e1000e: Do not allow CRC stripping to be disabled on 82579 w/ jumbo frames
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61 [board_82571] = &e1000_82571_info,
62 [board_82572] = &e1000_82572_info,
63 [board_82573] = &e1000_82573_info,
64 [board_82574] = &e1000_82574_info,
65 [board_82583] = &e1000_82583_info,
66 [board_80003es2lan] = &e1000_es2_info,
67 [board_ich8lan] = &e1000_ich8_info,
68 [board_ich9lan] = &e1000_ich9_info,
69 [board_ich10lan] = &e1000_ich10_info,
70 [board_pchlan] = &e1000_pch_info,
71 [board_pch2lan] = &e1000_pch2_info,
72 [board_pch_lpt] = &e1000_pch_lpt_info,
73 [board_pch_spt] = &e1000_pch_spt_info,
74 };
75
76 struct e1000_reg_info {
77 u32 ofs;
78 char *name;
79 };
80
81 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
82 /* General Registers */
83 {E1000_CTRL, "CTRL"},
84 {E1000_STATUS, "STATUS"},
85 {E1000_CTRL_EXT, "CTRL_EXT"},
86
87 /* Interrupt Registers */
88 {E1000_ICR, "ICR"},
89
90 /* Rx Registers */
91 {E1000_RCTL, "RCTL"},
92 {E1000_RDLEN(0), "RDLEN"},
93 {E1000_RDH(0), "RDH"},
94 {E1000_RDT(0), "RDT"},
95 {E1000_RDTR, "RDTR"},
96 {E1000_RXDCTL(0), "RXDCTL"},
97 {E1000_ERT, "ERT"},
98 {E1000_RDBAL(0), "RDBAL"},
99 {E1000_RDBAH(0), "RDBAH"},
100 {E1000_RDFH, "RDFH"},
101 {E1000_RDFT, "RDFT"},
102 {E1000_RDFHS, "RDFHS"},
103 {E1000_RDFTS, "RDFTS"},
104 {E1000_RDFPC, "RDFPC"},
105
106 /* Tx Registers */
107 {E1000_TCTL, "TCTL"},
108 {E1000_TDBAL(0), "TDBAL"},
109 {E1000_TDBAH(0), "TDBAH"},
110 {E1000_TDLEN(0), "TDLEN"},
111 {E1000_TDH(0), "TDH"},
112 {E1000_TDT(0), "TDT"},
113 {E1000_TIDV, "TIDV"},
114 {E1000_TXDCTL(0), "TXDCTL"},
115 {E1000_TADV, "TADV"},
116 {E1000_TARC(0), "TARC"},
117 {E1000_TDFH, "TDFH"},
118 {E1000_TDFT, "TDFT"},
119 {E1000_TDFHS, "TDFHS"},
120 {E1000_TDFTS, "TDFTS"},
121 {E1000_TDFPC, "TDFPC"},
122
123 /* List Terminator */
124 {0, NULL}
125 };
126
127 /**
128 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
129 * @hw: pointer to the HW structure
130 *
131 * When updating the MAC CSR registers, the Manageability Engine (ME) could
132 * be accessing the registers at the same time. Normally, this is handled in
133 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
134 * accesses later than it should which could result in the register to have
135 * an incorrect value. Workaround this by checking the FWSM register which
136 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
137 * and try again a number of times.
138 **/
139 s32 __ew32_prepare(struct e1000_hw *hw)
140 {
141 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
142
143 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
144 udelay(50);
145
146 return i;
147 }
148
149 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
150 {
151 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
152 __ew32_prepare(hw);
153
154 writel(val, hw->hw_addr + reg);
155 }
156
157 /**
158 * e1000_regdump - register printout routine
159 * @hw: pointer to the HW structure
160 * @reginfo: pointer to the register info table
161 **/
162 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
163 {
164 int n = 0;
165 char rname[16];
166 u32 regs[8];
167
168 switch (reginfo->ofs) {
169 case E1000_RXDCTL(0):
170 for (n = 0; n < 2; n++)
171 regs[n] = __er32(hw, E1000_RXDCTL(n));
172 break;
173 case E1000_TXDCTL(0):
174 for (n = 0; n < 2; n++)
175 regs[n] = __er32(hw, E1000_TXDCTL(n));
176 break;
177 case E1000_TARC(0):
178 for (n = 0; n < 2; n++)
179 regs[n] = __er32(hw, E1000_TARC(n));
180 break;
181 default:
182 pr_info("%-15s %08x\n",
183 reginfo->name, __er32(hw, reginfo->ofs));
184 return;
185 }
186
187 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
188 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
189 }
190
191 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
192 struct e1000_buffer *bi)
193 {
194 int i;
195 struct e1000_ps_page *ps_page;
196
197 for (i = 0; i < adapter->rx_ps_pages; i++) {
198 ps_page = &bi->ps_pages[i];
199
200 if (ps_page->page) {
201 pr_info("packet dump for ps_page %d:\n", i);
202 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
203 16, 1, page_address(ps_page->page),
204 PAGE_SIZE, true);
205 }
206 }
207 }
208
209 /**
210 * e1000e_dump - Print registers, Tx-ring and Rx-ring
211 * @adapter: board private structure
212 **/
213 static void e1000e_dump(struct e1000_adapter *adapter)
214 {
215 struct net_device *netdev = adapter->netdev;
216 struct e1000_hw *hw = &adapter->hw;
217 struct e1000_reg_info *reginfo;
218 struct e1000_ring *tx_ring = adapter->tx_ring;
219 struct e1000_tx_desc *tx_desc;
220 struct my_u0 {
221 __le64 a;
222 __le64 b;
223 } *u0;
224 struct e1000_buffer *buffer_info;
225 struct e1000_ring *rx_ring = adapter->rx_ring;
226 union e1000_rx_desc_packet_split *rx_desc_ps;
227 union e1000_rx_desc_extended *rx_desc;
228 struct my_u1 {
229 __le64 a;
230 __le64 b;
231 __le64 c;
232 __le64 d;
233 } *u1;
234 u32 staterr;
235 int i = 0;
236
237 if (!netif_msg_hw(adapter))
238 return;
239
240 /* Print netdevice Info */
241 if (netdev) {
242 dev_info(&adapter->pdev->dev, "Net device Info\n");
243 pr_info("Device Name state trans_start last_rx\n");
244 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
245 netdev->state, netdev->trans_start, netdev->last_rx);
246 }
247
248 /* Print Registers */
249 dev_info(&adapter->pdev->dev, "Register Dump\n");
250 pr_info(" Register Name Value\n");
251 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
252 reginfo->name; reginfo++) {
253 e1000_regdump(hw, reginfo);
254 }
255
256 /* Print Tx Ring Summary */
257 if (!netdev || !netif_running(netdev))
258 return;
259
260 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
261 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
262 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
263 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
264 0, tx_ring->next_to_use, tx_ring->next_to_clean,
265 (unsigned long long)buffer_info->dma,
266 buffer_info->length,
267 buffer_info->next_to_watch,
268 (unsigned long long)buffer_info->time_stamp);
269
270 /* Print Tx Ring */
271 if (!netif_msg_tx_done(adapter))
272 goto rx_ring_summary;
273
274 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
275
276 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
277 *
278 * Legacy Transmit Descriptor
279 * +--------------------------------------------------------------+
280 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
281 * +--------------------------------------------------------------+
282 * 8 | Special | CSS | Status | CMD | CSO | Length |
283 * +--------------------------------------------------------------+
284 * 63 48 47 36 35 32 31 24 23 16 15 0
285 *
286 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
287 * 63 48 47 40 39 32 31 16 15 8 7 0
288 * +----------------------------------------------------------------+
289 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
290 * +----------------------------------------------------------------+
291 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
292 * +----------------------------------------------------------------+
293 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
294 *
295 * Extended Data Descriptor (DTYP=0x1)
296 * +----------------------------------------------------------------+
297 * 0 | Buffer Address [63:0] |
298 * +----------------------------------------------------------------+
299 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
300 * +----------------------------------------------------------------+
301 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
302 */
303 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
304 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
305 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
306 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
307 const char *next_desc;
308 tx_desc = E1000_TX_DESC(*tx_ring, i);
309 buffer_info = &tx_ring->buffer_info[i];
310 u0 = (struct my_u0 *)tx_desc;
311 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
312 next_desc = " NTC/U";
313 else if (i == tx_ring->next_to_use)
314 next_desc = " NTU";
315 else if (i == tx_ring->next_to_clean)
316 next_desc = " NTC";
317 else
318 next_desc = "";
319 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
320 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
321 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
322 i,
323 (unsigned long long)le64_to_cpu(u0->a),
324 (unsigned long long)le64_to_cpu(u0->b),
325 (unsigned long long)buffer_info->dma,
326 buffer_info->length, buffer_info->next_to_watch,
327 (unsigned long long)buffer_info->time_stamp,
328 buffer_info->skb, next_desc);
329
330 if (netif_msg_pktdata(adapter) && buffer_info->skb)
331 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
332 16, 1, buffer_info->skb->data,
333 buffer_info->skb->len, true);
334 }
335
336 /* Print Rx Ring Summary */
337 rx_ring_summary:
338 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
339 pr_info("Queue [NTU] [NTC]\n");
340 pr_info(" %5d %5X %5X\n",
341 0, rx_ring->next_to_use, rx_ring->next_to_clean);
342
343 /* Print Rx Ring */
344 if (!netif_msg_rx_status(adapter))
345 return;
346
347 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
348 switch (adapter->rx_ps_pages) {
349 case 1:
350 case 2:
351 case 3:
352 /* [Extended] Packet Split Receive Descriptor Format
353 *
354 * +-----------------------------------------------------+
355 * 0 | Buffer Address 0 [63:0] |
356 * +-----------------------------------------------------+
357 * 8 | Buffer Address 1 [63:0] |
358 * +-----------------------------------------------------+
359 * 16 | Buffer Address 2 [63:0] |
360 * +-----------------------------------------------------+
361 * 24 | Buffer Address 3 [63:0] |
362 * +-----------------------------------------------------+
363 */
364 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
365 /* [Extended] Receive Descriptor (Write-Back) Format
366 *
367 * 63 48 47 32 31 13 12 8 7 4 3 0
368 * +------------------------------------------------------+
369 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
370 * | Checksum | Ident | | Queue | | Type |
371 * +------------------------------------------------------+
372 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
373 * +------------------------------------------------------+
374 * 63 48 47 32 31 20 19 0
375 */
376 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
377 for (i = 0; i < rx_ring->count; i++) {
378 const char *next_desc;
379 buffer_info = &rx_ring->buffer_info[i];
380 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
381 u1 = (struct my_u1 *)rx_desc_ps;
382 staterr =
383 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
384
385 if (i == rx_ring->next_to_use)
386 next_desc = " NTU";
387 else if (i == rx_ring->next_to_clean)
388 next_desc = " NTC";
389 else
390 next_desc = "";
391
392 if (staterr & E1000_RXD_STAT_DD) {
393 /* Descriptor Done */
394 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
395 "RWB", i,
396 (unsigned long long)le64_to_cpu(u1->a),
397 (unsigned long long)le64_to_cpu(u1->b),
398 (unsigned long long)le64_to_cpu(u1->c),
399 (unsigned long long)le64_to_cpu(u1->d),
400 buffer_info->skb, next_desc);
401 } else {
402 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
403 "R ", i,
404 (unsigned long long)le64_to_cpu(u1->a),
405 (unsigned long long)le64_to_cpu(u1->b),
406 (unsigned long long)le64_to_cpu(u1->c),
407 (unsigned long long)le64_to_cpu(u1->d),
408 (unsigned long long)buffer_info->dma,
409 buffer_info->skb, next_desc);
410
411 if (netif_msg_pktdata(adapter))
412 e1000e_dump_ps_pages(adapter,
413 buffer_info);
414 }
415 }
416 break;
417 default:
418 case 0:
419 /* Extended Receive Descriptor (Read) Format
420 *
421 * +-----------------------------------------------------+
422 * 0 | Buffer Address [63:0] |
423 * +-----------------------------------------------------+
424 * 8 | Reserved |
425 * +-----------------------------------------------------+
426 */
427 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
428 /* Extended Receive Descriptor (Write-Back) Format
429 *
430 * 63 48 47 32 31 24 23 4 3 0
431 * +------------------------------------------------------+
432 * | RSS Hash | | | |
433 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
434 * | Packet | IP | | | Type |
435 * | Checksum | Ident | | | |
436 * +------------------------------------------------------+
437 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
438 * +------------------------------------------------------+
439 * 63 48 47 32 31 20 19 0
440 */
441 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
442
443 for (i = 0; i < rx_ring->count; i++) {
444 const char *next_desc;
445
446 buffer_info = &rx_ring->buffer_info[i];
447 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
448 u1 = (struct my_u1 *)rx_desc;
449 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
450
451 if (i == rx_ring->next_to_use)
452 next_desc = " NTU";
453 else if (i == rx_ring->next_to_clean)
454 next_desc = " NTC";
455 else
456 next_desc = "";
457
458 if (staterr & E1000_RXD_STAT_DD) {
459 /* Descriptor Done */
460 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
461 "RWB", i,
462 (unsigned long long)le64_to_cpu(u1->a),
463 (unsigned long long)le64_to_cpu(u1->b),
464 buffer_info->skb, next_desc);
465 } else {
466 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
467 "R ", i,
468 (unsigned long long)le64_to_cpu(u1->a),
469 (unsigned long long)le64_to_cpu(u1->b),
470 (unsigned long long)buffer_info->dma,
471 buffer_info->skb, next_desc);
472
473 if (netif_msg_pktdata(adapter) &&
474 buffer_info->skb)
475 print_hex_dump(KERN_INFO, "",
476 DUMP_PREFIX_ADDRESS, 16,
477 1,
478 buffer_info->skb->data,
479 adapter->rx_buffer_len,
480 true);
481 }
482 }
483 }
484 }
485
486 /**
487 * e1000_desc_unused - calculate if we have unused descriptors
488 **/
489 static int e1000_desc_unused(struct e1000_ring *ring)
490 {
491 if (ring->next_to_clean > ring->next_to_use)
492 return ring->next_to_clean - ring->next_to_use - 1;
493
494 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
495 }
496
497 /**
498 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
499 * @adapter: board private structure
500 * @hwtstamps: time stamp structure to update
501 * @systim: unsigned 64bit system time value.
502 *
503 * Convert the system time value stored in the RX/TXSTMP registers into a
504 * hwtstamp which can be used by the upper level time stamping functions.
505 *
506 * The 'systim_lock' spinlock is used to protect the consistency of the
507 * system time value. This is needed because reading the 64 bit time
508 * value involves reading two 32 bit registers. The first read latches the
509 * value.
510 **/
511 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
512 struct skb_shared_hwtstamps *hwtstamps,
513 u64 systim)
514 {
515 u64 ns;
516 unsigned long flags;
517
518 spin_lock_irqsave(&adapter->systim_lock, flags);
519 ns = timecounter_cyc2time(&adapter->tc, systim);
520 spin_unlock_irqrestore(&adapter->systim_lock, flags);
521
522 memset(hwtstamps, 0, sizeof(*hwtstamps));
523 hwtstamps->hwtstamp = ns_to_ktime(ns);
524 }
525
526 /**
527 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
528 * @adapter: board private structure
529 * @status: descriptor extended error and status field
530 * @skb: particular skb to include time stamp
531 *
532 * If the time stamp is valid, convert it into the timecounter ns value
533 * and store that result into the shhwtstamps structure which is passed
534 * up the network stack.
535 **/
536 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
537 struct sk_buff *skb)
538 {
539 struct e1000_hw *hw = &adapter->hw;
540 u64 rxstmp;
541
542 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
543 !(status & E1000_RXDEXT_STATERR_TST) ||
544 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
545 return;
546
547 /* The Rx time stamp registers contain the time stamp. No other
548 * received packet will be time stamped until the Rx time stamp
549 * registers are read. Because only one packet can be time stamped
550 * at a time, the register values must belong to this packet and
551 * therefore none of the other additional attributes need to be
552 * compared.
553 */
554 rxstmp = (u64)er32(RXSTMPL);
555 rxstmp |= (u64)er32(RXSTMPH) << 32;
556 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
557
558 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
559 }
560
561 /**
562 * e1000_receive_skb - helper function to handle Rx indications
563 * @adapter: board private structure
564 * @staterr: descriptor extended error and status field as written by hardware
565 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
566 * @skb: pointer to sk_buff to be indicated to stack
567 **/
568 static void e1000_receive_skb(struct e1000_adapter *adapter,
569 struct net_device *netdev, struct sk_buff *skb,
570 u32 staterr, __le16 vlan)
571 {
572 u16 tag = le16_to_cpu(vlan);
573
574 e1000e_rx_hwtstamp(adapter, staterr, skb);
575
576 skb->protocol = eth_type_trans(skb, netdev);
577
578 if (staterr & E1000_RXD_STAT_VP)
579 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
580
581 napi_gro_receive(&adapter->napi, skb);
582 }
583
584 /**
585 * e1000_rx_checksum - Receive Checksum Offload
586 * @adapter: board private structure
587 * @status_err: receive descriptor status and error fields
588 * @csum: receive descriptor csum field
589 * @sk_buff: socket buffer with received data
590 **/
591 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
592 struct sk_buff *skb)
593 {
594 u16 status = (u16)status_err;
595 u8 errors = (u8)(status_err >> 24);
596
597 skb_checksum_none_assert(skb);
598
599 /* Rx checksum disabled */
600 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
601 return;
602
603 /* Ignore Checksum bit is set */
604 if (status & E1000_RXD_STAT_IXSM)
605 return;
606
607 /* TCP/UDP checksum error bit or IP checksum error bit is set */
608 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
609 /* let the stack verify checksum errors */
610 adapter->hw_csum_err++;
611 return;
612 }
613
614 /* TCP/UDP Checksum has not been calculated */
615 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
616 return;
617
618 /* It must be a TCP or UDP packet with a valid checksum */
619 skb->ip_summed = CHECKSUM_UNNECESSARY;
620 adapter->hw_csum_good++;
621 }
622
623 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
624 {
625 struct e1000_adapter *adapter = rx_ring->adapter;
626 struct e1000_hw *hw = &adapter->hw;
627 s32 ret_val = __ew32_prepare(hw);
628
629 writel(i, rx_ring->tail);
630
631 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
632 u32 rctl = er32(RCTL);
633
634 ew32(RCTL, rctl & ~E1000_RCTL_EN);
635 e_err("ME firmware caused invalid RDT - resetting\n");
636 schedule_work(&adapter->reset_task);
637 }
638 }
639
640 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
641 {
642 struct e1000_adapter *adapter = tx_ring->adapter;
643 struct e1000_hw *hw = &adapter->hw;
644 s32 ret_val = __ew32_prepare(hw);
645
646 writel(i, tx_ring->tail);
647
648 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
649 u32 tctl = er32(TCTL);
650
651 ew32(TCTL, tctl & ~E1000_TCTL_EN);
652 e_err("ME firmware caused invalid TDT - resetting\n");
653 schedule_work(&adapter->reset_task);
654 }
655 }
656
657 /**
658 * e1000_alloc_rx_buffers - Replace used receive buffers
659 * @rx_ring: Rx descriptor ring
660 **/
661 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
662 int cleaned_count, gfp_t gfp)
663 {
664 struct e1000_adapter *adapter = rx_ring->adapter;
665 struct net_device *netdev = adapter->netdev;
666 struct pci_dev *pdev = adapter->pdev;
667 union e1000_rx_desc_extended *rx_desc;
668 struct e1000_buffer *buffer_info;
669 struct sk_buff *skb;
670 unsigned int i;
671 unsigned int bufsz = adapter->rx_buffer_len;
672
673 i = rx_ring->next_to_use;
674 buffer_info = &rx_ring->buffer_info[i];
675
676 while (cleaned_count--) {
677 skb = buffer_info->skb;
678 if (skb) {
679 skb_trim(skb, 0);
680 goto map_skb;
681 }
682
683 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
684 if (!skb) {
685 /* Better luck next round */
686 adapter->alloc_rx_buff_failed++;
687 break;
688 }
689
690 buffer_info->skb = skb;
691 map_skb:
692 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
693 adapter->rx_buffer_len,
694 DMA_FROM_DEVICE);
695 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
696 dev_err(&pdev->dev, "Rx DMA map failed\n");
697 adapter->rx_dma_failed++;
698 break;
699 }
700
701 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
702 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
703
704 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
705 /* Force memory writes to complete before letting h/w
706 * know there are new descriptors to fetch. (Only
707 * applicable for weak-ordered memory model archs,
708 * such as IA-64).
709 */
710 wmb();
711 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
712 e1000e_update_rdt_wa(rx_ring, i);
713 else
714 writel(i, rx_ring->tail);
715 }
716 i++;
717 if (i == rx_ring->count)
718 i = 0;
719 buffer_info = &rx_ring->buffer_info[i];
720 }
721
722 rx_ring->next_to_use = i;
723 }
724
725 /**
726 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
727 * @rx_ring: Rx descriptor ring
728 **/
729 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
730 int cleaned_count, gfp_t gfp)
731 {
732 struct e1000_adapter *adapter = rx_ring->adapter;
733 struct net_device *netdev = adapter->netdev;
734 struct pci_dev *pdev = adapter->pdev;
735 union e1000_rx_desc_packet_split *rx_desc;
736 struct e1000_buffer *buffer_info;
737 struct e1000_ps_page *ps_page;
738 struct sk_buff *skb;
739 unsigned int i, j;
740
741 i = rx_ring->next_to_use;
742 buffer_info = &rx_ring->buffer_info[i];
743
744 while (cleaned_count--) {
745 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
746
747 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
748 ps_page = &buffer_info->ps_pages[j];
749 if (j >= adapter->rx_ps_pages) {
750 /* all unused desc entries get hw null ptr */
751 rx_desc->read.buffer_addr[j + 1] =
752 ~cpu_to_le64(0);
753 continue;
754 }
755 if (!ps_page->page) {
756 ps_page->page = alloc_page(gfp);
757 if (!ps_page->page) {
758 adapter->alloc_rx_buff_failed++;
759 goto no_buffers;
760 }
761 ps_page->dma = dma_map_page(&pdev->dev,
762 ps_page->page,
763 0, PAGE_SIZE,
764 DMA_FROM_DEVICE);
765 if (dma_mapping_error(&pdev->dev,
766 ps_page->dma)) {
767 dev_err(&adapter->pdev->dev,
768 "Rx DMA page map failed\n");
769 adapter->rx_dma_failed++;
770 goto no_buffers;
771 }
772 }
773 /* Refresh the desc even if buffer_addrs
774 * didn't change because each write-back
775 * erases this info.
776 */
777 rx_desc->read.buffer_addr[j + 1] =
778 cpu_to_le64(ps_page->dma);
779 }
780
781 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
782 gfp);
783
784 if (!skb) {
785 adapter->alloc_rx_buff_failed++;
786 break;
787 }
788
789 buffer_info->skb = skb;
790 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
791 adapter->rx_ps_bsize0,
792 DMA_FROM_DEVICE);
793 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
794 dev_err(&pdev->dev, "Rx DMA map failed\n");
795 adapter->rx_dma_failed++;
796 /* cleanup skb */
797 dev_kfree_skb_any(skb);
798 buffer_info->skb = NULL;
799 break;
800 }
801
802 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
803
804 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
805 /* Force memory writes to complete before letting h/w
806 * know there are new descriptors to fetch. (Only
807 * applicable for weak-ordered memory model archs,
808 * such as IA-64).
