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2873 return;
2874
2875 manc = er32(MANC);
2876
2877 /* enable receiving management packets to the host. this will probably
2878 * generate destination unreachable messages from the host OS, but
2879 * the packets will be handled on SMBUS
2880 */
2881 manc |= E1000_MANC_EN_MNG2HOST;
2882 manc2h = er32(MANC2H);
2883
2884 switch (hw->mac.type) {
2885 default:
2886 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2887 break;
2888 case e1000_82574:
2889 case e1000_82583:
2890 /* Check if IPMI pass-through decision filter already exists;
2891 * if so, enable it.
2892 */
2893 for (i = 0, j = 0; i < 8; i++) {
2894 mdef = er32(MDEF(i));
2895
2896 /* Ignore filters with anything other than IPMI ports */
2897 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2898 continue;
2899
2900 /* Enable this decision filter in MANC2H */
2901 if (mdef)
2902 manc2h |= (1 << i);
2903
2904 j |= mdef;
2905 }
2906
2907 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2908 break;
2909
2910 /* Create new decision filter in an empty filter */
2911 for (i = 0, j = 0; i < 8; i++)
2912 if (er32(MDEF(i)) == 0) {
2913 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2914 E1000_MDEF_PORT_664));
2915 manc2h |= (1 << 1);
2916 j++;
2917 break;
2918 }
2919
2920 if (!j)
2921 e_warn("Unable to create IPMI pass-through filter\n");
2922 break;
2923 }
2924
2925 ew32(MANC2H, manc2h);
2926 ew32(MANC, manc);
2927 }
2928
2929 /**
2930 * e1000_configure_tx - Configure Transmit Unit after Reset
2931 * @adapter: board private structure
2932 *
2933 * Configure the Tx unit of the MAC after a reset.
2934 **/
2935 static void e1000_configure_tx(struct e1000_adapter *adapter)
2936 {
2937 struct e1000_hw *hw = &adapter->hw;
2938 struct e1000_ring *tx_ring = adapter->tx_ring;
2939 u64 tdba;
2940 u32 tdlen, tctl, tarc;
2941
2942 /* Setup the HW Tx Head and Tail descriptor pointers */
2943 tdba = tx_ring->dma;
2944 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2945 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2946 ew32(TDBAH(0), (tdba >> 32));
2947 ew32(TDLEN(0), tdlen);
2948 ew32(TDH(0), 0);
2949 ew32(TDT(0), 0);
2950 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2951 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2952
2953 /* Set the Tx Interrupt Delay register */
2954 ew32(TIDV, adapter->tx_int_delay);
2955 /* Tx irq moderation */
2956 ew32(TADV, adapter->tx_abs_int_delay);
2957
2958 if (adapter->flags2 & FLAG2_DMA_BURST) {
2959 u32 txdctl = er32(TXDCTL(0));
2960
2961 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2962 E1000_TXDCTL_WTHRESH);
2963 /* set up some performance related parameters to encourage the
2964 * hardware to use the bus more efficiently in bursts, depends
2965 * on the tx_int_delay to be enabled,
2966 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2967 * hthresh = 1 ==> prefetch when one or more available
2968 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2969 * BEWARE: this seems to work but should be considered first if
2970 * there are Tx hangs or other Tx related bugs
2971 */
2972 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2973 ew32(TXDCTL(0), txdctl);
2974 }
2975 /* erratum work around: set txdctl the same for both queues */
2976 ew32(TXDCTL(1), er32(TXDCTL(0)));
2977
2978 /* Program the Transmit Control Register */
2979 tctl = er32(TCTL);
2980 tctl &= ~E1000_TCTL_CT;
2981 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2982 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2983
2984 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2985 tarc = er32(TARC(0));
2986 /* set the speed mode bit, we'll clear it if we're not at
2987 * gigabit link later
2988 */
2989 #define SPEED_MODE_BIT (1 << 21)
2990 tarc |= SPEED_MODE_BIT;
2991 ew32(TARC(0), tarc);
2992 }
2993
2994 /* errata: program both queues to unweighted RR */
2995 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2996 tarc = er32(TARC(0));
2997 tarc |= 1;
2998 ew32(TARC(0), tarc);
2999 tarc = er32(TARC(1));
3000 tarc |= 1;
3001 ew32(TARC(1), tarc);
3002 }
3003
3004 /* Setup Transmit Descriptor Settings for eop descriptor */
3005 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3006
3007 /* only set IDE if we are delaying interrupts using the timers */
3008 if (adapter->tx_int_delay)
3009 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3010
3011 /* enable Report Status bit */
3012 adapter->txd_cmd |= E1000_TXD_CMD_RS;
3013
3014 ew32(TCTL, tctl);
3015
3016 hw->mac.ops.config_collision_dist(hw);
3017 }
3018
3019 /**
3020 * e1000_setup_rctl - configure the receive control registers
3021 * @adapter: Board private structure
3022 **/
3023 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3024 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3025 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3026 {
3027 struct e1000_hw *hw = &adapter->hw;
3028 u32 rctl, rfctl;
3029 u32 pages = 0;
3030
3031 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3032 * If jumbo frames not set, program related MAC/PHY registers
3033 * to h/w defaults
3034 */
3035 if (hw->mac.type >= e1000_pch2lan) {
3036 s32 ret_val;
3037
3038 if (adapter->netdev->mtu > ETH_DATA_LEN)
3039 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3040 else
3041 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3042
3043 if (ret_val)
3044 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3045 }
3046
3047 /* Program MC offset vector base */
3048 rctl = er32(RCTL);
3049 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3050 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3051 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3052 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3053
3054 /* Do not Store bad packets */
3055 rctl &= ~E1000_RCTL_SBP;
3056
3057 /* Enable Long Packet receive */
3058 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3059 rctl &= ~E1000_RCTL_LPE;
3060 else
3061 rctl |= E1000_RCTL_LPE;
3062
3063 /* Some systems expect that the CRC is included in SMBUS traffic. The
3064 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3065 * host memory when this is enabled
3066 */
3067 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3068 rctl |= E1000_RCTL_SECRC;
3069
3070 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3071 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3072 u16 phy_data;
3073
3074 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3075 phy_data &= 0xfff8;
3076 phy_data |= (1 << 2);
3077 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3078
3079 e1e_rphy(hw, 22, &phy_data);
3080 phy_data &= 0x0fff;
3081 phy_data |= (1 << 14);
3082 e1e_wphy(hw, 0x10, 0x2823);
3083 e1e_wphy(hw, 0x11, 0x0003);
3084 e1e_wphy(hw, 22, phy_data);
3085 }
3086
3087 /* Setup buffer sizes */
3088 rctl &= ~E1000_RCTL_SZ_4096;
3089 rctl |= E1000_RCTL_BSEX;
3090 switch (adapter->rx_buffer_len) {
3091 case 2048:
3092 default:
3093 rctl |= E1000_RCTL_SZ_2048;
3094 rctl &= ~E1000_RCTL_BSEX;
3095 break;
3096 case 4096:
3097 rctl |= E1000_RCTL_SZ_4096;
3098 break;
3099 case 8192:
3100 rctl |= E1000_RCTL_SZ_8192;
3101 break;
3102 case 16384:
3103 rctl |= E1000_RCTL_SZ_16384;
3104 break;
3105 }
3106
3107 /* Enable Extended Status in all Receive Descriptors */
3108 rfctl = er32(RFCTL);
3109 rfctl |= E1000_RFCTL_EXTEN;
3110 ew32(RFCTL, rfctl);
3111
3112 /* 82571 and greater support packet-split where the protocol
3113 * header is placed in skb->data and the packet data is
3114 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3115 * In the case of a non-split, skb->data is linearly filled,
3116 * followed by the page buffers. Therefore, skb->data is
3117 * sized to hold the largest protocol header.
3118 *
3119 * allocations using alloc_page take too long for regular MTU
3120 * so only enable packet split for jumbo frames
3121 *
3122 * Using pages when the page size is greater than 16k wastes
3123 * a lot of memory, since we allocate 3 pages at all times
3124 * per packet.
3125 */
3126 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3127 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3128 adapter->rx_ps_pages = pages;
3129 else
3130 adapter->rx_ps_pages = 0;
3131
3132 if (adapter->rx_ps_pages) {
3133 u32 psrctl = 0;
3134
3135 /* Enable Packet split descriptors */
3136 rctl |= E1000_RCTL_DTYP_PS;
3137
3138 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3139
3140 switch (adapter->rx_ps_pages) {
3141 case 3:
3142 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3143 /* fall-through */
3144 case 2:
3145 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3146 /* fall-through */
3147 case 1:
3148 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3149 break;
3150 }
3151
3152 ew32(PSRCTL, psrctl);
3153 }
3154
3155 /* This is useful for sniffing bad packets. */
3156 if (adapter->netdev->features & NETIF_F_RXALL) {
3157 /* UPE and MPE will be handled by normal PROMISC logic
3158 * in e1000e_set_rx_mode
3159 */
3160 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3161 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3162 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3163
3164 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3165 E1000_RCTL_DPF | /* Allow filtered pause */
3166 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3167 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3168 * and that breaks VLANs.
3169 */
3170 }
3171
3172 ew32(RCTL, rctl);
3173 /* just started the receive unit, no need to restart */
3174 adapter->flags &= ~FLAG_RESTART_NOW;
3175 }
3176
3177 /**
3178 * e1000_configure_rx - Configure Receive Unit after Reset
3179 * @adapter: board private structure
3180 *
3181 * Configure the Rx unit of the MAC after a reset.
3182 **/
3183 static void e1000_configure_rx(struct e1000_adapter *adapter)
3184 {
3185 struct e1000_hw *hw = &adapter->hw;
3186 struct e1000_ring *rx_ring = adapter->rx_ring;
3187 u64 rdba;
3188 u32 rdlen, rctl, rxcsum, ctrl_ext;
3189
3190 if (adapter->rx_ps_pages) {
3191 /* this is a 32 byte descriptor */
3192 rdlen = rx_ring->count *
3193 sizeof(union e1000_rx_desc_packet_split);
3194 adapter->clean_rx = e1000_clean_rx_irq_ps;
3195 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3196 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3197 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3198 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3199 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3200 } else {
3201 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3202 adapter->clean_rx = e1000_clean_rx_irq;
3203 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3204 }
3205
3206 /* disable receives while setting up the descriptors */
3207 rctl = er32(RCTL);
3208 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3209 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3210 e1e_flush();
3211 usleep_range(10000, 20000);
3212
3213 if (adapter->flags2 & FLAG2_DMA_BURST) {
3214 /* set the writeback threshold (only takes effect if the RDTR
3215 * is set). set GRAN=1 and write back up to 0x4 worth, and
3216 * enable prefetching of 0x20 Rx descriptors
3217 * granularity = 01
3218 * wthresh = 04,
3219 * hthresh = 04,
3220 * pthresh = 0x20
3221 */
3222 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3223 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3224
3225 /* override the delay timers for enabling bursting, only if
3226 * the value was not set by the user via module options
3227 */
3228 if (adapter->rx_int_delay == DEFAULT_RDTR)
3229 adapter->rx_int_delay = BURST_RDTR;
3230 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3231 adapter->rx_abs_int_delay = BURST_RADV;
3232 }
3233
3234 /* set the Receive Delay Timer Register */
3235 ew32(RDTR, adapter->rx_int_delay);
3236
3237 /* irq moderation */
3238 ew32(RADV, adapter->rx_abs_int_delay);
3239 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3240 e1000e_write_itr(adapter, adapter->itr);
3241
3242 ctrl_ext = er32(CTRL_EXT);
3243 /* Auto-Mask interrupts upon ICR access */
3244 ctrl_ext |= E1000_CTRL_EXT_IAME;
3245 ew32(IAM, 0xffffffff);
3246 ew32(CTRL_EXT, ctrl_ext);
3247 e1e_flush();
3248
3249 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3250 * the Base and Length of the Rx Descriptor Ring
3251 */
3252 rdba = rx_ring->dma;
3253 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3254 ew32(RDBAH(0), (rdba >> 32));
3255 ew32(RDLEN(0), rdlen);
3256 ew32(RDH(0), 0);
3257 ew32(RDT(0), 0);
3258 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3259 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3260
3261 /* Enable Receive Checksum Offload for TCP and UDP */
3262 rxcsum = er32(RXCSUM);
3263 if (adapter->netdev->features & NETIF_F_RXCSUM)
3264 rxcsum |= E1000_RXCSUM_TUOFL;
3265 else
3266 rxcsum &= ~E1000_RXCSUM_TUOFL;
3267 ew32(RXCSUM, rxcsum);
3268
3269 /* With jumbo frames, excessive C-state transition latencies result
3270 * in dropped transactions.
3271 */
3272 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3273 u32 lat =
3274 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3275 adapter->max_frame_size) * 8 / 1000;
3276
3277 if (adapter->flags & FLAG_IS_ICH) {
3278 u32 rxdctl = er32(RXDCTL(0));
3279
3280 ew32(RXDCTL(0), rxdctl | 0x3);
3281 }
3282
3283 pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
3284 } else {
3285 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3286 PM_QOS_DEFAULT_VALUE);
3287 }
3288
3289 /* Enable Receives */
3290 ew32(RCTL, rctl);
3291 }
3292
3293 /**
3294 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3295 * @netdev: network interface device structure
3296 *
3297 * Writes multicast address list to the MTA hash table.
3298 * Returns: -ENOMEM on failure
3299 * 0 on no addresses written
3300 * X on writing X addresses to MTA
3301 */
3302 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3303 {
3304 struct e1000_adapter *adapter = netdev_priv(netdev);
3305 struct e1000_hw *hw = &adapter->hw;
3306 struct netdev_hw_addr *ha;
3307 u8 *mta_list;
3308 int i;
3309
3310 if (netdev_mc_empty(netdev)) {
3311 /* nothing to program, so clear mc list */
3312 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3313 return 0;
3314 }
3315
3316 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3317 if (!mta_list)
3318 return -ENOMEM;
3319
3320 /* update_mc_addr_list expects a packed array of only addresses. */
3321 i = 0;
3322 netdev_for_each_mc_addr(ha, netdev)
3323 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3324
3325 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3326 kfree(mta_list);
3327
3328 return netdev_mc_count(netdev);
3329 }
3330
3331 /**
3332 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3333 * @netdev: network interface device structure
3334 *
3335 * Writes unicast address list to the RAR table.
3336 * Returns: -ENOMEM on failure/insufficient address space
3337 * 0 on no addresses written
3338 * X on writing X addresses to the RAR table
3339 **/
3340 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3341 {
3342 struct e1000_adapter *adapter = netdev_priv(netdev);
3343 struct e1000_hw *hw = &adapter->hw;
3344 unsigned int rar_entries;
3345 int count = 0;
3346
3347 rar_entries = hw->mac.ops.rar_get_count(hw);
3348
3349 /* save a rar entry for our hardware address */
3350 rar_entries--;
3351
3352 /* save a rar entry for the LAA workaround */
3353 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3354 rar_entries--;
3355
3356 /* return ENOMEM indicating insufficient memory for addresses */
3357 if (netdev_uc_count(netdev) > rar_entries)
3358 return -ENOMEM;
3359
3360 if (!netdev_uc_empty(netdev) && rar_entries) {
3361 struct netdev_hw_addr *ha;
3362
3363 /* write the addresses in reverse order to avoid write
3364 * combining
3365 */
3366 netdev_for_each_uc_addr(ha, netdev) {
3367 int rval;
3368
3369 if (!rar_entries)
3370 break;
3371 rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3372 if (rval < 0)
3373 return -ENOMEM;
3374 count++;
3375 }
3376 }
3377
3378 /* zero out the remaining RAR entries not used above */
3379 for (; rar_entries > 0; rar_entries--) {
3380 ew32(RAH(rar_entries), 0);
3381 ew32(RAL(rar_entries), 0);
3382 }
3383 e1e_flush();
3384
3385 return count;
3386 }
3387
3388 /**
3389 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3390 * @netdev: network interface device structure
3391 *
3392 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3393 * address list or the network interface flags are updated. This routine is
3394 * responsible for configuring the hardware for proper unicast, multicast,
3395 * promiscuous mode, and all-multi behavior.
3396 **/
3397 static void e1000e_set_rx_mode(struct net_device *netdev)
3398 {
3399 struct e1000_adapter *adapter = netdev_priv(netdev);
3400 struct e1000_hw *hw = &adapter->hw;
3401 u32 rctl;
3402
3403 if (pm_runtime_suspended(netdev->dev.parent))
3404 return;
3405
3406 /* Check for Promiscuous and All Multicast modes */
3407 rctl = er32(RCTL);
3408
3409 /* clear the affected bits */
3410 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3411
3412 if (netdev->flags & IFF_PROMISC) {
3413 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3414 /* Do not hardware filter VLANs in promisc mode */
3415 e1000e_vlan_filter_disable(adapter);
3416 } else {
3417 int count;
3418
3419 if (netdev->flags & IFF_ALLMULTI) {
3420 rctl |= E1000_RCTL_MPE;
3421 } else {
3422 /* Write addresses to the MTA, if the attempt fails
3423 * then we should just turn on promiscuous mode so
3424 * that we can at least receive multicast traffic
3425 */
3426 count = e1000e_write_mc_addr_list(netdev);
3427 if (count < 0)
3428 rctl |= E1000_RCTL_MPE;
3429 }
3430 e1000e_vlan_filter_enable(adapter);
3431 /* Write addresses to available RAR registers, if there is not
3432 * sufficient space to store all the addresses then enable
3433 * unicast promiscuous mode
3434 */
3435 count = e1000e_write_uc_addr_list(netdev);
3436 if (count < 0)
3437 rctl |= E1000_RCTL_UPE;
3438 }
3439
3440 ew32(RCTL, rctl);
3441
3442 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3443 e1000e_vlan_strip_enable(adapter);
3444 else
3445 e1000e_vlan_strip_disable(adapter);
3446 }
3447
3448 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3449 {
3450 struct e1000_hw *hw = &adapter->hw;
3451 u32 mrqc, rxcsum;
3452 int i;
3453 static const u32 rsskey[10] = {
3454 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3455 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3456 };
3457
3458 /* Fill out hash function seed */
3459 for (i = 0; i < 10; i++)
3460 ew32(RSSRK(i), rsskey[i]);
3461
3462 /* Direct all traffic to queue 0 */
3463 for (i = 0; i < 32; i++)
3464 ew32(RETA(i), 0);
3465
3466 /* Disable raw packet checksumming so that RSS hash is placed in
3467 * descriptor on writeback.
