x86: Move call to print_modules() out of show_regs()
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
54
55 #include "e1000.h"
56
57 #define DRV_EXTRAVERSION "-k"
58
59 #define DRV_VERSION "2.0.0" DRV_EXTRAVERSION
60 char e1000e_driver_name[] = "e1000e";
61 const char e1000e_driver_version[] = DRV_VERSION;
62
63 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
64 static int debug = -1;
65 module_param(debug, int, 0);
66 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
67
68 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
69
70 static const struct e1000_info *e1000_info_tbl[] = {
71 [board_82571] = &e1000_82571_info,
72 [board_82572] = &e1000_82572_info,
73 [board_82573] = &e1000_82573_info,
74 [board_82574] = &e1000_82574_info,
75 [board_82583] = &e1000_82583_info,
76 [board_80003es2lan] = &e1000_es2_info,
77 [board_ich8lan] = &e1000_ich8_info,
78 [board_ich9lan] = &e1000_ich9_info,
79 [board_ich10lan] = &e1000_ich10_info,
80 [board_pchlan] = &e1000_pch_info,
81 [board_pch2lan] = &e1000_pch2_info,
82 [board_pch_lpt] = &e1000_pch_lpt_info,
83 };
84
85 struct e1000_reg_info {
86 u32 ofs;
87 char *name;
88 };
89
90 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
91 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
92 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
93 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
94 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
95
96 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
97 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
98 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
99 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
100 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
101
102 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
103
104 /* General Registers */
105 {E1000_CTRL, "CTRL"},
106 {E1000_STATUS, "STATUS"},
107 {E1000_CTRL_EXT, "CTRL_EXT"},
108
109 /* Interrupt Registers */
110 {E1000_ICR, "ICR"},
111
112 /* Rx Registers */
113 {E1000_RCTL, "RCTL"},
114 {E1000_RDLEN(0), "RDLEN"},
115 {E1000_RDH(0), "RDH"},
116 {E1000_RDT(0), "RDT"},
117 {E1000_RDTR, "RDTR"},
118 {E1000_RXDCTL(0), "RXDCTL"},
119 {E1000_ERT, "ERT"},
120 {E1000_RDBAL(0), "RDBAL"},
121 {E1000_RDBAH(0), "RDBAH"},
122 {E1000_RDFH, "RDFH"},
123 {E1000_RDFT, "RDFT"},
124 {E1000_RDFHS, "RDFHS"},
125 {E1000_RDFTS, "RDFTS"},
126 {E1000_RDFPC, "RDFPC"},
127
128 /* Tx Registers */
129 {E1000_TCTL, "TCTL"},
130 {E1000_TDBAL(0), "TDBAL"},
131 {E1000_TDBAH(0), "TDBAH"},
132 {E1000_TDLEN(0), "TDLEN"},
133 {E1000_TDH(0), "TDH"},
134 {E1000_TDT(0), "TDT"},
135 {E1000_TIDV, "TIDV"},
136 {E1000_TXDCTL(0), "TXDCTL"},
137 {E1000_TADV, "TADV"},
138 {E1000_TARC(0), "TARC"},
139 {E1000_TDFH, "TDFH"},
140 {E1000_TDFT, "TDFT"},
141 {E1000_TDFHS, "TDFHS"},
142 {E1000_TDFTS, "TDFTS"},
143 {E1000_TDFPC, "TDFPC"},
144
145 /* List Terminator */
146 {0, NULL}
147 };
148
149 /*
150 * e1000_regdump - register printout routine
151 */
152 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
153 {
154 int n = 0;
155 char rname[16];
156 u32 regs[8];
157
158 switch (reginfo->ofs) {
159 case E1000_RXDCTL(0):
160 for (n = 0; n < 2; n++)
161 regs[n] = __er32(hw, E1000_RXDCTL(n));
162 break;
163 case E1000_TXDCTL(0):
164 for (n = 0; n < 2; n++)
165 regs[n] = __er32(hw, E1000_TXDCTL(n));
166 break;
167 case E1000_TARC(0):
168 for (n = 0; n < 2; n++)
169 regs[n] = __er32(hw, E1000_TARC(n));
170 break;
171 default:
172 pr_info("%-15s %08x\n",
173 reginfo->name, __er32(hw, reginfo->ofs));
174 return;
175 }
176
177 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
178 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
179 }
180
181 /*
182 * e1000e_dump - Print registers, Tx-ring and Rx-ring
183 */
184 static void e1000e_dump(struct e1000_adapter *adapter)
185 {
186 struct net_device *netdev = adapter->netdev;
187 struct e1000_hw *hw = &adapter->hw;
188 struct e1000_reg_info *reginfo;
189 struct e1000_ring *tx_ring = adapter->tx_ring;
190 struct e1000_tx_desc *tx_desc;
191 struct my_u0 {
192 __le64 a;
193 __le64 b;
194 } *u0;
195 struct e1000_buffer *buffer_info;
196 struct e1000_ring *rx_ring = adapter->rx_ring;
197 union e1000_rx_desc_packet_split *rx_desc_ps;
198 union e1000_rx_desc_extended *rx_desc;
199 struct my_u1 {
200 __le64 a;
201 __le64 b;
202 __le64 c;
203 __le64 d;
204 } *u1;
205 u32 staterr;
206 int i = 0;
207
208 if (!netif_msg_hw(adapter))
209 return;
210
211 /* Print netdevice Info */
212 if (netdev) {
213 dev_info(&adapter->pdev->dev, "Net device Info\n");
214 pr_info("Device Name state trans_start last_rx\n");
215 pr_info("%-15s %016lX %016lX %016lX\n",
216 netdev->name, netdev->state, netdev->trans_start,
217 netdev->last_rx);
218 }
219
220 /* Print Registers */
221 dev_info(&adapter->pdev->dev, "Register Dump\n");
222 pr_info(" Register Name Value\n");
223 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
224 reginfo->name; reginfo++) {
225 e1000_regdump(hw, reginfo);
226 }
227
228 /* Print Tx Ring Summary */
229 if (!netdev || !netif_running(netdev))
230 return;
231
232 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
233 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
234 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
235 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
236 0, tx_ring->next_to_use, tx_ring->next_to_clean,
237 (unsigned long long)buffer_info->dma,
238 buffer_info->length,
239 buffer_info->next_to_watch,
240 (unsigned long long)buffer_info->time_stamp);
241
242 /* Print Tx Ring */
243 if (!netif_msg_tx_done(adapter))
244 goto rx_ring_summary;
245
246 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
247
248 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
249 *
250 * Legacy Transmit Descriptor
251 * +--------------------------------------------------------------+
252 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
253 * +--------------------------------------------------------------+
254 * 8 | Special | CSS | Status | CMD | CSO | Length |
255 * +--------------------------------------------------------------+
256 * 63 48 47 36 35 32 31 24 23 16 15 0
257 *
258 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
259 * 63 48 47 40 39 32 31 16 15 8 7 0
260 * +----------------------------------------------------------------+
261 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
262 * +----------------------------------------------------------------+
263 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
264 * +----------------------------------------------------------------+
265 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
266 *
267 * Extended Data Descriptor (DTYP=0x1)
268 * +----------------------------------------------------------------+
269 * 0 | Buffer Address [63:0] |
270 * +----------------------------------------------------------------+
271 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
272 * +----------------------------------------------------------------+
273 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
274 */
275 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
276 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
277 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
278 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
279 const char *next_desc;
280 tx_desc = E1000_TX_DESC(*tx_ring, i);
281 buffer_info = &tx_ring->buffer_info[i];
282 u0 = (struct my_u0 *)tx_desc;
283 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
284 next_desc = " NTC/U";
285 else if (i == tx_ring->next_to_use)
286 next_desc = " NTU";
287 else if (i == tx_ring->next_to_clean)
288 next_desc = " NTC";
289 else
290 next_desc = "";
291 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
292 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
293 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
294 i,
295 (unsigned long long)le64_to_cpu(u0->a),
296 (unsigned long long)le64_to_cpu(u0->b),
297 (unsigned long long)buffer_info->dma,
298 buffer_info->length, buffer_info->next_to_watch,
299 (unsigned long long)buffer_info->time_stamp,
300 buffer_info->skb, next_desc);
301
302 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
303 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
304 16, 1, phys_to_virt(buffer_info->dma),
305 buffer_info->length, true);
306 }
307
308 /* Print Rx Ring Summary */
309 rx_ring_summary:
310 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
311 pr_info("Queue [NTU] [NTC]\n");
312 pr_info(" %5d %5X %5X\n",
313 0, rx_ring->next_to_use, rx_ring->next_to_clean);
314
315 /* Print Rx Ring */
316 if (!netif_msg_rx_status(adapter))
317 return;
318
319 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
320 switch (adapter->rx_ps_pages) {
321 case 1:
322 case 2:
323 case 3:
324 /* [Extended] Packet Split Receive Descriptor Format
325 *
326 * +-----------------------------------------------------+
327 * 0 | Buffer Address 0 [63:0] |
328 * +-----------------------------------------------------+
329 * 8 | Buffer Address 1 [63:0] |
330 * +-----------------------------------------------------+
331 * 16 | Buffer Address 2 [63:0] |
332 * +-----------------------------------------------------+
333 * 24 | Buffer Address 3 [63:0] |
334 * +-----------------------------------------------------+
335 */
336 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
337 /* [Extended] Receive Descriptor (Write-Back) Format
338 *
339 * 63 48 47 32 31 13 12 8 7 4 3 0
340 * +------------------------------------------------------+
341 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
342 * | Checksum | Ident | | Queue | | Type |
343 * +------------------------------------------------------+
344 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
345 * +------------------------------------------------------+
346 * 63 48 47 32 31 20 19 0
347 */
348 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
349 for (i = 0; i < rx_ring->count; i++) {
350 const char *next_desc;
351 buffer_info = &rx_ring->buffer_info[i];
352 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
353 u1 = (struct my_u1 *)rx_desc_ps;
354 staterr =
355 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
356
357 if (i == rx_ring->next_to_use)
358 next_desc = " NTU";
359 else if (i == rx_ring->next_to_clean)
360 next_desc = " NTC";
361 else
362 next_desc = "";
363
364 if (staterr & E1000_RXD_STAT_DD) {
365 /* Descriptor Done */
366 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
367 "RWB", i,
368 (unsigned long long)le64_to_cpu(u1->a),
369 (unsigned long long)le64_to_cpu(u1->b),
370 (unsigned long long)le64_to_cpu(u1->c),
371 (unsigned long long)le64_to_cpu(u1->d),
372 buffer_info->skb, next_desc);
373 } else {
374 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
375 "R ", i,
376 (unsigned long long)le64_to_cpu(u1->a),
377 (unsigned long long)le64_to_cpu(u1->b),
378 (unsigned long long)le64_to_cpu(u1->c),
379 (unsigned long long)le64_to_cpu(u1->d),
380 (unsigned long long)buffer_info->dma,
381 buffer_info->skb, next_desc);
382
383 if (netif_msg_pktdata(adapter))
384 print_hex_dump(KERN_INFO, "",
385 DUMP_PREFIX_ADDRESS, 16, 1,
386 phys_to_virt(buffer_info->dma),
387 adapter->rx_ps_bsize0, true);
388 }
389 }
390 break;
391 default:
392 case 0:
393 /* Extended Receive Descriptor (Read) Format
394 *
395 * +-----------------------------------------------------+
396 * 0 | Buffer Address [63:0] |
397 * +-----------------------------------------------------+
398 * 8 | Reserved |
399 * +-----------------------------------------------------+
400 */
401 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
402 /* Extended Receive Descriptor (Write-Back) Format
403 *
404 * 63 48 47 32 31 24 23 4 3 0
405 * +------------------------------------------------------+
406 * | RSS Hash | | | |
407 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
408 * | Packet | IP | | | Type |
409 * | Checksum | Ident | | | |
410 * +------------------------------------------------------+
411 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
412 * +------------------------------------------------------+
413 * 63 48 47 32 31 20 19 0
414 */
415 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
416
417 for (i = 0; i < rx_ring->count; i++) {
418 const char *next_desc;
419
420 buffer_info = &rx_ring->buffer_info[i];
421 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
422 u1 = (struct my_u1 *)rx_desc;
423 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
424
425 if (i == rx_ring->next_to_use)
426 next_desc = " NTU";
427 else if (i == rx_ring->next_to_clean)
428 next_desc = " NTC";
429 else
430 next_desc = "";
431
432 if (staterr & E1000_RXD_STAT_DD) {
433 /* Descriptor Done */
434 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
435 "RWB", i,
436 (unsigned long long)le64_to_cpu(u1->a),
437 (unsigned long long)le64_to_cpu(u1->b),
438 buffer_info->skb, next_desc);
439 } else {
440 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
441 "R ", i,
442 (unsigned long long)le64_to_cpu(u1->a),
443 (unsigned long long)le64_to_cpu(u1->b),
444 (unsigned long long)buffer_info->dma,
445 buffer_info->skb, next_desc);
446
447 if (netif_msg_pktdata(adapter))
448 print_hex_dump(KERN_INFO, "",
449 DUMP_PREFIX_ADDRESS, 16,
450 1,
451 phys_to_virt
452 (buffer_info->dma),
453 adapter->rx_buffer_len,
454 true);
455 }
456 }
457 }
458 }
459
460 /**
461 * e1000_desc_unused - calculate if we have unused descriptors
462 **/
463 static int e1000_desc_unused(struct e1000_ring *ring)
464 {
465 if (ring->next_to_clean > ring->next_to_use)
466 return ring->next_to_clean - ring->next_to_use - 1;
467
468 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
469 }
470
471 /**
472 * e1000_receive_skb - helper function to handle Rx indications
473 * @adapter: board private structure
474 * @status: descriptor status field as written by hardware
475 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
476 * @skb: pointer to sk_buff to be indicated to stack
477 **/
478 static void e1000_receive_skb(struct e1000_adapter *adapter,
479 struct net_device *netdev, struct sk_buff *skb,
480 u8 status, __le16 vlan)
481 {
482 u16 tag = le16_to_cpu(vlan);
483 skb->protocol = eth_type_trans(skb, netdev);
484
485 if (status & E1000_RXD_STAT_VP)
486 __vlan_hwaccel_put_tag(skb, tag);
487
488 napi_gro_receive(&adapter->napi, skb);
489 }
490
491 /**
492 * e1000_rx_checksum - Receive Checksum Offload
493 * @adapter: board private structure
494 * @status_err: receive descriptor status and error fields
495 * @csum: receive descriptor csum field
496 * @sk_buff: socket buffer with received data
497 **/
498 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
499 __le16 csum, struct sk_buff *skb)
500 {
501 u16 status = (u16)status_err;
502 u8 errors = (u8)(status_err >> 24);
503
504 skb_checksum_none_assert(skb);
505
506 /* Rx checksum disabled */
507 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
508 return;
509
510 /* Ignore Checksum bit is set */
511 if (status & E1000_RXD_STAT_IXSM)
512 return;
513
514 /* TCP/UDP checksum error bit is set */
515 if (errors & E1000_RXD_ERR_TCPE) {
516 /* let the stack verify checksum errors */
517 adapter->hw_csum_err++;
518 return;
519 }
520
521 /* TCP/UDP Checksum has not been calculated */
522 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
523 return;
524
525 /* It must be a TCP or UDP packet with a valid checksum */
526 if (status & E1000_RXD_STAT_TCPCS) {
527 /* TCP checksum is good */
528 skb->ip_summed = CHECKSUM_UNNECESSARY;
529 } else {
530 /*
531 * IP fragment with UDP payload
532 * Hardware complements the payload checksum, so we undo it
533 * and then put the value in host order for further stack use.
534 */
535 __sum16 sum = (__force __sum16)swab16((__force u16)csum);
536 skb->csum = csum_unfold(~sum);
537 skb->ip_summed = CHECKSUM_COMPLETE;
538 }
539 adapter->hw_csum_good++;
540 }
541
542 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
543 {
544 struct e1000_adapter *adapter = rx_ring->adapter;
545 struct e1000_hw *hw = &adapter->hw;
546 s32 ret_val = __ew32_prepare(hw);
547
548 writel(i, rx_ring->tail);
549
550 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
551 u32 rctl = er32(RCTL);
552 ew32(RCTL, rctl & ~E1000_RCTL_EN);
553 e_err("ME firmware caused invalid RDT - resetting\n");
554 schedule_work(&adapter->reset_task);
555 }
556 }
557
558 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
559 {
560 struct e1000_adapter *adapter = tx_ring->adapter;
561 struct e1000_hw *hw = &adapter->hw;
562 s32 ret_val = __ew32_prepare(hw);
563
564 writel(i, tx_ring->tail);
565
566 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
567 u32 tctl = er32(TCTL);
568 ew32(TCTL, tctl & ~E1000_TCTL_EN);
569 e_err("ME firmware caused invalid TDT - resetting\n");
570 schedule_work(&adapter->reset_task);
571 }
572 }
573
574 /**
575 * e1000_alloc_rx_buffers - Replace used receive buffers
576 * @rx_ring: Rx descriptor ring
577 **/
578 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
579 int cleaned_count, gfp_t gfp)
580 {
581 struct e1000_adapter *adapter = rx_ring->adapter;
582 struct net_device *netdev = adapter->netdev;
583 struct pci_dev *pdev = adapter->pdev;
584 union e1000_rx_desc_extended *rx_desc;
585 struct e1000_buffer *buffer_info;
586 struct sk_buff *skb;
587 unsigned int i;
588 unsigned int bufsz = adapter->rx_buffer_len;
589
590 i = rx_ring->next_to_use;
591 buffer_info = &rx_ring->buffer_info[i];
592
593 while (cleaned_count--) {
594 skb = buffer_info->skb;
595 if (skb) {
596 skb_trim(skb, 0);
597 goto map_skb;
598 }
599
600 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
601 if (!skb) {
602 /* Better luck next round */
603 adapter->alloc_rx_buff_failed++;
604 break;
605 }
606
607 buffer_info->skb = skb;
608 map_skb:
609 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
610 adapter->rx_buffer_len,
611 DMA_FROM_DEVICE);
612 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
613 dev_err(&pdev->dev, "Rx DMA map failed\n");
614 adapter->rx_dma_failed++;
615 break;
616 }
617
618 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
619 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
620
621 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
622 /*
623 * Force memory writes to complete before letting h/w
624 * know there are new descriptors to fetch. (Only
625 * applicable for weak-ordered memory model archs,
626 * such as IA-64).
627 */
628 wmb();
629 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
630 e1000e_update_rdt_wa(rx_ring, i);
631 else
632 writel(i, rx_ring->tail);
633 }
634 i++;
635 if (i == rx_ring->count)
636 i = 0;
637 buffer_info = &rx_ring->buffer_info[i];
638 }
639
640 rx_ring->next_to_use = i;
641 }
642
643 /**
644 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
645 * @rx_ring: Rx descriptor ring
646 **/
647 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
648 int cleaned_count, gfp_t gfp)
649 {
650 struct e1000_adapter *adapter = rx_ring->adapter;
651 struct net_device *netdev = adapter->netdev;
652 struct pci_dev *pdev = adapter->pdev;
653 union e1000_rx_desc_packet_split *rx_desc;
654 struct e1000_buffer *buffer_info;
655 struct e1000_ps_page *ps_page;
656 struct sk_buff *skb;
657 unsigned int i, j;
658
659 i = rx_ring->next_to_use;
660 buffer_info = &rx_ring->buffer_info[i];
661
662 while (cleaned_count--) {
663 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
664
665 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
666 ps_page = &buffer_info->ps_pages[j];
667 if (j >= adapter->rx_ps_pages) {
668 /* all unused desc entries get hw null ptr */
669 rx_desc->read.buffer_addr[j + 1] =
670 ~cpu_to_le64(0);
671 continue;
672 }
673 if (!ps_page->page) {
674 ps_page->page = alloc_page(gfp);
675 if (!ps_page->page) {
676 adapter->alloc_rx_buff_failed++;
677 goto no_buffers;
678 }
679 ps_page->dma = dma_map_page(&pdev->dev,
680 ps_page->page,
681 0, PAGE_SIZE,
682 DMA_FROM_DEVICE);
683 if (dma_mapping_error(&pdev->dev,
684 ps_page->dma)) {
685 dev_err(&adapter->pdev->dev,
686 "Rx DMA page map failed\n");
687 adapter->rx_dma_failed++;
688 goto no_buffers;
689 }
690 }
691 /*
692 * Refresh the desc even if buffer_addrs
693 * didn't change because each write-back
694 * erases this info.
695 */
696 rx_desc->read.buffer_addr[j + 1] =
697 cpu_to_le64(ps_page->dma);
698 }
699
700 skb = __netdev_alloc_skb_ip_align(netdev,
701 adapter->rx_ps_bsize0,
702 gfp);
703
704 if (!skb) {
705 adapter->alloc_rx_buff_failed++;
706 break;
707 }
708
709 buffer_info->skb = skb;
710 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
711 adapter->rx_ps_bsize0,
712 DMA_FROM_DEVICE);
713 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
714 dev_err(&pdev->dev, "Rx DMA map failed\n");
715 adapter->rx_dma_failed++;
716 /* cleanup skb */
717 dev_kfree_skb_any(skb);
718 buffer_info->skb = NULL;
719 break;
720 }
721
722 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
723
724 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
725 /*
726 * Force memory writes to complete before letting h/w
727 * know there are new descriptors to fetch. (Only
728 * applicable for weak-ordered memory model archs,
729 * such as IA-64).
