Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
54
55 #include "e1000.h"
56
57 #define DRV_EXTRAVERSION "-k"
58
59 #define DRV_VERSION "2.0.0" DRV_EXTRAVERSION
60 char e1000e_driver_name[] = "e1000e";
61 const char e1000e_driver_version[] = DRV_VERSION;
62
63 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
64 static int debug = -1;
65 module_param(debug, int, 0);
66 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
67
68 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
69
70 static const struct e1000_info *e1000_info_tbl[] = {
71 [board_82571] = &e1000_82571_info,
72 [board_82572] = &e1000_82572_info,
73 [board_82573] = &e1000_82573_info,
74 [board_82574] = &e1000_82574_info,
75 [board_82583] = &e1000_82583_info,
76 [board_80003es2lan] = &e1000_es2_info,
77 [board_ich8lan] = &e1000_ich8_info,
78 [board_ich9lan] = &e1000_ich9_info,
79 [board_ich10lan] = &e1000_ich10_info,
80 [board_pchlan] = &e1000_pch_info,
81 [board_pch2lan] = &e1000_pch2_info,
82 [board_pch_lpt] = &e1000_pch_lpt_info,
83 };
84
85 struct e1000_reg_info {
86 u32 ofs;
87 char *name;
88 };
89
90 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
91 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
92 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
93 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
94 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
95
96 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
97 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
98 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
99 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
100 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
101
102 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
103
104 /* General Registers */
105 {E1000_CTRL, "CTRL"},
106 {E1000_STATUS, "STATUS"},
107 {E1000_CTRL_EXT, "CTRL_EXT"},
108
109 /* Interrupt Registers */
110 {E1000_ICR, "ICR"},
111
112 /* Rx Registers */
113 {E1000_RCTL, "RCTL"},
114 {E1000_RDLEN(0), "RDLEN"},
115 {E1000_RDH(0), "RDH"},
116 {E1000_RDT(0), "RDT"},
117 {E1000_RDTR, "RDTR"},
118 {E1000_RXDCTL(0), "RXDCTL"},
119 {E1000_ERT, "ERT"},
120 {E1000_RDBAL(0), "RDBAL"},
121 {E1000_RDBAH(0), "RDBAH"},
122 {E1000_RDFH, "RDFH"},
123 {E1000_RDFT, "RDFT"},
124 {E1000_RDFHS, "RDFHS"},
125 {E1000_RDFTS, "RDFTS"},
126 {E1000_RDFPC, "RDFPC"},
127
128 /* Tx Registers */
129 {E1000_TCTL, "TCTL"},
130 {E1000_TDBAL(0), "TDBAL"},
131 {E1000_TDBAH(0), "TDBAH"},
132 {E1000_TDLEN(0), "TDLEN"},
133 {E1000_TDH(0), "TDH"},
134 {E1000_TDT(0), "TDT"},
135 {E1000_TIDV, "TIDV"},
136 {E1000_TXDCTL(0), "TXDCTL"},
137 {E1000_TADV, "TADV"},
138 {E1000_TARC(0), "TARC"},
139 {E1000_TDFH, "TDFH"},
140 {E1000_TDFT, "TDFT"},
141 {E1000_TDFHS, "TDFHS"},
142 {E1000_TDFTS, "TDFTS"},
143 {E1000_TDFPC, "TDFPC"},
144
145 /* List Terminator */
146 {0, NULL}
147 };
148
149 /*
150 * e1000_regdump - register printout routine
151 */
152 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
153 {
154 int n = 0;
155 char rname[16];
156 u32 regs[8];
157
158 switch (reginfo->ofs) {
159 case E1000_RXDCTL(0):
160 for (n = 0; n < 2; n++)
161 regs[n] = __er32(hw, E1000_RXDCTL(n));
162 break;
163 case E1000_TXDCTL(0):
164 for (n = 0; n < 2; n++)
165 regs[n] = __er32(hw, E1000_TXDCTL(n));
166 break;
167 case E1000_TARC(0):
168 for (n = 0; n < 2; n++)
169 regs[n] = __er32(hw, E1000_TARC(n));
170 break;
171 default:
172 pr_info("%-15s %08x\n",
173 reginfo->name, __er32(hw, reginfo->ofs));
174 return;
175 }
176
177 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
178 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
179 }
180
181 /*
182 * e1000e_dump - Print registers, Tx-ring and Rx-ring
183 */
184 static void e1000e_dump(struct e1000_adapter *adapter)
185 {
186 struct net_device *netdev = adapter->netdev;
187 struct e1000_hw *hw = &adapter->hw;
188 struct e1000_reg_info *reginfo;
189 struct e1000_ring *tx_ring = adapter->tx_ring;
190 struct e1000_tx_desc *tx_desc;
191 struct my_u0 {
192 __le64 a;
193 __le64 b;
194 } *u0;
195 struct e1000_buffer *buffer_info;
196 struct e1000_ring *rx_ring = adapter->rx_ring;
197 union e1000_rx_desc_packet_split *rx_desc_ps;
198 union e1000_rx_desc_extended *rx_desc;
199 struct my_u1 {
200 __le64 a;
201 __le64 b;
202 __le64 c;
203 __le64 d;
204 } *u1;
205 u32 staterr;
206 int i = 0;
207
208 if (!netif_msg_hw(adapter))
209 return;
210
211 /* Print netdevice Info */
212 if (netdev) {
213 dev_info(&adapter->pdev->dev, "Net device Info\n");
214 pr_info("Device Name state trans_start last_rx\n");
215 pr_info("%-15s %016lX %016lX %016lX\n",
216 netdev->name, netdev->state, netdev->trans_start,
217 netdev->last_rx);
218 }
219
220 /* Print Registers */
221 dev_info(&adapter->pdev->dev, "Register Dump\n");
222 pr_info(" Register Name Value\n");
223 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
224 reginfo->name; reginfo++) {
225 e1000_regdump(hw, reginfo);
226 }
227
228 /* Print Tx Ring Summary */
229 if (!netdev || !netif_running(netdev))
230 return;
231
232 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
233 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
234 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
235 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
236 0, tx_ring->next_to_use, tx_ring->next_to_clean,
237 (unsigned long long)buffer_info->dma,
238 buffer_info->length,
239 buffer_info->next_to_watch,
240 (unsigned long long)buffer_info->time_stamp);
241
242 /* Print Tx Ring */
243 if (!netif_msg_tx_done(adapter))
244 goto rx_ring_summary;
245
246 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
247
248 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
249 *
250 * Legacy Transmit Descriptor
251 * +--------------------------------------------------------------+
252 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
253 * +--------------------------------------------------------------+
254 * 8 | Special | CSS | Status | CMD | CSO | Length |
255 * +--------------------------------------------------------------+
256 * 63 48 47 36 35 32 31 24 23 16 15 0
257 *
258 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
259 * 63 48 47 40 39 32 31 16 15 8 7 0
260 * +----------------------------------------------------------------+
261 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
262 * +----------------------------------------------------------------+
263 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
264 * +----------------------------------------------------------------+
265 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
266 *
267 * Extended Data Descriptor (DTYP=0x1)
268 * +----------------------------------------------------------------+
269 * 0 | Buffer Address [63:0] |
270 * +----------------------------------------------------------------+
271 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
272 * +----------------------------------------------------------------+
273 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
274 */
275 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
276 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
277 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
278 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
279 const char *next_desc;
280 tx_desc = E1000_TX_DESC(*tx_ring, i);
281 buffer_info = &tx_ring->buffer_info[i];
282 u0 = (struct my_u0 *)tx_desc;
283 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
284 next_desc = " NTC/U";
285 else if (i == tx_ring->next_to_use)
286 next_desc = " NTU";
287 else if (i == tx_ring->next_to_clean)
288 next_desc = " NTC";
289 else
290 next_desc = "";
291 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
292 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
293 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
294 i,
295 (unsigned long long)le64_to_cpu(u0->a),
296 (unsigned long long)le64_to_cpu(u0->b),
297 (unsigned long long)buffer_info->dma,
298 buffer_info->length, buffer_info->next_to_watch,
299 (unsigned long long)buffer_info->time_stamp,
300 buffer_info->skb, next_desc);
301
302 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
303 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
304 16, 1, phys_to_virt(buffer_info->dma),
305 buffer_info->length, true);
306 }
307
308 /* Print Rx Ring Summary */
309 rx_ring_summary:
310 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
311 pr_info("Queue [NTU] [NTC]\n");
312 pr_info(" %5d %5X %5X\n",
313 0, rx_ring->next_to_use, rx_ring->next_to_clean);
314
315 /* Print Rx Ring */
316 if (!netif_msg_rx_status(adapter))
317 return;
318
319 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
320 switch (adapter->rx_ps_pages) {
321 case 1:
322 case 2:
323 case 3:
324 /* [Extended] Packet Split Receive Descriptor Format
325 *
326 * +-----------------------------------------------------+
327 * 0 | Buffer Address 0 [63:0] |
328 * +-----------------------------------------------------+
329 * 8 | Buffer Address 1 [63:0] |
330 * +-----------------------------------------------------+
331 * 16 | Buffer Address 2 [63:0] |
332 * +-----------------------------------------------------+
333 * 24 | Buffer Address 3 [63:0] |
334 * +-----------------------------------------------------+
335 */
336 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
337 /* [Extended] Receive Descriptor (Write-Back) Format
338 *
339 * 63 48 47 32 31 13 12 8 7 4 3 0
340 * +------------------------------------------------------+
341 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
342 * | Checksum | Ident | | Queue | | Type |
343 * +------------------------------------------------------+
344 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
345 * +------------------------------------------------------+
346 * 63 48 47 32 31 20 19 0
347 */
348 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
349 for (i = 0; i < rx_ring->count; i++) {
350 const char *next_desc;
351 buffer_info = &rx_ring->buffer_info[i];
352 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
353 u1 = (struct my_u1 *)rx_desc_ps;
354 staterr =
355 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
356
357 if (i == rx_ring->next_to_use)
358 next_desc = " NTU";
359 else if (i == rx_ring->next_to_clean)
360 next_desc = " NTC";
361 else
362 next_desc = "";
363
364 if (staterr & E1000_RXD_STAT_DD) {
365 /* Descriptor Done */
366 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
367 "RWB", i,
368 (unsigned long long)le64_to_cpu(u1->a),
369 (unsigned long long)le64_to_cpu(u1->b),
370 (unsigned long long)le64_to_cpu(u1->c),
371 (unsigned long long)le64_to_cpu(u1->d),
372 buffer_info->skb, next_desc);
373 } else {
374 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
375 "R ", i,
376 (unsigned long long)le64_to_cpu(u1->a),
377 (unsigned long long)le64_to_cpu(u1->b),
378 (unsigned long long)le64_to_cpu(u1->c),
379 (unsigned long long)le64_to_cpu(u1->d),
380 (unsigned long long)buffer_info->dma,
381 buffer_info->skb, next_desc);
382
383 if (netif_msg_pktdata(adapter))
384 print_hex_dump(KERN_INFO, "",
385 DUMP_PREFIX_ADDRESS, 16, 1,
386 phys_to_virt(buffer_info->dma),
387 adapter->rx_ps_bsize0, true);
388 }
389 }
390 break;
391 default:
392 case 0:
393 /* Extended Receive Descriptor (Read) Format
394 *
395 * +-----------------------------------------------------+
396 * 0 | Buffer Address [63:0] |
397 * +-----------------------------------------------------+
398 * 8 | Reserved |
399 * +-----------------------------------------------------+
400 */
401 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
402 /* Extended Receive Descriptor (Write-Back) Format
403 *
404 * 63 48 47 32 31 24 23 4 3 0
405 * +------------------------------------------------------+
406 * | RSS Hash | | | |
407 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
408 * | Packet | IP | | | Type |
409 * | Checksum | Ident | | | |
410 * +------------------------------------------------------+
411 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
412 * +------------------------------------------------------+
413 * 63 48 47 32 31 20 19 0
414 */
415 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
416
417 for (i = 0; i < rx_ring->count; i++) {
418 const char *next_desc;
419
420 buffer_info = &rx_ring->buffer_info[i];
421 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
422 u1 = (struct my_u1 *)rx_desc;
423 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
424
425 if (i == rx_ring->next_to_use)
426 next_desc = " NTU";
427 else if (i == rx_ring->next_to_clean)
428 next_desc = " NTC";
429 else
430 next_desc = "";
431
432 if (staterr & E1000_RXD_STAT_DD) {
433 /* Descriptor Done */
434 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
435 "RWB", i,
436 (unsigned long long)le64_to_cpu(u1->a),
437 (unsigned long long)le64_to_cpu(u1->b),
438 buffer_info->skb, next_desc);
439 } else {
440 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
441 "R ", i,
442 (unsigned long long)le64_to_cpu(u1->a),
443 (unsigned long long)le64_to_cpu(u1->b),
444 (unsigned long long)buffer_info->dma,
445 buffer_info->skb, next_desc);
446
447 if (netif_msg_pktdata(adapter))
448 print_hex_dump(KERN_INFO, "",
449 DUMP_PREFIX_ADDRESS, 16,
450 1,
451 phys_to_virt
452 (buffer_info->dma),
453 adapter->rx_buffer_len,
454 true);
455 }
456 }
457 }
458 }
459
460 /**
461 * e1000_desc_unused - calculate if we have unused descriptors
462 **/
463 static int e1000_desc_unused(struct e1000_ring *ring)
464 {
465 if (ring->next_to_clean > ring->next_to_use)
466 return ring->next_to_clean - ring->next_to_use - 1;
467
468 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
469 }
470
471 /**
472 * e1000_receive_skb - helper function to handle Rx indications
473 * @adapter: board private structure
474 * @status: descriptor status field as written by hardware
475 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
476 * @skb: pointer to sk_buff to be indicated to stack
477 **/
478 static void e1000_receive_skb(struct e1000_adapter *adapter,
479 struct net_device *netdev, struct sk_buff *skb,
480 u8 status, __le16 vlan)
481 {
482 u16 tag = le16_to_cpu(vlan);
483 skb->protocol = eth_type_trans(skb, netdev);
484
485 if (status & E1000_RXD_STAT_VP)
486 __vlan_hwaccel_put_tag(skb, tag);
487
488 napi_gro_receive(&adapter->napi, skb);
489 }
490
491 /**
492 * e1000_rx_checksum - Receive Checksum Offload
493 * @adapter: board private structure
494 * @status_err: receive descriptor status and error fields
495 * @csum: receive descriptor csum field
496 * @sk_buff: socket buffer with received data
497 **/
498 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
499 struct sk_buff *skb)
500 {
501 u16 status = (u16)status_err;
502 u8 errors = (u8)(status_err >> 24);
503
504 skb_checksum_none_assert(skb);
505
506 /* Rx checksum disabled */
507 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
508 return;
509
510 /* Ignore Checksum bit is set */
511 if (status & E1000_RXD_STAT_IXSM)
512 return;
513
514 /* TCP/UDP checksum error bit or IP checksum error bit is set */
515 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
516 /* let the stack verify checksum errors */
517 adapter->hw_csum_err++;
518 return;
519 }
520
521 /* TCP/UDP Checksum has not been calculated */
522 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
523 return;
524
525 /* It must be a TCP or UDP packet with a valid checksum */
526 skb->ip_summed = CHECKSUM_UNNECESSARY;
527 adapter->hw_csum_good++;
528 }
529
530 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
531 {
532 struct e1000_adapter *adapter = rx_ring->adapter;
533 struct e1000_hw *hw = &adapter->hw;
534 s32 ret_val = __ew32_prepare(hw);
535
536 writel(i, rx_ring->tail);
537
538 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
539 u32 rctl = er32(RCTL);
540 ew32(RCTL, rctl & ~E1000_RCTL_EN);
541 e_err("ME firmware caused invalid RDT - resetting\n");
542 schedule_work(&adapter->reset_task);
543 }
544 }
545
546 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
547 {
548 struct e1000_adapter *adapter = tx_ring->adapter;
549 struct e1000_hw *hw = &adapter->hw;
550 s32 ret_val = __ew32_prepare(hw);
551
552 writel(i, tx_ring->tail);
553
554 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
555 u32 tctl = er32(TCTL);
556 ew32(TCTL, tctl & ~E1000_TCTL_EN);
557 e_err("ME firmware caused invalid TDT - resetting\n");
558 schedule_work(&adapter->reset_task);
559 }
560 }
561
562 /**
563 * e1000_alloc_rx_buffers - Replace used receive buffers
564 * @rx_ring: Rx descriptor ring
565 **/
566 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
567 int cleaned_count, gfp_t gfp)
568 {
569 struct e1000_adapter *adapter = rx_ring->adapter;
570 struct net_device *netdev = adapter->netdev;
571 struct pci_dev *pdev = adapter->pdev;
572 union e1000_rx_desc_extended *rx_desc;
573 struct e1000_buffer *buffer_info;
574 struct sk_buff *skb;
575 unsigned int i;
576 unsigned int bufsz = adapter->rx_buffer_len;
577
578 i = rx_ring->next_to_use;
579 buffer_info = &rx_ring->buffer_info[i];
580
581 while (cleaned_count--) {
582 skb = buffer_info->skb;
583 if (skb) {
584 skb_trim(skb, 0);
585 goto map_skb;
586 }
587
588 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
589 if (!skb) {
590 /* Better luck next round */
591 adapter->alloc_rx_buff_failed++;
592 break;
593 }
594
595 buffer_info->skb = skb;
596 map_skb:
597 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
598 adapter->rx_buffer_len,
599 DMA_FROM_DEVICE);
600 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
601 dev_err(&pdev->dev, "Rx DMA map failed\n");
602 adapter->rx_dma_failed++;
603 break;
604 }
605
606 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
607 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
608
609 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
610 /*
611 * Force memory writes to complete before letting h/w
612 * know there are new descriptors to fetch. (Only
613 * applicable for weak-ordered memory model archs,
614 * such as IA-64).
615 */
616 wmb();
617 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
618 e1000e_update_rdt_wa(rx_ring, i);
619 else
620 writel(i, rx_ring->tail);
621 }
622 i++;
623 if (i == rx_ring->count)
624 i = 0;
625 buffer_info = &rx_ring->buffer_info[i];
626 }
627
628 rx_ring->next_to_use = i;
629 }
630
631 /**
632 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
633 * @rx_ring: Rx descriptor ring
634 **/
635 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
636 int cleaned_count, gfp_t gfp)
637 {
638 struct e1000_adapter *adapter = rx_ring->adapter;
639 struct net_device *netdev = adapter->netdev;
640 struct pci_dev *pdev = adapter->pdev;
641 union e1000_rx_desc_packet_split *rx_desc;
642 struct e1000_buffer *buffer_info;
643 struct e1000_ps_page *ps_page;
644 struct sk_buff *skb;
645 unsigned int i, j;
646
647 i = rx_ring->next_to_use;
648 buffer_info = &rx_ring->buffer_info[i];
649
650 while (cleaned_count--) {
651 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
652
653 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
654 ps_page = &buffer_info->ps_pages[j];
655 if (j >= adapter->rx_ps_pages) {
656 /* all unused desc entries get hw null ptr */
657 rx_desc->read.buffer_addr[j + 1] =
658 ~cpu_to_le64(0);
659 continue;
660 }
661 if (!ps_page->page) {
662 ps_page->page = alloc_page(gfp);
663 if (!ps_page->page) {
664 adapter->alloc_rx_buff_failed++;
665 goto no_buffers;
666 }
667 ps_page->dma = dma_map_page(&pdev->dev,
668 ps_page->page,
669 0, PAGE_SIZE,
670 DMA_FROM_DEVICE);
671 if (dma_mapping_error(&pdev->dev,
672 ps_page->dma)) {
673 dev_err(&adapter->pdev->dev,
674 "Rx DMA page map failed\n");
675 adapter->rx_dma_failed++;
676 goto no_buffers;
677 }
678 }
679 /*
680 * Refresh the desc even if buffer_addrs
681 * didn't change because each write-back
682 * erases this info.
683 */
684 rx_desc->read.buffer_addr[j + 1] =
685 cpu_to_le64(ps_page->dma);
686 }
687
688 skb = __netdev_alloc_skb_ip_align(netdev,
689 adapter->rx_ps_bsize0,
690 gfp);
691
692 if (!skb) {
693 adapter->alloc_rx_buff_failed++;
694 break;
695 }
696
697 buffer_info->skb = skb;
698 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
699 adapter->rx_ps_bsize0,
700 DMA_FROM_DEVICE);
701 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
702 dev_err(&pdev->dev, "Rx DMA map failed\n");
703 adapter->rx_dma_failed++;
704 /* cleanup skb */
705 dev_kfree_skb_any(skb);
706 buffer_info->skb = NULL;
707 break;
708 }
709
710 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
711
712 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
713 /*
714 * Force memory writes to complete before letting h/w
715 * know there are new descriptors to fetch. (Only
716 * applicable for weak-ordered memory model archs,
717 * such as IA-64).