3468 */
3469 rxcsum = er32(RXCSUM);
3470 rxcsum |= E1000_RXCSUM_PCSD;
3471
3472 ew32(RXCSUM, rxcsum);
3473
3474 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3475 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3476 E1000_MRQC_RSS_FIELD_IPV6 |
3477 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3478 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3479
3480 ew32(MRQC, mrqc);
3481 }
3482
3483 /**
3484 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3485 * @adapter: board private structure
3486 * @timinca: pointer to returned time increment attributes
3487 *
3488 * Get attributes for incrementing the System Time Register SYSTIML/H at
3489 * the default base frequency, and set the cyclecounter shift value.
3490 **/
3491 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3492 {
3493 struct e1000_hw *hw = &adapter->hw;
3494 u32 incvalue, incperiod, shift;
3495
3496 /* Make sure clock is enabled on I217 before checking the frequency */
3497 if ((hw->mac.type == e1000_pch_lpt) &&
3498 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3499 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3500 u32 fextnvm7 = er32(FEXTNVM7);
3501
3502 if (!(fextnvm7 & (1 << 0))) {
3503 ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3504 e1e_flush();
3505 }
3506 }
3507
3508 switch (hw->mac.type) {
3509 case e1000_pch2lan:
3510 case e1000_pch_lpt:
3511 /* On I217, the clock frequency is 25MHz or 96MHz as
3512 * indicated by the System Clock Frequency Indication
3513 */
3514 if ((hw->mac.type != e1000_pch_lpt) ||
3515 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3516 /* Stable 96MHz frequency */
3517 incperiod = INCPERIOD_96MHz;
3518 incvalue = INCVALUE_96MHz;
3519 shift = INCVALUE_SHIFT_96MHz;
3520 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3521 break;
3522 }
3523 /* fall-through */
3524 case e1000_82574:
3525 case e1000_82583:
3526 /* Stable 25MHz frequency */
3527 incperiod = INCPERIOD_25MHz;
3528 incvalue = INCVALUE_25MHz;
3529 shift = INCVALUE_SHIFT_25MHz;
3530 adapter->cc.shift = shift;
3531 break;
3532 default:
3533 return -EINVAL;
3534 }
3535
3536 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3537 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3538
3539 return 0;
3540 }
3541
3542 /**
3543 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3544 * @adapter: board private structure
3545 *
3546 * Outgoing time stamping can be enabled and disabled. Play nice and
3547 * disable it when requested, although it shouldn't cause any overhead
3548 * when no packet needs it. At most one packet in the queue may be
3549 * marked for time stamping, otherwise it would be impossible to tell
3550 * for sure to which packet the hardware time stamp belongs.
3551 *
3552 * Incoming time stamping has to be configured via the hardware filters.
3553 * Not all combinations are supported, in particular event type has to be
3554 * specified. Matching the kind of event packet is not supported, with the
3555 * exception of "all V2 events regardless of level 2 or 4".
3556 **/
3557 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3558 struct hwtstamp_config *config)
3559 {
3560 struct e1000_hw *hw = &adapter->hw;
3561 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3562 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3563 u32 rxmtrl = 0;
3564 u16 rxudp = 0;
3565 bool is_l4 = false;
3566 bool is_l2 = false;
3567 u32 regval;
3568 s32 ret_val;
3569
3570 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3571 return -EINVAL;
3572
3573 /* flags reserved for future extensions - must be zero */
3574 if (config->flags)
3575 return -EINVAL;
3576
3577 switch (config->tx_type) {
3578 case HWTSTAMP_TX_OFF:
3579 tsync_tx_ctl = 0;
3580 break;
3581 case HWTSTAMP_TX_ON:
3582 break;
3583 default:
3584 return -ERANGE;
3585 }
3586
3587 switch (config->rx_filter) {
3588 case HWTSTAMP_FILTER_NONE:
3589 tsync_rx_ctl = 0;
3590 break;
3591 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3592 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3593 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3594 is_l4 = true;
3595 break;
3596 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3597 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3598 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3599 is_l4 = true;
3600 break;
3601 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3602 /* Also time stamps V2 L2 Path Delay Request/Response */
3603 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3604 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3605 is_l2 = true;
3606 break;
3607 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3608 /* Also time stamps V2 L2 Path Delay Request/Response. */
3609 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3610 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3611 is_l2 = true;
3612 break;
3613 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3614 /* Hardware cannot filter just V2 L4 Sync messages;
3615 * fall-through to V2 (both L2 and L4) Sync.
3616 */
3617 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3618 /* Also time stamps V2 Path Delay Request/Response. */
3619 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3620 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3621 is_l2 = true;
3622 is_l4 = true;
3623 break;
3624 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3625 /* Hardware cannot filter just V2 L4 Delay Request messages;
3626 * fall-through to V2 (both L2 and L4) Delay Request.
3627 */
3628 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3629 /* Also time stamps V2 Path Delay Request/Response. */
3630 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3631 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3632 is_l2 = true;
3633 is_l4 = true;
3634 break;
3635 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3636 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3637 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3638 * fall-through to all V2 (both L2 and L4) Events.
3639 */
3640 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3641 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3642 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3643 is_l2 = true;
3644 is_l4 = true;
3645 break;
3646 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3647 /* For V1, the hardware can only filter Sync messages or
3648 * Delay Request messages but not both so fall-through to
3649 * time stamp all packets.
3650 */
3651 case HWTSTAMP_FILTER_ALL:
3652 is_l2 = true;
3653 is_l4 = true;
3654 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3655 config->rx_filter = HWTSTAMP_FILTER_ALL;
3656 break;
3657 default:
3658 return -ERANGE;
3659 }
3660
3661 adapter->hwtstamp_config = *config;
3662
3663 /* enable/disable Tx h/w time stamping */
3664 regval = er32(TSYNCTXCTL);
3665 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3666 regval |= tsync_tx_ctl;
3667 ew32(TSYNCTXCTL, regval);
3668 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3669 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3670 e_err("Timesync Tx Control register not set as expected\n");
3671 return -EAGAIN;
3672 }
3673
3674 /* enable/disable Rx h/w time stamping */
3675 regval = er32(TSYNCRXCTL);
3676 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3677 regval |= tsync_rx_ctl;
3678 ew32(TSYNCRXCTL, regval);
3679 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3680 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3681 (regval & (E1000_TSYNCRXCTL_ENABLED |
3682 E1000_TSYNCRXCTL_TYPE_MASK))) {
3683 e_err("Timesync Rx Control register not set as expected\n");
3684 return -EAGAIN;
3685 }
3686
3687 /* L2: define ethertype filter for time stamped packets */
3688 if (is_l2)
3689 rxmtrl |= ETH_P_1588;
3690
3691 /* define which PTP packets get time stamped */
3692 ew32(RXMTRL, rxmtrl);
3693
3694 /* Filter by destination port */
3695 if (is_l4) {
3696 rxudp = PTP_EV_PORT;
3697 cpu_to_be16s(&rxudp);
3698 }
3699 ew32(RXUDP, rxudp);
3700
3701 e1e_flush();
3702
3703 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3704 er32(RXSTMPH);
3705 er32(TXSTMPH);
3706
3707 /* Get and set the System Time Register SYSTIM base frequency */
3708 ret_val = e1000e_get_base_timinca(adapter, &regval);
3709 if (ret_val)
3710 return ret_val;
3711 ew32(TIMINCA, regval);
3712
3713 /* reset the ns time counter */
3714 timecounter_init(&adapter->tc, &adapter->cc,
3715 ktime_to_ns(ktime_get_real()));
3716
3717 return 0;
3718 }
3719
3720 /**
3721 * e1000_configure - configure the hardware for Rx and Tx
3722 * @adapter: private board structure
3723 **/
3724 static void e1000_configure(struct e1000_adapter *adapter)
3725 {
3726 struct e1000_ring *rx_ring = adapter->rx_ring;
3727
3728 e1000e_set_rx_mode(adapter->netdev);
3729
3730 e1000_restore_vlan(adapter);
3731 e1000_init_manageability_pt(adapter);
3732
3733 e1000_configure_tx(adapter);
3734
3735 if (adapter->netdev->features & NETIF_F_RXHASH)
3736 e1000e_setup_rss_hash(adapter);
3737 e1000_setup_rctl(adapter);
3738 e1000_configure_rx(adapter);
3739 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3740 }
3741
3742 /**
3743 * e1000e_power_up_phy - restore link in case the phy was powered down
3744 * @adapter: address of board private structure
3745 *
3746 * The phy may be powered down to save power and turn off link when the
3747 * driver is unloaded and wake on lan is not enabled (among others)
3748 * *** this routine MUST be followed by a call to e1000e_reset ***
3749 **/
3750 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3751 {
3752 if (adapter->hw.phy.ops.power_up)
3753 adapter->hw.phy.ops.power_up(&adapter->hw);
3754
3755 adapter->hw.mac.ops.setup_link(&adapter->hw);
3756 }
3757
3758 /**
3759 * e1000_power_down_phy - Power down the PHY
3760 *
3761 * Power down the PHY so no link is implied when interface is down.
3762 * The PHY cannot be powered down if management or WoL is active.
3763 */
3764 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3765 {
3766 if (adapter->hw.phy.ops.power_down)
3767 adapter->hw.phy.ops.power_down(&adapter->hw);
3768 }
3769
3770 /**
3771 * e1000e_reset - bring the hardware into a known good state
3772 *
3773 * This function boots the hardware and enables some settings that
3774 * require a configuration cycle of the hardware - those cannot be
3775 * set/changed during runtime. After reset the device needs to be
3776 * properly configured for Rx, Tx etc.
3777 */
3778 void e1000e_reset(struct e1000_adapter *adapter)
3779 {
3780 struct e1000_mac_info *mac = &adapter->hw.mac;
3781 struct e1000_fc_info *fc = &adapter->hw.fc;
3782 struct e1000_hw *hw = &adapter->hw;
3783 u32 tx_space, min_tx_space, min_rx_space;
3784 u32 pba = adapter->pba;
3785 u16 hwm;
3786
3787 /* reset Packet Buffer Allocation to default */
3788 ew32(PBA, pba);
3789
3790 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3791 /* To maintain wire speed transmits, the Tx FIFO should be
3792 * large enough to accommodate two full transmit packets,
3793 * rounded up to the next 1KB and expressed in KB. Likewise,
3794 * the Rx FIFO should be large enough to accommodate at least
3795 * one full receive packet and is similarly rounded up and
3796 * expressed in KB.
3797 */
3798 pba = er32(PBA);
3799 /* upper 16 bits has Tx packet buffer allocation size in KB */
3800 tx_space = pba >> 16;
3801 /* lower 16 bits has Rx packet buffer allocation size in KB */
3802 pba &= 0xffff;
3803 /* the Tx fifo also stores 16 bytes of information about the Tx
3804 * but don't include ethernet FCS because hardware appends it
3805 */
3806 min_tx_space = (adapter->max_frame_size +
3807 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3808 min_tx_space = ALIGN(min_tx_space, 1024);
3809 min_tx_space >>= 10;
3810 /* software strips receive CRC, so leave room for it */
3811 min_rx_space = adapter->max_frame_size;
3812 min_rx_space = ALIGN(min_rx_space, 1024);
3813 min_rx_space >>= 10;
3814
3815 /* If current Tx allocation is less than the min Tx FIFO size,
3816 * and the min Tx FIFO size is less than the current Rx FIFO
3817 * allocation, take space away from current Rx allocation
3818 */
3819 if ((tx_space < min_tx_space) &&
3820 ((min_tx_space - tx_space) < pba)) {
3821 pba -= min_tx_space - tx_space;
3822
3823 /* if short on Rx space, Rx wins and must trump Tx
3824 * adjustment
3825 */
3826 if (pba < min_rx_space)
3827 pba = min_rx_space;
3828 }
3829
3830 ew32(PBA, pba);
3831 }
3832
3833 /* flow control settings
3834 *
3835 * The high water mark must be low enough to fit one full frame
3836 * (or the size used for early receive) above it in the Rx FIFO.
3837 * Set it to the lower of:
3838 * - 90% of the Rx FIFO size, and
3839 * - the full Rx FIFO size minus one full frame
3840 */
3841 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3842 fc->pause_time = 0xFFFF;
3843 else
3844 fc->pause_time = E1000_FC_PAUSE_TIME;
3845 fc->send_xon = true;
3846 fc->current_mode = fc->requested_mode;
3847
3848 switch (hw->mac.type) {
3849 case e1000_ich9lan:
3850 case e1000_ich10lan:
3851 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3852 pba = 14;
3853 ew32(PBA, pba);
3854 fc->high_water = 0x2800;
3855 fc->low_water = fc->high_water - 8;
3856 break;
3857 }
3858 /* fall-through */
3859 default:
3860 hwm = min(((pba << 10) * 9 / 10),
3861 ((pba << 10) - adapter->max_frame_size));
3862
3863 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3864 fc->low_water = fc->high_water - 8;
3865 break;
3866 case e1000_pchlan:
3867 /* Workaround PCH LOM adapter hangs with certain network
3868 * loads. If hangs persist, try disabling Tx flow control.
3869 */
3870 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3871 fc->high_water = 0x3500;
3872 fc->low_water = 0x1500;
3873 } else {
3874 fc->high_water = 0x5000;
3875 fc->low_water = 0x3000;
3876 }
3877 fc->refresh_time = 0x1000;
3878 break;
3879 case e1000_pch2lan:
3880 case e1000_pch_lpt:
3881 fc->refresh_time = 0x0400;
3882
3883 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3884 fc->high_water = 0x05C20;
3885 fc->low_water = 0x05048;
3886 fc->pause_time = 0x0650;
3887 break;
3888 }
3889
3890 pba = 14;
3891 ew32(PBA, pba);
3892 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3893 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3894 break;
3895 }
3896
3897 /* Alignment of Tx data is on an arbitrary byte boundary with the
3898 * maximum size per Tx descriptor limited only to the transmit
3899 * allocation of the packet buffer minus 96 bytes with an upper
3900 * limit of 24KB due to receive synchronization limitations.
3901 */
3902 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3903 24 << 10);
3904
3905 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3906 * fit in receive buffer.
3907 */
3908 if (adapter->itr_setting & 0x3) {
3909 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3910 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3911 dev_info(&adapter->pdev->dev,
3912 "Interrupt Throttle Rate off\n");
3913 adapter->flags2 |= FLAG2_DISABLE_AIM;
3914 e1000e_write_itr(adapter, 0);
3915 }
3916 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3917 dev_info(&adapter->pdev->dev,
3918 "Interrupt Throttle Rate on\n");
3919 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3920 adapter->itr = 20000;
3921 e1000e_write_itr(adapter, adapter->itr);
3922 }
3923 }
3924
3925 /* Allow time for pending master requests to run */
3926 mac->ops.reset_hw(hw);
3927
3928 /* For parts with AMT enabled, let the firmware know
3929 * that the network interface is in control
3930 */
3931 if (adapter->flags & FLAG_HAS_AMT)
3932 e1000e_get_hw_control(adapter);
3933
3934 ew32(WUC, 0);
3935
3936 if (mac->ops.init_hw(hw))
3937 e_err("Hardware Error\n");
3938
3939 e1000_update_mng_vlan(adapter);
3940
3941 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3942 ew32(VET, ETH_P_8021Q);
3943
3944 e1000e_reset_adaptive(hw);
3945
3946 /* initialize systim and reset the ns time counter */
3947 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3948
3949 /* Set EEE advertisement as appropriate */
3950 if (adapter->flags2 & FLAG2_HAS_EEE) {
3951 s32 ret_val;
3952 u16 adv_addr;
3953
3954 switch (hw->phy.type) {
3955 case e1000_phy_82579:
3956 adv_addr = I82579_EEE_ADVERTISEMENT;
3957 break;
3958 case e1000_phy_i217:
3959 adv_addr = I217_EEE_ADVERTISEMENT;
3960 break;
3961 default:
3962 dev_err(&adapter->pdev->dev,
3963 "Invalid PHY type setting EEE advertisement\n");
3964 return;
3965 }
3966
3967 ret_val = hw->phy.ops.acquire(hw);
3968 if (ret_val) {
3969 dev_err(&adapter->pdev->dev,
3970 "EEE advertisement - unable to acquire PHY\n");
3971 return;
3972 }
3973
3974 e1000_write_emi_reg_locked(hw, adv_addr,
3975 hw->dev_spec.ich8lan.eee_disable ?