730 */
731 wmb();
732 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
733 e1000e_update_rdt_wa(rx_ring, i << 1);
734 else
735 writel(i << 1, rx_ring->tail);
736 }
737
738 i++;
739 if (i == rx_ring->count)
740 i = 0;
741 buffer_info = &rx_ring->buffer_info[i];
742 }
743
744 no_buffers:
745 rx_ring->next_to_use = i;
746 }
747
748 /**
749 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
750 * @rx_ring: Rx descriptor ring
751 * @cleaned_count: number of buffers to allocate this pass
752 **/
753
754 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
755 int cleaned_count, gfp_t gfp)
756 {
757 struct e1000_adapter *adapter = rx_ring->adapter;
758 struct net_device *netdev = adapter->netdev;
759 struct pci_dev *pdev = adapter->pdev;
760 union e1000_rx_desc_extended *rx_desc;
761 struct e1000_buffer *buffer_info;
762 struct sk_buff *skb;
763 unsigned int i;
764 unsigned int bufsz = 256 - 16 /* for skb_reserve */;
765
766 i = rx_ring->next_to_use;
767 buffer_info = &rx_ring->buffer_info[i];
768
769 while (cleaned_count--) {
770 skb = buffer_info->skb;
771 if (skb) {
772 skb_trim(skb, 0);
773 goto check_page;
774 }
775
776 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
777 if (unlikely(!skb)) {
778 /* Better luck next round */
779 adapter->alloc_rx_buff_failed++;
780 break;
781 }
782
783 buffer_info->skb = skb;
784 check_page:
785 /* allocate a new page if necessary */
786 if (!buffer_info->page) {
787 buffer_info->page = alloc_page(gfp);
788 if (unlikely(!buffer_info->page)) {
789 adapter->alloc_rx_buff_failed++;
790 break;
791 }
792 }
793
794 if (!buffer_info->dma)
795 buffer_info->dma = dma_map_page(&pdev->dev,
796 buffer_info->page, 0,
797 PAGE_SIZE,
798 DMA_FROM_DEVICE);
799
800 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
801 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
802
803 if (unlikely(++i == rx_ring->count))
804 i = 0;
805 buffer_info = &rx_ring->buffer_info[i];
806 }
807
808 if (likely(rx_ring->next_to_use != i)) {
809 rx_ring->next_to_use = i;
810 if (unlikely(i-- == 0))
811 i = (rx_ring->count - 1);
812
813 /* Force memory writes to complete before letting h/w
814 * know there are new descriptors to fetch. (Only
815 * applicable for weak-ordered memory model archs,
816 * such as IA-64). */
817 wmb();
818 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
819 e1000e_update_rdt_wa(rx_ring, i);
820 else
821 writel(i, rx_ring->tail);
822 }
823 }
824
825 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
826 struct sk_buff *skb)
827 {
828 if (netdev->features & NETIF_F_RXHASH)
829 skb->rxhash = le32_to_cpu(rss);
830 }
831
832 /**
833 * e1000_clean_rx_irq - Send received data up the network stack
834 * @rx_ring: Rx descriptor ring
835 *
836 * the return value indicates whether actual cleaning was done, there
837 * is no guarantee that everything was cleaned
838 **/
839 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
840 int work_to_do)
841 {
842 struct e1000_adapter *adapter = rx_ring->adapter;
843 struct net_device *netdev = adapter->netdev;
844 struct pci_dev *pdev = adapter->pdev;
845 struct e1000_hw *hw = &adapter->hw;
846 union e1000_rx_desc_extended *rx_desc, *next_rxd;
847 struct e1000_buffer *buffer_info, *next_buffer;
848 u32 length, staterr;
849 unsigned int i;
850 int cleaned_count = 0;
851 bool cleaned = false;
852 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
853
854 i = rx_ring->next_to_clean;
855 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
856 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
857 buffer_info = &rx_ring->buffer_info[i];
858
859 while (staterr & E1000_RXD_STAT_DD) {
860 struct sk_buff *skb;
861
862 if (*work_done >= work_to_do)
863 break;
864 (*work_done)++;
865 rmb(); /* read descriptor and rx_buffer_info after status DD */
866
867 skb = buffer_info->skb;
868 buffer_info->skb = NULL;
869
870 prefetch(skb->data - NET_IP_ALIGN);
871
872 i++;
873 if (i == rx_ring->count)
874 i = 0;
875 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
876 prefetch(next_rxd);
877
878 next_buffer = &rx_ring->buffer_info[i];
879
880 cleaned = true;
881 cleaned_count++;
882 dma_unmap_single(&pdev->dev,
883 buffer_info->dma,
884 adapter->rx_buffer_len,
885 DMA_FROM_DEVICE);
886 buffer_info->dma = 0;
887
888 length = le16_to_cpu(rx_desc->wb.upper.length);
889
890 /*
891 * !EOP means multiple descriptors were used to store a single
892 * packet, if that's the case we need to toss it. In fact, we
893 * need to toss every packet with the EOP bit clear and the
894 * next frame that _does_ have the EOP bit set, as it is by
895 * definition only a frame fragment
896 */
897 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
898 adapter->flags2 |= FLAG2_IS_DISCARDING;
899
900 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
901 /* All receives must fit into a single buffer */
902 e_dbg("Receive packet consumed multiple buffers\n");
903 /* recycle */
904 buffer_info->skb = skb;
905 if (staterr & E1000_RXD_STAT_EOP)
906 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
907 goto next_desc;
908 }
909
910 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
911 !(netdev->features & NETIF_F_RXALL))) {
912 /* recycle */
913 buffer_info->skb = skb;
914 goto next_desc;
915 }
916
917 /* adjust length to remove Ethernet CRC */
918 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
919 /* If configured to store CRC, don't subtract FCS,
920 * but keep the FCS bytes out of the total_rx_bytes
921 * counter
922 */
923 if (netdev->features & NETIF_F_RXFCS)
924 total_rx_bytes -= 4;
925 else
926 length -= 4;
927 }
928
929 total_rx_bytes += length;
930 total_rx_packets++;
931
932 /*
933 * code added for copybreak, this should improve
934 * performance for small packets with large amounts
935 * of reassembly being done in the stack
936 */
937 if (length < copybreak) {
938 struct sk_buff *new_skb =
939 netdev_alloc_skb_ip_align(netdev, length);
940 if (new_skb) {
941 skb_copy_to_linear_data_offset(new_skb,
942 -NET_IP_ALIGN,
943 (skb->data -
944 NET_IP_ALIGN),
945 (length +
946 NET_IP_ALIGN));
947 /* save the skb in buffer_info as good */
948 buffer_info->skb = skb;
949 skb = new_skb;
950 }
951 /* else just continue with the old one */
952 }
953 /* end copybreak code */
954 skb_put(skb, length);
955
956 /* Receive Checksum Offload */
957 e1000_rx_checksum(adapter, staterr,
958 rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
959
960 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
961
962 e1000_receive_skb(adapter, netdev, skb, staterr,
963 rx_desc->wb.upper.vlan);
964
965 next_desc:
966 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
967
968 /* return some buffers to hardware, one at a time is too slow */
969 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
970 adapter->alloc_rx_buf(rx_ring, cleaned_count,
971 GFP_ATOMIC);
972 cleaned_count = 0;
973 }
974
975 /* use prefetched values */
976 rx_desc = next_rxd;
977 buffer_info = next_buffer;
978
979 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
980 }
981 rx_ring->next_to_clean = i;
982
983 cleaned_count = e1000_desc_unused(rx_ring);
984 if (cleaned_count)
985 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
986
987 adapter->total_rx_bytes += total_rx_bytes;
988 adapter->total_rx_packets += total_rx_packets;
989 return cleaned;
990 }
991
992 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
993 struct e1000_buffer *buffer_info)
994 {
995 struct e1000_adapter *adapter = tx_ring->adapter;
996
997 if (buffer_info->dma) {
998 if (buffer_info->mapped_as_page)
999 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1000 buffer_info->length, DMA_TO_DEVICE);
1001 else
1002 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1003 buffer_info->length, DMA_TO_DEVICE);
1004 buffer_info->dma = 0;
1005 }
1006 if (buffer_info->skb) {
1007 dev_kfree_skb_any(buffer_info->skb);
1008 buffer_info->skb = NULL;
1009 }
1010 buffer_info->time_stamp = 0;
1011 }
1012
1013 static void e1000_print_hw_hang(struct work_struct *work)
1014 {
1015 struct e1000_adapter *adapter = container_of(work,
1016 struct e1000_adapter,
1017 print_hang_task);
1018 struct net_device *netdev = adapter->netdev;
1019 struct e1000_ring *tx_ring = adapter->tx_ring;
1020 unsigned int i = tx_ring->next_to_clean;
1021 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1022 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1023 struct e1000_hw *hw = &adapter->hw;
1024 u16 phy_status, phy_1000t_status, phy_ext_status;
1025 u16 pci_status;
1026
1027 if (test_bit(__E1000_DOWN, &adapter->state))
1028 return;
1029
1030 if (!adapter->tx_hang_recheck &&
1031 (adapter->flags2 & FLAG2_DMA_BURST)) {
1032 /*
1033 * May be block on write-back, flush and detect again
1034 * flush pending descriptor writebacks to memory
1035 */
1036 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1037 /* execute the writes immediately */
1038 e1e_flush();
1039 /*
1040 * Due to rare timing issues, write to TIDV again to ensure
1041 * the write is successful
1042 */
1043 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1044 /* execute the writes immediately */
1045 e1e_flush();
1046 adapter->tx_hang_recheck = true;
1047 return;
1048 }
1049 /* Real hang detected */
1050 adapter->tx_hang_recheck = false;
1051 netif_stop_queue(netdev);
1052
1053 e1e_rphy(hw, PHY_STATUS, &phy_status);
1054 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1055 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1056
1057 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1058
1059 /* detected Hardware unit hang */
1060 e_err("Detected Hardware Unit Hang:\n"
1061 " TDH <%x>\n"
1062 " TDT <%x>\n"
1063 " next_to_use <%x>\n"
1064 " next_to_clean <%x>\n"
1065 "buffer_info[next_to_clean]:\n"
1066 " time_stamp <%lx>\n"
1067 " next_to_watch <%x>\n"
1068 " jiffies <%lx>\n"
1069 " next_to_watch.status <%x>\n"
1070 "MAC Status <%x>\n"
1071 "PHY Status <%x>\n"
1072 "PHY 1000BASE-T Status <%x>\n"
1073 "PHY Extended Status <%x>\n"
1074 "PCI Status <%x>\n",
1075 readl(tx_ring->head),
1076 readl(tx_ring->tail),
1077 tx_ring->next_to_use,
1078 tx_ring->next_to_clean,
1079 tx_ring->buffer_info[eop].time_stamp,
1080 eop,
1081 jiffies,
1082 eop_desc->upper.fields.status,
1083 er32(STATUS),
1084 phy_status,
1085 phy_1000t_status,
1086 phy_ext_status,
1087 pci_status);
1088
1089 /* Suggest workaround for known h/w issue */
1090 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1091 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1092 }
1093
1094 /**
1095 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1096 * @tx_ring: Tx descriptor ring
1097 *
1098 * the return value indicates whether actual cleaning was done, there
1099 * is no guarantee that everything was cleaned
1100 **/
1101 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1102 {
1103 struct e1000_adapter *adapter = tx_ring->adapter;
1104 struct net_device *netdev = adapter->netdev;
1105 struct e1000_hw *hw = &adapter->hw;
1106 struct e1000_tx_desc *tx_desc, *eop_desc;
1107 struct e1000_buffer *buffer_info;
1108 unsigned int i, eop;
1109 unsigned int count = 0;
1110 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1111 unsigned int bytes_compl = 0, pkts_compl = 0;
1112
1113 i = tx_ring->next_to_clean;
1114 eop = tx_ring->buffer_info[i].next_to_watch;
1115 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1116
1117 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1118 (count < tx_ring->count)) {
1119 bool cleaned = false;
1120 rmb(); /* read buffer_info after eop_desc */
1121 for (; !cleaned; count++) {
1122 tx_desc = E1000_TX_DESC(*tx_ring, i);
1123 buffer_info = &tx_ring->buffer_info[i];
1124 cleaned = (i == eop);
1125
1126 if (cleaned) {
1127 total_tx_packets += buffer_info->segs;
1128 total_tx_bytes += buffer_info->bytecount;
1129 if (buffer_info->skb) {
1130 bytes_compl += buffer_info->skb->len;
1131 pkts_compl++;
1132 }
1133 }
1134
1135 e1000_put_txbuf(tx_ring, buffer_info);
1136 tx_desc->upper.data = 0;
1137
1138 i++;
1139 if (i == tx_ring->count)
1140 i = 0;
1141 }
1142
1143 if (i == tx_ring->next_to_use)
1144 break;
1145 eop = tx_ring->buffer_info[i].next_to_watch;
1146 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1147 }
1148
1149 tx_ring->next_to_clean = i;
1150
1151 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1152
1153 #define TX_WAKE_THRESHOLD 32
1154 if (count && netif_carrier_ok(netdev) &&
1155 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1156 /* Make sure that anybody stopping the queue after this
1157 * sees the new next_to_clean.
1158 */
1159 smp_mb();
1160
1161 if (netif_queue_stopped(netdev) &&
1162 !(test_bit(__E1000_DOWN, &adapter->state))) {
1163 netif_wake_queue(netdev);
1164 ++adapter->restart_queue;
1165 }
1166 }
1167
1168 if (adapter->detect_tx_hung) {
1169 /*
1170 * Detect a transmit hang in hardware, this serializes the
1171 * check with the clearing of time_stamp and movement of i
1172 */
1173 adapter->detect_tx_hung = false;
1174 if (tx_ring->buffer_info[i].time_stamp &&
1175 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1176 + (adapter->tx_timeout_factor * HZ)) &&
1177 !(er32(STATUS) & E1000_STATUS_TXOFF))
1178 schedule_work(&adapter->print_hang_task);
1179 else
1180 adapter->tx_hang_recheck = false;
1181 }
1182 adapter->total_tx_bytes += total_tx_bytes;
1183 adapter->total_tx_packets += total_tx_packets;
1184 return count < tx_ring->count;
1185 }
1186
1187 /**
1188 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1189 * @rx_ring: Rx descriptor ring
1190 *
1191 * the return value indicates whether actual cleaning was done, there
1192 * is no guarantee that everything was cleaned
1193 **/
1194 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1195 int work_to_do)
1196 {
1197 struct e1000_adapter *adapter = rx_ring->adapter;
1198 struct e1000_hw *hw = &adapter->hw;
1199 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1200 struct net_device *netdev = adapter->netdev;
1201 struct pci_dev *pdev = adapter->pdev;
1202 struct e1000_buffer *buffer_info, *next_buffer;
1203 struct e1000_ps_page *ps_page;
1204 struct sk_buff *skb;
1205 unsigned int i, j;
1206 u32 length, staterr;
1207 int cleaned_count = 0;
1208 bool cleaned = false;
1209 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1210
1211 i = rx_ring->next_to_clean;
1212 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1213 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1214 buffer_info = &rx_ring->buffer_info[i];
1215
1216 while (staterr & E1000_RXD_STAT_DD) {
1217 if (*work_done >= work_to_do)
1218 break;
1219 (*work_done)++;
1220 skb = buffer_info->skb;
1221 rmb(); /* read descriptor and rx_buffer_info after status DD */
1222
1223 /* in the packet split case this is header only */
1224 prefetch(skb->data - NET_IP_ALIGN);
1225
1226 i++;
1227 if (i == rx_ring->count)
1228 i = 0;
1229 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1230 prefetch(next_rxd);
1231
1232 next_buffer = &rx_ring->buffer_info[i];
1233
1234 cleaned = true;
1235 cleaned_count++;
1236 dma_unmap_single(&pdev->dev, buffer_info->dma,
1237 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1238 buffer_info->dma = 0;
1239
1240 /* see !EOP comment in other Rx routine */
1241 if (!(staterr & E1000_RXD_STAT_EOP))
1242 adapter->flags2 |= FLAG2_IS_DISCARDING;
1243
1244 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1245 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1246 dev_kfree_skb_irq(skb);
1247 if (staterr & E1000_RXD_STAT_EOP)
1248 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1249 goto next_desc;
1250 }
1251
1252 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1253 !(netdev->features & NETIF_F_RXALL))) {
1254 dev_kfree_skb_irq(skb);
1255 goto next_desc;
1256 }
1257
1258 length = le16_to_cpu(rx_desc->wb.middle.length0);
1259
1260 if (!length) {
1261 e_dbg("Last part of the packet spanning multiple descriptors\n");
1262 dev_kfree_skb_irq(skb);
1263 goto next_desc;
1264 }
1265
1266 /* Good Receive */
1267 skb_put(skb, length);
1268
1269 {
1270 /*
1271 * this looks ugly, but it seems compiler issues make
1272 * it more efficient than reusing j
1273 */
1274 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1275
1276 /*
1277 * page alloc/put takes too long and effects small
1278 * packet throughput, so unsplit small packets and
1279 * save the alloc/put only valid in softirq (napi)
1280 * context to call kmap_*
1281 */
1282 if (l1 && (l1 <= copybreak) &&
1283 ((length + l1) <= adapter->rx_ps_bsize0)) {
1284 u8 *vaddr;
1285
1286 ps_page = &buffer_info->ps_pages[0];
1287
1288 /*
1289 * there is no documentation about how to call
1290 * kmap_atomic, so we can't hold the mapping
1291 * very long
1292 */
1293 dma_sync_single_for_cpu(&pdev->dev,
1294 ps_page->dma,
1295 PAGE_SIZE,
1296 DMA_FROM_DEVICE);
1297 vaddr = kmap_atomic(ps_page->page);
1298 memcpy(skb_tail_pointer(skb), vaddr, l1);
1299 kunmap_atomic(vaddr);
1300 dma_sync_single_for_device(&pdev->dev,
1301 ps_page->dma,
1302 PAGE_SIZE,
1303 DMA_FROM_DEVICE);
1304
1305 /* remove the CRC */
1306 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1307 if (!(netdev->features & NETIF_F_RXFCS))
1308 l1 -= 4;
1309 }
1310
1311 skb_put(skb, l1);
1312 goto copydone;
1313 } /* if */
1314 }
1315
1316 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1317 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1318 if (!length)
1319 break;
1320
1321 ps_page = &buffer_info->ps_pages[j];
1322 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1323 DMA_FROM_DEVICE);
1324 ps_page->dma = 0;
1325 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1326 ps_page->page = NULL;
1327 skb->len += length;
1328 skb->data_len += length;
1329 skb->truesize += PAGE_SIZE;
1330 }
1331
1332 /* strip the ethernet crc, problem is we're using pages now so
1333 * this whole operation can get a little cpu intensive
1334 */
1335 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1336 if (!(netdev->features & NETIF_F_RXFCS))
1337 pskb_trim(skb, skb->len - 4);
1338 }
1339
1340 copydone:
1341 total_rx_bytes += skb->len;
1342 total_rx_packets++;
1343
1344 e1000_rx_checksum(adapter, staterr,
1345 rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1346
1347 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1348
1349 if (rx_desc->wb.upper.header_status &
1350 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1351 adapter->rx_hdr_split++;
1352
1353 e1000_receive_skb(adapter, netdev, skb,
1354 staterr, rx_desc->wb.middle.vlan);
1355
1356 next_desc:
1357 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1358 buffer_info->skb = NULL;
1359
1360 /* return some buffers to hardware, one at a time is too slow */
1361 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1362 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1363 GFP_ATOMIC);
1364 cleaned_count = 0;
1365 }
1366
1367 /* use prefetched values */
1368 rx_desc = next_rxd;
1369 buffer_info = next_buffer;
1370
1371 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1372 }
1373 rx_ring->next_to_clean = i;
1374
1375 cleaned_count = e1000_desc_unused(rx_ring);
1376 if (cleaned_count)
1377 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1378
1379 adapter->total_rx_bytes += total_rx_bytes;
1380 adapter->total_rx_packets += total_rx_packets;
1381 return cleaned;
1382 }
1383
1384 /**
1385 * e1000_consume_page - helper function
1386 **/
1387 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1388 u16 length)
1389 {
1390 bi->page = NULL;
1391 skb->len += length;
1392 skb->data_len += length;
1393 skb->truesize += PAGE_SIZE;
1394 }
1395
1396 /**
1397 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1398 * @adapter: board private structure
1399 *
1400 * the return value indicates whether actual cleaning was done, there
1401 * is no guarantee that everything was cleaned
1402 **/
1403 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1404 int work_to_do)
1405 {
1406 struct e1000_adapter *adapter = rx_ring->adapter;
1407 struct net_device *netdev = adapter->netdev;
1408 struct pci_dev *pdev = adapter->pdev;
1409 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1410 struct e1000_buffer *buffer_info, *next_buffer;
1411 u32 length, staterr;
1412 unsigned int i;
1413 int cleaned_count = 0;
1414 bool cleaned = false;
1415 unsigned int total_rx_bytes=0, total_rx_packets=0;
1416
1417 i = rx_ring->next_to_clean;
1418 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1419 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1420 buffer_info = &rx_ring->buffer_info[i];
1421
1422 while (staterr & E1000_RXD_STAT_DD) {
1423 struct sk_buff *skb;
1424
1425 if (*work_done >= work_to_do)
1426 break;
1427 (*work_done)++;
1428 rmb(); /* read descriptor and rx_buffer_info after status DD */
1429
1430 skb = buffer_info->skb;
1431 buffer_info->skb = NULL;
1432
1433 ++i;
1434 if (i == rx_ring->count)
1435 i = 0;
1436 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1437 prefetch(next_rxd);
1438
1439 next_buffer = &rx_ring->buffer_info[i];
1440
1441 cleaned = true;
1442 cleaned_count++;
1443 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1444 DMA_FROM_DEVICE);
1445 buffer_info->dma = 0;
1446
1447 length = le16_to_cpu(rx_desc->wb.upper.length);
1448
1449 /* errors is only valid for DD + EOP descriptors */
1450 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1451 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1452 !(netdev->features & NETIF_F_RXALL)))) {
1453 /* recycle both page and skb */
1454 buffer_info->skb = skb;
1455 /* an error means any chain goes out the window too */
1456 if (rx_ring->rx_skb_top)
1457 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1458 rx_ring->rx_skb_top = NULL;
1459 goto next_desc;
1460 }
1461
1462 #define rxtop (rx_ring->rx_skb_top)
1463 if (!(staterr & E1000_RXD_STAT_EOP)) {
1464 /* this descriptor is only the beginning (or middle) */
1465 if (!rxtop) {
1466 /* this is the beginning of a chain */
1467 rxtop = skb;
1468 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1469 0, length);
1470 } else {
1471 /* this is the middle of a chain */
1472 skb_fill_page_desc(rxtop,
1473 skb_shinfo(rxtop)->nr_frags,
1474 buffer_info->page, 0, length);
1475 /* re-use the skb, only consumed the page */
1476 buffer_info->skb = skb;
1477 }
1478 e1000_consume_page(buffer_info, rxtop, length);
1479 goto next_desc;
1480 } else {
1481 if (rxtop) {
1482 /* end of the chain */
1483 skb_fill_page_desc(rxtop,
1484 skb_shinfo(rxtop)->nr_frags,
1485 buffer_info->page, 0, length);
1486 /* re-use the current skb, we only consumed the
1487 * page */
1488 buffer_info->skb = skb;
1489 skb = rxtop;
1490 rxtop = NULL;
1491 e1000_consume_page(buffer_info, skb, length);
1492 } else {
1493 /* no chain, got EOP, this buf is the packet
1494 * copybreak to save the put_page/alloc_page */
1495 if (length <= copybreak &&
1496 skb_tailroom(skb) >= length) {
1497 u8 *vaddr;
1498 vaddr = kmap_atomic(buffer_info->page);
1499 memcpy(skb_tail_pointer(skb), vaddr,
1500 length);
1501 kunmap_atomic(vaddr);
1502 /* re-use the page, so don't erase
1503 * buffer_info->page */
1504 skb_put(skb, length);
1505 } else {
1506 skb_fill_page_desc(skb, 0,
1507 buffer_info->page, 0,
1508 length);
1509 e1000_consume_page(buffer_info, skb,
1510 length);
1511 }
1512 }
1513 }
1514
1515 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1516 e1000_rx_checksum(adapter, staterr,
1517 rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1518
1519 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1520
1521 /* probably a little skewed due to removing CRC */
1522 total_rx_bytes += skb->len;
1523 total_rx_packets++;
1524
1525 /* eth type trans needs skb->data to point to something */
1526 if (!pskb_may_pull(skb, ETH_HLEN)) {
1527 e_err("pskb_may_pull failed.\n");
1528 dev_kfree_skb_irq(skb);
1529 goto next_desc;
1530 }
1531
1532 e1000_receive_skb(adapter, netdev, skb, staterr,
1533 rx_desc->wb.upper.vlan);
1534
1535 next_desc:
1536 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1537
1538 /* return some buffers to hardware, one at a time is too slow */
1539 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1540 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1541 GFP_ATOMIC);
1542 cleaned_count = 0;
1543 }
1544
1545 /* use prefetched values */
1546 rx_desc = next_rxd;
1547 buffer_info = next_buffer;
1548
1549 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1550 }
1551 rx_ring->next_to_clean = i;
1552
1553 cleaned_count = e1000_desc_unused(rx_ring);
1554 if (cleaned_count)
1555 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1556
1557 adapter->total_rx_bytes += total_rx_bytes;
1558 adapter->total_rx_packets += total_rx_packets;
1559 return cleaned;
1560 }
1561
1562 /**
1563 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1564 * @rx_ring: Rx descriptor ring
1565 **/
1566 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1567 {
1568 struct e1000_adapter *adapter = rx_ring->adapter;
1569 struct e1000_buffer *buffer_info;
1570 struct e1000_ps_page *ps_page;
1571 struct pci_dev *pdev = adapter->pdev;
1572 unsigned int i, j;
1573
1574 /* Free all the Rx ring sk_buffs */
1575 for (i = 0; i < rx_ring->count; i++) {
1576 buffer_info = &rx_ring->buffer_info[i];
1577 if (buffer_info->dma) {
1578 if (adapter->clean_rx == e1000_clean_rx_irq)
1579 dma_unmap_single(&pdev->dev, buffer_info->dma,
1580 adapter->rx_buffer_len,
1581 DMA_FROM_DEVICE);
1582 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1583 dma_unmap_page(&pdev->dev, buffer_info->dma,
1584 PAGE_SIZE,
1585 DMA_FROM_DEVICE);
1586 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1587 dma_unmap_single(&pdev->dev, buffer_info->dma,
1588 adapter->rx_ps_bsize0,
1589 DMA_FROM_DEVICE);
1590 buffer_info->dma = 0;
1591 }
1592
1593 if (buffer_info->page) {
1594 put_page(buffer_info->page);
1595 buffer_info->page = NULL;
1596 }
1597
1598 if (buffer_info->skb) {
1599 dev_kfree_skb(buffer_info->skb);
1600 buffer_info->skb = NULL;
1601 }
1602
1603 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1604 ps_page = &buffer_info->ps_pages[j];
1605 if (!ps_page->page)
1606 break;
1607 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1608 DMA_FROM_DEVICE);
1609 ps_page->dma = 0;
1610 put_page(ps_page->page);
1611 ps_page->page = NULL;
1612 }
1613 }
1614
1615 /* there also may be some cached data from a chained receive */
1616 if (rx_ring->rx_skb_top) {
1617 dev_kfree_skb(rx_ring->rx_skb_top);
1618 rx_ring->rx_skb_top = NULL;
1619 }
1620
1621 /* Zero out the descriptor ring */
1622 memset(rx_ring->desc, 0, rx_ring->size);
1623
1624 rx_ring->next_to_clean = 0;
1625 rx_ring->next_to_use = 0;
1626 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1627
1628 writel(0, rx_ring->head);
1629 if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1630 e1000e_update_rdt_wa(rx_ring, 0);
1631 else
1632 writel(0, rx_ring->tail);
1633 }
1634
1635 static void e1000e_downshift_workaround(struct work_struct *work)
1636 {
1637 struct e1000_adapter *adapter = container_of(work,
1638 struct e1000_adapter, downshift_task);
1639
1640 if (test_bit(__E1000_DOWN, &adapter->state))
1641 return;
1642
1643 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1644 }
1645
1646 /**
1647 * e1000_intr_msi - Interrupt Handler
1648 * @irq: interrupt number
1649 * @data: pointer to a network interface device structure
1650 **/
1651 static irqreturn_t e1000_intr_msi(int irq, void *data)
1652 {
1653 struct net_device *netdev = data;
1654 struct e1000_adapter *adapter = netdev_priv(netdev);
1655 struct e1000_hw *hw = &adapter->hw;
1656 u32 icr = er32(ICR);
1657
1658 /*
1659 * read ICR disables interrupts using IAM
1660 */
1661
1662 if (icr & E1000_ICR_LSC) {
1663 hw->mac.get_link_status = true;
1664 /*
1665 * ICH8 workaround-- Call gig speed drop workaround on cable
1666 * disconnect (LSC) before accessing any PHY registers
1667 */
1668 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1669 (!(er32(STATUS) & E1000_STATUS_LU)))
1670 schedule_work(&adapter->downshift_task);
1671
1672 /*
1673 * 80003ES2LAN workaround-- For packet buffer work-around on
1674 * link down event; disable receives here in the ISR and reset
1675 * adapter in watchdog
1676 */
1677 if (netif_carrier_ok(netdev) &&
1678 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1679 /* disable receives */
1680 u32 rctl = er32(RCTL);
1681 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1682 adapter->flags |= FLAG_RX_RESTART_NOW;
1683 }
1684 /* guard against interrupt when we're going down */
1685 if (!test_bit(__E1000_DOWN, &adapter->state))
1686 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1687 }
1688
1689 if (napi_schedule_prep(&adapter->napi)) {
1690 adapter->total_tx_bytes = 0;
1691 adapter->total_tx_packets = 0;
1692 adapter->total_rx_bytes = 0;
1693 adapter->total_rx_packets = 0;
1694 __napi_schedule(&adapter->napi);
1695 }
1696
1697 return IRQ_HANDLED;
1698 }
1699
1700 /**
1701 * e1000_intr - Interrupt Handler
1702 * @irq: interrupt number
1703 * @data: pointer to a network interface device structure
1704 **/
1705 static irqreturn_t e1000_intr(int irq, void *data)
1706 {
1707 struct net_device *netdev = data;
1708 struct e1000_adapter *adapter = netdev_priv(netdev);
1709 struct e1000_hw *hw = &adapter->hw;
1710 u32 rctl, icr = er32(ICR);
1711
1712 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1713 return IRQ_NONE; /* Not our interrupt */
1714
1715 /*
1716 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1717 * not set, then the adapter didn't send an interrupt
1718 */
1719 if (!(icr & E1000_ICR_INT_ASSERTED))
1720 return IRQ_NONE;
1721
1722 /*
1723 * Interrupt Auto-Mask...upon reading ICR,
1724 * interrupts are masked. No need for the
1725 * IMC write
1726 */
1727
1728 if (icr & E1000_ICR_LSC) {
1729 hw->mac.get_link_status = true;
1730 /*
1731 * ICH8 workaround-- Call gig speed drop workaround on cable
1732 * disconnect (LSC) before accessing any PHY registers
1733 */
1734 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1735 (!(er32(STATUS) & E1000_STATUS_LU)))
1736 schedule_work(&adapter->downshift_task);
1737
1738 /*
1739 * 80003ES2LAN workaround--
1740 * For packet buffer work-around on link down event;
1741 * disable receives here in the ISR and
1742 * reset adapter in watchdog
1743 */
1744 if (netif_carrier_ok(netdev) &&
1745 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1746 /* disable receives */
1747 rctl = er32(RCTL);
1748 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1749 adapter->flags |= FLAG_RX_RESTART_NOW;
1750 }
1751 /* guard against interrupt when we're going down */
1752 if (!test_bit(__E1000_DOWN, &adapter->state))
1753 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1754 }
1755
1756 if (napi_schedule_prep(&adapter->napi)) {
1757 adapter->total_tx_bytes = 0;
1758 adapter->total_tx_packets = 0;
1759 adapter->total_rx_bytes = 0;
1760 adapter->total_rx_packets = 0;
1761 __napi_schedule(&adapter->napi);
1762 }
1763
1764 return IRQ_HANDLED;
1765 }
1766
1767 static irqreturn_t e1000_msix_other(int irq, void *data)
1768 {
1769 struct net_device *netdev = data;
1770 struct e1000_adapter *adapter = netdev_priv(netdev);
1771 struct e1000_hw *hw = &adapter->hw;
1772 u32 icr = er32(ICR);
1773
1774 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1775 if (!test_bit(__E1000_DOWN, &adapter->state))
1776 ew32(IMS, E1000_IMS_OTHER);
1777 return IRQ_NONE;
1778 }
1779
1780 if (icr & adapter->eiac_mask)
1781 ew32(ICS, (icr & adapter->eiac_mask));
1782
1783 if (icr & E1000_ICR_OTHER) {
1784 if (!(icr & E1000_ICR_LSC))
1785 goto no_link_interrupt;
1786 hw->mac.get_link_status = true;
1787 /* guard against interrupt when we're going down */
1788 if (!test_bit(__E1000_DOWN, &adapter->state))
1789 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1790 }
1791
1792 no_link_interrupt:
1793 if (!test_bit(__E1000_DOWN, &adapter->state))
1794 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1795
1796 return IRQ_HANDLED;
1797 }
1798
1799
1800 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1801 {
1802 struct net_device *netdev = data;
1803 struct e1000_adapter *adapter = netdev_priv(netdev);
1804 struct e1000_hw *hw = &adapter->hw;
1805 struct e1000_ring *tx_ring = adapter->tx_ring;
1806
1807
1808 adapter->total_tx_bytes = 0;
1809 adapter->total_tx_packets = 0;
1810
1811 if (!e1000_clean_tx_irq(tx_ring))
1812 /* Ring was not completely cleaned, so fire another interrupt */
1813 ew32(ICS, tx_ring->ims_val);
1814
1815 return IRQ_HANDLED;
1816 }
1817
1818 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1819 {
1820 struct net_device *netdev = data;
1821 struct e1000_adapter *adapter = netdev_priv(netdev);
1822 struct e1000_ring *rx_ring = adapter->rx_ring;
1823
1824 /* Write the ITR value calculated at the end of the
1825 * previous interrupt.