809 */
810 wmb();
811 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
812 e1000e_update_rdt_wa(rx_ring, i << 1);
813 else
814 writel(i << 1, rx_ring->tail);
815 }
816
817 i++;
818 if (i == rx_ring->count)
819 i = 0;
820 buffer_info = &rx_ring->buffer_info[i];
821 }
822
823 no_buffers:
824 rx_ring->next_to_use = i;
825 }
826
827 /**
828 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
829 * @rx_ring: Rx descriptor ring
830 * @cleaned_count: number of buffers to allocate this pass
831 **/
832
833 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
834 int cleaned_count, gfp_t gfp)
835 {
836 struct e1000_adapter *adapter = rx_ring->adapter;
837 struct net_device *netdev = adapter->netdev;
838 struct pci_dev *pdev = adapter->pdev;
839 union e1000_rx_desc_extended *rx_desc;
840 struct e1000_buffer *buffer_info;
841 struct sk_buff *skb;
842 unsigned int i;
843 unsigned int bufsz = 256 - 16; /* for skb_reserve */
844
845 i = rx_ring->next_to_use;
846 buffer_info = &rx_ring->buffer_info[i];
847
848 while (cleaned_count--) {
849 skb = buffer_info->skb;
850 if (skb) {
851 skb_trim(skb, 0);
852 goto check_page;
853 }
854
855 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
856 if (unlikely(!skb)) {
857 /* Better luck next round */
858 adapter->alloc_rx_buff_failed++;
859 break;
860 }
861
862 buffer_info->skb = skb;
863 check_page:
864 /* allocate a new page if necessary */
865 if (!buffer_info->page) {
866 buffer_info->page = alloc_page(gfp);
867 if (unlikely(!buffer_info->page)) {
868 adapter->alloc_rx_buff_failed++;
869 break;
870 }
871 }
872
873 if (!buffer_info->dma) {
874 buffer_info->dma = dma_map_page(&pdev->dev,
875 buffer_info->page, 0,
876 PAGE_SIZE,
877 DMA_FROM_DEVICE);
878 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
879 adapter->alloc_rx_buff_failed++;
880 break;
881 }
882 }
883
884 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
885 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
886
887 if (unlikely(++i == rx_ring->count))
888 i = 0;
889 buffer_info = &rx_ring->buffer_info[i];
890 }
891
892 if (likely(rx_ring->next_to_use != i)) {
893 rx_ring->next_to_use = i;
894 if (unlikely(i-- == 0))
895 i = (rx_ring->count - 1);
896
897 /* Force memory writes to complete before letting h/w
898 * know there are new descriptors to fetch. (Only
899 * applicable for weak-ordered memory model archs,
900 * such as IA-64).
901 */
902 wmb();
903 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
904 e1000e_update_rdt_wa(rx_ring, i);
905 else
906 writel(i, rx_ring->tail);
907 }
908 }
909
910 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
911 struct sk_buff *skb)
912 {
913 if (netdev->features & NETIF_F_RXHASH)
914 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
915 }
916
917 /**
918 * e1000_clean_rx_irq - Send received data up the network stack
919 * @rx_ring: Rx descriptor ring
920 *
921 * the return value indicates whether actual cleaning was done, there
922 * is no guarantee that everything was cleaned
923 **/
924 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
925 int work_to_do)
926 {
927 struct e1000_adapter *adapter = rx_ring->adapter;
928 struct net_device *netdev = adapter->netdev;
929 struct pci_dev *pdev = adapter->pdev;
930 struct e1000_hw *hw = &adapter->hw;
931 union e1000_rx_desc_extended *rx_desc, *next_rxd;
932 struct e1000_buffer *buffer_info, *next_buffer;
933 u32 length, staterr;
934 unsigned int i;
935 int cleaned_count = 0;
936 bool cleaned = false;
937 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
938
939 i = rx_ring->next_to_clean;
940 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
941 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
942 buffer_info = &rx_ring->buffer_info[i];
943
944 while (staterr & E1000_RXD_STAT_DD) {
945 struct sk_buff *skb;
946
947 if (*work_done >= work_to_do)
948 break;
949 (*work_done)++;
950 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
951
952 skb = buffer_info->skb;
953 buffer_info->skb = NULL;
954
955 prefetch(skb->data - NET_IP_ALIGN);
956
957 i++;
958 if (i == rx_ring->count)
959 i = 0;
960 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
961 prefetch(next_rxd);
962
963 next_buffer = &rx_ring->buffer_info[i];
964
965 cleaned = true;
966 cleaned_count++;
967 dma_unmap_single(&pdev->dev, buffer_info->dma,
968 adapter->rx_buffer_len, DMA_FROM_DEVICE);
969 buffer_info->dma = 0;
970
971 length = le16_to_cpu(rx_desc->wb.upper.length);
972
973 /* !EOP means multiple descriptors were used to store a single
974 * packet, if that's the case we need to toss it. In fact, we
975 * need to toss every packet with the EOP bit clear and the
976 * next frame that _does_ have the EOP bit set, as it is by
977 * definition only a frame fragment
978 */
979 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
980 adapter->flags2 |= FLAG2_IS_DISCARDING;
981
982 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
983 /* All receives must fit into a single buffer */
984 e_dbg("Receive packet consumed multiple buffers\n");
985 /* recycle */
986 buffer_info->skb = skb;
987 if (staterr & E1000_RXD_STAT_EOP)
988 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
989 goto next_desc;
990 }
991
992 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
993 !(netdev->features & NETIF_F_RXALL))) {
994 /* recycle */
995 buffer_info->skb = skb;
996 goto next_desc;
997 }
998
999 /* adjust length to remove Ethernet CRC */
1000 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1001 /* If configured to store CRC, don't subtract FCS,
1002 * but keep the FCS bytes out of the total_rx_bytes
1003 * counter
1004 */
1005 if (netdev->features & NETIF_F_RXFCS)
1006 total_rx_bytes -= 4;
1007 else
1008 length -= 4;
1009 }
1010
1011 total_rx_bytes += length;
1012 total_rx_packets++;
1013
1014 /* code added for copybreak, this should improve
1015 * performance for small packets with large amounts
1016 * of reassembly being done in the stack
1017 */
1018 if (length < copybreak) {
1019 struct sk_buff *new_skb =
1020 napi_alloc_skb(&adapter->napi, length);
1021 if (new_skb) {
1022 skb_copy_to_linear_data_offset(new_skb,
1023 -NET_IP_ALIGN,
1024 (skb->data -
1025 NET_IP_ALIGN),
1026 (length +
1027 NET_IP_ALIGN));
1028 /* save the skb in buffer_info as good */
1029 buffer_info->skb = skb;
1030 skb = new_skb;
1031 }
1032 /* else just continue with the old one */
1033 }
1034 /* end copybreak code */
1035 skb_put(skb, length);
1036
1037 /* Receive Checksum Offload */
1038 e1000_rx_checksum(adapter, staterr, skb);
1039
1040 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1041
1042 e1000_receive_skb(adapter, netdev, skb, staterr,
1043 rx_desc->wb.upper.vlan);
1044
1045 next_desc:
1046 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1047
1048 /* return some buffers to hardware, one at a time is too slow */
1049 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1050 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1051 GFP_ATOMIC);
1052 cleaned_count = 0;
1053 }
1054
1055 /* use prefetched values */
1056 rx_desc = next_rxd;
1057 buffer_info = next_buffer;
1058
1059 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1060 }
1061 rx_ring->next_to_clean = i;
1062
1063 cleaned_count = e1000_desc_unused(rx_ring);
1064 if (cleaned_count)
1065 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1066
1067 adapter->total_rx_bytes += total_rx_bytes;
1068 adapter->total_rx_packets += total_rx_packets;
1069 return cleaned;
1070 }
1071
1072 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1073 struct e1000_buffer *buffer_info)
1074 {
1075 struct e1000_adapter *adapter = tx_ring->adapter;
1076
1077 if (buffer_info->dma) {
1078 if (buffer_info->mapped_as_page)
1079 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1080 buffer_info->length, DMA_TO_DEVICE);
1081 else
1082 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1083 buffer_info->length, DMA_TO_DEVICE);
1084 buffer_info->dma = 0;
1085 }
1086 if (buffer_info->skb) {
1087 dev_kfree_skb_any(buffer_info->skb);
1088 buffer_info->skb = NULL;
1089 }
1090 buffer_info->time_stamp = 0;
1091 }
1092
1093 static void e1000_print_hw_hang(struct work_struct *work)
1094 {
1095 struct e1000_adapter *adapter = container_of(work,
1096 struct e1000_adapter,
1097 print_hang_task);
1098 struct net_device *netdev = adapter->netdev;
1099 struct e1000_ring *tx_ring = adapter->tx_ring;
1100 unsigned int i = tx_ring->next_to_clean;
1101 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1102 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103 struct e1000_hw *hw = &adapter->hw;
1104 u16 phy_status, phy_1000t_status, phy_ext_status;
1105 u16 pci_status;
1106
1107 if (test_bit(__E1000_DOWN, &adapter->state))
1108 return;
1109
1110 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1111 /* May be block on write-back, flush and detect again
1112 * flush pending descriptor writebacks to memory
1113 */
1114 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115 /* execute the writes immediately */
1116 e1e_flush();
1117 /* Due to rare timing issues, write to TIDV again to ensure
1118 * the write is successful
1119 */
1120 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1121 /* execute the writes immediately */
1122 e1e_flush();
1123 adapter->tx_hang_recheck = true;
1124 return;
1125 }
1126 adapter->tx_hang_recheck = false;
1127
1128 if (er32(TDH(0)) == er32(TDT(0))) {
1129 e_dbg("false hang detected, ignoring\n");
1130 return;
1131 }
1132
1133 /* Real hang detected */
1134 netif_stop_queue(netdev);
1135
1136 e1e_rphy(hw, MII_BMSR, &phy_status);
1137 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1138 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1139
1140 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1141
1142 /* detected Hardware unit hang */
1143 e_err("Detected Hardware Unit Hang:\n"
1144 " TDH <%x>\n"
1145 " TDT <%x>\n"
1146 " next_to_use <%x>\n"
1147 " next_to_clean <%x>\n"
1148 "buffer_info[next_to_clean]:\n"
1149 " time_stamp <%lx>\n"
1150 " next_to_watch <%x>\n"
1151 " jiffies <%lx>\n"
1152 " next_to_watch.status <%x>\n"
1153 "MAC Status <%x>\n"
1154 "PHY Status <%x>\n"
1155 "PHY 1000BASE-T Status <%x>\n"
1156 "PHY Extended Status <%x>\n"
1157 "PCI Status <%x>\n",
1158 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1159 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1160 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1161 phy_status, phy_1000t_status, phy_ext_status, pci_status);
1162
1163 e1000e_dump(adapter);
1164
1165 /* Suggest workaround for known h/w issue */
1166 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1167 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1168 }
1169
1170 /**
1171 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1172 * @work: pointer to work struct
1173 *
1174 * This work function polls the TSYNCTXCTL valid bit to determine when a
1175 * timestamp has been taken for the current stored skb. The timestamp must
1176 * be for this skb because only one such packet is allowed in the queue.
1177 */
1178 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1179 {
1180 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1181 tx_hwtstamp_work);
1182 struct e1000_hw *hw = &adapter->hw;
1183
1184 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1185 struct skb_shared_hwtstamps shhwtstamps;
1186 u64 txstmp;
1187
1188 txstmp = er32(TXSTMPL);
1189 txstmp |= (u64)er32(TXSTMPH) << 32;
1190
1191 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1192
1193 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1194 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1195 adapter->tx_hwtstamp_skb = NULL;
1196 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197 + adapter->tx_timeout_factor * HZ)) {
1198 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199 adapter->tx_hwtstamp_skb = NULL;
1200 adapter->tx_hwtstamp_timeouts++;
1201 e_warn("clearing Tx timestamp hang\n");
1202 } else {
1203 /* reschedule to check later */
1204 schedule_work(&adapter->tx_hwtstamp_work);
1205 }
1206 }
1207
1208 /**
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210 * @tx_ring: Tx descriptor ring
1211 *
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1214 **/
1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216 {
1217 struct e1000_adapter *adapter = tx_ring->adapter;
1218 struct net_device *netdev = adapter->netdev;
1219 struct e1000_hw *hw = &adapter->hw;
1220 struct e1000_tx_desc *tx_desc, *eop_desc;
1221 struct e1000_buffer *buffer_info;
1222 unsigned int i, eop;
1223 unsigned int count = 0;
1224 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225 unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227 i = tx_ring->next_to_clean;
1228 eop = tx_ring->buffer_info[i].next_to_watch;
1229 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232 (count < tx_ring->count)) {
1233 bool cleaned = false;
1234
1235 dma_rmb(); /* read buffer_info after eop_desc */
1236 for (; !cleaned; count++) {
1237 tx_desc = E1000_TX_DESC(*tx_ring, i);
1238 buffer_info = &tx_ring->buffer_info[i];
1239 cleaned = (i == eop);
1240
1241 if (cleaned) {
1242 total_tx_packets += buffer_info->segs;
1243 total_tx_bytes += buffer_info->bytecount;
1244 if (buffer_info->skb) {
1245 bytes_compl += buffer_info->skb->len;
1246 pkts_compl++;
1247 }
1248 }
1249
1250 e1000_put_txbuf(tx_ring, buffer_info);
1251 tx_desc->upper.data = 0;
1252
1253 i++;
1254 if (i == tx_ring->count)
1255 i = 0;
1256 }
1257
1258 if (i == tx_ring->next_to_use)
1259 break;
1260 eop = tx_ring->buffer_info[i].next_to_watch;
1261 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262 }
1263
1264 tx_ring->next_to_clean = i;
1265
1266 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268 #define TX_WAKE_THRESHOLD 32
1269 if (count && netif_carrier_ok(netdev) &&
1270 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271 /* Make sure that anybody stopping the queue after this
1272 * sees the new next_to_clean.
1273 */
1274 smp_mb();
1275
1276 if (netif_queue_stopped(netdev) &&
1277 !(test_bit(__E1000_DOWN, &adapter->state))) {
1278 netif_wake_queue(netdev);
1279 ++adapter->restart_queue;
1280 }
1281 }
1282
1283 if (adapter->detect_tx_hung) {
1284 /* Detect a transmit hang in hardware, this serializes the
1285 * check with the clearing of time_stamp and movement of i
1286 */
1287 adapter->detect_tx_hung = false;
1288 if (tx_ring->buffer_info[i].time_stamp &&
1289 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290 + (adapter->tx_timeout_factor * HZ)) &&
1291 !(er32(STATUS) & E1000_STATUS_TXOFF))
1292 schedule_work(&adapter->print_hang_task);
1293 else
1294 adapter->tx_hang_recheck = false;
1295 }
1296 adapter->total_tx_bytes += total_tx_bytes;
1297 adapter->total_tx_packets += total_tx_packets;
1298 return count < tx_ring->count;
1299 }
1300
1301 /**
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303 * @rx_ring: Rx descriptor ring
1304 *
1305 * the return value indicates whether actual cleaning was done, there
1306 * is no guarantee that everything was cleaned
1307 **/
1308 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1309 int work_to_do)
1310 {
1311 struct e1000_adapter *adapter = rx_ring->adapter;
1312 struct e1000_hw *hw = &adapter->hw;
1313 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1314 struct net_device *netdev = adapter->netdev;
1315 struct pci_dev *pdev = adapter->pdev;
1316 struct e1000_buffer *buffer_info, *next_buffer;
1317 struct e1000_ps_page *ps_page;
1318 struct sk_buff *skb;
1319 unsigned int i, j;
1320 u32 length, staterr;
1321 int cleaned_count = 0;
1322 bool cleaned = false;
1323 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1324
1325 i = rx_ring->next_to_clean;
1326 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1327 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1328 buffer_info = &rx_ring->buffer_info[i];
1329
1330 while (staterr & E1000_RXD_STAT_DD) {
1331 if (*work_done >= work_to_do)
1332 break;
1333 (*work_done)++;
1334 skb = buffer_info->skb;
1335 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1336
1337 /* in the packet split case this is header only */
1338 prefetch(skb->data - NET_IP_ALIGN);
1339
1340 i++;
1341 if (i == rx_ring->count)
1342 i = 0;
1343 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1344 prefetch(next_rxd);
1345
1346 next_buffer = &rx_ring->buffer_info[i];
1347
1348 cleaned = true;
1349 cleaned_count++;
1350 dma_unmap_single(&pdev->dev, buffer_info->dma,
1351 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1352 buffer_info->dma = 0;
1353
1354 /* see !EOP comment in other Rx routine */
1355 if (!(staterr & E1000_RXD_STAT_EOP))
1356 adapter->flags2 |= FLAG2_IS_DISCARDING;
1357
1358 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1359 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360 dev_kfree_skb_irq(skb);
1361 if (staterr & E1000_RXD_STAT_EOP)
1362 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1363 goto next_desc;
1364 }
1365
1366 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1367 !(netdev->features & NETIF_F_RXALL))) {
1368 dev_kfree_skb_irq(skb);
1369 goto next_desc;
1370 }
1371
1372 length = le16_to_cpu(rx_desc->wb.middle.length0);
1373
1374 if (!length) {
1375 e_dbg("Last part of the packet spanning multiple descriptors\n");
1376 dev_kfree_skb_irq(skb);
1377 goto next_desc;
1378 }
1379
1380 /* Good Receive */
1381 skb_put(skb, length);
1382
1383 {
1384 /* this looks ugly, but it seems compiler issues make
1385 * it more efficient than reusing j
1386 */
1387 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1388
1389 /* page alloc/put takes too long and effects small
1390 * packet throughput, so unsplit small packets and
1391 * save the alloc/put only valid in softirq (napi)
1392 * context to call kmap_*
1393 */
1394 if (l1 && (l1 <= copybreak) &&
1395 ((length + l1) <= adapter->rx_ps_bsize0)) {
1396 u8 *vaddr;
1397
1398 ps_page = &buffer_info->ps_pages[0];
1399
1400 /* there is no documentation about how to call
1401 * kmap_atomic, so we can't hold the mapping
1402 * very long
1403 */
1404 dma_sync_single_for_cpu(&pdev->dev,
1405 ps_page->dma,
1406 PAGE_SIZE,
1407 DMA_FROM_DEVICE);
1408 vaddr = kmap_atomic(ps_page->page);
1409 memcpy(skb_tail_pointer(skb), vaddr, l1);
1410 kunmap_atomic(vaddr);
1411 dma_sync_single_for_device(&pdev->dev,
1412 ps_page->dma,
1413 PAGE_SIZE,
1414 DMA_FROM_DEVICE);
1415
1416 /* remove the CRC */
1417 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1418 if (!(netdev->features & NETIF_F_RXFCS))
1419 l1 -= 4;
1420 }
1421
1422 skb_put(skb, l1);
1423 goto copydone;
1424 } /* if */
1425 }
1426
1427 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1428 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1429 if (!length)
1430 break;
1431
1432 ps_page = &buffer_info->ps_pages[j];
1433 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1434 DMA_FROM_DEVICE);
1435 ps_page->dma = 0;
1436 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1437 ps_page->page = NULL;
1438 skb->len += length;
1439 skb->data_len += length;
1440 skb->truesize += PAGE_SIZE;
1441 }
1442
1443 /* strip the ethernet crc, problem is we're using pages now so
1444 * this whole operation can get a little cpu intensive
1445 */
1446 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1447 if (!(netdev->features & NETIF_F_RXFCS))
1448 pskb_trim(skb, skb->len - 4);
1449 }
1450
1451 copydone:
1452 total_rx_bytes += skb->len;
1453 total_rx_packets++;
1454
1455 e1000_rx_checksum(adapter, staterr, skb);
1456
1457 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1458
1459 if (rx_desc->wb.upper.header_status &
1460 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1461 adapter->rx_hdr_split++;
1462
1463 e1000_receive_skb(adapter, netdev, skb, staterr,
1464 rx_desc->wb.middle.vlan);
1465
1466 next_desc:
1467 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1468 buffer_info->skb = NULL;
1469
1470 /* return some buffers to hardware, one at a time is too slow */
1471 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1472 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1473 GFP_ATOMIC);
1474 cleaned_count = 0;
1475 }
1476
1477 /* use prefetched values */
1478 rx_desc = next_rxd;
1479 buffer_info = next_buffer;
1480
1481 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1482 }
1483 rx_ring->next_to_clean = i;
1484
1485 cleaned_count = e1000_desc_unused(rx_ring);
1486 if (cleaned_count)
1487 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1488
1489 adapter->total_rx_bytes += total_rx_bytes;
1490 adapter->total_rx_packets += total_rx_packets;
1491 return cleaned;
1492 }
1493
1494 /**
1495 * e1000_consume_page - helper function
1496 **/
1497 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1498 u16 length)
1499 {
1500 bi->page = NULL;
1501 skb->len += length;
1502 skb->data_len += length;
1503 skb->truesize += PAGE_SIZE;
1504 }
1505
1506 /**
1507 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1508 * @adapter: board private structure
1509 *
1510 * the return value indicates whether actual cleaning was done, there
1511 * is no guarantee that everything was cleaned
1512 **/
1513 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1514 int work_to_do)
1515 {
1516 struct e1000_adapter *adapter = rx_ring->adapter;
1517 struct net_device *netdev = adapter->netdev;
1518 struct pci_dev *pdev = adapter->pdev;
1519 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1520 struct e1000_buffer *buffer_info, *next_buffer;
1521 u32 length, staterr;
1522 unsigned int i;
1523 int cleaned_count = 0;
1524 bool cleaned = false;
1525 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1526 struct skb_shared_info *shinfo;
1527
1528 i = rx_ring->next_to_clean;
1529 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1530 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1531 buffer_info = &rx_ring->buffer_info[i];
1532
1533 while (staterr & E1000_RXD_STAT_DD) {
1534 struct sk_buff *skb;
1535
1536 if (*work_done >= work_to_do)
1537 break;
1538 (*work_done)++;
1539 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1540
1541 skb = buffer_info->skb;
1542 buffer_info->skb = NULL;
1543
1544 ++i;
1545 if (i == rx_ring->count)
1546 i = 0;
1547 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1548 prefetch(next_rxd);
1549
1550 next_buffer = &rx_ring->buffer_info[i];
1551
1552 cleaned = true;
1553 cleaned_count++;
1554 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1555 DMA_FROM_DEVICE);
1556 buffer_info->dma = 0;
1557
1558 length = le16_to_cpu(rx_desc->wb.upper.length);
1559
1560 /* errors is only valid for DD + EOP descriptors */
1561 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1562 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1563 !(netdev->features & NETIF_F_RXALL)))) {
1564 /* recycle both page and skb */
1565 buffer_info->skb = skb;
1566 /* an error means any chain goes out the window too */
1567 if (rx_ring->rx_skb_top)
1568 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1569 rx_ring->rx_skb_top = NULL;
1570 goto next_desc;
1571 }
1572 #define rxtop (rx_ring->rx_skb_top)
1573 if (!(staterr & E1000_RXD_STAT_EOP)) {
1574 /* this descriptor is only the beginning (or middle) */
1575 if (!rxtop) {
1576 /* this is the beginning of a chain */
1577 rxtop = skb;
1578 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1579 0, length);
1580 } else {
1581 /* this is the middle of a chain */
1582 shinfo = skb_shinfo(rxtop);
1583 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1584 buffer_info->page, 0,
1585 length);
1586 /* re-use the skb, only consumed the page */
1587 buffer_info->skb = skb;
1588 }
1589 e1000_consume_page(buffer_info, rxtop, length);
1590 goto next_desc;
1591 } else {
1592 if (rxtop) {
1593 /* end of the chain */
1594 shinfo = skb_shinfo(rxtop);
1595 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1596 buffer_info->page, 0,
1597 length);
1598 /* re-use the current skb, we only consumed the
1599 * page
1600 */
1601 buffer_info->skb = skb;
1602 skb = rxtop;
1603 rxtop = NULL;
1604 e1000_consume_page(buffer_info, skb, length);
1605 } else {
1606 /* no chain, got EOP, this buf is the packet
1607 * copybreak to save the put_page/alloc_page
1608 */
1609 if (length <= copybreak &&
1610 skb_tailroom(skb) >= length) {
1611 u8 *vaddr;
1612 vaddr = kmap_atomic(buffer_info->page);
1613 memcpy(skb_tail_pointer(skb), vaddr,
1614 length);
1615 kunmap_atomic(vaddr);
1616 /* re-use the page, so don't erase
1617 * buffer_info->page
1618 */
1619 skb_put(skb, length);
1620 } else {
1621 skb_fill_page_desc(skb, 0,
1622 buffer_info->page, 0,
1623 length);
1624 e1000_consume_page(buffer_info, skb,
1625 length);
1626 }
1627 }
1628 }
1629
1630 /* Receive Checksum Offload */
1631 e1000_rx_checksum(adapter, staterr, skb);
1632
1633 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1634
1635 /* probably a little skewed due to removing CRC */
1636 total_rx_bytes += skb->len;
1637 total_rx_packets++;
1638
1639 /* eth type trans needs skb->data to point to something */
1640 if (!pskb_may_pull(skb, ETH_HLEN)) {
1641 e_err("pskb_may_pull failed.\n");
1642 dev_kfree_skb_irq(skb);
1643 goto next_desc;
1644 }
1645
1646 e1000_receive_skb(adapter, netdev, skb, staterr,
1647 rx_desc->wb.upper.vlan);
1648
1649 next_desc:
1650 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1651
1652 /* return some buffers to hardware, one at a time is too slow */
1653 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1654 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1655 GFP_ATOMIC);
1656 cleaned_count = 0;
1657 }
1658
1659 /* use prefetched values */
1660 rx_desc = next_rxd;
1661 buffer_info = next_buffer;
1662
1663 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1664 }
1665 rx_ring->next_to_clean = i;
1666
1667 cleaned_count = e1000_desc_unused(rx_ring);
1668 if (cleaned_count)
1669 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1670