3976 0 : adapter->eee_advert);
3977
3978 hw->phy.ops.release(hw);
3979 }
3980
3981 if (!netif_running(adapter->netdev) &&
3982 !test_bit(__E1000_TESTING, &adapter->state))
3983 e1000_power_down_phy(adapter);
3984
3985 e1000_get_phy_info(hw);
3986
3987 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3988 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3989 u16 phy_data = 0;
3990 /* speed up time to link by disabling smart power down, ignore
3991 * the return value of this function because there is nothing
3992 * different we would do if it failed
3993 */
3994 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3995 phy_data &= ~IGP02E1000_PM_SPD;
3996 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3997 }
3998 }
3999
4000 int e1000e_up(struct e1000_adapter *adapter)
4001 {
4002 struct e1000_hw *hw = &adapter->hw;
4003
4004 /* hardware has been reset, we need to reload some things */
4005 e1000_configure(adapter);
4006
4007 clear_bit(__E1000_DOWN, &adapter->state);
4008
4009 if (adapter->msix_entries)
4010 e1000_configure_msix(adapter);
4011 e1000_irq_enable(adapter);
4012
4013 netif_start_queue(adapter->netdev);
4014
4015 /* fire a link change interrupt to start the watchdog */
4016 if (adapter->msix_entries)
4017 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4018 else
4019 ew32(ICS, E1000_ICS_LSC);
4020
4021 return 0;
4022 }
4023
4024 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4025 {
4026 struct e1000_hw *hw = &adapter->hw;
4027
4028 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4029 return;
4030
4031 /* flush pending descriptor writebacks to memory */
4032 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4033 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4034
4035 /* execute the writes immediately */
4036 e1e_flush();
4037
4038 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4039 * write is successful
4040 */
4041 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4042 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4043
4044 /* execute the writes immediately */
4045 e1e_flush();
4046 }
4047
4048 static void e1000e_update_stats(struct e1000_adapter *adapter);
4049
4050 /**
4051 * e1000e_down - quiesce the device and optionally reset the hardware
4052 * @adapter: board private structure
4053 * @reset: boolean flag to reset the hardware or not
4054 */
4055 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4056 {
4057 struct net_device *netdev = adapter->netdev;
4058 struct e1000_hw *hw = &adapter->hw;
4059 u32 tctl, rctl;
4060
4061 /* signal that we're down so the interrupt handler does not
4062 * reschedule our watchdog timer
4063 */
4064 set_bit(__E1000_DOWN, &adapter->state);
4065
4066 /* disable receives in the hardware */
4067 rctl = er32(RCTL);
4068 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4069 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4070 /* flush and sleep below */
4071
4072 netif_stop_queue(netdev);
4073
4074 /* disable transmits in the hardware */
4075 tctl = er32(TCTL);
4076 tctl &= ~E1000_TCTL_EN;
4077 ew32(TCTL, tctl);
4078
4079 /* flush both disables and wait for them to finish */
4080 e1e_flush();
4081 usleep_range(10000, 20000);
4082
4083 e1000_irq_disable(adapter);
4084
4085 napi_synchronize(&adapter->napi);
4086
4087 del_timer_sync(&adapter->watchdog_timer);
4088 del_timer_sync(&adapter->phy_info_timer);
4089
4090 netif_carrier_off(netdev);
4091
4092 spin_lock(&adapter->stats64_lock);
4093 e1000e_update_stats(adapter);
4094 spin_unlock(&adapter->stats64_lock);
4095
4096 e1000e_flush_descriptors(adapter);
4097 e1000_clean_tx_ring(adapter->tx_ring);
4098 e1000_clean_rx_ring(adapter->rx_ring);
4099
4100 adapter->link_speed = 0;
4101 adapter->link_duplex = 0;
4102
4103 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4104 if ((hw->mac.type >= e1000_pch2lan) &&
4105 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4106 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4107 e_dbg("failed to disable jumbo frame workaround mode\n");
4108
4109 if (reset && !pci_channel_offline(adapter->pdev))
4110 e1000e_reset(adapter);
4111 }
4112
4113 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4114 {
4115 might_sleep();
4116 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4117 usleep_range(1000, 2000);
4118 e1000e_down(adapter, true);
4119 e1000e_up(adapter);
4120 clear_bit(__E1000_RESETTING, &adapter->state);
4121 }
4122
4123 /**
4124 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4125 * @cc: cyclecounter structure
4126 **/
4127 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4128 {
4129 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4130 cc);
4131 struct e1000_hw *hw = &adapter->hw;
4132 cycle_t systim, systim_next;
4133
4134 /* latch SYSTIMH on read of SYSTIML */
4135 systim = (cycle_t)er32(SYSTIML);
4136 systim |= (cycle_t)er32(SYSTIMH) << 32;
4137
4138 if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4139 u64 incvalue, time_delta, rem, temp;
4140 int i;
4141
4142 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4143 * check to see that the time is incrementing at a reasonable
4144 * rate and is a multiple of incvalue
4145 */
4146 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4147 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4148 /* latch SYSTIMH on read of SYSTIML */
4149 systim_next = (cycle_t)er32(SYSTIML);
4150 systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4151
4152 time_delta = systim_next - systim;
4153 temp = time_delta;
4154 rem = do_div(temp, incvalue);
4155
4156 systim = systim_next;
4157
4158 if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4159 (rem == 0))
4160 break;
4161 }
4162 }
4163 return systim;
4164 }
4165
4166 /**
4167 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4168 * @adapter: board private structure to initialize
4169 *
4170 * e1000_sw_init initializes the Adapter private data structure.
4171 * Fields are initialized based on PCI device information and
4172 * OS network device settings (MTU size).
4173 **/
4174 static int e1000_sw_init(struct e1000_adapter *adapter)
4175 {
4176 struct net_device *netdev = adapter->netdev;
4177
4178 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4179 adapter->rx_ps_bsize0 = 128;
4180 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4181 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4182 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4183 adapter->rx_ring_count = E1000_DEFAULT_RXD;
4184
4185 spin_lock_init(&adapter->stats64_lock);
4186
4187 e1000e_set_interrupt_capability(adapter);
4188
4189 if (e1000_alloc_queues(adapter))
4190 return -ENOMEM;
4191
4192 /* Setup hardware time stamping cyclecounter */
4193 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4194 adapter->cc.read = e1000e_cyclecounter_read;
4195 adapter->cc.mask = CLOCKSOURCE_MASK(64);
4196 adapter->cc.mult = 1;
4197 /* cc.shift set in e1000e_get_base_tininca() */
4198
4199 spin_lock_init(&adapter->systim_lock);
4200 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4201 }
4202
4203 /* Explicitly disable IRQ since the NIC can be in any state. */
4204 e1000_irq_disable(adapter);
4205
4206 set_bit(__E1000_DOWN, &adapter->state);
4207 return 0;
4208 }
4209
4210 /**
4211 * e1000_intr_msi_test - Interrupt Handler
4212 * @irq: interrupt number
4213 * @data: pointer to a network interface device structure
4214 **/
4215 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4216 {
4217 struct net_device *netdev = data;
4218 struct e1000_adapter *adapter = netdev_priv(netdev);
4219 struct e1000_hw *hw = &adapter->hw;
4220 u32 icr = er32(ICR);
4221
4222 e_dbg("icr is %08X\n", icr);
4223 if (icr & E1000_ICR_RXSEQ) {
4224 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4225 /* Force memory writes to complete before acknowledging the
4226 * interrupt is handled.
4227 */
4228 wmb();
4229 }
4230
4231 return IRQ_HANDLED;
4232 }
4233
4234 /**
4235 * e1000_test_msi_interrupt - Returns 0 for successful test
4236 * @adapter: board private struct
4237 *
4238 * code flow taken from tg3.c
4239 **/
4240 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4241 {
4242 struct net_device *netdev = adapter->netdev;
4243 struct e1000_hw *hw = &adapter->hw;
4244 int err;
4245
4246 /* poll_enable hasn't been called yet, so don't need disable */
4247 /* clear any pending events */
4248 er32(ICR);
4249
4250 /* free the real vector and request a test handler */
4251 e1000_free_irq(adapter);
4252 e1000e_reset_interrupt_capability(adapter);
4253
4254 /* Assume that the test fails, if it succeeds then the test
4255 * MSI irq handler will unset this flag
4256 */
4257 adapter->flags |= FLAG_MSI_TEST_FAILED;
4258
4259 err = pci_enable_msi(adapter->pdev);
4260 if (err)
4261 goto msi_test_failed;
4262
4263 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4264 netdev->name, netdev);
4265 if (err) {
4266 pci_disable_msi(adapter->pdev);
4267 goto msi_test_failed;
4268 }
4269
4270 /* Force memory writes to complete before enabling and firing an
4271 * interrupt.
4272 */
4273 wmb();
4274
4275 e1000_irq_enable(adapter);
4276
4277 /* fire an unusual interrupt on the test handler */
4278 ew32(ICS, E1000_ICS_RXSEQ);
4279 e1e_flush();
4280 msleep(100);
4281
4282 e1000_irq_disable(adapter);
4283
4284 rmb(); /* read flags after interrupt has been fired */
4285
4286 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4287 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4288 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4289 } else {
4290 e_dbg("MSI interrupt test succeeded!\n");
4291 }
4292
4293 free_irq(adapter->pdev->irq, netdev);
4294 pci_disable_msi(adapter->pdev);
4295
4296 msi_test_failed:
4297 e1000e_set_interrupt_capability(adapter);
4298 return e1000_request_irq(adapter);
4299 }
4300
4301 /**
4302 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4303 * @adapter: board private struct
4304 *
4305 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4306 **/
4307 static int e1000_test_msi(struct e1000_adapter *adapter)
4308 {
4309 int err;
4310 u16 pci_cmd;
4311
4312 if (!(adapter->flags & FLAG_MSI_ENABLED))
4313 return 0;
4314
4315 /* disable SERR in case the MSI write causes a master abort */
4316 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4317 if (pci_cmd & PCI_COMMAND_SERR)
4318 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4319 pci_cmd & ~PCI_COMMAND_SERR);
4320
4321 err = e1000_test_msi_interrupt(adapter);
4322
4323 /* re-enable SERR */
4324 if (pci_cmd & PCI_COMMAND_SERR) {
4325 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4326 pci_cmd |= PCI_COMMAND_SERR;
4327 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4328 }
4329
4330 return err;
4331 }
4332
4333 /**
4334 * e1000_open - Called when a network interface is made active
4335 * @netdev: network interface device structure
4336 *
4337 * Returns 0 on success, negative value on failure
4338 *
4339 * The open entry point is called when a network interface is made
4340 * active by the system (IFF_UP). At this point all resources needed
4341 * for transmit and receive operations are allocated, the interrupt
4342 * handler is registered with the OS, the watchdog timer is started,
4343 * and the stack is notified that the interface is ready.
4344 **/
4345 static int e1000_open(struct net_device *netdev)
4346 {
4347 struct e1000_adapter *adapter = netdev_priv(netdev);
4348 struct e1000_hw *hw = &adapter->hw;
4349 struct pci_dev *pdev = adapter->pdev;
4350 int err;
4351
4352 /* disallow open during test */
4353 if (test_bit(__E1000_TESTING, &adapter->state))
4354 return -EBUSY;
4355
4356 pm_runtime_get_sync(&pdev->dev);
4357
4358 netif_carrier_off(netdev);
4359
4360 /* allocate transmit descriptors */
4361 err = e1000e_setup_tx_resources(adapter->tx_ring);
4362 if (err)
4363 goto err_setup_tx;
4364
4365 /* allocate receive descriptors */
4366 err = e1000e_setup_rx_resources(adapter->rx_ring);
4367 if (err)
4368 goto err_setup_rx;
4369
4370 /* If AMT is enabled, let the firmware know that the network
4371 * interface is now open and reset the part to a known state.
4372 */
4373 if (adapter->flags & FLAG_HAS_AMT) {
4374 e1000e_get_hw_control(adapter);
4375 e1000e_reset(adapter);
4376 }
4377
4378 e1000e_power_up_phy(adapter);
4379
4380 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4381 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4382 e1000_update_mng_vlan(adapter);
4383
4384 /* DMA latency requirement to workaround jumbo issue */
4385 pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4386 PM_QOS_DEFAULT_VALUE);
4387
4388 /* before we allocate an interrupt, we must be ready to handle it.
4389 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4390 * as soon as we call pci_request_irq, so we have to setup our
4391 * clean_rx handler before we do so.
4392 */
4393 e1000_configure(adapter);
4394
4395 err = e1000_request_irq(adapter);
4396 if (err)
4397 goto err_req_irq;
4398
4399 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4400 * ignore e1000e MSI messages, which means we need to test our MSI
4401 * interrupt now
4402 */
4403 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4404 err = e1000_test_msi(adapter);
4405 if (err) {
4406 e_err("Interrupt allocation failed\n");
4407 goto err_req_irq;
4408 }
4409 }
4410
4411 /* From here on the code is the same as e1000e_up() */
4412 clear_bit(__E1000_DOWN, &adapter->state);
4413
4414 napi_enable(&adapter->napi);
4415
4416 e1000_irq_enable(adapter);
4417
4418 adapter->tx_hang_recheck = false;
4419 netif_start_queue(netdev);
4420
4421 hw->mac.get_link_status = true;
4422 pm_runtime_put(&pdev->dev);
4423
4424 /* fire a link status change interrupt to start the watchdog */
4425 if (adapter->msix_entries)
4426 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4427 else
4428 ew32(ICS, E1000_ICS_LSC);
4429
4430 return 0;
4431
4432 err_req_irq:
4433 e1000e_release_hw_control(adapter);
4434 e1000_power_down_phy(adapter);
4435 e1000e_free_rx_resources(adapter->rx_ring);
4436 err_setup_rx:
4437 e1000e_free_tx_resources(adapter->tx_ring);
4438 err_setup_tx:
4439 e1000e_reset(adapter);
4440 pm_runtime_put_sync(&pdev->dev);
4441
4442 return err;
4443 }
4444
4445 /**
4446 * e1000_close - Disables a network interface
4447 * @netdev: network interface device structure
4448 *
4449 * Returns 0, this is not allowed to fail
4450 *
4451 * The close entry point is called when an interface is de-activated
4452 * by the OS. The hardware is still under the drivers control, but
4453 * needs to be disabled. A global MAC reset is issued to stop the
4454 * hardware, and all transmit and receive resources are freed.
4455 **/
4456 static int e1000_close(struct net_device *netdev)
4457 {
4458 struct e1000_adapter *adapter = netdev_priv(netdev);
4459 struct pci_dev *pdev = adapter->pdev;
4460 int count = E1000_CHECK_RESET_COUNT;
4461
4462 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4463 usleep_range(10000, 20000);
4464
4465 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4466
4467 pm_runtime_get_sync(&pdev->dev);
4468
4469 if (!test_bit(__E1000_DOWN, &adapter->state)) {
4470 e1000e_down(adapter, true);
4471 e1000_free_irq(adapter);
4472
4473 /* Link status message must follow this format */
4474 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4475 }
4476
4477 napi_disable(&adapter->napi);
4478
4479 e1000e_free_tx_resources(adapter->tx_ring);
4480 e1000e_free_rx_resources(adapter->rx_ring);
4481
4482 /* kill manageability vlan ID if supported, but not if a vlan with
4483 * the same ID is registered on the host OS (let 8021q kill it)
4484 */
4485 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4486 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4487 adapter->mng_vlan_id);
4488
4489 /* If AMT is enabled, let the firmware know that the network
4490 * interface is now closed
4491 */
4492 if ((adapter->flags & FLAG_HAS_AMT) &&
4493 !test_bit(__E1000_TESTING, &adapter->state))
4494 e1000e_release_hw_control(adapter);
4495
4496 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4497
4498 pm_runtime_put_sync(&pdev->dev);
4499
4500 return 0;
4501 }
4502
4503 /**
4504 * e1000_set_mac - Change the Ethernet Address of the NIC
4505 * @netdev: network interface device structure
4506 * @p: pointer to an address structure
4507 *
4508 * Returns 0 on success, negative on failure
4509 **/
4510 static int e1000_set_mac(struct net_device *netdev, void *p)
4511 {
4512 struct e1000_adapter *adapter = netdev_priv(netdev);
4513 struct e1000_hw *hw = &adapter->hw;
4514 struct sockaddr *addr = p;
4515
4516 if (!is_valid_ether_addr(addr->sa_data))
4517 return -EADDRNOTAVAIL;
4518
4519 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4520 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4521
4522 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4523
4524 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4525 /* activate the work around */
4526 e1000e_set_laa_state_82571(&adapter->hw, 1);
4527
4528 /* Hold a copy of the LAA in RAR[14] This is done so that
4529 * between the time RAR[0] gets clobbered and the time it
4530 * gets fixed (in e1000_watchdog), the actual LAA is in one
4531 * of the RARs and no incoming packets directed to this port
4532 * are dropped. Eventually the LAA will be in RAR[0] and
4533 * RAR[14]
4534 */
4535 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4536 adapter->hw.mac.rar_entry_count - 1);
4537 }
4538
4539 return 0;
4540 }
4541
4542 /**
4543 * e1000e_update_phy_task - work thread to update phy
4544 * @work: pointer to our work struct
4545 *
4546 * this worker thread exists because we must acquire a
4547 * semaphore to read the phy, which we could msleep while
4548 * waiting for it, and we can't msleep in a timer.