1826 */
1827 if (rx_ring->set_itr) {
1828 writel(1000000000 / (rx_ring->itr_val * 256),
1829 rx_ring->itr_register);
1830 rx_ring->set_itr = 0;
1831 }
1832
1833 if (napi_schedule_prep(&adapter->napi)) {
1834 adapter->total_rx_bytes = 0;
1835 adapter->total_rx_packets = 0;
1836 __napi_schedule(&adapter->napi);
1837 }
1838 return IRQ_HANDLED;
1839 }
1840
1841 /**
1842 * e1000_configure_msix - Configure MSI-X hardware
1843 *
1844 * e1000_configure_msix sets up the hardware to properly
1845 * generate MSI-X interrupts.
1846 **/
1847 static void e1000_configure_msix(struct e1000_adapter *adapter)
1848 {
1849 struct e1000_hw *hw = &adapter->hw;
1850 struct e1000_ring *rx_ring = adapter->rx_ring;
1851 struct e1000_ring *tx_ring = adapter->tx_ring;
1852 int vector = 0;
1853 u32 ctrl_ext, ivar = 0;
1854
1855 adapter->eiac_mask = 0;
1856
1857 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1858 if (hw->mac.type == e1000_82574) {
1859 u32 rfctl = er32(RFCTL);
1860 rfctl |= E1000_RFCTL_ACK_DIS;
1861 ew32(RFCTL, rfctl);
1862 }
1863
1864 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1865 /* Configure Rx vector */
1866 rx_ring->ims_val = E1000_IMS_RXQ0;
1867 adapter->eiac_mask |= rx_ring->ims_val;
1868 if (rx_ring->itr_val)
1869 writel(1000000000 / (rx_ring->itr_val * 256),
1870 rx_ring->itr_register);
1871 else
1872 writel(1, rx_ring->itr_register);
1873 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1874
1875 /* Configure Tx vector */
1876 tx_ring->ims_val = E1000_IMS_TXQ0;
1877 vector++;
1878 if (tx_ring->itr_val)
1879 writel(1000000000 / (tx_ring->itr_val * 256),
1880 tx_ring->itr_register);
1881 else
1882 writel(1, tx_ring->itr_register);
1883 adapter->eiac_mask |= tx_ring->ims_val;
1884 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1885
1886 /* set vector for Other Causes, e.g. link changes */
1887 vector++;
1888 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1889 if (rx_ring->itr_val)
1890 writel(1000000000 / (rx_ring->itr_val * 256),
1891 hw->hw_addr + E1000_EITR_82574(vector));
1892 else
1893 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1894
1895 /* Cause Tx interrupts on every write back */
1896 ivar |= (1 << 31);
1897
1898 ew32(IVAR, ivar);
1899
1900 /* enable MSI-X PBA support */
1901 ctrl_ext = er32(CTRL_EXT);
1902 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1903
1904 /* Auto-Mask Other interrupts upon ICR read */
1905 #define E1000_EIAC_MASK_82574 0x01F00000
1906 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1907 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1908 ew32(CTRL_EXT, ctrl_ext);
1909 e1e_flush();
1910 }
1911
1912 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1913 {
1914 if (adapter->msix_entries) {
1915 pci_disable_msix(adapter->pdev);
1916 kfree(adapter->msix_entries);
1917 adapter->msix_entries = NULL;
1918 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1919 pci_disable_msi(adapter->pdev);
1920 adapter->flags &= ~FLAG_MSI_ENABLED;
1921 }
1922 }
1923
1924 /**
1925 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1926 *
1927 * Attempt to configure interrupts using the best available
1928 * capabilities of the hardware and kernel.
1929 **/
1930 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1931 {
1932 int err;
1933 int i;
1934
1935 switch (adapter->int_mode) {
1936 case E1000E_INT_MODE_MSIX:
1937 if (adapter->flags & FLAG_HAS_MSIX) {
1938 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1939 adapter->msix_entries = kcalloc(adapter->num_vectors,
1940 sizeof(struct msix_entry),
1941 GFP_KERNEL);
1942 if (adapter->msix_entries) {
1943 for (i = 0; i < adapter->num_vectors; i++)
1944 adapter->msix_entries[i].entry = i;
1945
1946 err = pci_enable_msix(adapter->pdev,
1947 adapter->msix_entries,
1948 adapter->num_vectors);
1949 if (err == 0)
1950 return;
1951 }
1952 /* MSI-X failed, so fall through and try MSI */
1953 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
1954 e1000e_reset_interrupt_capability(adapter);
1955 }
1956 adapter->int_mode = E1000E_INT_MODE_MSI;
1957 /* Fall through */
1958 case E1000E_INT_MODE_MSI:
1959 if (!pci_enable_msi(adapter->pdev)) {
1960 adapter->flags |= FLAG_MSI_ENABLED;
1961 } else {
1962 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1963 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
1964 }
1965 /* Fall through */
1966 case E1000E_INT_MODE_LEGACY:
1967 /* Don't do anything; this is the system default */
1968 break;
1969 }
1970
1971 /* store the number of vectors being used */
1972 adapter->num_vectors = 1;
1973 }
1974
1975 /**
1976 * e1000_request_msix - Initialize MSI-X interrupts
1977 *
1978 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1979 * kernel.
1980 **/
1981 static int e1000_request_msix(struct e1000_adapter *adapter)
1982 {
1983 struct net_device *netdev = adapter->netdev;
1984 int err = 0, vector = 0;
1985
1986 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1987 snprintf(adapter->rx_ring->name,
1988 sizeof(adapter->rx_ring->name) - 1,
1989 "%s-rx-0", netdev->name);
1990 else
1991 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1992 err = request_irq(adapter->msix_entries[vector].vector,
1993 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1994 netdev);
1995 if (err)
1996 return err;
1997 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
1998 E1000_EITR_82574(vector);
1999 adapter->rx_ring->itr_val = adapter->itr;
2000 vector++;
2001
2002 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2003 snprintf(adapter->tx_ring->name,
2004 sizeof(adapter->tx_ring->name) - 1,
2005 "%s-tx-0", netdev->name);
2006 else
2007 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2008 err = request_irq(adapter->msix_entries[vector].vector,
2009 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2010 netdev);
2011 if (err)
2012 return err;
2013 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2014 E1000_EITR_82574(vector);
2015 adapter->tx_ring->itr_val = adapter->itr;
2016 vector++;
2017
2018 err = request_irq(adapter->msix_entries[vector].vector,
2019 e1000_msix_other, 0, netdev->name, netdev);
2020 if (err)
2021 return err;
2022
2023 e1000_configure_msix(adapter);
2024
2025 return 0;
2026 }
2027
2028 /**
2029 * e1000_request_irq - initialize interrupts
2030 *
2031 * Attempts to configure interrupts using the best available
2032 * capabilities of the hardware and kernel.
2033 **/
2034 static int e1000_request_irq(struct e1000_adapter *adapter)
2035 {
2036 struct net_device *netdev = adapter->netdev;
2037 int err;
2038
2039 if (adapter->msix_entries) {
2040 err = e1000_request_msix(adapter);
2041 if (!err)
2042 return err;
2043 /* fall back to MSI */
2044 e1000e_reset_interrupt_capability(adapter);
2045 adapter->int_mode = E1000E_INT_MODE_MSI;
2046 e1000e_set_interrupt_capability(adapter);
2047 }
2048 if (adapter->flags & FLAG_MSI_ENABLED) {
2049 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2050 netdev->name, netdev);
2051 if (!err)
2052 return err;
2053
2054 /* fall back to legacy interrupt */
2055 e1000e_reset_interrupt_capability(adapter);
2056 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2057 }
2058
2059 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2060 netdev->name, netdev);
2061 if (err)
2062 e_err("Unable to allocate interrupt, Error: %d\n", err);
2063
2064 return err;
2065 }
2066
2067 static void e1000_free_irq(struct e1000_adapter *adapter)
2068 {
2069 struct net_device *netdev = adapter->netdev;
2070
2071 if (adapter->msix_entries) {
2072 int vector = 0;
2073
2074 free_irq(adapter->msix_entries[vector].vector, netdev);
2075 vector++;
2076
2077 free_irq(adapter->msix_entries[vector].vector, netdev);
2078 vector++;
2079
2080 /* Other Causes interrupt vector */
2081 free_irq(adapter->msix_entries[vector].vector, netdev);
2082 return;
2083 }
2084
2085 free_irq(adapter->pdev->irq, netdev);
2086 }
2087
2088 /**
2089 * e1000_irq_disable - Mask off interrupt generation on the NIC
2090 **/
2091 static void e1000_irq_disable(struct e1000_adapter *adapter)
2092 {
2093 struct e1000_hw *hw = &adapter->hw;
2094
2095 ew32(IMC, ~0);
2096 if (adapter->msix_entries)
2097 ew32(EIAC_82574, 0);
2098 e1e_flush();
2099
2100 if (adapter->msix_entries) {
2101 int i;
2102 for (i = 0; i < adapter->num_vectors; i++)
2103 synchronize_irq(adapter->msix_entries[i].vector);
2104 } else {
2105 synchronize_irq(adapter->pdev->irq);
2106 }
2107 }
2108
2109 /**
2110 * e1000_irq_enable - Enable default interrupt generation settings
2111 **/
2112 static void e1000_irq_enable(struct e1000_adapter *adapter)
2113 {
2114 struct e1000_hw *hw = &adapter->hw;
2115
2116 if (adapter->msix_entries) {
2117 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2118 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2119 } else {
2120 ew32(IMS, IMS_ENABLE_MASK);
2121 }
2122 e1e_flush();
2123 }
2124
2125 /**
2126 * e1000e_get_hw_control - get control of the h/w from f/w
2127 * @adapter: address of board private structure
2128 *
2129 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2130 * For ASF and Pass Through versions of f/w this means that
2131 * the driver is loaded. For AMT version (only with 82573)
2132 * of the f/w this means that the network i/f is open.
2133 **/
2134 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2135 {
2136 struct e1000_hw *hw = &adapter->hw;
2137 u32 ctrl_ext;
2138 u32 swsm;
2139
2140 /* Let firmware know the driver has taken over */
2141 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2142 swsm = er32(SWSM);
2143 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2144 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2145 ctrl_ext = er32(CTRL_EXT);
2146 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2147 }
2148 }
2149
2150 /**
2151 * e1000e_release_hw_control - release control of the h/w to f/w
2152 * @adapter: address of board private structure
2153 *
2154 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2155 * For ASF and Pass Through versions of f/w this means that the
2156 * driver is no longer loaded. For AMT version (only with 82573) i
2157 * of the f/w this means that the network i/f is closed.
2158 *
2159 **/
2160 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2161 {
2162 struct e1000_hw *hw = &adapter->hw;
2163 u32 ctrl_ext;
2164 u32 swsm;
2165
2166 /* Let firmware taken over control of h/w */
2167 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2168 swsm = er32(SWSM);
2169 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2170 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2171 ctrl_ext = er32(CTRL_EXT);
2172 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2173 }
2174 }
2175
2176 /**
2177 * @e1000_alloc_ring - allocate memory for a ring structure
2178 **/
2179 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2180 struct e1000_ring *ring)
2181 {
2182 struct pci_dev *pdev = adapter->pdev;
2183
2184 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2185 GFP_KERNEL);
2186 if (!ring->desc)
2187 return -ENOMEM;
2188
2189 return 0;
2190 }
2191
2192 /**
2193 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2194 * @tx_ring: Tx descriptor ring
2195 *
2196 * Return 0 on success, negative on failure
2197 **/
2198 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2199 {
2200 struct e1000_adapter *adapter = tx_ring->adapter;
2201 int err = -ENOMEM, size;
2202
2203 size = sizeof(struct e1000_buffer) * tx_ring->count;
2204 tx_ring->buffer_info = vzalloc(size);
2205 if (!tx_ring->buffer_info)
2206 goto err;
2207
2208 /* round up to nearest 4K */
2209 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2210 tx_ring->size = ALIGN(tx_ring->size, 4096);
2211
2212 err = e1000_alloc_ring_dma(adapter, tx_ring);
2213 if (err)
2214 goto err;
2215
2216 tx_ring->next_to_use = 0;
2217 tx_ring->next_to_clean = 0;
2218
2219 return 0;
2220 err:
2221 vfree(tx_ring->buffer_info);
2222 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2223 return err;
2224 }
2225
2226 /**
2227 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2228 * @rx_ring: Rx descriptor ring
2229 *
2230 * Returns 0 on success, negative on failure
2231 **/
2232 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2233 {
2234 struct e1000_adapter *adapter = rx_ring->adapter;
2235 struct e1000_buffer *buffer_info;
2236 int i, size, desc_len, err = -ENOMEM;
2237
2238 size = sizeof(struct e1000_buffer) * rx_ring->count;
2239 rx_ring->buffer_info = vzalloc(size);
2240 if (!rx_ring->buffer_info)
2241 goto err;
2242
2243 for (i = 0; i < rx_ring->count; i++) {
2244 buffer_info = &rx_ring->buffer_info[i];
2245 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2246 sizeof(struct e1000_ps_page),
2247 GFP_KERNEL);
2248 if (!buffer_info->ps_pages)
2249 goto err_pages;
2250 }
2251
2252 desc_len = sizeof(union e1000_rx_desc_packet_split);
2253
2254 /* Round up to nearest 4K */
2255 rx_ring->size = rx_ring->count * desc_len;
2256 rx_ring->size = ALIGN(rx_ring->size, 4096);
2257
2258 err = e1000_alloc_ring_dma(adapter, rx_ring);
2259 if (err)
2260 goto err_pages;
2261
2262 rx_ring->next_to_clean = 0;
2263 rx_ring->next_to_use = 0;
2264 rx_ring->rx_skb_top = NULL;
2265
2266 return 0;
2267
2268 err_pages:
2269 for (i = 0; i < rx_ring->count; i++) {
2270 buffer_info = &rx_ring->buffer_info[i];
2271 kfree(buffer_info->ps_pages);
2272 }
2273 err:
2274 vfree(rx_ring->buffer_info);
2275 e_err("Unable to allocate memory for the receive descriptor ring\n");
2276 return err;
2277 }
2278
2279 /**
2280 * e1000_clean_tx_ring - Free Tx Buffers
2281 * @tx_ring: Tx descriptor ring
2282 **/
2283 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2284 {
2285 struct e1000_adapter *adapter = tx_ring->adapter;
2286 struct e1000_buffer *buffer_info;
2287 unsigned long size;
2288 unsigned int i;
2289
2290 for (i = 0; i < tx_ring->count; i++) {
2291 buffer_info = &tx_ring->buffer_info[i];
2292 e1000_put_txbuf(tx_ring, buffer_info);
2293 }
2294
2295 netdev_reset_queue(adapter->netdev);
2296 size = sizeof(struct e1000_buffer) * tx_ring->count;
2297 memset(tx_ring->buffer_info, 0, size);
2298
2299 memset(tx_ring->desc, 0, tx_ring->size);
2300
2301 tx_ring->next_to_use = 0;
2302 tx_ring->next_to_clean = 0;
2303
2304 writel(0, tx_ring->head);
2305 if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2306 e1000e_update_tdt_wa(tx_ring, 0);
2307 else
2308 writel(0, tx_ring->tail);
2309 }
2310
2311 /**
2312 * e1000e_free_tx_resources - Free Tx Resources per Queue
2313 * @tx_ring: Tx descriptor ring
2314 *
2315 * Free all transmit software resources
2316 **/
2317 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2318 {
2319 struct e1000_adapter *adapter = tx_ring->adapter;
2320 struct pci_dev *pdev = adapter->pdev;
2321
2322 e1000_clean_tx_ring(tx_ring);
2323
2324 vfree(tx_ring->buffer_info);
2325 tx_ring->buffer_info = NULL;
2326
2327 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2328 tx_ring->dma);
2329 tx_ring->desc = NULL;
2330 }
2331
2332 /**
2333 * e1000e_free_rx_resources - Free Rx Resources
2334 * @rx_ring: Rx descriptor ring
2335 *
2336 * Free all receive software resources
2337 **/
2338 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2339 {
2340 struct e1000_adapter *adapter = rx_ring->adapter;
2341 struct pci_dev *pdev = adapter->pdev;
2342 int i;
2343
2344 e1000_clean_rx_ring(rx_ring);
2345
2346 for (i = 0; i < rx_ring->count; i++)
2347 kfree(rx_ring->buffer_info[i].ps_pages);
2348
2349 vfree(rx_ring->buffer_info);
2350 rx_ring->buffer_info = NULL;
2351
2352 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2353 rx_ring->dma);
2354 rx_ring->desc = NULL;
2355 }
2356
2357 /**
2358 * e1000_update_itr - update the dynamic ITR value based on statistics
2359 * @adapter: pointer to adapter
2360 * @itr_setting: current adapter->itr
2361 * @packets: the number of packets during this measurement interval
2362 * @bytes: the number of bytes during this measurement interval
2363 *
2364 * Stores a new ITR value based on packets and byte
2365 * counts during the last interrupt. The advantage of per interrupt
2366 * computation is faster updates and more accurate ITR for the current
2367 * traffic pattern. Constants in this function were computed
2368 * based on theoretical maximum wire speed and thresholds were set based
2369 * on testing data as well as attempting to minimize response time
2370 * while increasing bulk throughput. This functionality is controlled
2371 * by the InterruptThrottleRate module parameter.
2372 **/
2373 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2374 u16 itr_setting, int packets,
2375 int bytes)
2376 {
2377 unsigned int retval = itr_setting;
2378
2379 if (packets == 0)
2380 return itr_setting;
2381
2382 switch (itr_setting) {
2383 case lowest_latency:
2384 /* handle TSO and jumbo frames */
2385 if (bytes/packets > 8000)
2386 retval = bulk_latency;
2387 else if ((packets < 5) && (bytes > 512))
2388 retval = low_latency;
2389 break;
2390 case low_latency: /* 50 usec aka 20000 ints/s */
2391 if (bytes > 10000) {
2392 /* this if handles the TSO accounting */
2393 if (bytes/packets > 8000)
2394 retval = bulk_latency;
2395 else if ((packets < 10) || ((bytes/packets) > 1200))
2396 retval = bulk_latency;
2397 else if ((packets > 35))
2398 retval = lowest_latency;
2399 } else if (bytes/packets > 2000) {
2400 retval = bulk_latency;
2401 } else if (packets <= 2 && bytes < 512) {
2402 retval = lowest_latency;
2403 }
2404 break;
2405 case bulk_latency: /* 250 usec aka 4000 ints/s */
2406 if (bytes > 25000) {
2407 if (packets > 35)
2408 retval = low_latency;
2409 } else if (bytes < 6000) {
2410 retval = low_latency;
2411 }
2412 break;
2413 }
2414
2415 return retval;
2416 }
2417
2418 static void e1000_set_itr(struct e1000_adapter *adapter)
2419 {
2420 struct e1000_hw *hw = &adapter->hw;
2421 u16 current_itr;
2422 u32 new_itr = adapter->itr;
2423
2424 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2425 if (adapter->link_speed != SPEED_1000) {
2426 current_itr = 0;
2427 new_itr = 4000;
2428 goto set_itr_now;
2429 }
2430
2431 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2432 new_itr = 0;
2433 goto set_itr_now;
2434 }
2435
2436 adapter->tx_itr = e1000_update_itr(adapter,
2437 adapter->tx_itr,
2438 adapter->total_tx_packets,
2439 adapter->total_tx_bytes);
2440 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2441 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2442 adapter->tx_itr = low_latency;
2443
2444 adapter->rx_itr = e1000_update_itr(adapter,
2445 adapter->rx_itr,
2446 adapter->total_rx_packets,
2447 adapter->total_rx_bytes);
2448 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2449 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2450 adapter->rx_itr = low_latency;
2451
2452 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2453
2454 switch (current_itr) {
2455 /* counts and packets in update_itr are dependent on these numbers */
2456 case lowest_latency:
2457 new_itr = 70000;
2458 break;
2459 case low_latency:
2460 new_itr = 20000; /* aka hwitr = ~200 */
2461 break;
2462 case bulk_latency:
2463 new_itr = 4000;
2464 break;
2465 default:
2466 break;
2467 }
2468
2469 set_itr_now:
2470 if (new_itr != adapter->itr) {
2471 /*
2472 * this attempts to bias the interrupt rate towards Bulk
2473 * by adding intermediate steps when interrupt rate is
2474 * increasing
2475 */
2476 new_itr = new_itr > adapter->itr ?