1671 adapter->total_rx_bytes += total_rx_bytes;
1672 adapter->total_rx_packets += total_rx_packets;
1673 return cleaned;
1674 }
1675
1676 /**
1677 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1678 * @rx_ring: Rx descriptor ring
1679 **/
1680 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1681 {
1682 struct e1000_adapter *adapter = rx_ring->adapter;
1683 struct e1000_buffer *buffer_info;
1684 struct e1000_ps_page *ps_page;
1685 struct pci_dev *pdev = adapter->pdev;
1686 unsigned int i, j;
1687
1688 /* Free all the Rx ring sk_buffs */
1689 for (i = 0; i < rx_ring->count; i++) {
1690 buffer_info = &rx_ring->buffer_info[i];
1691 if (buffer_info->dma) {
1692 if (adapter->clean_rx == e1000_clean_rx_irq)
1693 dma_unmap_single(&pdev->dev, buffer_info->dma,
1694 adapter->rx_buffer_len,
1695 DMA_FROM_DEVICE);
1696 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1697 dma_unmap_page(&pdev->dev, buffer_info->dma,
1698 PAGE_SIZE, DMA_FROM_DEVICE);
1699 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1700 dma_unmap_single(&pdev->dev, buffer_info->dma,
1701 adapter->rx_ps_bsize0,
1702 DMA_FROM_DEVICE);
1703 buffer_info->dma = 0;
1704 }
1705
1706 if (buffer_info->page) {
1707 put_page(buffer_info->page);
1708 buffer_info->page = NULL;
1709 }
1710
1711 if (buffer_info->skb) {
1712 dev_kfree_skb(buffer_info->skb);
1713 buffer_info->skb = NULL;
1714 }
1715
1716 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1717 ps_page = &buffer_info->ps_pages[j];
1718 if (!ps_page->page)
1719 break;
1720 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1721 DMA_FROM_DEVICE);
1722 ps_page->dma = 0;
1723 put_page(ps_page->page);
1724 ps_page->page = NULL;
1725 }
1726 }
1727
1728 /* there also may be some cached data from a chained receive */
1729 if (rx_ring->rx_skb_top) {
1730 dev_kfree_skb(rx_ring->rx_skb_top);
1731 rx_ring->rx_skb_top = NULL;
1732 }
1733
1734 /* Zero out the descriptor ring */
1735 memset(rx_ring->desc, 0, rx_ring->size);
1736
1737 rx_ring->next_to_clean = 0;
1738 rx_ring->next_to_use = 0;
1739 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1740
1741 writel(0, rx_ring->head);
1742 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1743 e1000e_update_rdt_wa(rx_ring, 0);
1744 else
1745 writel(0, rx_ring->tail);
1746 }
1747
1748 static void e1000e_downshift_workaround(struct work_struct *work)
1749 {
1750 struct e1000_adapter *adapter = container_of(work,
1751 struct e1000_adapter,
1752 downshift_task);
1753
1754 if (test_bit(__E1000_DOWN, &adapter->state))
1755 return;
1756
1757 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1758 }
1759
1760 /**
1761 * e1000_intr_msi - Interrupt Handler
1762 * @irq: interrupt number
1763 * @data: pointer to a network interface device structure
1764 **/
1765 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1766 {
1767 struct net_device *netdev = data;
1768 struct e1000_adapter *adapter = netdev_priv(netdev);
1769 struct e1000_hw *hw = &adapter->hw;
1770 u32 icr = er32(ICR);
1771
1772 /* read ICR disables interrupts using IAM */
1773 if (icr & E1000_ICR_LSC) {
1774 hw->mac.get_link_status = true;
1775 /* ICH8 workaround-- Call gig speed drop workaround on cable
1776 * disconnect (LSC) before accessing any PHY registers
1777 */
1778 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1779 (!(er32(STATUS) & E1000_STATUS_LU)))
1780 schedule_work(&adapter->downshift_task);
1781
1782 /* 80003ES2LAN workaround-- For packet buffer work-around on
1783 * link down event; disable receives here in the ISR and reset
1784 * adapter in watchdog
1785 */
1786 if (netif_carrier_ok(netdev) &&
1787 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1788 /* disable receives */
1789 u32 rctl = er32(RCTL);
1790
1791 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1792 adapter->flags |= FLAG_RESTART_NOW;
1793 }
1794 /* guard against interrupt when we're going down */
1795 if (!test_bit(__E1000_DOWN, &adapter->state))
1796 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1797 }
1798
1799 /* Reset on uncorrectable ECC error */
1800 if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1801 (hw->mac.type == e1000_pch_spt))) {
1802 u32 pbeccsts = er32(PBECCSTS);
1803
1804 adapter->corr_errors +=
1805 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1806 adapter->uncorr_errors +=
1807 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1808 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1809
1810 /* Do the reset outside of interrupt context */
1811 schedule_work(&adapter->reset_task);
1812
1813 /* return immediately since reset is imminent */
1814 return IRQ_HANDLED;
1815 }
1816
1817 if (napi_schedule_prep(&adapter->napi)) {
1818 adapter->total_tx_bytes = 0;
1819 adapter->total_tx_packets = 0;
1820 adapter->total_rx_bytes = 0;
1821 adapter->total_rx_packets = 0;
1822 __napi_schedule(&adapter->napi);
1823 }
1824
1825 return IRQ_HANDLED;
1826 }
1827
1828 /**
1829 * e1000_intr - Interrupt Handler
1830 * @irq: interrupt number
1831 * @data: pointer to a network interface device structure
1832 **/
1833 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1834 {
1835 struct net_device *netdev = data;
1836 struct e1000_adapter *adapter = netdev_priv(netdev);
1837 struct e1000_hw *hw = &adapter->hw;
1838 u32 rctl, icr = er32(ICR);
1839
1840 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1841 return IRQ_NONE; /* Not our interrupt */
1842
1843 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1844 * not set, then the adapter didn't send an interrupt
1845 */
1846 if (!(icr & E1000_ICR_INT_ASSERTED))
1847 return IRQ_NONE;
1848
1849 /* Interrupt Auto-Mask...upon reading ICR,
1850 * interrupts are masked. No need for the
1851 * IMC write
1852 */
1853
1854 if (icr & E1000_ICR_LSC) {
1855 hw->mac.get_link_status = true;
1856 /* ICH8 workaround-- Call gig speed drop workaround on cable
1857 * disconnect (LSC) before accessing any PHY registers
1858 */
1859 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1860 (!(er32(STATUS) & E1000_STATUS_LU)))
1861 schedule_work(&adapter->downshift_task);
1862
1863 /* 80003ES2LAN workaround--
1864 * For packet buffer work-around on link down event;
1865 * disable receives here in the ISR and
1866 * reset adapter in watchdog
1867 */
1868 if (netif_carrier_ok(netdev) &&
1869 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1870 /* disable receives */
1871 rctl = er32(RCTL);
1872 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873 adapter->flags |= FLAG_RESTART_NOW;
1874 }
1875 /* guard against interrupt when we're going down */
1876 if (!test_bit(__E1000_DOWN, &adapter->state))
1877 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1878 }
1879
1880 /* Reset on uncorrectable ECC error */
1881 if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1882 (hw->mac.type == e1000_pch_spt))) {
1883 u32 pbeccsts = er32(PBECCSTS);
1884
1885 adapter->corr_errors +=
1886 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1887 adapter->uncorr_errors +=
1888 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1889 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1890
1891 /* Do the reset outside of interrupt context */
1892 schedule_work(&adapter->reset_task);
1893
1894 /* return immediately since reset is imminent */
1895 return IRQ_HANDLED;
1896 }
1897
1898 if (napi_schedule_prep(&adapter->napi)) {
1899 adapter->total_tx_bytes = 0;
1900 adapter->total_tx_packets = 0;
1901 adapter->total_rx_bytes = 0;
1902 adapter->total_rx_packets = 0;
1903 __napi_schedule(&adapter->napi);
1904 }
1905
1906 return IRQ_HANDLED;
1907 }
1908
1909 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1910 {
1911 struct net_device *netdev = data;
1912 struct e1000_adapter *adapter = netdev_priv(netdev);
1913 struct e1000_hw *hw = &adapter->hw;
1914 u32 icr = er32(ICR);
1915
1916 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1917 if (!test_bit(__E1000_DOWN, &adapter->state))
1918 ew32(IMS, E1000_IMS_OTHER);
1919 return IRQ_NONE;
1920 }
1921
1922 if (icr & adapter->eiac_mask)
1923 ew32(ICS, (icr & adapter->eiac_mask));
1924
1925 if (icr & E1000_ICR_OTHER) {
1926 if (!(icr & E1000_ICR_LSC))
1927 goto no_link_interrupt;
1928 hw->mac.get_link_status = true;
1929 /* guard against interrupt when we're going down */
1930 if (!test_bit(__E1000_DOWN, &adapter->state))
1931 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1932 }
1933
1934 no_link_interrupt:
1935 if (!test_bit(__E1000_DOWN, &adapter->state))
1936 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1937
1938 return IRQ_HANDLED;
1939 }
1940
1941 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1942 {
1943 struct net_device *netdev = data;
1944 struct e1000_adapter *adapter = netdev_priv(netdev);
1945 struct e1000_hw *hw = &adapter->hw;
1946 struct e1000_ring *tx_ring = adapter->tx_ring;
1947
1948 adapter->total_tx_bytes = 0;
1949 adapter->total_tx_packets = 0;
1950
1951 if (!e1000_clean_tx_irq(tx_ring))
1952 /* Ring was not completely cleaned, so fire another interrupt */
1953 ew32(ICS, tx_ring->ims_val);
1954
1955 return IRQ_HANDLED;
1956 }
1957
1958 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1959 {
1960 struct net_device *netdev = data;
1961 struct e1000_adapter *adapter = netdev_priv(netdev);
1962 struct e1000_ring *rx_ring = adapter->rx_ring;
1963
1964 /* Write the ITR value calculated at the end of the
1965 * previous interrupt.
1966 */
1967 if (rx_ring->set_itr) {
1968 writel(1000000000 / (rx_ring->itr_val * 256),
1969 rx_ring->itr_register);
1970 rx_ring->set_itr = 0;
1971 }
1972
1973 if (napi_schedule_prep(&adapter->napi)) {
1974 adapter->total_rx_bytes = 0;
1975 adapter->total_rx_packets = 0;
1976 __napi_schedule(&adapter->napi);
1977 }
1978 return IRQ_HANDLED;
1979 }
1980
1981 /**
1982 * e1000_configure_msix - Configure MSI-X hardware
1983 *
1984 * e1000_configure_msix sets up the hardware to properly
1985 * generate MSI-X interrupts.
1986 **/
1987 static void e1000_configure_msix(struct e1000_adapter *adapter)
1988 {
1989 struct e1000_hw *hw = &adapter->hw;
1990 struct e1000_ring *rx_ring = adapter->rx_ring;
1991 struct e1000_ring *tx_ring = adapter->tx_ring;
1992 int vector = 0;
1993 u32 ctrl_ext, ivar = 0;
1994
1995 adapter->eiac_mask = 0;
1996
1997 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1998 if (hw->mac.type == e1000_82574) {
1999 u32 rfctl = er32(RFCTL);
2000
2001 rfctl |= E1000_RFCTL_ACK_DIS;
2002 ew32(RFCTL, rfctl);
2003 }
2004
2005 /* Configure Rx vector */
2006 rx_ring->ims_val = E1000_IMS_RXQ0;
2007 adapter->eiac_mask |= rx_ring->ims_val;
2008 if (rx_ring->itr_val)
2009 writel(1000000000 / (rx_ring->itr_val * 256),
2010 rx_ring->itr_register);
2011 else
2012 writel(1, rx_ring->itr_register);
2013 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2014
2015 /* Configure Tx vector */
2016 tx_ring->ims_val = E1000_IMS_TXQ0;
2017 vector++;
2018 if (tx_ring->itr_val)
2019 writel(1000000000 / (tx_ring->itr_val * 256),
2020 tx_ring->itr_register);
2021 else
2022 writel(1, tx_ring->itr_register);
2023 adapter->eiac_mask |= tx_ring->ims_val;
2024 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2025
2026 /* set vector for Other Causes, e.g. link changes */
2027 vector++;
2028 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2029 if (rx_ring->itr_val)
2030 writel(1000000000 / (rx_ring->itr_val * 256),
2031 hw->hw_addr + E1000_EITR_82574(vector));
2032 else
2033 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2034
2035 /* Cause Tx interrupts on every write back */
2036 ivar |= (1 << 31);
2037
2038 ew32(IVAR, ivar);
2039
2040 /* enable MSI-X PBA support */
2041 ctrl_ext = er32(CTRL_EXT);
2042 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2043
2044 /* Auto-Mask Other interrupts upon ICR read */
2045 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2046 ctrl_ext |= E1000_CTRL_EXT_EIAME;
2047 ew32(CTRL_EXT, ctrl_ext);
2048 e1e_flush();
2049 }
2050
2051 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2052 {
2053 if (adapter->msix_entries) {
2054 pci_disable_msix(adapter->pdev);
2055 kfree(adapter->msix_entries);
2056 adapter->msix_entries = NULL;
2057 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2058 pci_disable_msi(adapter->pdev);
2059 adapter->flags &= ~FLAG_MSI_ENABLED;
2060 }
2061 }
2062
2063 /**
2064 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2065 *
2066 * Attempt to configure interrupts using the best available
2067 * capabilities of the hardware and kernel.
2068 **/
2069 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2070 {
2071 int err;
2072 int i;
2073
2074 switch (adapter->int_mode) {
2075 case E1000E_INT_MODE_MSIX:
2076 if (adapter->flags & FLAG_HAS_MSIX) {
2077 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2078 adapter->msix_entries = kcalloc(adapter->num_vectors,
2079 sizeof(struct
2080 msix_entry),
2081 GFP_KERNEL);
2082 if (adapter->msix_entries) {
2083 struct e1000_adapter *a = adapter;
2084
2085 for (i = 0; i < adapter->num_vectors; i++)
2086 adapter->msix_entries[i].entry = i;
2087
2088 err = pci_enable_msix_range(a->pdev,
2089 a->msix_entries,
2090 a->num_vectors,
2091 a->num_vectors);
2092 if (err > 0)
2093 return;
2094 }
2095 /* MSI-X failed, so fall through and try MSI */
2096 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2097 e1000e_reset_interrupt_capability(adapter);
2098 }
2099 adapter->int_mode = E1000E_INT_MODE_MSI;
2100 /* Fall through */
2101 case E1000E_INT_MODE_MSI:
2102 if (!pci_enable_msi(adapter->pdev)) {
2103 adapter->flags |= FLAG_MSI_ENABLED;
2104 } else {
2105 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2106 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2107 }
2108 /* Fall through */
2109 case E1000E_INT_MODE_LEGACY:
2110 /* Don't do anything; this is the system default */
2111 break;
2112 }
2113
2114 /* store the number of vectors being used */
2115 adapter->num_vectors = 1;
2116 }
2117
2118 /**
2119 * e1000_request_msix - Initialize MSI-X interrupts
2120 *
2121 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2122 * kernel.
2123 **/
2124 static int e1000_request_msix(struct e1000_adapter *adapter)
2125 {
2126 struct net_device *netdev = adapter->netdev;
2127 int err = 0, vector = 0;
2128
2129 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2130 snprintf(adapter->rx_ring->name,
2131 sizeof(adapter->rx_ring->name) - 1,
2132 "%s-rx-0", netdev->name);
2133 else
2134 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2135 err = request_irq(adapter->msix_entries[vector].vector,
2136 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2137 netdev);
2138 if (err)
2139 return err;
2140 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2141 E1000_EITR_82574(vector);
2142 adapter->rx_ring->itr_val = adapter->itr;
2143 vector++;
2144
2145 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2146 snprintf(adapter->tx_ring->name,
2147 sizeof(adapter->tx_ring->name) - 1,
2148 "%s-tx-0", netdev->name);
2149 else
2150 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2151 err = request_irq(adapter->msix_entries[vector].vector,
2152 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2153 netdev);
2154 if (err)
2155 return err;
2156 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2157 E1000_EITR_82574(vector);
2158 adapter->tx_ring->itr_val = adapter->itr;
2159 vector++;
2160
2161 err = request_irq(adapter->msix_entries[vector].vector,
2162 e1000_msix_other, 0, netdev->name, netdev);
2163 if (err)
2164 return err;
2165
2166 e1000_configure_msix(adapter);
2167
2168 return 0;
2169 }
2170
2171 /**
2172 * e1000_request_irq - initialize interrupts
2173 *
2174 * Attempts to configure interrupts using the best available
2175 * capabilities of the hardware and kernel.
2176 **/
2177 static int e1000_request_irq(struct e1000_adapter *adapter)
2178 {
2179 struct net_device *netdev = adapter->netdev;
2180 int err;
2181
2182 if (adapter->msix_entries) {
2183 err = e1000_request_msix(adapter);
2184 if (!err)
2185 return err;
2186 /* fall back to MSI */
2187 e1000e_reset_interrupt_capability(adapter);
2188 adapter->int_mode = E1000E_INT_MODE_MSI;
2189 e1000e_set_interrupt_capability(adapter);
2190 }
2191 if (adapter->flags & FLAG_MSI_ENABLED) {
2192 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2193 netdev->name, netdev);
2194 if (!err)
2195 return err;
2196
2197 /* fall back to legacy interrupt */
2198 e1000e_reset_interrupt_capability(adapter);
2199 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2200 }
2201
2202 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2203 netdev->name, netdev);
2204 if (err)
2205 e_err("Unable to allocate interrupt, Error: %d\n", err);
2206
2207 return err;
2208 }
2209
2210 static void e1000_free_irq(struct e1000_adapter *adapter)
2211 {
2212 struct net_device *netdev = adapter->netdev;
2213
2214 if (adapter->msix_entries) {
2215 int vector = 0;
2216
2217 free_irq(adapter->msix_entries[vector].vector, netdev);
2218 vector++;
2219
2220 free_irq(adapter->msix_entries[vector].vector, netdev);
2221 vector++;
2222
2223 /* Other Causes interrupt vector */
2224 free_irq(adapter->msix_entries[vector].vector, netdev);
2225 return;
2226 }
2227
2228 free_irq(adapter->pdev->irq, netdev);
2229 }
2230
2231 /**
2232 * e1000_irq_disable - Mask off interrupt generation on the NIC
2233 **/
2234 static void e1000_irq_disable(struct e1000_adapter *adapter)
2235 {
2236 struct e1000_hw *hw = &adapter->hw;
2237
2238 ew32(IMC, ~0);
2239 if (adapter->msix_entries)
2240 ew32(EIAC_82574, 0);
2241 e1e_flush();
2242
2243 if (adapter->msix_entries) {
2244 int i;
2245
2246 for (i = 0; i < adapter->num_vectors; i++)
2247 synchronize_irq(adapter->msix_entries[i].vector);
2248 } else {
2249 synchronize_irq(adapter->pdev->irq);
2250 }
2251 }
2252
2253 /**
2254 * e1000_irq_enable - Enable default interrupt generation settings
2255 **/
2256 static void e1000_irq_enable(struct e1000_adapter *adapter)
2257 {
2258 struct e1000_hw *hw = &adapter->hw;
2259
2260 if (adapter->msix_entries) {
2261 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2262 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2263 } else if ((hw->mac.type == e1000_pch_lpt) ||
2264 (hw->mac.type == e1000_pch_spt)) {
2265 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2266 } else {
2267 ew32(IMS, IMS_ENABLE_MASK);
2268 }
2269 e1e_flush();
2270 }
2271
2272 /**
2273 * e1000e_get_hw_control - get control of the h/w from f/w
2274 * @adapter: address of board private structure
2275 *
2276 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2277 * For ASF and Pass Through versions of f/w this means that
2278 * the driver is loaded. For AMT version (only with 82573)
2279 * of the f/w this means that the network i/f is open.
2280 **/
2281 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2282 {
2283 struct e1000_hw *hw = &adapter->hw;
2284 u32 ctrl_ext;
2285 u32 swsm;
2286
2287 /* Let firmware know the driver has taken over */
2288 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2289 swsm = er32(SWSM);
2290 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2291 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2292 ctrl_ext = er32(CTRL_EXT);
2293 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2294 }
2295 }
2296
2297 /**
2298 * e1000e_release_hw_control - release control of the h/w to f/w
2299 * @adapter: address of board private structure
2300 *
2301 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2302 * For ASF and Pass Through versions of f/w this means that the
2303 * driver is no longer loaded. For AMT version (only with 82573) i
2304 * of the f/w this means that the network i/f is closed.
2305 *
2306 **/
2307 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2308 {
2309 struct e1000_hw *hw = &adapter->hw;
2310 u32 ctrl_ext;
2311 u32 swsm;
2312
2313 /* Let firmware taken over control of h/w */
2314 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2315 swsm = er32(SWSM);
2316 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2317 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2318 ctrl_ext = er32(CTRL_EXT);
2319 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2320 }
2321 }
2322
2323 /**
2324 * e1000_alloc_ring_dma - allocate memory for a ring structure
2325 **/
2326 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2327 struct e1000_ring *ring)
2328 {
2329 struct pci_dev *pdev = adapter->pdev;
2330
2331 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2332 GFP_KERNEL);
2333 if (!ring->desc)
2334 return -ENOMEM;
2335
2336 return 0;
2337 }
2338
2339 /**
2340 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2341 * @tx_ring: Tx descriptor ring
2342 *
2343 * Return 0 on success, negative on failure
2344 **/
2345 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2346 {
2347 struct e1000_adapter *adapter = tx_ring->adapter;
2348 int err = -ENOMEM, size;
2349
2350 size = sizeof(struct e1000_buffer) * tx_ring->count;
2351 tx_ring->buffer_info = vzalloc(size);
2352 if (!tx_ring->buffer_info)
2353 goto err;
2354
2355 /* round up to nearest 4K */
2356 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2357 tx_ring->size = ALIGN(tx_ring->size, 4096);
2358
2359 err = e1000_alloc_ring_dma(adapter, tx_ring);
2360 if (err)
2361 goto err;
2362
2363 tx_ring->next_to_use = 0;
2364 tx_ring->next_to_clean = 0;
2365
2366 return 0;
2367 err:
2368 vfree(tx_ring->buffer_info);
2369 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2370 return err;
2371 }
2372
2373 /**
2374 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2375 * @rx_ring: Rx descriptor ring
2376 *
2377 * Returns 0 on success, negative on failure
2378 **/
2379 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2380 {
2381 struct e1000_adapter *adapter = rx_ring->adapter;
2382 struct e1000_buffer *buffer_info;
2383 int i, size, desc_len, err = -ENOMEM;
2384
2385 size = sizeof(struct e1000_buffer) * rx_ring->count;
2386 rx_ring->buffer_info = vzalloc(size);
2387 if (!rx_ring->buffer_info)
2388 goto err;
2389
2390 for (i = 0; i < rx_ring->count; i++) {
2391 buffer_info = &rx_ring->buffer_info[i];
2392 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2393 sizeof(struct e1000_ps_page),
2394 GFP_KERNEL);
2395 if (!buffer_info->ps_pages)
2396 goto err_pages;
2397 }
2398
2399 desc_len = sizeof(union e1000_rx_desc_packet_split);
2400
2401 /* Round up to nearest 4K */
2402 rx_ring->size = rx_ring->count * desc_len;
2403 rx_ring->size = ALIGN(rx_ring->size, 4096);
2404
2405 err = e1000_alloc_ring_dma(adapter, rx_ring);
2406 if (err)
2407 goto err_pages;
2408
2409 rx_ring->next_to_clean = 0;
2410 rx_ring->next_to_use = 0;
2411 rx_ring->rx_skb_top = NULL;
2412
2413 return 0;
2414
2415 err_pages:
2416 for (i = 0; i < rx_ring->count; i++) {
2417 buffer_info = &rx_ring->buffer_info[i];
2418 kfree(buffer_info->ps_pages);
2419 }
2420 err:
2421 vfree(rx_ring->buffer_info);
2422 e_err("Unable to allocate memory for the receive descriptor ring\n");
2423 return err;
2424 }
2425
2426 /**
2427 * e1000_clean_tx_ring - Free Tx Buffers
2428 * @tx_ring: Tx descriptor ring
2429 **/
2430 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2431 {
2432 struct e1000_adapter *adapter = tx_ring->adapter;
2433 struct e1000_buffer *buffer_info;
2434 unsigned long size;
2435 unsigned int i;
2436
2437 for (i = 0; i < tx_ring->count; i++) {
2438 buffer_info = &tx_ring->buffer_info[i];
2439 e1000_put_txbuf(tx_ring, buffer_info);
2440 }
2441
2442 netdev_reset_queue(adapter->netdev);
2443 size = sizeof(struct e1000_buffer) * tx_ring->count;
2444 memset(tx_ring->buffer_info, 0, size);
2445
2446 memset(tx_ring->desc, 0, tx_ring->size);
2447
2448 tx_ring->next_to_use = 0;
2449 tx_ring->next_to_clean = 0;
2450
2451 writel(0, tx_ring->head);
2452 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2453 e1000e_update_tdt_wa(tx_ring, 0);
2454 else
2455 writel(0, tx_ring->tail);
2456 }
2457
2458 /**
2459 * e1000e_free_tx_resources - Free Tx Resources per Queue
2460 * @tx_ring: Tx descriptor ring
2461 *
2462 * Free all transmit software resources
2463 **/
2464 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2465 {
2466 struct e1000_adapter *adapter = tx_ring->adapter;
2467 struct pci_dev *pdev = adapter->pdev;
2468
2469 e1000_clean_tx_ring(tx_ring);
2470
2471 vfree(tx_ring->buffer_info);
2472 tx_ring->buffer_info = NULL;
2473
2474 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2475 tx_ring->dma);
2476 tx_ring->desc = NULL;
2477 }
2478
2479 /**
2480 * e1000e_free_rx_resources - Free Rx Resources
2481 * @rx_ring: Rx descriptor ring
2482 *
2483 * Free all receive software resources
2484 **/
2485 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2486 {
2487 struct e1000_adapter *adapter = rx_ring->adapter;
2488 struct pci_dev *pdev = adapter->pdev;
2489 int i;
2490
2491 e1000_clean_rx_ring(rx_ring);
2492
2493 for (i = 0; i < rx_ring->count; i++)
2494 kfree(rx_ring->buffer_info[i].ps_pages);
2495
2496 vfree(rx_ring->buffer_info);
2497 rx_ring->buffer_info = NULL;
2498
2499 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2500 rx_ring->dma);
2501 rx_ring->desc = NULL;
2502 }
2503
2504 /**
2505 * e1000_update_itr - update the dynamic ITR value based on statistics
2506 * @adapter: pointer to adapter
2507 * @itr_setting: current adapter->itr
2508 * @packets: the number of packets during this measurement interval
2509 * @bytes: the number of bytes during this measurement interval
2510 *
2511 * Stores a new ITR value based on packets and byte
2512 * counts during the last interrupt. The advantage of per interrupt
2513 * computation is faster updates and more accurate ITR for the current
2514 * traffic pattern. Constants in this function were computed
2515 * based on theoretical maximum wire speed and thresholds were set based
2516 * on testing data as well as attempting to minimize response time
2517 * while increasing bulk throughput. This functionality is controlled
2518 * by the InterruptThrottleRate module parameter.