718 */
719 wmb();
720 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
721 e1000e_update_rdt_wa(rx_ring, i << 1);
722 else
723 writel(i << 1, rx_ring->tail);
724 }
725
726 i++;
727 if (i == rx_ring->count)
728 i = 0;
729 buffer_info = &rx_ring->buffer_info[i];
730 }
731
732 no_buffers:
733 rx_ring->next_to_use = i;
734 }
735
736 /**
737 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
738 * @rx_ring: Rx descriptor ring
739 * @cleaned_count: number of buffers to allocate this pass
740 **/
741
742 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
743 int cleaned_count, gfp_t gfp)
744 {
745 struct e1000_adapter *adapter = rx_ring->adapter;
746 struct net_device *netdev = adapter->netdev;
747 struct pci_dev *pdev = adapter->pdev;
748 union e1000_rx_desc_extended *rx_desc;
749 struct e1000_buffer *buffer_info;
750 struct sk_buff *skb;
751 unsigned int i;
752 unsigned int bufsz = 256 - 16 /* for skb_reserve */;
753
754 i = rx_ring->next_to_use;
755 buffer_info = &rx_ring->buffer_info[i];
756
757 while (cleaned_count--) {
758 skb = buffer_info->skb;
759 if (skb) {
760 skb_trim(skb, 0);
761 goto check_page;
762 }
763
764 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
765 if (unlikely(!skb)) {
766 /* Better luck next round */
767 adapter->alloc_rx_buff_failed++;
768 break;
769 }
770
771 buffer_info->skb = skb;
772 check_page:
773 /* allocate a new page if necessary */
774 if (!buffer_info->page) {
775 buffer_info->page = alloc_page(gfp);
776 if (unlikely(!buffer_info->page)) {
777 adapter->alloc_rx_buff_failed++;
778 break;
779 }
780 }
781
782 if (!buffer_info->dma)
783 buffer_info->dma = dma_map_page(&pdev->dev,
784 buffer_info->page, 0,
785 PAGE_SIZE,
786 DMA_FROM_DEVICE);
787
788 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
789 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
790
791 if (unlikely(++i == rx_ring->count))
792 i = 0;
793 buffer_info = &rx_ring->buffer_info[i];
794 }
795
796 if (likely(rx_ring->next_to_use != i)) {
797 rx_ring->next_to_use = i;
798 if (unlikely(i-- == 0))
799 i = (rx_ring->count - 1);
800
801 /* Force memory writes to complete before letting h/w
802 * know there are new descriptors to fetch. (Only
803 * applicable for weak-ordered memory model archs,
804 * such as IA-64). */
805 wmb();
806 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
807 e1000e_update_rdt_wa(rx_ring, i);
808 else
809 writel(i, rx_ring->tail);
810 }
811 }
812
813 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
814 struct sk_buff *skb)
815 {
816 if (netdev->features & NETIF_F_RXHASH)
817 skb->rxhash = le32_to_cpu(rss);
818 }
819
820 /**
821 * e1000_clean_rx_irq - Send received data up the network stack
822 * @rx_ring: Rx descriptor ring
823 *
824 * the return value indicates whether actual cleaning was done, there
825 * is no guarantee that everything was cleaned
826 **/
827 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
828 int work_to_do)
829 {
830 struct e1000_adapter *adapter = rx_ring->adapter;
831 struct net_device *netdev = adapter->netdev;
832 struct pci_dev *pdev = adapter->pdev;
833 struct e1000_hw *hw = &adapter->hw;
834 union e1000_rx_desc_extended *rx_desc, *next_rxd;
835 struct e1000_buffer *buffer_info, *next_buffer;
836 u32 length, staterr;
837 unsigned int i;
838 int cleaned_count = 0;
839 bool cleaned = false;
840 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
841
842 i = rx_ring->next_to_clean;
843 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
844 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
845 buffer_info = &rx_ring->buffer_info[i];
846
847 while (staterr & E1000_RXD_STAT_DD) {
848 struct sk_buff *skb;
849
850 if (*work_done >= work_to_do)
851 break;
852 (*work_done)++;
853 rmb(); /* read descriptor and rx_buffer_info after status DD */
854
855 skb = buffer_info->skb;
856 buffer_info->skb = NULL;
857
858 prefetch(skb->data - NET_IP_ALIGN);
859
860 i++;
861 if (i == rx_ring->count)
862 i = 0;
863 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
864 prefetch(next_rxd);
865
866 next_buffer = &rx_ring->buffer_info[i];
867
868 cleaned = true;
869 cleaned_count++;
870 dma_unmap_single(&pdev->dev,
871 buffer_info->dma,
872 adapter->rx_buffer_len,
873 DMA_FROM_DEVICE);
874 buffer_info->dma = 0;
875
876 length = le16_to_cpu(rx_desc->wb.upper.length);
877
878 /*
879 * !EOP means multiple descriptors were used to store a single
880 * packet, if that's the case we need to toss it. In fact, we
881 * need to toss every packet with the EOP bit clear and the
882 * next frame that _does_ have the EOP bit set, as it is by
883 * definition only a frame fragment
884 */
885 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
886 adapter->flags2 |= FLAG2_IS_DISCARDING;
887
888 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
889 /* All receives must fit into a single buffer */
890 e_dbg("Receive packet consumed multiple buffers\n");
891 /* recycle */
892 buffer_info->skb = skb;
893 if (staterr & E1000_RXD_STAT_EOP)
894 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
895 goto next_desc;
896 }
897
898 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
899 !(netdev->features & NETIF_F_RXALL))) {
900 /* recycle */
901 buffer_info->skb = skb;
902 goto next_desc;
903 }
904
905 /* adjust length to remove Ethernet CRC */
906 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
907 /* If configured to store CRC, don't subtract FCS,
908 * but keep the FCS bytes out of the total_rx_bytes
909 * counter
910 */
911 if (netdev->features & NETIF_F_RXFCS)
912 total_rx_bytes -= 4;
913 else
914 length -= 4;
915 }
916
917 total_rx_bytes += length;
918 total_rx_packets++;
919
920 /*
921 * code added for copybreak, this should improve
922 * performance for small packets with large amounts
923 * of reassembly being done in the stack
924 */
925 if (length < copybreak) {
926 struct sk_buff *new_skb =
927 netdev_alloc_skb_ip_align(netdev, length);
928 if (new_skb) {
929 skb_copy_to_linear_data_offset(new_skb,
930 -NET_IP_ALIGN,
931 (skb->data -
932 NET_IP_ALIGN),
933 (length +
934 NET_IP_ALIGN));
935 /* save the skb in buffer_info as good */
936 buffer_info->skb = skb;
937 skb = new_skb;
938 }
939 /* else just continue with the old one */
940 }
941 /* end copybreak code */
942 skb_put(skb, length);
943
944 /* Receive Checksum Offload */
945 e1000_rx_checksum(adapter, staterr, skb);
946
947 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
948
949 e1000_receive_skb(adapter, netdev, skb, staterr,
950 rx_desc->wb.upper.vlan);
951
952 next_desc:
953 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
954
955 /* return some buffers to hardware, one at a time is too slow */
956 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
957 adapter->alloc_rx_buf(rx_ring, cleaned_count,
958 GFP_ATOMIC);
959 cleaned_count = 0;
960 }
961
962 /* use prefetched values */
963 rx_desc = next_rxd;
964 buffer_info = next_buffer;
965
966 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
967 }
968 rx_ring->next_to_clean = i;
969
970 cleaned_count = e1000_desc_unused(rx_ring);
971 if (cleaned_count)
972 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
973
974 adapter->total_rx_bytes += total_rx_bytes;
975 adapter->total_rx_packets += total_rx_packets;
976 return cleaned;
977 }
978
979 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
980 struct e1000_buffer *buffer_info)
981 {
982 struct e1000_adapter *adapter = tx_ring->adapter;
983
984 if (buffer_info->dma) {
985 if (buffer_info->mapped_as_page)
986 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
987 buffer_info->length, DMA_TO_DEVICE);
988 else
989 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
990 buffer_info->length, DMA_TO_DEVICE);
991 buffer_info->dma = 0;
992 }
993 if (buffer_info->skb) {
994 dev_kfree_skb_any(buffer_info->skb);
995 buffer_info->skb = NULL;
996 }
997 buffer_info->time_stamp = 0;
998 }
999
1000 static void e1000_print_hw_hang(struct work_struct *work)
1001 {
1002 struct e1000_adapter *adapter = container_of(work,
1003 struct e1000_adapter,
1004 print_hang_task);
1005 struct net_device *netdev = adapter->netdev;
1006 struct e1000_ring *tx_ring = adapter->tx_ring;
1007 unsigned int i = tx_ring->next_to_clean;
1008 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1009 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1010 struct e1000_hw *hw = &adapter->hw;
1011 u16 phy_status, phy_1000t_status, phy_ext_status;
1012 u16 pci_status;
1013
1014 if (test_bit(__E1000_DOWN, &adapter->state))
1015 return;
1016
1017 if (!adapter->tx_hang_recheck &&
1018 (adapter->flags2 & FLAG2_DMA_BURST)) {
1019 /*
1020 * May be block on write-back, flush and detect again
1021 * flush pending descriptor writebacks to memory
1022 */
1023 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1024 /* execute the writes immediately */
1025 e1e_flush();
1026 /*
1027 * Due to rare timing issues, write to TIDV again to ensure
1028 * the write is successful
1029 */
1030 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1031 /* execute the writes immediately */
1032 e1e_flush();
1033 adapter->tx_hang_recheck = true;
1034 return;
1035 }
1036 /* Real hang detected */
1037 adapter->tx_hang_recheck = false;
1038 netif_stop_queue(netdev);
1039
1040 e1e_rphy(hw, PHY_STATUS, &phy_status);
1041 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1042 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1043
1044 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1045
1046 /* detected Hardware unit hang */
1047 e_err("Detected Hardware Unit Hang:\n"
1048 " TDH <%x>\n"
1049 " TDT <%x>\n"
1050 " next_to_use <%x>\n"
1051 " next_to_clean <%x>\n"
1052 "buffer_info[next_to_clean]:\n"
1053 " time_stamp <%lx>\n"
1054 " next_to_watch <%x>\n"
1055 " jiffies <%lx>\n"
1056 " next_to_watch.status <%x>\n"
1057 "MAC Status <%x>\n"
1058 "PHY Status <%x>\n"
1059 "PHY 1000BASE-T Status <%x>\n"
1060 "PHY Extended Status <%x>\n"
1061 "PCI Status <%x>\n",
1062 readl(tx_ring->head),
1063 readl(tx_ring->tail),
1064 tx_ring->next_to_use,
1065 tx_ring->next_to_clean,
1066 tx_ring->buffer_info[eop].time_stamp,
1067 eop,
1068 jiffies,
1069 eop_desc->upper.fields.status,
1070 er32(STATUS),
1071 phy_status,
1072 phy_1000t_status,
1073 phy_ext_status,
1074 pci_status);
1075
1076 /* Suggest workaround for known h/w issue */
1077 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1078 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1079 }
1080
1081 /**
1082 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1083 * @tx_ring: Tx descriptor ring
1084 *
1085 * the return value indicates whether actual cleaning was done, there
1086 * is no guarantee that everything was cleaned
1087 **/
1088 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1089 {
1090 struct e1000_adapter *adapter = tx_ring->adapter;
1091 struct net_device *netdev = adapter->netdev;
1092 struct e1000_hw *hw = &adapter->hw;
1093 struct e1000_tx_desc *tx_desc, *eop_desc;
1094 struct e1000_buffer *buffer_info;
1095 unsigned int i, eop;
1096 unsigned int count = 0;
1097 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1098 unsigned int bytes_compl = 0, pkts_compl = 0;
1099
1100 i = tx_ring->next_to_clean;
1101 eop = tx_ring->buffer_info[i].next_to_watch;
1102 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103
1104 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1105 (count < tx_ring->count)) {
1106 bool cleaned = false;
1107 rmb(); /* read buffer_info after eop_desc */
1108 for (; !cleaned; count++) {
1109 tx_desc = E1000_TX_DESC(*tx_ring, i);
1110 buffer_info = &tx_ring->buffer_info[i];
1111 cleaned = (i == eop);
1112
1113 if (cleaned) {
1114 total_tx_packets += buffer_info->segs;
1115 total_tx_bytes += buffer_info->bytecount;
1116 if (buffer_info->skb) {
1117 bytes_compl += buffer_info->skb->len;
1118 pkts_compl++;
1119 }
1120 }
1121
1122 e1000_put_txbuf(tx_ring, buffer_info);
1123 tx_desc->upper.data = 0;
1124
1125 i++;
1126 if (i == tx_ring->count)
1127 i = 0;
1128 }
1129
1130 if (i == tx_ring->next_to_use)
1131 break;
1132 eop = tx_ring->buffer_info[i].next_to_watch;
1133 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1134 }
1135
1136 tx_ring->next_to_clean = i;
1137
1138 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1139
1140 #define TX_WAKE_THRESHOLD 32
1141 if (count && netif_carrier_ok(netdev) &&
1142 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1143 /* Make sure that anybody stopping the queue after this
1144 * sees the new next_to_clean.
1145 */
1146 smp_mb();
1147
1148 if (netif_queue_stopped(netdev) &&
1149 !(test_bit(__E1000_DOWN, &adapter->state))) {
1150 netif_wake_queue(netdev);
1151 ++adapter->restart_queue;
1152 }
1153 }
1154
1155 if (adapter->detect_tx_hung) {
1156 /*
1157 * Detect a transmit hang in hardware, this serializes the
1158 * check with the clearing of time_stamp and movement of i
1159 */
1160 adapter->detect_tx_hung = false;
1161 if (tx_ring->buffer_info[i].time_stamp &&
1162 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1163 + (adapter->tx_timeout_factor * HZ)) &&
1164 !(er32(STATUS) & E1000_STATUS_TXOFF))
1165 schedule_work(&adapter->print_hang_task);
1166 else
1167 adapter->tx_hang_recheck = false;
1168 }
1169 adapter->total_tx_bytes += total_tx_bytes;
1170 adapter->total_tx_packets += total_tx_packets;
1171 return count < tx_ring->count;
1172 }
1173
1174 /**
1175 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1176 * @rx_ring: Rx descriptor ring
1177 *
1178 * the return value indicates whether actual cleaning was done, there
1179 * is no guarantee that everything was cleaned
1180 **/
1181 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1182 int work_to_do)
1183 {
1184 struct e1000_adapter *adapter = rx_ring->adapter;
1185 struct e1000_hw *hw = &adapter->hw;
1186 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1187 struct net_device *netdev = adapter->netdev;
1188 struct pci_dev *pdev = adapter->pdev;
1189 struct e1000_buffer *buffer_info, *next_buffer;
1190 struct e1000_ps_page *ps_page;
1191 struct sk_buff *skb;
1192 unsigned int i, j;
1193 u32 length, staterr;
1194 int cleaned_count = 0;
1195 bool cleaned = false;
1196 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1197
1198 i = rx_ring->next_to_clean;
1199 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1200 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1201 buffer_info = &rx_ring->buffer_info[i];
1202
1203 while (staterr & E1000_RXD_STAT_DD) {
1204 if (*work_done >= work_to_do)
1205 break;
1206 (*work_done)++;
1207 skb = buffer_info->skb;
1208 rmb(); /* read descriptor and rx_buffer_info after status DD */
1209
1210 /* in the packet split case this is header only */
1211 prefetch(skb->data - NET_IP_ALIGN);
1212
1213 i++;
1214 if (i == rx_ring->count)
1215 i = 0;
1216 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1217 prefetch(next_rxd);
1218
1219 next_buffer = &rx_ring->buffer_info[i];
1220
1221 cleaned = true;
1222 cleaned_count++;
1223 dma_unmap_single(&pdev->dev, buffer_info->dma,
1224 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1225 buffer_info->dma = 0;
1226
1227 /* see !EOP comment in other Rx routine */
1228 if (!(staterr & E1000_RXD_STAT_EOP))
1229 adapter->flags2 |= FLAG2_IS_DISCARDING;
1230
1231 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1232 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1233 dev_kfree_skb_irq(skb);
1234 if (staterr & E1000_RXD_STAT_EOP)
1235 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1236 goto next_desc;
1237 }
1238
1239 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1240 !(netdev->features & NETIF_F_RXALL))) {
1241 dev_kfree_skb_irq(skb);
1242 goto next_desc;
1243 }
1244
1245 length = le16_to_cpu(rx_desc->wb.middle.length0);
1246
1247 if (!length) {
1248 e_dbg("Last part of the packet spanning multiple descriptors\n");
1249 dev_kfree_skb_irq(skb);
1250 goto next_desc;
1251 }
1252
1253 /* Good Receive */
1254 skb_put(skb, length);
1255
1256 {
1257 /*
1258 * this looks ugly, but it seems compiler issues make
1259 * it more efficient than reusing j
1260 */
1261 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1262
1263 /*
1264 * page alloc/put takes too long and effects small
1265 * packet throughput, so unsplit small packets and
1266 * save the alloc/put only valid in softirq (napi)
1267 * context to call kmap_*
1268 */
1269 if (l1 && (l1 <= copybreak) &&
1270 ((length + l1) <= adapter->rx_ps_bsize0)) {
1271 u8 *vaddr;
1272
1273 ps_page = &buffer_info->ps_pages[0];
1274
1275 /*
1276 * there is no documentation about how to call
1277 * kmap_atomic, so we can't hold the mapping
1278 * very long
1279 */
1280 dma_sync_single_for_cpu(&pdev->dev,
1281 ps_page->dma,
1282 PAGE_SIZE,
1283 DMA_FROM_DEVICE);
1284 vaddr = kmap_atomic(ps_page->page);
1285 memcpy(skb_tail_pointer(skb), vaddr, l1);
1286 kunmap_atomic(vaddr);
1287 dma_sync_single_for_device(&pdev->dev,
1288 ps_page->dma,
1289 PAGE_SIZE,
1290 DMA_FROM_DEVICE);
1291
1292 /* remove the CRC */
1293 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1294 if (!(netdev->features & NETIF_F_RXFCS))
1295 l1 -= 4;
1296 }
1297
1298 skb_put(skb, l1);
1299 goto copydone;
1300 } /* if */
1301 }
1302
1303 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1304 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1305 if (!length)
1306 break;
1307
1308 ps_page = &buffer_info->ps_pages[j];
1309 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1310 DMA_FROM_DEVICE);
1311 ps_page->dma = 0;
1312 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1313 ps_page->page = NULL;
1314 skb->len += length;
1315 skb->data_len += length;
1316 skb->truesize += PAGE_SIZE;
1317 }
1318
1319 /* strip the ethernet crc, problem is we're using pages now so
1320 * this whole operation can get a little cpu intensive
1321 */
1322 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1323 if (!(netdev->features & NETIF_F_RXFCS))
1324 pskb_trim(skb, skb->len - 4);
1325 }
1326
1327 copydone:
1328 total_rx_bytes += skb->len;
1329 total_rx_packets++;
1330
1331 e1000_rx_checksum(adapter, staterr, skb);
1332
1333 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1334
1335 if (rx_desc->wb.upper.header_status &
1336 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1337 adapter->rx_hdr_split++;
1338
1339 e1000_receive_skb(adapter, netdev, skb,
1340 staterr, rx_desc->wb.middle.vlan);
1341
1342 next_desc:
1343 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1344 buffer_info->skb = NULL;
1345
1346 /* return some buffers to hardware, one at a time is too slow */
1347 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1348 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1349 GFP_ATOMIC);
1350 cleaned_count = 0;
1351 }
1352
1353 /* use prefetched values */
1354 rx_desc = next_rxd;
1355 buffer_info = next_buffer;
1356
1357 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1358 }
1359 rx_ring->next_to_clean = i;
1360
1361 cleaned_count = e1000_desc_unused(rx_ring);
1362 if (cleaned_count)
1363 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1364
1365 adapter->total_rx_bytes += total_rx_bytes;
1366 adapter->total_rx_packets += total_rx_packets;
1367 return cleaned;
1368 }
1369
1370 /**
1371 * e1000_consume_page - helper function
1372 **/
1373 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1374 u16 length)
1375 {
1376 bi->page = NULL;
1377 skb->len += length;
1378 skb->data_len += length;
1379 skb->truesize += PAGE_SIZE;
1380 }
1381
1382 /**
1383 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1384 * @adapter: board private structure
1385 *
1386 * the return value indicates whether actual cleaning was done, there
1387 * is no guarantee that everything was cleaned
1388 **/
1389 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1390 int work_to_do)
1391 {
1392 struct e1000_adapter *adapter = rx_ring->adapter;
1393 struct net_device *netdev = adapter->netdev;
1394 struct pci_dev *pdev = adapter->pdev;
1395 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1396 struct e1000_buffer *buffer_info, *next_buffer;
1397 u32 length, staterr;
1398 unsigned int i;
1399 int cleaned_count = 0;
1400 bool cleaned = false;
1401 unsigned int total_rx_bytes=0, total_rx_packets=0;
1402
1403 i = rx_ring->next_to_clean;
1404 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1405 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1406 buffer_info = &rx_ring->buffer_info[i];
1407
1408 while (staterr & E1000_RXD_STAT_DD) {
1409 struct sk_buff *skb;
1410
1411 if (*work_done >= work_to_do)
1412 break;
1413 (*work_done)++;
1414 rmb(); /* read descriptor and rx_buffer_info after status DD */
1415
1416 skb = buffer_info->skb;
1417 buffer_info->skb = NULL;
1418
1419 ++i;
1420 if (i == rx_ring->count)
1421 i = 0;
1422 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1423 prefetch(next_rxd);
1424
1425 next_buffer = &rx_ring->buffer_info[i];
1426
1427 cleaned = true;
1428 cleaned_count++;
1429 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1430 DMA_FROM_DEVICE);
1431 buffer_info->dma = 0;
1432
1433 length = le16_to_cpu(rx_desc->wb.upper.length);
1434
1435 /* errors is only valid for DD + EOP descriptors */
1436 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1437 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1438 !(netdev->features & NETIF_F_RXALL)))) {
1439 /* recycle both page and skb */
1440 buffer_info->skb = skb;
1441 /* an error means any chain goes out the window too */
1442 if (rx_ring->rx_skb_top)
1443 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1444 rx_ring->rx_skb_top = NULL;
1445 goto next_desc;
1446 }
1447
1448 #define rxtop (rx_ring->rx_skb_top)
1449 if (!(staterr & E1000_RXD_STAT_EOP)) {
1450 /* this descriptor is only the beginning (or middle) */
1451 if (!rxtop) {
1452 /* this is the beginning of a chain */
1453 rxtop = skb;
1454 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1455 0, length);
1456 } else {
1457 /* this is the middle of a chain */
1458 skb_fill_page_desc(rxtop,
1459 skb_shinfo(rxtop)->nr_frags,
1460 buffer_info->page, 0, length);
1461 /* re-use the skb, only consumed the page */
1462 buffer_info->skb = skb;
1463 }
1464 e1000_consume_page(buffer_info, rxtop, length);
1465 goto next_desc;
1466 } else {
1467 if (rxtop) {
1468 /* end of the chain */
1469 skb_fill_page_desc(rxtop,
1470 skb_shinfo(rxtop)->nr_frags,
1471 buffer_info->page, 0, length);
1472 /* re-use the current skb, we only consumed the
1473 * page */
1474 buffer_info->skb = skb;
1475 skb = rxtop;
1476 rxtop = NULL;
1477 e1000_consume_page(buffer_info, skb, length);
1478 } else {
1479 /* no chain, got EOP, this buf is the packet
1480 * copybreak to save the put_page/alloc_page */
1481 if (length <= copybreak &&
1482 skb_tailroom(skb) >= length) {
1483 u8 *vaddr;
1484 vaddr = kmap_atomic(buffer_info->page);
1485 memcpy(skb_tail_pointer(skb), vaddr,
1486 length);
1487 kunmap_atomic(vaddr);
1488 /* re-use the page, so don't erase
1489 * buffer_info->page */
1490 skb_put(skb, length);
1491 } else {
1492 skb_fill_page_desc(skb, 0,
1493 buffer_info->page, 0,
1494 length);
1495 e1000_consume_page(buffer_info, skb,
1496 length);
1497 }
1498 }
1499 }
1500
1501 /* Receive Checksum Offload */
1502 e1000_rx_checksum(adapter, staterr, skb);
1503
1504 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1505
1506 /* probably a little skewed due to removing CRC */
1507 total_rx_bytes += skb->len;
1508 total_rx_packets++;
1509
1510 /* eth type trans needs skb->data to point to something */
1511 if (!pskb_may_pull(skb, ETH_HLEN)) {
1512 e_err("pskb_may_pull failed.\n");
1513 dev_kfree_skb_irq(skb);
1514 goto next_desc;
1515 }
1516
1517 e1000_receive_skb(adapter, netdev, skb, staterr,
1518 rx_desc->wb.upper.vlan);
1519
1520 next_desc:
1521 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1522
1523 /* return some buffers to hardware, one at a time is too slow */
1524 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1525 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1526 GFP_ATOMIC);
1527 cleaned_count = 0;
1528 }
1529
1530 /* use prefetched values */
1531 rx_desc = next_rxd;
1532 buffer_info = next_buffer;
1533
1534 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1535 }
1536 rx_ring->next_to_clean = i;
1537
1538 cleaned_count = e1000_desc_unused(rx_ring);
1539 if (cleaned_count)
1540 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1541
1542 adapter->total_rx_bytes += total_rx_bytes;
1543 adapter->total_rx_packets += total_rx_packets;
1544 return cleaned;
1545 }
1546
1547 /**
1548 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1549 * @rx_ring: Rx descriptor ring
1550 **/
1551 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1552 {
1553 struct e1000_adapter *adapter = rx_ring->adapter;
1554 struct e1000_buffer *buffer_info;
1555 struct e1000_ps_page *ps_page;
1556 struct pci_dev *pdev = adapter->pdev;
1557 unsigned int i, j;
1558
1559 /* Free all the Rx ring sk_buffs */
1560 for (i = 0; i < rx_ring->count; i++) {
1561 buffer_info = &rx_ring->buffer_info[i];
1562 if (buffer_info->dma) {
1563 if (adapter->clean_rx == e1000_clean_rx_irq)
1564 dma_unmap_single(&pdev->dev, buffer_info->dma,
1565 adapter->rx_buffer_len,
1566 DMA_FROM_DEVICE);
1567 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1568 dma_unmap_page(&pdev->dev, buffer_info->dma,
1569 PAGE_SIZE,
1570 DMA_FROM_DEVICE);
1571 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1572 dma_unmap_single(&pdev->dev, buffer_info->dma,
1573 adapter->rx_ps_bsize0,
1574 DMA_FROM_DEVICE);
1575 buffer_info->dma = 0;
1576 }
1577
1578 if (buffer_info->page) {
1579 put_page(buffer_info->page);
1580 buffer_info->page = NULL;
1581 }
1582
1583 if (buffer_info->skb) {
1584 dev_kfree_skb(buffer_info->skb);
1585 buffer_info->skb = NULL;
1586 }
1587
1588 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1589 ps_page = &buffer_info->ps_pages[j];
1590 if (!ps_page->page)
1591 break;
1592 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1593 DMA_FROM_DEVICE);
1594 ps_page->dma = 0;
1595 put_page(ps_page->page);
1596 ps_page->page = NULL;
1597 }
1598 }
1599
1600 /* there also may be some cached data from a chained receive */
1601 if (rx_ring->rx_skb_top) {
1602 dev_kfree_skb(rx_ring->rx_skb_top);
1603 rx_ring->rx_skb_top = NULL;
1604 }
1605
1606 /* Zero out the descriptor ring */
1607 memset(rx_ring->desc, 0, rx_ring->size);
1608
1609 rx_ring->next_to_clean = 0;
1610 rx_ring->next_to_use = 0;
1611 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1612
1613 writel(0, rx_ring->head);
1614 if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1615 e1000e_update_rdt_wa(rx_ring, 0);
1616 else
1617 writel(0, rx_ring->tail);
1618 }
1619
1620 static void e1000e_downshift_workaround(struct work_struct *work)
1621 {
1622 struct e1000_adapter *adapter = container_of(work,
1623 struct e1000_adapter, downshift_task);
1624
1625 if (test_bit(__E1000_DOWN, &adapter->state))
1626 return;
1627
1628 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1629 }
1630
1631 /**
1632 * e1000_intr_msi - Interrupt Handler
1633 * @irq: interrupt number
1634 * @data: pointer to a network interface device structure
1635 **/
1636 static irqreturn_t e1000_intr_msi(int irq, void *data)
1637 {
1638 struct net_device *netdev = data;
1639 struct e1000_adapter *adapter = netdev_priv(netdev);
1640 struct e1000_hw *hw = &adapter->hw;
1641 u32 icr = er32(ICR);
1642
1643 /*
1644 * read ICR disables interrupts using IAM
1645 */
1646
1647 if (icr & E1000_ICR_LSC) {
1648 hw->mac.get_link_status = true;
1649 /*
1650 * ICH8 workaround-- Call gig speed drop workaround on cable
1651 * disconnect (LSC) before accessing any PHY registers
1652 */
1653 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1654 (!(er32(STATUS) & E1000_STATUS_LU)))
1655 schedule_work(&adapter->downshift_task);
1656
1657 /*
1658 * 80003ES2LAN workaround-- For packet buffer work-around on
1659 * link down event; disable receives here in the ISR and reset
1660 * adapter in watchdog
1661 */
1662 if (netif_carrier_ok(netdev) &&
1663 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1664 /* disable receives */
1665 u32 rctl = er32(RCTL);
1666 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1667 adapter->flags |= FLAG_RX_RESTART_NOW;
1668 }
1669 /* guard against interrupt when we're going down */
1670 if (!test_bit(__E1000_DOWN, &adapter->state))
1671 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1672 }
1673
1674 if (napi_schedule_prep(&adapter->napi)) {
1675 adapter->total_tx_bytes = 0;
1676 adapter->total_tx_packets = 0;
1677 adapter->total_rx_bytes = 0;
1678 adapter->total_rx_packets = 0;
1679 __napi_schedule(&adapter->napi);
1680 }
1681
1682 return IRQ_HANDLED;
1683 }
1684
1685 /**
1686 * e1000_intr - Interrupt Handler
1687 * @irq: interrupt number
1688 * @data: pointer to a network interface device structure
1689 **/
1690 static irqreturn_t e1000_intr(int irq, void *data)
1691 {
1692 struct net_device *netdev = data;
1693 struct e1000_adapter *adapter = netdev_priv(netdev);
1694 struct e1000_hw *hw = &adapter->hw;
1695 u32 rctl, icr = er32(ICR);
1696
1697 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1698 return IRQ_NONE; /* Not our interrupt */
1699
1700 /*
1701 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1702 * not set, then the adapter didn't send an interrupt
1703 */
1704 if (!(icr & E1000_ICR_INT_ASSERTED))
1705 return IRQ_NONE;
1706
1707 /*
1708 * Interrupt Auto-Mask...upon reading ICR,
1709 * interrupts are masked. No need for the
1710 * IMC write
1711 */
1712
1713 if (icr & E1000_ICR_LSC) {
1714 hw->mac.get_link_status = true;
1715 /*
1716 * ICH8 workaround-- Call gig speed drop workaround on cable
1717 * disconnect (LSC) before accessing any PHY registers
1718 */
1719 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1720 (!(er32(STATUS) & E1000_STATUS_LU)))
1721 schedule_work(&adapter->downshift_task);
1722
1723 /*
1724 * 80003ES2LAN workaround--
1725 * For packet buffer work-around on link down event;
1726 * disable receives here in the ISR and
1727 * reset adapter in watchdog
1728 */
1729 if (netif_carrier_ok(netdev) &&
1730 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1731 /* disable receives */
1732 rctl = er32(RCTL);
1733 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1734 adapter->flags |= FLAG_RX_RESTART_NOW;
1735 }
1736 /* guard against interrupt when we're going down */
1737 if (!test_bit(__E1000_DOWN, &adapter->state))
1738 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1739 }
1740
1741 if (napi_schedule_prep(&adapter->napi)) {
1742 adapter->total_tx_bytes = 0;
1743 adapter->total_tx_packets = 0;
1744 adapter->total_rx_bytes = 0;
1745 adapter->total_rx_packets = 0;
1746 __napi_schedule(&adapter->napi);
1747 }
1748
1749 return IRQ_HANDLED;
1750 }
1751
1752 static irqreturn_t e1000_msix_other(int irq, void *data)
1753 {
1754 struct net_device *netdev = data;
1755 struct e1000_adapter *adapter = netdev_priv(netdev);
1756 struct e1000_hw *hw = &adapter->hw;
1757 u32 icr = er32(ICR);
1758
1759 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1760 if (!test_bit(__E1000_DOWN, &adapter->state))
1761 ew32(IMS, E1000_IMS_OTHER);
1762 return IRQ_NONE;
1763 }
1764
1765 if (icr & adapter->eiac_mask)
1766 ew32(ICS, (icr & adapter->eiac_mask));
1767
1768 if (icr & E1000_ICR_OTHER) {
1769 if (!(icr & E1000_ICR_LSC))
1770 goto no_link_interrupt;
1771 hw->mac.get_link_status = true;
1772 /* guard against interrupt when we're going down */
1773 if (!test_bit(__E1000_DOWN, &adapter->state))
1774 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1775 }
1776
1777 no_link_interrupt:
1778 if (!test_bit(__E1000_DOWN, &adapter->state))
1779 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1780
1781 return IRQ_HANDLED;
1782 }
1783
1784
1785 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1786 {
1787 struct net_device *netdev = data;
1788 struct e1000_adapter *adapter = netdev_priv(netdev);
1789 struct e1000_hw *hw = &adapter->hw;
1790 struct e1000_ring *tx_ring = adapter->tx_ring;
1791
1792
1793 adapter->total_tx_bytes = 0;
1794 adapter->total_tx_packets = 0;
1795
1796 if (!e1000_clean_tx_irq(tx_ring))
1797 /* Ring was not completely cleaned, so fire another interrupt */
1798 ew32(ICS, tx_ring->ims_val);
1799
1800 return IRQ_HANDLED;
1801 }
1802
1803 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1804 {
1805 struct net_device *netdev = data;
1806 struct e1000_adapter *adapter = netdev_priv(netdev);
1807 struct e1000_ring *rx_ring = adapter->rx_ring;
1808
1809 /* Write the ITR value calculated at the end of the
1810 * previous interrupt.