2477 min(adapter->itr + (new_itr >> 2), new_itr) :
2478 new_itr;
2479 adapter->itr = new_itr;
2480 adapter->rx_ring->itr_val = new_itr;
2481 if (adapter->msix_entries)
2482 adapter->rx_ring->set_itr = 1;
2483 else
2484 if (new_itr)
2485 ew32(ITR, 1000000000 / (new_itr * 256));
2486 else
2487 ew32(ITR, 0);
2488 }
2489 }
2490
2491 /**
2492 * e1000_alloc_queues - Allocate memory for all rings
2493 * @adapter: board private structure to initialize
2494 **/
2495 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2496 {
2497 int size = sizeof(struct e1000_ring);
2498
2499 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2500 if (!adapter->tx_ring)
2501 goto err;
2502 adapter->tx_ring->count = adapter->tx_ring_count;
2503 adapter->tx_ring->adapter = adapter;
2504
2505 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2506 if (!adapter->rx_ring)
2507 goto err;
2508 adapter->rx_ring->count = adapter->rx_ring_count;
2509 adapter->rx_ring->adapter = adapter;
2510
2511 return 0;
2512 err:
2513 e_err("Unable to allocate memory for queues\n");
2514 kfree(adapter->rx_ring);
2515 kfree(adapter->tx_ring);
2516 return -ENOMEM;
2517 }
2518
2519 /**
2520 * e1000e_poll - NAPI Rx polling callback
2521 * @napi: struct associated with this polling callback
2522 * @weight: number of packets driver is allowed to process this poll
2523 **/
2524 static int e1000e_poll(struct napi_struct *napi, int weight)
2525 {
2526 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2527 napi);
2528 struct e1000_hw *hw = &adapter->hw;
2529 struct net_device *poll_dev = adapter->netdev;
2530 int tx_cleaned = 1, work_done = 0;
2531
2532 adapter = netdev_priv(poll_dev);
2533
2534 if (!adapter->msix_entries ||
2535 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2536 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2537
2538 adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2539
2540 if (!tx_cleaned)
2541 work_done = weight;
2542
2543 /* If weight not fully consumed, exit the polling mode */
2544 if (work_done < weight) {
2545 if (adapter->itr_setting & 3)
2546 e1000_set_itr(adapter);
2547 napi_complete(napi);
2548 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2549 if (adapter->msix_entries)
2550 ew32(IMS, adapter->rx_ring->ims_val);
2551 else
2552 e1000_irq_enable(adapter);
2553 }
2554 }
2555
2556 return work_done;
2557 }
2558
2559 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2560 {
2561 struct e1000_adapter *adapter = netdev_priv(netdev);
2562 struct e1000_hw *hw = &adapter->hw;
2563 u32 vfta, index;
2564
2565 /* don't update vlan cookie if already programmed */
2566 if ((adapter->hw.mng_cookie.status &
2567 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2568 (vid == adapter->mng_vlan_id))
2569 return 0;
2570
2571 /* add VID to filter table */
2572 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2573 index = (vid >> 5) & 0x7F;
2574 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2575 vfta |= (1 << (vid & 0x1F));
2576 hw->mac.ops.write_vfta(hw, index, vfta);
2577 }
2578
2579 set_bit(vid, adapter->active_vlans);
2580
2581 return 0;
2582 }
2583
2584 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2585 {
2586 struct e1000_adapter *adapter = netdev_priv(netdev);
2587 struct e1000_hw *hw = &adapter->hw;
2588 u32 vfta, index;
2589
2590 if ((adapter->hw.mng_cookie.status &
2591 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2592 (vid == adapter->mng_vlan_id)) {
2593 /* release control to f/w */
2594 e1000e_release_hw_control(adapter);
2595 return 0;
2596 }
2597
2598 /* remove VID from filter table */
2599 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2600 index = (vid >> 5) & 0x7F;
2601 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2602 vfta &= ~(1 << (vid & 0x1F));
2603 hw->mac.ops.write_vfta(hw, index, vfta);
2604 }
2605
2606 clear_bit(vid, adapter->active_vlans);
2607
2608 return 0;
2609 }
2610
2611 /**
2612 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2613 * @adapter: board private structure to initialize
2614 **/
2615 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2616 {
2617 struct net_device *netdev = adapter->netdev;
2618 struct e1000_hw *hw = &adapter->hw;
2619 u32 rctl;
2620
2621 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2622 /* disable VLAN receive filtering */
2623 rctl = er32(RCTL);
2624 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2625 ew32(RCTL, rctl);
2626
2627 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2628 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2629 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2630 }
2631 }
2632 }
2633
2634 /**
2635 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2636 * @adapter: board private structure to initialize
2637 **/
2638 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2639 {
2640 struct e1000_hw *hw = &adapter->hw;
2641 u32 rctl;
2642
2643 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2644 /* enable VLAN receive filtering */
2645 rctl = er32(RCTL);
2646 rctl |= E1000_RCTL_VFE;
2647 rctl &= ~E1000_RCTL_CFIEN;
2648 ew32(RCTL, rctl);
2649 }
2650 }
2651
2652 /**
2653 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2654 * @adapter: board private structure to initialize
2655 **/
2656 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2657 {
2658 struct e1000_hw *hw = &adapter->hw;
2659 u32 ctrl;
2660
2661 /* disable VLAN tag insert/strip */
2662 ctrl = er32(CTRL);
2663 ctrl &= ~E1000_CTRL_VME;
2664 ew32(CTRL, ctrl);
2665 }
2666
2667 /**
2668 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2669 * @adapter: board private structure to initialize
2670 **/
2671 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2672 {
2673 struct e1000_hw *hw = &adapter->hw;
2674 u32 ctrl;
2675
2676 /* enable VLAN tag insert/strip */
2677 ctrl = er32(CTRL);
2678 ctrl |= E1000_CTRL_VME;
2679 ew32(CTRL, ctrl);
2680 }
2681
2682 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2683 {
2684 struct net_device *netdev = adapter->netdev;
2685 u16 vid = adapter->hw.mng_cookie.vlan_id;
2686 u16 old_vid = adapter->mng_vlan_id;
2687
2688 if (adapter->hw.mng_cookie.status &
2689 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2690 e1000_vlan_rx_add_vid(netdev, vid);
2691 adapter->mng_vlan_id = vid;
2692 }
2693
2694 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2695 e1000_vlan_rx_kill_vid(netdev, old_vid);
2696 }
2697
2698 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2699 {
2700 u16 vid;
2701
2702 e1000_vlan_rx_add_vid(adapter->netdev, 0);
2703
2704 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2705 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2706 }
2707
2708 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2709 {
2710 struct e1000_hw *hw = &adapter->hw;
2711 u32 manc, manc2h, mdef, i, j;
2712
2713 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2714 return;
2715
2716 manc = er32(MANC);
2717
2718 /*
2719 * enable receiving management packets to the host. this will probably
2720 * generate destination unreachable messages from the host OS, but
2721 * the packets will be handled on SMBUS
2722 */
2723 manc |= E1000_MANC_EN_MNG2HOST;
2724 manc2h = er32(MANC2H);
2725
2726 switch (hw->mac.type) {
2727 default:
2728 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2729 break;
2730 case e1000_82574:
2731 case e1000_82583:
2732 /*
2733 * Check if IPMI pass-through decision filter already exists;
2734 * if so, enable it.
2735 */
2736 for (i = 0, j = 0; i < 8; i++) {
2737 mdef = er32(MDEF(i));
2738
2739 /* Ignore filters with anything other than IPMI ports */
2740 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2741 continue;
2742
2743 /* Enable this decision filter in MANC2H */
2744 if (mdef)
2745 manc2h |= (1 << i);
2746
2747 j |= mdef;
2748 }
2749
2750 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2751 break;
2752
2753 /* Create new decision filter in an empty filter */
2754 for (i = 0, j = 0; i < 8; i++)
2755 if (er32(MDEF(i)) == 0) {
2756 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2757 E1000_MDEF_PORT_664));
2758 manc2h |= (1 << 1);
2759 j++;
2760 break;
2761 }
2762
2763 if (!j)
2764 e_warn("Unable to create IPMI pass-through filter\n");
2765 break;
2766 }
2767
2768 ew32(MANC2H, manc2h);
2769 ew32(MANC, manc);
2770 }
2771
2772 /**
2773 * e1000_configure_tx - Configure Transmit Unit after Reset
2774 * @adapter: board private structure
2775 *
2776 * Configure the Tx unit of the MAC after a reset.
2777 **/
2778 static void e1000_configure_tx(struct e1000_adapter *adapter)
2779 {
2780 struct e1000_hw *hw = &adapter->hw;
2781 struct e1000_ring *tx_ring = adapter->tx_ring;
2782 u64 tdba;
2783 u32 tdlen, tarc;
2784
2785 /* Setup the HW Tx Head and Tail descriptor pointers */
2786 tdba = tx_ring->dma;
2787 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2788 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2789 ew32(TDBAH(0), (tdba >> 32));
2790 ew32(TDLEN(0), tdlen);
2791 ew32(TDH(0), 0);
2792 ew32(TDT(0), 0);
2793 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2794 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2795
2796 /* Set the Tx Interrupt Delay register */
2797 ew32(TIDV, adapter->tx_int_delay);
2798 /* Tx irq moderation */
2799 ew32(TADV, adapter->tx_abs_int_delay);
2800
2801 if (adapter->flags2 & FLAG2_DMA_BURST) {
2802 u32 txdctl = er32(TXDCTL(0));
2803 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2804 E1000_TXDCTL_WTHRESH);
2805 /*
2806 * set up some performance related parameters to encourage the
2807 * hardware to use the bus more efficiently in bursts, depends
2808 * on the tx_int_delay to be enabled,
2809 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2810 * hthresh = 1 ==> prefetch when one or more available
2811 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2812 * BEWARE: this seems to work but should be considered first if
2813 * there are Tx hangs or other Tx related bugs
2814 */
2815 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2816 ew32(TXDCTL(0), txdctl);
2817 }
2818 /* erratum work around: set txdctl the same for both queues */
2819 ew32(TXDCTL(1), er32(TXDCTL(0)));
2820
2821 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2822 tarc = er32(TARC(0));
2823 /*
2824 * set the speed mode bit, we'll clear it if we're not at
2825 * gigabit link later
2826 */
2827 #define SPEED_MODE_BIT (1 << 21)
2828 tarc |= SPEED_MODE_BIT;
2829 ew32(TARC(0), tarc);
2830 }
2831
2832 /* errata: program both queues to unweighted RR */
2833 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2834 tarc = er32(TARC(0));
2835 tarc |= 1;
2836 ew32(TARC(0), tarc);
2837 tarc = er32(TARC(1));
2838 tarc |= 1;
2839 ew32(TARC(1), tarc);
2840 }
2841
2842 /* Setup Transmit Descriptor Settings for eop descriptor */
2843 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2844
2845 /* only set IDE if we are delaying interrupts using the timers */
2846 if (adapter->tx_int_delay)
2847 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2848
2849 /* enable Report Status bit */
2850 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2851
2852 hw->mac.ops.config_collision_dist(hw);
2853 }
2854
2855 /**
2856 * e1000_setup_rctl - configure the receive control registers
2857 * @adapter: Board private structure
2858 **/
2859 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2860 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2861 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2862 {
2863 struct e1000_hw *hw = &adapter->hw;
2864 u32 rctl, rfctl;
2865 u32 pages = 0;
2866
2867 /* Workaround Si errata on PCHx - configure jumbo frame flow */
2868 if (hw->mac.type >= e1000_pch2lan) {
2869 s32 ret_val;
2870
2871 if (adapter->netdev->mtu > ETH_DATA_LEN)
2872 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2873 else
2874 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2875
2876 if (ret_val)
2877 e_dbg("failed to enable jumbo frame workaround mode\n");
2878 }
2879
2880 /* Program MC offset vector base */
2881 rctl = er32(RCTL);
2882 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2883 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2884 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2885 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2886
2887 /* Do not Store bad packets */
2888 rctl &= ~E1000_RCTL_SBP;
2889
2890 /* Enable Long Packet receive */
2891 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2892 rctl &= ~E1000_RCTL_LPE;
2893 else
2894 rctl |= E1000_RCTL_LPE;
2895
2896 /* Some systems expect that the CRC is included in SMBUS traffic. The
2897 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2898 * host memory when this is enabled
2899 */
2900 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2901 rctl |= E1000_RCTL_SECRC;
2902
2903 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2904 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2905 u16 phy_data;
2906
2907 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2908 phy_data &= 0xfff8;
2909 phy_data |= (1 << 2);
2910 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2911
2912 e1e_rphy(hw, 22, &phy_data);
2913 phy_data &= 0x0fff;
2914 phy_data |= (1 << 14);
2915 e1e_wphy(hw, 0x10, 0x2823);
2916 e1e_wphy(hw, 0x11, 0x0003);
2917 e1e_wphy(hw, 22, phy_data);
2918 }
2919
2920 /* Setup buffer sizes */
2921 rctl &= ~E1000_RCTL_SZ_4096;
2922 rctl |= E1000_RCTL_BSEX;
2923 switch (adapter->rx_buffer_len) {
2924 case 2048:
2925 default:
2926 rctl |= E1000_RCTL_SZ_2048;
2927 rctl &= ~E1000_RCTL_BSEX;
2928 break;
2929 case 4096:
2930 rctl |= E1000_RCTL_SZ_4096;
2931 break;
2932 case 8192:
2933 rctl |= E1000_RCTL_SZ_8192;
2934 break;
2935 case 16384:
2936 rctl |= E1000_RCTL_SZ_16384;
2937 break;
2938 }
2939
2940 /* Enable Extended Status in all Receive Descriptors */
2941 rfctl = er32(RFCTL);
2942 rfctl |= E1000_RFCTL_EXTEN;
2943 ew32(RFCTL, rfctl);
2944
2945 /*
2946 * 82571 and greater support packet-split where the protocol
2947 * header is placed in skb->data and the packet data is
2948 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2949 * In the case of a non-split, skb->data is linearly filled,
2950 * followed by the page buffers. Therefore, skb->data is
2951 * sized to hold the largest protocol header.
2952 *
2953 * allocations using alloc_page take too long for regular MTU
2954 * so only enable packet split for jumbo frames
2955 *
2956 * Using pages when the page size is greater than 16k wastes
2957 * a lot of memory, since we allocate 3 pages at all times
2958 * per packet.
2959 */
2960 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2961 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2962 adapter->rx_ps_pages = pages;
2963 else
2964 adapter->rx_ps_pages = 0;
2965
2966 if (adapter->rx_ps_pages) {
2967 u32 psrctl = 0;
2968
2969 /* Enable Packet split descriptors */
2970 rctl |= E1000_RCTL_DTYP_PS;
2971
2972 psrctl |= adapter->rx_ps_bsize0 >>
2973 E1000_PSRCTL_BSIZE0_SHIFT;
2974
2975 switch (adapter->rx_ps_pages) {
2976 case 3:
2977 psrctl |= PAGE_SIZE <<
2978 E1000_PSRCTL_BSIZE3_SHIFT;
2979 case 2:
2980 psrctl |= PAGE_SIZE <<
2981 E1000_PSRCTL_BSIZE2_SHIFT;
2982 case 1:
2983 psrctl |= PAGE_SIZE >>
2984 E1000_PSRCTL_BSIZE1_SHIFT;
2985 break;
2986 }
2987
2988 ew32(PSRCTL, psrctl);
2989 }
2990
2991 /* This is useful for sniffing bad packets. */
2992 if (adapter->netdev->features & NETIF_F_RXALL) {
2993 /* UPE and MPE will be handled by normal PROMISC logic
2994 * in e1000e_set_rx_mode */
2995 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2996 E1000_RCTL_BAM | /* RX All Bcast Pkts */
2997 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2998
2999 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3000 E1000_RCTL_DPF | /* Allow filtered pause */
3001 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3002 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3003 * and that breaks VLANs.
3004 */
3005 }
3006
3007 ew32(RCTL, rctl);
3008 /* just started the receive unit, no need to restart */
3009 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3010 }
3011
3012 /**
3013 * e1000_configure_rx - Configure Receive Unit after Reset
3014 * @adapter: board private structure
3015 *
3016 * Configure the Rx unit of the MAC after a reset.
3017 **/
3018 static void e1000_configure_rx(struct e1000_adapter *adapter)
3019 {
3020 struct e1000_hw *hw = &adapter->hw;
3021 struct e1000_ring *rx_ring = adapter->rx_ring;
3022 u64 rdba;
3023 u32 rdlen, rctl, rxcsum, ctrl_ext;
3024
3025 if (adapter->rx_ps_pages) {
3026 /* this is a 32 byte descriptor */
3027 rdlen = rx_ring->count *
3028 sizeof(union e1000_rx_desc_packet_split);
3029 adapter->clean_rx = e1000_clean_rx_irq_ps;
3030 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3031 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3032 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3033 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3034 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3035 } else {
3036 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3037 adapter->clean_rx = e1000_clean_rx_irq;
3038 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3039 }
3040
3041 /* disable receives while setting up the descriptors */
3042 rctl = er32(RCTL);
3043 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3044 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3045 e1e_flush();
3046 usleep_range(10000, 20000);
3047
3048 if (adapter->flags2 & FLAG2_DMA_BURST) {
3049 /*
3050 * set the writeback threshold (only takes effect if the RDTR
3051 * is set). set GRAN=1 and write back up to 0x4 worth, and
3052 * enable prefetching of 0x20 Rx descriptors
3053 * granularity = 01
3054 * wthresh = 04,
3055 * hthresh = 04,
3056 * pthresh = 0x20
3057 */
3058 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3059 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3060
3061 /*
3062 * override the delay timers for enabling bursting, only if
3063 * the value was not set by the user via module options
3064 */
3065 if (adapter->rx_int_delay == DEFAULT_RDTR)
3066 adapter->rx_int_delay = BURST_RDTR;
3067 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3068 adapter->rx_abs_int_delay = BURST_RADV;
3069 }
3070
3071 /* set the Receive Delay Timer Register */
3072 ew32(RDTR, adapter->rx_int_delay);
3073
3074 /* irq moderation */
3075 ew32(RADV, adapter->rx_abs_int_delay);
3076 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3077 ew32(ITR, 1000000000 / (adapter->itr * 256));
3078
3079 ctrl_ext = er32(CTRL_EXT);
3080 /* Auto-Mask interrupts upon ICR access */
3081 ctrl_ext |= E1000_CTRL_EXT_IAME;
3082 ew32(IAM, 0xffffffff);
3083 ew32(CTRL_EXT, ctrl_ext);
3084 e1e_flush();
3085
3086 /*
3087 * Setup the HW Rx Head and Tail Descriptor Pointers and
3088 * the Base and Length of the Rx Descriptor Ring
3089 */
3090 rdba = rx_ring->dma;
3091 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3092 ew32(RDBAH(0), (rdba >> 32));
3093 ew32(RDLEN(0), rdlen);
3094 ew32(RDH(0), 0);
3095 ew32(RDT(0), 0);
3096 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3097 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3098
3099 /* Enable Receive Checksum Offload for TCP and UDP */
3100 rxcsum = er32(RXCSUM);
3101 if (adapter->netdev->features & NETIF_F_RXCSUM) {
3102 rxcsum |= E1000_RXCSUM_TUOFL;
3103
3104 /*
3105 * IPv4 payload checksum for UDP fragments must be
3106 * used in conjunction with packet-split.
3107 */
3108 if (adapter->rx_ps_pages)
3109 rxcsum |= E1000_RXCSUM_IPPCSE;
3110 } else {
3111 rxcsum &= ~E1000_RXCSUM_TUOFL;
3112 /* no need to clear IPPCSE as it defaults to 0 */
3113 }
3114 ew32(RXCSUM, rxcsum);
3115
3116 if (adapter->hw.mac.type == e1000_pch2lan) {
3117 /*
3118 * With jumbo frames, excessive C-state transition
3119 * latencies result in dropped transactions.
3120 */
3121 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3122 u32 rxdctl = er32(RXDCTL(0));
3123 ew32(RXDCTL(0), rxdctl | 0x3);
3124 pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3125 } else {
3126 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3127 PM_QOS_DEFAULT_VALUE);
3128 }
3129 }
3130
3131 /* Enable Receives */
3132 ew32(RCTL, rctl);
3133 }
3134
3135 /**
3136 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3137 * @netdev: network interface device structure
3138 *
3139 * Writes multicast address list to the MTA hash table.
3140 * Returns: -ENOMEM on failure
3141 * 0 on no addresses written
3142 * X on writing X addresses to MTA
3143 */
3144 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3145 {
3146 struct e1000_adapter *adapter = netdev_priv(netdev);
3147 struct e1000_hw *hw = &adapter->hw;
3148 struct netdev_hw_addr *ha;
3149 u8 *mta_list;
3150 int i;
3151
3152 if (netdev_mc_empty(netdev)) {
3153 /* nothing to program, so clear mc list */
3154 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3155 return 0;
3156 }
3157
3158 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3159 if (!mta_list)
3160 return -ENOMEM;
3161
3162 /* update_mc_addr_list expects a packed array of only addresses. */
3163 i = 0;
3164 netdev_for_each_mc_addr(ha, netdev)
3165 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3166
3167 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3168 kfree(mta_list);
3169
3170 return netdev_mc_count(netdev);
3171 }
3172
3173 /**
3174 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3175 * @netdev: network interface device structure
3176 *
3177 * Writes unicast address list to the RAR table.
3178 * Returns: -ENOMEM on failure/insufficient address space
3179 * 0 on no addresses written
3180 * X on writing X addresses to the RAR table
3181 **/
3182 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3183 {
3184 struct e1000_adapter *adapter = netdev_priv(netdev);
3185 struct e1000_hw *hw = &adapter->hw;
3186 unsigned int rar_entries = hw->mac.rar_entry_count;
3187 int count = 0;
3188
3189 /* save a rar entry for our hardware address */
3190 rar_entries--;
3191
3192 /* save a rar entry for the LAA workaround */
3193 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3194 rar_entries--;
3195
3196 /* return ENOMEM indicating insufficient memory for addresses */
3197 if (netdev_uc_count(netdev) > rar_entries)
3198 return -ENOMEM;
3199
3200 if (!netdev_uc_empty(netdev) && rar_entries) {
3201 struct netdev_hw_addr *ha;
3202
3203 /*
3204 * write the addresses in reverse order to avoid write
3205 * combining
3206 */
3207 netdev_for_each_uc_addr(ha, netdev) {
3208 if (!rar_entries)
3209 break;
3210 hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3211 count++;
3212 }
3213 }
3214
3215 /* zero out the remaining RAR entries not used above */
3216 for (; rar_entries > 0; rar_entries--) {
3217 ew32(RAH(rar_entries), 0);
3218 ew32(RAL(rar_entries), 0);
3219 }
3220 e1e_flush();
3221
3222 return count;
3223 }
3224
3225 /**
3226 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3227 * @netdev: network interface device structure
3228 *
3229 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3230 * address list or the network interface flags are updated. This routine is
3231 * responsible for configuring the hardware for proper unicast, multicast,
3232 * promiscuous mode, and all-multi behavior.
3233 **/
3234 static void e1000e_set_rx_mode(struct net_device *netdev)
3235 {
3236 struct e1000_adapter *adapter = netdev_priv(netdev);
3237 struct e1000_hw *hw = &adapter->hw;
3238 u32 rctl;
3239
3240 /* Check for Promiscuous and All Multicast modes */
3241 rctl = er32(RCTL);
3242
3243 /* clear the affected bits */
3244 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3245
3246 if (netdev->flags & IFF_PROMISC) {
3247 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3248 /* Do not hardware filter VLANs in promisc mode */
3249 e1000e_vlan_filter_disable(adapter);
3250 } else {
3251 int count;
3252
3253 if (netdev->flags & IFF_ALLMULTI) {
3254 rctl |= E1000_RCTL_MPE;
3255 } else {
3256 /*
3257 * Write addresses to the MTA, if the attempt fails
3258 * then we should just turn on promiscuous mode so
3259 * that we can at least receive multicast traffic
3260 */
3261 count = e1000e_write_mc_addr_list(netdev);
3262 if (count < 0)
3263 rctl |= E1000_RCTL_MPE;
3264 }
3265 e1000e_vlan_filter_enable(adapter);
3266 /*
3267 * Write addresses to available RAR registers, if there is not
3268 * sufficient space to store all the addresses then enable
3269 * unicast promiscuous mode
3270 */
3271 count = e1000e_write_uc_addr_list(netdev);
3272 if (count < 0)
3273 rctl |= E1000_RCTL_UPE;
3274 }
3275
3276 ew32(RCTL, rctl);
3277
3278 if (netdev->features & NETIF_F_HW_VLAN_RX)
3279 e1000e_vlan_strip_enable(adapter);
3280 else
3281 e1000e_vlan_strip_disable(adapter);
3282 }
3283
3284 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3285 {
3286 struct e1000_hw *hw = &adapter->hw;
3287 u32 mrqc, rxcsum;
3288 int i;
3289 static const u32 rsskey[10] = {
3290 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3291 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3292 };
3293
3294 /* Fill out hash function seed */
3295 for (i = 0; i < 10; i++)
3296 ew32(RSSRK(i), rsskey[i]);
3297
3298 /* Direct all traffic to queue 0 */
3299 for (i = 0; i < 32; i++)
3300 ew32(RETA(i), 0);
3301
3302 /*
3303 * Disable raw packet checksumming so that RSS hash is placed in
3304 * descriptor on writeback.
3305 */
3306 rxcsum = er32(RXCSUM);
3307 rxcsum |= E1000_RXCSUM_PCSD;
3308
3309 ew32(RXCSUM, rxcsum);
3310
3311 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3312 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3313 E1000_MRQC_RSS_FIELD_IPV6 |
3314 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3315 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3316
3317 ew32(MRQC, mrqc);
3318 }
3319
3320 /**
3321 * e1000_configure - configure the hardware for Rx and Tx
3322 * @adapter: private board structure
3323 **/
3324 static void e1000_configure(struct e1000_adapter *adapter)
3325 {
3326 struct e1000_ring *rx_ring = adapter->rx_ring;
3327
3328 e1000e_set_rx_mode(adapter->netdev);
3329
3330 e1000_restore_vlan(adapter);
3331 e1000_init_manageability_pt(adapter);
3332
3333 e1000_configure_tx(adapter);
3334
3335 if (adapter->netdev->features & NETIF_F_RXHASH)
3336 e1000e_setup_rss_hash(adapter);
3337 e1000_setup_rctl(adapter);
3338 e1000_configure_rx(adapter);
3339 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3340 }
3341
3342 /**
3343 * e1000e_power_up_phy - restore link in case the phy was powered down
3344 * @adapter: address of board private structure
3345 *
3346 * The phy may be powered down to save power and turn off link when the
3347 * driver is unloaded and wake on lan is not enabled (among others)
3348 * *** this routine MUST be followed by a call to e1000e_reset ***
3349 **/
3350 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3351 {
3352 if (adapter->hw.phy.ops.power_up)
3353 adapter->hw.phy.ops.power_up(&adapter->hw);
3354
3355 adapter->hw.mac.ops.setup_link(&adapter->hw);
3356 }
3357
3358 /**
3359 * e1000_power_down_phy - Power down the PHY
3360 *
3361 * Power down the PHY so no link is implied when interface is down.
3362 * The PHY cannot be powered down if management or WoL is active.