2519 **/
2520 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2521 {
2522 unsigned int retval = itr_setting;
2523
2524 if (packets == 0)
2525 return itr_setting;
2526
2527 switch (itr_setting) {
2528 case lowest_latency:
2529 /* handle TSO and jumbo frames */
2530 if (bytes / packets > 8000)
2531 retval = bulk_latency;
2532 else if ((packets < 5) && (bytes > 512))
2533 retval = low_latency;
2534 break;
2535 case low_latency: /* 50 usec aka 20000 ints/s */
2536 if (bytes > 10000) {
2537 /* this if handles the TSO accounting */
2538 if (bytes / packets > 8000)
2539 retval = bulk_latency;
2540 else if ((packets < 10) || ((bytes / packets) > 1200))
2541 retval = bulk_latency;
2542 else if ((packets > 35))
2543 retval = lowest_latency;
2544 } else if (bytes / packets > 2000) {
2545 retval = bulk_latency;
2546 } else if (packets <= 2 && bytes < 512) {
2547 retval = lowest_latency;
2548 }
2549 break;
2550 case bulk_latency: /* 250 usec aka 4000 ints/s */
2551 if (bytes > 25000) {
2552 if (packets > 35)
2553 retval = low_latency;
2554 } else if (bytes < 6000) {
2555 retval = low_latency;
2556 }
2557 break;
2558 }
2559
2560 return retval;
2561 }
2562
2563 static void e1000_set_itr(struct e1000_adapter *adapter)
2564 {
2565 u16 current_itr;
2566 u32 new_itr = adapter->itr;
2567
2568 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2569 if (adapter->link_speed != SPEED_1000) {
2570 current_itr = 0;
2571 new_itr = 4000;
2572 goto set_itr_now;
2573 }
2574
2575 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2576 new_itr = 0;
2577 goto set_itr_now;
2578 }
2579
2580 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2581 adapter->total_tx_packets,
2582 adapter->total_tx_bytes);
2583 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2584 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2585 adapter->tx_itr = low_latency;
2586
2587 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2588 adapter->total_rx_packets,
2589 adapter->total_rx_bytes);
2590 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2591 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2592 adapter->rx_itr = low_latency;
2593
2594 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2595
2596 /* counts and packets in update_itr are dependent on these numbers */
2597 switch (current_itr) {
2598 case lowest_latency:
2599 new_itr = 70000;
2600 break;
2601 case low_latency:
2602 new_itr = 20000; /* aka hwitr = ~200 */
2603 break;
2604 case bulk_latency:
2605 new_itr = 4000;
2606 break;
2607 default:
2608 break;
2609 }
2610
2611 set_itr_now:
2612 if (new_itr != adapter->itr) {
2613 /* this attempts to bias the interrupt rate towards Bulk
2614 * by adding intermediate steps when interrupt rate is
2615 * increasing
2616 */
2617 new_itr = new_itr > adapter->itr ?
2618 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2619 adapter->itr = new_itr;
2620 adapter->rx_ring->itr_val = new_itr;
2621 if (adapter->msix_entries)
2622 adapter->rx_ring->set_itr = 1;
2623 else
2624 e1000e_write_itr(adapter, new_itr);
2625 }
2626 }
2627
2628 /**
2629 * e1000e_write_itr - write the ITR value to the appropriate registers
2630 * @adapter: address of board private structure
2631 * @itr: new ITR value to program
2632 *
2633 * e1000e_write_itr determines if the adapter is in MSI-X mode
2634 * and, if so, writes the EITR registers with the ITR value.
2635 * Otherwise, it writes the ITR value into the ITR register.
2636 **/
2637 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2638 {
2639 struct e1000_hw *hw = &adapter->hw;
2640 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2641
2642 if (adapter->msix_entries) {
2643 int vector;
2644
2645 for (vector = 0; vector < adapter->num_vectors; vector++)
2646 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2647 } else {
2648 ew32(ITR, new_itr);
2649 }
2650 }
2651
2652 /**
2653 * e1000_alloc_queues - Allocate memory for all rings
2654 * @adapter: board private structure to initialize
2655 **/
2656 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2657 {
2658 int size = sizeof(struct e1000_ring);
2659
2660 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2661 if (!adapter->tx_ring)
2662 goto err;
2663 adapter->tx_ring->count = adapter->tx_ring_count;
2664 adapter->tx_ring->adapter = adapter;
2665
2666 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2667 if (!adapter->rx_ring)
2668 goto err;
2669 adapter->rx_ring->count = adapter->rx_ring_count;
2670 adapter->rx_ring->adapter = adapter;
2671
2672 return 0;
2673 err:
2674 e_err("Unable to allocate memory for queues\n");
2675 kfree(adapter->rx_ring);
2676 kfree(adapter->tx_ring);
2677 return -ENOMEM;
2678 }
2679
2680 /**
2681 * e1000e_poll - NAPI Rx polling callback
2682 * @napi: struct associated with this polling callback
2683 * @weight: number of packets driver is allowed to process this poll
2684 **/
2685 static int e1000e_poll(struct napi_struct *napi, int weight)
2686 {
2687 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2688 napi);
2689 struct e1000_hw *hw = &adapter->hw;
2690 struct net_device *poll_dev = adapter->netdev;
2691 int tx_cleaned = 1, work_done = 0;
2692
2693 adapter = netdev_priv(poll_dev);
2694
2695 if (!adapter->msix_entries ||
2696 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2697 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2698
2699 adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2700
2701 if (!tx_cleaned)
2702 work_done = weight;
2703
2704 /* If weight not fully consumed, exit the polling mode */
2705 if (work_done < weight) {
2706 if (adapter->itr_setting & 3)
2707 e1000_set_itr(adapter);
2708 napi_complete(napi);
2709 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2710 if (adapter->msix_entries)
2711 ew32(IMS, adapter->rx_ring->ims_val);
2712 else
2713 e1000_irq_enable(adapter);
2714 }
2715 }
2716
2717 return work_done;
2718 }
2719
2720 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2721 __always_unused __be16 proto, u16 vid)
2722 {
2723 struct e1000_adapter *adapter = netdev_priv(netdev);
2724 struct e1000_hw *hw = &adapter->hw;
2725 u32 vfta, index;
2726
2727 /* don't update vlan cookie if already programmed */
2728 if ((adapter->hw.mng_cookie.status &
2729 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2730 (vid == adapter->mng_vlan_id))
2731 return 0;
2732
2733 /* add VID to filter table */
2734 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2735 index = (vid >> 5) & 0x7F;
2736 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2737 vfta |= (1 << (vid & 0x1F));
2738 hw->mac.ops.write_vfta(hw, index, vfta);
2739 }
2740
2741 set_bit(vid, adapter->active_vlans);
2742
2743 return 0;
2744 }
2745
2746 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2747 __always_unused __be16 proto, u16 vid)
2748 {
2749 struct e1000_adapter *adapter = netdev_priv(netdev);
2750 struct e1000_hw *hw = &adapter->hw;
2751 u32 vfta, index;
2752
2753 if ((adapter->hw.mng_cookie.status &
2754 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2755 (vid == adapter->mng_vlan_id)) {
2756 /* release control to f/w */
2757 e1000e_release_hw_control(adapter);
2758 return 0;
2759 }
2760
2761 /* remove VID from filter table */
2762 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2763 index = (vid >> 5) & 0x7F;
2764 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2765 vfta &= ~(1 << (vid & 0x1F));
2766 hw->mac.ops.write_vfta(hw, index, vfta);
2767 }
2768
2769 clear_bit(vid, adapter->active_vlans);
2770
2771 return 0;
2772 }
2773
2774 /**
2775 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2776 * @adapter: board private structure to initialize
2777 **/
2778 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2779 {
2780 struct net_device *netdev = adapter->netdev;
2781 struct e1000_hw *hw = &adapter->hw;
2782 u32 rctl;
2783
2784 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2785 /* disable VLAN receive filtering */
2786 rctl = er32(RCTL);
2787 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2788 ew32(RCTL, rctl);
2789
2790 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2791 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2792 adapter->mng_vlan_id);
2793 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2794 }
2795 }
2796 }
2797
2798 /**
2799 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2800 * @adapter: board private structure to initialize
2801 **/
2802 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2803 {
2804 struct e1000_hw *hw = &adapter->hw;
2805 u32 rctl;
2806
2807 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2808 /* enable VLAN receive filtering */
2809 rctl = er32(RCTL);
2810 rctl |= E1000_RCTL_VFE;
2811 rctl &= ~E1000_RCTL_CFIEN;
2812 ew32(RCTL, rctl);
2813 }
2814 }
2815
2816 /**
2817 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2818 * @adapter: board private structure to initialize
2819 **/
2820 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2821 {
2822 struct e1000_hw *hw = &adapter->hw;
2823 u32 ctrl;
2824
2825 /* disable VLAN tag insert/strip */
2826 ctrl = er32(CTRL);
2827 ctrl &= ~E1000_CTRL_VME;
2828 ew32(CTRL, ctrl);
2829 }
2830
2831 /**
2832 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2833 * @adapter: board private structure to initialize
2834 **/
2835 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2836 {
2837 struct e1000_hw *hw = &adapter->hw;
2838 u32 ctrl;
2839
2840 /* enable VLAN tag insert/strip */
2841 ctrl = er32(CTRL);
2842 ctrl |= E1000_CTRL_VME;
2843 ew32(CTRL, ctrl);
2844 }
2845
2846 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2847 {
2848 struct net_device *netdev = adapter->netdev;
2849 u16 vid = adapter->hw.mng_cookie.vlan_id;
2850 u16 old_vid = adapter->mng_vlan_id;
2851
2852 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2853 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2854 adapter->mng_vlan_id = vid;
2855 }
2856
2857 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2858 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2859 }
2860
2861 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2862 {
2863 u16 vid;
2864
2865 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2866
2867 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2868 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2869 }
2870
2871 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2872 {
2873 struct e1000_hw *hw = &adapter->hw;
2874 u32 manc, manc2h, mdef, i, j;
2875
2876 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2877 return;
2878
2879 manc = er32(MANC);
2880
2881 /* enable receiving management packets to the host. this will probably
2882 * generate destination unreachable messages from the host OS, but
2883 * the packets will be handled on SMBUS
2884 */
2885 manc |= E1000_MANC_EN_MNG2HOST;
2886 manc2h = er32(MANC2H);
2887
2888 switch (hw->mac.type) {
2889 default:
2890 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2891 break;
2892 case e1000_82574:
2893 case e1000_82583:
2894 /* Check if IPMI pass-through decision filter already exists;
2895 * if so, enable it.
2896 */
2897 for (i = 0, j = 0; i < 8; i++) {
2898 mdef = er32(MDEF(i));
2899
2900 /* Ignore filters with anything other than IPMI ports */
2901 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2902 continue;
2903
2904 /* Enable this decision filter in MANC2H */
2905 if (mdef)
2906 manc2h |= (1 << i);
2907
2908 j |= mdef;
2909 }
2910
2911 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2912 break;
2913
2914 /* Create new decision filter in an empty filter */
2915 for (i = 0, j = 0; i < 8; i++)
2916 if (er32(MDEF(i)) == 0) {
2917 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2918 E1000_MDEF_PORT_664));
2919 manc2h |= (1 << 1);
2920 j++;
2921 break;
2922 }
2923
2924 if (!j)
2925 e_warn("Unable to create IPMI pass-through filter\n");
2926 break;
2927 }
2928
2929 ew32(MANC2H, manc2h);
2930 ew32(MANC, manc);
2931 }
2932
2933 /**
2934 * e1000_configure_tx - Configure Transmit Unit after Reset
2935 * @adapter: board private structure
2936 *
2937 * Configure the Tx unit of the MAC after a reset.
2938 **/
2939 static void e1000_configure_tx(struct e1000_adapter *adapter)
2940 {
2941 struct e1000_hw *hw = &adapter->hw;
2942 struct e1000_ring *tx_ring = adapter->tx_ring;
2943 u64 tdba;
2944 u32 tdlen, tctl, tarc;
2945
2946 /* Setup the HW Tx Head and Tail descriptor pointers */
2947 tdba = tx_ring->dma;
2948 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2949 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2950 ew32(TDBAH(0), (tdba >> 32));
2951 ew32(TDLEN(0), tdlen);
2952 ew32(TDH(0), 0);
2953 ew32(TDT(0), 0);
2954 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2955 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2956
2957 /* Set the Tx Interrupt Delay register */
2958 ew32(TIDV, adapter->tx_int_delay);
2959 /* Tx irq moderation */
2960 ew32(TADV, adapter->tx_abs_int_delay);
2961
2962 if (adapter->flags2 & FLAG2_DMA_BURST) {
2963 u32 txdctl = er32(TXDCTL(0));
2964
2965 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2966 E1000_TXDCTL_WTHRESH);
2967 /* set up some performance related parameters to encourage the
2968 * hardware to use the bus more efficiently in bursts, depends
2969 * on the tx_int_delay to be enabled,
2970 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2971 * hthresh = 1 ==> prefetch when one or more available
2972 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2973 * BEWARE: this seems to work but should be considered first if
2974 * there are Tx hangs or other Tx related bugs
2975 */
2976 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2977 ew32(TXDCTL(0), txdctl);
2978 }
2979 /* erratum work around: set txdctl the same for both queues */
2980 ew32(TXDCTL(1), er32(TXDCTL(0)));
2981
2982 /* Program the Transmit Control Register */
2983 tctl = er32(TCTL);
2984 tctl &= ~E1000_TCTL_CT;
2985 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2986 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2987
2988 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2989 tarc = er32(TARC(0));
2990 /* set the speed mode bit, we'll clear it if we're not at
2991 * gigabit link later
2992 */
2993 #define SPEED_MODE_BIT (1 << 21)
2994 tarc |= SPEED_MODE_BIT;
2995 ew32(TARC(0), tarc);
2996 }
2997
2998 /* errata: program both queues to unweighted RR */
2999 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
3000 tarc = er32(TARC(0));
3001 tarc |= 1;
3002 ew32(TARC(0), tarc);
3003 tarc = er32(TARC(1));
3004 tarc |= 1;
3005 ew32(TARC(1), tarc);
3006 }
3007
3008 /* Setup Transmit Descriptor Settings for eop descriptor */
3009 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3010
3011 /* only set IDE if we are delaying interrupts using the timers */
3012 if (adapter->tx_int_delay)
3013 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3014
3015 /* enable Report Status bit */
3016 adapter->txd_cmd |= E1000_TXD_CMD_RS;
3017
3018 ew32(TCTL, tctl);
3019
3020 hw->mac.ops.config_collision_dist(hw);
3021
3022 /* SPT Si errata workaround to avoid data corruption */
3023 if (hw->mac.type == e1000_pch_spt) {
3024 u32 reg_val;
3025
3026 reg_val = er32(IOSFPC);
3027 reg_val |= E1000_RCTL_RDMTS_HEX;
3028 ew32(IOSFPC, reg_val);
3029
3030 reg_val = er32(TARC(0));
3031 reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3032 ew32(TARC(0), reg_val);
3033 }
3034 }
3035
3036 /**
3037 * e1000_setup_rctl - configure the receive control registers
3038 * @adapter: Board private structure
3039 **/
3040 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3041 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3042 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3043 {
3044 struct e1000_hw *hw = &adapter->hw;
3045 u32 rctl, rfctl;
3046 u32 pages = 0;
3047
3048 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3049 * If jumbo frames not set, program related MAC/PHY registers
3050 * to h/w defaults
3051 */
3052 if (hw->mac.type >= e1000_pch2lan) {
3053 s32 ret_val;
3054
3055 if (adapter->netdev->mtu > ETH_DATA_LEN)
3056 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3057 else
3058 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3059
3060 if (ret_val)
3061 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3062 }
3063
3064 /* Program MC offset vector base */
3065 rctl = er32(RCTL);
3066 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3067 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3068 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3069 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3070
3071 /* Do not Store bad packets */
3072 rctl &= ~E1000_RCTL_SBP;
3073
3074 /* Enable Long Packet receive */
3075 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3076 rctl &= ~E1000_RCTL_LPE;
3077 else
3078 rctl |= E1000_RCTL_LPE;
3079
3080 /* Some systems expect that the CRC is included in SMBUS traffic. The
3081 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3082 * host memory when this is enabled
3083 */
3084 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3085 rctl |= E1000_RCTL_SECRC;
3086
3087 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3088 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3089 u16 phy_data;
3090
3091 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3092 phy_data &= 0xfff8;
3093 phy_data |= (1 << 2);
3094 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3095
3096 e1e_rphy(hw, 22, &phy_data);
3097 phy_data &= 0x0fff;
3098 phy_data |= (1 << 14);
3099 e1e_wphy(hw, 0x10, 0x2823);
3100 e1e_wphy(hw, 0x11, 0x0003);
3101 e1e_wphy(hw, 22, phy_data);
3102 }
3103
3104 /* Setup buffer sizes */
3105 rctl &= ~E1000_RCTL_SZ_4096;
3106 rctl |= E1000_RCTL_BSEX;
3107 switch (adapter->rx_buffer_len) {
3108 case 2048:
3109 default:
3110 rctl |= E1000_RCTL_SZ_2048;
3111 rctl &= ~E1000_RCTL_BSEX;
3112 break;
3113 case 4096:
3114 rctl |= E1000_RCTL_SZ_4096;
3115 break;
3116 case 8192:
3117 rctl |= E1000_RCTL_SZ_8192;
3118 break;
3119 case 16384:
3120 rctl |= E1000_RCTL_SZ_16384;
3121 break;
3122 }
3123
3124 /* Enable Extended Status in all Receive Descriptors */
3125 rfctl = er32(RFCTL);
3126 rfctl |= E1000_RFCTL_EXTEN;
3127 ew32(RFCTL, rfctl);
3128
3129 /* 82571 and greater support packet-split where the protocol
3130 * header is placed in skb->data and the packet data is
3131 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3132 * In the case of a non-split, skb->data is linearly filled,
3133 * followed by the page buffers. Therefore, skb->data is
3134 * sized to hold the largest protocol header.
3135 *
3136 * allocations using alloc_page take too long for regular MTU
3137 * so only enable packet split for jumbo frames
3138 *
3139 * Using pages when the page size is greater than 16k wastes
3140 * a lot of memory, since we allocate 3 pages at all times
3141 * per packet.
3142 */
3143 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3144 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3145 adapter->rx_ps_pages = pages;
3146 else
3147 adapter->rx_ps_pages = 0;
3148
3149 if (adapter->rx_ps_pages) {
3150 u32 psrctl = 0;
3151
3152 /* Enable Packet split descriptors */
3153 rctl |= E1000_RCTL_DTYP_PS;
3154
3155 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3156
3157 switch (adapter->rx_ps_pages) {
3158 case 3:
3159 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3160 /* fall-through */
3161 case 2:
3162 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3163 /* fall-through */
3164 case 1:
3165 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3166 break;
3167 }
3168
3169 ew32(PSRCTL, psrctl);
3170 }
3171
3172 /* This is useful for sniffing bad packets. */
3173 if (adapter->netdev->features & NETIF_F_RXALL) {
3174 /* UPE and MPE will be handled by normal PROMISC logic
3175 * in e1000e_set_rx_mode
3176 */
3177 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3178 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3179 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3180
3181 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3182 E1000_RCTL_DPF | /* Allow filtered pause */
3183 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3184 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3185 * and that breaks VLANs.
3186 */
3187 }
3188
3189 ew32(RCTL, rctl);
3190 /* just started the receive unit, no need to restart */
3191 adapter->flags &= ~FLAG_RESTART_NOW;
3192 }
3193
3194 /**
3195 * e1000_configure_rx - Configure Receive Unit after Reset
3196 * @adapter: board private structure
3197 *
3198 * Configure the Rx unit of the MAC after a reset.
3199 **/
3200 static void e1000_configure_rx(struct e1000_adapter *adapter)
3201 {
3202 struct e1000_hw *hw = &adapter->hw;
3203 struct e1000_ring *rx_ring = adapter->rx_ring;
3204 u64 rdba;
3205 u32 rdlen, rctl, rxcsum, ctrl_ext;
3206
3207 if (adapter->rx_ps_pages) {
3208 /* this is a 32 byte descriptor */
3209 rdlen = rx_ring->count *
3210 sizeof(union e1000_rx_desc_packet_split);
3211 adapter->clean_rx = e1000_clean_rx_irq_ps;
3212 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3213 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3214 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3215 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3216 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3217 } else {
3218 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3219 adapter->clean_rx = e1000_clean_rx_irq;
3220 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3221 }
3222
3223 /* disable receives while setting up the descriptors */
3224 rctl = er32(RCTL);
3225 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3226 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3227 e1e_flush();
3228 usleep_range(10000, 20000);
3229
3230 if (adapter->flags2 & FLAG2_DMA_BURST) {
3231 /* set the writeback threshold (only takes effect if the RDTR
3232 * is set). set GRAN=1 and write back up to 0x4 worth, and
3233 * enable prefetching of 0x20 Rx descriptors
3234 * granularity = 01
3235 * wthresh = 04,
3236 * hthresh = 04,
3237 * pthresh = 0x20
3238 */
3239 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3240 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3241
3242 /* override the delay timers for enabling bursting, only if
3243 * the value was not set by the user via module options
3244 */
3245 if (adapter->rx_int_delay == DEFAULT_RDTR)
3246 adapter->rx_int_delay = BURST_RDTR;
3247 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3248 adapter->rx_abs_int_delay = BURST_RADV;
3249 }
3250
3251 /* set the Receive Delay Timer Register */
3252 ew32(RDTR, adapter->rx_int_delay);
3253
3254 /* irq moderation */
3255 ew32(RADV, adapter->rx_abs_int_delay);
3256 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3257 e1000e_write_itr(adapter, adapter->itr);
3258
3259 ctrl_ext = er32(CTRL_EXT);
3260 /* Auto-Mask interrupts upon ICR access */
3261 ctrl_ext |= E1000_CTRL_EXT_IAME;
3262 ew32(IAM, 0xffffffff);
3263 ew32(CTRL_EXT, ctrl_ext);
3264 e1e_flush();
3265
3266 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3267 * the Base and Length of the Rx Descriptor Ring
3268 */
3269 rdba = rx_ring->dma;
3270 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3271 ew32(RDBAH(0), (rdba >> 32));
3272 ew32(RDLEN(0), rdlen);
3273 ew32(RDH(0), 0);
3274 ew32(RDT(0), 0);
3275 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3276 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3277
3278 /* Enable Receive Checksum Offload for TCP and UDP */
3279 rxcsum = er32(RXCSUM);
3280 if (adapter->netdev->features & NETIF_F_RXCSUM)
3281 rxcsum |= E1000_RXCSUM_TUOFL;
3282 else
3283 rxcsum &= ~E1000_RXCSUM_TUOFL;
3284 ew32(RXCSUM, rxcsum);
3285
3286 /* With jumbo frames, excessive C-state transition latencies result
3287 * in dropped transactions.