1811 */
1812 if (rx_ring->set_itr) {
1813 writel(1000000000 / (rx_ring->itr_val * 256),
1814 rx_ring->itr_register);
1815 rx_ring->set_itr = 0;
1816 }
1817
1818 if (napi_schedule_prep(&adapter->napi)) {
1819 adapter->total_rx_bytes = 0;
1820 adapter->total_rx_packets = 0;
1821 __napi_schedule(&adapter->napi);
1822 }
1823 return IRQ_HANDLED;
1824 }
1825
1826 /**
1827 * e1000_configure_msix - Configure MSI-X hardware
1828 *
1829 * e1000_configure_msix sets up the hardware to properly
1830 * generate MSI-X interrupts.
1831 **/
1832 static void e1000_configure_msix(struct e1000_adapter *adapter)
1833 {
1834 struct e1000_hw *hw = &adapter->hw;
1835 struct e1000_ring *rx_ring = adapter->rx_ring;
1836 struct e1000_ring *tx_ring = adapter->tx_ring;
1837 int vector = 0;
1838 u32 ctrl_ext, ivar = 0;
1839
1840 adapter->eiac_mask = 0;
1841
1842 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1843 if (hw->mac.type == e1000_82574) {
1844 u32 rfctl = er32(RFCTL);
1845 rfctl |= E1000_RFCTL_ACK_DIS;
1846 ew32(RFCTL, rfctl);
1847 }
1848
1849 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1850 /* Configure Rx vector */
1851 rx_ring->ims_val = E1000_IMS_RXQ0;
1852 adapter->eiac_mask |= rx_ring->ims_val;
1853 if (rx_ring->itr_val)
1854 writel(1000000000 / (rx_ring->itr_val * 256),
1855 rx_ring->itr_register);
1856 else
1857 writel(1, rx_ring->itr_register);
1858 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1859
1860 /* Configure Tx vector */
1861 tx_ring->ims_val = E1000_IMS_TXQ0;
1862 vector++;
1863 if (tx_ring->itr_val)
1864 writel(1000000000 / (tx_ring->itr_val * 256),
1865 tx_ring->itr_register);
1866 else
1867 writel(1, tx_ring->itr_register);
1868 adapter->eiac_mask |= tx_ring->ims_val;
1869 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1870
1871 /* set vector for Other Causes, e.g. link changes */
1872 vector++;
1873 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1874 if (rx_ring->itr_val)
1875 writel(1000000000 / (rx_ring->itr_val * 256),
1876 hw->hw_addr + E1000_EITR_82574(vector));
1877 else
1878 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1879
1880 /* Cause Tx interrupts on every write back */
1881 ivar |= (1 << 31);
1882
1883 ew32(IVAR, ivar);
1884
1885 /* enable MSI-X PBA support */
1886 ctrl_ext = er32(CTRL_EXT);
1887 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1888
1889 /* Auto-Mask Other interrupts upon ICR read */
1890 #define E1000_EIAC_MASK_82574 0x01F00000
1891 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1892 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1893 ew32(CTRL_EXT, ctrl_ext);
1894 e1e_flush();
1895 }
1896
1897 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1898 {
1899 if (adapter->msix_entries) {
1900 pci_disable_msix(adapter->pdev);
1901 kfree(adapter->msix_entries);
1902 adapter->msix_entries = NULL;
1903 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1904 pci_disable_msi(adapter->pdev);
1905 adapter->flags &= ~FLAG_MSI_ENABLED;
1906 }
1907 }
1908
1909 /**
1910 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1911 *
1912 * Attempt to configure interrupts using the best available
1913 * capabilities of the hardware and kernel.
1914 **/
1915 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1916 {
1917 int err;
1918 int i;
1919
1920 switch (adapter->int_mode) {
1921 case E1000E_INT_MODE_MSIX:
1922 if (adapter->flags & FLAG_HAS_MSIX) {
1923 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1924 adapter->msix_entries = kcalloc(adapter->num_vectors,
1925 sizeof(struct msix_entry),
1926 GFP_KERNEL);
1927 if (adapter->msix_entries) {
1928 for (i = 0; i < adapter->num_vectors; i++)
1929 adapter->msix_entries[i].entry = i;
1930
1931 err = pci_enable_msix(adapter->pdev,
1932 adapter->msix_entries,
1933 adapter->num_vectors);
1934 if (err == 0)
1935 return;
1936 }
1937 /* MSI-X failed, so fall through and try MSI */
1938 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
1939 e1000e_reset_interrupt_capability(adapter);
1940 }
1941 adapter->int_mode = E1000E_INT_MODE_MSI;
1942 /* Fall through */
1943 case E1000E_INT_MODE_MSI:
1944 if (!pci_enable_msi(adapter->pdev)) {
1945 adapter->flags |= FLAG_MSI_ENABLED;
1946 } else {
1947 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1948 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
1949 }
1950 /* Fall through */
1951 case E1000E_INT_MODE_LEGACY:
1952 /* Don't do anything; this is the system default */
1953 break;
1954 }
1955
1956 /* store the number of vectors being used */
1957 adapter->num_vectors = 1;
1958 }
1959
1960 /**
1961 * e1000_request_msix - Initialize MSI-X interrupts
1962 *
1963 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1964 * kernel.
1965 **/
1966 static int e1000_request_msix(struct e1000_adapter *adapter)
1967 {
1968 struct net_device *netdev = adapter->netdev;
1969 int err = 0, vector = 0;
1970
1971 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1972 snprintf(adapter->rx_ring->name,
1973 sizeof(adapter->rx_ring->name) - 1,
1974 "%s-rx-0", netdev->name);
1975 else
1976 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1977 err = request_irq(adapter->msix_entries[vector].vector,
1978 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1979 netdev);
1980 if (err)
1981 return err;
1982 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
1983 E1000_EITR_82574(vector);
1984 adapter->rx_ring->itr_val = adapter->itr;
1985 vector++;
1986
1987 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1988 snprintf(adapter->tx_ring->name,
1989 sizeof(adapter->tx_ring->name) - 1,
1990 "%s-tx-0", netdev->name);
1991 else
1992 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1993 err = request_irq(adapter->msix_entries[vector].vector,
1994 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1995 netdev);
1996 if (err)
1997 return err;
1998 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
1999 E1000_EITR_82574(vector);
2000 adapter->tx_ring->itr_val = adapter->itr;
2001 vector++;
2002
2003 err = request_irq(adapter->msix_entries[vector].vector,
2004 e1000_msix_other, 0, netdev->name, netdev);
2005 if (err)
2006 return err;
2007
2008 e1000_configure_msix(adapter);
2009
2010 return 0;
2011 }
2012
2013 /**
2014 * e1000_request_irq - initialize interrupts
2015 *
2016 * Attempts to configure interrupts using the best available
2017 * capabilities of the hardware and kernel.
2018 **/
2019 static int e1000_request_irq(struct e1000_adapter *adapter)
2020 {
2021 struct net_device *netdev = adapter->netdev;
2022 int err;
2023
2024 if (adapter->msix_entries) {
2025 err = e1000_request_msix(adapter);
2026 if (!err)
2027 return err;
2028 /* fall back to MSI */
2029 e1000e_reset_interrupt_capability(adapter);
2030 adapter->int_mode = E1000E_INT_MODE_MSI;
2031 e1000e_set_interrupt_capability(adapter);
2032 }
2033 if (adapter->flags & FLAG_MSI_ENABLED) {
2034 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2035 netdev->name, netdev);
2036 if (!err)
2037 return err;
2038
2039 /* fall back to legacy interrupt */
2040 e1000e_reset_interrupt_capability(adapter);
2041 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2042 }
2043
2044 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2045 netdev->name, netdev);
2046 if (err)
2047 e_err("Unable to allocate interrupt, Error: %d\n", err);
2048
2049 return err;
2050 }
2051
2052 static void e1000_free_irq(struct e1000_adapter *adapter)
2053 {
2054 struct net_device *netdev = adapter->netdev;
2055
2056 if (adapter->msix_entries) {
2057 int vector = 0;
2058
2059 free_irq(adapter->msix_entries[vector].vector, netdev);
2060 vector++;
2061
2062 free_irq(adapter->msix_entries[vector].vector, netdev);
2063 vector++;
2064
2065 /* Other Causes interrupt vector */
2066 free_irq(adapter->msix_entries[vector].vector, netdev);
2067 return;
2068 }
2069
2070 free_irq(adapter->pdev->irq, netdev);
2071 }
2072
2073 /**
2074 * e1000_irq_disable - Mask off interrupt generation on the NIC
2075 **/
2076 static void e1000_irq_disable(struct e1000_adapter *adapter)
2077 {
2078 struct e1000_hw *hw = &adapter->hw;
2079
2080 ew32(IMC, ~0);
2081 if (adapter->msix_entries)
2082 ew32(EIAC_82574, 0);
2083 e1e_flush();
2084
2085 if (adapter->msix_entries) {
2086 int i;
2087 for (i = 0; i < adapter->num_vectors; i++)
2088 synchronize_irq(adapter->msix_entries[i].vector);
2089 } else {
2090 synchronize_irq(adapter->pdev->irq);
2091 }
2092 }
2093
2094 /**
2095 * e1000_irq_enable - Enable default interrupt generation settings
2096 **/
2097 static void e1000_irq_enable(struct e1000_adapter *adapter)
2098 {
2099 struct e1000_hw *hw = &adapter->hw;
2100
2101 if (adapter->msix_entries) {
2102 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2103 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2104 } else {
2105 ew32(IMS, IMS_ENABLE_MASK);
2106 }
2107 e1e_flush();
2108 }
2109
2110 /**
2111 * e1000e_get_hw_control - get control of the h/w from f/w
2112 * @adapter: address of board private structure
2113 *
2114 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2115 * For ASF and Pass Through versions of f/w this means that
2116 * the driver is loaded. For AMT version (only with 82573)
2117 * of the f/w this means that the network i/f is open.
2118 **/
2119 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2120 {
2121 struct e1000_hw *hw = &adapter->hw;
2122 u32 ctrl_ext;
2123 u32 swsm;
2124
2125 /* Let firmware know the driver has taken over */
2126 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2127 swsm = er32(SWSM);
2128 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2129 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2130 ctrl_ext = er32(CTRL_EXT);
2131 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2132 }
2133 }
2134
2135 /**
2136 * e1000e_release_hw_control - release control of the h/w to f/w
2137 * @adapter: address of board private structure
2138 *
2139 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2140 * For ASF and Pass Through versions of f/w this means that the
2141 * driver is no longer loaded. For AMT version (only with 82573) i
2142 * of the f/w this means that the network i/f is closed.
2143 *
2144 **/
2145 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2146 {
2147 struct e1000_hw *hw = &adapter->hw;
2148 u32 ctrl_ext;
2149 u32 swsm;
2150
2151 /* Let firmware taken over control of h/w */
2152 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2153 swsm = er32(SWSM);
2154 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2155 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2156 ctrl_ext = er32(CTRL_EXT);
2157 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2158 }
2159 }
2160
2161 /**
2162 * @e1000_alloc_ring - allocate memory for a ring structure
2163 **/
2164 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2165 struct e1000_ring *ring)
2166 {
2167 struct pci_dev *pdev = adapter->pdev;
2168
2169 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2170 GFP_KERNEL);
2171 if (!ring->desc)
2172 return -ENOMEM;
2173
2174 return 0;
2175 }
2176
2177 /**
2178 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2179 * @tx_ring: Tx descriptor ring
2180 *
2181 * Return 0 on success, negative on failure
2182 **/
2183 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2184 {
2185 struct e1000_adapter *adapter = tx_ring->adapter;
2186 int err = -ENOMEM, size;
2187
2188 size = sizeof(struct e1000_buffer) * tx_ring->count;
2189 tx_ring->buffer_info = vzalloc(size);
2190 if (!tx_ring->buffer_info)
2191 goto err;
2192
2193 /* round up to nearest 4K */
2194 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2195 tx_ring->size = ALIGN(tx_ring->size, 4096);
2196
2197 err = e1000_alloc_ring_dma(adapter, tx_ring);
2198 if (err)
2199 goto err;
2200
2201 tx_ring->next_to_use = 0;
2202 tx_ring->next_to_clean = 0;
2203
2204 return 0;
2205 err:
2206 vfree(tx_ring->buffer_info);
2207 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2208 return err;
2209 }
2210
2211 /**
2212 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2213 * @rx_ring: Rx descriptor ring
2214 *
2215 * Returns 0 on success, negative on failure
2216 **/
2217 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2218 {
2219 struct e1000_adapter *adapter = rx_ring->adapter;
2220 struct e1000_buffer *buffer_info;
2221 int i, size, desc_len, err = -ENOMEM;
2222
2223 size = sizeof(struct e1000_buffer) * rx_ring->count;
2224 rx_ring->buffer_info = vzalloc(size);
2225 if (!rx_ring->buffer_info)
2226 goto err;
2227
2228 for (i = 0; i < rx_ring->count; i++) {
2229 buffer_info = &rx_ring->buffer_info[i];
2230 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2231 sizeof(struct e1000_ps_page),
2232 GFP_KERNEL);
2233 if (!buffer_info->ps_pages)
2234 goto err_pages;
2235 }
2236
2237 desc_len = sizeof(union e1000_rx_desc_packet_split);
2238
2239 /* Round up to nearest 4K */
2240 rx_ring->size = rx_ring->count * desc_len;
2241 rx_ring->size = ALIGN(rx_ring->size, 4096);
2242
2243 err = e1000_alloc_ring_dma(adapter, rx_ring);
2244 if (err)
2245 goto err_pages;
2246
2247 rx_ring->next_to_clean = 0;
2248 rx_ring->next_to_use = 0;
2249 rx_ring->rx_skb_top = NULL;
2250
2251 return 0;
2252
2253 err_pages:
2254 for (i = 0; i < rx_ring->count; i++) {
2255 buffer_info = &rx_ring->buffer_info[i];
2256 kfree(buffer_info->ps_pages);
2257 }
2258 err:
2259 vfree(rx_ring->buffer_info);
2260 e_err("Unable to allocate memory for the receive descriptor ring\n");
2261 return err;
2262 }
2263
2264 /**
2265 * e1000_clean_tx_ring - Free Tx Buffers
2266 * @tx_ring: Tx descriptor ring
2267 **/
2268 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2269 {
2270 struct e1000_adapter *adapter = tx_ring->adapter;
2271 struct e1000_buffer *buffer_info;
2272 unsigned long size;
2273 unsigned int i;
2274
2275 for (i = 0; i < tx_ring->count; i++) {
2276 buffer_info = &tx_ring->buffer_info[i];
2277 e1000_put_txbuf(tx_ring, buffer_info);
2278 }
2279
2280 netdev_reset_queue(adapter->netdev);
2281 size = sizeof(struct e1000_buffer) * tx_ring->count;
2282 memset(tx_ring->buffer_info, 0, size);
2283
2284 memset(tx_ring->desc, 0, tx_ring->size);
2285
2286 tx_ring->next_to_use = 0;
2287 tx_ring->next_to_clean = 0;
2288
2289 writel(0, tx_ring->head);
2290 if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2291 e1000e_update_tdt_wa(tx_ring, 0);
2292 else
2293 writel(0, tx_ring->tail);
2294 }
2295
2296 /**
2297 * e1000e_free_tx_resources - Free Tx Resources per Queue
2298 * @tx_ring: Tx descriptor ring
2299 *
2300 * Free all transmit software resources
2301 **/
2302 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2303 {
2304 struct e1000_adapter *adapter = tx_ring->adapter;
2305 struct pci_dev *pdev = adapter->pdev;
2306
2307 e1000_clean_tx_ring(tx_ring);
2308
2309 vfree(tx_ring->buffer_info);
2310 tx_ring->buffer_info = NULL;
2311
2312 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2313 tx_ring->dma);
2314 tx_ring->desc = NULL;
2315 }
2316
2317 /**
2318 * e1000e_free_rx_resources - Free Rx Resources
2319 * @rx_ring: Rx descriptor ring
2320 *
2321 * Free all receive software resources
2322 **/
2323 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2324 {
2325 struct e1000_adapter *adapter = rx_ring->adapter;
2326 struct pci_dev *pdev = adapter->pdev;
2327 int i;
2328
2329 e1000_clean_rx_ring(rx_ring);
2330
2331 for (i = 0; i < rx_ring->count; i++)
2332 kfree(rx_ring->buffer_info[i].ps_pages);
2333
2334 vfree(rx_ring->buffer_info);
2335 rx_ring->buffer_info = NULL;
2336
2337 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2338 rx_ring->dma);
2339 rx_ring->desc = NULL;
2340 }
2341
2342 /**
2343 * e1000_update_itr - update the dynamic ITR value based on statistics
2344 * @adapter: pointer to adapter
2345 * @itr_setting: current adapter->itr
2346 * @packets: the number of packets during this measurement interval
2347 * @bytes: the number of bytes during this measurement interval
2348 *
2349 * Stores a new ITR value based on packets and byte
2350 * counts during the last interrupt. The advantage of per interrupt
2351 * computation is faster updates and more accurate ITR for the current
2352 * traffic pattern. Constants in this function were computed
2353 * based on theoretical maximum wire speed and thresholds were set based
2354 * on testing data as well as attempting to minimize response time
2355 * while increasing bulk throughput. This functionality is controlled
2356 * by the InterruptThrottleRate module parameter.
2357 **/
2358 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2359 u16 itr_setting, int packets,
2360 int bytes)
2361 {
2362 unsigned int retval = itr_setting;
2363
2364 if (packets == 0)
2365 return itr_setting;
2366
2367 switch (itr_setting) {
2368 case lowest_latency:
2369 /* handle TSO and jumbo frames */
2370 if (bytes/packets > 8000)
2371 retval = bulk_latency;
2372 else if ((packets < 5) && (bytes > 512))
2373 retval = low_latency;
2374 break;
2375 case low_latency: /* 50 usec aka 20000 ints/s */
2376 if (bytes > 10000) {
2377 /* this if handles the TSO accounting */
2378 if (bytes/packets > 8000)
2379 retval = bulk_latency;
2380 else if ((packets < 10) || ((bytes/packets) > 1200))
2381 retval = bulk_latency;
2382 else if ((packets > 35))
2383 retval = lowest_latency;
2384 } else if (bytes/packets > 2000) {
2385 retval = bulk_latency;
2386 } else if (packets <= 2 && bytes < 512) {
2387 retval = lowest_latency;
2388 }
2389 break;
2390 case bulk_latency: /* 250 usec aka 4000 ints/s */
2391 if (bytes > 25000) {
2392 if (packets > 35)
2393 retval = low_latency;
2394 } else if (bytes < 6000) {
2395 retval = low_latency;
2396 }
2397 break;
2398 }
2399
2400 return retval;
2401 }
2402
2403 static void e1000_set_itr(struct e1000_adapter *adapter)
2404 {
2405 struct e1000_hw *hw = &adapter->hw;
2406 u16 current_itr;
2407 u32 new_itr = adapter->itr;
2408
2409 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2410 if (adapter->link_speed != SPEED_1000) {
2411 current_itr = 0;
2412 new_itr = 4000;
2413 goto set_itr_now;
2414 }
2415
2416 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2417 new_itr = 0;
2418 goto set_itr_now;
2419 }
2420
2421 adapter->tx_itr = e1000_update_itr(adapter,
2422 adapter->tx_itr,
2423 adapter->total_tx_packets,
2424 adapter->total_tx_bytes);
2425 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2426 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2427 adapter->tx_itr = low_latency;
2428
2429 adapter->rx_itr = e1000_update_itr(adapter,
2430 adapter->rx_itr,
2431 adapter->total_rx_packets,
2432 adapter->total_rx_bytes);
2433 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2434 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2435 adapter->rx_itr = low_latency;
2436
2437 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2438
2439 switch (current_itr) {
2440 /* counts and packets in update_itr are dependent on these numbers */
2441 case lowest_latency:
2442 new_itr = 70000;
2443 break;
2444 case low_latency:
2445 new_itr = 20000; /* aka hwitr = ~200 */
2446 break;
2447 case bulk_latency:
2448 new_itr = 4000;
2449 break;
2450 default:
2451 break;
2452 }
2453
2454 set_itr_now:
2455 if (new_itr != adapter->itr) {
2456 /*
2457 * this attempts to bias the interrupt rate towards Bulk
2458 * by adding intermediate steps when interrupt rate is
2459 * increasing
2460 */
2461 new_itr = new_itr > adapter->itr ?