3363 */
3364 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3365 {
3366 /* WoL is enabled */
3367 if (adapter->wol)
3368 return;
3369
3370 if (adapter->hw.phy.ops.power_down)
3371 adapter->hw.phy.ops.power_down(&adapter->hw);
3372 }
3373
3374 /**
3375 * e1000e_reset - bring the hardware into a known good state
3376 *
3377 * This function boots the hardware and enables some settings that
3378 * require a configuration cycle of the hardware - those cannot be
3379 * set/changed during runtime. After reset the device needs to be
3380 * properly configured for Rx, Tx etc.
3381 */
3382 void e1000e_reset(struct e1000_adapter *adapter)
3383 {
3384 struct e1000_mac_info *mac = &adapter->hw.mac;
3385 struct e1000_fc_info *fc = &adapter->hw.fc;
3386 struct e1000_hw *hw = &adapter->hw;
3387 u32 tx_space, min_tx_space, min_rx_space;
3388 u32 pba = adapter->pba;
3389 u16 hwm;
3390
3391 /* reset Packet Buffer Allocation to default */
3392 ew32(PBA, pba);
3393
3394 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3395 /*
3396 * To maintain wire speed transmits, the Tx FIFO should be
3397 * large enough to accommodate two full transmit packets,
3398 * rounded up to the next 1KB and expressed in KB. Likewise,
3399 * the Rx FIFO should be large enough to accommodate at least
3400 * one full receive packet and is similarly rounded up and
3401 * expressed in KB.
3402 */
3403 pba = er32(PBA);
3404 /* upper 16 bits has Tx packet buffer allocation size in KB */
3405 tx_space = pba >> 16;
3406 /* lower 16 bits has Rx packet buffer allocation size in KB */
3407 pba &= 0xffff;
3408 /*
3409 * the Tx fifo also stores 16 bytes of information about the Tx
3410 * but don't include ethernet FCS because hardware appends it
3411 */
3412 min_tx_space = (adapter->max_frame_size +
3413 sizeof(struct e1000_tx_desc) -
3414 ETH_FCS_LEN) * 2;
3415 min_tx_space = ALIGN(min_tx_space, 1024);
3416 min_tx_space >>= 10;
3417 /* software strips receive CRC, so leave room for it */
3418 min_rx_space = adapter->max_frame_size;
3419 min_rx_space = ALIGN(min_rx_space, 1024);
3420 min_rx_space >>= 10;
3421
3422 /*
3423 * If current Tx allocation is less than the min Tx FIFO size,
3424 * and the min Tx FIFO size is less than the current Rx FIFO
3425 * allocation, take space away from current Rx allocation
3426 */
3427 if ((tx_space < min_tx_space) &&
3428 ((min_tx_space - tx_space) < pba)) {
3429 pba -= min_tx_space - tx_space;
3430
3431 /*
3432 * if short on Rx space, Rx wins and must trump Tx
3433 * adjustment or use Early Receive if available
3434 */
3435 if (pba < min_rx_space)
3436 pba = min_rx_space;
3437 }
3438
3439 ew32(PBA, pba);
3440 }
3441
3442 /*
3443 * flow control settings
3444 *
3445 * The high water mark must be low enough to fit one full frame
3446 * (or the size used for early receive) above it in the Rx FIFO.
3447 * Set it to the lower of:
3448 * - 90% of the Rx FIFO size, and
3449 * - the full Rx FIFO size minus one full frame
3450 */
3451 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3452 fc->pause_time = 0xFFFF;
3453 else
3454 fc->pause_time = E1000_FC_PAUSE_TIME;
3455 fc->send_xon = true;
3456 fc->current_mode = fc->requested_mode;
3457
3458 switch (hw->mac.type) {
3459 case e1000_ich9lan:
3460 case e1000_ich10lan:
3461 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3462 pba = 14;
3463 ew32(PBA, pba);
3464 fc->high_water = 0x2800;
3465 fc->low_water = fc->high_water - 8;
3466 break;
3467 }
3468 /* fall-through */
3469 default:
3470 hwm = min(((pba << 10) * 9 / 10),
3471 ((pba << 10) - adapter->max_frame_size));
3472
3473 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3474 fc->low_water = fc->high_water - 8;
3475 break;
3476 case e1000_pchlan:
3477 /*
3478 * Workaround PCH LOM adapter hangs with certain network
3479 * loads. If hangs persist, try disabling Tx flow control.
3480 */
3481 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3482 fc->high_water = 0x3500;
3483 fc->low_water = 0x1500;
3484 } else {
3485 fc->high_water = 0x5000;
3486 fc->low_water = 0x3000;
3487 }
3488 fc->refresh_time = 0x1000;
3489 break;
3490 case e1000_pch2lan:
3491 case e1000_pch_lpt:
3492 fc->high_water = 0x05C20;
3493 fc->low_water = 0x05048;
3494 fc->pause_time = 0x0650;
3495 fc->refresh_time = 0x0400;
3496 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3497 pba = 14;
3498 ew32(PBA, pba);
3499 }
3500 break;
3501 }
3502
3503 /*
3504 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3505 * fit in receive buffer.
3506 */
3507 if (adapter->itr_setting & 0x3) {
3508 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3509 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3510 dev_info(&adapter->pdev->dev,
3511 "Interrupt Throttle Rate turned off\n");
3512 adapter->flags2 |= FLAG2_DISABLE_AIM;
3513 ew32(ITR, 0);
3514 }
3515 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3516 dev_info(&adapter->pdev->dev,
3517 "Interrupt Throttle Rate turned on\n");
3518 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3519 adapter->itr = 20000;
3520 ew32(ITR, 1000000000 / (adapter->itr * 256));
3521 }
3522 }
3523
3524 /* Allow time for pending master requests to run */
3525 mac->ops.reset_hw(hw);
3526
3527 /*
3528 * For parts with AMT enabled, let the firmware know
3529 * that the network interface is in control
3530 */
3531 if (adapter->flags & FLAG_HAS_AMT)
3532 e1000e_get_hw_control(adapter);
3533
3534 ew32(WUC, 0);
3535
3536 if (mac->ops.init_hw(hw))
3537 e_err("Hardware Error\n");
3538
3539 e1000_update_mng_vlan(adapter);
3540
3541 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3542 ew32(VET, ETH_P_8021Q);
3543
3544 e1000e_reset_adaptive(hw);
3545
3546 if (!netif_running(adapter->netdev) &&
3547 !test_bit(__E1000_TESTING, &adapter->state)) {
3548 e1000_power_down_phy(adapter);
3549 return;
3550 }
3551
3552 e1000_get_phy_info(hw);
3553
3554 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3555 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3556 u16 phy_data = 0;
3557 /*
3558 * speed up time to link by disabling smart power down, ignore
3559 * the return value of this function because there is nothing
3560 * different we would do if it failed
3561 */
3562 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3563 phy_data &= ~IGP02E1000_PM_SPD;
3564 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3565 }
3566 }
3567
3568 int e1000e_up(struct e1000_adapter *adapter)
3569 {
3570 struct e1000_hw *hw = &adapter->hw;
3571
3572 /* hardware has been reset, we need to reload some things */
3573 e1000_configure(adapter);
3574
3575 clear_bit(__E1000_DOWN, &adapter->state);
3576
3577 if (adapter->msix_entries)
3578 e1000_configure_msix(adapter);
3579 e1000_irq_enable(adapter);
3580
3581 netif_start_queue(adapter->netdev);
3582
3583 /* fire a link change interrupt to start the watchdog */
3584 if (adapter->msix_entries)
3585 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3586 else
3587 ew32(ICS, E1000_ICS_LSC);
3588
3589 return 0;
3590 }
3591
3592 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3593 {
3594 struct e1000_hw *hw = &adapter->hw;
3595
3596 if (!(adapter->flags2 & FLAG2_DMA_BURST))
3597 return;
3598
3599 /* flush pending descriptor writebacks to memory */
3600 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3601 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3602
3603 /* execute the writes immediately */
3604 e1e_flush();
3605
3606 /*
3607 * due to rare timing issues, write to TIDV/RDTR again to ensure the
3608 * write is successful
3609 */
3610 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3611 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3612
3613 /* execute the writes immediately */
3614 e1e_flush();
3615 }
3616
3617 static void e1000e_update_stats(struct e1000_adapter *adapter);
3618
3619 void e1000e_down(struct e1000_adapter *adapter)
3620 {
3621 struct net_device *netdev = adapter->netdev;
3622 struct e1000_hw *hw = &adapter->hw;
3623 u32 tctl, rctl;
3624
3625 /*
3626 * signal that we're down so the interrupt handler does not
3627 * reschedule our watchdog timer
3628 */
3629 set_bit(__E1000_DOWN, &adapter->state);
3630
3631 /* disable receives in the hardware */
3632 rctl = er32(RCTL);
3633 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3634 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3635 /* flush and sleep below */
3636
3637 netif_stop_queue(netdev);
3638
3639 /* disable transmits in the hardware */
3640 tctl = er32(TCTL);
3641 tctl &= ~E1000_TCTL_EN;
3642 ew32(TCTL, tctl);
3643
3644 /* flush both disables and wait for them to finish */
3645 e1e_flush();
3646 usleep_range(10000, 20000);
3647
3648 e1000_irq_disable(adapter);
3649
3650 del_timer_sync(&adapter->watchdog_timer);
3651 del_timer_sync(&adapter->phy_info_timer);
3652
3653 netif_carrier_off(netdev);
3654
3655 spin_lock(&adapter->stats64_lock);
3656 e1000e_update_stats(adapter);
3657 spin_unlock(&adapter->stats64_lock);
3658
3659 e1000e_flush_descriptors(adapter);
3660 e1000_clean_tx_ring(adapter->tx_ring);
3661 e1000_clean_rx_ring(adapter->rx_ring);
3662
3663 adapter->link_speed = 0;
3664 adapter->link_duplex = 0;
3665
3666 if (!pci_channel_offline(adapter->pdev))
3667 e1000e_reset(adapter);
3668
3669 /*
3670 * TODO: for power management, we could drop the link and
3671 * pci_disable_device here.
3672 */
3673 }
3674
3675 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3676 {
3677 might_sleep();
3678 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3679 usleep_range(1000, 2000);
3680 e1000e_down(adapter);
3681 e1000e_up(adapter);
3682 clear_bit(__E1000_RESETTING, &adapter->state);
3683 }
3684
3685 /**
3686 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3687 * @adapter: board private structure to initialize
3688 *
3689 * e1000_sw_init initializes the Adapter private data structure.
3690 * Fields are initialized based on PCI device information and
3691 * OS network device settings (MTU size).
3692 **/
3693 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3694 {
3695 struct net_device *netdev = adapter->netdev;
3696
3697 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3698 adapter->rx_ps_bsize0 = 128;
3699 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3700 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3701 adapter->tx_ring_count = E1000_DEFAULT_TXD;
3702 adapter->rx_ring_count = E1000_DEFAULT_RXD;
3703
3704 spin_lock_init(&adapter->stats64_lock);
3705
3706 e1000e_set_interrupt_capability(adapter);
3707
3708 if (e1000_alloc_queues(adapter))
3709 return -ENOMEM;
3710
3711 /* Explicitly disable IRQ since the NIC can be in any state. */
3712 e1000_irq_disable(adapter);
3713
3714 set_bit(__E1000_DOWN, &adapter->state);
3715 return 0;
3716 }
3717
3718 /**
3719 * e1000_intr_msi_test - Interrupt Handler
3720 * @irq: interrupt number
3721 * @data: pointer to a network interface device structure
3722 **/
3723 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3724 {
3725 struct net_device *netdev = data;
3726 struct e1000_adapter *adapter = netdev_priv(netdev);
3727 struct e1000_hw *hw = &adapter->hw;
3728 u32 icr = er32(ICR);
3729
3730 e_dbg("icr is %08X\n", icr);
3731 if (icr & E1000_ICR_RXSEQ) {
3732 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3733 wmb();
3734 }
3735
3736 return IRQ_HANDLED;
3737 }
3738
3739 /**
3740 * e1000_test_msi_interrupt - Returns 0 for successful test
3741 * @adapter: board private struct
3742 *
3743 * code flow taken from tg3.c
3744 **/
3745 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3746 {
3747 struct net_device *netdev = adapter->netdev;
3748 struct e1000_hw *hw = &adapter->hw;
3749 int err;
3750
3751 /* poll_enable hasn't been called yet, so don't need disable */
3752 /* clear any pending events */
3753 er32(ICR);
3754
3755 /* free the real vector and request a test handler */
3756 e1000_free_irq(adapter);
3757 e1000e_reset_interrupt_capability(adapter);
3758
3759 /* Assume that the test fails, if it succeeds then the test
3760 * MSI irq handler will unset this flag */
3761 adapter->flags |= FLAG_MSI_TEST_FAILED;
3762
3763 err = pci_enable_msi(adapter->pdev);
3764 if (err)
3765 goto msi_test_failed;
3766
3767 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3768 netdev->name, netdev);
3769 if (err) {
3770 pci_disable_msi(adapter->pdev);
3771 goto msi_test_failed;
3772 }
3773
3774 wmb();
3775
3776 e1000_irq_enable(adapter);
3777
3778 /* fire an unusual interrupt on the test handler */
3779 ew32(ICS, E1000_ICS_RXSEQ);
3780 e1e_flush();
3781 msleep(100);
3782
3783 e1000_irq_disable(adapter);
3784
3785 rmb();
3786
3787 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3788 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3789 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3790 } else {
3791 e_dbg("MSI interrupt test succeeded!\n");
3792 }
3793
3794 free_irq(adapter->pdev->irq, netdev);
3795 pci_disable_msi(adapter->pdev);
3796
3797 msi_test_failed:
3798 e1000e_set_interrupt_capability(adapter);
3799 return e1000_request_irq(adapter);
3800 }
3801
3802 /**
3803 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3804 * @adapter: board private struct
3805 *
3806 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3807 **/
3808 static int e1000_test_msi(struct e1000_adapter *adapter)
3809 {
3810 int err;
3811 u16 pci_cmd;
3812
3813 if (!(adapter->flags & FLAG_MSI_ENABLED))
3814 return 0;
3815
3816 /* disable SERR in case the MSI write causes a master abort */
3817 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3818 if (pci_cmd & PCI_COMMAND_SERR)
3819 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3820 pci_cmd & ~PCI_COMMAND_SERR);
3821
3822 err = e1000_test_msi_interrupt(adapter);
3823
3824 /* re-enable SERR */
3825 if (pci_cmd & PCI_COMMAND_SERR) {
3826 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3827 pci_cmd |= PCI_COMMAND_SERR;
3828 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3829 }
3830
3831 return err;
3832 }
3833
3834 /**
3835 * e1000_open - Called when a network interface is made active
3836 * @netdev: network interface device structure
3837 *
3838 * Returns 0 on success, negative value on failure
3839 *
3840 * The open entry point is called when a network interface is made
3841 * active by the system (IFF_UP). At this point all resources needed
3842 * for transmit and receive operations are allocated, the interrupt
3843 * handler is registered with the OS, the watchdog timer is started,
3844 * and the stack is notified that the interface is ready.
3845 **/
3846 static int e1000_open(struct net_device *netdev)
3847 {
3848 struct e1000_adapter *adapter = netdev_priv(netdev);
3849 struct e1000_hw *hw = &adapter->hw;
3850 struct pci_dev *pdev = adapter->pdev;
3851 int err;
3852
3853 /* disallow open during test */
3854 if (test_bit(__E1000_TESTING, &adapter->state))
3855 return -EBUSY;
3856
3857 pm_runtime_get_sync(&pdev->dev);
3858
3859 netif_carrier_off(netdev);
3860
3861 /* allocate transmit descriptors */
3862 err = e1000e_setup_tx_resources(adapter->tx_ring);
3863 if (err)
3864 goto err_setup_tx;
3865
3866 /* allocate receive descriptors */
3867 err = e1000e_setup_rx_resources(adapter->rx_ring);
3868 if (err)
3869 goto err_setup_rx;
3870
3871 /*
3872 * If AMT is enabled, let the firmware know that the network
3873 * interface is now open and reset the part to a known state.
3874 */
3875 if (adapter->flags & FLAG_HAS_AMT) {
3876 e1000e_get_hw_control(adapter);
3877 e1000e_reset(adapter);
3878 }
3879
3880 e1000e_power_up_phy(adapter);
3881
3882 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3883 if ((adapter->hw.mng_cookie.status &
3884 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3885 e1000_update_mng_vlan(adapter);
3886
3887 /* DMA latency requirement to workaround jumbo issue */
3888 if (adapter->hw.mac.type == e1000_pch2lan)
3889 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3890 PM_QOS_CPU_DMA_LATENCY,
3891 PM_QOS_DEFAULT_VALUE);
3892
3893 /*
3894 * before we allocate an interrupt, we must be ready to handle it.
3895 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3896 * as soon as we call pci_request_irq, so we have to setup our
3897 * clean_rx handler before we do so.
3898 */
3899 e1000_configure(adapter);
3900
3901 err = e1000_request_irq(adapter);
3902 if (err)
3903 goto err_req_irq;
3904
3905 /*
3906 * Work around PCIe errata with MSI interrupts causing some chipsets to
3907 * ignore e1000e MSI messages, which means we need to test our MSI
3908 * interrupt now
3909 */
3910 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3911 err = e1000_test_msi(adapter);
3912 if (err) {
3913 e_err("Interrupt allocation failed\n");
3914 goto err_req_irq;
3915 }
3916 }
3917
3918 /* From here on the code is the same as e1000e_up() */
3919 clear_bit(__E1000_DOWN, &adapter->state);
3920
3921 napi_enable(&adapter->napi);
3922
3923 e1000_irq_enable(adapter);
3924
3925 adapter->tx_hang_recheck = false;
3926 netif_start_queue(netdev);
3927
3928 adapter->idle_check = true;
3929 pm_runtime_put(&pdev->dev);
3930
3931 /* fire a link status change interrupt to start the watchdog */
3932 if (adapter->msix_entries)
3933 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3934 else
3935 ew32(ICS, E1000_ICS_LSC);
3936
3937 return 0;
3938
3939 err_req_irq:
3940 e1000e_release_hw_control(adapter);
3941 e1000_power_down_phy(adapter);
3942 e1000e_free_rx_resources(adapter->rx_ring);
3943 err_setup_rx:
3944 e1000e_free_tx_resources(adapter->tx_ring);
3945 err_setup_tx:
3946 e1000e_reset(adapter);
3947 pm_runtime_put_sync(&pdev->dev);
3948
3949 return err;
3950 }
3951
3952 /**
3953 * e1000_close - Disables a network interface
3954 * @netdev: network interface device structure
3955 *
3956 * Returns 0, this is not allowed to fail
3957 *
3958 * The close entry point is called when an interface is de-activated
3959 * by the OS. The hardware is still under the drivers control, but
3960 * needs to be disabled. A global MAC reset is issued to stop the
3961 * hardware, and all transmit and receive resources are freed.
3962 **/
3963 static int e1000_close(struct net_device *netdev)
3964 {
3965 struct e1000_adapter *adapter = netdev_priv(netdev);
3966 struct pci_dev *pdev = adapter->pdev;
3967 int count = E1000_CHECK_RESET_COUNT;
3968
3969 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
3970 usleep_range(10000, 20000);
3971
3972 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3973
3974 pm_runtime_get_sync(&pdev->dev);
3975
3976 napi_disable(&adapter->napi);
3977
3978 if (!test_bit(__E1000_DOWN, &adapter->state)) {
3979 e1000e_down(adapter);
3980 e1000_free_irq(adapter);
3981 }
3982 e1000_power_down_phy(adapter);
3983
3984 e1000e_free_tx_resources(adapter->tx_ring);
3985 e1000e_free_rx_resources(adapter->rx_ring);
3986
3987 /*
3988 * kill manageability vlan ID if supported, but not if a vlan with
3989 * the same ID is registered on the host OS (let 8021q kill it)
3990 */
3991 if (adapter->hw.mng_cookie.status &
3992 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3993 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3994
3995 /*
3996 * If AMT is enabled, let the firmware know that the network
3997 * interface is now closed
3998 */
3999 if ((adapter->flags & FLAG_HAS_AMT) &&
4000 !test_bit(__E1000_TESTING, &adapter->state))
4001 e1000e_release_hw_control(adapter);
4002
4003 if (adapter->hw.mac.type == e1000_pch2lan)
4004 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4005
4006 pm_runtime_put_sync(&pdev->dev);
4007
4008 return 0;
4009 }
4010 /**
4011 * e1000_set_mac - Change the Ethernet Address of the NIC
4012 * @netdev: network interface device structure
4013 * @p: pointer to an address structure
4014 *
4015 * Returns 0 on success, negative on failure
4016 **/
4017 static int e1000_set_mac(struct net_device *netdev, void *p)
4018 {
4019 struct e1000_adapter *adapter = netdev_priv(netdev);
4020 struct e1000_hw *hw = &adapter->hw;
4021 struct sockaddr *addr = p;
4022
4023 if (!is_valid_ether_addr(addr->sa_data))
4024 return -EADDRNOTAVAIL;
4025
4026 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4027 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4028
4029 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4030
4031 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4032 /* activate the work around */
4033 e1000e_set_laa_state_82571(&adapter->hw, 1);
4034
4035 /*
4036 * Hold a copy of the LAA in RAR[14] This is done so that
4037 * between the time RAR[0] gets clobbered and the time it
4038 * gets fixed (in e1000_watchdog), the actual LAA is in one
4039 * of the RARs and no incoming packets directed to this port
4040 * are dropped. Eventually the LAA will be in RAR[0] and
4041 * RAR[14]
4042 */
4043 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4044 adapter->hw.mac.rar_entry_count - 1);
4045 }
4046
4047 return 0;
4048 }
4049
4050 /**
4051 * e1000e_update_phy_task - work thread to update phy
4052 * @work: pointer to our work struct
4053 *
4054 * this worker thread exists because we must acquire a
4055 * semaphore to read the phy, which we could msleep while
4056 * waiting for it, and we can't msleep in a timer.
4057 **/
4058 static void e1000e_update_phy_task(struct work_struct *work)
4059 {
4060 struct e1000_adapter *adapter = container_of(work,
4061 struct e1000_adapter, update_phy_task);
4062
4063 if (test_bit(__E1000_DOWN, &adapter->state))
4064 return;
4065
4066 e1000_get_phy_info(&adapter->hw);
4067 }
4068
4069 /*
4070 * Need to wait a few seconds after link up to get diagnostic information from
4071 * the phy
4072 */
4073 static void e1000_update_phy_info(unsigned long data)
4074 {
4075 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4076
4077 if (test_bit(__E1000_DOWN, &adapter->state))
4078 return;
4079
4080 schedule_work(&adapter->update_phy_task);
4081 }
4082
4083 /**
4084 * e1000e_update_phy_stats - Update the PHY statistics counters
4085 * @adapter: board private structure
4086 *
4087 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4088 **/
4089 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4090 {
4091 struct e1000_hw *hw = &adapter->hw;
4092 s32 ret_val;
4093 u16 phy_data;
4094
4095 ret_val = hw->phy.ops.acquire(hw);
4096 if (ret_val)
4097 return;
4098
4099 /*
4100 * A page set is expensive so check if already on desired page.
4101 * If not, set to the page with the PHY status registers.
4102 */
4103 hw->phy.addr = 1;
4104 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4105 &phy_data);
4106 if (ret_val)
4107 goto release;
4108 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4109 ret_val = hw->phy.ops.set_page(hw,
4110 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4111 if (ret_val)
4112 goto release;
4113 }
4114
4115 /* Single Collision Count */
4116 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4117 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4118 if (!ret_val)
4119 adapter->stats.scc += phy_data;
4120
4121 /* Excessive Collision Count */
4122 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4123 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4124 if (!ret_val)
4125 adapter->stats.ecol += phy_data;
4126
4127 /* Multiple Collision Count */
4128 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4129 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4130 if (!ret_val)
4131 adapter->stats.mcc += phy_data;
4132
4133 /* Late Collision Count */
4134 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4135 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4136 if (!ret_val)
4137 adapter->stats.latecol += phy_data;
4138
4139 /* Collision Count - also used for adaptive IFS */
4140 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4141 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4142 if (!ret_val)
4143 hw->mac.collision_delta = phy_data;
4144
4145 /* Defer Count */
4146 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4147 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4148 if (!ret_val)
4149 adapter->stats.dc += phy_data;
4150
4151 /* Transmit with no CRS */
4152 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4153 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4154 if (!ret_val)
4155 adapter->stats.tncrs += phy_data;
4156
4157 release:
4158 hw->phy.ops.release(hw);
4159 }
4160
4161 /**
4162 * e1000e_update_stats - Update the board statistics counters
4163 * @adapter: board private structure
4164 **/
4165 static void e1000e_update_stats(struct e1000_adapter *adapter)
4166 {
4167 struct net_device *netdev = adapter->netdev;
4168 struct e1000_hw *hw = &adapter->hw;
4169 struct pci_dev *pdev = adapter->pdev;
4170
4171 /*
4172 * Prevent stats update while adapter is being reset, or if the pci
4173 * connection is down.