3288 */
3289 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3290 u32 lat =
3291 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3292 adapter->max_frame_size) * 8 / 1000;
3293
3294 if (adapter->flags & FLAG_IS_ICH) {
3295 u32 rxdctl = er32(RXDCTL(0));
3296
3297 ew32(RXDCTL(0), rxdctl | 0x3);
3298 }
3299
3300 pm_qos_update_request(&adapter->pm_qos_req, lat);
3301 } else {
3302 pm_qos_update_request(&adapter->pm_qos_req,
3303 PM_QOS_DEFAULT_VALUE);
3304 }
3305
3306 /* Enable Receives */
3307 ew32(RCTL, rctl);
3308 }
3309
3310 /**
3311 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3312 * @netdev: network interface device structure
3313 *
3314 * Writes multicast address list to the MTA hash table.
3315 * Returns: -ENOMEM on failure
3316 * 0 on no addresses written
3317 * X on writing X addresses to MTA
3318 */
3319 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3320 {
3321 struct e1000_adapter *adapter = netdev_priv(netdev);
3322 struct e1000_hw *hw = &adapter->hw;
3323 struct netdev_hw_addr *ha;
3324 u8 *mta_list;
3325 int i;
3326
3327 if (netdev_mc_empty(netdev)) {
3328 /* nothing to program, so clear mc list */
3329 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3330 return 0;
3331 }
3332
3333 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3334 if (!mta_list)
3335 return -ENOMEM;
3336
3337 /* update_mc_addr_list expects a packed array of only addresses. */
3338 i = 0;
3339 netdev_for_each_mc_addr(ha, netdev)
3340 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3341
3342 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3343 kfree(mta_list);
3344
3345 return netdev_mc_count(netdev);
3346 }
3347
3348 /**
3349 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3350 * @netdev: network interface device structure
3351 *
3352 * Writes unicast address list to the RAR table.
3353 * Returns: -ENOMEM on failure/insufficient address space
3354 * 0 on no addresses written
3355 * X on writing X addresses to the RAR table
3356 **/
3357 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3358 {
3359 struct e1000_adapter *adapter = netdev_priv(netdev);
3360 struct e1000_hw *hw = &adapter->hw;
3361 unsigned int rar_entries;
3362 int count = 0;
3363
3364 rar_entries = hw->mac.ops.rar_get_count(hw);
3365
3366 /* save a rar entry for our hardware address */
3367 rar_entries--;
3368
3369 /* save a rar entry for the LAA workaround */
3370 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3371 rar_entries--;
3372
3373 /* return ENOMEM indicating insufficient memory for addresses */
3374 if (netdev_uc_count(netdev) > rar_entries)
3375 return -ENOMEM;
3376
3377 if (!netdev_uc_empty(netdev) && rar_entries) {
3378 struct netdev_hw_addr *ha;
3379
3380 /* write the addresses in reverse order to avoid write
3381 * combining
3382 */
3383 netdev_for_each_uc_addr(ha, netdev) {
3384 int rval;
3385
3386 if (!rar_entries)
3387 break;
3388 rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3389 if (rval < 0)
3390 return -ENOMEM;
3391 count++;
3392 }
3393 }
3394
3395 /* zero out the remaining RAR entries not used above */
3396 for (; rar_entries > 0; rar_entries--) {
3397 ew32(RAH(rar_entries), 0);
3398 ew32(RAL(rar_entries), 0);
3399 }
3400 e1e_flush();
3401
3402 return count;
3403 }
3404
3405 /**
3406 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3407 * @netdev: network interface device structure
3408 *
3409 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3410 * address list or the network interface flags are updated. This routine is
3411 * responsible for configuring the hardware for proper unicast, multicast,
3412 * promiscuous mode, and all-multi behavior.
3413 **/
3414 static void e1000e_set_rx_mode(struct net_device *netdev)
3415 {
3416 struct e1000_adapter *adapter = netdev_priv(netdev);
3417 struct e1000_hw *hw = &adapter->hw;
3418 u32 rctl;
3419
3420 if (pm_runtime_suspended(netdev->dev.parent))
3421 return;
3422
3423 /* Check for Promiscuous and All Multicast modes */
3424 rctl = er32(RCTL);
3425
3426 /* clear the affected bits */
3427 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3428
3429 if (netdev->flags & IFF_PROMISC) {
3430 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3431 /* Do not hardware filter VLANs in promisc mode */
3432 e1000e_vlan_filter_disable(adapter);
3433 } else {
3434 int count;
3435
3436 if (netdev->flags & IFF_ALLMULTI) {
3437 rctl |= E1000_RCTL_MPE;
3438 } else {
3439 /* Write addresses to the MTA, if the attempt fails
3440 * then we should just turn on promiscuous mode so
3441 * that we can at least receive multicast traffic
3442 */
3443 count = e1000e_write_mc_addr_list(netdev);
3444 if (count < 0)
3445 rctl |= E1000_RCTL_MPE;
3446 }
3447 e1000e_vlan_filter_enable(adapter);
3448 /* Write addresses to available RAR registers, if there is not
3449 * sufficient space to store all the addresses then enable
3450 * unicast promiscuous mode
3451 */
3452 count = e1000e_write_uc_addr_list(netdev);
3453 if (count < 0)
3454 rctl |= E1000_RCTL_UPE;
3455 }
3456
3457 ew32(RCTL, rctl);
3458
3459 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3460 e1000e_vlan_strip_enable(adapter);
3461 else
3462 e1000e_vlan_strip_disable(adapter);
3463 }
3464
3465 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3466 {
3467 struct e1000_hw *hw = &adapter->hw;
3468 u32 mrqc, rxcsum;
3469 u32 rss_key[10];
3470 int i;
3471
3472 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3473 for (i = 0; i < 10; i++)
3474 ew32(RSSRK(i), rss_key[i]);
3475
3476 /* Direct all traffic to queue 0 */
3477 for (i = 0; i < 32; i++)
3478 ew32(RETA(i), 0);
3479
3480 /* Disable raw packet checksumming so that RSS hash is placed in
3481 * descriptor on writeback.
3482 */
3483 rxcsum = er32(RXCSUM);
3484 rxcsum |= E1000_RXCSUM_PCSD;
3485
3486 ew32(RXCSUM, rxcsum);
3487
3488 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3489 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3490 E1000_MRQC_RSS_FIELD_IPV6 |
3491 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3492 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3493
3494 ew32(MRQC, mrqc);
3495 }
3496
3497 /**
3498 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3499 * @adapter: board private structure
3500 * @timinca: pointer to returned time increment attributes
3501 *
3502 * Get attributes for incrementing the System Time Register SYSTIML/H at
3503 * the default base frequency, and set the cyclecounter shift value.
3504 **/
3505 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3506 {
3507 struct e1000_hw *hw = &adapter->hw;
3508 u32 incvalue, incperiod, shift;
3509
3510 /* Make sure clock is enabled on I217/I218/I219 before checking
3511 * the frequency
3512 */
3513 if (((hw->mac.type == e1000_pch_lpt) ||
3514 (hw->mac.type == e1000_pch_spt)) &&
3515 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3516 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3517 u32 fextnvm7 = er32(FEXTNVM7);
3518
3519 if (!(fextnvm7 & (1 << 0))) {
3520 ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3521 e1e_flush();
3522 }
3523 }
3524
3525 switch (hw->mac.type) {
3526 case e1000_pch2lan:
3527 case e1000_pch_lpt:
3528 case e1000_pch_spt:
3529 /* On I217, I218 and I219, the clock frequency is 25MHz
3530 * or 96MHz as indicated by the System Clock Frequency
3531 * Indication
3532 */
3533 if (((hw->mac.type != e1000_pch_lpt) &&
3534 (hw->mac.type != e1000_pch_spt)) ||
3535 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3536 /* Stable 96MHz frequency */
3537 incperiod = INCPERIOD_96MHz;
3538 incvalue = INCVALUE_96MHz;
3539 shift = INCVALUE_SHIFT_96MHz;
3540 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3541 break;
3542 }
3543 /* fall-through */
3544 case e1000_82574:
3545 case e1000_82583:
3546 /* Stable 25MHz frequency */
3547 incperiod = INCPERIOD_25MHz;
3548 incvalue = INCVALUE_25MHz;
3549 shift = INCVALUE_SHIFT_25MHz;
3550 adapter->cc.shift = shift;
3551 break;
3552 default:
3553 return -EINVAL;
3554 }
3555
3556 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3557 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3558
3559 return 0;
3560 }
3561
3562 /**
3563 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3564 * @adapter: board private structure
3565 *
3566 * Outgoing time stamping can be enabled and disabled. Play nice and
3567 * disable it when requested, although it shouldn't cause any overhead
3568 * when no packet needs it. At most one packet in the queue may be
3569 * marked for time stamping, otherwise it would be impossible to tell
3570 * for sure to which packet the hardware time stamp belongs.
3571 *
3572 * Incoming time stamping has to be configured via the hardware filters.
3573 * Not all combinations are supported, in particular event type has to be
3574 * specified. Matching the kind of event packet is not supported, with the
3575 * exception of "all V2 events regardless of level 2 or 4".
3576 **/
3577 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3578 struct hwtstamp_config *config)
3579 {
3580 struct e1000_hw *hw = &adapter->hw;
3581 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3582 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3583 u32 rxmtrl = 0;
3584 u16 rxudp = 0;
3585 bool is_l4 = false;
3586 bool is_l2 = false;
3587 u32 regval;
3588 s32 ret_val;
3589
3590 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3591 return -EINVAL;
3592
3593 /* flags reserved for future extensions - must be zero */
3594 if (config->flags)
3595 return -EINVAL;
3596
3597 switch (config->tx_type) {
3598 case HWTSTAMP_TX_OFF:
3599 tsync_tx_ctl = 0;
3600 break;
3601 case HWTSTAMP_TX_ON:
3602 break;
3603 default:
3604 return -ERANGE;
3605 }
3606
3607 switch (config->rx_filter) {
3608 case HWTSTAMP_FILTER_NONE:
3609 tsync_rx_ctl = 0;
3610 break;
3611 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3612 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3613 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3614 is_l4 = true;
3615 break;
3616 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3617 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3618 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3619 is_l4 = true;
3620 break;
3621 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3622 /* Also time stamps V2 L2 Path Delay Request/Response */
3623 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3624 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3625 is_l2 = true;
3626 break;
3627 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3628 /* Also time stamps V2 L2 Path Delay Request/Response. */
3629 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3630 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3631 is_l2 = true;
3632 break;
3633 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3634 /* Hardware cannot filter just V2 L4 Sync messages;
3635 * fall-through to V2 (both L2 and L4) Sync.
3636 */
3637 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3638 /* Also time stamps V2 Path Delay Request/Response. */
3639 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3640 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3641 is_l2 = true;
3642 is_l4 = true;
3643 break;
3644 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3645 /* Hardware cannot filter just V2 L4 Delay Request messages;
3646 * fall-through to V2 (both L2 and L4) Delay Request.
3647 */
3648 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3649 /* Also time stamps V2 Path Delay Request/Response. */
3650 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3651 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3652 is_l2 = true;
3653 is_l4 = true;
3654 break;
3655 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3656 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3657 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3658 * fall-through to all V2 (both L2 and L4) Events.
3659 */
3660 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3661 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3662 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3663 is_l2 = true;
3664 is_l4 = true;
3665 break;
3666 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3667 /* For V1, the hardware can only filter Sync messages or
3668 * Delay Request messages but not both so fall-through to
3669 * time stamp all packets.
3670 */
3671 case HWTSTAMP_FILTER_ALL:
3672 is_l2 = true;
3673 is_l4 = true;
3674 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3675 config->rx_filter = HWTSTAMP_FILTER_ALL;
3676 break;
3677 default:
3678 return -ERANGE;
3679 }
3680
3681 adapter->hwtstamp_config = *config;
3682
3683 /* enable/disable Tx h/w time stamping */
3684 regval = er32(TSYNCTXCTL);
3685 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3686 regval |= tsync_tx_ctl;
3687 ew32(TSYNCTXCTL, regval);
3688 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3689 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3690 e_err("Timesync Tx Control register not set as expected\n");
3691 return -EAGAIN;
3692 }
3693
3694 /* enable/disable Rx h/w time stamping */
3695 regval = er32(TSYNCRXCTL);
3696 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3697 regval |= tsync_rx_ctl;
3698 ew32(TSYNCRXCTL, regval);
3699 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3700 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3701 (regval & (E1000_TSYNCRXCTL_ENABLED |
3702 E1000_TSYNCRXCTL_TYPE_MASK))) {
3703 e_err("Timesync Rx Control register not set as expected\n");
3704 return -EAGAIN;
3705 }
3706
3707 /* L2: define ethertype filter for time stamped packets */
3708 if (is_l2)
3709 rxmtrl |= ETH_P_1588;
3710
3711 /* define which PTP packets get time stamped */
3712 ew32(RXMTRL, rxmtrl);
3713
3714 /* Filter by destination port */
3715 if (is_l4) {
3716 rxudp = PTP_EV_PORT;
3717 cpu_to_be16s(&rxudp);
3718 }
3719 ew32(RXUDP, rxudp);
3720
3721 e1e_flush();
3722
3723 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3724 er32(RXSTMPH);
3725 er32(TXSTMPH);
3726
3727 /* Get and set the System Time Register SYSTIM base frequency */
3728 ret_val = e1000e_get_base_timinca(adapter, &regval);
3729 if (ret_val)
3730 return ret_val;
3731 ew32(TIMINCA, regval);
3732
3733 /* reset the ns time counter */
3734 timecounter_init(&adapter->tc, &adapter->cc,
3735 ktime_to_ns(ktime_get_real()));
3736
3737 return 0;
3738 }
3739
3740 /**
3741 * e1000_configure - configure the hardware for Rx and Tx
3742 * @adapter: private board structure
3743 **/
3744 static void e1000_configure(struct e1000_adapter *adapter)
3745 {
3746 struct e1000_ring *rx_ring = adapter->rx_ring;
3747
3748 e1000e_set_rx_mode(adapter->netdev);
3749
3750 e1000_restore_vlan(adapter);
3751 e1000_init_manageability_pt(adapter);
3752
3753 e1000_configure_tx(adapter);
3754
3755 if (adapter->netdev->features & NETIF_F_RXHASH)
3756 e1000e_setup_rss_hash(adapter);
3757 e1000_setup_rctl(adapter);
3758 e1000_configure_rx(adapter);
3759 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3760 }
3761
3762 /**
3763 * e1000e_power_up_phy - restore link in case the phy was powered down
3764 * @adapter: address of board private structure
3765 *
3766 * The phy may be powered down to save power and turn off link when the
3767 * driver is unloaded and wake on lan is not enabled (among others)
3768 * *** this routine MUST be followed by a call to e1000e_reset ***
3769 **/
3770 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3771 {
3772 if (adapter->hw.phy.ops.power_up)
3773 adapter->hw.phy.ops.power_up(&adapter->hw);
3774
3775 adapter->hw.mac.ops.setup_link(&adapter->hw);
3776 }
3777
3778 /**
3779 * e1000_power_down_phy - Power down the PHY
3780 *
3781 * Power down the PHY so no link is implied when interface is down.
3782 * The PHY cannot be powered down if management or WoL is active.
3783 */
3784 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3785 {
3786 if (adapter->hw.phy.ops.power_down)
3787 adapter->hw.phy.ops.power_down(&adapter->hw);
3788 }
3789
3790 /**
3791 * e1000e_reset - bring the hardware into a known good state
3792 *
3793 * This function boots the hardware and enables some settings that
3794 * require a configuration cycle of the hardware - those cannot be
3795 * set/changed during runtime. After reset the device needs to be
3796 * properly configured for Rx, Tx etc.
3797 */
3798 void e1000e_reset(struct e1000_adapter *adapter)
3799 {
3800 struct e1000_mac_info *mac = &adapter->hw.mac;
3801 struct e1000_fc_info *fc = &adapter->hw.fc;
3802 struct e1000_hw *hw = &adapter->hw;
3803 u32 tx_space, min_tx_space, min_rx_space;
3804 u32 pba = adapter->pba;
3805 u16 hwm;
3806
3807 /* reset Packet Buffer Allocation to default */
3808 ew32(PBA, pba);
3809
3810 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3811 /* To maintain wire speed transmits, the Tx FIFO should be
3812 * large enough to accommodate two full transmit packets,
3813 * rounded up to the next 1KB and expressed in KB. Likewise,
3814 * the Rx FIFO should be large enough to accommodate at least
3815 * one full receive packet and is similarly rounded up and
3816 * expressed in KB.
3817 */
3818 pba = er32(PBA);
3819 /* upper 16 bits has Tx packet buffer allocation size in KB */
3820 tx_space = pba >> 16;
3821 /* lower 16 bits has Rx packet buffer allocation size in KB */
3822 pba &= 0xffff;
3823 /* the Tx fifo also stores 16 bytes of information about the Tx
3824 * but don't include ethernet FCS because hardware appends it
3825 */
3826 min_tx_space = (adapter->max_frame_size +
3827 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3828 min_tx_space = ALIGN(min_tx_space, 1024);
3829 min_tx_space >>= 10;
3830 /* software strips receive CRC, so leave room for it */
3831 min_rx_space = adapter->max_frame_size;
3832 min_rx_space = ALIGN(min_rx_space, 1024);
3833 min_rx_space >>= 10;
3834
3835 /* If current Tx allocation is less than the min Tx FIFO size,
3836 * and the min Tx FIFO size is less than the current Rx FIFO
3837 * allocation, take space away from current Rx allocation
3838 */
3839 if ((tx_space < min_tx_space) &&
3840 ((min_tx_space - tx_space) < pba)) {
3841 pba -= min_tx_space - tx_space;
3842
3843 /* if short on Rx space, Rx wins and must trump Tx
3844 * adjustment
3845 */
3846 if (pba < min_rx_space)
3847 pba = min_rx_space;
3848 }
3849
3850 ew32(PBA, pba);
3851 }
3852
3853 /* flow control settings
3854 *
3855 * The high water mark must be low enough to fit one full frame
3856 * (or the size used for early receive) above it in the Rx FIFO.
3857 * Set it to the lower of:
3858 * - 90% of the Rx FIFO size, and
3859 * - the full Rx FIFO size minus one full frame
3860 */
3861 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3862 fc->pause_time = 0xFFFF;
3863 else
3864 fc->pause_time = E1000_FC_PAUSE_TIME;
3865 fc->send_xon = true;
3866 fc->current_mode = fc->requested_mode;
3867
3868 switch (hw->mac.type) {
3869 case e1000_ich9lan:
3870 case e1000_ich10lan:
3871 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3872 pba = 14;
3873 ew32(PBA, pba);
3874 fc->high_water = 0x2800;
3875 fc->low_water = fc->high_water - 8;
3876 break;
3877 }
3878 /* fall-through */
3879 default:
3880 hwm = min(((pba << 10) * 9 / 10),
3881 ((pba << 10) - adapter->max_frame_size));
3882
3883 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3884 fc->low_water = fc->high_water - 8;
3885 break;
3886 case e1000_pchlan:
3887 /* Workaround PCH LOM adapter hangs with certain network
3888 * loads. If hangs persist, try disabling Tx flow control.
3889 */
3890 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3891 fc->high_water = 0x3500;
3892 fc->low_water = 0x1500;
3893 } else {
3894 fc->high_water = 0x5000;
3895 fc->low_water = 0x3000;
3896 }
3897 fc->refresh_time = 0x1000;
3898 break;
3899 case e1000_pch2lan:
3900 case e1000_pch_lpt:
3901 case e1000_pch_spt:
3902 fc->refresh_time = 0x0400;
3903
3904 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3905 fc->high_water = 0x05C20;
3906 fc->low_water = 0x05048;
3907 fc->pause_time = 0x0650;
3908 break;
3909 }
3910
3911 pba = 14;
3912 ew32(PBA, pba);
3913 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3914 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3915 break;
3916 }
3917
3918 /* Alignment of Tx data is on an arbitrary byte boundary with the
3919 * maximum size per Tx descriptor limited only to the transmit
3920 * allocation of the packet buffer minus 96 bytes with an upper
3921 * limit of 24KB due to receive synchronization limitations.
3922 */
3923 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3924 24 << 10);
3925
3926 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3927 * fit in receive buffer.
3928 */
3929 if (adapter->itr_setting & 0x3) {
3930 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3931 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3932 dev_info(&adapter->pdev->dev,
3933 "Interrupt Throttle Rate off\n");
3934 adapter->flags2 |= FLAG2_DISABLE_AIM;
3935 e1000e_write_itr(adapter, 0);
3936 }
3937 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3938 dev_info(&adapter->pdev->dev,
3939 "Interrupt Throttle Rate on\n");
3940 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3941 adapter->itr = 20000;
3942 e1000e_write_itr(adapter, adapter->itr);
3943 }
3944 }
3945
3946 /* Allow time for pending master requests to run */
3947 mac->ops.reset_hw(hw);
3948
3949 /* For parts with AMT enabled, let the firmware know
3950 * that the network interface is in control
3951 */
3952 if (adapter->flags & FLAG_HAS_AMT)
3953 e1000e_get_hw_control(adapter);
3954
3955 ew32(WUC, 0);
3956
3957 if (mac->ops.init_hw(hw))
3958 e_err("Hardware Error\n");
3959
3960 e1000_update_mng_vlan(adapter);
3961
3962 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3963 ew32(VET, ETH_P_8021Q);
3964
3965 e1000e_reset_adaptive(hw);
3966
3967 /* initialize systim and reset the ns time counter */
3968 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3969
3970 /* Set EEE advertisement as appropriate */
3971 if (adapter->flags2 & FLAG2_HAS_EEE) {
3972 s32 ret_val;
3973 u16 adv_addr;
3974
3975 switch (hw->phy.type) {
3976 case e1000_phy_82579:
3977 adv_addr = I82579_EEE_ADVERTISEMENT;
3978 break;
3979 case e1000_phy_i217:
3980 adv_addr = I217_EEE_ADVERTISEMENT;
3981 break;
3982 default:
3983 dev_err(&adapter->pdev->dev,
3984 "Invalid PHY type setting EEE advertisement\n");
3985 return;
3986 }
3987
3988 ret_val = hw->phy.ops.acquire(hw);
3989 if (ret_val) {
3990 dev_err(&adapter->pdev->dev,
3991 "EEE advertisement - unable to acquire PHY\n");
3992 return;
3993 }
3994
3995 e1000_write_emi_reg_locked(hw, adv_addr,
3996 hw->dev_spec.ich8lan.eee_disable ?