2462 min(adapter->itr + (new_itr >> 2), new_itr) :
2463 new_itr;
2464 adapter->itr = new_itr;
2465 adapter->rx_ring->itr_val = new_itr;
2466 if (adapter->msix_entries)
2467 adapter->rx_ring->set_itr = 1;
2468 else
2469 if (new_itr)
2470 ew32(ITR, 1000000000 / (new_itr * 256));
2471 else
2472 ew32(ITR, 0);
2473 }
2474 }
2475
2476 /**
2477 * e1000_alloc_queues - Allocate memory for all rings
2478 * @adapter: board private structure to initialize
2479 **/
2480 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2481 {
2482 int size = sizeof(struct e1000_ring);
2483
2484 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2485 if (!adapter->tx_ring)
2486 goto err;
2487 adapter->tx_ring->count = adapter->tx_ring_count;
2488 adapter->tx_ring->adapter = adapter;
2489
2490 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2491 if (!adapter->rx_ring)
2492 goto err;
2493 adapter->rx_ring->count = adapter->rx_ring_count;
2494 adapter->rx_ring->adapter = adapter;
2495
2496 return 0;
2497 err:
2498 e_err("Unable to allocate memory for queues\n");
2499 kfree(adapter->rx_ring);
2500 kfree(adapter->tx_ring);
2501 return -ENOMEM;
2502 }
2503
2504 /**
2505 * e1000e_poll - NAPI Rx polling callback
2506 * @napi: struct associated with this polling callback
2507 * @weight: number of packets driver is allowed to process this poll
2508 **/
2509 static int e1000e_poll(struct napi_struct *napi, int weight)
2510 {
2511 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2512 napi);
2513 struct e1000_hw *hw = &adapter->hw;
2514 struct net_device *poll_dev = adapter->netdev;
2515 int tx_cleaned = 1, work_done = 0;
2516
2517 adapter = netdev_priv(poll_dev);
2518
2519 if (!adapter->msix_entries ||
2520 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2521 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2522
2523 adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2524
2525 if (!tx_cleaned)
2526 work_done = weight;
2527
2528 /* If weight not fully consumed, exit the polling mode */
2529 if (work_done < weight) {
2530 if (adapter->itr_setting & 3)
2531 e1000_set_itr(adapter);
2532 napi_complete(napi);
2533 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2534 if (adapter->msix_entries)
2535 ew32(IMS, adapter->rx_ring->ims_val);
2536 else
2537 e1000_irq_enable(adapter);
2538 }
2539 }
2540
2541 return work_done;
2542 }
2543
2544 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2545 {
2546 struct e1000_adapter *adapter = netdev_priv(netdev);
2547 struct e1000_hw *hw = &adapter->hw;
2548 u32 vfta, index;
2549
2550 /* don't update vlan cookie if already programmed */
2551 if ((adapter->hw.mng_cookie.status &
2552 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2553 (vid == adapter->mng_vlan_id))
2554 return 0;
2555
2556 /* add VID to filter table */
2557 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2558 index = (vid >> 5) & 0x7F;
2559 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2560 vfta |= (1 << (vid & 0x1F));
2561 hw->mac.ops.write_vfta(hw, index, vfta);
2562 }
2563
2564 set_bit(vid, adapter->active_vlans);
2565
2566 return 0;
2567 }
2568
2569 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2570 {
2571 struct e1000_adapter *adapter = netdev_priv(netdev);
2572 struct e1000_hw *hw = &adapter->hw;
2573 u32 vfta, index;
2574
2575 if ((adapter->hw.mng_cookie.status &
2576 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2577 (vid == adapter->mng_vlan_id)) {
2578 /* release control to f/w */
2579 e1000e_release_hw_control(adapter);
2580 return 0;
2581 }
2582
2583 /* remove VID from filter table */
2584 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2585 index = (vid >> 5) & 0x7F;
2586 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2587 vfta &= ~(1 << (vid & 0x1F));
2588 hw->mac.ops.write_vfta(hw, index, vfta);
2589 }
2590
2591 clear_bit(vid, adapter->active_vlans);
2592
2593 return 0;
2594 }
2595
2596 /**
2597 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2598 * @adapter: board private structure to initialize
2599 **/
2600 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2601 {
2602 struct net_device *netdev = adapter->netdev;
2603 struct e1000_hw *hw = &adapter->hw;
2604 u32 rctl;
2605
2606 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2607 /* disable VLAN receive filtering */
2608 rctl = er32(RCTL);
2609 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2610 ew32(RCTL, rctl);
2611
2612 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2613 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2614 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2615 }
2616 }
2617 }
2618
2619 /**
2620 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2621 * @adapter: board private structure to initialize
2622 **/
2623 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2624 {
2625 struct e1000_hw *hw = &adapter->hw;
2626 u32 rctl;
2627
2628 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2629 /* enable VLAN receive filtering */
2630 rctl = er32(RCTL);
2631 rctl |= E1000_RCTL_VFE;
2632 rctl &= ~E1000_RCTL_CFIEN;
2633 ew32(RCTL, rctl);
2634 }
2635 }
2636
2637 /**
2638 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2639 * @adapter: board private structure to initialize
2640 **/
2641 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2642 {
2643 struct e1000_hw *hw = &adapter->hw;
2644 u32 ctrl;
2645
2646 /* disable VLAN tag insert/strip */
2647 ctrl = er32(CTRL);
2648 ctrl &= ~E1000_CTRL_VME;
2649 ew32(CTRL, ctrl);
2650 }
2651
2652 /**
2653 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2654 * @adapter: board private structure to initialize
2655 **/
2656 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2657 {
2658 struct e1000_hw *hw = &adapter->hw;
2659 u32 ctrl;
2660
2661 /* enable VLAN tag insert/strip */
2662 ctrl = er32(CTRL);
2663 ctrl |= E1000_CTRL_VME;
2664 ew32(CTRL, ctrl);
2665 }
2666
2667 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2668 {
2669 struct net_device *netdev = adapter->netdev;
2670 u16 vid = adapter->hw.mng_cookie.vlan_id;
2671 u16 old_vid = adapter->mng_vlan_id;
2672
2673 if (adapter->hw.mng_cookie.status &
2674 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2675 e1000_vlan_rx_add_vid(netdev, vid);
2676 adapter->mng_vlan_id = vid;
2677 }
2678
2679 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2680 e1000_vlan_rx_kill_vid(netdev, old_vid);
2681 }
2682
2683 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2684 {
2685 u16 vid;
2686
2687 e1000_vlan_rx_add_vid(adapter->netdev, 0);
2688
2689 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2690 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2691 }
2692
2693 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2694 {
2695 struct e1000_hw *hw = &adapter->hw;
2696 u32 manc, manc2h, mdef, i, j;
2697
2698 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2699 return;
2700
2701 manc = er32(MANC);
2702
2703 /*
2704 * enable receiving management packets to the host. this will probably
2705 * generate destination unreachable messages from the host OS, but
2706 * the packets will be handled on SMBUS
2707 */
2708 manc |= E1000_MANC_EN_MNG2HOST;
2709 manc2h = er32(MANC2H);
2710
2711 switch (hw->mac.type) {
2712 default:
2713 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2714 break;
2715 case e1000_82574:
2716 case e1000_82583:
2717 /*
2718 * Check if IPMI pass-through decision filter already exists;
2719 * if so, enable it.
2720 */
2721 for (i = 0, j = 0; i < 8; i++) {
2722 mdef = er32(MDEF(i));
2723
2724 /* Ignore filters with anything other than IPMI ports */
2725 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2726 continue;
2727
2728 /* Enable this decision filter in MANC2H */
2729 if (mdef)
2730 manc2h |= (1 << i);
2731
2732 j |= mdef;
2733 }
2734
2735 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2736 break;
2737
2738 /* Create new decision filter in an empty filter */
2739 for (i = 0, j = 0; i < 8; i++)
2740 if (er32(MDEF(i)) == 0) {
2741 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2742 E1000_MDEF_PORT_664));
2743 manc2h |= (1 << 1);
2744 j++;
2745 break;
2746 }
2747
2748 if (!j)
2749 e_warn("Unable to create IPMI pass-through filter\n");
2750 break;
2751 }
2752
2753 ew32(MANC2H, manc2h);
2754 ew32(MANC, manc);
2755 }
2756
2757 /**
2758 * e1000_configure_tx - Configure Transmit Unit after Reset
2759 * @adapter: board private structure
2760 *
2761 * Configure the Tx unit of the MAC after a reset.
2762 **/
2763 static void e1000_configure_tx(struct e1000_adapter *adapter)
2764 {
2765 struct e1000_hw *hw = &adapter->hw;
2766 struct e1000_ring *tx_ring = adapter->tx_ring;
2767 u64 tdba;
2768 u32 tdlen, tarc;
2769
2770 /* Setup the HW Tx Head and Tail descriptor pointers */
2771 tdba = tx_ring->dma;
2772 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2773 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2774 ew32(TDBAH(0), (tdba >> 32));
2775 ew32(TDLEN(0), tdlen);
2776 ew32(TDH(0), 0);
2777 ew32(TDT(0), 0);
2778 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2779 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2780
2781 /* Set the Tx Interrupt Delay register */
2782 ew32(TIDV, adapter->tx_int_delay);
2783 /* Tx irq moderation */
2784 ew32(TADV, adapter->tx_abs_int_delay);
2785
2786 if (adapter->flags2 & FLAG2_DMA_BURST) {
2787 u32 txdctl = er32(TXDCTL(0));
2788 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2789 E1000_TXDCTL_WTHRESH);
2790 /*
2791 * set up some performance related parameters to encourage the
2792 * hardware to use the bus more efficiently in bursts, depends
2793 * on the tx_int_delay to be enabled,
2794 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2795 * hthresh = 1 ==> prefetch when one or more available
2796 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2797 * BEWARE: this seems to work but should be considered first if
2798 * there are Tx hangs or other Tx related bugs
2799 */
2800 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2801 ew32(TXDCTL(0), txdctl);
2802 }
2803 /* erratum work around: set txdctl the same for both queues */
2804 ew32(TXDCTL(1), er32(TXDCTL(0)));
2805
2806 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2807 tarc = er32(TARC(0));
2808 /*
2809 * set the speed mode bit, we'll clear it if we're not at
2810 * gigabit link later
2811 */
2812 #define SPEED_MODE_BIT (1 << 21)
2813 tarc |= SPEED_MODE_BIT;
2814 ew32(TARC(0), tarc);
2815 }
2816
2817 /* errata: program both queues to unweighted RR */
2818 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2819 tarc = er32(TARC(0));
2820 tarc |= 1;
2821 ew32(TARC(0), tarc);
2822 tarc = er32(TARC(1));
2823 tarc |= 1;
2824 ew32(TARC(1), tarc);
2825 }
2826
2827 /* Setup Transmit Descriptor Settings for eop descriptor */
2828 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2829
2830 /* only set IDE if we are delaying interrupts using the timers */
2831 if (adapter->tx_int_delay)
2832 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2833
2834 /* enable Report Status bit */
2835 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2836
2837 hw->mac.ops.config_collision_dist(hw);
2838 }
2839
2840 /**
2841 * e1000_setup_rctl - configure the receive control registers
2842 * @adapter: Board private structure
2843 **/
2844 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2845 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2846 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2847 {
2848 struct e1000_hw *hw = &adapter->hw;
2849 u32 rctl, rfctl;
2850 u32 pages = 0;
2851
2852 /* Workaround Si errata on PCHx - configure jumbo frame flow */
2853 if (hw->mac.type >= e1000_pch2lan) {
2854 s32 ret_val;
2855
2856 if (adapter->netdev->mtu > ETH_DATA_LEN)
2857 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2858 else
2859 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2860
2861 if (ret_val)
2862 e_dbg("failed to enable jumbo frame workaround mode\n");
2863 }
2864
2865 /* Program MC offset vector base */
2866 rctl = er32(RCTL);
2867 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2868 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2869 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2870 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2871
2872 /* Do not Store bad packets */
2873 rctl &= ~E1000_RCTL_SBP;
2874
2875 /* Enable Long Packet receive */
2876 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2877 rctl &= ~E1000_RCTL_LPE;
2878 else
2879 rctl |= E1000_RCTL_LPE;
2880
2881 /* Some systems expect that the CRC is included in SMBUS traffic. The
2882 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2883 * host memory when this is enabled
2884 */
2885 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2886 rctl |= E1000_RCTL_SECRC;
2887
2888 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2889 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2890 u16 phy_data;
2891
2892 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2893 phy_data &= 0xfff8;
2894 phy_data |= (1 << 2);
2895 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2896
2897 e1e_rphy(hw, 22, &phy_data);
2898 phy_data &= 0x0fff;
2899 phy_data |= (1 << 14);
2900 e1e_wphy(hw, 0x10, 0x2823);
2901 e1e_wphy(hw, 0x11, 0x0003);
2902 e1e_wphy(hw, 22, phy_data);
2903 }
2904
2905 /* Setup buffer sizes */
2906 rctl &= ~E1000_RCTL_SZ_4096;
2907 rctl |= E1000_RCTL_BSEX;
2908 switch (adapter->rx_buffer_len) {
2909 case 2048:
2910 default:
2911 rctl |= E1000_RCTL_SZ_2048;
2912 rctl &= ~E1000_RCTL_BSEX;
2913 break;
2914 case 4096:
2915 rctl |= E1000_RCTL_SZ_4096;
2916 break;
2917 case 8192:
2918 rctl |= E1000_RCTL_SZ_8192;
2919 break;
2920 case 16384:
2921 rctl |= E1000_RCTL_SZ_16384;
2922 break;
2923 }
2924
2925 /* Enable Extended Status in all Receive Descriptors */
2926 rfctl = er32(RFCTL);
2927 rfctl |= E1000_RFCTL_EXTEN;
2928 ew32(RFCTL, rfctl);
2929
2930 /*
2931 * 82571 and greater support packet-split where the protocol
2932 * header is placed in skb->data and the packet data is
2933 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2934 * In the case of a non-split, skb->data is linearly filled,
2935 * followed by the page buffers. Therefore, skb->data is
2936 * sized to hold the largest protocol header.
2937 *
2938 * allocations using alloc_page take too long for regular MTU
2939 * so only enable packet split for jumbo frames
2940 *
2941 * Using pages when the page size is greater than 16k wastes
2942 * a lot of memory, since we allocate 3 pages at all times
2943 * per packet.
2944 */
2945 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2946 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2947 adapter->rx_ps_pages = pages;
2948 else
2949 adapter->rx_ps_pages = 0;
2950
2951 if (adapter->rx_ps_pages) {
2952 u32 psrctl = 0;
2953
2954 /* Enable Packet split descriptors */
2955 rctl |= E1000_RCTL_DTYP_PS;
2956
2957 psrctl |= adapter->rx_ps_bsize0 >>
2958 E1000_PSRCTL_BSIZE0_SHIFT;
2959
2960 switch (adapter->rx_ps_pages) {
2961 case 3:
2962 psrctl |= PAGE_SIZE <<
2963 E1000_PSRCTL_BSIZE3_SHIFT;
2964 case 2:
2965 psrctl |= PAGE_SIZE <<
2966 E1000_PSRCTL_BSIZE2_SHIFT;
2967 case 1:
2968 psrctl |= PAGE_SIZE >>
2969 E1000_PSRCTL_BSIZE1_SHIFT;
2970 break;
2971 }
2972
2973 ew32(PSRCTL, psrctl);
2974 }
2975
2976 /* This is useful for sniffing bad packets. */
2977 if (adapter->netdev->features & NETIF_F_RXALL) {
2978 /* UPE and MPE will be handled by normal PROMISC logic
2979 * in e1000e_set_rx_mode */
2980 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2981 E1000_RCTL_BAM | /* RX All Bcast Pkts */
2982 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2983
2984 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
2985 E1000_RCTL_DPF | /* Allow filtered pause */
2986 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
2987 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2988 * and that breaks VLANs.
2989 */
2990 }
2991
2992 ew32(RCTL, rctl);
2993 /* just started the receive unit, no need to restart */
2994 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2995 }
2996
2997 /**
2998 * e1000_configure_rx - Configure Receive Unit after Reset
2999 * @adapter: board private structure
3000 *
3001 * Configure the Rx unit of the MAC after a reset.
3002 **/
3003 static void e1000_configure_rx(struct e1000_adapter *adapter)
3004 {
3005 struct e1000_hw *hw = &adapter->hw;
3006 struct e1000_ring *rx_ring = adapter->rx_ring;
3007 u64 rdba;
3008 u32 rdlen, rctl, rxcsum, ctrl_ext;
3009
3010 if (adapter->rx_ps_pages) {
3011 /* this is a 32 byte descriptor */
3012 rdlen = rx_ring->count *
3013 sizeof(union e1000_rx_desc_packet_split);
3014 adapter->clean_rx = e1000_clean_rx_irq_ps;
3015 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3016 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3017 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3018 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3019 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3020 } else {
3021 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3022 adapter->clean_rx = e1000_clean_rx_irq;
3023 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3024 }
3025
3026 /* disable receives while setting up the descriptors */
3027 rctl = er32(RCTL);
3028 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3029 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3030 e1e_flush();
3031 usleep_range(10000, 20000);
3032
3033 if (adapter->flags2 & FLAG2_DMA_BURST) {
3034 /*
3035 * set the writeback threshold (only takes effect if the RDTR
3036 * is set). set GRAN=1 and write back up to 0x4 worth, and
3037 * enable prefetching of 0x20 Rx descriptors
3038 * granularity = 01
3039 * wthresh = 04,
3040 * hthresh = 04,
3041 * pthresh = 0x20
3042 */
3043 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3044 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3045
3046 /*
3047 * override the delay timers for enabling bursting, only if
3048 * the value was not set by the user via module options
3049 */
3050 if (adapter->rx_int_delay == DEFAULT_RDTR)
3051 adapter->rx_int_delay = BURST_RDTR;
3052 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3053 adapter->rx_abs_int_delay = BURST_RADV;
3054 }
3055
3056 /* set the Receive Delay Timer Register */
3057 ew32(RDTR, adapter->rx_int_delay);
3058
3059 /* irq moderation */
3060 ew32(RADV, adapter->rx_abs_int_delay);
3061 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3062 ew32(ITR, 1000000000 / (adapter->itr * 256));
3063
3064 ctrl_ext = er32(CTRL_EXT);
3065 /* Auto-Mask interrupts upon ICR access */
3066 ctrl_ext |= E1000_CTRL_EXT_IAME;
3067 ew32(IAM, 0xffffffff);
3068 ew32(CTRL_EXT, ctrl_ext);
3069 e1e_flush();
3070
3071 /*
3072 * Setup the HW Rx Head and Tail Descriptor Pointers and
3073 * the Base and Length of the Rx Descriptor Ring
3074 */
3075 rdba = rx_ring->dma;
3076 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3077 ew32(RDBAH(0), (rdba >> 32));
3078 ew32(RDLEN(0), rdlen);
3079 ew32(RDH(0), 0);
3080 ew32(RDT(0), 0);
3081 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3082 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3083
3084 /* Enable Receive Checksum Offload for TCP and UDP */
3085 rxcsum = er32(RXCSUM);
3086 if (adapter->netdev->features & NETIF_F_RXCSUM)
3087 rxcsum |= E1000_RXCSUM_TUOFL;
3088 else
3089 rxcsum &= ~E1000_RXCSUM_TUOFL;
3090 ew32(RXCSUM, rxcsum);
3091
3092 if (adapter->hw.mac.type == e1000_pch2lan) {
3093 /*
3094 * With jumbo frames, excessive C-state transition
3095 * latencies result in dropped transactions.
3096 */
3097 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3098 u32 rxdctl = er32(RXDCTL(0));
3099 ew32(RXDCTL(0), rxdctl | 0x3);
3100 pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3101 } else {
3102 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3103 PM_QOS_DEFAULT_VALUE);
3104 }
3105 }
3106
3107 /* Enable Receives */
3108 ew32(RCTL, rctl);
3109 }
3110
3111 /**
3112 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3113 * @netdev: network interface device structure
3114 *
3115 * Writes multicast address list to the MTA hash table.
3116 * Returns: -ENOMEM on failure
3117 * 0 on no addresses written
3118 * X on writing X addresses to MTA
3119 */
3120 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3121 {
3122 struct e1000_adapter *adapter = netdev_priv(netdev);
3123 struct e1000_hw *hw = &adapter->hw;
3124 struct netdev_hw_addr *ha;
3125 u8 *mta_list;
3126 int i;
3127
3128 if (netdev_mc_empty(netdev)) {
3129 /* nothing to program, so clear mc list */
3130 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3131 return 0;
3132 }
3133
3134 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3135 if (!mta_list)
3136 return -ENOMEM;
3137
3138 /* update_mc_addr_list expects a packed array of only addresses. */
3139 i = 0;
3140 netdev_for_each_mc_addr(ha, netdev)
3141 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3142
3143 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3144 kfree(mta_list);
3145
3146 return netdev_mc_count(netdev);
3147 }
3148
3149 /**
3150 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3151 * @netdev: network interface device structure
3152 *
3153 * Writes unicast address list to the RAR table.
3154 * Returns: -ENOMEM on failure/insufficient address space
3155 * 0 on no addresses written
3156 * X on writing X addresses to the RAR table
3157 **/
3158 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3159 {
3160 struct e1000_adapter *adapter = netdev_priv(netdev);
3161 struct e1000_hw *hw = &adapter->hw;
3162 unsigned int rar_entries = hw->mac.rar_entry_count;
3163 int count = 0;
3164
3165 /* save a rar entry for our hardware address */
3166 rar_entries--;
3167
3168 /* save a rar entry for the LAA workaround */
3169 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3170 rar_entries--;
3171
3172 /* return ENOMEM indicating insufficient memory for addresses */
3173 if (netdev_uc_count(netdev) > rar_entries)
3174 return -ENOMEM;
3175
3176 if (!netdev_uc_empty(netdev) && rar_entries) {
3177 struct netdev_hw_addr *ha;
3178
3179 /*
3180 * write the addresses in reverse order to avoid write
3181 * combining
3182 */
3183 netdev_for_each_uc_addr(ha, netdev) {
3184 if (!rar_entries)
3185 break;
3186 hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3187 count++;
3188 }
3189 }
3190
3191 /* zero out the remaining RAR entries not used above */
3192 for (; rar_entries > 0; rar_entries--) {
3193 ew32(RAH(rar_entries), 0);
3194 ew32(RAL(rar_entries), 0);
3195 }
3196 e1e_flush();
3197
3198 return count;
3199 }
3200
3201 /**
3202 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3203 * @netdev: network interface device structure
3204 *
3205 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3206 * address list or the network interface flags are updated. This routine is
3207 * responsible for configuring the hardware for proper unicast, multicast,
3208 * promiscuous mode, and all-multi behavior.
3209 **/
3210 static void e1000e_set_rx_mode(struct net_device *netdev)
3211 {
3212 struct e1000_adapter *adapter = netdev_priv(netdev);
3213 struct e1000_hw *hw = &adapter->hw;
3214 u32 rctl;
3215
3216 /* Check for Promiscuous and All Multicast modes */
3217 rctl = er32(RCTL);
3218
3219 /* clear the affected bits */
3220 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3221
3222 if (netdev->flags & IFF_PROMISC) {
3223 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3224 /* Do not hardware filter VLANs in promisc mode */
3225 e1000e_vlan_filter_disable(adapter);
3226 } else {
3227 int count;
3228
3229 if (netdev->flags & IFF_ALLMULTI) {
3230 rctl |= E1000_RCTL_MPE;
3231 } else {
3232 /*
3233 * Write addresses to the MTA, if the attempt fails
3234 * then we should just turn on promiscuous mode so
3235 * that we can at least receive multicast traffic
3236 */
3237 count = e1000e_write_mc_addr_list(netdev);
3238 if (count < 0)
3239 rctl |= E1000_RCTL_MPE;
3240 }
3241 e1000e_vlan_filter_enable(adapter);
3242 /*
3243 * Write addresses to available RAR registers, if there is not
3244 * sufficient space to store all the addresses then enable
3245 * unicast promiscuous mode
3246 */
3247 count = e1000e_write_uc_addr_list(netdev);
3248 if (count < 0)
3249 rctl |= E1000_RCTL_UPE;
3250 }
3251
3252 ew32(RCTL, rctl);
3253
3254 if (netdev->features & NETIF_F_HW_VLAN_RX)
3255 e1000e_vlan_strip_enable(adapter);
3256 else
3257 e1000e_vlan_strip_disable(adapter);
3258 }
3259
3260 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3261 {
3262 struct e1000_hw *hw = &adapter->hw;
3263 u32 mrqc, rxcsum;
3264 int i;
3265 static const u32 rsskey[10] = {
3266 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3267 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3268 };
3269
3270 /* Fill out hash function seed */
3271 for (i = 0; i < 10; i++)
3272 ew32(RSSRK(i), rsskey[i]);
3273
3274 /* Direct all traffic to queue 0 */
3275 for (i = 0; i < 32; i++)
3276 ew32(RETA(i), 0);
3277
3278 /*
3279 * Disable raw packet checksumming so that RSS hash is placed in
3280 * descriptor on writeback.
3281 */
3282 rxcsum = er32(RXCSUM);
3283 rxcsum |= E1000_RXCSUM_PCSD;
3284
3285 ew32(RXCSUM, rxcsum);
3286
3287 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3288 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3289 E1000_MRQC_RSS_FIELD_IPV6 |
3290 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3291 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3292
3293 ew32(MRQC, mrqc);
3294 }
3295
3296 /**
3297 * e1000_configure - configure the hardware for Rx and Tx
3298 * @adapter: private board structure
3299 **/
3300 static void e1000_configure(struct e1000_adapter *adapter)
3301 {
3302 struct e1000_ring *rx_ring = adapter->rx_ring;
3303
3304 e1000e_set_rx_mode(adapter->netdev);
3305
3306 e1000_restore_vlan(adapter);
3307 e1000_init_manageability_pt(adapter);
3308
3309 e1000_configure_tx(adapter);
3310
3311 if (adapter->netdev->features & NETIF_F_RXHASH)
3312 e1000e_setup_rss_hash(adapter);
3313 e1000_setup_rctl(adapter);
3314 e1000_configure_rx(adapter);
3315 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3316 }
3317
3318 /**
3319 * e1000e_power_up_phy - restore link in case the phy was powered down
3320 * @adapter: address of board private structure
3321 *
3322 * The phy may be powered down to save power and turn off link when the
3323 * driver is unloaded and wake on lan is not enabled (among others)
3324 * *** this routine MUST be followed by a call to e1000e_reset ***
3325 **/
3326 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3327 {
3328 if (adapter->hw.phy.ops.power_up)
3329 adapter->hw.phy.ops.power_up(&adapter->hw);
3330
3331 adapter->hw.mac.ops.setup_link(&adapter->hw);
3332 }
3333
3334 /**
3335 * e1000_power_down_phy - Power down the PHY
3336 *
3337 * Power down the PHY so no link is implied when interface is down.
3338 * The PHY cannot be powered down if management or WoL is active.