4174 */
4175 if (adapter->link_speed == 0)
4176 return;
4177 if (pci_channel_offline(pdev))
4178 return;
4179
4180 adapter->stats.crcerrs += er32(CRCERRS);
4181 adapter->stats.gprc += er32(GPRC);
4182 adapter->stats.gorc += er32(GORCL);
4183 er32(GORCH); /* Clear gorc */
4184 adapter->stats.bprc += er32(BPRC);
4185 adapter->stats.mprc += er32(MPRC);
4186 adapter->stats.roc += er32(ROC);
4187
4188 adapter->stats.mpc += er32(MPC);
4189
4190 /* Half-duplex statistics */
4191 if (adapter->link_duplex == HALF_DUPLEX) {
4192 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4193 e1000e_update_phy_stats(adapter);
4194 } else {
4195 adapter->stats.scc += er32(SCC);
4196 adapter->stats.ecol += er32(ECOL);
4197 adapter->stats.mcc += er32(MCC);
4198 adapter->stats.latecol += er32(LATECOL);
4199 adapter->stats.dc += er32(DC);
4200
4201 hw->mac.collision_delta = er32(COLC);
4202
4203 if ((hw->mac.type != e1000_82574) &&
4204 (hw->mac.type != e1000_82583))
4205 adapter->stats.tncrs += er32(TNCRS);
4206 }
4207 adapter->stats.colc += hw->mac.collision_delta;
4208 }
4209
4210 adapter->stats.xonrxc += er32(XONRXC);
4211 adapter->stats.xontxc += er32(XONTXC);
4212 adapter->stats.xoffrxc += er32(XOFFRXC);
4213 adapter->stats.xofftxc += er32(XOFFTXC);
4214 adapter->stats.gptc += er32(GPTC);
4215 adapter->stats.gotc += er32(GOTCL);
4216 er32(GOTCH); /* Clear gotc */
4217 adapter->stats.rnbc += er32(RNBC);
4218 adapter->stats.ruc += er32(RUC);
4219
4220 adapter->stats.mptc += er32(MPTC);
4221 adapter->stats.bptc += er32(BPTC);
4222
4223 /* used for adaptive IFS */
4224
4225 hw->mac.tx_packet_delta = er32(TPT);
4226 adapter->stats.tpt += hw->mac.tx_packet_delta;
4227
4228 adapter->stats.algnerrc += er32(ALGNERRC);
4229 adapter->stats.rxerrc += er32(RXERRC);
4230 adapter->stats.cexterr += er32(CEXTERR);
4231 adapter->stats.tsctc += er32(TSCTC);
4232 adapter->stats.tsctfc += er32(TSCTFC);
4233
4234 /* Fill out the OS statistics structure */
4235 netdev->stats.multicast = adapter->stats.mprc;
4236 netdev->stats.collisions = adapter->stats.colc;
4237
4238 /* Rx Errors */
4239
4240 /*
4241 * RLEC on some newer hardware can be incorrect so build
4242 * our own version based on RUC and ROC
4243 */
4244 netdev->stats.rx_errors = adapter->stats.rxerrc +
4245 adapter->stats.crcerrs + adapter->stats.algnerrc +
4246 adapter->stats.ruc + adapter->stats.roc +
4247 adapter->stats.cexterr;
4248 netdev->stats.rx_length_errors = adapter->stats.ruc +
4249 adapter->stats.roc;
4250 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4251 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4252 netdev->stats.rx_missed_errors = adapter->stats.mpc;
4253
4254 /* Tx Errors */
4255 netdev->stats.tx_errors = adapter->stats.ecol +
4256 adapter->stats.latecol;
4257 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4258 netdev->stats.tx_window_errors = adapter->stats.latecol;
4259 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4260
4261 /* Tx Dropped needs to be maintained elsewhere */
4262
4263 /* Management Stats */
4264 adapter->stats.mgptc += er32(MGTPTC);
4265 adapter->stats.mgprc += er32(MGTPRC);
4266 adapter->stats.mgpdc += er32(MGTPDC);
4267 }
4268
4269 /**
4270 * e1000_phy_read_status - Update the PHY register status snapshot
4271 * @adapter: board private structure
4272 **/
4273 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4274 {
4275 struct e1000_hw *hw = &adapter->hw;
4276 struct e1000_phy_regs *phy = &adapter->phy_regs;
4277
4278 if ((er32(STATUS) & E1000_STATUS_LU) &&
4279 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4280 int ret_val;
4281
4282 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4283 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4284 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4285 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4286 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4287 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4288 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4289 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4290 if (ret_val)
4291 e_warn("Error reading PHY register\n");
4292 } else {
4293 /*
4294 * Do not read PHY registers if link is not up
4295 * Set values to typical power-on defaults
4296 */
4297 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4298 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4299 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4300 BMSR_ERCAP);
4301 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4302 ADVERTISE_ALL | ADVERTISE_CSMA);
4303 phy->lpa = 0;
4304 phy->expansion = EXPANSION_ENABLENPAGE;
4305 phy->ctrl1000 = ADVERTISE_1000FULL;
4306 phy->stat1000 = 0;
4307 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4308 }
4309 }
4310
4311 static void e1000_print_link_info(struct e1000_adapter *adapter)
4312 {
4313 struct e1000_hw *hw = &adapter->hw;
4314 u32 ctrl = er32(CTRL);
4315
4316 /* Link status message must follow this format for user tools */
4317 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4318 adapter->netdev->name,
4319 adapter->link_speed,
4320 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4321 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4322 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4323 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4324 }
4325
4326 static bool e1000e_has_link(struct e1000_adapter *adapter)
4327 {
4328 struct e1000_hw *hw = &adapter->hw;
4329 bool link_active = false;
4330 s32 ret_val = 0;
4331
4332 /*
4333 * get_link_status is set on LSC (link status) interrupt or
4334 * Rx sequence error interrupt. get_link_status will stay
4335 * false until the check_for_link establishes link
4336 * for copper adapters ONLY
4337 */
4338 switch (hw->phy.media_type) {
4339 case e1000_media_type_copper:
4340 if (hw->mac.get_link_status) {
4341 ret_val = hw->mac.ops.check_for_link(hw);
4342 link_active = !hw->mac.get_link_status;
4343 } else {
4344 link_active = true;
4345 }
4346 break;
4347 case e1000_media_type_fiber:
4348 ret_val = hw->mac.ops.check_for_link(hw);
4349 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4350 break;
4351 case e1000_media_type_internal_serdes:
4352 ret_val = hw->mac.ops.check_for_link(hw);
4353 link_active = adapter->hw.mac.serdes_has_link;
4354 break;
4355 default:
4356 case e1000_media_type_unknown:
4357 break;
4358 }
4359
4360 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4361 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4362 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4363 e_info("Gigabit has been disabled, downgrading speed\n");
4364 }
4365
4366 return link_active;
4367 }
4368
4369 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4370 {
4371 /* make sure the receive unit is started */
4372 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4373 (adapter->flags & FLAG_RX_RESTART_NOW)) {
4374 struct e1000_hw *hw = &adapter->hw;
4375 u32 rctl = er32(RCTL);
4376 ew32(RCTL, rctl | E1000_RCTL_EN);
4377 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4378 }
4379 }
4380
4381 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4382 {
4383 struct e1000_hw *hw = &adapter->hw;
4384
4385 /*
4386 * With 82574 controllers, PHY needs to be checked periodically
4387 * for hung state and reset, if two calls return true
4388 */
4389 if (e1000_check_phy_82574(hw))
4390 adapter->phy_hang_count++;
4391 else
4392 adapter->phy_hang_count = 0;
4393
4394 if (adapter->phy_hang_count > 1) {
4395 adapter->phy_hang_count = 0;
4396 schedule_work(&adapter->reset_task);
4397 }
4398 }
4399
4400 /**
4401 * e1000_watchdog - Timer Call-back
4402 * @data: pointer to adapter cast into an unsigned long
4403 **/
4404 static void e1000_watchdog(unsigned long data)
4405 {
4406 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4407
4408 /* Do the rest outside of interrupt context */
4409 schedule_work(&adapter->watchdog_task);
4410
4411 /* TODO: make this use queue_delayed_work() */
4412 }
4413
4414 static void e1000_watchdog_task(struct work_struct *work)
4415 {
4416 struct e1000_adapter *adapter = container_of(work,
4417 struct e1000_adapter, watchdog_task);
4418 struct net_device *netdev = adapter->netdev;
4419 struct e1000_mac_info *mac = &adapter->hw.mac;
4420 struct e1000_phy_info *phy = &adapter->hw.phy;
4421 struct e1000_ring *tx_ring = adapter->tx_ring;
4422 struct e1000_hw *hw = &adapter->hw;
4423 u32 link, tctl;
4424
4425 if (test_bit(__E1000_DOWN, &adapter->state))
4426 return;
4427
4428 link = e1000e_has_link(adapter);
4429 if ((netif_carrier_ok(netdev)) && link) {
4430 /* Cancel scheduled suspend requests. */
4431 pm_runtime_resume(netdev->dev.parent);
4432
4433 e1000e_enable_receives(adapter);
4434 goto link_up;
4435 }
4436
4437 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4438 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4439 e1000_update_mng_vlan(adapter);
4440
4441 if (link) {
4442 if (!netif_carrier_ok(netdev)) {
4443 bool txb2b = true;
4444
4445 /* Cancel scheduled suspend requests. */
4446 pm_runtime_resume(netdev->dev.parent);
4447
4448 /* update snapshot of PHY registers on LSC */
4449 e1000_phy_read_status(adapter);
4450 mac->ops.get_link_up_info(&adapter->hw,
4451 &adapter->link_speed,
4452 &adapter->link_duplex);
4453 e1000_print_link_info(adapter);
4454 /*
4455 * On supported PHYs, check for duplex mismatch only
4456 * if link has autonegotiated at 10/100 half
4457 */
4458 if ((hw->phy.type == e1000_phy_igp_3 ||
4459 hw->phy.type == e1000_phy_bm) &&
4460 (hw->mac.autoneg == true) &&
4461 (adapter->link_speed == SPEED_10 ||
4462 adapter->link_speed == SPEED_100) &&
4463 (adapter->link_duplex == HALF_DUPLEX)) {
4464 u16 autoneg_exp;
4465
4466 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4467
4468 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4469 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
4470 }
4471
4472 /* adjust timeout factor according to speed/duplex */
4473 adapter->tx_timeout_factor = 1;
4474 switch (adapter->link_speed) {
4475 case SPEED_10:
4476 txb2b = false;
4477 adapter->tx_timeout_factor = 16;
4478 break;
4479 case SPEED_100:
4480 txb2b = false;
4481 adapter->tx_timeout_factor = 10;
4482 break;
4483 }
4484
4485 /*
4486 * workaround: re-program speed mode bit after
4487 * link-up event
4488 */
4489 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4490 !txb2b) {
4491 u32 tarc0;
4492 tarc0 = er32(TARC(0));
4493 tarc0 &= ~SPEED_MODE_BIT;
4494 ew32(TARC(0), tarc0);
4495 }
4496
4497 /*
4498 * disable TSO for pcie and 10/100 speeds, to avoid
4499 * some hardware issues
4500 */
4501 if (!(adapter->flags & FLAG_TSO_FORCE)) {
4502 switch (adapter->link_speed) {
4503 case SPEED_10:
4504 case SPEED_100:
4505 e_info("10/100 speed: disabling TSO\n");
4506 netdev->features &= ~NETIF_F_TSO;
4507 netdev->features &= ~NETIF_F_TSO6;
4508 break;
4509 case SPEED_1000:
4510 netdev->features |= NETIF_F_TSO;
4511 netdev->features |= NETIF_F_TSO6;
4512 break;
4513 default:
4514 /* oops */
4515 break;
4516 }
4517 }
4518
4519 /*
4520 * enable transmits in the hardware, need to do this
4521 * after setting TARC(0)
4522 */
4523 tctl = er32(TCTL);
4524 tctl |= E1000_TCTL_EN;
4525 ew32(TCTL, tctl);
4526
4527 /*
4528 * Perform any post-link-up configuration before
4529 * reporting link up.
4530 */
4531 if (phy->ops.cfg_on_link_up)
4532 phy->ops.cfg_on_link_up(hw);
4533
4534 netif_carrier_on(netdev);
4535
4536 if (!test_bit(__E1000_DOWN, &adapter->state))
4537 mod_timer(&adapter->phy_info_timer,
4538 round_jiffies(jiffies + 2 * HZ));
4539 }
4540 } else {
4541 if (netif_carrier_ok(netdev)) {
4542 adapter->link_speed = 0;
4543 adapter->link_duplex = 0;
4544 /* Link status message must follow this format */
4545 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4546 adapter->netdev->name);
4547 netif_carrier_off(netdev);
4548 if (!test_bit(__E1000_DOWN, &adapter->state))
4549 mod_timer(&adapter->phy_info_timer,
4550 round_jiffies(jiffies + 2 * HZ));
4551
4552 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4553 schedule_work(&adapter->reset_task);
4554 else
4555 pm_schedule_suspend(netdev->dev.parent,
4556 LINK_TIMEOUT);
4557 }
4558 }
4559
4560 link_up:
4561 spin_lock(&adapter->stats64_lock);
4562 e1000e_update_stats(adapter);
4563
4564 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4565 adapter->tpt_old = adapter->stats.tpt;
4566 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4567 adapter->colc_old = adapter->stats.colc;
4568
4569 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4570 adapter->gorc_old = adapter->stats.gorc;
4571 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4572 adapter->gotc_old = adapter->stats.gotc;
4573 spin_unlock(&adapter->stats64_lock);
4574
4575 e1000e_update_adaptive(&adapter->hw);
4576
4577 if (!netif_carrier_ok(netdev) &&
4578 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4579 /*
4580 * We've lost link, so the controller stops DMA,
4581 * but we've got queued Tx work that's never going
4582 * to get done, so reset controller to flush Tx.
4583 * (Do the reset outside of interrupt context).
4584 */
4585 schedule_work(&adapter->reset_task);
4586 /* return immediately since reset is imminent */
4587 return;
4588 }
4589
4590 /* Simple mode for Interrupt Throttle Rate (ITR) */
4591 if (adapter->itr_setting == 4) {
4592 /*
4593 * Symmetric Tx/Rx gets a reduced ITR=2000;
4594 * Total asymmetrical Tx or Rx gets ITR=8000;
4595 * everyone else is between 2000-8000.
4596 */
4597 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4598 u32 dif = (adapter->gotc > adapter->gorc ?
4599 adapter->gotc - adapter->gorc :
4600 adapter->gorc - adapter->gotc) / 10000;
4601 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4602
4603 ew32(ITR, 1000000000 / (itr * 256));
4604 }
4605
4606 /* Cause software interrupt to ensure Rx ring is cleaned */
4607 if (adapter->msix_entries)
4608 ew32(ICS, adapter->rx_ring->ims_val);
4609 else
4610 ew32(ICS, E1000_ICS_RXDMT0);
4611
4612 /* flush pending descriptors to memory before detecting Tx hang */
4613 e1000e_flush_descriptors(adapter);
4614
4615 /* Force detection of hung controller every watchdog period */
4616 adapter->detect_tx_hung = true;
4617
4618 /*
4619 * With 82571 controllers, LAA may be overwritten due to controller
4620 * reset from the other port. Set the appropriate LAA in RAR[0]
4621 */
4622 if (e1000e_get_laa_state_82571(hw))
4623 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
4624
4625 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4626 e1000e_check_82574_phy_workaround(adapter);
4627
4628 /* Reset the timer */
4629 if (!test_bit(__E1000_DOWN, &adapter->state))
4630 mod_timer(&adapter->watchdog_timer,
4631 round_jiffies(jiffies + 2 * HZ));
4632 }
4633
4634 #define E1000_TX_FLAGS_CSUM 0x00000001
4635 #define E1000_TX_FLAGS_VLAN 0x00000002
4636 #define E1000_TX_FLAGS_TSO 0x00000004
4637 #define E1000_TX_FLAGS_IPV4 0x00000008
4638 #define E1000_TX_FLAGS_NO_FCS 0x00000010
4639 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4640 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4641
4642 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4643 {
4644 struct e1000_context_desc *context_desc;
4645 struct e1000_buffer *buffer_info;
4646 unsigned int i;
4647 u32 cmd_length = 0;
4648 u16 ipcse = 0, tucse, mss;
4649 u8 ipcss, ipcso, tucss, tucso, hdr_len;
4650
4651 if (!skb_is_gso(skb))
4652 return 0;
4653
4654 if (skb_header_cloned(skb)) {
4655 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4656
4657 if (err)
4658 return err;
4659 }
4660
4661 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4662 mss = skb_shinfo(skb)->gso_size;
4663 if (skb->protocol == htons(ETH_P_IP)) {
4664 struct iphdr *iph = ip_hdr(skb);
4665 iph->tot_len = 0;
4666 iph->check = 0;
4667 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4668 0, IPPROTO_TCP, 0);
4669 cmd_length = E1000_TXD_CMD_IP;
4670 ipcse = skb_transport_offset(skb) - 1;
4671 } else if (skb_is_gso_v6(skb)) {
4672 ipv6_hdr(skb)->payload_len = 0;
4673 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4674 &ipv6_hdr(skb)->daddr,
4675 0, IPPROTO_TCP, 0);
4676 ipcse = 0;
4677 }
4678 ipcss = skb_network_offset(skb);
4679 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4680 tucss = skb_transport_offset(skb);
4681 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4682 tucse = 0;
4683
4684 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4685 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4686
4687 i = tx_ring->next_to_use;
4688 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4689 buffer_info = &tx_ring->buffer_info[i];
4690
4691 context_desc->lower_setup.ip_fields.ipcss = ipcss;
4692 context_desc->lower_setup.ip_fields.ipcso = ipcso;
4693 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
4694 context_desc->upper_setup.tcp_fields.tucss = tucss;
4695 context_desc->upper_setup.tcp_fields.tucso = tucso;
4696 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4697 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
4698 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4699 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4700
4701 buffer_info->time_stamp = jiffies;
4702 buffer_info->next_to_watch = i;
4703
4704 i++;
4705 if (i == tx_ring->count)
4706 i = 0;
4707 tx_ring->next_to_use = i;
4708
4709 return 1;
4710 }
4711
4712 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4713 {
4714 struct e1000_adapter *adapter = tx_ring->adapter;
4715 struct e1000_context_desc *context_desc;
4716 struct e1000_buffer *buffer_info;
4717 unsigned int i;
4718 u8 css;
4719 u32 cmd_len = E1000_TXD_CMD_DEXT;
4720 __be16 protocol;
4721
4722 if (skb->ip_summed != CHECKSUM_PARTIAL)
4723 return 0;
4724
4725 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4726 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4727 else
4728 protocol = skb->protocol;
4729
4730 switch (protocol) {
4731 case cpu_to_be16(ETH_P_IP):
4732 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4733 cmd_len |= E1000_TXD_CMD_TCP;
4734 break;
4735 case cpu_to_be16(ETH_P_IPV6):
4736 /* XXX not handling all IPV6 headers */
4737 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4738 cmd_len |= E1000_TXD_CMD_TCP;
4739 break;
4740 default:
4741 if (unlikely(net_ratelimit()))
4742 e_warn("checksum_partial proto=%x!\n",
4743 be16_to_cpu(protocol));
4744 break;
4745 }
4746
4747 css = skb_checksum_start_offset(skb);
4748
4749 i = tx_ring->next_to_use;
4750 buffer_info = &tx_ring->buffer_info[i];
4751 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4752
4753 context_desc->lower_setup.ip_config = 0;
4754 context_desc->upper_setup.tcp_fields.tucss = css;
4755 context_desc->upper_setup.tcp_fields.tucso =
4756 css + skb->csum_offset;
4757 context_desc->upper_setup.tcp_fields.tucse = 0;
4758 context_desc->tcp_seg_setup.data = 0;
4759 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4760
4761 buffer_info->time_stamp = jiffies;
4762 buffer_info->next_to_watch = i;
4763
4764 i++;
4765 if (i == tx_ring->count)
4766 i = 0;
4767 tx_ring->next_to_use = i;
4768
4769 return 1;
4770 }
4771
4772 #define E1000_MAX_PER_TXD 8192
4773 #define E1000_MAX_TXD_PWR 12
4774
4775 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
4776 unsigned int first, unsigned int max_per_txd,
4777 unsigned int nr_frags, unsigned int mss)
4778 {
4779 struct e1000_adapter *adapter = tx_ring->adapter;
4780 struct pci_dev *pdev = adapter->pdev;
4781 struct e1000_buffer *buffer_info;
4782 unsigned int len = skb_headlen(skb);
4783 unsigned int offset = 0, size, count = 0, i;
4784 unsigned int f, bytecount, segs;
4785
4786 i = tx_ring->next_to_use;
4787
4788 while (len) {
4789 buffer_info = &tx_ring->buffer_info[i];
4790 size = min(len, max_per_txd);
4791
4792 buffer_info->length = size;
4793 buffer_info->time_stamp = jiffies;
4794 buffer_info->next_to_watch = i;
4795 buffer_info->dma = dma_map_single(&pdev->dev,
4796 skb->data + offset,
4797 size, DMA_TO_DEVICE);
4798 buffer_info->mapped_as_page = false;
4799 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4800 goto dma_error;
4801
4802 len -= size;
4803 offset += size;
4804 count++;
4805
4806 if (len) {
4807 i++;
4808 if (i == tx_ring->count)
4809 i = 0;
4810 }
4811 }
4812
4813 for (f = 0; f < nr_frags; f++) {
4814 const struct skb_frag_struct *frag;
4815
4816 frag = &skb_shinfo(skb)->frags[f];
4817 len = skb_frag_size(frag);
4818 offset = 0;
4819
4820 while (len) {
4821 i++;
4822 if (i == tx_ring->count)
4823 i = 0;
4824
4825 buffer_info = &tx_ring->buffer_info[i];
4826 size = min(len, max_per_txd);
4827
4828 buffer_info->length = size;
4829 buffer_info->time_stamp = jiffies;
4830 buffer_info->next_to_watch = i;
4831 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4832 offset, size, DMA_TO_DEVICE);
4833 buffer_info->mapped_as_page = true;
4834 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4835 goto dma_error;
4836
4837 len -= size;
4838 offset += size;
4839 count++;
4840 }
4841 }
4842
4843 segs = skb_shinfo(skb)->gso_segs ? : 1;
4844 /* multiply data chunks by size of headers */
4845 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4846
4847 tx_ring->buffer_info[i].skb = skb;
4848 tx_ring->buffer_info[i].segs = segs;
4849 tx_ring->buffer_info[i].bytecount = bytecount;
4850 tx_ring->buffer_info[first].next_to_watch = i;
4851
4852 return count;
4853
4854 dma_error:
4855 dev_err(&pdev->dev, "Tx DMA map failed\n");
4856 buffer_info->dma = 0;
4857 if (count)
4858 count--;
4859
4860 while (count--) {
4861 if (i == 0)
4862 i += tx_ring->count;
4863 i--;
4864 buffer_info = &tx_ring->buffer_info[i];
4865 e1000_put_txbuf(tx_ring, buffer_info);
4866 }
4867
4868 return 0;
4869 }
4870
4871 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4872 {
4873 struct e1000_adapter *adapter = tx_ring->adapter;
4874 struct e1000_tx_desc *tx_desc = NULL;
4875 struct e1000_buffer *buffer_info;
4876 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4877 unsigned int i;
4878
4879 if (tx_flags & E1000_TX_FLAGS_TSO) {
4880 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4881 E1000_TXD_CMD_TSE;
4882 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4883
4884 if (tx_flags & E1000_TX_FLAGS_IPV4)
4885 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4886 }
4887
4888 if (tx_flags & E1000_TX_FLAGS_CSUM) {
4889 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4890 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4891 }
4892
4893 if (tx_flags & E1000_TX_FLAGS_VLAN) {
4894 txd_lower |= E1000_TXD_CMD_VLE;
4895 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4896 }
4897
4898 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4899 txd_lower &= ~(E1000_TXD_CMD_IFCS);
4900
4901 i = tx_ring->next_to_use;
4902
4903 do {
4904 buffer_info = &tx_ring->buffer_info[i];
4905 tx_desc = E1000_TX_DESC(*tx_ring, i);
4906 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4907 tx_desc->lower.data =
4908 cpu_to_le32(txd_lower | buffer_info->length);
4909 tx_desc->upper.data = cpu_to_le32(txd_upper);
4910
4911 i++;
4912 if (i == tx_ring->count)
4913 i = 0;
4914 } while (--count > 0);
4915
4916 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4917
4918 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
4919 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4920 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
4921
4922 /*
4923 * Force memory writes to complete before letting h/w
4924 * know there are new descriptors to fetch. (Only
4925 * applicable for weak-ordered memory model archs,
4926 * such as IA-64).
4927 */
4928 wmb();
4929
4930 tx_ring->next_to_use = i;
4931
4932 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4933 e1000e_update_tdt_wa(tx_ring, i);
4934 else
4935 writel(i, tx_ring->tail);
4936
4937 /*
4938 * we need this if more than one processor can write to our tail
4939 * at a time, it synchronizes IO on IA64/Altix systems
4940 */
4941 mmiowb();
4942 }
4943
4944 #define MINIMUM_DHCP_PACKET_SIZE 282
4945 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4946 struct sk_buff *skb)
4947 {
4948 struct e1000_hw *hw = &adapter->hw;
4949 u16 length, offset;
4950
4951 if (vlan_tx_tag_present(skb)) {
4952 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4953 (adapter->hw.mng_cookie.status &
4954 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4955 return 0;
4956 }
4957
4958 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4959 return 0;
4960
4961 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4962 return 0;
4963
4964 {
4965 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4966 struct udphdr *udp;
4967
4968 if (ip->protocol != IPPROTO_UDP)
4969 return 0;
4970
4971 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4972 if (ntohs(udp->dest) != 67)
4973 return 0;
4974
4975 offset = (u8 *)udp + 8 - skb->data;
4976 length = skb->len - offset;
4977 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4978 }
4979
4980 return 0;
4981 }
4982
4983 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4984 {
4985 struct e1000_adapter *adapter = tx_ring->adapter;
4986
4987 netif_stop_queue(adapter->netdev);
4988 /*
4989 * Herbert's original patch had:
4990 * smp_mb__after_netif_stop_queue();
4991 * but since that doesn't exist yet, just open code it.
4992 */
4993 smp_mb();
4994
4995 /*
4996 * We need to check again in a case another CPU has just
4997 * made room available.