4549 **/
4550 static void e1000e_update_phy_task(struct work_struct *work)
4551 {
4552 struct e1000_adapter *adapter = container_of(work,
4553 struct e1000_adapter,
4554 update_phy_task);
4555 struct e1000_hw *hw = &adapter->hw;
4556
4557 if (test_bit(__E1000_DOWN, &adapter->state))
4558 return;
4559
4560 e1000_get_phy_info(hw);
4561
4562 /* Enable EEE on 82579 after link up */
4563 if (hw->phy.type >= e1000_phy_82579)
4564 e1000_set_eee_pchlan(hw);
4565 }
4566
4567 /**
4568 * e1000_update_phy_info - timre call-back to update PHY info
4569 * @data: pointer to adapter cast into an unsigned long
4570 *
4571 * Need to wait a few seconds after link up to get diagnostic information from
4572 * the phy
4573 **/
4574 static void e1000_update_phy_info(unsigned long data)
4575 {
4576 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4577
4578 if (test_bit(__E1000_DOWN, &adapter->state))
4579 return;
4580
4581 schedule_work(&adapter->update_phy_task);
4582 }
4583
4584 /**
4585 * e1000e_update_phy_stats - Update the PHY statistics counters
4586 * @adapter: board private structure
4587 *
4588 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4589 **/
4590 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4591 {
4592 struct e1000_hw *hw = &adapter->hw;
4593 s32 ret_val;
4594 u16 phy_data;
4595
4596 ret_val = hw->phy.ops.acquire(hw);
4597 if (ret_val)
4598 return;
4599
4600 /* A page set is expensive so check if already on desired page.
4601 * If not, set to the page with the PHY status registers.
4602 */
4603 hw->phy.addr = 1;
4604 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4605 &phy_data);
4606 if (ret_val)
4607 goto release;
4608 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4609 ret_val = hw->phy.ops.set_page(hw,
4610 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4611 if (ret_val)
4612 goto release;
4613 }
4614
4615 /* Single Collision Count */
4616 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4617 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4618 if (!ret_val)
4619 adapter->stats.scc += phy_data;
4620
4621 /* Excessive Collision Count */
4622 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4623 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4624 if (!ret_val)
4625 adapter->stats.ecol += phy_data;
4626
4627 /* Multiple Collision Count */
4628 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4629 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4630 if (!ret_val)
4631 adapter->stats.mcc += phy_data;
4632
4633 /* Late Collision Count */
4634 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4635 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4636 if (!ret_val)
4637 adapter->stats.latecol += phy_data;
4638
4639 /* Collision Count - also used for adaptive IFS */
4640 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4641 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4642 if (!ret_val)
4643 hw->mac.collision_delta = phy_data;
4644
4645 /* Defer Count */
4646 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4647 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4648 if (!ret_val)
4649 adapter->stats.dc += phy_data;
4650
4651 /* Transmit with no CRS */
4652 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4653 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4654 if (!ret_val)
4655 adapter->stats.tncrs += phy_data;
4656
4657 release:
4658 hw->phy.ops.release(hw);
4659 }
4660
4661 /**
4662 * e1000e_update_stats - Update the board statistics counters
4663 * @adapter: board private structure
4664 **/
4665 static void e1000e_update_stats(struct e1000_adapter *adapter)
4666 {
4667 struct net_device *netdev = adapter->netdev;
4668 struct e1000_hw *hw = &adapter->hw;
4669 struct pci_dev *pdev = adapter->pdev;
4670
4671 /* Prevent stats update while adapter is being reset, or if the pci
4672 * connection is down.
4673 */
4674 if (adapter->link_speed == 0)
4675 return;
4676 if (pci_channel_offline(pdev))
4677 return;
4678
4679 adapter->stats.crcerrs += er32(CRCERRS);
4680 adapter->stats.gprc += er32(GPRC);
4681 adapter->stats.gorc += er32(GORCL);
4682 er32(GORCH); /* Clear gorc */
4683 adapter->stats.bprc += er32(BPRC);
4684 adapter->stats.mprc += er32(MPRC);
4685 adapter->stats.roc += er32(ROC);
4686
4687 adapter->stats.mpc += er32(MPC);
4688
4689 /* Half-duplex statistics */
4690 if (adapter->link_duplex == HALF_DUPLEX) {
4691 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4692 e1000e_update_phy_stats(adapter);
4693 } else {
4694 adapter->stats.scc += er32(SCC);
4695 adapter->stats.ecol += er32(ECOL);
4696 adapter->stats.mcc += er32(MCC);
4697 adapter->stats.latecol += er32(LATECOL);
4698 adapter->stats.dc += er32(DC);
4699
4700 hw->mac.collision_delta = er32(COLC);
4701
4702 if ((hw->mac.type != e1000_82574) &&
4703 (hw->mac.type != e1000_82583))
4704 adapter->stats.tncrs += er32(TNCRS);
4705 }
4706 adapter->stats.colc += hw->mac.collision_delta;
4707 }
4708
4709 adapter->stats.xonrxc += er32(XONRXC);
4710 adapter->stats.xontxc += er32(XONTXC);
4711 adapter->stats.xoffrxc += er32(XOFFRXC);
4712 adapter->stats.xofftxc += er32(XOFFTXC);
4713 adapter->stats.gptc += er32(GPTC);
4714 adapter->stats.gotc += er32(GOTCL);
4715 er32(GOTCH); /* Clear gotc */
4716 adapter->stats.rnbc += er32(RNBC);
4717 adapter->stats.ruc += er32(RUC);
4718
4719 adapter->stats.mptc += er32(MPTC);
4720 adapter->stats.bptc += er32(BPTC);
4721
4722 /* used for adaptive IFS */
4723
4724 hw->mac.tx_packet_delta = er32(TPT);
4725 adapter->stats.tpt += hw->mac.tx_packet_delta;
4726
4727 adapter->stats.algnerrc += er32(ALGNERRC);
4728 adapter->stats.rxerrc += er32(RXERRC);
4729 adapter->stats.cexterr += er32(CEXTERR);
4730 adapter->stats.tsctc += er32(TSCTC);
4731 adapter->stats.tsctfc += er32(TSCTFC);
4732
4733 /* Fill out the OS statistics structure */
4734 netdev->stats.multicast = adapter->stats.mprc;
4735 netdev->stats.collisions = adapter->stats.colc;
4736
4737 /* Rx Errors */
4738
4739 /* RLEC on some newer hardware can be incorrect so build
4740 * our own version based on RUC and ROC
4741 */
4742 netdev->stats.rx_errors = adapter->stats.rxerrc +
4743 adapter->stats.crcerrs + adapter->stats.algnerrc +
4744 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4745 netdev->stats.rx_length_errors = adapter->stats.ruc +
4746 adapter->stats.roc;
4747 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4748 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4749 netdev->stats.rx_missed_errors = adapter->stats.mpc;
4750
4751 /* Tx Errors */
4752 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4753 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4754 netdev->stats.tx_window_errors = adapter->stats.latecol;
4755 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4756
4757 /* Tx Dropped needs to be maintained elsewhere */
4758
4759 /* Management Stats */
4760 adapter->stats.mgptc += er32(MGTPTC);
4761 adapter->stats.mgprc += er32(MGTPRC);
4762 adapter->stats.mgpdc += er32(MGTPDC);
4763
4764 /* Correctable ECC Errors */
4765 if (hw->mac.type == e1000_pch_lpt) {
4766 u32 pbeccsts = er32(PBECCSTS);
4767
4768 adapter->corr_errors +=
4769 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4770 adapter->uncorr_errors +=
4771 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4772 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4773 }
4774 }
4775
4776 /**
4777 * e1000_phy_read_status - Update the PHY register status snapshot
4778 * @adapter: board private structure
4779 **/
4780 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4781 {
4782 struct e1000_hw *hw = &adapter->hw;
4783 struct e1000_phy_regs *phy = &adapter->phy_regs;
4784
4785 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4786 (er32(STATUS) & E1000_STATUS_LU) &&
4787 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4788 int ret_val;
4789
4790 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4791 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4792 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4793 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4794 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4795 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4796 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4797 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4798 if (ret_val)
4799 e_warn("Error reading PHY register\n");
4800 } else {
4801 /* Do not read PHY registers if link is not up
4802 * Set values to typical power-on defaults
4803 */
4804 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4805 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4806 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4807 BMSR_ERCAP);
4808 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4809 ADVERTISE_ALL | ADVERTISE_CSMA);
4810 phy->lpa = 0;
4811 phy->expansion = EXPANSION_ENABLENPAGE;
4812 phy->ctrl1000 = ADVERTISE_1000FULL;
4813 phy->stat1000 = 0;
4814 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4815 }
4816 }
4817
4818 static void e1000_print_link_info(struct e1000_adapter *adapter)
4819 {
4820 struct e1000_hw *hw = &adapter->hw;
4821 u32 ctrl = er32(CTRL);
4822
4823 /* Link status message must follow this format for user tools */
4824 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4825 adapter->netdev->name, adapter->link_speed,
4826 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4827 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4828 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4829 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4830 }
4831
4832 static bool e1000e_has_link(struct e1000_adapter *adapter)
4833 {
4834 struct e1000_hw *hw = &adapter->hw;
4835 bool link_active = false;
4836 s32 ret_val = 0;
4837
4838 /* get_link_status is set on LSC (link status) interrupt or
4839 * Rx sequence error interrupt. get_link_status will stay
4840 * false until the check_for_link establishes link
4841 * for copper adapters ONLY
4842 */
4843 switch (hw->phy.media_type) {
4844 case e1000_media_type_copper:
4845 if (hw->mac.get_link_status) {
4846 ret_val = hw->mac.ops.check_for_link(hw);
4847 link_active = !hw->mac.get_link_status;
4848 } else {
4849 link_active = true;
4850 }
4851 break;
4852 case e1000_media_type_fiber:
4853 ret_val = hw->mac.ops.check_for_link(hw);
4854 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4855 break;
4856 case e1000_media_type_internal_serdes:
4857 ret_val = hw->mac.ops.check_for_link(hw);
4858 link_active = adapter->hw.mac.serdes_has_link;
4859 break;
4860 default:
4861 case e1000_media_type_unknown:
4862 break;
4863 }
4864
4865 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4866 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4867 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4868 e_info("Gigabit has been disabled, downgrading speed\n");
4869 }
4870
4871 return link_active;
4872 }
4873
4874 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4875 {
4876 /* make sure the receive unit is started */
4877 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4878 (adapter->flags & FLAG_RESTART_NOW)) {
4879 struct e1000_hw *hw = &adapter->hw;
4880 u32 rctl = er32(RCTL);
4881
4882 ew32(RCTL, rctl | E1000_RCTL_EN);
4883 adapter->flags &= ~FLAG_RESTART_NOW;
4884 }
4885 }
4886
4887 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4888 {
4889 struct e1000_hw *hw = &adapter->hw;
4890
4891 /* With 82574 controllers, PHY needs to be checked periodically
4892 * for hung state and reset, if two calls return true
4893 */
4894 if (e1000_check_phy_82574(hw))
4895 adapter->phy_hang_count++;
4896 else
4897 adapter->phy_hang_count = 0;
4898
4899 if (adapter->phy_hang_count > 1) {
4900 adapter->phy_hang_count = 0;
4901 e_dbg("PHY appears hung - resetting\n");
4902 schedule_work(&adapter->reset_task);
4903 }
4904 }
4905
4906 /**
4907 * e1000_watchdog - Timer Call-back
4908 * @data: pointer to adapter cast into an unsigned long
4909 **/
4910 static void e1000_watchdog(unsigned long data)
4911 {
4912 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4913
4914 /* Do the rest outside of interrupt context */
4915 schedule_work(&adapter->watchdog_task);
4916
4917 /* TODO: make this use queue_delayed_work() */
4918 }
4919
4920 static void e1000_watchdog_task(struct work_struct *work)
4921 {
4922 struct e1000_adapter *adapter = container_of(work,
4923 struct e1000_adapter,
4924 watchdog_task);
4925 struct net_device *netdev = adapter->netdev;
4926 struct e1000_mac_info *mac = &adapter->hw.mac;
4927 struct e1000_phy_info *phy = &adapter->hw.phy;
4928 struct e1000_ring *tx_ring = adapter->tx_ring;
4929 struct e1000_hw *hw = &adapter->hw;
4930 u32 link, tctl;
4931
4932 if (test_bit(__E1000_DOWN, &adapter->state))
4933 return;
4934
4935 link = e1000e_has_link(adapter);
4936 if ((netif_carrier_ok(netdev)) && link) {
4937 /* Cancel scheduled suspend requests. */
4938 pm_runtime_resume(netdev->dev.parent);
4939
4940 e1000e_enable_receives(adapter);
4941 goto link_up;
4942 }
4943
4944 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4945 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4946 e1000_update_mng_vlan(adapter);
4947
4948 if (link) {
4949 if (!netif_carrier_ok(netdev)) {
4950 bool txb2b = true;
4951
4952 /* Cancel scheduled suspend requests. */
4953 pm_runtime_resume(netdev->dev.parent);
4954
4955 /* update snapshot of PHY registers on LSC */
4956 e1000_phy_read_status(adapter);
4957 mac->ops.get_link_up_info(&adapter->hw,
4958 &adapter->link_speed,
4959 &adapter->link_duplex);
4960 e1000_print_link_info(adapter);
4961
4962 /* check if SmartSpeed worked */
4963 e1000e_check_downshift(hw);
4964 if (phy->speed_downgraded)
4965 netdev_warn(netdev,
4966 "Link Speed was downgraded by SmartSpeed\n");
4967
4968 /* On supported PHYs, check for duplex mismatch only
4969 * if link has autonegotiated at 10/100 half
4970 */
4971 if ((hw->phy.type == e1000_phy_igp_3 ||
4972 hw->phy.type == e1000_phy_bm) &&
4973 hw->mac.autoneg &&
4974 (adapter->link_speed == SPEED_10 ||
4975 adapter->link_speed == SPEED_100) &&
4976 (adapter->link_duplex == HALF_DUPLEX)) {
4977 u16 autoneg_exp;
4978
4979 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4980
4981 if (!(autoneg_exp & EXPANSION_NWAY))
4982 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
4983 }
4984
4985 /* adjust timeout factor according to speed/duplex */
4986 adapter->tx_timeout_factor = 1;
4987 switch (adapter->link_speed) {
4988 case SPEED_10:
4989 txb2b = false;
4990 adapter->tx_timeout_factor = 16;
4991 break;
4992 case SPEED_100:
4993 txb2b = false;
4994 adapter->tx_timeout_factor = 10;
4995 break;
4996 }
4997
4998 /* workaround: re-program speed mode bit after
4999 * link-up event
5000 */
5001 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5002 !txb2b) {
5003 u32 tarc0;
5004
5005 tarc0 = er32(TARC(0));
5006 tarc0 &= ~SPEED_MODE_BIT;
5007 ew32(TARC(0), tarc0);
5008 }
5009
5010 /* disable TSO for pcie and 10/100 speeds, to avoid
5011 * some hardware issues
5012 */
5013 if (!(adapter->flags & FLAG_TSO_FORCE)) {
5014 switch (adapter->link_speed) {
5015 case SPEED_10:
5016 case SPEED_100:
5017 e_info("10/100 speed: disabling TSO\n");
5018 netdev->features &= ~NETIF_F_TSO;
5019 netdev->features &= ~NETIF_F_TSO6;
5020 break;
5021 case SPEED_1000:
5022 netdev->features |= NETIF_F_TSO;
5023 netdev->features |= NETIF_F_TSO6;
5024 break;
5025 default:
5026 /* oops */
5027 break;
5028 }
5029 }
5030
5031 /* enable transmits in the hardware, need to do this
5032 * after setting TARC(0)
5033 */
5034 tctl = er32(TCTL);
5035 tctl |= E1000_TCTL_EN;
5036 ew32(TCTL, tctl);
5037
5038 /* Perform any post-link-up configuration before
5039 * reporting link up.
5040 */
5041 if (phy->ops.cfg_on_link_up)
5042 phy->ops.cfg_on_link_up(hw);
5043
5044 netif_carrier_on(netdev);
5045
5046 if (!test_bit(__E1000_DOWN, &adapter->state))
5047 mod_timer(&adapter->phy_info_timer,
5048 round_jiffies(jiffies + 2 * HZ));
5049 }
5050 } else {
5051 if (netif_carrier_ok(netdev)) {
5052 adapter->link_speed = 0;
5053 adapter->link_duplex = 0;
5054 /* Link status message must follow this format */
5055 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5056 netif_carrier_off(netdev);
5057 if (!test_bit(__E1000_DOWN, &adapter->state))
5058 mod_timer(&adapter->phy_info_timer,
5059 round_jiffies(jiffies + 2 * HZ));
5060
5061 /* 8000ES2LAN requires a Rx packet buffer work-around
5062 * on link down event; reset the controller to flush
5063 * the Rx packet buffer.