3339 */
3340 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3341 {
3342 /* WoL is enabled */
3343 if (adapter->wol)
3344 return;
3345
3346 if (adapter->hw.phy.ops.power_down)
3347 adapter->hw.phy.ops.power_down(&adapter->hw);
3348 }
3349
3350 /**
3351 * e1000e_reset - bring the hardware into a known good state
3352 *
3353 * This function boots the hardware and enables some settings that
3354 * require a configuration cycle of the hardware - those cannot be
3355 * set/changed during runtime. After reset the device needs to be
3356 * properly configured for Rx, Tx etc.
3357 */
3358 void e1000e_reset(struct e1000_adapter *adapter)
3359 {
3360 struct e1000_mac_info *mac = &adapter->hw.mac;
3361 struct e1000_fc_info *fc = &adapter->hw.fc;
3362 struct e1000_hw *hw = &adapter->hw;
3363 u32 tx_space, min_tx_space, min_rx_space;
3364 u32 pba = adapter->pba;
3365 u16 hwm;
3366
3367 /* reset Packet Buffer Allocation to default */
3368 ew32(PBA, pba);
3369
3370 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3371 /*
3372 * To maintain wire speed transmits, the Tx FIFO should be
3373 * large enough to accommodate two full transmit packets,
3374 * rounded up to the next 1KB and expressed in KB. Likewise,
3375 * the Rx FIFO should be large enough to accommodate at least
3376 * one full receive packet and is similarly rounded up and
3377 * expressed in KB.
3378 */
3379 pba = er32(PBA);
3380 /* upper 16 bits has Tx packet buffer allocation size in KB */
3381 tx_space = pba >> 16;
3382 /* lower 16 bits has Rx packet buffer allocation size in KB */
3383 pba &= 0xffff;
3384 /*
3385 * the Tx fifo also stores 16 bytes of information about the Tx
3386 * but don't include ethernet FCS because hardware appends it
3387 */
3388 min_tx_space = (adapter->max_frame_size +
3389 sizeof(struct e1000_tx_desc) -
3390 ETH_FCS_LEN) * 2;
3391 min_tx_space = ALIGN(min_tx_space, 1024);
3392 min_tx_space >>= 10;
3393 /* software strips receive CRC, so leave room for it */
3394 min_rx_space = adapter->max_frame_size;
3395 min_rx_space = ALIGN(min_rx_space, 1024);
3396 min_rx_space >>= 10;
3397
3398 /*
3399 * If current Tx allocation is less than the min Tx FIFO size,
3400 * and the min Tx FIFO size is less than the current Rx FIFO
3401 * allocation, take space away from current Rx allocation
3402 */
3403 if ((tx_space < min_tx_space) &&
3404 ((min_tx_space - tx_space) < pba)) {
3405 pba -= min_tx_space - tx_space;
3406
3407 /*
3408 * if short on Rx space, Rx wins and must trump Tx
3409 * adjustment or use Early Receive if available
3410 */
3411 if (pba < min_rx_space)
3412 pba = min_rx_space;
3413 }
3414
3415 ew32(PBA, pba);
3416 }
3417
3418 /*
3419 * flow control settings
3420 *
3421 * The high water mark must be low enough to fit one full frame
3422 * (or the size used for early receive) above it in the Rx FIFO.
3423 * Set it to the lower of:
3424 * - 90% of the Rx FIFO size, and
3425 * - the full Rx FIFO size minus one full frame
3426 */
3427 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3428 fc->pause_time = 0xFFFF;
3429 else
3430 fc->pause_time = E1000_FC_PAUSE_TIME;
3431 fc->send_xon = true;
3432 fc->current_mode = fc->requested_mode;
3433
3434 switch (hw->mac.type) {
3435 case e1000_ich9lan:
3436 case e1000_ich10lan:
3437 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3438 pba = 14;
3439 ew32(PBA, pba);
3440 fc->high_water = 0x2800;
3441 fc->low_water = fc->high_water - 8;
3442 break;
3443 }
3444 /* fall-through */
3445 default:
3446 hwm = min(((pba << 10) * 9 / 10),
3447 ((pba << 10) - adapter->max_frame_size));
3448
3449 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3450 fc->low_water = fc->high_water - 8;
3451 break;
3452 case e1000_pchlan:
3453 /*
3454 * Workaround PCH LOM adapter hangs with certain network
3455 * loads. If hangs persist, try disabling Tx flow control.
3456 */
3457 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3458 fc->high_water = 0x3500;
3459 fc->low_water = 0x1500;
3460 } else {
3461 fc->high_water = 0x5000;
3462 fc->low_water = 0x3000;
3463 }
3464 fc->refresh_time = 0x1000;
3465 break;
3466 case e1000_pch2lan:
3467 case e1000_pch_lpt:
3468 fc->high_water = 0x05C20;
3469 fc->low_water = 0x05048;
3470 fc->pause_time = 0x0650;
3471 fc->refresh_time = 0x0400;
3472 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3473 pba = 14;
3474 ew32(PBA, pba);
3475 }
3476 break;
3477 }
3478
3479 /*
3480 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3481 * fit in receive buffer.
3482 */
3483 if (adapter->itr_setting & 0x3) {
3484 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3485 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3486 dev_info(&adapter->pdev->dev,
3487 "Interrupt Throttle Rate turned off\n");
3488 adapter->flags2 |= FLAG2_DISABLE_AIM;
3489 ew32(ITR, 0);
3490 }
3491 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3492 dev_info(&adapter->pdev->dev,
3493 "Interrupt Throttle Rate turned on\n");
3494 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3495 adapter->itr = 20000;
3496 ew32(ITR, 1000000000 / (adapter->itr * 256));
3497 }
3498 }
3499
3500 /* Allow time for pending master requests to run */
3501 mac->ops.reset_hw(hw);
3502
3503 /*
3504 * For parts with AMT enabled, let the firmware know
3505 * that the network interface is in control
3506 */
3507 if (adapter->flags & FLAG_HAS_AMT)
3508 e1000e_get_hw_control(adapter);
3509
3510 ew32(WUC, 0);
3511
3512 if (mac->ops.init_hw(hw))
3513 e_err("Hardware Error\n");
3514
3515 e1000_update_mng_vlan(adapter);
3516
3517 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3518 ew32(VET, ETH_P_8021Q);
3519
3520 e1000e_reset_adaptive(hw);
3521
3522 if (!netif_running(adapter->netdev) &&
3523 !test_bit(__E1000_TESTING, &adapter->state)) {
3524 e1000_power_down_phy(adapter);
3525 return;
3526 }
3527
3528 e1000_get_phy_info(hw);
3529
3530 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3531 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3532 u16 phy_data = 0;
3533 /*
3534 * speed up time to link by disabling smart power down, ignore
3535 * the return value of this function because there is nothing
3536 * different we would do if it failed
3537 */
3538 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3539 phy_data &= ~IGP02E1000_PM_SPD;
3540 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3541 }
3542 }
3543
3544 int e1000e_up(struct e1000_adapter *adapter)
3545 {
3546 struct e1000_hw *hw = &adapter->hw;
3547
3548 /* hardware has been reset, we need to reload some things */
3549 e1000_configure(adapter);
3550
3551 clear_bit(__E1000_DOWN, &adapter->state);
3552
3553 if (adapter->msix_entries)
3554 e1000_configure_msix(adapter);
3555 e1000_irq_enable(adapter);
3556
3557 netif_start_queue(adapter->netdev);
3558
3559 /* fire a link change interrupt to start the watchdog */
3560 if (adapter->msix_entries)
3561 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3562 else
3563 ew32(ICS, E1000_ICS_LSC);
3564
3565 return 0;
3566 }
3567
3568 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3569 {
3570 struct e1000_hw *hw = &adapter->hw;
3571
3572 if (!(adapter->flags2 & FLAG2_DMA_BURST))
3573 return;
3574
3575 /* flush pending descriptor writebacks to memory */
3576 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3577 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3578
3579 /* execute the writes immediately */
3580 e1e_flush();
3581
3582 /*
3583 * due to rare timing issues, write to TIDV/RDTR again to ensure the
3584 * write is successful
3585 */
3586 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3587 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3588
3589 /* execute the writes immediately */
3590 e1e_flush();
3591 }
3592
3593 static void e1000e_update_stats(struct e1000_adapter *adapter);
3594
3595 void e1000e_down(struct e1000_adapter *adapter)
3596 {
3597 struct net_device *netdev = adapter->netdev;
3598 struct e1000_hw *hw = &adapter->hw;
3599 u32 tctl, rctl;
3600
3601 /*
3602 * signal that we're down so the interrupt handler does not
3603 * reschedule our watchdog timer
3604 */
3605 set_bit(__E1000_DOWN, &adapter->state);
3606
3607 /* disable receives in the hardware */
3608 rctl = er32(RCTL);
3609 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3610 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3611 /* flush and sleep below */
3612
3613 netif_stop_queue(netdev);
3614
3615 /* disable transmits in the hardware */
3616 tctl = er32(TCTL);
3617 tctl &= ~E1000_TCTL_EN;
3618 ew32(TCTL, tctl);
3619
3620 /* flush both disables and wait for them to finish */
3621 e1e_flush();
3622 usleep_range(10000, 20000);
3623
3624 e1000_irq_disable(adapter);
3625
3626 del_timer_sync(&adapter->watchdog_timer);
3627 del_timer_sync(&adapter->phy_info_timer);
3628
3629 netif_carrier_off(netdev);
3630
3631 spin_lock(&adapter->stats64_lock);
3632 e1000e_update_stats(adapter);
3633 spin_unlock(&adapter->stats64_lock);
3634
3635 e1000e_flush_descriptors(adapter);
3636 e1000_clean_tx_ring(adapter->tx_ring);
3637 e1000_clean_rx_ring(adapter->rx_ring);
3638
3639 adapter->link_speed = 0;
3640 adapter->link_duplex = 0;
3641
3642 if (!pci_channel_offline(adapter->pdev))
3643 e1000e_reset(adapter);
3644
3645 /*
3646 * TODO: for power management, we could drop the link and
3647 * pci_disable_device here.
3648 */
3649 }
3650
3651 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3652 {
3653 might_sleep();
3654 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3655 usleep_range(1000, 2000);
3656 e1000e_down(adapter);
3657 e1000e_up(adapter);
3658 clear_bit(__E1000_RESETTING, &adapter->state);
3659 }
3660
3661 /**
3662 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3663 * @adapter: board private structure to initialize
3664 *
3665 * e1000_sw_init initializes the Adapter private data structure.
3666 * Fields are initialized based on PCI device information and
3667 * OS network device settings (MTU size).
3668 **/
3669 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3670 {
3671 struct net_device *netdev = adapter->netdev;
3672
3673 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3674 adapter->rx_ps_bsize0 = 128;
3675 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3676 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3677 adapter->tx_ring_count = E1000_DEFAULT_TXD;
3678 adapter->rx_ring_count = E1000_DEFAULT_RXD;
3679
3680 spin_lock_init(&adapter->stats64_lock);
3681
3682 e1000e_set_interrupt_capability(adapter);
3683
3684 if (e1000_alloc_queues(adapter))
3685 return -ENOMEM;
3686
3687 /* Explicitly disable IRQ since the NIC can be in any state. */
3688 e1000_irq_disable(adapter);
3689
3690 set_bit(__E1000_DOWN, &adapter->state);
3691 return 0;
3692 }
3693
3694 /**
3695 * e1000_intr_msi_test - Interrupt Handler
3696 * @irq: interrupt number
3697 * @data: pointer to a network interface device structure
3698 **/
3699 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3700 {
3701 struct net_device *netdev = data;
3702 struct e1000_adapter *adapter = netdev_priv(netdev);
3703 struct e1000_hw *hw = &adapter->hw;
3704 u32 icr = er32(ICR);
3705
3706 e_dbg("icr is %08X\n", icr);
3707 if (icr & E1000_ICR_RXSEQ) {
3708 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3709 wmb();
3710 }
3711
3712 return IRQ_HANDLED;
3713 }
3714
3715 /**
3716 * e1000_test_msi_interrupt - Returns 0 for successful test
3717 * @adapter: board private struct
3718 *
3719 * code flow taken from tg3.c
3720 **/
3721 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3722 {
3723 struct net_device *netdev = adapter->netdev;
3724 struct e1000_hw *hw = &adapter->hw;
3725 int err;
3726
3727 /* poll_enable hasn't been called yet, so don't need disable */
3728 /* clear any pending events */
3729 er32(ICR);
3730
3731 /* free the real vector and request a test handler */
3732 e1000_free_irq(adapter);
3733 e1000e_reset_interrupt_capability(adapter);
3734
3735 /* Assume that the test fails, if it succeeds then the test
3736 * MSI irq handler will unset this flag */
3737 adapter->flags |= FLAG_MSI_TEST_FAILED;
3738
3739 err = pci_enable_msi(adapter->pdev);
3740 if (err)
3741 goto msi_test_failed;
3742
3743 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3744 netdev->name, netdev);
3745 if (err) {
3746 pci_disable_msi(adapter->pdev);
3747 goto msi_test_failed;
3748 }
3749
3750 wmb();
3751
3752 e1000_irq_enable(adapter);
3753
3754 /* fire an unusual interrupt on the test handler */
3755 ew32(ICS, E1000_ICS_RXSEQ);
3756 e1e_flush();
3757 msleep(100);
3758
3759 e1000_irq_disable(adapter);
3760
3761 rmb();
3762
3763 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3764 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3765 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3766 } else {
3767 e_dbg("MSI interrupt test succeeded!\n");
3768 }
3769
3770 free_irq(adapter->pdev->irq, netdev);
3771 pci_disable_msi(adapter->pdev);
3772
3773 msi_test_failed:
3774 e1000e_set_interrupt_capability(adapter);
3775 return e1000_request_irq(adapter);
3776 }
3777
3778 /**
3779 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3780 * @adapter: board private struct
3781 *
3782 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3783 **/
3784 static int e1000_test_msi(struct e1000_adapter *adapter)
3785 {
3786 int err;
3787 u16 pci_cmd;
3788
3789 if (!(adapter->flags & FLAG_MSI_ENABLED))
3790 return 0;
3791
3792 /* disable SERR in case the MSI write causes a master abort */
3793 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3794 if (pci_cmd & PCI_COMMAND_SERR)
3795 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3796 pci_cmd & ~PCI_COMMAND_SERR);
3797
3798 err = e1000_test_msi_interrupt(adapter);
3799
3800 /* re-enable SERR */
3801 if (pci_cmd & PCI_COMMAND_SERR) {
3802 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3803 pci_cmd |= PCI_COMMAND_SERR;
3804 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3805 }
3806
3807 return err;
3808 }
3809
3810 /**
3811 * e1000_open - Called when a network interface is made active
3812 * @netdev: network interface device structure
3813 *
3814 * Returns 0 on success, negative value on failure
3815 *
3816 * The open entry point is called when a network interface is made
3817 * active by the system (IFF_UP). At this point all resources needed
3818 * for transmit and receive operations are allocated, the interrupt
3819 * handler is registered with the OS, the watchdog timer is started,
3820 * and the stack is notified that the interface is ready.
3821 **/
3822 static int e1000_open(struct net_device *netdev)
3823 {
3824 struct e1000_adapter *adapter = netdev_priv(netdev);
3825 struct e1000_hw *hw = &adapter->hw;
3826 struct pci_dev *pdev = adapter->pdev;
3827 int err;
3828
3829 /* disallow open during test */
3830 if (test_bit(__E1000_TESTING, &adapter->state))
3831 return -EBUSY;
3832
3833 pm_runtime_get_sync(&pdev->dev);
3834
3835 netif_carrier_off(netdev);
3836
3837 /* allocate transmit descriptors */
3838 err = e1000e_setup_tx_resources(adapter->tx_ring);
3839 if (err)
3840 goto err_setup_tx;
3841
3842 /* allocate receive descriptors */
3843 err = e1000e_setup_rx_resources(adapter->rx_ring);
3844 if (err)
3845 goto err_setup_rx;
3846
3847 /*
3848 * If AMT is enabled, let the firmware know that the network
3849 * interface is now open and reset the part to a known state.
3850 */
3851 if (adapter->flags & FLAG_HAS_AMT) {
3852 e1000e_get_hw_control(adapter);
3853 e1000e_reset(adapter);
3854 }
3855
3856 e1000e_power_up_phy(adapter);
3857
3858 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3859 if ((adapter->hw.mng_cookie.status &
3860 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3861 e1000_update_mng_vlan(adapter);
3862
3863 /* DMA latency requirement to workaround jumbo issue */
3864 if (adapter->hw.mac.type == e1000_pch2lan)
3865 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3866 PM_QOS_CPU_DMA_LATENCY,
3867 PM_QOS_DEFAULT_VALUE);
3868
3869 /*
3870 * before we allocate an interrupt, we must be ready to handle it.
3871 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3872 * as soon as we call pci_request_irq, so we have to setup our
3873 * clean_rx handler before we do so.
3874 */
3875 e1000_configure(adapter);
3876
3877 err = e1000_request_irq(adapter);
3878 if (err)
3879 goto err_req_irq;
3880
3881 /*
3882 * Work around PCIe errata with MSI interrupts causing some chipsets to
3883 * ignore e1000e MSI messages, which means we need to test our MSI
3884 * interrupt now
3885 */
3886 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3887 err = e1000_test_msi(adapter);
3888 if (err) {
3889 e_err("Interrupt allocation failed\n");
3890 goto err_req_irq;
3891 }
3892 }
3893
3894 /* From here on the code is the same as e1000e_up() */
3895 clear_bit(__E1000_DOWN, &adapter->state);
3896
3897 napi_enable(&adapter->napi);
3898
3899 e1000_irq_enable(adapter);
3900
3901 adapter->tx_hang_recheck = false;
3902 netif_start_queue(netdev);
3903
3904 adapter->idle_check = true;
3905 pm_runtime_put(&pdev->dev);
3906
3907 /* fire a link status change interrupt to start the watchdog */
3908 if (adapter->msix_entries)
3909 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3910 else
3911 ew32(ICS, E1000_ICS_LSC);
3912
3913 return 0;
3914
3915 err_req_irq:
3916 e1000e_release_hw_control(adapter);
3917 e1000_power_down_phy(adapter);
3918 e1000e_free_rx_resources(adapter->rx_ring);
3919 err_setup_rx:
3920 e1000e_free_tx_resources(adapter->tx_ring);
3921 err_setup_tx:
3922 e1000e_reset(adapter);
3923 pm_runtime_put_sync(&pdev->dev);
3924
3925 return err;
3926 }
3927
3928 /**
3929 * e1000_close - Disables a network interface
3930 * @netdev: network interface device structure
3931 *
3932 * Returns 0, this is not allowed to fail
3933 *
3934 * The close entry point is called when an interface is de-activated
3935 * by the OS. The hardware is still under the drivers control, but
3936 * needs to be disabled. A global MAC reset is issued to stop the
3937 * hardware, and all transmit and receive resources are freed.
3938 **/
3939 static int e1000_close(struct net_device *netdev)
3940 {
3941 struct e1000_adapter *adapter = netdev_priv(netdev);
3942 struct pci_dev *pdev = adapter->pdev;
3943 int count = E1000_CHECK_RESET_COUNT;
3944
3945 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
3946 usleep_range(10000, 20000);
3947
3948 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3949
3950 pm_runtime_get_sync(&pdev->dev);
3951
3952 napi_disable(&adapter->napi);
3953
3954 if (!test_bit(__E1000_DOWN, &adapter->state)) {
3955 e1000e_down(adapter);
3956 e1000_free_irq(adapter);
3957 }
3958 e1000_power_down_phy(adapter);
3959
3960 e1000e_free_tx_resources(adapter->tx_ring);
3961 e1000e_free_rx_resources(adapter->rx_ring);
3962
3963 /*
3964 * kill manageability vlan ID if supported, but not if a vlan with
3965 * the same ID is registered on the host OS (let 8021q kill it)
3966 */
3967 if (adapter->hw.mng_cookie.status &
3968 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3969 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3970
3971 /*
3972 * If AMT is enabled, let the firmware know that the network
3973 * interface is now closed
3974 */
3975 if ((adapter->flags & FLAG_HAS_AMT) &&
3976 !test_bit(__E1000_TESTING, &adapter->state))
3977 e1000e_release_hw_control(adapter);
3978
3979 if (adapter->hw.mac.type == e1000_pch2lan)
3980 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3981
3982 pm_runtime_put_sync(&pdev->dev);
3983
3984 return 0;
3985 }
3986 /**
3987 * e1000_set_mac - Change the Ethernet Address of the NIC
3988 * @netdev: network interface device structure
3989 * @p: pointer to an address structure
3990 *
3991 * Returns 0 on success, negative on failure
3992 **/
3993 static int e1000_set_mac(struct net_device *netdev, void *p)
3994 {
3995 struct e1000_adapter *adapter = netdev_priv(netdev);
3996 struct e1000_hw *hw = &adapter->hw;
3997 struct sockaddr *addr = p;
3998
3999 if (!is_valid_ether_addr(addr->sa_data))
4000 return -EADDRNOTAVAIL;
4001
4002 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4003 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4004
4005 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4006
4007 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4008 /* activate the work around */
4009 e1000e_set_laa_state_82571(&adapter->hw, 1);
4010
4011 /*
4012 * Hold a copy of the LAA in RAR[14] This is done so that
4013 * between the time RAR[0] gets clobbered and the time it
4014 * gets fixed (in e1000_watchdog), the actual LAA is in one
4015 * of the RARs and no incoming packets directed to this port
4016 * are dropped. Eventually the LAA will be in RAR[0] and
4017 * RAR[14]
4018 */
4019 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4020 adapter->hw.mac.rar_entry_count - 1);
4021 }
4022
4023 return 0;
4024 }
4025
4026 /**
4027 * e1000e_update_phy_task - work thread to update phy
4028 * @work: pointer to our work struct
4029 *
4030 * this worker thread exists because we must acquire a
4031 * semaphore to read the phy, which we could msleep while
4032 * waiting for it, and we can't msleep in a timer.
4033 **/
4034 static void e1000e_update_phy_task(struct work_struct *work)
4035 {
4036 struct e1000_adapter *adapter = container_of(work,
4037 struct e1000_adapter, update_phy_task);
4038
4039 if (test_bit(__E1000_DOWN, &adapter->state))
4040 return;
4041
4042 e1000_get_phy_info(&adapter->hw);
4043 }
4044
4045 /*
4046 * Need to wait a few seconds after link up to get diagnostic information from
4047 * the phy
4048 */
4049 static void e1000_update_phy_info(unsigned long data)
4050 {
4051 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4052
4053 if (test_bit(__E1000_DOWN, &adapter->state))
4054 return;
4055
4056 schedule_work(&adapter->update_phy_task);
4057 }
4058
4059 /**
4060 * e1000e_update_phy_stats - Update the PHY statistics counters
4061 * @adapter: board private structure
4062 *
4063 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4064 **/
4065 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4066 {
4067 struct e1000_hw *hw = &adapter->hw;
4068 s32 ret_val;
4069 u16 phy_data;
4070
4071 ret_val = hw->phy.ops.acquire(hw);
4072 if (ret_val)
4073 return;
4074
4075 /*
4076 * A page set is expensive so check if already on desired page.
4077 * If not, set to the page with the PHY status registers.
4078 */
4079 hw->phy.addr = 1;
4080 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4081 &phy_data);
4082 if (ret_val)
4083 goto release;
4084 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4085 ret_val = hw->phy.ops.set_page(hw,
4086 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4087 if (ret_val)
4088 goto release;
4089 }
4090
4091 /* Single Collision Count */
4092 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4093 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4094 if (!ret_val)
4095 adapter->stats.scc += phy_data;
4096
4097 /* Excessive Collision Count */
4098 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4099 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4100 if (!ret_val)
4101 adapter->stats.ecol += phy_data;
4102
4103 /* Multiple Collision Count */
4104 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4105 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4106 if (!ret_val)
4107 adapter->stats.mcc += phy_data;
4108
4109 /* Late Collision Count */
4110 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4111 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4112 if (!ret_val)
4113 adapter->stats.latecol += phy_data;
4114
4115 /* Collision Count - also used for adaptive IFS */
4116 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4117 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4118 if (!ret_val)
4119 hw->mac.collision_delta = phy_data;
4120
4121 /* Defer Count */
4122 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4123 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4124 if (!ret_val)
4125 adapter->stats.dc += phy_data;
4126
4127 /* Transmit with no CRS */
4128 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4129 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4130 if (!ret_val)
4131 adapter->stats.tncrs += phy_data;
4132
4133 release:
4134 hw->phy.ops.release(hw);
4135 }
4136
4137 /**
4138 * e1000e_update_stats - Update the board statistics counters
4139 * @adapter: board private structure
4140 **/
4141 static void e1000e_update_stats(struct e1000_adapter *adapter)
4142 {
4143 struct net_device *netdev = adapter->netdev;
4144 struct e1000_hw *hw = &adapter->hw;
4145 struct pci_dev *pdev = adapter->pdev;
4146
4147 /*
4148 * Prevent stats update while adapter is being reset, or if the pci
4149 * connection is down.