4998 */
4999 if (e1000_desc_unused(tx_ring) < size)
5000 return -EBUSY;
5001
5002 /* A reprieve! */
5003 netif_start_queue(adapter->netdev);
5004 ++adapter->restart_queue;
5005 return 0;
5006 }
5007
5008 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5009 {
5010 if (e1000_desc_unused(tx_ring) >= size)
5011 return 0;
5012 return __e1000_maybe_stop_tx(tx_ring, size);
5013 }
5014
5015 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
5016 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5017 struct net_device *netdev)
5018 {
5019 struct e1000_adapter *adapter = netdev_priv(netdev);
5020 struct e1000_ring *tx_ring = adapter->tx_ring;
5021 unsigned int first;
5022 unsigned int max_per_txd = E1000_MAX_PER_TXD;
5023 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
5024 unsigned int tx_flags = 0;
5025 unsigned int len = skb_headlen(skb);
5026 unsigned int nr_frags;
5027 unsigned int mss;
5028 int count = 0;
5029 int tso;
5030 unsigned int f;
5031
5032 if (test_bit(__E1000_DOWN, &adapter->state)) {
5033 dev_kfree_skb_any(skb);
5034 return NETDEV_TX_OK;
5035 }
5036
5037 if (skb->len <= 0) {
5038 dev_kfree_skb_any(skb);
5039 return NETDEV_TX_OK;
5040 }
5041
5042 mss = skb_shinfo(skb)->gso_size;
5043 /*
5044 * The controller does a simple calculation to
5045 * make sure there is enough room in the FIFO before
5046 * initiating the DMA for each buffer. The calc is:
5047 * 4 = ceil(buffer len/mss). To make sure we don't
5048 * overrun the FIFO, adjust the max buffer len if mss
5049 * drops.
5050 */
5051 if (mss) {
5052 u8 hdr_len;
5053 max_per_txd = min(mss << 2, max_per_txd);
5054 max_txd_pwr = fls(max_per_txd) - 1;
5055
5056 /*
5057 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
5058 * points to just header, pull a few bytes of payload from
5059 * frags into skb->data
5060 */
5061 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5062 /*
5063 * we do this workaround for ES2LAN, but it is un-necessary,
5064 * avoiding it could save a lot of cycles
5065 */
5066 if (skb->data_len && (hdr_len == len)) {
5067 unsigned int pull_size;
5068
5069 pull_size = min_t(unsigned int, 4, skb->data_len);
5070 if (!__pskb_pull_tail(skb, pull_size)) {
5071 e_err("__pskb_pull_tail failed.\n");
5072 dev_kfree_skb_any(skb);
5073 return NETDEV_TX_OK;
5074 }
5075 len = skb_headlen(skb);
5076 }
5077 }
5078
5079 /* reserve a descriptor for the offload context */
5080 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5081 count++;
5082 count++;
5083
5084 count += TXD_USE_COUNT(len, max_txd_pwr);
5085
5086 nr_frags = skb_shinfo(skb)->nr_frags;
5087 for (f = 0; f < nr_frags; f++)
5088 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5089 max_txd_pwr);
5090
5091 if (adapter->hw.mac.tx_pkt_filtering)
5092 e1000_transfer_dhcp_info(adapter, skb);
5093
5094 /*
5095 * need: count + 2 desc gap to keep tail from touching
5096 * head, otherwise try next time
5097 */
5098 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5099 return NETDEV_TX_BUSY;
5100
5101 if (vlan_tx_tag_present(skb)) {
5102 tx_flags |= E1000_TX_FLAGS_VLAN;
5103 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5104 }
5105
5106 first = tx_ring->next_to_use;
5107
5108 tso = e1000_tso(tx_ring, skb);
5109 if (tso < 0) {
5110 dev_kfree_skb_any(skb);
5111 return NETDEV_TX_OK;
5112 }
5113
5114 if (tso)
5115 tx_flags |= E1000_TX_FLAGS_TSO;
5116 else if (e1000_tx_csum(tx_ring, skb))
5117 tx_flags |= E1000_TX_FLAGS_CSUM;
5118
5119 /*
5120 * Old method was to assume IPv4 packet by default if TSO was enabled.
5121 * 82571 hardware supports TSO capabilities for IPv6 as well...
5122 * no longer assume, we must.
5123 */
5124 if (skb->protocol == htons(ETH_P_IP))
5125 tx_flags |= E1000_TX_FLAGS_IPV4;
5126
5127 if (unlikely(skb->no_fcs))
5128 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5129
5130 /* if count is 0 then mapping error has occurred */
5131 count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
5132 if (count) {
5133 skb_tx_timestamp(skb);
5134
5135 netdev_sent_queue(netdev, skb->len);
5136 e1000_tx_queue(tx_ring, tx_flags, count);
5137 /* Make sure there is space in the ring for the next send. */
5138 e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
5139
5140 } else {
5141 dev_kfree_skb_any(skb);
5142 tx_ring->buffer_info[first].time_stamp = 0;
5143 tx_ring->next_to_use = first;
5144 }
5145
5146 return NETDEV_TX_OK;
5147 }
5148
5149 /**
5150 * e1000_tx_timeout - Respond to a Tx Hang
5151 * @netdev: network interface device structure
5152 **/
5153 static void e1000_tx_timeout(struct net_device *netdev)
5154 {
5155 struct e1000_adapter *adapter = netdev_priv(netdev);
5156
5157 /* Do the reset outside of interrupt context */
5158 adapter->tx_timeout_count++;
5159 schedule_work(&adapter->reset_task);
5160 }
5161
5162 static void e1000_reset_task(struct work_struct *work)
5163 {
5164 struct e1000_adapter *adapter;
5165 adapter = container_of(work, struct e1000_adapter, reset_task);
5166
5167 /* don't run the task if already down */
5168 if (test_bit(__E1000_DOWN, &adapter->state))
5169 return;
5170
5171 if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5172 (adapter->flags & FLAG_RX_RESTART_NOW))) {
5173 e1000e_dump(adapter);
5174 e_err("Reset adapter\n");
5175 }
5176 e1000e_reinit_locked(adapter);
5177 }
5178
5179 /**
5180 * e1000_get_stats64 - Get System Network Statistics
5181 * @netdev: network interface device structure
5182 * @stats: rtnl_link_stats64 pointer
5183 *
5184 * Returns the address of the device statistics structure.
5185 **/
5186 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5187 struct rtnl_link_stats64 *stats)
5188 {
5189 struct e1000_adapter *adapter = netdev_priv(netdev);
5190
5191 memset(stats, 0, sizeof(struct rtnl_link_stats64));
5192 spin_lock(&adapter->stats64_lock);
5193 e1000e_update_stats(adapter);
5194 /* Fill out the OS statistics structure */
5195 stats->rx_bytes = adapter->stats.gorc;
5196 stats->rx_packets = adapter->stats.gprc;
5197 stats->tx_bytes = adapter->stats.gotc;
5198 stats->tx_packets = adapter->stats.gptc;
5199 stats->multicast = adapter->stats.mprc;
5200 stats->collisions = adapter->stats.colc;
5201
5202 /* Rx Errors */
5203
5204 /*
5205 * RLEC on some newer hardware can be incorrect so build
5206 * our own version based on RUC and ROC
5207 */
5208 stats->rx_errors = adapter->stats.rxerrc +
5209 adapter->stats.crcerrs + adapter->stats.algnerrc +
5210 adapter->stats.ruc + adapter->stats.roc +
5211 adapter->stats.cexterr;
5212 stats->rx_length_errors = adapter->stats.ruc +
5213 adapter->stats.roc;
5214 stats->rx_crc_errors = adapter->stats.crcerrs;
5215 stats->rx_frame_errors = adapter->stats.algnerrc;
5216 stats->rx_missed_errors = adapter->stats.mpc;
5217
5218 /* Tx Errors */
5219 stats->tx_errors = adapter->stats.ecol +
5220 adapter->stats.latecol;
5221 stats->tx_aborted_errors = adapter->stats.ecol;
5222 stats->tx_window_errors = adapter->stats.latecol;
5223 stats->tx_carrier_errors = adapter->stats.tncrs;
5224
5225 /* Tx Dropped needs to be maintained elsewhere */
5226
5227 spin_unlock(&adapter->stats64_lock);
5228 return stats;
5229 }
5230
5231 /**
5232 * e1000_change_mtu - Change the Maximum Transfer Unit
5233 * @netdev: network interface device structure
5234 * @new_mtu: new value for maximum frame size
5235 *
5236 * Returns 0 on success, negative on failure
5237 **/
5238 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5239 {
5240 struct e1000_adapter *adapter = netdev_priv(netdev);
5241 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5242
5243 /* Jumbo frame support */
5244 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
5245 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5246 e_err("Jumbo Frames not supported.\n");
5247 return -EINVAL;
5248 }
5249
5250 /*
5251 * IP payload checksum (enabled with jumbos/packet-split when
5252 * Rx checksum is enabled) and generation of RSS hash is
5253 * mutually exclusive in the hardware.
5254 */
5255 if ((netdev->features & NETIF_F_RXCSUM) &&
5256 (netdev->features & NETIF_F_RXHASH)) {
5257 e_err("Jumbo frames cannot be enabled when both receive checksum offload and receive hashing are enabled. Disable one of the receive offload features before enabling jumbos.\n");
5258 return -EINVAL;
5259 }
5260 }
5261
5262 /* Supported frame sizes */
5263 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5264 (max_frame > adapter->max_hw_frame_size)) {
5265 e_err("Unsupported MTU setting\n");
5266 return -EINVAL;
5267 }
5268
5269 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5270 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5271 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5272 (new_mtu > ETH_DATA_LEN)) {
5273 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5274 return -EINVAL;
5275 }
5276
5277 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5278 usleep_range(1000, 2000);
5279 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5280 adapter->max_frame_size = max_frame;
5281 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5282 netdev->mtu = new_mtu;
5283 if (netif_running(netdev))
5284 e1000e_down(adapter);
5285
5286 /*
5287 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5288 * means we reserve 2 more, this pushes us to allocate from the next
5289 * larger slab size.
5290 * i.e. RXBUFFER_2048 --> size-4096 slab
5291 * However with the new *_jumbo_rx* routines, jumbo receives will use
5292 * fragmented skbs
5293 */
5294
5295 if (max_frame <= 2048)
5296 adapter->rx_buffer_len = 2048;
5297 else
5298 adapter->rx_buffer_len = 4096;
5299
5300 /* adjust allocation if LPE protects us, and we aren't using SBP */
5301 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5302 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5303 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5304 + ETH_FCS_LEN;
5305
5306 if (netif_running(netdev))
5307 e1000e_up(adapter);
5308 else
5309 e1000e_reset(adapter);
5310
5311 clear_bit(__E1000_RESETTING, &adapter->state);
5312
5313 return 0;
5314 }
5315
5316 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5317 int cmd)
5318 {
5319 struct e1000_adapter *adapter = netdev_priv(netdev);
5320 struct mii_ioctl_data *data = if_mii(ifr);
5321
5322 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5323 return -EOPNOTSUPP;
5324
5325 switch (cmd) {
5326 case SIOCGMIIPHY:
5327 data->phy_id = adapter->hw.phy.addr;
5328 break;
5329 case SIOCGMIIREG:
5330 e1000_phy_read_status(adapter);
5331
5332 switch (data->reg_num & 0x1F) {
5333 case MII_BMCR:
5334 data->val_out = adapter->phy_regs.bmcr;
5335 break;
5336 case MII_BMSR:
5337 data->val_out = adapter->phy_regs.bmsr;
5338 break;
5339 case MII_PHYSID1:
5340 data->val_out = (adapter->hw.phy.id >> 16);
5341 break;
5342 case MII_PHYSID2:
5343 data->val_out = (adapter->hw.phy.id & 0xFFFF);
5344 break;
5345 case MII_ADVERTISE:
5346 data->val_out = adapter->phy_regs.advertise;
5347 break;
5348 case MII_LPA:
5349 data->val_out = adapter->phy_regs.lpa;
5350 break;
5351 case MII_EXPANSION:
5352 data->val_out = adapter->phy_regs.expansion;
5353 break;
5354 case MII_CTRL1000:
5355 data->val_out = adapter->phy_regs.ctrl1000;
5356 break;
5357 case MII_STAT1000:
5358 data->val_out = adapter->phy_regs.stat1000;
5359 break;
5360 case MII_ESTATUS:
5361 data->val_out = adapter->phy_regs.estatus;
5362 break;
5363 default:
5364 return -EIO;
5365 }
5366 break;
5367 case SIOCSMIIREG:
5368 default:
5369 return -EOPNOTSUPP;
5370 }
5371 return 0;
5372 }
5373
5374 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5375 {
5376 switch (cmd) {
5377 case SIOCGMIIPHY:
5378 case SIOCGMIIREG:
5379 case SIOCSMIIREG:
5380 return e1000_mii_ioctl(netdev, ifr, cmd);
5381 default:
5382 return -EOPNOTSUPP;
5383 }
5384 }
5385
5386 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5387 {
5388 struct e1000_hw *hw = &adapter->hw;
5389 u32 i, mac_reg;
5390 u16 phy_reg, wuc_enable;
5391 int retval = 0;
5392
5393 /* copy MAC RARs to PHY RARs */
5394 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5395
5396 retval = hw->phy.ops.acquire(hw);
5397 if (retval) {
5398 e_err("Could not acquire PHY\n");
5399 return retval;
5400 }
5401
5402 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5403 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5404 if (retval)
5405 goto release;
5406
5407 /* copy MAC MTA to PHY MTA - only needed for pchlan */
5408 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5409 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5410 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5411 (u16)(mac_reg & 0xFFFF));
5412 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5413 (u16)((mac_reg >> 16) & 0xFFFF));
5414 }
5415
5416 /* configure PHY Rx Control register */
5417 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5418 mac_reg = er32(RCTL);
5419 if (mac_reg & E1000_RCTL_UPE)
5420 phy_reg |= BM_RCTL_UPE;
5421 if (mac_reg & E1000_RCTL_MPE)
5422 phy_reg |= BM_RCTL_MPE;
5423 phy_reg &= ~(BM_RCTL_MO_MASK);
5424 if (mac_reg & E1000_RCTL_MO_3)
5425 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5426 << BM_RCTL_MO_SHIFT);
5427 if (mac_reg & E1000_RCTL_BAM)
5428 phy_reg |= BM_RCTL_BAM;
5429 if (mac_reg & E1000_RCTL_PMCF)
5430 phy_reg |= BM_RCTL_PMCF;
5431 mac_reg = er32(CTRL);
5432 if (mac_reg & E1000_CTRL_RFCE)
5433 phy_reg |= BM_RCTL_RFCE;
5434 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5435
5436 /* enable PHY wakeup in MAC register */
5437 ew32(WUFC, wufc);
5438 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5439
5440 /* configure and enable PHY wakeup in PHY registers */
5441 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5442 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5443
5444 /* activate PHY wakeup */
5445 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5446 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5447 if (retval)
5448 e_err("Could not set PHY Host Wakeup bit\n");
5449 release:
5450 hw->phy.ops.release(hw);
5451
5452 return retval;
5453 }
5454
5455 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5456 bool runtime)
5457 {
5458 struct net_device *netdev = pci_get_drvdata(pdev);
5459 struct e1000_adapter *adapter = netdev_priv(netdev);
5460 struct e1000_hw *hw = &adapter->hw;
5461 u32 ctrl, ctrl_ext, rctl, status;
5462 /* Runtime suspend should only enable wakeup for link changes */
5463 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5464 int retval = 0;
5465
5466 netif_device_detach(netdev);
5467
5468 if (netif_running(netdev)) {
5469 int count = E1000_CHECK_RESET_COUNT;
5470
5471 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5472 usleep_range(10000, 20000);
5473
5474 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5475 e1000e_down(adapter);
5476 e1000_free_irq(adapter);
5477 }
5478 e1000e_reset_interrupt_capability(adapter);
5479
5480 retval = pci_save_state(pdev);
5481 if (retval)
5482 return retval;
5483
5484 status = er32(STATUS);
5485 if (status & E1000_STATUS_LU)
5486 wufc &= ~E1000_WUFC_LNKC;
5487
5488 if (wufc) {
5489 e1000_setup_rctl(adapter);
5490 e1000e_set_rx_mode(netdev);
5491
5492 /* turn on all-multi mode if wake on multicast is enabled */
5493 if (wufc & E1000_WUFC_MC) {
5494 rctl = er32(RCTL);
5495 rctl |= E1000_RCTL_MPE;
5496 ew32(RCTL, rctl);
5497 }
5498
5499 ctrl = er32(CTRL);
5500 /* advertise wake from D3Cold */
5501 #define E1000_CTRL_ADVD3WUC 0x00100000
5502 /* phy power management enable */
5503 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5504 ctrl |= E1000_CTRL_ADVD3WUC;
5505 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5506 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5507 ew32(CTRL, ctrl);
5508
5509 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5510 adapter->hw.phy.media_type ==
5511 e1000_media_type_internal_serdes) {
5512 /* keep the laser running in D3 */
5513 ctrl_ext = er32(CTRL_EXT);
5514 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5515 ew32(CTRL_EXT, ctrl_ext);
5516 }
5517
5518 if (adapter->flags & FLAG_IS_ICH)
5519 e1000_suspend_workarounds_ich8lan(&adapter->hw);
5520
5521 /* Allow time for pending master requests to run */
5522 e1000e_disable_pcie_master(&adapter->hw);
5523
5524 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5525 /* enable wakeup by the PHY */
5526 retval = e1000_init_phy_wakeup(adapter, wufc);
5527 if (retval)
5528 return retval;
5529 } else {
5530 /* enable wakeup by the MAC */
5531 ew32(WUFC, wufc);
5532 ew32(WUC, E1000_WUC_PME_EN);
5533 }
5534 } else {
5535 ew32(WUC, 0);
5536 ew32(WUFC, 0);
5537 }
5538
5539 *enable_wake = !!wufc;
5540
5541 /* make sure adapter isn't asleep if manageability is enabled */
5542 if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5543 (hw->mac.ops.check_mng_mode(hw)))
5544 *enable_wake = true;
5545
5546 if (adapter->hw.phy.type == e1000_phy_igp_3)
5547 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5548
5549 /*
5550 * Release control of h/w to f/w. If f/w is AMT enabled, this
5551 * would have already happened in close and is redundant.
5552 */
5553 e1000e_release_hw_control(adapter);
5554
5555 pci_disable_device(pdev);
5556
5557 return 0;
5558 }
5559
5560 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5561 {
5562 if (sleep && wake) {
5563 pci_prepare_to_sleep(pdev);
5564 return;
5565 }
5566
5567 pci_wake_from_d3(pdev, wake);
5568 pci_set_power_state(pdev, PCI_D3hot);
5569 }
5570
5571 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5572 bool wake)
5573 {
5574 struct net_device *netdev = pci_get_drvdata(pdev);
5575 struct e1000_adapter *adapter = netdev_priv(netdev);
5576
5577 /*
5578 * The pci-e switch on some quad port adapters will report a
5579 * correctable error when the MAC transitions from D0 to D3. To
5580 * prevent this we need to mask off the correctable errors on the
5581 * downstream port of the pci-e switch.
5582 */
5583 if (adapter->flags & FLAG_IS_QUAD_PORT) {
5584 struct pci_dev *us_dev = pdev->bus->self;
5585 int pos = pci_pcie_cap(us_dev);
5586 u16 devctl;
5587
5588 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5589 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5590 (devctl & ~PCI_EXP_DEVCTL_CERE));
5591
5592 e1000_power_off(pdev, sleep, wake);
5593
5594 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5595 } else {
5596 e1000_power_off(pdev, sleep, wake);
5597 }
5598 }
5599
5600 #ifdef CONFIG_PCIEASPM
5601 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5602 {
5603 pci_disable_link_state_locked(pdev, state);
5604 }
5605 #else
5606 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5607 {
5608 int pos;
5609 u16 reg16;
5610
5611 /*
5612 * Both device and parent should have the same ASPM setting.
5613 * Disable ASPM in downstream component first and then upstream.
5614 */
5615 pos = pci_pcie_cap(pdev);
5616 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5617 reg16 &= ~state;
5618 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5619
5620 if (!pdev->bus->self)
5621 return;
5622
5623 pos = pci_pcie_cap(pdev->bus->self);
5624 pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5625 reg16 &= ~state;
5626 pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5627 }
5628 #endif
5629 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5630 {
5631 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5632 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5633 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5634
5635 __e1000e_disable_aspm(pdev, state);
5636 }
5637
5638 #ifdef CONFIG_PM
5639 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5640 {
5641 return !!adapter->tx_ring->buffer_info;
5642 }
5643
5644 static int __e1000_resume(struct pci_dev *pdev)
5645 {
5646 struct net_device *netdev = pci_get_drvdata(pdev);
5647 struct e1000_adapter *adapter = netdev_priv(netdev);
5648 struct e1000_hw *hw = &adapter->hw;
5649 u16 aspm_disable_flag = 0;
5650 u32 err;
5651
5652 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5653 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5654 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5655 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5656 if (aspm_disable_flag)
5657 e1000e_disable_aspm(pdev, aspm_disable_flag);
5658
5659 pci_set_power_state(pdev, PCI_D0);
5660 pci_restore_state(pdev);
5661 pci_save_state(pdev);
5662
5663 e1000e_set_interrupt_capability(adapter);
5664 if (netif_running(netdev)) {
5665 err = e1000_request_irq(adapter);
5666 if (err)
5667 return err;
5668 }
5669
5670 if (hw->mac.type >= e1000_pch2lan)
5671 e1000_resume_workarounds_pchlan(&adapter->hw);
5672
5673 e1000e_power_up_phy(adapter);
5674
5675 /* report the system wakeup cause from S3/S4 */
5676 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5677 u16 phy_data;
5678
5679 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5680 if (phy_data) {
5681 e_info("PHY Wakeup cause - %s\n",
5682 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5683 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5684 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5685 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5686 phy_data & E1000_WUS_LNKC ?
5687 "Link Status Change" : "other");
5688 }
5689 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5690 } else {
5691 u32 wus = er32(WUS);
5692 if (wus) {
5693 e_info("MAC Wakeup cause - %s\n",
5694 wus & E1000_WUS_EX ? "Unicast Packet" :
5695 wus & E1000_WUS_MC ? "Multicast Packet" :
5696 wus & E1000_WUS_BC ? "Broadcast Packet" :
5697 wus & E1000_WUS_MAG ? "Magic Packet" :
5698 wus & E1000_WUS_LNKC ? "Link Status Change" :
5699 "other");
5700 }
5701 ew32(WUS, ~0);
5702 }
5703
5704 e1000e_reset(adapter);
5705
5706 e1000_init_manageability_pt(adapter);
5707
5708 if (netif_running(netdev))
5709 e1000e_up(adapter);
5710
5711 netif_device_attach(netdev);
5712
5713 /*
5714 * If the controller has AMT, do not set DRV_LOAD until the interface
5715 * is up. For all other cases, let the f/w know that the h/w is now
5716 * under the control of the driver.
5717 */
5718 if (!(adapter->flags & FLAG_HAS_AMT))
5719 e1000e_get_hw_control(adapter);
5720
5721 return 0;
5722 }
5723
5724 #ifdef CONFIG_PM_SLEEP
5725 static int e1000_suspend(struct device *dev)
5726 {
5727 struct pci_dev *pdev = to_pci_dev(dev);
5728 int retval;
5729 bool wake;
5730
5731 retval = __e1000_shutdown(pdev, &wake, false);
5732 if (!retval)
5733 e1000_complete_shutdown(pdev, true, wake);
5734
5735 return retval;
5736 }
5737
5738 static int e1000_resume(struct device *dev)
5739 {
5740 struct pci_dev *pdev = to_pci_dev(dev);
5741 struct net_device *netdev = pci_get_drvdata(pdev);
5742 struct e1000_adapter *adapter = netdev_priv(netdev);
5743
5744 if (e1000e_pm_ready(adapter))
5745 adapter->idle_check = true;
5746
5747 return __e1000_resume(pdev);
5748 }
5749 #endif /* CONFIG_PM_SLEEP */
5750
5751 #ifdef CONFIG_PM_RUNTIME
5752 static int e1000_runtime_suspend(struct device *dev)
5753 {
5754 struct pci_dev *pdev = to_pci_dev(dev);
5755 struct net_device *netdev = pci_get_drvdata(pdev);
5756 struct e1000_adapter *adapter = netdev_priv(netdev);
5757
5758 if (e1000e_pm_ready(adapter)) {
5759 bool wake;
5760
5761 __e1000_shutdown(pdev, &wake, true);
5762 }
5763
5764 return 0;
5765 }
5766
5767 static int e1000_idle(struct device *dev)
5768 {
5769 struct pci_dev *pdev = to_pci_dev(dev);
5770 struct net_device *netdev = pci_get_drvdata(pdev);
5771 struct e1000_adapter *adapter = netdev_priv(netdev);
5772
5773 if (!e1000e_pm_ready(adapter))
5774 return 0;
5775
5776 if (adapter->idle_check) {
5777 adapter->idle_check = false;
5778 if (!e1000e_has_link(adapter))
5779 pm_schedule_suspend(dev, MSEC_PER_SEC);
5780 }
5781
5782 return -EBUSY;
5783 }
5784
5785 static int e1000_runtime_resume(struct device *dev)
5786 {
5787 struct pci_dev *pdev = to_pci_dev(dev);
5788 struct net_device *netdev = pci_get_drvdata(pdev);
5789 struct e1000_adapter *adapter = netdev_priv(netdev);
5790
5791 if (!e1000e_pm_ready(adapter))
5792 return 0;
5793
5794 adapter->idle_check = !dev->power.runtime_auto;
5795 return __e1000_resume(pdev);
5796 }
5797 #endif /* CONFIG_PM_RUNTIME */
5798 #endif /* CONFIG_PM */
5799
5800 static void e1000_shutdown(struct pci_dev *pdev)
5801 {
5802 bool wake = false;
5803
5804 __e1000_shutdown(pdev, &wake, false);
5805
5806 if (system_state == SYSTEM_POWER_OFF)
5807 e1000_complete_shutdown(pdev, false, wake);
5808 }
5809
5810 #ifdef CONFIG_NET_POLL_CONTROLLER
5811
5812 static irqreturn_t e1000_intr_msix(int irq, void *data)
5813 {
5814 struct net_device *netdev = data;
5815 struct e1000_adapter *adapter = netdev_priv(netdev);
5816
5817 if (adapter->msix_entries) {
5818 int vector, msix_irq;
5819
5820 vector = 0;
5821 msix_irq = adapter->msix_entries[vector].vector;
5822 disable_irq(msix_irq);
5823 e1000_intr_msix_rx(msix_irq, netdev);
5824 enable_irq(msix_irq);
5825
5826 vector++;
5827 msix_irq = adapter->msix_entries[vector].vector;
5828 disable_irq(msix_irq);
5829 e1000_intr_msix_tx(msix_irq, netdev);
5830 enable_irq(msix_irq);
5831
5832 vector++;
5833 msix_irq = adapter->msix_entries[vector].vector;
5834 disable_irq(msix_irq);
5835 e1000_msix_other(msix_irq, netdev);
5836 enable_irq(msix_irq);
5837 }
5838
5839 return IRQ_HANDLED;
5840 }
5841
5842 /*
5843 * Polling 'interrupt' - used by things like netconsole to send skbs
5844 * without having to re-enable interrupts. It's not called while
5845 * the interrupt routine is executing.