5064 */
5065 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5066 adapter->flags |= FLAG_RESTART_NOW;
5067 else
5068 pm_schedule_suspend(netdev->dev.parent,
5069 LINK_TIMEOUT);
5070 }
5071 }
5072
5073 link_up:
5074 spin_lock(&adapter->stats64_lock);
5075 e1000e_update_stats(adapter);
5076
5077 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5078 adapter->tpt_old = adapter->stats.tpt;
5079 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5080 adapter->colc_old = adapter->stats.colc;
5081
5082 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5083 adapter->gorc_old = adapter->stats.gorc;
5084 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5085 adapter->gotc_old = adapter->stats.gotc;
5086 spin_unlock(&adapter->stats64_lock);
5087
5088 /* If the link is lost the controller stops DMA, but
5089 * if there is queued Tx work it cannot be done. So
5090 * reset the controller to flush the Tx packet buffers.
5091 */
5092 if (!netif_carrier_ok(netdev) &&
5093 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5094 adapter->flags |= FLAG_RESTART_NOW;
5095
5096 /* If reset is necessary, do it outside of interrupt context. */
5097 if (adapter->flags & FLAG_RESTART_NOW) {
5098 schedule_work(&adapter->reset_task);
5099 /* return immediately since reset is imminent */
5100 return;
5101 }
5102
5103 e1000e_update_adaptive(&adapter->hw);
5104
5105 /* Simple mode for Interrupt Throttle Rate (ITR) */
5106 if (adapter->itr_setting == 4) {
5107 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5108 * Total asymmetrical Tx or Rx gets ITR=8000;
5109 * everyone else is between 2000-8000.
5110 */
5111 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5112 u32 dif = (adapter->gotc > adapter->gorc ?
5113 adapter->gotc - adapter->gorc :
5114 adapter->gorc - adapter->gotc) / 10000;
5115 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5116
5117 e1000e_write_itr(adapter, itr);
5118 }
5119
5120 /* Cause software interrupt to ensure Rx ring is cleaned */
5121 if (adapter->msix_entries)
5122 ew32(ICS, adapter->rx_ring->ims_val);
5123 else
5124 ew32(ICS, E1000_ICS_RXDMT0);
5125
5126 /* flush pending descriptors to memory before detecting Tx hang */
5127 e1000e_flush_descriptors(adapter);
5128
5129 /* Force detection of hung controller every watchdog period */
5130 adapter->detect_tx_hung = true;
5131
5132 /* With 82571 controllers, LAA may be overwritten due to controller
5133 * reset from the other port. Set the appropriate LAA in RAR[0]
5134 */
5135 if (e1000e_get_laa_state_82571(hw))
5136 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5137
5138 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5139 e1000e_check_82574_phy_workaround(adapter);
5140
5141 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5142 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5143 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5144 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5145 er32(RXSTMPH);
5146 adapter->rx_hwtstamp_cleared++;
5147 } else {
5148 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5149 }
5150 }
5151
5152 /* Reset the timer */
5153 if (!test_bit(__E1000_DOWN, &adapter->state))
5154 mod_timer(&adapter->watchdog_timer,
5155 round_jiffies(jiffies + 2 * HZ));
5156 }
5157
5158 #define E1000_TX_FLAGS_CSUM 0x00000001
5159 #define E1000_TX_FLAGS_VLAN 0x00000002
5160 #define E1000_TX_FLAGS_TSO 0x00000004
5161 #define E1000_TX_FLAGS_IPV4 0x00000008
5162 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5163 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5164 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5165 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5166
5167 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5168 __be16 protocol)
5169 {
5170 struct e1000_context_desc *context_desc;
5171 struct e1000_buffer *buffer_info;
5172 unsigned int i;
5173 u32 cmd_length = 0;
5174 u16 ipcse = 0, mss;
5175 u8 ipcss, ipcso, tucss, tucso, hdr_len;
5176 int err;
5177
5178 if (!skb_is_gso(skb))
5179 return 0;
5180
5181 err = skb_cow_head(skb, 0);
5182 if (err < 0)
5183 return err;
5184
5185 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5186 mss = skb_shinfo(skb)->gso_size;
5187 if (protocol == htons(ETH_P_IP)) {
5188 struct iphdr *iph = ip_hdr(skb);
5189 iph->tot_len = 0;
5190 iph->check = 0;
5191 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5192 0, IPPROTO_TCP, 0);
5193 cmd_length = E1000_TXD_CMD_IP;
5194 ipcse = skb_transport_offset(skb) - 1;
5195 } else if (skb_is_gso_v6(skb)) {
5196 ipv6_hdr(skb)->payload_len = 0;
5197 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5198 &ipv6_hdr(skb)->daddr,
5199 0, IPPROTO_TCP, 0);
5200 ipcse = 0;
5201 }
5202 ipcss = skb_network_offset(skb);
5203 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5204 tucss = skb_transport_offset(skb);
5205 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5206
5207 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5208 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5209
5210 i = tx_ring->next_to_use;
5211 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5212 buffer_info = &tx_ring->buffer_info[i];
5213
5214 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5215 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5216 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5217 context_desc->upper_setup.tcp_fields.tucss = tucss;
5218 context_desc->upper_setup.tcp_fields.tucso = tucso;
5219 context_desc->upper_setup.tcp_fields.tucse = 0;
5220 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5221 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5222 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5223
5224 buffer_info->time_stamp = jiffies;
5225 buffer_info->next_to_watch = i;
5226
5227 i++;
5228 if (i == tx_ring->count)
5229 i = 0;
5230 tx_ring->next_to_use = i;
5231
5232 return 1;
5233 }
5234
5235 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5236 __be16 protocol)
5237 {
5238 struct e1000_adapter *adapter = tx_ring->adapter;
5239 struct e1000_context_desc *context_desc;
5240 struct e1000_buffer *buffer_info;
5241 unsigned int i;
5242 u8 css;
5243 u32 cmd_len = E1000_TXD_CMD_DEXT;
5244
5245 if (skb->ip_summed != CHECKSUM_PARTIAL)
5246 return false;
5247
5248 switch (protocol) {
5249 case cpu_to_be16(ETH_P_IP):
5250 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5251 cmd_len |= E1000_TXD_CMD_TCP;
5252 break;
5253 case cpu_to_be16(ETH_P_IPV6):
5254 /* XXX not handling all IPV6 headers */
5255 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5256 cmd_len |= E1000_TXD_CMD_TCP;
5257 break;
5258 default:
5259 if (unlikely(net_ratelimit()))
5260 e_warn("checksum_partial proto=%x!\n",
5261 be16_to_cpu(protocol));
5262 break;
5263 }
5264
5265 css = skb_checksum_start_offset(skb);
5266
5267 i = tx_ring->next_to_use;
5268 buffer_info = &tx_ring->buffer_info[i];
5269 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5270
5271 context_desc->lower_setup.ip_config = 0;
5272 context_desc->upper_setup.tcp_fields.tucss = css;
5273 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5274 context_desc->upper_setup.tcp_fields.tucse = 0;
5275 context_desc->tcp_seg_setup.data = 0;
5276 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5277
5278 buffer_info->time_stamp = jiffies;
5279 buffer_info->next_to_watch = i;
5280
5281 i++;
5282 if (i == tx_ring->count)
5283 i = 0;
5284 tx_ring->next_to_use = i;
5285
5286 return true;
5287 }
5288
5289 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5290 unsigned int first, unsigned int max_per_txd,
5291 unsigned int nr_frags)
5292 {
5293 struct e1000_adapter *adapter = tx_ring->adapter;
5294 struct pci_dev *pdev = adapter->pdev;
5295 struct e1000_buffer *buffer_info;
5296 unsigned int len = skb_headlen(skb);
5297 unsigned int offset = 0, size, count = 0, i;
5298 unsigned int f, bytecount, segs;
5299
5300 i = tx_ring->next_to_use;
5301
5302 while (len) {
5303 buffer_info = &tx_ring->buffer_info[i];
5304 size = min(len, max_per_txd);
5305
5306 buffer_info->length = size;
5307 buffer_info->time_stamp = jiffies;
5308 buffer_info->next_to_watch = i;
5309 buffer_info->dma = dma_map_single(&pdev->dev,
5310 skb->data + offset,
5311 size, DMA_TO_DEVICE);
5312 buffer_info->mapped_as_page = false;
5313 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5314 goto dma_error;
5315
5316 len -= size;
5317 offset += size;
5318 count++;
5319
5320 if (len) {
5321 i++;
5322 if (i == tx_ring->count)
5323 i = 0;
5324 }
5325 }
5326
5327 for (f = 0; f < nr_frags; f++) {
5328 const struct skb_frag_struct *frag;
5329
5330 frag = &skb_shinfo(skb)->frags[f];
5331 len = skb_frag_size(frag);
5332 offset = 0;
5333
5334 while (len) {
5335 i++;
5336 if (i == tx_ring->count)
5337 i = 0;
5338
5339 buffer_info = &tx_ring->buffer_info[i];
5340 size = min(len, max_per_txd);
5341
5342 buffer_info->length = size;
5343 buffer_info->time_stamp = jiffies;
5344 buffer_info->next_to_watch = i;
5345 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5346 offset, size,
5347 DMA_TO_DEVICE);
5348 buffer_info->mapped_as_page = true;
5349 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5350 goto dma_error;
5351
5352 len -= size;
5353 offset += size;
5354 count++;
5355 }
5356 }
5357
5358 segs = skb_shinfo(skb)->gso_segs ? : 1;
5359 /* multiply data chunks by size of headers */
5360 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5361
5362 tx_ring->buffer_info[i].skb = skb;
5363 tx_ring->buffer_info[i].segs = segs;
5364 tx_ring->buffer_info[i].bytecount = bytecount;
5365 tx_ring->buffer_info[first].next_to_watch = i;
5366
5367 return count;
5368
5369 dma_error:
5370 dev_err(&pdev->dev, "Tx DMA map failed\n");
5371 buffer_info->dma = 0;
5372 if (count)
5373 count--;
5374
5375 while (count--) {
5376 if (i == 0)
5377 i += tx_ring->count;
5378 i--;
5379 buffer_info = &tx_ring->buffer_info[i];
5380 e1000_put_txbuf(tx_ring, buffer_info);
5381 }
5382
5383 return 0;
5384 }
5385
5386 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5387 {
5388 struct e1000_adapter *adapter = tx_ring->adapter;
5389 struct e1000_tx_desc *tx_desc = NULL;
5390 struct e1000_buffer *buffer_info;
5391 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5392 unsigned int i;
5393
5394 if (tx_flags & E1000_TX_FLAGS_TSO) {
5395 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5396 E1000_TXD_CMD_TSE;
5397 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5398
5399 if (tx_flags & E1000_TX_FLAGS_IPV4)
5400 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5401 }
5402
5403 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5404 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5405 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5406 }
5407
5408 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5409 txd_lower |= E1000_TXD_CMD_VLE;
5410 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5411 }
5412
5413 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5414 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5415
5416 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5417 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5418 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5419 }
5420
5421 i = tx_ring->next_to_use;
5422
5423 do {
5424 buffer_info = &tx_ring->buffer_info[i];
5425 tx_desc = E1000_TX_DESC(*tx_ring, i);
5426 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5427 tx_desc->lower.data = cpu_to_le32(txd_lower |
5428 buffer_info->length);
5429 tx_desc->upper.data = cpu_to_le32(txd_upper);
5430
5431 i++;
5432 if (i == tx_ring->count)
5433 i = 0;
5434 } while (--count > 0);
5435
5436 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5437
5438 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5439 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5440 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5441
5442 /* Force memory writes to complete before letting h/w
5443 * know there are new descriptors to fetch. (Only
5444 * applicable for weak-ordered memory model archs,
5445 * such as IA-64).
5446 */
5447 wmb();
5448
5449 tx_ring->next_to_use = i;
5450
5451 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5452 e1000e_update_tdt_wa(tx_ring, i);
5453 else
5454 writel(i, tx_ring->tail);
5455
5456 /* we need this if more than one processor can write to our tail
5457 * at a time, it synchronizes IO on IA64/Altix systems
5458 */
5459 mmiowb();
5460 }
5461
5462 #define MINIMUM_DHCP_PACKET_SIZE 282
5463 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5464 struct sk_buff *skb)
5465 {
5466 struct e1000_hw *hw = &adapter->hw;
5467 u16 length, offset;
5468
5469 if (vlan_tx_tag_present(skb) &&
5470 !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5471 (adapter->hw.mng_cookie.status &
5472 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5473 return 0;
5474
5475 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5476 return 0;
5477
5478 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5479 return 0;
5480
5481 {
5482 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5483 struct udphdr *udp;
5484
5485 if (ip->protocol != IPPROTO_UDP)
5486 return 0;
5487
5488 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5489 if (ntohs(udp->dest) != 67)
5490 return 0;
5491
5492 offset = (u8 *)udp + 8 - skb->data;
5493 length = skb->len - offset;
5494 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5495 }
5496
5497 return 0;
5498 }
5499
5500 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5501 {
5502 struct e1000_adapter *adapter = tx_ring->adapter;
5503
5504 netif_stop_queue(adapter->netdev);
5505 /* Herbert's original patch had:
5506 * smp_mb__after_netif_stop_queue();
5507 * but since that doesn't exist yet, just open code it.
5508 */
5509 smp_mb();
5510
5511 /* We need to check again in a case another CPU has just
5512 * made room available.
5513 */
5514 if (e1000_desc_unused(tx_ring) < size)
5515 return -EBUSY;
5516
5517 /* A reprieve! */
5518 netif_start_queue(adapter->netdev);
5519 ++adapter->restart_queue;
5520 return 0;
5521 }
5522
5523 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5524 {
5525 BUG_ON(size > tx_ring->count);
5526
5527 if (e1000_desc_unused(tx_ring) >= size)
5528 return 0;
5529 return __e1000_maybe_stop_tx(tx_ring, size);
5530 }
5531
5532 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5533 struct net_device *netdev)
5534 {
5535 struct e1000_adapter *adapter = netdev_priv(netdev);
5536 struct e1000_ring *tx_ring = adapter->tx_ring;
5537 unsigned int first;
5538 unsigned int tx_flags = 0;
5539 unsigned int len = skb_headlen(skb);
5540 unsigned int nr_frags;
5541 unsigned int mss;
5542 int count = 0;
5543 int tso;
5544 unsigned int f;
5545 __be16 protocol = vlan_get_protocol(skb);
5546
5547 if (test_bit(__E1000_DOWN, &adapter->state)) {
5548 dev_kfree_skb_any(skb);
5549 return NETDEV_TX_OK;
5550 }
5551
5552 if (skb->len <= 0) {
5553 dev_kfree_skb_any(skb);
5554 return NETDEV_TX_OK;
5555 }
5556
5557 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5558 * pad skb in order to meet this minimum size requirement
5559 */
5560 if (unlikely(skb->len < 17)) {
5561 if (skb_pad(skb, 17 - skb->len))
5562 return NETDEV_TX_OK;
5563 skb->len = 17;
5564 skb_set_tail_pointer(skb, 17);
5565 }
5566
5567 mss = skb_shinfo(skb)->gso_size;
5568 if (mss) {
5569 u8 hdr_len;
5570
5571 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5572 * points to just header, pull a few bytes of payload from
5573 * frags into skb->data
5574 */
5575 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5576 /* we do this workaround for ES2LAN, but it is un-necessary,
5577 * avoiding it could save a lot of cycles
5578 */
5579 if (skb->data_len && (hdr_len == len)) {
5580 unsigned int pull_size;
5581
5582 pull_size = min_t(unsigned int, 4, skb->data_len);
5583 if (!__pskb_pull_tail(skb, pull_size)) {
5584 e_err("__pskb_pull_tail failed.\n");
5585 dev_kfree_skb_any(skb);
5586 return NETDEV_TX_OK;
5587 }
5588 len = skb_headlen(skb);
5589 }
5590 }
5591
5592 /* reserve a descriptor for the offload context */
5593 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5594 count++;
5595 count++;
5596
5597 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5598
5599 nr_frags = skb_shinfo(skb)->nr_frags;
5600 for (f = 0; f < nr_frags; f++)
5601 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5602 adapter->tx_fifo_limit);
5603
5604 if (adapter->hw.mac.tx_pkt_filtering)
5605 e1000_transfer_dhcp_info(adapter, skb);
5606
5607 /* need: count + 2 desc gap to keep tail from touching
5608 * head, otherwise try next time
5609 */
5610 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5611 return NETDEV_TX_BUSY;
5612
5613 if (vlan_tx_tag_present(skb)) {
5614 tx_flags |= E1000_TX_FLAGS_VLAN;
5615 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5616 }
5617
5618 first = tx_ring->next_to_use;
5619
5620 tso = e1000_tso(tx_ring, skb, protocol);
5621 if (tso < 0) {
5622 dev_kfree_skb_any(skb);
5623 return NETDEV_TX_OK;
5624 }
5625
5626 if (tso)
5627 tx_flags |= E1000_TX_FLAGS_TSO;
5628 else if (e1000_tx_csum(tx_ring, skb, protocol))
5629 tx_flags |= E1000_TX_FLAGS_CSUM;
5630
5631 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5632 * 82571 hardware supports TSO capabilities for IPv6 as well...
5633 * no longer assume, we must.