3997 0 : adapter->eee_advert);
3998
3999 hw->phy.ops.release(hw);
4000 }
4001
4002 if (!netif_running(adapter->netdev) &&
4003 !test_bit(__E1000_TESTING, &adapter->state))
4004 e1000_power_down_phy(adapter);
4005
4006 e1000_get_phy_info(hw);
4007
4008 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4009 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4010 u16 phy_data = 0;
4011 /* speed up time to link by disabling smart power down, ignore
4012 * the return value of this function because there is nothing
4013 * different we would do if it failed
4014 */
4015 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4016 phy_data &= ~IGP02E1000_PM_SPD;
4017 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4018 }
4019 }
4020
4021 int e1000e_up(struct e1000_adapter *adapter)
4022 {
4023 struct e1000_hw *hw = &adapter->hw;
4024
4025 /* hardware has been reset, we need to reload some things */
4026 e1000_configure(adapter);
4027
4028 clear_bit(__E1000_DOWN, &adapter->state);
4029
4030 if (adapter->msix_entries)
4031 e1000_configure_msix(adapter);
4032 e1000_irq_enable(adapter);
4033
4034 netif_start_queue(adapter->netdev);
4035
4036 /* fire a link change interrupt to start the watchdog */
4037 if (adapter->msix_entries)
4038 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4039 else
4040 ew32(ICS, E1000_ICS_LSC);
4041
4042 return 0;
4043 }
4044
4045 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4046 {
4047 struct e1000_hw *hw = &adapter->hw;
4048
4049 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4050 return;
4051
4052 /* flush pending descriptor writebacks to memory */
4053 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4054 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4055
4056 /* execute the writes immediately */
4057 e1e_flush();
4058
4059 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4060 * write is successful
4061 */
4062 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4063 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4064
4065 /* execute the writes immediately */
4066 e1e_flush();
4067 }
4068
4069 static void e1000e_update_stats(struct e1000_adapter *adapter);
4070
4071 /**
4072 * e1000e_down - quiesce the device and optionally reset the hardware
4073 * @adapter: board private structure
4074 * @reset: boolean flag to reset the hardware or not
4075 */
4076 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4077 {
4078 struct net_device *netdev = adapter->netdev;
4079 struct e1000_hw *hw = &adapter->hw;
4080 u32 tctl, rctl;
4081
4082 /* signal that we're down so the interrupt handler does not
4083 * reschedule our watchdog timer
4084 */
4085 set_bit(__E1000_DOWN, &adapter->state);
4086
4087 netif_carrier_off(netdev);
4088
4089 /* disable receives in the hardware */
4090 rctl = er32(RCTL);
4091 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4092 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4093 /* flush and sleep below */
4094
4095 netif_stop_queue(netdev);
4096
4097 /* disable transmits in the hardware */
4098 tctl = er32(TCTL);
4099 tctl &= ~E1000_TCTL_EN;
4100 ew32(TCTL, tctl);
4101
4102 /* flush both disables and wait for them to finish */
4103 e1e_flush();
4104 usleep_range(10000, 20000);
4105
4106 e1000_irq_disable(adapter);
4107
4108 napi_synchronize(&adapter->napi);
4109
4110 del_timer_sync(&adapter->watchdog_timer);
4111 del_timer_sync(&adapter->phy_info_timer);
4112
4113 spin_lock(&adapter->stats64_lock);
4114 e1000e_update_stats(adapter);
4115 spin_unlock(&adapter->stats64_lock);
4116
4117 e1000e_flush_descriptors(adapter);
4118 e1000_clean_tx_ring(adapter->tx_ring);
4119 e1000_clean_rx_ring(adapter->rx_ring);
4120
4121 adapter->link_speed = 0;
4122 adapter->link_duplex = 0;
4123
4124 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4125 if ((hw->mac.type >= e1000_pch2lan) &&
4126 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4127 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4128 e_dbg("failed to disable jumbo frame workaround mode\n");
4129
4130 if (reset && !pci_channel_offline(adapter->pdev))
4131 e1000e_reset(adapter);
4132 }
4133
4134 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4135 {
4136 might_sleep();
4137 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4138 usleep_range(1000, 2000);
4139 e1000e_down(adapter, true);
4140 e1000e_up(adapter);
4141 clear_bit(__E1000_RESETTING, &adapter->state);
4142 }
4143
4144 /**
4145 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4146 * @cc: cyclecounter structure
4147 **/
4148 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4149 {
4150 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4151 cc);
4152 struct e1000_hw *hw = &adapter->hw;
4153 cycle_t systim, systim_next;
4154
4155 /* latch SYSTIMH on read of SYSTIML */
4156 systim = (cycle_t)er32(SYSTIML);
4157 systim |= (cycle_t)er32(SYSTIMH) << 32;
4158
4159 if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4160 u64 incvalue, time_delta, rem, temp;
4161 int i;
4162
4163 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4164 * check to see that the time is incrementing at a reasonable
4165 * rate and is a multiple of incvalue
4166 */
4167 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4168 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4169 /* latch SYSTIMH on read of SYSTIML */
4170 systim_next = (cycle_t)er32(SYSTIML);
4171 systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4172
4173 time_delta = systim_next - systim;
4174 temp = time_delta;
4175 rem = do_div(temp, incvalue);
4176
4177 systim = systim_next;
4178
4179 if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4180 (rem == 0))
4181 break;
4182 }
4183 }
4184 return systim;
4185 }
4186
4187 /**
4188 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4189 * @adapter: board private structure to initialize
4190 *
4191 * e1000_sw_init initializes the Adapter private data structure.
4192 * Fields are initialized based on PCI device information and
4193 * OS network device settings (MTU size).
4194 **/
4195 static int e1000_sw_init(struct e1000_adapter *adapter)
4196 {
4197 struct net_device *netdev = adapter->netdev;
4198
4199 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4200 adapter->rx_ps_bsize0 = 128;
4201 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4202 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4203 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4204 adapter->rx_ring_count = E1000_DEFAULT_RXD;
4205
4206 spin_lock_init(&adapter->stats64_lock);
4207
4208 e1000e_set_interrupt_capability(adapter);
4209
4210 if (e1000_alloc_queues(adapter))
4211 return -ENOMEM;
4212
4213 /* Setup hardware time stamping cyclecounter */
4214 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4215 adapter->cc.read = e1000e_cyclecounter_read;
4216 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4217 adapter->cc.mult = 1;
4218 /* cc.shift set in e1000e_get_base_tininca() */
4219
4220 spin_lock_init(&adapter->systim_lock);
4221 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4222 }
4223
4224 /* Explicitly disable IRQ since the NIC can be in any state. */
4225 e1000_irq_disable(adapter);
4226
4227 set_bit(__E1000_DOWN, &adapter->state);
4228 return 0;
4229 }
4230
4231 /**
4232 * e1000_intr_msi_test - Interrupt Handler
4233 * @irq: interrupt number
4234 * @data: pointer to a network interface device structure
4235 **/
4236 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4237 {
4238 struct net_device *netdev = data;
4239 struct e1000_adapter *adapter = netdev_priv(netdev);
4240 struct e1000_hw *hw = &adapter->hw;
4241 u32 icr = er32(ICR);
4242
4243 e_dbg("icr is %08X\n", icr);
4244 if (icr & E1000_ICR_RXSEQ) {
4245 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4246 /* Force memory writes to complete before acknowledging the
4247 * interrupt is handled.
4248 */
4249 wmb();
4250 }
4251
4252 return IRQ_HANDLED;
4253 }
4254
4255 /**
4256 * e1000_test_msi_interrupt - Returns 0 for successful test
4257 * @adapter: board private struct
4258 *
4259 * code flow taken from tg3.c
4260 **/
4261 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4262 {
4263 struct net_device *netdev = adapter->netdev;
4264 struct e1000_hw *hw = &adapter->hw;
4265 int err;
4266
4267 /* poll_enable hasn't been called yet, so don't need disable */
4268 /* clear any pending events */
4269 er32(ICR);
4270
4271 /* free the real vector and request a test handler */
4272 e1000_free_irq(adapter);
4273 e1000e_reset_interrupt_capability(adapter);
4274
4275 /* Assume that the test fails, if it succeeds then the test
4276 * MSI irq handler will unset this flag
4277 */
4278 adapter->flags |= FLAG_MSI_TEST_FAILED;
4279
4280 err = pci_enable_msi(adapter->pdev);
4281 if (err)
4282 goto msi_test_failed;
4283
4284 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4285 netdev->name, netdev);
4286 if (err) {
4287 pci_disable_msi(adapter->pdev);
4288 goto msi_test_failed;
4289 }
4290
4291 /* Force memory writes to complete before enabling and firing an
4292 * interrupt.
4293 */
4294 wmb();
4295
4296 e1000_irq_enable(adapter);
4297
4298 /* fire an unusual interrupt on the test handler */
4299 ew32(ICS, E1000_ICS_RXSEQ);
4300 e1e_flush();
4301 msleep(100);
4302
4303 e1000_irq_disable(adapter);
4304
4305 rmb(); /* read flags after interrupt has been fired */
4306
4307 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4308 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4309 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4310 } else {
4311 e_dbg("MSI interrupt test succeeded!\n");
4312 }
4313
4314 free_irq(adapter->pdev->irq, netdev);
4315 pci_disable_msi(adapter->pdev);
4316
4317 msi_test_failed:
4318 e1000e_set_interrupt_capability(adapter);
4319 return e1000_request_irq(adapter);
4320 }
4321
4322 /**
4323 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4324 * @adapter: board private struct
4325 *
4326 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4327 **/
4328 static int e1000_test_msi(struct e1000_adapter *adapter)
4329 {
4330 int err;
4331 u16 pci_cmd;
4332
4333 if (!(adapter->flags & FLAG_MSI_ENABLED))
4334 return 0;
4335
4336 /* disable SERR in case the MSI write causes a master abort */
4337 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4338 if (pci_cmd & PCI_COMMAND_SERR)
4339 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4340 pci_cmd & ~PCI_COMMAND_SERR);
4341
4342 err = e1000_test_msi_interrupt(adapter);
4343
4344 /* re-enable SERR */
4345 if (pci_cmd & PCI_COMMAND_SERR) {
4346 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4347 pci_cmd |= PCI_COMMAND_SERR;
4348 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4349 }
4350
4351 return err;
4352 }
4353
4354 /**
4355 * e1000_open - Called when a network interface is made active
4356 * @netdev: network interface device structure
4357 *
4358 * Returns 0 on success, negative value on failure
4359 *
4360 * The open entry point is called when a network interface is made
4361 * active by the system (IFF_UP). At this point all resources needed
4362 * for transmit and receive operations are allocated, the interrupt
4363 * handler is registered with the OS, the watchdog timer is started,
4364 * and the stack is notified that the interface is ready.
4365 **/
4366 static int e1000_open(struct net_device *netdev)
4367 {
4368 struct e1000_adapter *adapter = netdev_priv(netdev);
4369 struct e1000_hw *hw = &adapter->hw;
4370 struct pci_dev *pdev = adapter->pdev;
4371 int err;
4372
4373 /* disallow open during test */
4374 if (test_bit(__E1000_TESTING, &adapter->state))
4375 return -EBUSY;
4376
4377 pm_runtime_get_sync(&pdev->dev);
4378
4379 netif_carrier_off(netdev);
4380
4381 /* allocate transmit descriptors */
4382 err = e1000e_setup_tx_resources(adapter->tx_ring);
4383 if (err)
4384 goto err_setup_tx;
4385
4386 /* allocate receive descriptors */
4387 err = e1000e_setup_rx_resources(adapter->rx_ring);
4388 if (err)
4389 goto err_setup_rx;
4390
4391 /* If AMT is enabled, let the firmware know that the network
4392 * interface is now open and reset the part to a known state.
4393 */
4394 if (adapter->flags & FLAG_HAS_AMT) {
4395 e1000e_get_hw_control(adapter);
4396 e1000e_reset(adapter);
4397 }
4398
4399 e1000e_power_up_phy(adapter);
4400
4401 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4402 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4403 e1000_update_mng_vlan(adapter);
4404
4405 /* DMA latency requirement to workaround jumbo issue */
4406 pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4407 PM_QOS_DEFAULT_VALUE);
4408
4409 /* before we allocate an interrupt, we must be ready to handle it.
4410 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4411 * as soon as we call pci_request_irq, so we have to setup our
4412 * clean_rx handler before we do so.
4413 */
4414 e1000_configure(adapter);
4415
4416 err = e1000_request_irq(adapter);
4417 if (err)
4418 goto err_req_irq;
4419
4420 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4421 * ignore e1000e MSI messages, which means we need to test our MSI
4422 * interrupt now
4423 */
4424 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4425 err = e1000_test_msi(adapter);
4426 if (err) {
4427 e_err("Interrupt allocation failed\n");
4428 goto err_req_irq;
4429 }
4430 }
4431
4432 /* From here on the code is the same as e1000e_up() */
4433 clear_bit(__E1000_DOWN, &adapter->state);
4434
4435 napi_enable(&adapter->napi);
4436
4437 e1000_irq_enable(adapter);
4438
4439 adapter->tx_hang_recheck = false;
4440 netif_start_queue(netdev);
4441
4442 hw->mac.get_link_status = true;
4443 pm_runtime_put(&pdev->dev);
4444
4445 /* fire a link status change interrupt to start the watchdog */
4446 if (adapter->msix_entries)
4447 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4448 else
4449 ew32(ICS, E1000_ICS_LSC);
4450
4451 return 0;
4452
4453 err_req_irq:
4454 e1000e_release_hw_control(adapter);
4455 e1000_power_down_phy(adapter);
4456 e1000e_free_rx_resources(adapter->rx_ring);
4457 err_setup_rx:
4458 e1000e_free_tx_resources(adapter->tx_ring);
4459 err_setup_tx:
4460 e1000e_reset(adapter);
4461 pm_runtime_put_sync(&pdev->dev);
4462
4463 return err;
4464 }
4465
4466 /**
4467 * e1000_close - Disables a network interface
4468 * @netdev: network interface device structure
4469 *
4470 * Returns 0, this is not allowed to fail
4471 *
4472 * The close entry point is called when an interface is de-activated
4473 * by the OS. The hardware is still under the drivers control, but
4474 * needs to be disabled. A global MAC reset is issued to stop the
4475 * hardware, and all transmit and receive resources are freed.
4476 **/
4477 static int e1000_close(struct net_device *netdev)
4478 {
4479 struct e1000_adapter *adapter = netdev_priv(netdev);
4480 struct pci_dev *pdev = adapter->pdev;
4481 int count = E1000_CHECK_RESET_COUNT;
4482
4483 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4484 usleep_range(10000, 20000);
4485
4486 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4487
4488 pm_runtime_get_sync(&pdev->dev);
4489
4490 if (!test_bit(__E1000_DOWN, &adapter->state)) {
4491 e1000e_down(adapter, true);
4492 e1000_free_irq(adapter);
4493
4494 /* Link status message must follow this format */
4495 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4496 }
4497
4498 napi_disable(&adapter->napi);
4499
4500 e1000e_free_tx_resources(adapter->tx_ring);
4501 e1000e_free_rx_resources(adapter->rx_ring);
4502
4503 /* kill manageability vlan ID if supported, but not if a vlan with
4504 * the same ID is registered on the host OS (let 8021q kill it)
4505 */
4506 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4507 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4508 adapter->mng_vlan_id);
4509
4510 /* If AMT is enabled, let the firmware know that the network
4511 * interface is now closed
4512 */
4513 if ((adapter->flags & FLAG_HAS_AMT) &&
4514 !test_bit(__E1000_TESTING, &adapter->state))
4515 e1000e_release_hw_control(adapter);
4516
4517 pm_qos_remove_request(&adapter->pm_qos_req);
4518
4519 pm_runtime_put_sync(&pdev->dev);
4520
4521 return 0;
4522 }
4523
4524 /**
4525 * e1000_set_mac - Change the Ethernet Address of the NIC
4526 * @netdev: network interface device structure
4527 * @p: pointer to an address structure
4528 *
4529 * Returns 0 on success, negative on failure
4530 **/
4531 static int e1000_set_mac(struct net_device *netdev, void *p)
4532 {
4533 struct e1000_adapter *adapter = netdev_priv(netdev);
4534 struct e1000_hw *hw = &adapter->hw;
4535 struct sockaddr *addr = p;
4536
4537 if (!is_valid_ether_addr(addr->sa_data))
4538 return -EADDRNOTAVAIL;
4539
4540 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4541 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4542
4543 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4544
4545 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4546 /* activate the work around */
4547 e1000e_set_laa_state_82571(&adapter->hw, 1);
4548
4549 /* Hold a copy of the LAA in RAR[14] This is done so that
4550 * between the time RAR[0] gets clobbered and the time it
4551 * gets fixed (in e1000_watchdog), the actual LAA is in one
4552 * of the RARs and no incoming packets directed to this port
4553 * are dropped. Eventually the LAA will be in RAR[0] and
4554 * RAR[14]
4555 */
4556 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4557 adapter->hw.mac.rar_entry_count - 1);
4558 }
4559
4560 return 0;
4561 }
4562
4563 /**
4564 * e1000e_update_phy_task - work thread to update phy
4565 * @work: pointer to our work struct
4566 *
4567 * this worker thread exists because we must acquire a
4568 * semaphore to read the phy, which we could msleep while
4569 * waiting for it, and we can't msleep in a timer.
4570 **/
4571 static void e1000e_update_phy_task(struct work_struct *work)
4572 {
4573 struct e1000_adapter *adapter = container_of(work,
4574 struct e1000_adapter,
4575 update_phy_task);
4576 struct e1000_hw *hw = &adapter->hw;
4577
4578 if (test_bit(__E1000_DOWN, &adapter->state))
4579 return;
4580
4581 e1000_get_phy_info(hw);
4582
4583 /* Enable EEE on 82579 after link up */
4584 if (hw->phy.type >= e1000_phy_82579)
4585 e1000_set_eee_pchlan(hw);
4586 }
4587
4588 /**
4589 * e1000_update_phy_info - timre call-back to update PHY info
4590 * @data: pointer to adapter cast into an unsigned long
4591 *
4592 * Need to wait a few seconds after link up to get diagnostic information from
4593 * the phy
4594 **/
4595 static void e1000_update_phy_info(unsigned long data)
4596 {
4597 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4598
4599 if (test_bit(__E1000_DOWN, &adapter->state))
4600 return;
4601
4602 schedule_work(&adapter->update_phy_task);
4603 }
4604
4605 /**
4606 * e1000e_update_phy_stats - Update the PHY statistics counters
4607 * @adapter: board private structure
4608 *
4609 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4610 **/
4611 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4612 {
4613 struct e1000_hw *hw = &adapter->hw;
4614 s32 ret_val;
4615 u16 phy_data;
4616
4617 ret_val = hw->phy.ops.acquire(hw);
4618 if (ret_val)
4619 return;
4620
4621 /* A page set is expensive so check if already on desired page.
4622 * If not, set to the page with the PHY status registers.
4623 */
4624 hw->phy.addr = 1;
4625 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4626 &phy_data);
4627 if (ret_val)
4628 goto release;
4629 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4630 ret_val = hw->phy.ops.set_page(hw,
4631 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4632 if (ret_val)
4633 goto release;
4634 }
4635
4636 /* Single Collision Count */
4637 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4638 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4639 if (!ret_val)
4640 adapter->stats.scc += phy_data;
4641
4642 /* Excessive Collision Count */
4643 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4644 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4645 if (!ret_val)
4646 adapter->stats.ecol += phy_data;
4647
4648 /* Multiple Collision Count */
4649 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4650 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4651 if (!ret_val)
4652 adapter->stats.mcc += phy_data;
4653
4654 /* Late Collision Count */
4655 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4656 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4657 if (!ret_val)
4658 adapter->stats.latecol += phy_data;
4659
4660 /* Collision Count - also used for adaptive IFS */
4661 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4662 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4663 if (!ret_val)
4664 hw->mac.collision_delta = phy_data;
4665
4666 /* Defer Count */
4667 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4668 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4669 if (!ret_val)
4670 adapter->stats.dc += phy_data;
4671
4672 /* Transmit with no CRS */
4673 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4674 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4675 if (!ret_val)
4676 adapter->stats.tncrs += phy_data;
4677
4678 release:
4679 hw->phy.ops.release(hw);
4680 }
4681
4682 /**
4683 * e1000e_update_stats - Update the board statistics counters
4684 * @adapter: board private structure
4685 **/
4686 static void e1000e_update_stats(struct e1000_adapter *adapter)
4687 {
4688 struct net_device *netdev = adapter->netdev;
4689 struct e1000_hw *hw = &adapter->hw;
4690 struct pci_dev *pdev = adapter->pdev;
4691
4692 /* Prevent stats update while adapter is being reset, or if the pci
4693 * connection is down.