5846 */
5847 static void e1000_netpoll(struct net_device *netdev)
5848 {
5849 struct e1000_adapter *adapter = netdev_priv(netdev);
5850
5851 switch (adapter->int_mode) {
5852 case E1000E_INT_MODE_MSIX:
5853 e1000_intr_msix(adapter->pdev->irq, netdev);
5854 break;
5855 case E1000E_INT_MODE_MSI:
5856 disable_irq(adapter->pdev->irq);
5857 e1000_intr_msi(adapter->pdev->irq, netdev);
5858 enable_irq(adapter->pdev->irq);
5859 break;
5860 default: /* E1000E_INT_MODE_LEGACY */
5861 disable_irq(adapter->pdev->irq);
5862 e1000_intr(adapter->pdev->irq, netdev);
5863 enable_irq(adapter->pdev->irq);
5864 break;
5865 }
5866 }
5867 #endif
5868
5869 /**
5870 * e1000_io_error_detected - called when PCI error is detected
5871 * @pdev: Pointer to PCI device
5872 * @state: The current pci connection state
5873 *
5874 * This function is called after a PCI bus error affecting
5875 * this device has been detected.
5876 */
5877 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5878 pci_channel_state_t state)
5879 {
5880 struct net_device *netdev = pci_get_drvdata(pdev);
5881 struct e1000_adapter *adapter = netdev_priv(netdev);
5882
5883 netif_device_detach(netdev);
5884
5885 if (state == pci_channel_io_perm_failure)
5886 return PCI_ERS_RESULT_DISCONNECT;
5887
5888 if (netif_running(netdev))
5889 e1000e_down(adapter);
5890 pci_disable_device(pdev);
5891
5892 /* Request a slot slot reset. */
5893 return PCI_ERS_RESULT_NEED_RESET;
5894 }
5895
5896 /**
5897 * e1000_io_slot_reset - called after the pci bus has been reset.
5898 * @pdev: Pointer to PCI device
5899 *
5900 * Restart the card from scratch, as if from a cold-boot. Implementation
5901 * resembles the first-half of the e1000_resume routine.
5902 */
5903 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5904 {
5905 struct net_device *netdev = pci_get_drvdata(pdev);
5906 struct e1000_adapter *adapter = netdev_priv(netdev);
5907 struct e1000_hw *hw = &adapter->hw;
5908 u16 aspm_disable_flag = 0;
5909 int err;
5910 pci_ers_result_t result;
5911
5912 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5913 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5914 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5915 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5916 if (aspm_disable_flag)
5917 e1000e_disable_aspm(pdev, aspm_disable_flag);
5918
5919 err = pci_enable_device_mem(pdev);
5920 if (err) {
5921 dev_err(&pdev->dev,
5922 "Cannot re-enable PCI device after reset.\n");
5923 result = PCI_ERS_RESULT_DISCONNECT;
5924 } else {
5925 pci_set_master(pdev);
5926 pdev->state_saved = true;
5927 pci_restore_state(pdev);
5928
5929 pci_enable_wake(pdev, PCI_D3hot, 0);
5930 pci_enable_wake(pdev, PCI_D3cold, 0);
5931
5932 e1000e_reset(adapter);
5933 ew32(WUS, ~0);
5934 result = PCI_ERS_RESULT_RECOVERED;
5935 }
5936
5937 pci_cleanup_aer_uncorrect_error_status(pdev);
5938
5939 return result;
5940 }
5941
5942 /**
5943 * e1000_io_resume - called when traffic can start flowing again.
5944 * @pdev: Pointer to PCI device
5945 *
5946 * This callback is called when the error recovery driver tells us that
5947 * its OK to resume normal operation. Implementation resembles the
5948 * second-half of the e1000_resume routine.
5949 */
5950 static void e1000_io_resume(struct pci_dev *pdev)
5951 {
5952 struct net_device *netdev = pci_get_drvdata(pdev);
5953 struct e1000_adapter *adapter = netdev_priv(netdev);
5954
5955 e1000_init_manageability_pt(adapter);
5956
5957 if (netif_running(netdev)) {
5958 if (e1000e_up(adapter)) {
5959 dev_err(&pdev->dev,
5960 "can't bring device back up after reset\n");
5961 return;
5962 }
5963 }
5964
5965 netif_device_attach(netdev);
5966
5967 /*
5968 * If the controller has AMT, do not set DRV_LOAD until the interface
5969 * is up. For all other cases, let the f/w know that the h/w is now
5970 * under the control of the driver.
5971 */
5972 if (!(adapter->flags & FLAG_HAS_AMT))
5973 e1000e_get_hw_control(adapter);
5974
5975 }
5976
5977 static void e1000_print_device_info(struct e1000_adapter *adapter)
5978 {
5979 struct e1000_hw *hw = &adapter->hw;
5980 struct net_device *netdev = adapter->netdev;
5981 u32 ret_val;
5982 u8 pba_str[E1000_PBANUM_LENGTH];
5983
5984 /* print bus type/speed/width info */
5985 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5986 /* bus width */
5987 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5988 "Width x1"),
5989 /* MAC address */
5990 netdev->dev_addr);
5991 e_info("Intel(R) PRO/%s Network Connection\n",
5992 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5993 ret_val = e1000_read_pba_string_generic(hw, pba_str,
5994 E1000_PBANUM_LENGTH);
5995 if (ret_val)
5996 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5997 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5998 hw->mac.type, hw->phy.type, pba_str);
5999 }
6000
6001 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6002 {
6003 struct e1000_hw *hw = &adapter->hw;
6004 int ret_val;
6005 u16 buf = 0;
6006
6007 if (hw->mac.type != e1000_82573)
6008 return;
6009
6010 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6011 le16_to_cpus(&buf);
6012 if (!ret_val && (!(buf & (1 << 0)))) {
6013 /* Deep Smart Power Down (DSPD) */
6014 dev_warn(&adapter->pdev->dev,
6015 "Warning: detected DSPD enabled in EEPROM\n");
6016 }
6017 }
6018
6019 static int e1000_set_features(struct net_device *netdev,
6020 netdev_features_t features)
6021 {
6022 struct e1000_adapter *adapter = netdev_priv(netdev);
6023 netdev_features_t changed = features ^ netdev->features;
6024
6025 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6026 adapter->flags |= FLAG_TSO_FORCE;
6027
6028 if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
6029 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6030 NETIF_F_RXALL)))
6031 return 0;
6032
6033 /*
6034 * IP payload checksum (enabled with jumbos/packet-split when Rx
6035 * checksum is enabled) and generation of RSS hash is mutually
6036 * exclusive in the hardware.
6037 */
6038 if (adapter->rx_ps_pages &&
6039 (features & NETIF_F_RXCSUM) && (features & NETIF_F_RXHASH)) {
6040 e_err("Enabling both receive checksum offload and receive hashing is not possible with jumbo frames. Disable jumbos or enable only one of the receive offload features.\n");
6041 return -EINVAL;
6042 }
6043
6044 if (changed & NETIF_F_RXFCS) {
6045 if (features & NETIF_F_RXFCS) {
6046 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6047 } else {
6048 /* We need to take it back to defaults, which might mean
6049 * stripping is still disabled at the adapter level.
6050 */
6051 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6052 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6053 else
6054 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6055 }
6056 }
6057
6058 netdev->features = features;
6059
6060 if (netif_running(netdev))
6061 e1000e_reinit_locked(adapter);
6062 else
6063 e1000e_reset(adapter);
6064
6065 return 0;
6066 }
6067
6068 static const struct net_device_ops e1000e_netdev_ops = {
6069 .ndo_open = e1000_open,
6070 .ndo_stop = e1000_close,
6071 .ndo_start_xmit = e1000_xmit_frame,
6072 .ndo_get_stats64 = e1000e_get_stats64,
6073 .ndo_set_rx_mode = e1000e_set_rx_mode,
6074 .ndo_set_mac_address = e1000_set_mac,
6075 .ndo_change_mtu = e1000_change_mtu,
6076 .ndo_do_ioctl = e1000_ioctl,
6077 .ndo_tx_timeout = e1000_tx_timeout,
6078 .ndo_validate_addr = eth_validate_addr,
6079
6080 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
6081 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
6082 #ifdef CONFIG_NET_POLL_CONTROLLER
6083 .ndo_poll_controller = e1000_netpoll,
6084 #endif
6085 .ndo_set_features = e1000_set_features,
6086 };
6087
6088 /**
6089 * e1000_probe - Device Initialization Routine
6090 * @pdev: PCI device information struct
6091 * @ent: entry in e1000_pci_tbl
6092 *
6093 * Returns 0 on success, negative on failure
6094 *
6095 * e1000_probe initializes an adapter identified by a pci_dev structure.
6096 * The OS initialization, configuring of the adapter private structure,
6097 * and a hardware reset occur.
6098 **/
6099 static int __devinit e1000_probe(struct pci_dev *pdev,
6100 const struct pci_device_id *ent)
6101 {
6102 struct net_device *netdev;
6103 struct e1000_adapter *adapter;
6104 struct e1000_hw *hw;
6105 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6106 resource_size_t mmio_start, mmio_len;
6107 resource_size_t flash_start, flash_len;
6108 static int cards_found;
6109 u16 aspm_disable_flag = 0;
6110 int i, err, pci_using_dac;
6111 u16 eeprom_data = 0;
6112 u16 eeprom_apme_mask = E1000_EEPROM_APME;
6113
6114 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6115 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6116 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6117 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6118 if (aspm_disable_flag)
6119 e1000e_disable_aspm(pdev, aspm_disable_flag);
6120
6121 err = pci_enable_device_mem(pdev);
6122 if (err)
6123 return err;
6124
6125 pci_using_dac = 0;
6126 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6127 if (!err) {
6128 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6129 if (!err)
6130 pci_using_dac = 1;
6131 } else {
6132 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6133 if (err) {
6134 err = dma_set_coherent_mask(&pdev->dev,
6135 DMA_BIT_MASK(32));
6136 if (err) {
6137 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6138 goto err_dma;
6139 }
6140 }
6141 }
6142
6143 err = pci_request_selected_regions_exclusive(pdev,
6144 pci_select_bars(pdev, IORESOURCE_MEM),
6145 e1000e_driver_name);
6146 if (err)
6147 goto err_pci_reg;
6148
6149 /* AER (Advanced Error Reporting) hooks */
6150 pci_enable_pcie_error_reporting(pdev);
6151
6152 pci_set_master(pdev);
6153 /* PCI config space info */
6154 err = pci_save_state(pdev);
6155 if (err)
6156 goto err_alloc_etherdev;
6157
6158 err = -ENOMEM;
6159 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6160 if (!netdev)
6161 goto err_alloc_etherdev;
6162
6163 SET_NETDEV_DEV(netdev, &pdev->dev);
6164
6165 netdev->irq = pdev->irq;
6166
6167 pci_set_drvdata(pdev, netdev);
6168 adapter = netdev_priv(netdev);
6169 hw = &adapter->hw;
6170 adapter->netdev = netdev;
6171 adapter->pdev = pdev;
6172 adapter->ei = ei;
6173 adapter->pba = ei->pba;
6174 adapter->flags = ei->flags;
6175 adapter->flags2 = ei->flags2;
6176 adapter->hw.adapter = adapter;
6177 adapter->hw.mac.type = ei->mac;
6178 adapter->max_hw_frame_size = ei->max_hw_frame_size;
6179 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6180
6181 mmio_start = pci_resource_start(pdev, 0);
6182 mmio_len = pci_resource_len(pdev, 0);
6183
6184 err = -EIO;
6185 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6186 if (!adapter->hw.hw_addr)
6187 goto err_ioremap;
6188
6189 if ((adapter->flags & FLAG_HAS_FLASH) &&
6190 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6191 flash_start = pci_resource_start(pdev, 1);
6192 flash_len = pci_resource_len(pdev, 1);
6193 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6194 if (!adapter->hw.flash_address)
6195 goto err_flashmap;
6196 }
6197
6198 /* construct the net_device struct */
6199 netdev->netdev_ops = &e1000e_netdev_ops;
6200 e1000e_set_ethtool_ops(netdev);
6201 netdev->watchdog_timeo = 5 * HZ;
6202 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6203 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6204
6205 netdev->mem_start = mmio_start;
6206 netdev->mem_end = mmio_start + mmio_len;
6207
6208 adapter->bd_number = cards_found++;
6209
6210 e1000e_check_options(adapter);
6211
6212 /* setup adapter struct */
6213 err = e1000_sw_init(adapter);
6214 if (err)
6215 goto err_sw_init;
6216
6217 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6218 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6219 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6220
6221 err = ei->get_variants(adapter);
6222 if (err)
6223 goto err_hw_init;
6224
6225 if ((adapter->flags & FLAG_IS_ICH) &&
6226 (adapter->flags & FLAG_READ_ONLY_NVM))
6227 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6228
6229 hw->mac.ops.get_bus_info(&adapter->hw);
6230
6231 adapter->hw.phy.autoneg_wait_to_complete = 0;
6232
6233 /* Copper options */
6234 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6235 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6236 adapter->hw.phy.disable_polarity_correction = 0;
6237 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6238 }
6239
6240 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6241 e_info("PHY reset is blocked due to SOL/IDER session.\n");
6242
6243 /* Set initial default active device features */
6244 netdev->features = (NETIF_F_SG |
6245 NETIF_F_HW_VLAN_RX |
6246 NETIF_F_HW_VLAN_TX |
6247 NETIF_F_TSO |
6248 NETIF_F_TSO6 |
6249 NETIF_F_RXHASH |
6250 NETIF_F_RXCSUM |
6251 NETIF_F_HW_CSUM);
6252
6253 /* Set user-changeable features (subset of all device features) */
6254 netdev->hw_features = netdev->features;
6255 netdev->hw_features |= NETIF_F_RXFCS;
6256 netdev->priv_flags |= IFF_SUPP_NOFCS;
6257 netdev->hw_features |= NETIF_F_RXALL;
6258
6259 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6260 netdev->features |= NETIF_F_HW_VLAN_FILTER;
6261
6262 netdev->vlan_features |= (NETIF_F_SG |
6263 NETIF_F_TSO |
6264 NETIF_F_TSO6 |
6265 NETIF_F_HW_CSUM);
6266
6267 netdev->priv_flags |= IFF_UNICAST_FLT;
6268
6269 if (pci_using_dac) {
6270 netdev->features |= NETIF_F_HIGHDMA;
6271 netdev->vlan_features |= NETIF_F_HIGHDMA;
6272 }
6273
6274 if (e1000e_enable_mng_pass_thru(&adapter->hw))
6275 adapter->flags |= FLAG_MNG_PT_ENABLED;
6276
6277 /*
6278 * before reading the NVM, reset the controller to
6279 * put the device in a known good starting state
6280 */
6281 adapter->hw.mac.ops.reset_hw(&adapter->hw);
6282
6283 /*
6284 * systems with ASPM and others may see the checksum fail on the first
6285 * attempt. Let's give it a few tries
6286 */
6287 for (i = 0;; i++) {
6288 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6289 break;
6290 if (i == 2) {
6291 e_err("The NVM Checksum Is Not Valid\n");
6292 err = -EIO;
6293 goto err_eeprom;
6294 }
6295 }
6296
6297 e1000_eeprom_checks(adapter);
6298
6299 /* copy the MAC address */
6300 if (e1000e_read_mac_addr(&adapter->hw))
6301 e_err("NVM Read Error while reading MAC address\n");
6302
6303 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6304 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6305
6306 if (!is_valid_ether_addr(netdev->perm_addr)) {
6307 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6308 err = -EIO;
6309 goto err_eeprom;
6310 }
6311
6312 init_timer(&adapter->watchdog_timer);
6313 adapter->watchdog_timer.function = e1000_watchdog;
6314 adapter->watchdog_timer.data = (unsigned long) adapter;
6315
6316 init_timer(&adapter->phy_info_timer);
6317 adapter->phy_info_timer.function = e1000_update_phy_info;
6318 adapter->phy_info_timer.data = (unsigned long) adapter;
6319
6320 INIT_WORK(&adapter->reset_task, e1000_reset_task);
6321 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6322 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6323 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6324 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6325
6326 /* Initialize link parameters. User can change them with ethtool */
6327 adapter->hw.mac.autoneg = 1;
6328 adapter->fc_autoneg = true;
6329 adapter->hw.fc.requested_mode = e1000_fc_default;
6330 adapter->hw.fc.current_mode = e1000_fc_default;
6331 adapter->hw.phy.autoneg_advertised = 0x2f;
6332
6333 /* ring size defaults */
6334 adapter->rx_ring->count = 256;
6335 adapter->tx_ring->count = 256;
6336
6337 /*
6338 * Initial Wake on LAN setting - If APM wake is enabled in
6339 * the EEPROM, enable the ACPI Magic Packet filter
6340 */
6341 if (adapter->flags & FLAG_APME_IN_WUC) {
6342 /* APME bit in EEPROM is mapped to WUC.APME */
6343 eeprom_data = er32(WUC);
6344 eeprom_apme_mask = E1000_WUC_APME;
6345 if ((hw->mac.type > e1000_ich10lan) &&
6346 (eeprom_data & E1000_WUC_PHY_WAKE))
6347 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6348 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6349 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6350 (adapter->hw.bus.func == 1))
6351 e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6352 1, &eeprom_data);
6353 else
6354 e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6355 1, &eeprom_data);
6356 }
6357
6358 /* fetch WoL from EEPROM */
6359 if (eeprom_data & eeprom_apme_mask)
6360 adapter->eeprom_wol |= E1000_WUFC_MAG;
6361
6362 /*
6363 * now that we have the eeprom settings, apply the special cases
6364 * where the eeprom may be wrong or the board simply won't support
6365 * wake on lan on a particular port
6366 */
6367 if (!(adapter->flags & FLAG_HAS_WOL))
6368 adapter->eeprom_wol = 0;
6369
6370 /* initialize the wol settings based on the eeprom settings */
6371 adapter->wol = adapter->eeprom_wol;
6372 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6373
6374 /* save off EEPROM version number */
6375 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6376
6377 /* reset the hardware with the new settings */
6378 e1000e_reset(adapter);
6379
6380 /*
6381 * If the controller has AMT, do not set DRV_LOAD until the interface
6382 * is up. For all other cases, let the f/w know that the h/w is now
6383 * under the control of the driver.
6384 */
6385 if (!(adapter->flags & FLAG_HAS_AMT))
6386 e1000e_get_hw_control(adapter);
6387
6388 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6389 err = register_netdev(netdev);
6390 if (err)
6391 goto err_register;
6392
6393 /* carrier off reporting is important to ethtool even BEFORE open */
6394 netif_carrier_off(netdev);
6395
6396 e1000_print_device_info(adapter);
6397
6398 if (pci_dev_run_wake(pdev))
6399 pm_runtime_put_noidle(&pdev->dev);
6400
6401 return 0;
6402
6403 err_register:
6404 if (!(adapter->flags & FLAG_HAS_AMT))
6405 e1000e_release_hw_control(adapter);
6406 err_eeprom:
6407 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6408 e1000_phy_hw_reset(&adapter->hw);
6409 err_hw_init:
6410 kfree(adapter->tx_ring);
6411 kfree(adapter->rx_ring);
6412 err_sw_init:
6413 if (adapter->hw.flash_address)
6414 iounmap(adapter->hw.flash_address);
6415 e1000e_reset_interrupt_capability(adapter);
6416 err_flashmap:
6417 iounmap(adapter->hw.hw_addr);
6418 err_ioremap:
6419 free_netdev(netdev);
6420 err_alloc_etherdev:
6421 pci_release_selected_regions(pdev,
6422 pci_select_bars(pdev, IORESOURCE_MEM));
6423 err_pci_reg:
6424 err_dma:
6425 pci_disable_device(pdev);
6426 return err;
6427 }
6428
6429 /**
6430 * e1000_remove - Device Removal Routine
6431 * @pdev: PCI device information struct
6432 *
6433 * e1000_remove is called by the PCI subsystem to alert the driver
6434 * that it should release a PCI device. The could be caused by a
6435 * Hot-Plug event, or because the driver is going to be removed from
6436 * memory.
6437 **/
6438 static void __devexit e1000_remove(struct pci_dev *pdev)
6439 {
6440 struct net_device *netdev = pci_get_drvdata(pdev);
6441 struct e1000_adapter *adapter = netdev_priv(netdev);
6442 bool down = test_bit(__E1000_DOWN, &adapter->state);
6443
6444 /*
6445 * The timers may be rescheduled, so explicitly disable them
6446 * from being rescheduled.
6447 */
6448 if (!down)
6449 set_bit(__E1000_DOWN, &adapter->state);
6450 del_timer_sync(&adapter->watchdog_timer);
6451 del_timer_sync(&adapter->phy_info_timer);
6452
6453 cancel_work_sync(&adapter->reset_task);
6454 cancel_work_sync(&adapter->watchdog_task);
6455 cancel_work_sync(&adapter->downshift_task);
6456 cancel_work_sync(&adapter->update_phy_task);
6457 cancel_work_sync(&adapter->print_hang_task);
6458
6459 if (!(netdev->flags & IFF_UP))
6460 e1000_power_down_phy(adapter);
6461
6462 /* Don't lie to e1000_close() down the road. */
6463 if (!down)
6464 clear_bit(__E1000_DOWN, &adapter->state);
6465 unregister_netdev(netdev);
6466
6467 if (pci_dev_run_wake(pdev))
6468 pm_runtime_get_noresume(&pdev->dev);
6469
6470 /*
6471 * Release control of h/w to f/w. If f/w is AMT enabled, this
6472 * would have already happened in close and is redundant.
6473 */
6474 e1000e_release_hw_control(adapter);
6475
6476 e1000e_reset_interrupt_capability(adapter);
6477 kfree(adapter->tx_ring);
6478 kfree(adapter->rx_ring);
6479
6480 iounmap(adapter->hw.hw_addr);
6481 if (adapter->hw.flash_address)
6482 iounmap(adapter->hw.flash_address);
6483 pci_release_selected_regions(pdev,
6484 pci_select_bars(pdev, IORESOURCE_MEM));
6485
6486 free_netdev(netdev);
6487
6488 /* AER disable */
6489 pci_disable_pcie_error_reporting(pdev);
6490
6491 pci_disable_device(pdev);
6492 }
6493
6494 /* PCI Error Recovery (ERS) */
6495 static struct pci_error_handlers e1000_err_handler = {
6496 .error_detected = e1000_io_error_detected,
6497 .slot_reset = e1000_io_slot_reset,
6498 .resume = e1000_io_resume,
6499 };
6500
6501 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6502 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6503 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6504 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6505 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6506 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6507 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6508 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6509 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6510 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6511
6512 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6513 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6514 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6515 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6516
6517 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6518 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6519 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6520
6521 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6522 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6523 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6524
6525 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6526 board_80003es2lan },
6527 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6528 board_80003es2lan },
6529 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6530 board_80003es2lan },
6531 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6532 board_80003es2lan },
6533
6534 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6535 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6536 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6537 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6538 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6539 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6540 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6541 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6542
6543 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6544 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6545 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6546 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6547 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6548 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6549 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6550 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6551 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6552
6553 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6554 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6555 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6556
6557 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6558 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6559 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6560
6561 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6562 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6563 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6564 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6565
6566 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6567 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6568
6569 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6570 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
6571
6572 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
6573 };
6574 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6575
6576 #ifdef CONFIG_PM
6577 static const struct dev_pm_ops e1000_pm_ops = {
6578 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6579 SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6580 e1000_runtime_resume, e1000_idle)
6581 };
6582 #endif
6583
6584 /* PCI Device API Driver */
6585 static struct pci_driver e1000_driver = {
6586 .name = e1000e_driver_name,
6587 .id_table = e1000_pci_tbl,
6588 .probe = e1000_probe,
6589 .remove = __devexit_p(e1000_remove),
6590 #ifdef CONFIG_PM
6591 .driver = {
6592 .pm = &e1000_pm_ops,
6593 },
6594 #endif
6595 .shutdown = e1000_shutdown,
6596 .err_handler = &e1000_err_handler
6597 };
6598
6599 /**
6600 * e1000_init_module - Driver Registration Routine
6601 *
6602 * e1000_init_module is the first routine called when the driver is
6603 * loaded. All it does is register with the PCI subsystem.
6604 **/
6605 static int __init e1000_init_module(void)
6606 {
6607 int ret;
6608 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6609 e1000e_driver_version);
6610 pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6611 ret = pci_register_driver(&e1000_driver);
6612
6613 return ret;
6614 }
6615 module_init(e1000_init_module);
6616
6617 /**
6618 * e1000_exit_module - Driver Exit Cleanup Routine
6619 *
6620 * e1000_exit_module is called just before the driver is removed
6621 * from memory.
6622 **/
6623 static void __exit e1000_exit_module(void)
6624 {
6625 pci_unregister_driver(&e1000_driver);
6626 }
6627 module_exit(e1000_exit_module);
6628
6629
6630 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6631 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6632 MODULE_LICENSE("GPL");
6633 MODULE_VERSION(DRV_VERSION);
6634
6635 /* netdev.c */
This page took 0.178277 seconds and 5 git commands to generate.