5634 */
5635 if (protocol == htons(ETH_P_IP))
5636 tx_flags |= E1000_TX_FLAGS_IPV4;
5637
5638 if (unlikely(skb->no_fcs))
5639 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5640
5641 /* if count is 0 then mapping error has occurred */
5642 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5643 nr_frags);
5644 if (count) {
5645 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5646 !adapter->tx_hwtstamp_skb)) {
5647 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5648 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5649 adapter->tx_hwtstamp_skb = skb_get(skb);
5650 adapter->tx_hwtstamp_start = jiffies;
5651 schedule_work(&adapter->tx_hwtstamp_work);
5652 } else {
5653 skb_tx_timestamp(skb);
5654 }
5655
5656 netdev_sent_queue(netdev, skb->len);
5657 e1000_tx_queue(tx_ring, tx_flags, count);
5658 /* Make sure there is space in the ring for the next send. */
5659 e1000_maybe_stop_tx(tx_ring,
5660 (MAX_SKB_FRAGS *
5661 DIV_ROUND_UP(PAGE_SIZE,
5662 adapter->tx_fifo_limit) + 2));
5663 } else {
5664 dev_kfree_skb_any(skb);
5665 tx_ring->buffer_info[first].time_stamp = 0;
5666 tx_ring->next_to_use = first;
5667 }
5668
5669 return NETDEV_TX_OK;
5670 }
5671
5672 /**
5673 * e1000_tx_timeout - Respond to a Tx Hang
5674 * @netdev: network interface device structure
5675 **/
5676 static void e1000_tx_timeout(struct net_device *netdev)
5677 {
5678 struct e1000_adapter *adapter = netdev_priv(netdev);
5679
5680 /* Do the reset outside of interrupt context */
5681 adapter->tx_timeout_count++;
5682 schedule_work(&adapter->reset_task);
5683 }
5684
5685 static void e1000_reset_task(struct work_struct *work)
5686 {
5687 struct e1000_adapter *adapter;
5688 adapter = container_of(work, struct e1000_adapter, reset_task);
5689
5690 /* don't run the task if already down */
5691 if (test_bit(__E1000_DOWN, &adapter->state))
5692 return;
5693
5694 if (!(adapter->flags & FLAG_RESTART_NOW)) {
5695 e1000e_dump(adapter);
5696 e_err("Reset adapter unexpectedly\n");
5697 }
5698 e1000e_reinit_locked(adapter);
5699 }
5700
5701 /**
5702 * e1000_get_stats64 - Get System Network Statistics
5703 * @netdev: network interface device structure
5704 * @stats: rtnl_link_stats64 pointer
5705 *
5706 * Returns the address of the device statistics structure.
5707 **/
5708 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5709 struct rtnl_link_stats64 *stats)
5710 {
5711 struct e1000_adapter *adapter = netdev_priv(netdev);
5712
5713 memset(stats, 0, sizeof(struct rtnl_link_stats64));
5714 spin_lock(&adapter->stats64_lock);
5715 e1000e_update_stats(adapter);
5716 /* Fill out the OS statistics structure */
5717 stats->rx_bytes = adapter->stats.gorc;
5718 stats->rx_packets = adapter->stats.gprc;
5719 stats->tx_bytes = adapter->stats.gotc;
5720 stats->tx_packets = adapter->stats.gptc;
5721 stats->multicast = adapter->stats.mprc;
5722 stats->collisions = adapter->stats.colc;
5723
5724 /* Rx Errors */
5725
5726 /* RLEC on some newer hardware can be incorrect so build
5727 * our own version based on RUC and ROC
5728 */
5729 stats->rx_errors = adapter->stats.rxerrc +
5730 adapter->stats.crcerrs + adapter->stats.algnerrc +
5731 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5732 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5733 stats->rx_crc_errors = adapter->stats.crcerrs;
5734 stats->rx_frame_errors = adapter->stats.algnerrc;
5735 stats->rx_missed_errors = adapter->stats.mpc;
5736
5737 /* Tx Errors */
5738 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5739 stats->tx_aborted_errors = adapter->stats.ecol;
5740 stats->tx_window_errors = adapter->stats.latecol;
5741 stats->tx_carrier_errors = adapter->stats.tncrs;
5742
5743 /* Tx Dropped needs to be maintained elsewhere */
5744
5745 spin_unlock(&adapter->stats64_lock);
5746 return stats;
5747 }
5748
5749 /**
5750 * e1000_change_mtu - Change the Maximum Transfer Unit
5751 * @netdev: network interface device structure
5752 * @new_mtu: new value for maximum frame size
5753 *
5754 * Returns 0 on success, negative on failure
5755 **/
5756 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5757 {
5758 struct e1000_adapter *adapter = netdev_priv(netdev);
5759 int max_frame = new_mtu + VLAN_HLEN + ETH_HLEN + ETH_FCS_LEN;
5760
5761 /* Jumbo frame support */
5762 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5763 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5764 e_err("Jumbo Frames not supported.\n");
5765 return -EINVAL;
5766 }
5767
5768 /* Supported frame sizes */
5769 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5770 (max_frame > adapter->max_hw_frame_size)) {
5771 e_err("Unsupported MTU setting\n");
5772 return -EINVAL;
5773 }
5774
5775 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5776 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5777 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5778 (new_mtu > ETH_DATA_LEN)) {
5779 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5780 return -EINVAL;
5781 }
5782
5783 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5784 usleep_range(1000, 2000);
5785 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5786 adapter->max_frame_size = max_frame;
5787 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5788 netdev->mtu = new_mtu;
5789
5790 pm_runtime_get_sync(netdev->dev.parent);
5791
5792 if (netif_running(netdev))
5793 e1000e_down(adapter, true);
5794
5795 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5796 * means we reserve 2 more, this pushes us to allocate from the next
5797 * larger slab size.
5798 * i.e. RXBUFFER_2048 --> size-4096 slab
5799 * However with the new *_jumbo_rx* routines, jumbo receives will use
5800 * fragmented skbs
5801 */
5802
5803 if (max_frame <= 2048)
5804 adapter->rx_buffer_len = 2048;
5805 else
5806 adapter->rx_buffer_len = 4096;
5807
5808 /* adjust allocation if LPE protects us, and we aren't using SBP */
5809 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5810 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5811 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5812 + ETH_FCS_LEN;
5813
5814 if (netif_running(netdev))
5815 e1000e_up(adapter);
5816 else
5817 e1000e_reset(adapter);
5818
5819 pm_runtime_put_sync(netdev->dev.parent);
5820
5821 clear_bit(__E1000_RESETTING, &adapter->state);
5822
5823 return 0;
5824 }
5825
5826 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5827 int cmd)
5828 {
5829 struct e1000_adapter *adapter = netdev_priv(netdev);
5830 struct mii_ioctl_data *data = if_mii(ifr);
5831
5832 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5833 return -EOPNOTSUPP;
5834
5835 switch (cmd) {
5836 case SIOCGMIIPHY:
5837 data->phy_id = adapter->hw.phy.addr;
5838 break;
5839 case SIOCGMIIREG:
5840 e1000_phy_read_status(adapter);
5841
5842 switch (data->reg_num & 0x1F) {
5843 case MII_BMCR:
5844 data->val_out = adapter->phy_regs.bmcr;
5845 break;
5846 case MII_BMSR:
5847 data->val_out = adapter->phy_regs.bmsr;
5848 break;
5849 case MII_PHYSID1:
5850 data->val_out = (adapter->hw.phy.id >> 16);
5851 break;
5852 case MII_PHYSID2:
5853 data->val_out = (adapter->hw.phy.id & 0xFFFF);
5854 break;
5855 case MII_ADVERTISE:
5856 data->val_out = adapter->phy_regs.advertise;
5857 break;
5858 case MII_LPA:
5859 data->val_out = adapter->phy_regs.lpa;
5860 break;
5861 case MII_EXPANSION:
5862 data->val_out = adapter->phy_regs.expansion;
5863 break;
5864 case MII_CTRL1000:
5865 data->val_out = adapter->phy_regs.ctrl1000;
5866 break;
5867 case MII_STAT1000:
5868 data->val_out = adapter->phy_regs.stat1000;
5869 break;
5870 case MII_ESTATUS:
5871 data->val_out = adapter->phy_regs.estatus;
5872 break;
5873 default:
5874 return -EIO;
5875 }
5876 break;
5877 case SIOCSMIIREG:
5878 default:
5879 return -EOPNOTSUPP;
5880 }
5881 return 0;
5882 }
5883
5884 /**
5885 * e1000e_hwtstamp_ioctl - control hardware time stamping
5886 * @netdev: network interface device structure
5887 * @ifreq: interface request
5888 *
5889 * Outgoing time stamping can be enabled and disabled. Play nice and
5890 * disable it when requested, although it shouldn't cause any overhead
5891 * when no packet needs it. At most one packet in the queue may be
5892 * marked for time stamping, otherwise it would be impossible to tell
5893 * for sure to which packet the hardware time stamp belongs.
5894 *
5895 * Incoming time stamping has to be configured via the hardware filters.
5896 * Not all combinations are supported, in particular event type has to be
5897 * specified. Matching the kind of event packet is not supported, with the
5898 * exception of "all V2 events regardless of level 2 or 4".
5899 **/
5900 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
5901 {
5902 struct e1000_adapter *adapter = netdev_priv(netdev);
5903 struct hwtstamp_config config;
5904 int ret_val;
5905
5906 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5907 return -EFAULT;
5908
5909 ret_val = e1000e_config_hwtstamp(adapter, &config);
5910 if (ret_val)
5911 return ret_val;
5912
5913 switch (config.rx_filter) {
5914 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5915 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5916 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5917 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5918 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5919 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5920 /* With V2 type filters which specify a Sync or Delay Request,
5921 * Path Delay Request/Response messages are also time stamped
5922 * by hardware so notify the caller the requested packets plus
5923 * some others are time stamped.
5924 */
5925 config.rx_filter = HWTSTAMP_FILTER_SOME;
5926 break;
5927 default:
5928 break;
5929 }
5930
5931 return copy_to_user(ifr->ifr_data, &config,
5932 sizeof(config)) ? -EFAULT : 0;
5933 }
5934
5935 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
5936 {
5937 struct e1000_adapter *adapter = netdev_priv(netdev);
5938
5939 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
5940 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
5941 }
5942
5943 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5944 {
5945 switch (cmd) {
5946 case SIOCGMIIPHY:
5947 case SIOCGMIIREG:
5948 case SIOCSMIIREG:
5949 return e1000_mii_ioctl(netdev, ifr, cmd);
5950 case SIOCSHWTSTAMP:
5951 return e1000e_hwtstamp_set(netdev, ifr);
5952 case SIOCGHWTSTAMP:
5953 return e1000e_hwtstamp_get(netdev, ifr);
5954 default:
5955 return -EOPNOTSUPP;
5956 }
5957 }
5958
5959 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5960 {
5961 struct e1000_hw *hw = &adapter->hw;
5962 u32 i, mac_reg, wuc;
5963 u16 phy_reg, wuc_enable;
5964 int retval;
5965
5966 /* copy MAC RARs to PHY RARs */
5967 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5968
5969 retval = hw->phy.ops.acquire(hw);
5970 if (retval) {
5971 e_err("Could not acquire PHY\n");
5972 return retval;
5973 }
5974
5975 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5976 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5977 if (retval)
5978 goto release;
5979
5980 /* copy MAC MTA to PHY MTA - only needed for pchlan */
5981 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5982 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5983 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5984 (u16)(mac_reg & 0xFFFF));
5985 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5986 (u16)((mac_reg >> 16) & 0xFFFF));
5987 }
5988
5989 /* configure PHY Rx Control register */
5990 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5991 mac_reg = er32(RCTL);
5992 if (mac_reg & E1000_RCTL_UPE)
5993 phy_reg |= BM_RCTL_UPE;
5994 if (mac_reg & E1000_RCTL_MPE)
5995 phy_reg |= BM_RCTL_MPE;
5996 phy_reg &= ~(BM_RCTL_MO_MASK);
5997 if (mac_reg & E1000_RCTL_MO_3)
5998 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5999 << BM_RCTL_MO_SHIFT);
6000 if (mac_reg & E1000_RCTL_BAM)
6001 phy_reg |= BM_RCTL_BAM;
6002 if (mac_reg & E1000_RCTL_PMCF)
6003 phy_reg |= BM_RCTL_PMCF;
6004 mac_reg = er32(CTRL);
6005 if (mac_reg & E1000_CTRL_RFCE)
6006 phy_reg |= BM_RCTL_RFCE;
6007 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6008
6009 wuc = E1000_WUC_PME_EN;
6010 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6011 wuc |= E1000_WUC_APME;
6012
6013 /* enable PHY wakeup in MAC register */
6014 ew32(WUFC, wufc);
6015 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6016 E1000_WUC_PME_STATUS | wuc));
6017
6018 /* configure and enable PHY wakeup in PHY registers */
6019 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6020 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6021
6022 /* activate PHY wakeup */
6023 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6024 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6025 if (retval)
6026 e_err("Could not set PHY Host Wakeup bit\n");
6027 release:
6028 hw->phy.ops.release(hw);
6029
6030 return retval;
6031 }
6032
6033 static void e1000e_flush_lpic(struct pci_dev *pdev)
6034 {
6035 struct net_device *netdev = pci_get_drvdata(pdev);
6036 struct e1000_adapter *adapter = netdev_priv(netdev);
6037 struct e1000_hw *hw = &adapter->hw;
6038 u32 ret_val;
6039
6040 pm_runtime_get_sync(netdev->dev.parent);
6041
6042 ret_val = hw->phy.ops.acquire(hw);
6043 if (ret_val)
6044 goto fl_out;
6045
6046 pr_info("EEE TX LPI TIMER: %08X\n",
6047 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6048
6049 hw->phy.ops.release(hw);
6050
6051 fl_out:
6052 pm_runtime_put_sync(netdev->dev.parent);
6053 }
6054
6055 static int e1000e_pm_freeze(struct device *dev)
6056 {
6057 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6058 struct e1000_adapter *adapter = netdev_priv(netdev);
6059
6060 netif_device_detach(netdev);
6061
6062 if (netif_running(netdev)) {
6063 int count = E1000_CHECK_RESET_COUNT;
6064
6065 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6066 usleep_range(10000, 20000);
6067
6068 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6069
6070 /* Quiesce the device without resetting the hardware */
6071 e1000e_down(adapter, false);
6072 e1000_free_irq(adapter);
6073 }
6074 e1000e_reset_interrupt_capability(adapter);
6075
6076 /* Allow time for pending master requests to run */
6077 e1000e_disable_pcie_master(&adapter->hw);
6078
6079 return 0;
6080 }
6081
6082 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6083 {
6084 struct net_device *netdev = pci_get_drvdata(pdev);
6085 struct e1000_adapter *adapter = netdev_priv(netdev);
6086 struct e1000_hw *hw = &adapter->hw;
6087 u32 ctrl, ctrl_ext, rctl, status;
6088 /* Runtime suspend should only enable wakeup for link changes */
6089 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6090 int retval = 0;
6091
6092 status = er32(STATUS);
6093 if (status & E1000_STATUS_LU)
6094 wufc &= ~E1000_WUFC_LNKC;
6095
6096 if (wufc) {
6097 e1000_setup_rctl(adapter);
6098 e1000e_set_rx_mode(netdev);
6099
6100 /* turn on all-multi mode if wake on multicast is enabled */
6101 if (wufc & E1000_WUFC_MC) {
6102 rctl = er32(RCTL);
6103 rctl |= E1000_RCTL_MPE;
6104 ew32(RCTL, rctl);
6105 }
6106
6107 ctrl = er32(CTRL);
6108 ctrl |= E1000_CTRL_ADVD3WUC;
6109 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6110 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6111 ew32(CTRL, ctrl);
6112
6113 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6114 adapter->hw.phy.media_type ==
6115 e1000_media_type_internal_serdes) {
6116 /* keep the laser running in D3 */
6117 ctrl_ext = er32(CTRL_EXT);
6118 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6119 ew32(CTRL_EXT, ctrl_ext);
6120 }
6121
6122 if (!runtime)
6123 e1000e_power_up_phy(adapter);
6124
6125 if (adapter->flags & FLAG_IS_ICH)
6126 e1000_suspend_workarounds_ich8lan(&adapter->hw);
6127
6128 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6129 /* enable wakeup by the PHY */
6130 retval = e1000_init_phy_wakeup(adapter, wufc);
6131 if (retval)
6132 return retval;
6133 } else {
6134 /* enable wakeup by the MAC */
6135 ew32(WUFC, wufc);
6136 ew32(WUC, E1000_WUC_PME_EN);
6137 }
6138 } else {
6139 ew32(WUC, 0);
6140 ew32(WUFC, 0);
6141
6142 e1000_power_down_phy(adapter);
6143 }
6144
6145 if (adapter->hw.phy.type == e1000_phy_igp_3) {
6146 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6147 } else if (hw->mac.type == e1000_pch_lpt) {
6148 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6149 /* ULP does not support wake from unicast, multicast
6150 * or broadcast.
6151 */
6152 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6153
6154 if (retval)
6155 return retval;
6156 }
6157
6158
6159 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6160 * would have already happened in close and is redundant.
6161 */
6162 e1000e_release_hw_control(adapter);
6163
6164 pci_clear_master(pdev);
6165
6166 /* The pci-e switch on some quad port adapters will report a
6167 * correctable error when the MAC transitions from D0 to D3. To
6168 * prevent this we need to mask off the correctable errors on the
6169 * downstream port of the pci-e switch.
6170 *
6171 * We don't have the associated upstream bridge while assigning
6172 * the PCI device into guest. For example, the KVM on power is
6173 * one of the cases.