4694 */
4695 if (adapter->link_speed == 0)
4696 return;
4697 if (pci_channel_offline(pdev))
4698 return;
4699
4700 adapter->stats.crcerrs += er32(CRCERRS);
4701 adapter->stats.gprc += er32(GPRC);
4702 adapter->stats.gorc += er32(GORCL);
4703 er32(GORCH); /* Clear gorc */
4704 adapter->stats.bprc += er32(BPRC);
4705 adapter->stats.mprc += er32(MPRC);
4706 adapter->stats.roc += er32(ROC);
4707
4708 adapter->stats.mpc += er32(MPC);
4709
4710 /* Half-duplex statistics */
4711 if (adapter->link_duplex == HALF_DUPLEX) {
4712 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4713 e1000e_update_phy_stats(adapter);
4714 } else {
4715 adapter->stats.scc += er32(SCC);
4716 adapter->stats.ecol += er32(ECOL);
4717 adapter->stats.mcc += er32(MCC);
4718 adapter->stats.latecol += er32(LATECOL);
4719 adapter->stats.dc += er32(DC);
4720
4721 hw->mac.collision_delta = er32(COLC);
4722
4723 if ((hw->mac.type != e1000_82574) &&
4724 (hw->mac.type != e1000_82583))
4725 adapter->stats.tncrs += er32(TNCRS);
4726 }
4727 adapter->stats.colc += hw->mac.collision_delta;
4728 }
4729
4730 adapter->stats.xonrxc += er32(XONRXC);
4731 adapter->stats.xontxc += er32(XONTXC);
4732 adapter->stats.xoffrxc += er32(XOFFRXC);
4733 adapter->stats.xofftxc += er32(XOFFTXC);
4734 adapter->stats.gptc += er32(GPTC);
4735 adapter->stats.gotc += er32(GOTCL);
4736 er32(GOTCH); /* Clear gotc */
4737 adapter->stats.rnbc += er32(RNBC);
4738 adapter->stats.ruc += er32(RUC);
4739
4740 adapter->stats.mptc += er32(MPTC);
4741 adapter->stats.bptc += er32(BPTC);
4742
4743 /* used for adaptive IFS */
4744
4745 hw->mac.tx_packet_delta = er32(TPT);
4746 adapter->stats.tpt += hw->mac.tx_packet_delta;
4747
4748 adapter->stats.algnerrc += er32(ALGNERRC);
4749 adapter->stats.rxerrc += er32(RXERRC);
4750 adapter->stats.cexterr += er32(CEXTERR);
4751 adapter->stats.tsctc += er32(TSCTC);
4752 adapter->stats.tsctfc += er32(TSCTFC);
4753
4754 /* Fill out the OS statistics structure */
4755 netdev->stats.multicast = adapter->stats.mprc;
4756 netdev->stats.collisions = adapter->stats.colc;
4757
4758 /* Rx Errors */
4759
4760 /* RLEC on some newer hardware can be incorrect so build
4761 * our own version based on RUC and ROC
4762 */
4763 netdev->stats.rx_errors = adapter->stats.rxerrc +
4764 adapter->stats.crcerrs + adapter->stats.algnerrc +
4765 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4766 netdev->stats.rx_length_errors = adapter->stats.ruc +
4767 adapter->stats.roc;
4768 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4769 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4770 netdev->stats.rx_missed_errors = adapter->stats.mpc;
4771
4772 /* Tx Errors */
4773 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4774 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4775 netdev->stats.tx_window_errors = adapter->stats.latecol;
4776 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4777
4778 /* Tx Dropped needs to be maintained elsewhere */
4779
4780 /* Management Stats */
4781 adapter->stats.mgptc += er32(MGTPTC);
4782 adapter->stats.mgprc += er32(MGTPRC);
4783 adapter->stats.mgpdc += er32(MGTPDC);
4784
4785 /* Correctable ECC Errors */
4786 if ((hw->mac.type == e1000_pch_lpt) ||
4787 (hw->mac.type == e1000_pch_spt)) {
4788 u32 pbeccsts = er32(PBECCSTS);
4789
4790 adapter->corr_errors +=
4791 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4792 adapter->uncorr_errors +=
4793 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4794 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4795 }
4796 }
4797
4798 /**
4799 * e1000_phy_read_status - Update the PHY register status snapshot
4800 * @adapter: board private structure
4801 **/
4802 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4803 {
4804 struct e1000_hw *hw = &adapter->hw;
4805 struct e1000_phy_regs *phy = &adapter->phy_regs;
4806
4807 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4808 (er32(STATUS) & E1000_STATUS_LU) &&
4809 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4810 int ret_val;
4811
4812 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4813 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4814 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4815 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4816 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4817 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4818 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4819 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4820 if (ret_val)
4821 e_warn("Error reading PHY register\n");
4822 } else {
4823 /* Do not read PHY registers if link is not up
4824 * Set values to typical power-on defaults
4825 */
4826 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4827 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4828 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4829 BMSR_ERCAP);
4830 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4831 ADVERTISE_ALL | ADVERTISE_CSMA);
4832 phy->lpa = 0;
4833 phy->expansion = EXPANSION_ENABLENPAGE;
4834 phy->ctrl1000 = ADVERTISE_1000FULL;
4835 phy->stat1000 = 0;
4836 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4837 }
4838 }
4839
4840 static void e1000_print_link_info(struct e1000_adapter *adapter)
4841 {
4842 struct e1000_hw *hw = &adapter->hw;
4843 u32 ctrl = er32(CTRL);
4844
4845 /* Link status message must follow this format for user tools */
4846 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4847 adapter->netdev->name, adapter->link_speed,
4848 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4849 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4850 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4851 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4852 }
4853
4854 static bool e1000e_has_link(struct e1000_adapter *adapter)
4855 {
4856 struct e1000_hw *hw = &adapter->hw;
4857 bool link_active = false;
4858 s32 ret_val = 0;
4859
4860 /* get_link_status is set on LSC (link status) interrupt or
4861 * Rx sequence error interrupt. get_link_status will stay
4862 * false until the check_for_link establishes link
4863 * for copper adapters ONLY
4864 */
4865 switch (hw->phy.media_type) {
4866 case e1000_media_type_copper:
4867 if (hw->mac.get_link_status) {
4868 ret_val = hw->mac.ops.check_for_link(hw);
4869 link_active = !hw->mac.get_link_status;
4870 } else {
4871 link_active = true;
4872 }
4873 break;
4874 case e1000_media_type_fiber:
4875 ret_val = hw->mac.ops.check_for_link(hw);
4876 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4877 break;
4878 case e1000_media_type_internal_serdes:
4879 ret_val = hw->mac.ops.check_for_link(hw);
4880 link_active = adapter->hw.mac.serdes_has_link;
4881 break;
4882 default:
4883 case e1000_media_type_unknown:
4884 break;
4885 }
4886
4887 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4888 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4889 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4890 e_info("Gigabit has been disabled, downgrading speed\n");
4891 }
4892
4893 return link_active;
4894 }
4895
4896 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4897 {
4898 /* make sure the receive unit is started */
4899 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4900 (adapter->flags & FLAG_RESTART_NOW)) {
4901 struct e1000_hw *hw = &adapter->hw;
4902 u32 rctl = er32(RCTL);
4903
4904 ew32(RCTL, rctl | E1000_RCTL_EN);
4905 adapter->flags &= ~FLAG_RESTART_NOW;
4906 }
4907 }
4908
4909 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4910 {
4911 struct e1000_hw *hw = &adapter->hw;
4912
4913 /* With 82574 controllers, PHY needs to be checked periodically
4914 * for hung state and reset, if two calls return true
4915 */
4916 if (e1000_check_phy_82574(hw))
4917 adapter->phy_hang_count++;
4918 else
4919 adapter->phy_hang_count = 0;
4920
4921 if (adapter->phy_hang_count > 1) {
4922 adapter->phy_hang_count = 0;
4923 e_dbg("PHY appears hung - resetting\n");
4924 schedule_work(&adapter->reset_task);
4925 }
4926 }
4927
4928 /**
4929 * e1000_watchdog - Timer Call-back
4930 * @data: pointer to adapter cast into an unsigned long
4931 **/
4932 static void e1000_watchdog(unsigned long data)
4933 {
4934 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4935
4936 /* Do the rest outside of interrupt context */
4937 schedule_work(&adapter->watchdog_task);
4938
4939 /* TODO: make this use queue_delayed_work() */
4940 }
4941
4942 static void e1000_watchdog_task(struct work_struct *work)
4943 {
4944 struct e1000_adapter *adapter = container_of(work,
4945 struct e1000_adapter,
4946 watchdog_task);
4947 struct net_device *netdev = adapter->netdev;
4948 struct e1000_mac_info *mac = &adapter->hw.mac;
4949 struct e1000_phy_info *phy = &adapter->hw.phy;
4950 struct e1000_ring *tx_ring = adapter->tx_ring;
4951 struct e1000_hw *hw = &adapter->hw;
4952 u32 link, tctl;
4953
4954 if (test_bit(__E1000_DOWN, &adapter->state))
4955 return;
4956
4957 link = e1000e_has_link(adapter);
4958 if ((netif_carrier_ok(netdev)) && link) {
4959 /* Cancel scheduled suspend requests. */
4960 pm_runtime_resume(netdev->dev.parent);
4961
4962 e1000e_enable_receives(adapter);
4963 goto link_up;
4964 }
4965
4966 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4967 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4968 e1000_update_mng_vlan(adapter);
4969
4970 if (link) {
4971 if (!netif_carrier_ok(netdev)) {
4972 bool txb2b = true;
4973
4974 /* Cancel scheduled suspend requests. */
4975 pm_runtime_resume(netdev->dev.parent);
4976
4977 /* update snapshot of PHY registers on LSC */
4978 e1000_phy_read_status(adapter);
4979 mac->ops.get_link_up_info(&adapter->hw,
4980 &adapter->link_speed,
4981 &adapter->link_duplex);
4982 e1000_print_link_info(adapter);
4983
4984 /* check if SmartSpeed worked */
4985 e1000e_check_downshift(hw);
4986 if (phy->speed_downgraded)
4987 netdev_warn(netdev,
4988 "Link Speed was downgraded by SmartSpeed\n");
4989
4990 /* On supported PHYs, check for duplex mismatch only
4991 * if link has autonegotiated at 10/100 half
4992 */
4993 if ((hw->phy.type == e1000_phy_igp_3 ||
4994 hw->phy.type == e1000_phy_bm) &&
4995 hw->mac.autoneg &&
4996 (adapter->link_speed == SPEED_10 ||
4997 adapter->link_speed == SPEED_100) &&
4998 (adapter->link_duplex == HALF_DUPLEX)) {
4999 u16 autoneg_exp;
5000
5001 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5002
5003 if (!(autoneg_exp & EXPANSION_NWAY))
5004 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5005 }
5006
5007 /* adjust timeout factor according to speed/duplex */
5008 adapter->tx_timeout_factor = 1;
5009 switch (adapter->link_speed) {
5010 case SPEED_10:
5011 txb2b = false;
5012 adapter->tx_timeout_factor = 16;
5013 break;
5014 case SPEED_100:
5015 txb2b = false;
5016 adapter->tx_timeout_factor = 10;
5017 break;
5018 }
5019
5020 /* workaround: re-program speed mode bit after
5021 * link-up event
5022 */
5023 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5024 !txb2b) {
5025 u32 tarc0;
5026
5027 tarc0 = er32(TARC(0));
5028 tarc0 &= ~SPEED_MODE_BIT;
5029 ew32(TARC(0), tarc0);
5030 }
5031
5032 /* disable TSO for pcie and 10/100 speeds, to avoid
5033 * some hardware issues
5034 */
5035 if (!(adapter->flags & FLAG_TSO_FORCE)) {
5036 switch (adapter->link_speed) {
5037 case SPEED_10:
5038 case SPEED_100:
5039 e_info("10/100 speed: disabling TSO\n");
5040 netdev->features &= ~NETIF_F_TSO;
5041 netdev->features &= ~NETIF_F_TSO6;
5042 break;
5043 case SPEED_1000:
5044 netdev->features |= NETIF_F_TSO;
5045 netdev->features |= NETIF_F_TSO6;
5046 break;
5047 default:
5048 /* oops */
5049 break;
5050 }
5051 }
5052
5053 /* enable transmits in the hardware, need to do this
5054 * after setting TARC(0)
5055 */
5056 tctl = er32(TCTL);
5057 tctl |= E1000_TCTL_EN;
5058 ew32(TCTL, tctl);
5059
5060 /* Perform any post-link-up configuration before
5061 * reporting link up.
5062 */
5063 if (phy->ops.cfg_on_link_up)
5064 phy->ops.cfg_on_link_up(hw);
5065
5066 netif_carrier_on(netdev);
5067
5068 if (!test_bit(__E1000_DOWN, &adapter->state))
5069 mod_timer(&adapter->phy_info_timer,
5070 round_jiffies(jiffies + 2 * HZ));
5071 }
5072 } else {
5073 if (netif_carrier_ok(netdev)) {
5074 adapter->link_speed = 0;
5075 adapter->link_duplex = 0;
5076 /* Link status message must follow this format */
5077 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5078 netif_carrier_off(netdev);
5079 if (!test_bit(__E1000_DOWN, &adapter->state))
5080 mod_timer(&adapter->phy_info_timer,
5081 round_jiffies(jiffies + 2 * HZ));
5082
5083 /* 8000ES2LAN requires a Rx packet buffer work-around
5084 * on link down event; reset the controller to flush
5085 * the Rx packet buffer.
5086 */
5087 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5088 adapter->flags |= FLAG_RESTART_NOW;
5089 else
5090 pm_schedule_suspend(netdev->dev.parent,
5091 LINK_TIMEOUT);
5092 }
5093 }
5094
5095 link_up:
5096 spin_lock(&adapter->stats64_lock);
5097 e1000e_update_stats(adapter);
5098
5099 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5100 adapter->tpt_old = adapter->stats.tpt;
5101 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5102 adapter->colc_old = adapter->stats.colc;
5103
5104 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5105 adapter->gorc_old = adapter->stats.gorc;
5106 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5107 adapter->gotc_old = adapter->stats.gotc;
5108 spin_unlock(&adapter->stats64_lock);
5109
5110 /* If the link is lost the controller stops DMA, but
5111 * if there is queued Tx work it cannot be done. So
5112 * reset the controller to flush the Tx packet buffers.
5113 */
5114 if (!netif_carrier_ok(netdev) &&
5115 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5116 adapter->flags |= FLAG_RESTART_NOW;
5117
5118 /* If reset is necessary, do it outside of interrupt context. */
5119 if (adapter->flags & FLAG_RESTART_NOW) {
5120 schedule_work(&adapter->reset_task);
5121 /* return immediately since reset is imminent */
5122 return;
5123 }
5124
5125 e1000e_update_adaptive(&adapter->hw);
5126
5127 /* Simple mode for Interrupt Throttle Rate (ITR) */
5128 if (adapter->itr_setting == 4) {
5129 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5130 * Total asymmetrical Tx or Rx gets ITR=8000;
5131 * everyone else is between 2000-8000.
5132 */
5133 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5134 u32 dif = (adapter->gotc > adapter->gorc ?
5135 adapter->gotc - adapter->gorc :
5136 adapter->gorc - adapter->gotc) / 10000;
5137 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5138
5139 e1000e_write_itr(adapter, itr);
5140 }
5141
5142 /* Cause software interrupt to ensure Rx ring is cleaned */
5143 if (adapter->msix_entries)
5144 ew32(ICS, adapter->rx_ring->ims_val);
5145 else
5146 ew32(ICS, E1000_ICS_RXDMT0);
5147
5148 /* flush pending descriptors to memory before detecting Tx hang */
5149 e1000e_flush_descriptors(adapter);
5150
5151 /* Force detection of hung controller every watchdog period */
5152 adapter->detect_tx_hung = true;
5153
5154 /* With 82571 controllers, LAA may be overwritten due to controller
5155 * reset from the other port. Set the appropriate LAA in RAR[0]
5156 */
5157 if (e1000e_get_laa_state_82571(hw))
5158 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5159
5160 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5161 e1000e_check_82574_phy_workaround(adapter);
5162
5163 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5164 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5165 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5166 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5167 er32(RXSTMPH);
5168 adapter->rx_hwtstamp_cleared++;
5169 } else {
5170 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5171 }
5172 }
5173
5174 /* Reset the timer */
5175 if (!test_bit(__E1000_DOWN, &adapter->state))
5176 mod_timer(&adapter->watchdog_timer,
5177 round_jiffies(jiffies + 2 * HZ));
5178 }
5179
5180 #define E1000_TX_FLAGS_CSUM 0x00000001
5181 #define E1000_TX_FLAGS_VLAN 0x00000002
5182 #define E1000_TX_FLAGS_TSO 0x00000004
5183 #define E1000_TX_FLAGS_IPV4 0x00000008
5184 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5185 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5186 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5187 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5188
5189 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5190 __be16 protocol)
5191 {
5192 struct e1000_context_desc *context_desc;
5193 struct e1000_buffer *buffer_info;
5194 unsigned int i;
5195 u32 cmd_length = 0;
5196 u16 ipcse = 0, mss;
5197 u8 ipcss, ipcso, tucss, tucso, hdr_len;
5198 int err;
5199
5200 if (!skb_is_gso(skb))
5201 return 0;
5202
5203 err = skb_cow_head(skb, 0);
5204 if (err < 0)
5205 return err;
5206
5207 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5208 mss = skb_shinfo(skb)->gso_size;
5209 if (protocol == htons(ETH_P_IP)) {
5210 struct iphdr *iph = ip_hdr(skb);
5211 iph->tot_len = 0;
5212 iph->check = 0;
5213 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5214 0, IPPROTO_TCP, 0);
5215 cmd_length = E1000_TXD_CMD_IP;
5216 ipcse = skb_transport_offset(skb) - 1;
5217 } else if (skb_is_gso_v6(skb)) {
5218 ipv6_hdr(skb)->payload_len = 0;
5219 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5220 &ipv6_hdr(skb)->daddr,
5221 0, IPPROTO_TCP, 0);
5222 ipcse = 0;
5223 }
5224 ipcss = skb_network_offset(skb);
5225 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5226 tucss = skb_transport_offset(skb);
5227 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5228
5229 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5230 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5231
5232 i = tx_ring->next_to_use;
5233 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5234 buffer_info = &tx_ring->buffer_info[i];
5235
5236 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5237 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5238 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5239 context_desc->upper_setup.tcp_fields.tucss = tucss;
5240 context_desc->upper_setup.tcp_fields.tucso = tucso;
5241 context_desc->upper_setup.tcp_fields.tucse = 0;
5242 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5243 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5244 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5245
5246 buffer_info->time_stamp = jiffies;
5247 buffer_info->next_to_watch = i;
5248
5249 i++;
5250 if (i == tx_ring->count)
5251 i = 0;
5252 tx_ring->next_to_use = i;
5253
5254 return 1;
5255 }
5256
5257 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5258 __be16 protocol)
5259 {
5260 struct e1000_adapter *adapter = tx_ring->adapter;
5261 struct e1000_context_desc *context_desc;
5262 struct e1000_buffer *buffer_info;
5263 unsigned int i;
5264 u8 css;
5265 u32 cmd_len = E1000_TXD_CMD_DEXT;
5266
5267 if (skb->ip_summed != CHECKSUM_PARTIAL)
5268 return false;
5269
5270 switch (protocol) {
5271 case cpu_to_be16(ETH_P_IP):
5272 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5273 cmd_len |= E1000_TXD_CMD_TCP;
5274 break;
5275 case cpu_to_be16(ETH_P_IPV6):
5276 /* XXX not handling all IPV6 headers */
5277 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5278 cmd_len |= E1000_TXD_CMD_TCP;
5279 break;
5280 default:
5281 if (unlikely(net_ratelimit()))
5282 e_warn("checksum_partial proto=%x!\n",
5283 be16_to_cpu(protocol));
5284 break;
5285 }
5286
5287 css = skb_checksum_start_offset(skb);
5288
5289 i = tx_ring->next_to_use;
5290 buffer_info = &tx_ring->buffer_info[i];
5291 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5292
5293 context_desc->lower_setup.ip_config = 0;
5294 context_desc->upper_setup.tcp_fields.tucss = css;
5295 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5296 context_desc->upper_setup.tcp_fields.tucse = 0;
5297 context_desc->tcp_seg_setup.data = 0;
5298 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5299
5300 buffer_info->time_stamp = jiffies;
5301 buffer_info->next_to_watch = i;
5302
5303 i++;
5304 if (i == tx_ring->count)
5305 i = 0;
5306 tx_ring->next_to_use = i;
5307
5308 return true;
5309 }
5310
5311 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5312 unsigned int first, unsigned int max_per_txd,
5313 unsigned int nr_frags)
5314 {
5315 struct e1000_adapter *adapter = tx_ring->adapter;
5316 struct pci_dev *pdev = adapter->pdev;
5317 struct e1000_buffer *buffer_info;
5318 unsigned int len = skb_headlen(skb);
5319 unsigned int offset = 0, size, count = 0, i;
5320 unsigned int f, bytecount, segs;
5321
5322 i = tx_ring->next_to_use;
5323
5324 while (len) {
5325 buffer_info = &tx_ring->buffer_info[i];
5326 size = min(len, max_per_txd);
5327
5328 buffer_info->length = size;
5329 buffer_info->time_stamp = jiffies;
5330 buffer_info->next_to_watch = i;
5331 buffer_info->dma = dma_map_single(&pdev->dev,
5332 skb->data + offset,
5333 size, DMA_TO_DEVICE);
5334 buffer_info->mapped_as_page = false;
5335 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5336 goto dma_error;
5337
5338 len -= size;
5339 offset += size;
5340 count++;
5341
5342 if (len) {
5343 i++;
5344 if (i == tx_ring->count)
5345 i = 0;
5346 }
5347 }
5348
5349 for (f = 0; f < nr_frags; f++) {
5350 const struct skb_frag_struct *frag;
5351
5352 frag = &skb_shinfo(skb)->frags[f];
5353 len = skb_frag_size(frag);
5354 offset = 0;
5355
5356 while (len) {
5357 i++;
5358 if (i == tx_ring->count)
5359 i = 0;
5360
5361 buffer_info = &tx_ring->buffer_info[i];
5362 size = min(len, max_per_txd);
5363
5364 buffer_info->length = size;
5365 buffer_info->time_stamp = jiffies;
5366 buffer_info->next_to_watch = i;
5367 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5368 offset, size,
5369 DMA_TO_DEVICE);
5370 buffer_info->mapped_as_page = true;
5371 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5372 goto dma_error;
5373
5374 len -= size;
5375 offset += size;
5376 count++;
5377 }
5378 }
5379
5380 segs = skb_shinfo(skb)->gso_segs ? : 1;
5381 /* multiply data chunks by size of headers */
5382 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5383
5384 tx_ring->buffer_info[i].skb = skb;
5385 tx_ring->buffer_info[i].segs = segs;
5386 tx_ring->buffer_info[i].bytecount = bytecount;
5387 tx_ring->buffer_info[first].next_to_watch = i;
5388
5389 return count;
5390
5391 dma_error:
5392 dev_err(&pdev->dev, "Tx DMA map failed\n");
5393 buffer_info->dma = 0;
5394 if (count)
5395 count--;
5396
5397 while (count--) {
5398 if (i == 0)
5399 i += tx_ring->count;
5400 i--;
5401 buffer_info = &tx_ring->buffer_info[i];
5402 e1000_put_txbuf(tx_ring, buffer_info);
5403 }
5404
5405 return 0;
5406 }
5407
5408 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5409 {
5410 struct e1000_adapter *adapter = tx_ring->adapter;
5411 struct e1000_tx_desc *tx_desc = NULL;
5412 struct e1000_buffer *buffer_info;
5413 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5414 unsigned int i;
5415
5416 if (tx_flags & E1000_TX_FLAGS_TSO) {
5417 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5418 E1000_TXD_CMD_TSE;
5419 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5420
5421 if (tx_flags & E1000_TX_FLAGS_IPV4)
5422 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5423 }
5424
5425 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5426 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5427 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5428 }
5429
5430 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5431 txd_lower |= E1000_TXD_CMD_VLE;
5432 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5433 }
5434
5435 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5436 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5437
5438 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5439 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5440 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5441 }
5442
5443 i = tx_ring->next_to_use;
5444
5445 do {
5446 buffer_info = &tx_ring->buffer_info[i];
5447 tx_desc = E1000_TX_DESC(*tx_ring, i);
5448 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5449 tx_desc->lower.data = cpu_to_le32(txd_lower |
5450 buffer_info->length);
5451 tx_desc->upper.data = cpu_to_le32(txd_upper);
5452
5453 i++;
5454 if (i == tx_ring->count)
5455 i = 0;
5456 } while (--count > 0);
5457
5458 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5459
5460 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5461 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5462 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5463
5464 /* Force memory writes to complete before letting h/w
5465 * know there are new descriptors to fetch. (Only
5466 * applicable for weak-ordered memory model archs,
5467 * such as IA-64).
5468 */
5469 wmb();
5470
5471 tx_ring->next_to_use = i;
5472 }
5473
5474 #define MINIMUM_DHCP_PACKET_SIZE 282
5475 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5476 struct sk_buff *skb)
5477 {
5478 struct e1000_hw *hw = &adapter->hw;
5479 u16 length, offset;
5480
5481 if (skb_vlan_tag_present(skb) &&
5482 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5483 (adapter->hw.mng_cookie.status &
5484 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5485 return 0;
5486
5487 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5488 return 0;
5489
5490 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5491 return 0;
5492
5493 {
5494 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5495 struct udphdr *udp;
5496
5497 if (ip->protocol != IPPROTO_UDP)
5498 return 0;
5499
5500 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5501 if (ntohs(udp->dest) != 67)
5502 return 0;
5503
5504 offset = (u8 *)udp + 8 - skb->data;
5505 length = skb->len - offset;
5506 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5507 }
5508
5509 return 0;
5510 }
5511
5512 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5513 {
5514 struct e1000_adapter *adapter = tx_ring->adapter;
5515
5516 netif_stop_queue(adapter->netdev);
5517 /* Herbert's original patch had:
5518 * smp_mb__after_netif_stop_queue();
5519 * but since that doesn't exist yet, just open code it.
5520 */
5521 smp_mb();
5522
5523 /* We need to check again in a case another CPU has just
5524 * made room available.
5525 */
5526 if (e1000_desc_unused(tx_ring) < size)
5527 return -EBUSY;
5528
5529 /* A reprieve! */
5530 netif_start_queue(adapter->netdev);
5531 ++adapter->restart_queue;
5532 return 0;
5533 }
5534
5535 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5536 {
5537 BUG_ON(size > tx_ring->count);
5538
5539 if (e1000_desc_unused(tx_ring) >= size)
5540 return 0;
5541 return __e1000_maybe_stop_tx(tx_ring, size);
5542 }
5543
5544 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5545 struct net_device *netdev)
5546 {
5547 struct e1000_adapter *adapter = netdev_priv(netdev);
5548 struct e1000_ring *tx_ring = adapter->tx_ring;
5549 unsigned int first;
5550 unsigned int tx_flags = 0;
5551 unsigned int len = skb_headlen(skb);
5552 unsigned int nr_frags;
5553 unsigned int mss;
5554 int count = 0;
5555 int tso;
5556 unsigned int f;
5557 __be16 protocol = vlan_get_protocol(skb);
5558
5559 if (test_bit(__E1000_DOWN, &adapter->state)) {
5560 dev_kfree_skb_any(skb);
5561 return NETDEV_TX_OK;
5562 }
5563
5564 if (skb->len <= 0) {
5565 dev_kfree_skb_any(skb);
5566 return NETDEV_TX_OK;
5567 }
5568
5569 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5570 * pad skb in order to meet this minimum size requirement
5571 */
5572 if (skb_put_padto(skb, 17))
5573 return NETDEV_TX_OK;
5574
5575 mss = skb_shinfo(skb)->gso_size;
5576 if (mss) {
5577 u8 hdr_len;
5578
5579 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5580 * points to just header, pull a few bytes of payload from
5581 * frags into skb->data
5582 */
5583 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5584 /* we do this workaround for ES2LAN, but it is un-necessary,
5585 * avoiding it could save a lot of cycles
5586 */
5587 if (skb->data_len && (hdr_len == len)) {
5588 unsigned int pull_size;
5589
5590 pull_size = min_t(unsigned int, 4, skb->data_len);
5591 if (!__pskb_pull_tail(skb, pull_size)) {
5592 e_err("__pskb_pull_tail failed.\n");
5593 dev_kfree_skb_any(skb);
5594 return NETDEV_TX_OK;
5595 }
5596 len = skb_headlen(skb);
5597 }
5598 }
5599
5600 /* reserve a descriptor for the offload context */
5601 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5602 count++;
5603 count++;
5604
5605 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5606
5607 nr_frags = skb_shinfo(skb)->nr_frags;
5608 for (f = 0; f < nr_frags; f++)
5609 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5610 adapter->tx_fifo_limit);
5611
5612 if (adapter->hw.mac.tx_pkt_filtering)
5613 e1000_transfer_dhcp_info(adapter, skb);
5614
5615 /* need: count + 2 desc gap to keep tail from touching
5616 * head, otherwise try next time
5617 */
5618 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5619 return NETDEV_TX_BUSY;
5620
5621 if (skb_vlan_tag_present(skb)) {
5622 tx_flags |= E1000_TX_FLAGS_VLAN;
5623 tx_flags |= (skb_vlan_tag_get(skb) <<
5624 E1000_TX_FLAGS_VLAN_SHIFT);
5625 }
5626
5627 first = tx_ring->next_to_use;
5628
5629 tso = e1000_tso(tx_ring, skb, protocol);
5630 if (tso < 0) {
5631 dev_kfree_skb_any(skb);
5632 return NETDEV_TX_OK;
5633 }
5634
5635 if (tso)
5636 tx_flags |= E1000_TX_FLAGS_TSO;
5637 else if (e1000_tx_csum(tx_ring, skb, protocol))
5638 tx_flags |= E1000_TX_FLAGS_CSUM;
5639
5640 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5641 * 82571 hardware supports TSO capabilities for IPv6 as well...