4150 */
4151 if (adapter->link_speed == 0)
4152 return;
4153 if (pci_channel_offline(pdev))
4154 return;
4155
4156 adapter->stats.crcerrs += er32(CRCERRS);
4157 adapter->stats.gprc += er32(GPRC);
4158 adapter->stats.gorc += er32(GORCL);
4159 er32(GORCH); /* Clear gorc */
4160 adapter->stats.bprc += er32(BPRC);
4161 adapter->stats.mprc += er32(MPRC);
4162 adapter->stats.roc += er32(ROC);
4163
4164 adapter->stats.mpc += er32(MPC);
4165
4166 /* Half-duplex statistics */
4167 if (adapter->link_duplex == HALF_DUPLEX) {
4168 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4169 e1000e_update_phy_stats(adapter);
4170 } else {
4171 adapter->stats.scc += er32(SCC);
4172 adapter->stats.ecol += er32(ECOL);
4173 adapter->stats.mcc += er32(MCC);
4174 adapter->stats.latecol += er32(LATECOL);
4175 adapter->stats.dc += er32(DC);
4176
4177 hw->mac.collision_delta = er32(COLC);
4178
4179 if ((hw->mac.type != e1000_82574) &&
4180 (hw->mac.type != e1000_82583))
4181 adapter->stats.tncrs += er32(TNCRS);
4182 }
4183 adapter->stats.colc += hw->mac.collision_delta;
4184 }
4185
4186 adapter->stats.xonrxc += er32(XONRXC);
4187 adapter->stats.xontxc += er32(XONTXC);
4188 adapter->stats.xoffrxc += er32(XOFFRXC);
4189 adapter->stats.xofftxc += er32(XOFFTXC);
4190 adapter->stats.gptc += er32(GPTC);
4191 adapter->stats.gotc += er32(GOTCL);
4192 er32(GOTCH); /* Clear gotc */
4193 adapter->stats.rnbc += er32(RNBC);
4194 adapter->stats.ruc += er32(RUC);
4195
4196 adapter->stats.mptc += er32(MPTC);
4197 adapter->stats.bptc += er32(BPTC);
4198
4199 /* used for adaptive IFS */
4200
4201 hw->mac.tx_packet_delta = er32(TPT);
4202 adapter->stats.tpt += hw->mac.tx_packet_delta;
4203
4204 adapter->stats.algnerrc += er32(ALGNERRC);
4205 adapter->stats.rxerrc += er32(RXERRC);
4206 adapter->stats.cexterr += er32(CEXTERR);
4207 adapter->stats.tsctc += er32(TSCTC);
4208 adapter->stats.tsctfc += er32(TSCTFC);
4209
4210 /* Fill out the OS statistics structure */
4211 netdev->stats.multicast = adapter->stats.mprc;
4212 netdev->stats.collisions = adapter->stats.colc;
4213
4214 /* Rx Errors */
4215
4216 /*
4217 * RLEC on some newer hardware can be incorrect so build
4218 * our own version based on RUC and ROC
4219 */
4220 netdev->stats.rx_errors = adapter->stats.rxerrc +
4221 adapter->stats.crcerrs + adapter->stats.algnerrc +
4222 adapter->stats.ruc + adapter->stats.roc +
4223 adapter->stats.cexterr;
4224 netdev->stats.rx_length_errors = adapter->stats.ruc +
4225 adapter->stats.roc;
4226 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4227 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4228 netdev->stats.rx_missed_errors = adapter->stats.mpc;
4229
4230 /* Tx Errors */
4231 netdev->stats.tx_errors = adapter->stats.ecol +
4232 adapter->stats.latecol;
4233 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4234 netdev->stats.tx_window_errors = adapter->stats.latecol;
4235 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4236
4237 /* Tx Dropped needs to be maintained elsewhere */
4238
4239 /* Management Stats */
4240 adapter->stats.mgptc += er32(MGTPTC);
4241 adapter->stats.mgprc += er32(MGTPRC);
4242 adapter->stats.mgpdc += er32(MGTPDC);
4243 }
4244
4245 /**
4246 * e1000_phy_read_status - Update the PHY register status snapshot
4247 * @adapter: board private structure
4248 **/
4249 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4250 {
4251 struct e1000_hw *hw = &adapter->hw;
4252 struct e1000_phy_regs *phy = &adapter->phy_regs;
4253
4254 if ((er32(STATUS) & E1000_STATUS_LU) &&
4255 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4256 int ret_val;
4257
4258 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4259 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4260 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4261 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4262 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4263 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4264 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4265 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4266 if (ret_val)
4267 e_warn("Error reading PHY register\n");
4268 } else {
4269 /*
4270 * Do not read PHY registers if link is not up
4271 * Set values to typical power-on defaults
4272 */
4273 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4274 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4275 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4276 BMSR_ERCAP);
4277 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4278 ADVERTISE_ALL | ADVERTISE_CSMA);
4279 phy->lpa = 0;
4280 phy->expansion = EXPANSION_ENABLENPAGE;
4281 phy->ctrl1000 = ADVERTISE_1000FULL;
4282 phy->stat1000 = 0;
4283 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4284 }
4285 }
4286
4287 static void e1000_print_link_info(struct e1000_adapter *adapter)
4288 {
4289 struct e1000_hw *hw = &adapter->hw;
4290 u32 ctrl = er32(CTRL);
4291
4292 /* Link status message must follow this format for user tools */
4293 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4294 adapter->netdev->name,
4295 adapter->link_speed,
4296 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4297 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4298 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4299 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4300 }
4301
4302 static bool e1000e_has_link(struct e1000_adapter *adapter)
4303 {
4304 struct e1000_hw *hw = &adapter->hw;
4305 bool link_active = false;
4306 s32 ret_val = 0;
4307
4308 /*
4309 * get_link_status is set on LSC (link status) interrupt or
4310 * Rx sequence error interrupt. get_link_status will stay
4311 * false until the check_for_link establishes link
4312 * for copper adapters ONLY
4313 */
4314 switch (hw->phy.media_type) {
4315 case e1000_media_type_copper:
4316 if (hw->mac.get_link_status) {
4317 ret_val = hw->mac.ops.check_for_link(hw);
4318 link_active = !hw->mac.get_link_status;
4319 } else {
4320 link_active = true;
4321 }
4322 break;
4323 case e1000_media_type_fiber:
4324 ret_val = hw->mac.ops.check_for_link(hw);
4325 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4326 break;
4327 case e1000_media_type_internal_serdes:
4328 ret_val = hw->mac.ops.check_for_link(hw);
4329 link_active = adapter->hw.mac.serdes_has_link;
4330 break;
4331 default:
4332 case e1000_media_type_unknown:
4333 break;
4334 }
4335
4336 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4337 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4338 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4339 e_info("Gigabit has been disabled, downgrading speed\n");
4340 }
4341
4342 return link_active;
4343 }
4344
4345 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4346 {
4347 /* make sure the receive unit is started */
4348 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4349 (adapter->flags & FLAG_RX_RESTART_NOW)) {
4350 struct e1000_hw *hw = &adapter->hw;
4351 u32 rctl = er32(RCTL);
4352 ew32(RCTL, rctl | E1000_RCTL_EN);
4353 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4354 }
4355 }
4356
4357 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4358 {
4359 struct e1000_hw *hw = &adapter->hw;
4360
4361 /*
4362 * With 82574 controllers, PHY needs to be checked periodically
4363 * for hung state and reset, if two calls return true
4364 */
4365 if (e1000_check_phy_82574(hw))
4366 adapter->phy_hang_count++;
4367 else
4368 adapter->phy_hang_count = 0;
4369
4370 if (adapter->phy_hang_count > 1) {
4371 adapter->phy_hang_count = 0;
4372 schedule_work(&adapter->reset_task);
4373 }
4374 }
4375
4376 /**
4377 * e1000_watchdog - Timer Call-back
4378 * @data: pointer to adapter cast into an unsigned long
4379 **/
4380 static void e1000_watchdog(unsigned long data)
4381 {
4382 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4383
4384 /* Do the rest outside of interrupt context */
4385 schedule_work(&adapter->watchdog_task);
4386
4387 /* TODO: make this use queue_delayed_work() */
4388 }
4389
4390 static void e1000_watchdog_task(struct work_struct *work)
4391 {
4392 struct e1000_adapter *adapter = container_of(work,
4393 struct e1000_adapter, watchdog_task);
4394 struct net_device *netdev = adapter->netdev;
4395 struct e1000_mac_info *mac = &adapter->hw.mac;
4396 struct e1000_phy_info *phy = &adapter->hw.phy;
4397 struct e1000_ring *tx_ring = adapter->tx_ring;
4398 struct e1000_hw *hw = &adapter->hw;
4399 u32 link, tctl;
4400
4401 if (test_bit(__E1000_DOWN, &adapter->state))
4402 return;
4403
4404 link = e1000e_has_link(adapter);
4405 if ((netif_carrier_ok(netdev)) && link) {
4406 /* Cancel scheduled suspend requests. */
4407 pm_runtime_resume(netdev->dev.parent);
4408
4409 e1000e_enable_receives(adapter);
4410 goto link_up;
4411 }
4412
4413 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4414 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4415 e1000_update_mng_vlan(adapter);
4416
4417 if (link) {
4418 if (!netif_carrier_ok(netdev)) {
4419 bool txb2b = true;
4420
4421 /* Cancel scheduled suspend requests. */
4422 pm_runtime_resume(netdev->dev.parent);
4423
4424 /* update snapshot of PHY registers on LSC */
4425 e1000_phy_read_status(adapter);
4426 mac->ops.get_link_up_info(&adapter->hw,
4427 &adapter->link_speed,
4428 &adapter->link_duplex);
4429 e1000_print_link_info(adapter);
4430 /*
4431 * On supported PHYs, check for duplex mismatch only
4432 * if link has autonegotiated at 10/100 half
4433 */
4434 if ((hw->phy.type == e1000_phy_igp_3 ||
4435 hw->phy.type == e1000_phy_bm) &&
4436 (hw->mac.autoneg == true) &&
4437 (adapter->link_speed == SPEED_10 ||
4438 adapter->link_speed == SPEED_100) &&
4439 (adapter->link_duplex == HALF_DUPLEX)) {
4440 u16 autoneg_exp;
4441
4442 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4443
4444 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4445 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
4446 }
4447
4448 /* adjust timeout factor according to speed/duplex */
4449 adapter->tx_timeout_factor = 1;
4450 switch (adapter->link_speed) {
4451 case SPEED_10:
4452 txb2b = false;
4453 adapter->tx_timeout_factor = 16;
4454 break;
4455 case SPEED_100:
4456 txb2b = false;
4457 adapter->tx_timeout_factor = 10;
4458 break;
4459 }
4460
4461 /*
4462 * workaround: re-program speed mode bit after
4463 * link-up event
4464 */
4465 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4466 !txb2b) {
4467 u32 tarc0;
4468 tarc0 = er32(TARC(0));
4469 tarc0 &= ~SPEED_MODE_BIT;
4470 ew32(TARC(0), tarc0);
4471 }
4472
4473 /*
4474 * disable TSO for pcie and 10/100 speeds, to avoid
4475 * some hardware issues
4476 */
4477 if (!(adapter->flags & FLAG_TSO_FORCE)) {
4478 switch (adapter->link_speed) {
4479 case SPEED_10:
4480 case SPEED_100:
4481 e_info("10/100 speed: disabling TSO\n");
4482 netdev->features &= ~NETIF_F_TSO;
4483 netdev->features &= ~NETIF_F_TSO6;
4484 break;
4485 case SPEED_1000:
4486 netdev->features |= NETIF_F_TSO;
4487 netdev->features |= NETIF_F_TSO6;
4488 break;
4489 default:
4490 /* oops */
4491 break;
4492 }
4493 }
4494
4495 /*
4496 * enable transmits in the hardware, need to do this
4497 * after setting TARC(0)
4498 */
4499 tctl = er32(TCTL);
4500 tctl |= E1000_TCTL_EN;
4501 ew32(TCTL, tctl);
4502
4503 /*
4504 * Perform any post-link-up configuration before
4505 * reporting link up.
4506 */
4507 if (phy->ops.cfg_on_link_up)
4508 phy->ops.cfg_on_link_up(hw);
4509
4510 netif_carrier_on(netdev);
4511
4512 if (!test_bit(__E1000_DOWN, &adapter->state))
4513 mod_timer(&adapter->phy_info_timer,
4514 round_jiffies(jiffies + 2 * HZ));
4515 }
4516 } else {
4517 if (netif_carrier_ok(netdev)) {
4518 adapter->link_speed = 0;
4519 adapter->link_duplex = 0;
4520 /* Link status message must follow this format */
4521 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4522 adapter->netdev->name);
4523 netif_carrier_off(netdev);
4524 if (!test_bit(__E1000_DOWN, &adapter->state))
4525 mod_timer(&adapter->phy_info_timer,
4526 round_jiffies(jiffies + 2 * HZ));
4527
4528 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4529 schedule_work(&adapter->reset_task);
4530 else
4531 pm_schedule_suspend(netdev->dev.parent,
4532 LINK_TIMEOUT);
4533 }
4534 }
4535
4536 link_up:
4537 spin_lock(&adapter->stats64_lock);
4538 e1000e_update_stats(adapter);
4539
4540 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4541 adapter->tpt_old = adapter->stats.tpt;
4542 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4543 adapter->colc_old = adapter->stats.colc;
4544
4545 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4546 adapter->gorc_old = adapter->stats.gorc;
4547 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4548 adapter->gotc_old = adapter->stats.gotc;
4549 spin_unlock(&adapter->stats64_lock);
4550
4551 e1000e_update_adaptive(&adapter->hw);
4552
4553 if (!netif_carrier_ok(netdev) &&
4554 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4555 /*
4556 * We've lost link, so the controller stops DMA,
4557 * but we've got queued Tx work that's never going
4558 * to get done, so reset controller to flush Tx.
4559 * (Do the reset outside of interrupt context).
4560 */
4561 schedule_work(&adapter->reset_task);
4562 /* return immediately since reset is imminent */
4563 return;
4564 }
4565
4566 /* Simple mode for Interrupt Throttle Rate (ITR) */
4567 if (adapter->itr_setting == 4) {
4568 /*
4569 * Symmetric Tx/Rx gets a reduced ITR=2000;
4570 * Total asymmetrical Tx or Rx gets ITR=8000;
4571 * everyone else is between 2000-8000.
4572 */
4573 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4574 u32 dif = (adapter->gotc > adapter->gorc ?
4575 adapter->gotc - adapter->gorc :
4576 adapter->gorc - adapter->gotc) / 10000;
4577 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4578
4579 ew32(ITR, 1000000000 / (itr * 256));
4580 }
4581
4582 /* Cause software interrupt to ensure Rx ring is cleaned */
4583 if (adapter->msix_entries)
4584 ew32(ICS, adapter->rx_ring->ims_val);
4585 else
4586 ew32(ICS, E1000_ICS_RXDMT0);
4587
4588 /* flush pending descriptors to memory before detecting Tx hang */
4589 e1000e_flush_descriptors(adapter);
4590
4591 /* Force detection of hung controller every watchdog period */
4592 adapter->detect_tx_hung = true;
4593
4594 /*
4595 * With 82571 controllers, LAA may be overwritten due to controller
4596 * reset from the other port. Set the appropriate LAA in RAR[0]
4597 */
4598 if (e1000e_get_laa_state_82571(hw))
4599 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
4600
4601 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4602 e1000e_check_82574_phy_workaround(adapter);
4603
4604 /* Reset the timer */
4605 if (!test_bit(__E1000_DOWN, &adapter->state))
4606 mod_timer(&adapter->watchdog_timer,
4607 round_jiffies(jiffies + 2 * HZ));
4608 }
4609
4610 #define E1000_TX_FLAGS_CSUM 0x00000001
4611 #define E1000_TX_FLAGS_VLAN 0x00000002
4612 #define E1000_TX_FLAGS_TSO 0x00000004
4613 #define E1000_TX_FLAGS_IPV4 0x00000008
4614 #define E1000_TX_FLAGS_NO_FCS 0x00000010
4615 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4616 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4617
4618 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4619 {
4620 struct e1000_context_desc *context_desc;
4621 struct e1000_buffer *buffer_info;
4622 unsigned int i;
4623 u32 cmd_length = 0;
4624 u16 ipcse = 0, tucse, mss;
4625 u8 ipcss, ipcso, tucss, tucso, hdr_len;
4626
4627 if (!skb_is_gso(skb))
4628 return 0;
4629
4630 if (skb_header_cloned(skb)) {
4631 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4632
4633 if (err)
4634 return err;
4635 }
4636
4637 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4638 mss = skb_shinfo(skb)->gso_size;
4639 if (skb->protocol == htons(ETH_P_IP)) {
4640 struct iphdr *iph = ip_hdr(skb);
4641 iph->tot_len = 0;
4642 iph->check = 0;
4643 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4644 0, IPPROTO_TCP, 0);
4645 cmd_length = E1000_TXD_CMD_IP;
4646 ipcse = skb_transport_offset(skb) - 1;
4647 } else if (skb_is_gso_v6(skb)) {
4648 ipv6_hdr(skb)->payload_len = 0;
4649 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4650 &ipv6_hdr(skb)->daddr,
4651 0, IPPROTO_TCP, 0);
4652 ipcse = 0;
4653 }
4654 ipcss = skb_network_offset(skb);
4655 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4656 tucss = skb_transport_offset(skb);
4657 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4658 tucse = 0;
4659
4660 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4661 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4662
4663 i = tx_ring->next_to_use;
4664 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4665 buffer_info = &tx_ring->buffer_info[i];
4666
4667 context_desc->lower_setup.ip_fields.ipcss = ipcss;
4668 context_desc->lower_setup.ip_fields.ipcso = ipcso;
4669 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
4670 context_desc->upper_setup.tcp_fields.tucss = tucss;
4671 context_desc->upper_setup.tcp_fields.tucso = tucso;
4672 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4673 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
4674 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4675 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4676
4677 buffer_info->time_stamp = jiffies;
4678 buffer_info->next_to_watch = i;
4679
4680 i++;
4681 if (i == tx_ring->count)
4682 i = 0;
4683 tx_ring->next_to_use = i;
4684
4685 return 1;
4686 }
4687
4688 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4689 {
4690 struct e1000_adapter *adapter = tx_ring->adapter;
4691 struct e1000_context_desc *context_desc;
4692 struct e1000_buffer *buffer_info;
4693 unsigned int i;
4694 u8 css;
4695 u32 cmd_len = E1000_TXD_CMD_DEXT;
4696 __be16 protocol;
4697
4698 if (skb->ip_summed != CHECKSUM_PARTIAL)
4699 return 0;
4700
4701 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4702 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4703 else
4704 protocol = skb->protocol;
4705
4706 switch (protocol) {
4707 case cpu_to_be16(ETH_P_IP):
4708 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4709 cmd_len |= E1000_TXD_CMD_TCP;
4710 break;
4711 case cpu_to_be16(ETH_P_IPV6):
4712 /* XXX not handling all IPV6 headers */
4713 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4714 cmd_len |= E1000_TXD_CMD_TCP;
4715 break;
4716 default:
4717 if (unlikely(net_ratelimit()))
4718 e_warn("checksum_partial proto=%x!\n",
4719 be16_to_cpu(protocol));
4720 break;
4721 }
4722
4723 css = skb_checksum_start_offset(skb);
4724
4725 i = tx_ring->next_to_use;
4726 buffer_info = &tx_ring->buffer_info[i];
4727 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4728
4729 context_desc->lower_setup.ip_config = 0;
4730 context_desc->upper_setup.tcp_fields.tucss = css;
4731 context_desc->upper_setup.tcp_fields.tucso =
4732 css + skb->csum_offset;
4733 context_desc->upper_setup.tcp_fields.tucse = 0;
4734 context_desc->tcp_seg_setup.data = 0;
4735 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4736
4737 buffer_info->time_stamp = jiffies;
4738 buffer_info->next_to_watch = i;
4739
4740 i++;
4741 if (i == tx_ring->count)
4742 i = 0;
4743 tx_ring->next_to_use = i;
4744
4745 return 1;
4746 }
4747
4748 #define E1000_MAX_PER_TXD 8192
4749 #define E1000_MAX_TXD_PWR 12
4750
4751 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
4752 unsigned int first, unsigned int max_per_txd,
4753 unsigned int nr_frags, unsigned int mss)
4754 {
4755 struct e1000_adapter *adapter = tx_ring->adapter;
4756 struct pci_dev *pdev = adapter->pdev;
4757 struct e1000_buffer *buffer_info;
4758 unsigned int len = skb_headlen(skb);
4759 unsigned int offset = 0, size, count = 0, i;
4760 unsigned int f, bytecount, segs;
4761
4762 i = tx_ring->next_to_use;
4763
4764 while (len) {
4765 buffer_info = &tx_ring->buffer_info[i];
4766 size = min(len, max_per_txd);
4767
4768 buffer_info->length = size;
4769 buffer_info->time_stamp = jiffies;
4770 buffer_info->next_to_watch = i;
4771 buffer_info->dma = dma_map_single(&pdev->dev,
4772 skb->data + offset,
4773 size, DMA_TO_DEVICE);
4774 buffer_info->mapped_as_page = false;
4775 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4776 goto dma_error;
4777
4778 len -= size;
4779 offset += size;
4780 count++;
4781
4782 if (len) {
4783 i++;
4784 if (i == tx_ring->count)
4785 i = 0;
4786 }
4787 }
4788
4789 for (f = 0; f < nr_frags; f++) {
4790 const struct skb_frag_struct *frag;
4791
4792 frag = &skb_shinfo(skb)->frags[f];
4793 len = skb_frag_size(frag);
4794 offset = 0;
4795
4796 while (len) {
4797 i++;
4798 if (i == tx_ring->count)
4799 i = 0;
4800
4801 buffer_info = &tx_ring->buffer_info[i];
4802 size = min(len, max_per_txd);
4803
4804 buffer_info->length = size;
4805 buffer_info->time_stamp = jiffies;
4806 buffer_info->next_to_watch = i;
4807 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4808 offset, size, DMA_TO_DEVICE);
4809 buffer_info->mapped_as_page = true;
4810 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4811 goto dma_error;
4812
4813 len -= size;
4814 offset += size;
4815 count++;
4816 }
4817 }
4818
4819 segs = skb_shinfo(skb)->gso_segs ? : 1;
4820 /* multiply data chunks by size of headers */
4821 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4822
4823 tx_ring->buffer_info[i].skb = skb;
4824 tx_ring->buffer_info[i].segs = segs;
4825 tx_ring->buffer_info[i].bytecount = bytecount;
4826 tx_ring->buffer_info[first].next_to_watch = i;
4827
4828 return count;
4829
4830 dma_error:
4831 dev_err(&pdev->dev, "Tx DMA map failed\n");
4832 buffer_info->dma = 0;
4833 if (count)
4834 count--;
4835
4836 while (count--) {
4837 if (i == 0)
4838 i += tx_ring->count;
4839 i--;
4840 buffer_info = &tx_ring->buffer_info[i];
4841 e1000_put_txbuf(tx_ring, buffer_info);
4842 }
4843
4844 return 0;
4845 }
4846
4847 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4848 {
4849 struct e1000_adapter *adapter = tx_ring->adapter;
4850 struct e1000_tx_desc *tx_desc = NULL;
4851 struct e1000_buffer *buffer_info;
4852 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4853 unsigned int i;
4854
4855 if (tx_flags & E1000_TX_FLAGS_TSO) {
4856 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4857 E1000_TXD_CMD_TSE;
4858 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4859
4860 if (tx_flags & E1000_TX_FLAGS_IPV4)
4861 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4862 }
4863
4864 if (tx_flags & E1000_TX_FLAGS_CSUM) {
4865 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4866 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4867 }
4868
4869 if (tx_flags & E1000_TX_FLAGS_VLAN) {
4870 txd_lower |= E1000_TXD_CMD_VLE;
4871 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4872 }
4873
4874 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4875 txd_lower &= ~(E1000_TXD_CMD_IFCS);
4876
4877 i = tx_ring->next_to_use;
4878
4879 do {
4880 buffer_info = &tx_ring->buffer_info[i];
4881 tx_desc = E1000_TX_DESC(*tx_ring, i);
4882 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4883 tx_desc->lower.data =
4884 cpu_to_le32(txd_lower | buffer_info->length);
4885 tx_desc->upper.data = cpu_to_le32(txd_upper);
4886
4887 i++;
4888 if (i == tx_ring->count)
4889 i = 0;
4890 } while (--count > 0);
4891
4892 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4893
4894 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
4895 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4896 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
4897
4898 /*
4899 * Force memory writes to complete before letting h/w
4900 * know there are new descriptors to fetch. (Only
4901 * applicable for weak-ordered memory model archs,
4902 * such as IA-64).
4903 */
4904 wmb();
4905
4906 tx_ring->next_to_use = i;
4907
4908 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4909 e1000e_update_tdt_wa(tx_ring, i);
4910 else
4911 writel(i, tx_ring->tail);
4912
4913 /*
4914 * we need this if more than one processor can write to our tail
4915 * at a time, it synchronizes IO on IA64/Altix systems
4916 */
4917 mmiowb();
4918 }
4919
4920 #define MINIMUM_DHCP_PACKET_SIZE 282
4921 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4922 struct sk_buff *skb)
4923 {
4924 struct e1000_hw *hw = &adapter->hw;
4925 u16 length, offset;
4926
4927 if (vlan_tx_tag_present(skb)) {
4928 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4929 (adapter->hw.mng_cookie.status &
4930 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4931 return 0;
4932 }
4933
4934 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4935 return 0;
4936
4937 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4938 return 0;
4939
4940 {
4941 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4942 struct udphdr *udp;
4943
4944 if (ip->protocol != IPPROTO_UDP)
4945 return 0;
4946
4947 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4948 if (ntohs(udp->dest) != 67)
4949 return 0;
4950
4951 offset = (u8 *)udp + 8 - skb->data;
4952 length = skb->len - offset;
4953 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4954 }
4955
4956 return 0;
4957 }
4958
4959 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4960 {
4961 struct e1000_adapter *adapter = tx_ring->adapter;
4962
4963 netif_stop_queue(adapter->netdev);
4964 /*
4965 * Herbert's original patch had:
4966 * smp_mb__after_netif_stop_queue();
4967 * but since that doesn't exist yet, just open code it.
4968 */
4969 smp_mb();
4970
4971 /*
4972 * We need to check again in a case another CPU has just
4973 * made room available.