6174 */
6175 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6176 struct pci_dev *us_dev = pdev->bus->self;
6177 u16 devctl;
6178
6179 if (!us_dev)
6180 return 0;
6181
6182 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6183 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6184 (devctl & ~PCI_EXP_DEVCTL_CERE));
6185
6186 pci_save_state(pdev);
6187 pci_prepare_to_sleep(pdev);
6188
6189 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6190 }
6191
6192 return 0;
6193 }
6194
6195 /**
6196 * e1000e_disable_aspm - Disable ASPM states
6197 * @pdev: pointer to PCI device struct
6198 * @state: bit-mask of ASPM states to disable
6199 *
6200 * Some devices *must* have certain ASPM states disabled per hardware errata.
6201 **/
6202 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6203 {
6204 struct pci_dev *parent = pdev->bus->self;
6205 u16 aspm_dis_mask = 0;
6206 u16 pdev_aspmc, parent_aspmc;
6207
6208 switch (state) {
6209 case PCIE_LINK_STATE_L0S:
6210 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6211 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6212 /* fall-through - can't have L1 without L0s */
6213 case PCIE_LINK_STATE_L1:
6214 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6215 break;
6216 default:
6217 return;
6218 }
6219
6220 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6221 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6222
6223 if (parent) {
6224 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6225 &parent_aspmc);
6226 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6227 }
6228
6229 /* Nothing to do if the ASPM states to be disabled already are */
6230 if (!(pdev_aspmc & aspm_dis_mask) &&
6231 (!parent || !(parent_aspmc & aspm_dis_mask)))
6232 return;
6233
6234 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6235 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6236 "L0s" : "",
6237 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6238 "L1" : "");
6239
6240 #ifdef CONFIG_PCIEASPM
6241 pci_disable_link_state_locked(pdev, state);
6242
6243 /* Double-check ASPM control. If not disabled by the above, the
6244 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6245 * not enabled); override by writing PCI config space directly.
6246 */
6247 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6248 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6249
6250 if (!(aspm_dis_mask & pdev_aspmc))
6251 return;
6252 #endif
6253
6254 /* Both device and parent should have the same ASPM setting.
6255 * Disable ASPM in downstream component first and then upstream.
6256 */
6257 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6258
6259 if (parent)
6260 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6261 aspm_dis_mask);
6262 }
6263
6264 #ifdef CONFIG_PM
6265 static int __e1000_resume(struct pci_dev *pdev)
6266 {
6267 struct net_device *netdev = pci_get_drvdata(pdev);
6268 struct e1000_adapter *adapter = netdev_priv(netdev);
6269 struct e1000_hw *hw = &adapter->hw;
6270 u16 aspm_disable_flag = 0;
6271
6272 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6273 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6274 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6275 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6276 if (aspm_disable_flag)
6277 e1000e_disable_aspm(pdev, aspm_disable_flag);
6278
6279 pci_set_master(pdev);
6280
6281 if (hw->mac.type >= e1000_pch2lan)
6282 e1000_resume_workarounds_pchlan(&adapter->hw);
6283
6284 e1000e_power_up_phy(adapter);
6285
6286 /* report the system wakeup cause from S3/S4 */
6287 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6288 u16 phy_data;
6289
6290 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6291 if (phy_data) {
6292 e_info("PHY Wakeup cause - %s\n",
6293 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6294 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6295 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6296 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6297 phy_data & E1000_WUS_LNKC ?
6298 "Link Status Change" : "other");
6299 }
6300 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6301 } else {
6302 u32 wus = er32(WUS);
6303
6304 if (wus) {
6305 e_info("MAC Wakeup cause - %s\n",
6306 wus & E1000_WUS_EX ? "Unicast Packet" :
6307 wus & E1000_WUS_MC ? "Multicast Packet" :
6308 wus & E1000_WUS_BC ? "Broadcast Packet" :
6309 wus & E1000_WUS_MAG ? "Magic Packet" :
6310 wus & E1000_WUS_LNKC ? "Link Status Change" :
6311 "other");
6312 }
6313 ew32(WUS, ~0);
6314 }
6315
6316 e1000e_reset(adapter);
6317
6318 e1000_init_manageability_pt(adapter);
6319
6320 /* If the controller has AMT, do not set DRV_LOAD until the interface
6321 * is up. For all other cases, let the f/w know that the h/w is now
6322 * under the control of the driver.
6323 */
6324 if (!(adapter->flags & FLAG_HAS_AMT))
6325 e1000e_get_hw_control(adapter);
6326
6327 return 0;
6328 }
6329
6330 #ifdef CONFIG_PM_SLEEP
6331 static int e1000e_pm_thaw(struct device *dev)
6332 {
6333 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6334 struct e1000_adapter *adapter = netdev_priv(netdev);
6335
6336 e1000e_set_interrupt_capability(adapter);
6337 if (netif_running(netdev)) {
6338 u32 err = e1000_request_irq(adapter);
6339
6340 if (err)
6341 return err;
6342
6343 e1000e_up(adapter);
6344 }
6345
6346 netif_device_attach(netdev);
6347
6348 return 0;
6349 }
6350
6351 static int e1000e_pm_suspend(struct device *dev)
6352 {
6353 struct pci_dev *pdev = to_pci_dev(dev);
6354
6355 e1000e_flush_lpic(pdev);
6356
6357 e1000e_pm_freeze(dev);
6358
6359 return __e1000_shutdown(pdev, false);
6360 }
6361
6362 static int e1000e_pm_resume(struct device *dev)
6363 {
6364 struct pci_dev *pdev = to_pci_dev(dev);
6365 int rc;
6366
6367 rc = __e1000_resume(pdev);
6368 if (rc)
6369 return rc;
6370
6371 return e1000e_pm_thaw(dev);
6372 }
6373 #endif /* CONFIG_PM_SLEEP */
6374
6375 #ifdef CONFIG_PM_RUNTIME
6376 static int e1000e_pm_runtime_idle(struct device *dev)
6377 {
6378 struct pci_dev *pdev = to_pci_dev(dev);
6379 struct net_device *netdev = pci_get_drvdata(pdev);
6380 struct e1000_adapter *adapter = netdev_priv(netdev);
6381 u16 eee_lp;
6382
6383 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6384
6385 if (!e1000e_has_link(adapter)) {
6386 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6387 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6388 }
6389
6390 return -EBUSY;
6391 }
6392
6393 static int e1000e_pm_runtime_resume(struct device *dev)
6394 {
6395 struct pci_dev *pdev = to_pci_dev(dev);
6396 struct net_device *netdev = pci_get_drvdata(pdev);
6397 struct e1000_adapter *adapter = netdev_priv(netdev);
6398 int rc;
6399
6400 rc = __e1000_resume(pdev);
6401 if (rc)
6402 return rc;
6403
6404 if (netdev->flags & IFF_UP)
6405 rc = e1000e_up(adapter);
6406
6407 return rc;
6408 }
6409
6410 static int e1000e_pm_runtime_suspend(struct device *dev)
6411 {
6412 struct pci_dev *pdev = to_pci_dev(dev);
6413 struct net_device *netdev = pci_get_drvdata(pdev);
6414 struct e1000_adapter *adapter = netdev_priv(netdev);
6415
6416 if (netdev->flags & IFF_UP) {
6417 int count = E1000_CHECK_RESET_COUNT;
6418
6419 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6420 usleep_range(10000, 20000);
6421
6422 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6423
6424 /* Down the device without resetting the hardware */
6425 e1000e_down(adapter, false);
6426 }
6427
6428 if (__e1000_shutdown(pdev, true)) {
6429 e1000e_pm_runtime_resume(dev);
6430 return -EBUSY;
6431 }
6432
6433 return 0;
6434 }
6435 #endif /* CONFIG_PM_RUNTIME */
6436 #endif /* CONFIG_PM */
6437
6438 static void e1000_shutdown(struct pci_dev *pdev)
6439 {
6440 e1000e_flush_lpic(pdev);
6441
6442 e1000e_pm_freeze(&pdev->dev);
6443
6444 __e1000_shutdown(pdev, false);
6445 }
6446
6447 #ifdef CONFIG_NET_POLL_CONTROLLER
6448
6449 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6450 {
6451 struct net_device *netdev = data;
6452 struct e1000_adapter *adapter = netdev_priv(netdev);
6453
6454 if (adapter->msix_entries) {
6455 int vector, msix_irq;
6456
6457 vector = 0;
6458 msix_irq = adapter->msix_entries[vector].vector;
6459 disable_irq(msix_irq);
6460 e1000_intr_msix_rx(msix_irq, netdev);
6461 enable_irq(msix_irq);
6462
6463 vector++;
6464 msix_irq = adapter->msix_entries[vector].vector;
6465 disable_irq(msix_irq);
6466 e1000_intr_msix_tx(msix_irq, netdev);
6467 enable_irq(msix_irq);
6468
6469 vector++;
6470 msix_irq = adapter->msix_entries[vector].vector;
6471 disable_irq(msix_irq);
6472 e1000_msix_other(msix_irq, netdev);
6473 enable_irq(msix_irq);
6474 }
6475
6476 return IRQ_HANDLED;
6477 }
6478
6479 /**
6480 * e1000_netpoll
6481 * @netdev: network interface device structure
6482 *
6483 * Polling 'interrupt' - used by things like netconsole to send skbs
6484 * without having to re-enable interrupts. It's not called while
6485 * the interrupt routine is executing.
6486 */
6487 static void e1000_netpoll(struct net_device *netdev)
6488 {
6489 struct e1000_adapter *adapter = netdev_priv(netdev);
6490
6491 switch (adapter->int_mode) {
6492 case E1000E_INT_MODE_MSIX:
6493 e1000_intr_msix(adapter->pdev->irq, netdev);
6494 break;
6495 case E1000E_INT_MODE_MSI:
6496 disable_irq(adapter->pdev->irq);
6497 e1000_intr_msi(adapter->pdev->irq, netdev);
6498 enable_irq(adapter->pdev->irq);
6499 break;
6500 default: /* E1000E_INT_MODE_LEGACY */
6501 disable_irq(adapter->pdev->irq);
6502 e1000_intr(adapter->pdev->irq, netdev);
6503 enable_irq(adapter->pdev->irq);
6504 break;
6505 }
6506 }
6507 #endif
6508
6509 /**
6510 * e1000_io_error_detected - called when PCI error is detected
6511 * @pdev: Pointer to PCI device
6512 * @state: The current pci connection state
6513 *
6514 * This function is called after a PCI bus error affecting
6515 * this device has been detected.
6516 */
6517 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6518 pci_channel_state_t state)
6519 {
6520 struct net_device *netdev = pci_get_drvdata(pdev);
6521 struct e1000_adapter *adapter = netdev_priv(netdev);
6522
6523 netif_device_detach(netdev);
6524
6525 if (state == pci_channel_io_perm_failure)
6526 return PCI_ERS_RESULT_DISCONNECT;
6527
6528 if (netif_running(netdev))
6529 e1000e_down(adapter, true);
6530 pci_disable_device(pdev);
6531
6532 /* Request a slot slot reset. */
6533 return PCI_ERS_RESULT_NEED_RESET;
6534 }
6535
6536 /**
6537 * e1000_io_slot_reset - called after the pci bus has been reset.
6538 * @pdev: Pointer to PCI device
6539 *
6540 * Restart the card from scratch, as if from a cold-boot. Implementation
6541 * resembles the first-half of the e1000e_pm_resume routine.
6542 */
6543 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6544 {
6545 struct net_device *netdev = pci_get_drvdata(pdev);
6546 struct e1000_adapter *adapter = netdev_priv(netdev);
6547 struct e1000_hw *hw = &adapter->hw;
6548 u16 aspm_disable_flag = 0;
6549 int err;
6550 pci_ers_result_t result;
6551
6552 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6553 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6554 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6555 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6556 if (aspm_disable_flag)
6557 e1000e_disable_aspm(pdev, aspm_disable_flag);
6558
6559 err = pci_enable_device_mem(pdev);
6560 if (err) {
6561 dev_err(&pdev->dev,
6562 "Cannot re-enable PCI device after reset.\n");
6563 result = PCI_ERS_RESULT_DISCONNECT;
6564 } else {
6565 pdev->state_saved = true;
6566 pci_restore_state(pdev);
6567 pci_set_master(pdev);
6568
6569 pci_enable_wake(pdev, PCI_D3hot, 0);
6570 pci_enable_wake(pdev, PCI_D3cold, 0);
6571
6572 e1000e_reset(adapter);
6573 ew32(WUS, ~0);
6574 result = PCI_ERS_RESULT_RECOVERED;
6575 }
6576
6577 pci_cleanup_aer_uncorrect_error_status(pdev);
6578
6579 return result;
6580 }
6581
6582 /**
6583 * e1000_io_resume - called when traffic can start flowing again.
6584 * @pdev: Pointer to PCI device
6585 *
6586 * This callback is called when the error recovery driver tells us that
6587 * its OK to resume normal operation. Implementation resembles the
6588 * second-half of the e1000e_pm_resume routine.
6589 */
6590 static void e1000_io_resume(struct pci_dev *pdev)
6591 {
6592 struct net_device *netdev = pci_get_drvdata(pdev);
6593 struct e1000_adapter *adapter = netdev_priv(netdev);
6594
6595 e1000_init_manageability_pt(adapter);
6596
6597 if (netif_running(netdev)) {
6598 if (e1000e_up(adapter)) {
6599 dev_err(&pdev->dev,
6600 "can't bring device back up after reset\n");
6601 return;
6602 }
6603 }
6604
6605 netif_device_attach(netdev);
6606
6607 /* If the controller has AMT, do not set DRV_LOAD until the interface
6608 * is up. For all other cases, let the f/w know that the h/w is now
6609 * under the control of the driver.
6610 */
6611 if (!(adapter->flags & FLAG_HAS_AMT))
6612 e1000e_get_hw_control(adapter);
6613 }
6614
6615 static void e1000_print_device_info(struct e1000_adapter *adapter)
6616 {
6617 struct e1000_hw *hw = &adapter->hw;
6618 struct net_device *netdev = adapter->netdev;
6619 u32 ret_val;
6620 u8 pba_str[E1000_PBANUM_LENGTH];
6621
6622 /* print bus type/speed/width info */
6623 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6624 /* bus width */
6625 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6626 "Width x1"),
6627 /* MAC address */
6628 netdev->dev_addr);
6629 e_info("Intel(R) PRO/%s Network Connection\n",
6630 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6631 ret_val = e1000_read_pba_string_generic(hw, pba_str,
6632 E1000_PBANUM_LENGTH);
6633 if (ret_val)
6634 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6635 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6636 hw->mac.type, hw->phy.type, pba_str);
6637 }
6638
6639 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6640 {
6641 struct e1000_hw *hw = &adapter->hw;
6642 int ret_val;
6643 u16 buf = 0;
6644
6645 if (hw->mac.type != e1000_82573)
6646 return;
6647
6648 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6649 le16_to_cpus(&buf);
6650 if (!ret_val && (!(buf & (1 << 0)))) {
6651 /* Deep Smart Power Down (DSPD) */
6652 dev_warn(&adapter->pdev->dev,
6653 "Warning: detected DSPD enabled in EEPROM\n");
6654 }
6655 }
6656
6657 static int e1000_set_features(struct net_device *netdev,
6658 netdev_features_t features)
6659 {
6660 struct e1000_adapter *adapter = netdev_priv(netdev);
6661 netdev_features_t changed = features ^ netdev->features;
6662
6663 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6664 adapter->flags |= FLAG_TSO_FORCE;
6665
6666 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6667 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6668 NETIF_F_RXALL)))
6669 return 0;
6670
6671 if (changed & NETIF_F_RXFCS) {
6672 if (features & NETIF_F_RXFCS) {
6673 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6674 } else {
6675 /* We need to take it back to defaults, which might mean
6676 * stripping is still disabled at the adapter level.
6677 */
6678 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6679 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6680 else
6681 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6682 }
6683 }
6684
6685 netdev->features = features;
6686
6687 if (netif_running(netdev))
6688 e1000e_reinit_locked(adapter);
6689 else
6690 e1000e_reset(adapter);
6691
6692 return 0;
6693 }
6694
6695 static const struct net_device_ops e1000e_netdev_ops = {
6696 .ndo_open = e1000_open,
6697 .ndo_stop = e1000_close,
6698 .ndo_start_xmit = e1000_xmit_frame,
6699 .ndo_get_stats64 = e1000e_get_stats64,
6700 .ndo_set_rx_mode = e1000e_set_rx_mode,
6701 .ndo_set_mac_address = e1000_set_mac,
6702 .ndo_change_mtu = e1000_change_mtu,
6703 .ndo_do_ioctl = e1000_ioctl,
6704 .ndo_tx_timeout = e1000_tx_timeout,
6705 .ndo_validate_addr = eth_validate_addr,
6706
6707 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
6708 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
6709 #ifdef CONFIG_NET_POLL_CONTROLLER
6710 .ndo_poll_controller = e1000_netpoll,
6711 #endif
6712 .ndo_set_features = e1000_set_features,
6713 };
6714
6715 /**
6716 * e1000_probe - Device Initialization Routine
6717 * @pdev: PCI device information struct
6718 * @ent: entry in e1000_pci_tbl
6719 *
6720 * Returns 0 on success, negative on failure
6721 *
6722 * e1000_probe initializes an adapter identified by a pci_dev structure.
6723 * The OS initialization, configuring of the adapter private structure,
6724 * and a hardware reset occur.