4974 */
4975 if (e1000_desc_unused(tx_ring) < size)
4976 return -EBUSY;
4977
4978 /* A reprieve! */
4979 netif_start_queue(adapter->netdev);
4980 ++adapter->restart_queue;
4981 return 0;
4982 }
4983
4984 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4985 {
4986 if (e1000_desc_unused(tx_ring) >= size)
4987 return 0;
4988 return __e1000_maybe_stop_tx(tx_ring, size);
4989 }
4990
4991 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
4992 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4993 struct net_device *netdev)
4994 {
4995 struct e1000_adapter *adapter = netdev_priv(netdev);
4996 struct e1000_ring *tx_ring = adapter->tx_ring;
4997 unsigned int first;
4998 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4999 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
5000 unsigned int tx_flags = 0;
5001 unsigned int len = skb_headlen(skb);
5002 unsigned int nr_frags;
5003 unsigned int mss;
5004 int count = 0;
5005 int tso;
5006 unsigned int f;
5007
5008 if (test_bit(__E1000_DOWN, &adapter->state)) {
5009 dev_kfree_skb_any(skb);
5010 return NETDEV_TX_OK;
5011 }
5012
5013 if (skb->len <= 0) {
5014 dev_kfree_skb_any(skb);
5015 return NETDEV_TX_OK;
5016 }
5017
5018 mss = skb_shinfo(skb)->gso_size;
5019 /*
5020 * The controller does a simple calculation to
5021 * make sure there is enough room in the FIFO before
5022 * initiating the DMA for each buffer. The calc is:
5023 * 4 = ceil(buffer len/mss). To make sure we don't
5024 * overrun the FIFO, adjust the max buffer len if mss
5025 * drops.
5026 */
5027 if (mss) {
5028 u8 hdr_len;
5029 max_per_txd = min(mss << 2, max_per_txd);
5030 max_txd_pwr = fls(max_per_txd) - 1;
5031
5032 /*
5033 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
5034 * points to just header, pull a few bytes of payload from
5035 * frags into skb->data
5036 */
5037 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5038 /*
5039 * we do this workaround for ES2LAN, but it is un-necessary,
5040 * avoiding it could save a lot of cycles
5041 */
5042 if (skb->data_len && (hdr_len == len)) {
5043 unsigned int pull_size;
5044
5045 pull_size = min_t(unsigned int, 4, skb->data_len);
5046 if (!__pskb_pull_tail(skb, pull_size)) {
5047 e_err("__pskb_pull_tail failed.\n");
5048 dev_kfree_skb_any(skb);
5049 return NETDEV_TX_OK;
5050 }
5051 len = skb_headlen(skb);
5052 }
5053 }
5054
5055 /* reserve a descriptor for the offload context */
5056 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5057 count++;
5058 count++;
5059
5060 count += TXD_USE_COUNT(len, max_txd_pwr);
5061
5062 nr_frags = skb_shinfo(skb)->nr_frags;
5063 for (f = 0; f < nr_frags; f++)
5064 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5065 max_txd_pwr);
5066
5067 if (adapter->hw.mac.tx_pkt_filtering)
5068 e1000_transfer_dhcp_info(adapter, skb);
5069
5070 /*
5071 * need: count + 2 desc gap to keep tail from touching
5072 * head, otherwise try next time
5073 */
5074 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5075 return NETDEV_TX_BUSY;
5076
5077 if (vlan_tx_tag_present(skb)) {
5078 tx_flags |= E1000_TX_FLAGS_VLAN;
5079 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5080 }
5081
5082 first = tx_ring->next_to_use;
5083
5084 tso = e1000_tso(tx_ring, skb);
5085 if (tso < 0) {
5086 dev_kfree_skb_any(skb);
5087 return NETDEV_TX_OK;
5088 }
5089
5090 if (tso)
5091 tx_flags |= E1000_TX_FLAGS_TSO;
5092 else if (e1000_tx_csum(tx_ring, skb))
5093 tx_flags |= E1000_TX_FLAGS_CSUM;
5094
5095 /*
5096 * Old method was to assume IPv4 packet by default if TSO was enabled.
5097 * 82571 hardware supports TSO capabilities for IPv6 as well...
5098 * no longer assume, we must.
5099 */
5100 if (skb->protocol == htons(ETH_P_IP))
5101 tx_flags |= E1000_TX_FLAGS_IPV4;
5102
5103 if (unlikely(skb->no_fcs))
5104 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5105
5106 /* if count is 0 then mapping error has occurred */
5107 count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
5108 if (count) {
5109 skb_tx_timestamp(skb);
5110
5111 netdev_sent_queue(netdev, skb->len);
5112 e1000_tx_queue(tx_ring, tx_flags, count);
5113 /* Make sure there is space in the ring for the next send. */
5114 e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
5115
5116 } else {
5117 dev_kfree_skb_any(skb);
5118 tx_ring->buffer_info[first].time_stamp = 0;
5119 tx_ring->next_to_use = first;
5120 }
5121
5122 return NETDEV_TX_OK;
5123 }
5124
5125 /**
5126 * e1000_tx_timeout - Respond to a Tx Hang
5127 * @netdev: network interface device structure
5128 **/
5129 static void e1000_tx_timeout(struct net_device *netdev)
5130 {
5131 struct e1000_adapter *adapter = netdev_priv(netdev);
5132
5133 /* Do the reset outside of interrupt context */
5134 adapter->tx_timeout_count++;
5135 schedule_work(&adapter->reset_task);
5136 }
5137
5138 static void e1000_reset_task(struct work_struct *work)
5139 {
5140 struct e1000_adapter *adapter;
5141 adapter = container_of(work, struct e1000_adapter, reset_task);
5142
5143 /* don't run the task if already down */
5144 if (test_bit(__E1000_DOWN, &adapter->state))
5145 return;
5146
5147 if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5148 (adapter->flags & FLAG_RX_RESTART_NOW))) {
5149 e1000e_dump(adapter);
5150 e_err("Reset adapter\n");
5151 }
5152 e1000e_reinit_locked(adapter);
5153 }
5154
5155 /**
5156 * e1000_get_stats64 - Get System Network Statistics
5157 * @netdev: network interface device structure
5158 * @stats: rtnl_link_stats64 pointer
5159 *
5160 * Returns the address of the device statistics structure.
5161 **/
5162 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5163 struct rtnl_link_stats64 *stats)
5164 {
5165 struct e1000_adapter *adapter = netdev_priv(netdev);
5166
5167 memset(stats, 0, sizeof(struct rtnl_link_stats64));
5168 spin_lock(&adapter->stats64_lock);
5169 e1000e_update_stats(adapter);
5170 /* Fill out the OS statistics structure */
5171 stats->rx_bytes = adapter->stats.gorc;
5172 stats->rx_packets = adapter->stats.gprc;
5173 stats->tx_bytes = adapter->stats.gotc;
5174 stats->tx_packets = adapter->stats.gptc;
5175 stats->multicast = adapter->stats.mprc;
5176 stats->collisions = adapter->stats.colc;
5177
5178 /* Rx Errors */
5179
5180 /*
5181 * RLEC on some newer hardware can be incorrect so build
5182 * our own version based on RUC and ROC
5183 */
5184 stats->rx_errors = adapter->stats.rxerrc +
5185 adapter->stats.crcerrs + adapter->stats.algnerrc +
5186 adapter->stats.ruc + adapter->stats.roc +
5187 adapter->stats.cexterr;
5188 stats->rx_length_errors = adapter->stats.ruc +
5189 adapter->stats.roc;
5190 stats->rx_crc_errors = adapter->stats.crcerrs;
5191 stats->rx_frame_errors = adapter->stats.algnerrc;
5192 stats->rx_missed_errors = adapter->stats.mpc;
5193
5194 /* Tx Errors */
5195 stats->tx_errors = adapter->stats.ecol +
5196 adapter->stats.latecol;
5197 stats->tx_aborted_errors = adapter->stats.ecol;
5198 stats->tx_window_errors = adapter->stats.latecol;
5199 stats->tx_carrier_errors = adapter->stats.tncrs;
5200
5201 /* Tx Dropped needs to be maintained elsewhere */
5202
5203 spin_unlock(&adapter->stats64_lock);
5204 return stats;
5205 }
5206
5207 /**
5208 * e1000_change_mtu - Change the Maximum Transfer Unit
5209 * @netdev: network interface device structure
5210 * @new_mtu: new value for maximum frame size
5211 *
5212 * Returns 0 on success, negative on failure
5213 **/
5214 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5215 {
5216 struct e1000_adapter *adapter = netdev_priv(netdev);
5217 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5218
5219 /* Jumbo frame support */
5220 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5221 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5222 e_err("Jumbo Frames not supported.\n");
5223 return -EINVAL;
5224 }
5225
5226 /* Supported frame sizes */
5227 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5228 (max_frame > adapter->max_hw_frame_size)) {
5229 e_err("Unsupported MTU setting\n");
5230 return -EINVAL;
5231 }
5232
5233 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5234 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5235 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5236 (new_mtu > ETH_DATA_LEN)) {
5237 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5238 return -EINVAL;
5239 }
5240
5241 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5242 usleep_range(1000, 2000);
5243 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5244 adapter->max_frame_size = max_frame;
5245 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5246 netdev->mtu = new_mtu;
5247 if (netif_running(netdev))
5248 e1000e_down(adapter);
5249
5250 /*
5251 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5252 * means we reserve 2 more, this pushes us to allocate from the next
5253 * larger slab size.
5254 * i.e. RXBUFFER_2048 --> size-4096 slab
5255 * However with the new *_jumbo_rx* routines, jumbo receives will use
5256 * fragmented skbs
5257 */
5258
5259 if (max_frame <= 2048)
5260 adapter->rx_buffer_len = 2048;
5261 else
5262 adapter->rx_buffer_len = 4096;
5263
5264 /* adjust allocation if LPE protects us, and we aren't using SBP */
5265 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5266 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5267 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5268 + ETH_FCS_LEN;
5269
5270 if (netif_running(netdev))
5271 e1000e_up(adapter);
5272 else
5273 e1000e_reset(adapter);
5274
5275 clear_bit(__E1000_RESETTING, &adapter->state);
5276
5277 return 0;
5278 }
5279
5280 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5281 int cmd)
5282 {
5283 struct e1000_adapter *adapter = netdev_priv(netdev);
5284 struct mii_ioctl_data *data = if_mii(ifr);
5285
5286 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5287 return -EOPNOTSUPP;
5288
5289 switch (cmd) {
5290 case SIOCGMIIPHY:
5291 data->phy_id = adapter->hw.phy.addr;
5292 break;
5293 case SIOCGMIIREG:
5294 e1000_phy_read_status(adapter);
5295
5296 switch (data->reg_num & 0x1F) {
5297 case MII_BMCR:
5298 data->val_out = adapter->phy_regs.bmcr;
5299 break;
5300 case MII_BMSR:
5301 data->val_out = adapter->phy_regs.bmsr;
5302 break;
5303 case MII_PHYSID1:
5304 data->val_out = (adapter->hw.phy.id >> 16);
5305 break;
5306 case MII_PHYSID2:
5307 data->val_out = (adapter->hw.phy.id & 0xFFFF);
5308 break;
5309 case MII_ADVERTISE:
5310 data->val_out = adapter->phy_regs.advertise;
5311 break;
5312 case MII_LPA:
5313 data->val_out = adapter->phy_regs.lpa;
5314 break;
5315 case MII_EXPANSION:
5316 data->val_out = adapter->phy_regs.expansion;
5317 break;
5318 case MII_CTRL1000:
5319 data->val_out = adapter->phy_regs.ctrl1000;
5320 break;
5321 case MII_STAT1000:
5322 data->val_out = adapter->phy_regs.stat1000;
5323 break;
5324 case MII_ESTATUS:
5325 data->val_out = adapter->phy_regs.estatus;
5326 break;
5327 default:
5328 return -EIO;
5329 }
5330 break;
5331 case SIOCSMIIREG:
5332 default:
5333 return -EOPNOTSUPP;
5334 }
5335 return 0;
5336 }
5337
5338 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5339 {
5340 switch (cmd) {
5341 case SIOCGMIIPHY:
5342 case SIOCGMIIREG:
5343 case SIOCSMIIREG:
5344 return e1000_mii_ioctl(netdev, ifr, cmd);
5345 default:
5346 return -EOPNOTSUPP;
5347 }
5348 }
5349
5350 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5351 {
5352 struct e1000_hw *hw = &adapter->hw;
5353 u32 i, mac_reg;
5354 u16 phy_reg, wuc_enable;
5355 int retval = 0;
5356
5357 /* copy MAC RARs to PHY RARs */
5358 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5359
5360 retval = hw->phy.ops.acquire(hw);
5361 if (retval) {
5362 e_err("Could not acquire PHY\n");
5363 return retval;
5364 }
5365
5366 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5367 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5368 if (retval)
5369 goto release;
5370
5371 /* copy MAC MTA to PHY MTA - only needed for pchlan */
5372 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5373 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5374 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5375 (u16)(mac_reg & 0xFFFF));
5376 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5377 (u16)((mac_reg >> 16) & 0xFFFF));
5378 }
5379
5380 /* configure PHY Rx Control register */
5381 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5382 mac_reg = er32(RCTL);
5383 if (mac_reg & E1000_RCTL_UPE)
5384 phy_reg |= BM_RCTL_UPE;
5385 if (mac_reg & E1000_RCTL_MPE)
5386 phy_reg |= BM_RCTL_MPE;
5387 phy_reg &= ~(BM_RCTL_MO_MASK);
5388 if (mac_reg & E1000_RCTL_MO_3)
5389 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5390 << BM_RCTL_MO_SHIFT);
5391 if (mac_reg & E1000_RCTL_BAM)
5392 phy_reg |= BM_RCTL_BAM;
5393 if (mac_reg & E1000_RCTL_PMCF)
5394 phy_reg |= BM_RCTL_PMCF;
5395 mac_reg = er32(CTRL);
5396 if (mac_reg & E1000_CTRL_RFCE)
5397 phy_reg |= BM_RCTL_RFCE;
5398 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5399
5400 /* enable PHY wakeup in MAC register */
5401 ew32(WUFC, wufc);
5402 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5403
5404 /* configure and enable PHY wakeup in PHY registers */
5405 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5406 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5407
5408 /* activate PHY wakeup */
5409 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5410 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5411 if (retval)
5412 e_err("Could not set PHY Host Wakeup bit\n");
5413 release:
5414 hw->phy.ops.release(hw);
5415
5416 return retval;
5417 }
5418
5419 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5420 bool runtime)
5421 {
5422 struct net_device *netdev = pci_get_drvdata(pdev);
5423 struct e1000_adapter *adapter = netdev_priv(netdev);
5424 struct e1000_hw *hw = &adapter->hw;
5425 u32 ctrl, ctrl_ext, rctl, status;
5426 /* Runtime suspend should only enable wakeup for link changes */
5427 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5428 int retval = 0;
5429
5430 netif_device_detach(netdev);
5431
5432 if (netif_running(netdev)) {
5433 int count = E1000_CHECK_RESET_COUNT;
5434
5435 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5436 usleep_range(10000, 20000);
5437
5438 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5439 e1000e_down(adapter);
5440 e1000_free_irq(adapter);
5441 }
5442 e1000e_reset_interrupt_capability(adapter);
5443
5444 retval = pci_save_state(pdev);
5445 if (retval)
5446 return retval;
5447
5448 status = er32(STATUS);
5449 if (status & E1000_STATUS_LU)
5450 wufc &= ~E1000_WUFC_LNKC;
5451
5452 if (wufc) {
5453 e1000_setup_rctl(adapter);
5454 e1000e_set_rx_mode(netdev);
5455
5456 /* turn on all-multi mode if wake on multicast is enabled */
5457 if (wufc & E1000_WUFC_MC) {
5458 rctl = er32(RCTL);
5459 rctl |= E1000_RCTL_MPE;
5460 ew32(RCTL, rctl);
5461 }
5462
5463 ctrl = er32(CTRL);
5464 /* advertise wake from D3Cold */
5465 #define E1000_CTRL_ADVD3WUC 0x00100000
5466 /* phy power management enable */
5467 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5468 ctrl |= E1000_CTRL_ADVD3WUC;
5469 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5470 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5471 ew32(CTRL, ctrl);
5472
5473 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5474 adapter->hw.phy.media_type ==
5475 e1000_media_type_internal_serdes) {
5476 /* keep the laser running in D3 */
5477 ctrl_ext = er32(CTRL_EXT);
5478 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5479 ew32(CTRL_EXT, ctrl_ext);
5480 }
5481
5482 if (adapter->flags & FLAG_IS_ICH)
5483 e1000_suspend_workarounds_ich8lan(&adapter->hw);
5484
5485 /* Allow time for pending master requests to run */
5486 e1000e_disable_pcie_master(&adapter->hw);
5487
5488 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5489 /* enable wakeup by the PHY */
5490 retval = e1000_init_phy_wakeup(adapter, wufc);
5491 if (retval)
5492 return retval;
5493 } else {
5494 /* enable wakeup by the MAC */
5495 ew32(WUFC, wufc);
5496 ew32(WUC, E1000_WUC_PME_EN);
5497 }
5498 } else {
5499 ew32(WUC, 0);
5500 ew32(WUFC, 0);
5501 }
5502
5503 *enable_wake = !!wufc;
5504
5505 /* make sure adapter isn't asleep if manageability is enabled */
5506 if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5507 (hw->mac.ops.check_mng_mode(hw)))
5508 *enable_wake = true;
5509
5510 if (adapter->hw.phy.type == e1000_phy_igp_3)
5511 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5512
5513 /*
5514 * Release control of h/w to f/w. If f/w is AMT enabled, this
5515 * would have already happened in close and is redundant.
5516 */
5517 e1000e_release_hw_control(adapter);
5518
5519 pci_disable_device(pdev);
5520
5521 return 0;
5522 }
5523
5524 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5525 {
5526 if (sleep && wake) {
5527 pci_prepare_to_sleep(pdev);
5528 return;
5529 }
5530
5531 pci_wake_from_d3(pdev, wake);
5532 pci_set_power_state(pdev, PCI_D3hot);
5533 }
5534
5535 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5536 bool wake)
5537 {
5538 struct net_device *netdev = pci_get_drvdata(pdev);
5539 struct e1000_adapter *adapter = netdev_priv(netdev);
5540
5541 /*
5542 * The pci-e switch on some quad port adapters will report a
5543 * correctable error when the MAC transitions from D0 to D3. To
5544 * prevent this we need to mask off the correctable errors on the
5545 * downstream port of the pci-e switch.
5546 */
5547 if (adapter->flags & FLAG_IS_QUAD_PORT) {
5548 struct pci_dev *us_dev = pdev->bus->self;
5549 int pos = pci_pcie_cap(us_dev);
5550 u16 devctl;
5551
5552 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5553 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5554 (devctl & ~PCI_EXP_DEVCTL_CERE));
5555
5556 e1000_power_off(pdev, sleep, wake);
5557
5558 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5559 } else {
5560 e1000_power_off(pdev, sleep, wake);
5561 }
5562 }
5563
5564 #ifdef CONFIG_PCIEASPM
5565 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5566 {
5567 pci_disable_link_state_locked(pdev, state);
5568 }
5569 #else
5570 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5571 {
5572 int pos;
5573 u16 reg16;
5574
5575 /*
5576 * Both device and parent should have the same ASPM setting.
5577 * Disable ASPM in downstream component first and then upstream.
5578 */
5579 pos = pci_pcie_cap(pdev);
5580 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5581 reg16 &= ~state;
5582 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5583
5584 if (!pdev->bus->self)
5585 return;
5586
5587 pos = pci_pcie_cap(pdev->bus->self);
5588 pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5589 reg16 &= ~state;
5590 pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5591 }
5592 #endif
5593 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5594 {
5595 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5596 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5597 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5598
5599 __e1000e_disable_aspm(pdev, state);
5600 }
5601
5602 #ifdef CONFIG_PM
5603 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5604 {
5605 return !!adapter->tx_ring->buffer_info;
5606 }
5607
5608 static int __e1000_resume(struct pci_dev *pdev)
5609 {
5610 struct net_device *netdev = pci_get_drvdata(pdev);
5611 struct e1000_adapter *adapter = netdev_priv(netdev);
5612 struct e1000_hw *hw = &adapter->hw;
5613 u16 aspm_disable_flag = 0;
5614 u32 err;
5615
5616 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5617 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5618 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5619 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5620 if (aspm_disable_flag)
5621 e1000e_disable_aspm(pdev, aspm_disable_flag);
5622
5623 pci_set_power_state(pdev, PCI_D0);
5624 pci_restore_state(pdev);
5625 pci_save_state(pdev);
5626
5627 e1000e_set_interrupt_capability(adapter);
5628 if (netif_running(netdev)) {
5629 err = e1000_request_irq(adapter);
5630 if (err)
5631 return err;
5632 }
5633
5634 if (hw->mac.type >= e1000_pch2lan)
5635 e1000_resume_workarounds_pchlan(&adapter->hw);
5636
5637 e1000e_power_up_phy(adapter);
5638
5639 /* report the system wakeup cause from S3/S4 */
5640 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5641 u16 phy_data;
5642
5643 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5644 if (phy_data) {
5645 e_info("PHY Wakeup cause - %s\n",
5646 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5647 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5648 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5649 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5650 phy_data & E1000_WUS_LNKC ?
5651 "Link Status Change" : "other");
5652 }
5653 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5654 } else {
5655 u32 wus = er32(WUS);
5656 if (wus) {
5657 e_info("MAC Wakeup cause - %s\n",
5658 wus & E1000_WUS_EX ? "Unicast Packet" :
5659 wus & E1000_WUS_MC ? "Multicast Packet" :
5660 wus & E1000_WUS_BC ? "Broadcast Packet" :
5661 wus & E1000_WUS_MAG ? "Magic Packet" :
5662 wus & E1000_WUS_LNKC ? "Link Status Change" :
5663 "other");
5664 }
5665 ew32(WUS, ~0);
5666 }
5667
5668 e1000e_reset(adapter);
5669
5670 e1000_init_manageability_pt(adapter);
5671
5672 if (netif_running(netdev))
5673 e1000e_up(adapter);
5674
5675 netif_device_attach(netdev);
5676
5677 /*
5678 * If the controller has AMT, do not set DRV_LOAD until the interface
5679 * is up. For all other cases, let the f/w know that the h/w is now
5680 * under the control of the driver.
5681 */
5682 if (!(adapter->flags & FLAG_HAS_AMT))
5683 e1000e_get_hw_control(adapter);
5684
5685 return 0;
5686 }
5687
5688 #ifdef CONFIG_PM_SLEEP
5689 static int e1000_suspend(struct device *dev)
5690 {
5691 struct pci_dev *pdev = to_pci_dev(dev);
5692 int retval;
5693 bool wake;
5694
5695 retval = __e1000_shutdown(pdev, &wake, false);
5696 if (!retval)
5697 e1000_complete_shutdown(pdev, true, wake);
5698
5699 return retval;
5700 }
5701
5702 static int e1000_resume(struct device *dev)
5703 {
5704 struct pci_dev *pdev = to_pci_dev(dev);
5705 struct net_device *netdev = pci_get_drvdata(pdev);
5706 struct e1000_adapter *adapter = netdev_priv(netdev);
5707
5708 if (e1000e_pm_ready(adapter))
5709 adapter->idle_check = true;
5710
5711 return __e1000_resume(pdev);
5712 }
5713 #endif /* CONFIG_PM_SLEEP */
5714
5715 #ifdef CONFIG_PM_RUNTIME
5716 static int e1000_runtime_suspend(struct device *dev)
5717 {
5718 struct pci_dev *pdev = to_pci_dev(dev);
5719 struct net_device *netdev = pci_get_drvdata(pdev);
5720 struct e1000_adapter *adapter = netdev_priv(netdev);
5721
5722 if (e1000e_pm_ready(adapter)) {
5723 bool wake;
5724
5725 __e1000_shutdown(pdev, &wake, true);
5726 }
5727
5728 return 0;
5729 }
5730
5731 static int e1000_idle(struct device *dev)
5732 {
5733 struct pci_dev *pdev = to_pci_dev(dev);
5734 struct net_device *netdev = pci_get_drvdata(pdev);
5735 struct e1000_adapter *adapter = netdev_priv(netdev);
5736
5737 if (!e1000e_pm_ready(adapter))
5738 return 0;
5739
5740 if (adapter->idle_check) {
5741 adapter->idle_check = false;
5742 if (!e1000e_has_link(adapter))
5743 pm_schedule_suspend(dev, MSEC_PER_SEC);
5744 }
5745
5746 return -EBUSY;
5747 }
5748
5749 static int e1000_runtime_resume(struct device *dev)
5750 {
5751 struct pci_dev *pdev = to_pci_dev(dev);
5752 struct net_device *netdev = pci_get_drvdata(pdev);
5753 struct e1000_adapter *adapter = netdev_priv(netdev);
5754
5755 if (!e1000e_pm_ready(adapter))
5756 return 0;
5757
5758 adapter->idle_check = !dev->power.runtime_auto;
5759 return __e1000_resume(pdev);
5760 }
5761 #endif /* CONFIG_PM_RUNTIME */
5762 #endif /* CONFIG_PM */
5763
5764 static void e1000_shutdown(struct pci_dev *pdev)
5765 {
5766 bool wake = false;
5767
5768 __e1000_shutdown(pdev, &wake, false);
5769
5770 if (system_state == SYSTEM_POWER_OFF)
5771 e1000_complete_shutdown(pdev, false, wake);
5772 }
5773
5774 #ifdef CONFIG_NET_POLL_CONTROLLER
5775
5776 static irqreturn_t e1000_intr_msix(int irq, void *data)
5777 {
5778 struct net_device *netdev = data;
5779 struct e1000_adapter *adapter = netdev_priv(netdev);
5780
5781 if (adapter->msix_entries) {
5782 int vector, msix_irq;
5783
5784 vector = 0;
5785 msix_irq = adapter->msix_entries[vector].vector;
5786 disable_irq(msix_irq);
5787 e1000_intr_msix_rx(msix_irq, netdev);
5788 enable_irq(msix_irq);
5789
5790 vector++;
5791 msix_irq = adapter->msix_entries[vector].vector;
5792 disable_irq(msix_irq);
5793 e1000_intr_msix_tx(msix_irq, netdev);
5794 enable_irq(msix_irq);
5795
5796 vector++;
5797 msix_irq = adapter->msix_entries[vector].vector;
5798 disable_irq(msix_irq);
5799 e1000_msix_other(msix_irq, netdev);
5800 enable_irq(msix_irq);
5801 }
5802
5803 return IRQ_HANDLED;
5804 }
5805
5806 /*
5807 * Polling 'interrupt' - used by things like netconsole to send skbs
5808 * without having to re-enable interrupts. It's not called while
5809 * the interrupt routine is executing.