6725 **/
6726 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6727 {
6728 struct net_device *netdev;
6729 struct e1000_adapter *adapter;
6730 struct e1000_hw *hw;
6731 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6732 resource_size_t mmio_start, mmio_len;
6733 resource_size_t flash_start, flash_len;
6734 static int cards_found;
6735 u16 aspm_disable_flag = 0;
6736 int bars, i, err, pci_using_dac;
6737 u16 eeprom_data = 0;
6738 u16 eeprom_apme_mask = E1000_EEPROM_APME;
6739 s32 rval = 0;
6740
6741 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6742 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6743 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6744 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6745 if (aspm_disable_flag)
6746 e1000e_disable_aspm(pdev, aspm_disable_flag);
6747
6748 err = pci_enable_device_mem(pdev);
6749 if (err)
6750 return err;
6751
6752 pci_using_dac = 0;
6753 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6754 if (!err) {
6755 pci_using_dac = 1;
6756 } else {
6757 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6758 if (err) {
6759 dev_err(&pdev->dev,
6760 "No usable DMA configuration, aborting\n");
6761 goto err_dma;
6762 }
6763 }
6764
6765 bars = pci_select_bars(pdev, IORESOURCE_MEM);
6766 err = pci_request_selected_regions_exclusive(pdev, bars,
6767 e1000e_driver_name);
6768 if (err)
6769 goto err_pci_reg;
6770
6771 /* AER (Advanced Error Reporting) hooks */
6772 pci_enable_pcie_error_reporting(pdev);
6773
6774 pci_set_master(pdev);
6775 /* PCI config space info */
6776 err = pci_save_state(pdev);
6777 if (err)
6778 goto err_alloc_etherdev;
6779
6780 err = -ENOMEM;
6781 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6782 if (!netdev)
6783 goto err_alloc_etherdev;
6784
6785 SET_NETDEV_DEV(netdev, &pdev->dev);
6786
6787 netdev->irq = pdev->irq;
6788
6789 pci_set_drvdata(pdev, netdev);
6790 adapter = netdev_priv(netdev);
6791 hw = &adapter->hw;
6792 adapter->netdev = netdev;
6793 adapter->pdev = pdev;
6794 adapter->ei = ei;
6795 adapter->pba = ei->pba;
6796 adapter->flags = ei->flags;
6797 adapter->flags2 = ei->flags2;
6798 adapter->hw.adapter = adapter;
6799 adapter->hw.mac.type = ei->mac;
6800 adapter->max_hw_frame_size = ei->max_hw_frame_size;
6801 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6802
6803 mmio_start = pci_resource_start(pdev, 0);
6804 mmio_len = pci_resource_len(pdev, 0);
6805
6806 err = -EIO;
6807 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6808 if (!adapter->hw.hw_addr)
6809 goto err_ioremap;
6810
6811 if ((adapter->flags & FLAG_HAS_FLASH) &&
6812 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6813 flash_start = pci_resource_start(pdev, 1);
6814 flash_len = pci_resource_len(pdev, 1);
6815 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6816 if (!adapter->hw.flash_address)
6817 goto err_flashmap;
6818 }
6819
6820 /* Set default EEE advertisement */
6821 if (adapter->flags2 & FLAG2_HAS_EEE)
6822 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6823
6824 /* construct the net_device struct */
6825 netdev->netdev_ops = &e1000e_netdev_ops;
6826 e1000e_set_ethtool_ops(netdev);
6827 netdev->watchdog_timeo = 5 * HZ;
6828 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6829 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6830
6831 netdev->mem_start = mmio_start;
6832 netdev->mem_end = mmio_start + mmio_len;
6833
6834 adapter->bd_number = cards_found++;
6835
6836 e1000e_check_options(adapter);
6837
6838 /* setup adapter struct */
6839 err = e1000_sw_init(adapter);
6840 if (err)
6841 goto err_sw_init;
6842
6843 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6844 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6845 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6846
6847 err = ei->get_variants(adapter);
6848 if (err)
6849 goto err_hw_init;
6850
6851 if ((adapter->flags & FLAG_IS_ICH) &&
6852 (adapter->flags & FLAG_READ_ONLY_NVM))
6853 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6854
6855 hw->mac.ops.get_bus_info(&adapter->hw);
6856
6857 adapter->hw.phy.autoneg_wait_to_complete = 0;
6858
6859 /* Copper options */
6860 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6861 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6862 adapter->hw.phy.disable_polarity_correction = 0;
6863 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6864 }
6865
6866 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6867 dev_info(&pdev->dev,
6868 "PHY reset is blocked due to SOL/IDER session.\n");
6869
6870 /* Set initial default active device features */
6871 netdev->features = (NETIF_F_SG |
6872 NETIF_F_HW_VLAN_CTAG_RX |
6873 NETIF_F_HW_VLAN_CTAG_TX |
6874 NETIF_F_TSO |
6875 NETIF_F_TSO6 |
6876 NETIF_F_RXHASH |
6877 NETIF_F_RXCSUM |
6878 NETIF_F_HW_CSUM);
6879
6880 /* Set user-changeable features (subset of all device features) */
6881 netdev->hw_features = netdev->features;
6882 netdev->hw_features |= NETIF_F_RXFCS;
6883 netdev->priv_flags |= IFF_SUPP_NOFCS;
6884 netdev->hw_features |= NETIF_F_RXALL;
6885
6886 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6887 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6888
6889 netdev->vlan_features |= (NETIF_F_SG |
6890 NETIF_F_TSO |
6891 NETIF_F_TSO6 |
6892 NETIF_F_HW_CSUM);
6893
6894 netdev->priv_flags |= IFF_UNICAST_FLT;
6895
6896 if (pci_using_dac) {
6897 netdev->features |= NETIF_F_HIGHDMA;
6898 netdev->vlan_features |= NETIF_F_HIGHDMA;
6899 }
6900
6901 if (e1000e_enable_mng_pass_thru(&adapter->hw))
6902 adapter->flags |= FLAG_MNG_PT_ENABLED;
6903
6904 /* before reading the NVM, reset the controller to
6905 * put the device in a known good starting state
6906 */
6907 adapter->hw.mac.ops.reset_hw(&adapter->hw);
6908
6909 /* systems with ASPM and others may see the checksum fail on the first
6910 * attempt. Let's give it a few tries
6911 */
6912 for (i = 0;; i++) {
6913 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6914 break;
6915 if (i == 2) {
6916 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6917 err = -EIO;
6918 goto err_eeprom;
6919 }
6920 }
6921
6922 e1000_eeprom_checks(adapter);
6923
6924 /* copy the MAC address */
6925 if (e1000e_read_mac_addr(&adapter->hw))
6926 dev_err(&pdev->dev,
6927 "NVM Read Error while reading MAC address\n");
6928
6929 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6930
6931 if (!is_valid_ether_addr(netdev->dev_addr)) {
6932 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6933 netdev->dev_addr);
6934 err = -EIO;
6935 goto err_eeprom;
6936 }
6937
6938 init_timer(&adapter->watchdog_timer);
6939 adapter->watchdog_timer.function = e1000_watchdog;
6940 adapter->watchdog_timer.data = (unsigned long)adapter;
6941
6942 init_timer(&adapter->phy_info_timer);
6943 adapter->phy_info_timer.function = e1000_update_phy_info;
6944 adapter->phy_info_timer.data = (unsigned long)adapter;
6945
6946 INIT_WORK(&adapter->reset_task, e1000_reset_task);
6947 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6948 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6949 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6950 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6951
6952 /* Initialize link parameters. User can change them with ethtool */
6953 adapter->hw.mac.autoneg = 1;
6954 adapter->fc_autoneg = true;
6955 adapter->hw.fc.requested_mode = e1000_fc_default;
6956 adapter->hw.fc.current_mode = e1000_fc_default;
6957 adapter->hw.phy.autoneg_advertised = 0x2f;
6958
6959 /* Initial Wake on LAN setting - If APM wake is enabled in
6960 * the EEPROM, enable the ACPI Magic Packet filter
6961 */
6962 if (adapter->flags & FLAG_APME_IN_WUC) {
6963 /* APME bit in EEPROM is mapped to WUC.APME */
6964 eeprom_data = er32(WUC);
6965 eeprom_apme_mask = E1000_WUC_APME;
6966 if ((hw->mac.type > e1000_ich10lan) &&
6967 (eeprom_data & E1000_WUC_PHY_WAKE))
6968 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6969 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6970 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6971 (adapter->hw.bus.func == 1))
6972 rval = e1000_read_nvm(&adapter->hw,
6973 NVM_INIT_CONTROL3_PORT_B,
6974 1, &eeprom_data);
6975 else
6976 rval = e1000_read_nvm(&adapter->hw,
6977 NVM_INIT_CONTROL3_PORT_A,
6978 1, &eeprom_data);
6979 }
6980
6981 /* fetch WoL from EEPROM */
6982 if (rval)
6983 e_dbg("NVM read error getting WoL initial values: %d\n", rval);
6984 else if (eeprom_data & eeprom_apme_mask)
6985 adapter->eeprom_wol |= E1000_WUFC_MAG;
6986
6987 /* now that we have the eeprom settings, apply the special cases
6988 * where the eeprom may be wrong or the board simply won't support
6989 * wake on lan on a particular port
6990 */
6991 if (!(adapter->flags & FLAG_HAS_WOL))
6992 adapter->eeprom_wol = 0;
6993
6994 /* initialize the wol settings based on the eeprom settings */
6995 adapter->wol = adapter->eeprom_wol;
6996
6997 /* make sure adapter isn't asleep if manageability is enabled */
6998 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
6999 (hw->mac.ops.check_mng_mode(hw)))
7000 device_wakeup_enable(&pdev->dev);
7001
7002 /* save off EEPROM version number */
7003 rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7004
7005 if (rval) {
7006 e_dbg("NVM read error getting EEPROM version: %d\n", rval);
7007 adapter->eeprom_vers = 0;
7008 }
7009
7010 /* reset the hardware with the new settings */
7011 e1000e_reset(adapter);
7012
7013 /* If the controller has AMT, do not set DRV_LOAD until the interface
7014 * is up. For all other cases, let the f/w know that the h/w is now
7015 * under the control of the driver.
7016 */
7017 if (!(adapter->flags & FLAG_HAS_AMT))
7018 e1000e_get_hw_control(adapter);
7019
7020 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7021 err = register_netdev(netdev);
7022 if (err)
7023 goto err_register;
7024
7025 /* carrier off reporting is important to ethtool even BEFORE open */
7026 netif_carrier_off(netdev);
7027
7028 /* init PTP hardware clock */
7029 e1000e_ptp_init(adapter);
7030
7031 e1000_print_device_info(adapter);
7032
7033 if (pci_dev_run_wake(pdev))
7034 pm_runtime_put_noidle(&pdev->dev);
7035
7036 return 0;
7037
7038 err_register:
7039 if (!(adapter->flags & FLAG_HAS_AMT))
7040 e1000e_release_hw_control(adapter);
7041 err_eeprom:
7042 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7043 e1000_phy_hw_reset(&adapter->hw);
7044 err_hw_init:
7045 kfree(adapter->tx_ring);
7046 kfree(adapter->rx_ring);
7047 err_sw_init:
7048 if (adapter->hw.flash_address)
7049 iounmap(adapter->hw.flash_address);
7050 e1000e_reset_interrupt_capability(adapter);
7051 err_flashmap:
7052 iounmap(adapter->hw.hw_addr);
7053 err_ioremap:
7054 free_netdev(netdev);
7055 err_alloc_etherdev:
7056 pci_release_selected_regions(pdev,
7057 pci_select_bars(pdev, IORESOURCE_MEM));
7058 err_pci_reg:
7059 err_dma:
7060 pci_disable_device(pdev);
7061 return err;
7062 }
7063
7064 /**
7065 * e1000_remove - Device Removal Routine
7066 * @pdev: PCI device information struct
7067 *
7068 * e1000_remove is called by the PCI subsystem to alert the driver
7069 * that it should release a PCI device. The could be caused by a
7070 * Hot-Plug event, or because the driver is going to be removed from
7071 * memory.
7072 **/
7073 static void e1000_remove(struct pci_dev *pdev)
7074 {
7075 struct net_device *netdev = pci_get_drvdata(pdev);
7076 struct e1000_adapter *adapter = netdev_priv(netdev);
7077 bool down = test_bit(__E1000_DOWN, &adapter->state);
7078
7079 e1000e_ptp_remove(adapter);
7080
7081 /* The timers may be rescheduled, so explicitly disable them
7082 * from being rescheduled.
7083 */
7084 if (!down)
7085 set_bit(__E1000_DOWN, &adapter->state);
7086 del_timer_sync(&adapter->watchdog_timer);
7087 del_timer_sync(&adapter->phy_info_timer);
7088
7089 cancel_work_sync(&adapter->reset_task);
7090 cancel_work_sync(&adapter->watchdog_task);
7091 cancel_work_sync(&adapter->downshift_task);
7092 cancel_work_sync(&adapter->update_phy_task);
7093 cancel_work_sync(&adapter->print_hang_task);
7094
7095 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7096 cancel_work_sync(&adapter->tx_hwtstamp_work);
7097 if (adapter->tx_hwtstamp_skb) {
7098 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7099 adapter->tx_hwtstamp_skb = NULL;
7100 }
7101 }
7102
7103 /* Don't lie to e1000_close() down the road. */
7104 if (!down)
7105 clear_bit(__E1000_DOWN, &adapter->state);
7106 unregister_netdev(netdev);
7107
7108 if (pci_dev_run_wake(pdev))
7109 pm_runtime_get_noresume(&pdev->dev);
7110
7111 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7112 * would have already happened in close and is redundant.
7113 */
7114 e1000e_release_hw_control(adapter);
7115
7116 e1000e_reset_interrupt_capability(adapter);
7117 kfree(adapter->tx_ring);
7118 kfree(adapter->rx_ring);
7119
7120 iounmap(adapter->hw.hw_addr);
7121 if (adapter->hw.flash_address)
7122 iounmap(adapter->hw.flash_address);
7123 pci_release_selected_regions(pdev,
7124 pci_select_bars(pdev, IORESOURCE_MEM));
7125
7126 free_netdev(netdev);
7127
7128 /* AER disable */
7129 pci_disable_pcie_error_reporting(pdev);
7130
7131 pci_disable_device(pdev);
7132 }
7133
7134 /* PCI Error Recovery (ERS) */
7135 static const struct pci_error_handlers e1000_err_handler = {
7136 .error_detected = e1000_io_error_detected,
7137 .slot_reset = e1000_io_slot_reset,
7138 .resume = e1000_io_resume,
7139 };
7140
7141 static const struct pci_device_id e1000_pci_tbl[] = {
7142 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7143 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7144 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7145 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7146 board_82571 },
7147 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7148 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7149 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7150 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7151 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7152
7153 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7154 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7155 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7156 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7157
7158 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7159 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7160 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7161
7162 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7163 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7164 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7165
7166 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7167 board_80003es2lan },
7168 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7169 board_80003es2lan },
7170 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7171 board_80003es2lan },
7172 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7173 board_80003es2lan },
7174
7175 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7176 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7177 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7178 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7179 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7180 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7181 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7182 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7183
7184 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7185 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7186 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7187 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7188 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7189 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7190 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7191 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7192 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7193
7194 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7195 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7196 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7197
7198 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7199 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7200 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7201
7202 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7203 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7204 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7205 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7206
7207 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7208 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7209
7210 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7211 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7212 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7213 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7214 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7215 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7216 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7217 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7218
7219 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7220 };
7221 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7222
7223 static const struct dev_pm_ops e1000_pm_ops = {
7224 #ifdef CONFIG_PM_SLEEP
7225 .suspend = e1000e_pm_suspend,
7226 .resume = e1000e_pm_resume,
7227 .freeze = e1000e_pm_freeze,
7228 .thaw = e1000e_pm_thaw,
7229 .poweroff = e1000e_pm_suspend,
7230 .restore = e1000e_pm_resume,
7231 #endif
7232 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7233 e1000e_pm_runtime_idle)
7234 };
7235
7236 /* PCI Device API Driver */
7237 static struct pci_driver e1000_driver = {
7238 .name = e1000e_driver_name,
7239 .id_table = e1000_pci_tbl,
7240 .probe = e1000_probe,
7241 .remove = e1000_remove,
7242 .driver = {
7243 .pm = &e1000_pm_ops,
7244 },
7245 .shutdown = e1000_shutdown,
7246 .err_handler = &e1000_err_handler
7247 };
7248
7249 /**
7250 * e1000_init_module - Driver Registration Routine
7251 *
7252 * e1000_init_module is the first routine called when the driver is
7253 * loaded. All it does is register with the PCI subsystem.
7254 **/
7255 static int __init e1000_init_module(void)
7256 {
7257 int ret;
7258
7259 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7260 e1000e_driver_version);
7261 pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n");
7262 ret = pci_register_driver(&e1000_driver);
7263
7264 return ret;
7265 }
7266 module_init(e1000_init_module);
7267
7268 /**
7269 * e1000_exit_module - Driver Exit Cleanup Routine
7270 *
7271 * e1000_exit_module is called just before the driver is removed
7272 * from memory.
7273 **/
7274 static void __exit e1000_exit_module(void)
7275 {
7276 pci_unregister_driver(&e1000_driver);
7277 }
7278 module_exit(e1000_exit_module);
7279
7280 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7281 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7282 MODULE_LICENSE("GPL");
7283 MODULE_VERSION(DRV_VERSION);
7284
7285 /* netdev.c */
This page took 0.235379 seconds and 5 git commands to generate.