5810 */
5811 static void e1000_netpoll(struct net_device *netdev)
5812 {
5813 struct e1000_adapter *adapter = netdev_priv(netdev);
5814
5815 switch (adapter->int_mode) {
5816 case E1000E_INT_MODE_MSIX:
5817 e1000_intr_msix(adapter->pdev->irq, netdev);
5818 break;
5819 case E1000E_INT_MODE_MSI:
5820 disable_irq(adapter->pdev->irq);
5821 e1000_intr_msi(adapter->pdev->irq, netdev);
5822 enable_irq(adapter->pdev->irq);
5823 break;
5824 default: /* E1000E_INT_MODE_LEGACY */
5825 disable_irq(adapter->pdev->irq);
5826 e1000_intr(adapter->pdev->irq, netdev);
5827 enable_irq(adapter->pdev->irq);
5828 break;
5829 }
5830 }
5831 #endif
5832
5833 /**
5834 * e1000_io_error_detected - called when PCI error is detected
5835 * @pdev: Pointer to PCI device
5836 * @state: The current pci connection state
5837 *
5838 * This function is called after a PCI bus error affecting
5839 * this device has been detected.
5840 */
5841 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5842 pci_channel_state_t state)
5843 {
5844 struct net_device *netdev = pci_get_drvdata(pdev);
5845 struct e1000_adapter *adapter = netdev_priv(netdev);
5846
5847 netif_device_detach(netdev);
5848
5849 if (state == pci_channel_io_perm_failure)
5850 return PCI_ERS_RESULT_DISCONNECT;
5851
5852 if (netif_running(netdev))
5853 e1000e_down(adapter);
5854 pci_disable_device(pdev);
5855
5856 /* Request a slot slot reset. */
5857 return PCI_ERS_RESULT_NEED_RESET;
5858 }
5859
5860 /**
5861 * e1000_io_slot_reset - called after the pci bus has been reset.
5862 * @pdev: Pointer to PCI device
5863 *
5864 * Restart the card from scratch, as if from a cold-boot. Implementation
5865 * resembles the first-half of the e1000_resume routine.
5866 */
5867 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5868 {
5869 struct net_device *netdev = pci_get_drvdata(pdev);
5870 struct e1000_adapter *adapter = netdev_priv(netdev);
5871 struct e1000_hw *hw = &adapter->hw;
5872 u16 aspm_disable_flag = 0;
5873 int err;
5874 pci_ers_result_t result;
5875
5876 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5877 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5878 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5879 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5880 if (aspm_disable_flag)
5881 e1000e_disable_aspm(pdev, aspm_disable_flag);
5882
5883 err = pci_enable_device_mem(pdev);
5884 if (err) {
5885 dev_err(&pdev->dev,
5886 "Cannot re-enable PCI device after reset.\n");
5887 result = PCI_ERS_RESULT_DISCONNECT;
5888 } else {
5889 pci_set_master(pdev);
5890 pdev->state_saved = true;
5891 pci_restore_state(pdev);
5892
5893 pci_enable_wake(pdev, PCI_D3hot, 0);
5894 pci_enable_wake(pdev, PCI_D3cold, 0);
5895
5896 e1000e_reset(adapter);
5897 ew32(WUS, ~0);
5898 result = PCI_ERS_RESULT_RECOVERED;
5899 }
5900
5901 pci_cleanup_aer_uncorrect_error_status(pdev);
5902
5903 return result;
5904 }
5905
5906 /**
5907 * e1000_io_resume - called when traffic can start flowing again.
5908 * @pdev: Pointer to PCI device
5909 *
5910 * This callback is called when the error recovery driver tells us that
5911 * its OK to resume normal operation. Implementation resembles the
5912 * second-half of the e1000_resume routine.
5913 */
5914 static void e1000_io_resume(struct pci_dev *pdev)
5915 {
5916 struct net_device *netdev = pci_get_drvdata(pdev);
5917 struct e1000_adapter *adapter = netdev_priv(netdev);
5918
5919 e1000_init_manageability_pt(adapter);
5920
5921 if (netif_running(netdev)) {
5922 if (e1000e_up(adapter)) {
5923 dev_err(&pdev->dev,
5924 "can't bring device back up after reset\n");
5925 return;
5926 }
5927 }
5928
5929 netif_device_attach(netdev);
5930
5931 /*
5932 * If the controller has AMT, do not set DRV_LOAD until the interface
5933 * is up. For all other cases, let the f/w know that the h/w is now
5934 * under the control of the driver.
5935 */
5936 if (!(adapter->flags & FLAG_HAS_AMT))
5937 e1000e_get_hw_control(adapter);
5938
5939 }
5940
5941 static void e1000_print_device_info(struct e1000_adapter *adapter)
5942 {
5943 struct e1000_hw *hw = &adapter->hw;
5944 struct net_device *netdev = adapter->netdev;
5945 u32 ret_val;
5946 u8 pba_str[E1000_PBANUM_LENGTH];
5947
5948 /* print bus type/speed/width info */
5949 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5950 /* bus width */
5951 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5952 "Width x1"),
5953 /* MAC address */
5954 netdev->dev_addr);
5955 e_info("Intel(R) PRO/%s Network Connection\n",
5956 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5957 ret_val = e1000_read_pba_string_generic(hw, pba_str,
5958 E1000_PBANUM_LENGTH);
5959 if (ret_val)
5960 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5961 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5962 hw->mac.type, hw->phy.type, pba_str);
5963 }
5964
5965 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5966 {
5967 struct e1000_hw *hw = &adapter->hw;
5968 int ret_val;
5969 u16 buf = 0;
5970
5971 if (hw->mac.type != e1000_82573)
5972 return;
5973
5974 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5975 le16_to_cpus(&buf);
5976 if (!ret_val && (!(buf & (1 << 0)))) {
5977 /* Deep Smart Power Down (DSPD) */
5978 dev_warn(&adapter->pdev->dev,
5979 "Warning: detected DSPD enabled in EEPROM\n");
5980 }
5981 }
5982
5983 static int e1000_set_features(struct net_device *netdev,
5984 netdev_features_t features)
5985 {
5986 struct e1000_adapter *adapter = netdev_priv(netdev);
5987 netdev_features_t changed = features ^ netdev->features;
5988
5989 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
5990 adapter->flags |= FLAG_TSO_FORCE;
5991
5992 if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
5993 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
5994 NETIF_F_RXALL)))
5995 return 0;
5996
5997 if (changed & NETIF_F_RXFCS) {
5998 if (features & NETIF_F_RXFCS) {
5999 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6000 } else {
6001 /* We need to take it back to defaults, which might mean
6002 * stripping is still disabled at the adapter level.
6003 */
6004 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6005 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6006 else
6007 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6008 }
6009 }
6010
6011 netdev->features = features;
6012
6013 if (netif_running(netdev))
6014 e1000e_reinit_locked(adapter);
6015 else
6016 e1000e_reset(adapter);
6017
6018 return 0;
6019 }
6020
6021 static const struct net_device_ops e1000e_netdev_ops = {
6022 .ndo_open = e1000_open,
6023 .ndo_stop = e1000_close,
6024 .ndo_start_xmit = e1000_xmit_frame,
6025 .ndo_get_stats64 = e1000e_get_stats64,
6026 .ndo_set_rx_mode = e1000e_set_rx_mode,
6027 .ndo_set_mac_address = e1000_set_mac,
6028 .ndo_change_mtu = e1000_change_mtu,
6029 .ndo_do_ioctl = e1000_ioctl,
6030 .ndo_tx_timeout = e1000_tx_timeout,
6031 .ndo_validate_addr = eth_validate_addr,
6032
6033 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
6034 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
6035 #ifdef CONFIG_NET_POLL_CONTROLLER
6036 .ndo_poll_controller = e1000_netpoll,
6037 #endif
6038 .ndo_set_features = e1000_set_features,
6039 };
6040
6041 /**
6042 * e1000_probe - Device Initialization Routine
6043 * @pdev: PCI device information struct
6044 * @ent: entry in e1000_pci_tbl
6045 *
6046 * Returns 0 on success, negative on failure
6047 *
6048 * e1000_probe initializes an adapter identified by a pci_dev structure.
6049 * The OS initialization, configuring of the adapter private structure,
6050 * and a hardware reset occur.
6051 **/
6052 static int __devinit e1000_probe(struct pci_dev *pdev,
6053 const struct pci_device_id *ent)
6054 {
6055 struct net_device *netdev;
6056 struct e1000_adapter *adapter;
6057 struct e1000_hw *hw;
6058 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6059 resource_size_t mmio_start, mmio_len;
6060 resource_size_t flash_start, flash_len;
6061 static int cards_found;
6062 u16 aspm_disable_flag = 0;
6063 int i, err, pci_using_dac;
6064 u16 eeprom_data = 0;
6065 u16 eeprom_apme_mask = E1000_EEPROM_APME;
6066
6067 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6068 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6069 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6070 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6071 if (aspm_disable_flag)
6072 e1000e_disable_aspm(pdev, aspm_disable_flag);
6073
6074 err = pci_enable_device_mem(pdev);
6075 if (err)
6076 return err;
6077
6078 pci_using_dac = 0;
6079 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6080 if (!err) {
6081 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6082 if (!err)
6083 pci_using_dac = 1;
6084 } else {
6085 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6086 if (err) {
6087 err = dma_set_coherent_mask(&pdev->dev,
6088 DMA_BIT_MASK(32));
6089 if (err) {
6090 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6091 goto err_dma;
6092 }
6093 }
6094 }
6095
6096 err = pci_request_selected_regions_exclusive(pdev,
6097 pci_select_bars(pdev, IORESOURCE_MEM),
6098 e1000e_driver_name);
6099 if (err)
6100 goto err_pci_reg;
6101
6102 /* AER (Advanced Error Reporting) hooks */
6103 pci_enable_pcie_error_reporting(pdev);
6104
6105 pci_set_master(pdev);
6106 /* PCI config space info */
6107 err = pci_save_state(pdev);
6108 if (err)
6109 goto err_alloc_etherdev;
6110
6111 err = -ENOMEM;
6112 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6113 if (!netdev)
6114 goto err_alloc_etherdev;
6115
6116 SET_NETDEV_DEV(netdev, &pdev->dev);
6117
6118 netdev->irq = pdev->irq;
6119
6120 pci_set_drvdata(pdev, netdev);
6121 adapter = netdev_priv(netdev);
6122 hw = &adapter->hw;
6123 adapter->netdev = netdev;
6124 adapter->pdev = pdev;
6125 adapter->ei = ei;
6126 adapter->pba = ei->pba;
6127 adapter->flags = ei->flags;
6128 adapter->flags2 = ei->flags2;
6129 adapter->hw.adapter = adapter;
6130 adapter->hw.mac.type = ei->mac;
6131 adapter->max_hw_frame_size = ei->max_hw_frame_size;
6132 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6133
6134 mmio_start = pci_resource_start(pdev, 0);
6135 mmio_len = pci_resource_len(pdev, 0);
6136
6137 err = -EIO;
6138 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6139 if (!adapter->hw.hw_addr)
6140 goto err_ioremap;
6141
6142 if ((adapter->flags & FLAG_HAS_FLASH) &&
6143 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6144 flash_start = pci_resource_start(pdev, 1);
6145 flash_len = pci_resource_len(pdev, 1);
6146 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6147 if (!adapter->hw.flash_address)
6148 goto err_flashmap;
6149 }
6150
6151 /* construct the net_device struct */
6152 netdev->netdev_ops = &e1000e_netdev_ops;
6153 e1000e_set_ethtool_ops(netdev);
6154 netdev->watchdog_timeo = 5 * HZ;
6155 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6156 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6157
6158 netdev->mem_start = mmio_start;
6159 netdev->mem_end = mmio_start + mmio_len;
6160
6161 adapter->bd_number = cards_found++;
6162
6163 e1000e_check_options(adapter);
6164
6165 /* setup adapter struct */
6166 err = e1000_sw_init(adapter);
6167 if (err)
6168 goto err_sw_init;
6169
6170 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6171 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6172 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6173
6174 err = ei->get_variants(adapter);
6175 if (err)
6176 goto err_hw_init;
6177
6178 if ((adapter->flags & FLAG_IS_ICH) &&
6179 (adapter->flags & FLAG_READ_ONLY_NVM))
6180 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6181
6182 hw->mac.ops.get_bus_info(&adapter->hw);
6183
6184 adapter->hw.phy.autoneg_wait_to_complete = 0;
6185
6186 /* Copper options */
6187 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6188 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6189 adapter->hw.phy.disable_polarity_correction = 0;
6190 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6191 }
6192
6193 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6194 e_info("PHY reset is blocked due to SOL/IDER session.\n");
6195
6196 /* Set initial default active device features */
6197 netdev->features = (NETIF_F_SG |
6198 NETIF_F_HW_VLAN_RX |
6199 NETIF_F_HW_VLAN_TX |
6200 NETIF_F_TSO |
6201 NETIF_F_TSO6 |
6202 NETIF_F_RXHASH |
6203 NETIF_F_RXCSUM |
6204 NETIF_F_HW_CSUM);
6205
6206 /* Set user-changeable features (subset of all device features) */
6207 netdev->hw_features = netdev->features;
6208 netdev->hw_features |= NETIF_F_RXFCS;
6209 netdev->priv_flags |= IFF_SUPP_NOFCS;
6210 netdev->hw_features |= NETIF_F_RXALL;
6211
6212 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6213 netdev->features |= NETIF_F_HW_VLAN_FILTER;
6214
6215 netdev->vlan_features |= (NETIF_F_SG |
6216 NETIF_F_TSO |
6217 NETIF_F_TSO6 |
6218 NETIF_F_HW_CSUM);
6219
6220 netdev->priv_flags |= IFF_UNICAST_FLT;
6221
6222 if (pci_using_dac) {
6223 netdev->features |= NETIF_F_HIGHDMA;
6224 netdev->vlan_features |= NETIF_F_HIGHDMA;
6225 }
6226
6227 if (e1000e_enable_mng_pass_thru(&adapter->hw))
6228 adapter->flags |= FLAG_MNG_PT_ENABLED;
6229
6230 /*
6231 * before reading the NVM, reset the controller to
6232 * put the device in a known good starting state
6233 */
6234 adapter->hw.mac.ops.reset_hw(&adapter->hw);
6235
6236 /*
6237 * systems with ASPM and others may see the checksum fail on the first
6238 * attempt. Let's give it a few tries
6239 */
6240 for (i = 0;; i++) {
6241 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6242 break;
6243 if (i == 2) {
6244 e_err("The NVM Checksum Is Not Valid\n");
6245 err = -EIO;
6246 goto err_eeprom;
6247 }
6248 }
6249
6250 e1000_eeprom_checks(adapter);
6251
6252 /* copy the MAC address */
6253 if (e1000e_read_mac_addr(&adapter->hw))
6254 e_err("NVM Read Error while reading MAC address\n");
6255
6256 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6257 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6258
6259 if (!is_valid_ether_addr(netdev->perm_addr)) {
6260 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6261 err = -EIO;
6262 goto err_eeprom;
6263 }
6264
6265 init_timer(&adapter->watchdog_timer);
6266 adapter->watchdog_timer.function = e1000_watchdog;
6267 adapter->watchdog_timer.data = (unsigned long) adapter;
6268
6269 init_timer(&adapter->phy_info_timer);
6270 adapter->phy_info_timer.function = e1000_update_phy_info;
6271 adapter->phy_info_timer.data = (unsigned long) adapter;
6272
6273 INIT_WORK(&adapter->reset_task, e1000_reset_task);
6274 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6275 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6276 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6277 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6278
6279 /* Initialize link parameters. User can change them with ethtool */
6280 adapter->hw.mac.autoneg = 1;
6281 adapter->fc_autoneg = true;
6282 adapter->hw.fc.requested_mode = e1000_fc_default;
6283 adapter->hw.fc.current_mode = e1000_fc_default;
6284 adapter->hw.phy.autoneg_advertised = 0x2f;
6285
6286 /* ring size defaults */
6287 adapter->rx_ring->count = 256;
6288 adapter->tx_ring->count = 256;
6289
6290 /*
6291 * Initial Wake on LAN setting - If APM wake is enabled in
6292 * the EEPROM, enable the ACPI Magic Packet filter
6293 */
6294 if (adapter->flags & FLAG_APME_IN_WUC) {
6295 /* APME bit in EEPROM is mapped to WUC.APME */
6296 eeprom_data = er32(WUC);
6297 eeprom_apme_mask = E1000_WUC_APME;
6298 if ((hw->mac.type > e1000_ich10lan) &&
6299 (eeprom_data & E1000_WUC_PHY_WAKE))
6300 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6301 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6302 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6303 (adapter->hw.bus.func == 1))
6304 e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6305 1, &eeprom_data);
6306 else
6307 e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6308 1, &eeprom_data);
6309 }
6310
6311 /* fetch WoL from EEPROM */
6312 if (eeprom_data & eeprom_apme_mask)
6313 adapter->eeprom_wol |= E1000_WUFC_MAG;
6314
6315 /*
6316 * now that we have the eeprom settings, apply the special cases
6317 * where the eeprom may be wrong or the board simply won't support
6318 * wake on lan on a particular port
6319 */
6320 if (!(adapter->flags & FLAG_HAS_WOL))
6321 adapter->eeprom_wol = 0;
6322
6323 /* initialize the wol settings based on the eeprom settings */
6324 adapter->wol = adapter->eeprom_wol;
6325 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6326
6327 /* save off EEPROM version number */
6328 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6329
6330 /* reset the hardware with the new settings */
6331 e1000e_reset(adapter);
6332
6333 /*
6334 * If the controller has AMT, do not set DRV_LOAD until the interface
6335 * is up. For all other cases, let the f/w know that the h/w is now
6336 * under the control of the driver.
6337 */
6338 if (!(adapter->flags & FLAG_HAS_AMT))
6339 e1000e_get_hw_control(adapter);
6340
6341 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6342 err = register_netdev(netdev);
6343 if (err)
6344 goto err_register;
6345
6346 /* carrier off reporting is important to ethtool even BEFORE open */
6347 netif_carrier_off(netdev);
6348
6349 e1000_print_device_info(adapter);
6350
6351 if (pci_dev_run_wake(pdev))
6352 pm_runtime_put_noidle(&pdev->dev);
6353
6354 return 0;
6355
6356 err_register:
6357 if (!(adapter->flags & FLAG_HAS_AMT))
6358 e1000e_release_hw_control(adapter);
6359 err_eeprom:
6360 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6361 e1000_phy_hw_reset(&adapter->hw);
6362 err_hw_init:
6363 kfree(adapter->tx_ring);
6364 kfree(adapter->rx_ring);
6365 err_sw_init:
6366 if (adapter->hw.flash_address)
6367 iounmap(adapter->hw.flash_address);
6368 e1000e_reset_interrupt_capability(adapter);
6369 err_flashmap:
6370 iounmap(adapter->hw.hw_addr);
6371 err_ioremap:
6372 free_netdev(netdev);
6373 err_alloc_etherdev:
6374 pci_release_selected_regions(pdev,
6375 pci_select_bars(pdev, IORESOURCE_MEM));
6376 err_pci_reg:
6377 err_dma:
6378 pci_disable_device(pdev);
6379 return err;
6380 }
6381
6382 /**
6383 * e1000_remove - Device Removal Routine
6384 * @pdev: PCI device information struct
6385 *
6386 * e1000_remove is called by the PCI subsystem to alert the driver
6387 * that it should release a PCI device. The could be caused by a
6388 * Hot-Plug event, or because the driver is going to be removed from
6389 * memory.
6390 **/
6391 static void __devexit e1000_remove(struct pci_dev *pdev)
6392 {
6393 struct net_device *netdev = pci_get_drvdata(pdev);
6394 struct e1000_adapter *adapter = netdev_priv(netdev);
6395 bool down = test_bit(__E1000_DOWN, &adapter->state);
6396
6397 /*
6398 * The timers may be rescheduled, so explicitly disable them
6399 * from being rescheduled.
6400 */
6401 if (!down)
6402 set_bit(__E1000_DOWN, &adapter->state);
6403 del_timer_sync(&adapter->watchdog_timer);
6404 del_timer_sync(&adapter->phy_info_timer);
6405
6406 cancel_work_sync(&adapter->reset_task);
6407 cancel_work_sync(&adapter->watchdog_task);
6408 cancel_work_sync(&adapter->downshift_task);
6409 cancel_work_sync(&adapter->update_phy_task);
6410 cancel_work_sync(&adapter->print_hang_task);
6411
6412 if (!(netdev->flags & IFF_UP))
6413 e1000_power_down_phy(adapter);
6414
6415 /* Don't lie to e1000_close() down the road. */
6416 if (!down)
6417 clear_bit(__E1000_DOWN, &adapter->state);
6418 unregister_netdev(netdev);
6419
6420 if (pci_dev_run_wake(pdev))
6421 pm_runtime_get_noresume(&pdev->dev);
6422
6423 /*
6424 * Release control of h/w to f/w. If f/w is AMT enabled, this
6425 * would have already happened in close and is redundant.
6426 */
6427 e1000e_release_hw_control(adapter);
6428
6429 e1000e_reset_interrupt_capability(adapter);
6430 kfree(adapter->tx_ring);
6431 kfree(adapter->rx_ring);
6432
6433 iounmap(adapter->hw.hw_addr);
6434 if (adapter->hw.flash_address)
6435 iounmap(adapter->hw.flash_address);
6436 pci_release_selected_regions(pdev,
6437 pci_select_bars(pdev, IORESOURCE_MEM));
6438
6439 free_netdev(netdev);
6440
6441 /* AER disable */
6442 pci_disable_pcie_error_reporting(pdev);
6443
6444 pci_disable_device(pdev);
6445 }
6446
6447 /* PCI Error Recovery (ERS) */
6448 static struct pci_error_handlers e1000_err_handler = {
6449 .error_detected = e1000_io_error_detected,
6450 .slot_reset = e1000_io_slot_reset,
6451 .resume = e1000_io_resume,
6452 };
6453
6454 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6455 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6456 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6457 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6458 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6459 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6460 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6461 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6462 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6463 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6464
6465 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6466 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6467 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6468 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6469
6470 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6471 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6472 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6473
6474 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6475 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6476 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6477
6478 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6479 board_80003es2lan },
6480 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6481 board_80003es2lan },
6482 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6483 board_80003es2lan },
6484 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6485 board_80003es2lan },
6486
6487 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6488 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6489 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6490 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6491 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6492 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6493 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6494 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6495
6496 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6497 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6498 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6499 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6500 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6501 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6502 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6503 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6504 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6505
6506 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6507 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6508 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6509
6510 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6511 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6512 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6513
6514 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6515 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6516 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6517 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6518
6519 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6520 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6521
6522 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6523 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
6524
6525 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
6526 };
6527 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6528
6529 #ifdef CONFIG_PM
6530 static const struct dev_pm_ops e1000_pm_ops = {
6531 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6532 SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6533 e1000_runtime_resume, e1000_idle)
6534 };
6535 #endif
6536
6537 /* PCI Device API Driver */
6538 static struct pci_driver e1000_driver = {
6539 .name = e1000e_driver_name,
6540 .id_table = e1000_pci_tbl,
6541 .probe = e1000_probe,
6542 .remove = __devexit_p(e1000_remove),
6543 #ifdef CONFIG_PM
6544 .driver = {
6545 .pm = &e1000_pm_ops,
6546 },
6547 #endif
6548 .shutdown = e1000_shutdown,
6549 .err_handler = &e1000_err_handler
6550 };
6551
6552 /**
6553 * e1000_init_module - Driver Registration Routine
6554 *
6555 * e1000_init_module is the first routine called when the driver is
6556 * loaded. All it does is register with the PCI subsystem.
6557 **/
6558 static int __init e1000_init_module(void)
6559 {
6560 int ret;
6561 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6562 e1000e_driver_version);
6563 pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6564 ret = pci_register_driver(&e1000_driver);
6565
6566 return ret;
6567 }
6568 module_init(e1000_init_module);
6569
6570 /**
6571 * e1000_exit_module - Driver Exit Cleanup Routine
6572 *
6573 * e1000_exit_module is called just before the driver is removed
6574 * from memory.
6575 **/
6576 static void __exit e1000_exit_module(void)
6577 {
6578 pci_unregister_driver(&e1000_driver);
6579 }
6580 module_exit(e1000_exit_module);
6581
6582
6583 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6584 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6585 MODULE_LICENSE("GPL");
6586 MODULE_VERSION(DRV_VERSION);
6587
6588 /* netdev.c */
This page took 0.18666 seconds and 5 git commands to generate.