5642 * no longer assume, we must.
5643 */
5644 if (protocol == htons(ETH_P_IP))
5645 tx_flags |= E1000_TX_FLAGS_IPV4;
5646
5647 if (unlikely(skb->no_fcs))
5648 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5649
5650 /* if count is 0 then mapping error has occurred */
5651 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5652 nr_frags);
5653 if (count) {
5654 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5655 (adapter->flags & FLAG_HAS_HW_TIMESTAMP) &&
5656 !adapter->tx_hwtstamp_skb) {
5657 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5658 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5659 adapter->tx_hwtstamp_skb = skb_get(skb);
5660 adapter->tx_hwtstamp_start = jiffies;
5661 schedule_work(&adapter->tx_hwtstamp_work);
5662 } else {
5663 skb_tx_timestamp(skb);
5664 }
5665
5666 netdev_sent_queue(netdev, skb->len);
5667 e1000_tx_queue(tx_ring, tx_flags, count);
5668 /* Make sure there is space in the ring for the next send. */
5669 e1000_maybe_stop_tx(tx_ring,
5670 (MAX_SKB_FRAGS *
5671 DIV_ROUND_UP(PAGE_SIZE,
5672 adapter->tx_fifo_limit) + 2));
5673
5674 if (!skb->xmit_more ||
5675 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5676 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5677 e1000e_update_tdt_wa(tx_ring,
5678 tx_ring->next_to_use);
5679 else
5680 writel(tx_ring->next_to_use, tx_ring->tail);
5681
5682 /* we need this if more than one processor can write
5683 * to our tail at a time, it synchronizes IO on
5684 *IA64/Altix systems
5685 */
5686 mmiowb();
5687 }
5688 } else {
5689 dev_kfree_skb_any(skb);
5690 tx_ring->buffer_info[first].time_stamp = 0;
5691 tx_ring->next_to_use = first;
5692 }
5693
5694 return NETDEV_TX_OK;
5695 }
5696
5697 /**
5698 * e1000_tx_timeout - Respond to a Tx Hang
5699 * @netdev: network interface device structure
5700 **/
5701 static void e1000_tx_timeout(struct net_device *netdev)
5702 {
5703 struct e1000_adapter *adapter = netdev_priv(netdev);
5704
5705 /* Do the reset outside of interrupt context */
5706 adapter->tx_timeout_count++;
5707 schedule_work(&adapter->reset_task);
5708 }
5709
5710 static void e1000_reset_task(struct work_struct *work)
5711 {
5712 struct e1000_adapter *adapter;
5713 adapter = container_of(work, struct e1000_adapter, reset_task);
5714
5715 /* don't run the task if already down */
5716 if (test_bit(__E1000_DOWN, &adapter->state))
5717 return;
5718
5719 if (!(adapter->flags & FLAG_RESTART_NOW)) {
5720 e1000e_dump(adapter);
5721 e_err("Reset adapter unexpectedly\n");
5722 }
5723 e1000e_reinit_locked(adapter);
5724 }
5725
5726 /**
5727 * e1000_get_stats64 - Get System Network Statistics
5728 * @netdev: network interface device structure
5729 * @stats: rtnl_link_stats64 pointer
5730 *
5731 * Returns the address of the device statistics structure.
5732 **/
5733 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5734 struct rtnl_link_stats64 *stats)
5735 {
5736 struct e1000_adapter *adapter = netdev_priv(netdev);
5737
5738 memset(stats, 0, sizeof(struct rtnl_link_stats64));
5739 spin_lock(&adapter->stats64_lock);
5740 e1000e_update_stats(adapter);
5741 /* Fill out the OS statistics structure */
5742 stats->rx_bytes = adapter->stats.gorc;
5743 stats->rx_packets = adapter->stats.gprc;
5744 stats->tx_bytes = adapter->stats.gotc;
5745 stats->tx_packets = adapter->stats.gptc;
5746 stats->multicast = adapter->stats.mprc;
5747 stats->collisions = adapter->stats.colc;
5748
5749 /* Rx Errors */
5750
5751 /* RLEC on some newer hardware can be incorrect so build
5752 * our own version based on RUC and ROC
5753 */
5754 stats->rx_errors = adapter->stats.rxerrc +
5755 adapter->stats.crcerrs + adapter->stats.algnerrc +
5756 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5757 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5758 stats->rx_crc_errors = adapter->stats.crcerrs;
5759 stats->rx_frame_errors = adapter->stats.algnerrc;
5760 stats->rx_missed_errors = adapter->stats.mpc;
5761
5762 /* Tx Errors */
5763 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5764 stats->tx_aborted_errors = adapter->stats.ecol;
5765 stats->tx_window_errors = adapter->stats.latecol;
5766 stats->tx_carrier_errors = adapter->stats.tncrs;
5767
5768 /* Tx Dropped needs to be maintained elsewhere */
5769
5770 spin_unlock(&adapter->stats64_lock);
5771 return stats;
5772 }
5773
5774 /**
5775 * e1000_change_mtu - Change the Maximum Transfer Unit
5776 * @netdev: network interface device structure
5777 * @new_mtu: new value for maximum frame size
5778 *
5779 * Returns 0 on success, negative on failure
5780 **/
5781 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5782 {
5783 struct e1000_adapter *adapter = netdev_priv(netdev);
5784 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
5785
5786 /* Jumbo frame support */
5787 if ((max_frame > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) &&
5788 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5789 e_err("Jumbo Frames not supported.\n");
5790 return -EINVAL;
5791 }
5792
5793 /* Supported frame sizes */
5794 if ((new_mtu < (VLAN_ETH_ZLEN + ETH_FCS_LEN)) ||
5795 (max_frame > adapter->max_hw_frame_size)) {
5796 e_err("Unsupported MTU setting\n");
5797 return -EINVAL;
5798 }
5799
5800 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5801 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5802 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5803 (new_mtu > ETH_DATA_LEN)) {
5804 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5805 return -EINVAL;
5806 }
5807
5808 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5809 usleep_range(1000, 2000);
5810 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5811 adapter->max_frame_size = max_frame;
5812 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5813 netdev->mtu = new_mtu;
5814
5815 pm_runtime_get_sync(netdev->dev.parent);
5816
5817 if (netif_running(netdev))
5818 e1000e_down(adapter, true);
5819
5820 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5821 * means we reserve 2 more, this pushes us to allocate from the next
5822 * larger slab size.
5823 * i.e. RXBUFFER_2048 --> size-4096 slab
5824 * However with the new *_jumbo_rx* routines, jumbo receives will use
5825 * fragmented skbs
5826 */
5827
5828 if (max_frame <= 2048)
5829 adapter->rx_buffer_len = 2048;
5830 else
5831 adapter->rx_buffer_len = 4096;
5832
5833 /* adjust allocation if LPE protects us, and we aren't using SBP */
5834 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
5835 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
5836
5837 if (netif_running(netdev))
5838 e1000e_up(adapter);
5839 else
5840 e1000e_reset(adapter);
5841
5842 pm_runtime_put_sync(netdev->dev.parent);
5843
5844 clear_bit(__E1000_RESETTING, &adapter->state);
5845
5846 return 0;
5847 }
5848
5849 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5850 int cmd)
5851 {
5852 struct e1000_adapter *adapter = netdev_priv(netdev);
5853 struct mii_ioctl_data *data = if_mii(ifr);
5854
5855 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5856 return -EOPNOTSUPP;
5857
5858 switch (cmd) {
5859 case SIOCGMIIPHY:
5860 data->phy_id = adapter->hw.phy.addr;
5861 break;
5862 case SIOCGMIIREG:
5863 e1000_phy_read_status(adapter);
5864
5865 switch (data->reg_num & 0x1F) {
5866 case MII_BMCR:
5867 data->val_out = adapter->phy_regs.bmcr;
5868 break;
5869 case MII_BMSR:
5870 data->val_out = adapter->phy_regs.bmsr;
5871 break;
5872 case MII_PHYSID1:
5873 data->val_out = (adapter->hw.phy.id >> 16);
5874 break;
5875 case MII_PHYSID2:
5876 data->val_out = (adapter->hw.phy.id & 0xFFFF);
5877 break;
5878 case MII_ADVERTISE:
5879 data->val_out = adapter->phy_regs.advertise;
5880 break;
5881 case MII_LPA:
5882 data->val_out = adapter->phy_regs.lpa;
5883 break;
5884 case MII_EXPANSION:
5885 data->val_out = adapter->phy_regs.expansion;
5886 break;
5887 case MII_CTRL1000:
5888 data->val_out = adapter->phy_regs.ctrl1000;
5889 break;
5890 case MII_STAT1000:
5891 data->val_out = adapter->phy_regs.stat1000;
5892 break;
5893 case MII_ESTATUS:
5894 data->val_out = adapter->phy_regs.estatus;
5895 break;
5896 default:
5897 return -EIO;
5898 }
5899 break;
5900 case SIOCSMIIREG:
5901 default:
5902 return -EOPNOTSUPP;
5903 }
5904 return 0;
5905 }
5906
5907 /**
5908 * e1000e_hwtstamp_ioctl - control hardware time stamping
5909 * @netdev: network interface device structure
5910 * @ifreq: interface request
5911 *
5912 * Outgoing time stamping can be enabled and disabled. Play nice and
5913 * disable it when requested, although it shouldn't cause any overhead
5914 * when no packet needs it. At most one packet in the queue may be
5915 * marked for time stamping, otherwise it would be impossible to tell
5916 * for sure to which packet the hardware time stamp belongs.
5917 *
5918 * Incoming time stamping has to be configured via the hardware filters.
5919 * Not all combinations are supported, in particular event type has to be
5920 * specified. Matching the kind of event packet is not supported, with the
5921 * exception of "all V2 events regardless of level 2 or 4".
5922 **/
5923 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
5924 {
5925 struct e1000_adapter *adapter = netdev_priv(netdev);
5926 struct hwtstamp_config config;
5927 int ret_val;
5928
5929 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5930 return -EFAULT;
5931
5932 ret_val = e1000e_config_hwtstamp(adapter, &config);
5933 if (ret_val)
5934 return ret_val;
5935
5936 switch (config.rx_filter) {
5937 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5938 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5939 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5940 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5941 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5942 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5943 /* With V2 type filters which specify a Sync or Delay Request,
5944 * Path Delay Request/Response messages are also time stamped
5945 * by hardware so notify the caller the requested packets plus
5946 * some others are time stamped.
5947 */
5948 config.rx_filter = HWTSTAMP_FILTER_SOME;
5949 break;
5950 default:
5951 break;
5952 }
5953
5954 return copy_to_user(ifr->ifr_data, &config,
5955 sizeof(config)) ? -EFAULT : 0;
5956 }
5957
5958 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
5959 {
5960 struct e1000_adapter *adapter = netdev_priv(netdev);
5961
5962 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
5963 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
5964 }
5965
5966 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5967 {
5968 switch (cmd) {
5969 case SIOCGMIIPHY:
5970 case SIOCGMIIREG:
5971 case SIOCSMIIREG:
5972 return e1000_mii_ioctl(netdev, ifr, cmd);
5973 case SIOCSHWTSTAMP:
5974 return e1000e_hwtstamp_set(netdev, ifr);
5975 case SIOCGHWTSTAMP:
5976 return e1000e_hwtstamp_get(netdev, ifr);
5977 default:
5978 return -EOPNOTSUPP;
5979 }
5980 }
5981
5982 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5983 {
5984 struct e1000_hw *hw = &adapter->hw;
5985 u32 i, mac_reg, wuc;
5986 u16 phy_reg, wuc_enable;
5987 int retval;
5988
5989 /* copy MAC RARs to PHY RARs */
5990 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5991
5992 retval = hw->phy.ops.acquire(hw);
5993 if (retval) {
5994 e_err("Could not acquire PHY\n");
5995 return retval;
5996 }
5997
5998 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5999 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6000 if (retval)
6001 goto release;
6002
6003 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6004 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6005 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6006 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6007 (u16)(mac_reg & 0xFFFF));
6008 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6009 (u16)((mac_reg >> 16) & 0xFFFF));
6010 }
6011
6012 /* configure PHY Rx Control register */
6013 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6014 mac_reg = er32(RCTL);
6015 if (mac_reg & E1000_RCTL_UPE)
6016 phy_reg |= BM_RCTL_UPE;
6017 if (mac_reg & E1000_RCTL_MPE)
6018 phy_reg |= BM_RCTL_MPE;
6019 phy_reg &= ~(BM_RCTL_MO_MASK);
6020 if (mac_reg & E1000_RCTL_MO_3)
6021 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6022 << BM_RCTL_MO_SHIFT);
6023 if (mac_reg & E1000_RCTL_BAM)
6024 phy_reg |= BM_RCTL_BAM;
6025 if (mac_reg & E1000_RCTL_PMCF)
6026 phy_reg |= BM_RCTL_PMCF;
6027 mac_reg = er32(CTRL);
6028 if (mac_reg & E1000_CTRL_RFCE)
6029 phy_reg |= BM_RCTL_RFCE;
6030 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6031
6032 wuc = E1000_WUC_PME_EN;
6033 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6034 wuc |= E1000_WUC_APME;
6035
6036 /* enable PHY wakeup in MAC register */
6037 ew32(WUFC, wufc);
6038 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6039 E1000_WUC_PME_STATUS | wuc));
6040
6041 /* configure and enable PHY wakeup in PHY registers */
6042 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6043 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6044
6045 /* activate PHY wakeup */
6046 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6047 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6048 if (retval)
6049 e_err("Could not set PHY Host Wakeup bit\n");
6050 release:
6051 hw->phy.ops.release(hw);
6052
6053 return retval;
6054 }
6055
6056 static void e1000e_flush_lpic(struct pci_dev *pdev)
6057 {
6058 struct net_device *netdev = pci_get_drvdata(pdev);
6059 struct e1000_adapter *adapter = netdev_priv(netdev);
6060 struct e1000_hw *hw = &adapter->hw;
6061 u32 ret_val;
6062
6063 pm_runtime_get_sync(netdev->dev.parent);
6064
6065 ret_val = hw->phy.ops.acquire(hw);
6066 if (ret_val)
6067 goto fl_out;
6068
6069 pr_info("EEE TX LPI TIMER: %08X\n",
6070 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6071
6072 hw->phy.ops.release(hw);
6073
6074 fl_out:
6075 pm_runtime_put_sync(netdev->dev.parent);
6076 }
6077
6078 static int e1000e_pm_freeze(struct device *dev)
6079 {
6080 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6081 struct e1000_adapter *adapter = netdev_priv(netdev);
6082
6083 netif_device_detach(netdev);
6084
6085 if (netif_running(netdev)) {
6086 int count = E1000_CHECK_RESET_COUNT;
6087
6088 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6089 usleep_range(10000, 20000);
6090
6091 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6092
6093 /* Quiesce the device without resetting the hardware */
6094 e1000e_down(adapter, false);
6095 e1000_free_irq(adapter);
6096 }
6097 e1000e_reset_interrupt_capability(adapter);
6098
6099 /* Allow time for pending master requests to run */
6100 e1000e_disable_pcie_master(&adapter->hw);
6101
6102 return 0;
6103 }
6104
6105 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6106 {
6107 struct net_device *netdev = pci_get_drvdata(pdev);
6108 struct e1000_adapter *adapter = netdev_priv(netdev);
6109 struct e1000_hw *hw = &adapter->hw;
6110 u32 ctrl, ctrl_ext, rctl, status;
6111 /* Runtime suspend should only enable wakeup for link changes */
6112 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6113 int retval = 0;
6114
6115 status = er32(STATUS);
6116 if (status & E1000_STATUS_LU)
6117 wufc &= ~E1000_WUFC_LNKC;
6118
6119 if (wufc) {
6120 e1000_setup_rctl(adapter);
6121 e1000e_set_rx_mode(netdev);
6122
6123 /* turn on all-multi mode if wake on multicast is enabled */
6124 if (wufc & E1000_WUFC_MC) {
6125 rctl = er32(RCTL);
6126 rctl |= E1000_RCTL_MPE;
6127 ew32(RCTL, rctl);
6128 }
6129
6130 ctrl = er32(CTRL);
6131 ctrl |= E1000_CTRL_ADVD3WUC;
6132 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6133 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6134 ew32(CTRL, ctrl);
6135
6136 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6137 adapter->hw.phy.media_type ==
6138 e1000_media_type_internal_serdes) {
6139 /* keep the laser running in D3 */
6140 ctrl_ext = er32(CTRL_EXT);
6141 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6142 ew32(CTRL_EXT, ctrl_ext);
6143 }
6144
6145 if (!runtime)
6146 e1000e_power_up_phy(adapter);
6147
6148 if (adapter->flags & FLAG_IS_ICH)
6149 e1000_suspend_workarounds_ich8lan(&adapter->hw);
6150
6151 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6152 /* enable wakeup by the PHY */
6153 retval = e1000_init_phy_wakeup(adapter, wufc);
6154 if (retval)
6155 return retval;
6156 } else {
6157 /* enable wakeup by the MAC */
6158 ew32(WUFC, wufc);
6159 ew32(WUC, E1000_WUC_PME_EN);
6160 }
6161 } else {
6162 ew32(WUC, 0);
6163 ew32(WUFC, 0);
6164
6165 e1000_power_down_phy(adapter);
6166 }
6167
6168 if (adapter->hw.phy.type == e1000_phy_igp_3) {
6169 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6170 } else if ((hw->mac.type == e1000_pch_lpt) ||
6171 (hw->mac.type == e1000_pch_spt)) {
6172 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6173 /* ULP does not support wake from unicast, multicast
6174 * or broadcast.
6175 */
6176 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6177
6178 if (retval)
6179 return retval;
6180 }
6181
6182
6183 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6184 * would have already happened in close and is redundant.
6185 */
6186 e1000e_release_hw_control(adapter);
6187
6188 pci_clear_master(pdev);
6189
6190 /* The pci-e switch on some quad port adapters will report a
6191 * correctable error when the MAC transitions from D0 to D3. To
6192 * prevent this we need to mask off the correctable errors on the
6193 * downstream port of the pci-e switch.
6194 *
6195 * We don't have the associated upstream bridge while assigning
6196 * the PCI device into guest. For example, the KVM on power is
6197 * one of the cases.
6198 */
6199 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6200 struct pci_dev *us_dev = pdev->bus->self;
6201 u16 devctl;
6202
6203 if (!us_dev)
6204 return 0;
6205
6206 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6207 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6208 (devctl & ~PCI_EXP_DEVCTL_CERE));
6209
6210 pci_save_state(pdev);
6211 pci_prepare_to_sleep(pdev);
6212
6213 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6214 }
6215
6216 return 0;
6217 }
6218
6219 /**
6220 * e1000e_disable_aspm - Disable ASPM states
6221 * @pdev: pointer to PCI device struct
6222 * @state: bit-mask of ASPM states to disable
6223 *
6224 * Some devices *must* have certain ASPM states disabled per hardware errata.
6225 **/
6226 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6227 {
6228 struct pci_dev *parent = pdev->bus->self;
6229 u16 aspm_dis_mask = 0;
6230 u16 pdev_aspmc, parent_aspmc;
6231
6232 switch (state) {
6233 case PCIE_LINK_STATE_L0S:
6234 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6235 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6236 /* fall-through - can't have L1 without L0s */
6237 case PCIE_LINK_STATE_L1:
6238 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6239 break;
6240 default:
6241 return;
6242 }
6243
6244 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6245 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6246
6247 if (parent) {
6248 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6249 &parent_aspmc);
6250 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6251 }
6252
6253 /* Nothing to do if the ASPM states to be disabled already are */
6254 if (!(pdev_aspmc & aspm_dis_mask) &&
6255 (!parent || !(parent_aspmc & aspm_dis_mask)))
6256 return;
6257
6258 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6259 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6260 "L0s" : "",
6261 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6262 "L1" : "");
6263
6264 #ifdef CONFIG_PCIEASPM
6265 pci_disable_link_state_locked(pdev, state);
6266
6267 /* Double-check ASPM control. If not disabled by the above, the
6268 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6269 * not enabled); override by writing PCI config space directly.
6270 */
6271 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6272 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6273
6274 if (!(aspm_dis_mask & pdev_aspmc))
6275 return;
6276 #endif
6277
6278 /* Both device and parent should have the same ASPM setting.
6279 * Disable ASPM in downstream component first and then upstream.
6280 */
6281 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6282
6283 if (parent)
6284 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6285 aspm_dis_mask);
6286 }
6287
6288 #ifdef CONFIG_PM
6289 static int __e1000_resume(struct pci_dev *pdev)
6290 {
6291 struct net_device *netdev = pci_get_drvdata(pdev);
6292 struct e1000_adapter *adapter = netdev_priv(netdev);
6293 struct e1000_hw *hw = &adapter->hw;
6294 u16 aspm_disable_flag = 0;
6295
6296 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6297 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6298 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6299 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6300 if (aspm_disable_flag)
6301 e1000e_disable_aspm(pdev, aspm_disable_flag);
6302
6303 pci_set_master(pdev);
6304
6305 if (hw->mac.type >= e1000_pch2lan)
6306 e1000_resume_workarounds_pchlan(&adapter->hw);
6307
6308 e1000e_power_up_phy(adapter);
6309
6310 /* report the system wakeup cause from S3/S4 */
6311 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6312 u16 phy_data;
6313
6314 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6315 if (phy_data) {
6316 e_info("PHY Wakeup cause - %s\n",
6317 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6318 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6319 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6320 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6321 phy_data & E1000_WUS_LNKC ?
6322 "Link Status Change" : "other");
6323 }
6324 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6325 } else {
6326 u32 wus = er32(WUS);
6327
6328 if (wus) {
6329 e_info("MAC Wakeup cause - %s\n",
6330 wus & E1000_WUS_EX ? "Unicast Packet" :
6331 wus & E1000_WUS_MC ? "Multicast Packet" :
6332 wus & E1000_WUS_BC ? "Broadcast Packet" :
6333 wus & E1000_WUS_MAG ? "Magic Packet" :
6334 wus & E1000_WUS_LNKC ? "Link Status Change" :
6335 "other");
6336 }
6337 ew32(WUS, ~0);
6338 }
6339
6340 e1000e_reset(adapter);
6341
6342 e1000_init_manageability_pt(adapter);
6343
6344 /* If the controller has AMT, do not set DRV_LOAD until the interface
6345 * is up. For all other cases, let the f/w know that the h/w is now
6346 * under the control of the driver.
6347 */
6348 if (!(adapter->flags & FLAG_HAS_AMT))
6349 e1000e_get_hw_control(adapter);
6350
6351 return 0;
6352 }
6353
6354 #ifdef CONFIG_PM_SLEEP
6355 static int e1000e_pm_thaw(struct device *dev)
6356 {
6357 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6358 struct e1000_adapter *adapter = netdev_priv(netdev);
6359
6360 e1000e_set_interrupt_capability(adapter);
6361 if (netif_running(netdev)) {
6362 u32 err = e1000_request_irq(adapter);
6363
6364 if (err)
6365 return err;
6366
6367 e1000e_up(adapter);
6368 }
6369
6370 netif_device_attach(netdev);
6371
6372 return 0;
6373 }
6374
6375 static int e1000e_pm_suspend(struct device *dev)
6376 {
6377 struct pci_dev *pdev = to_pci_dev(dev);
6378
6379 e1000e_flush_lpic(pdev);
6380
6381 e1000e_pm_freeze(dev);
6382
6383 return __e1000_shutdown(pdev, false);
6384 }
6385
6386 static int e1000e_pm_resume(struct device *dev)
6387 {
6388 struct pci_dev *pdev = to_pci_dev(dev);
6389 int rc;
6390
6391 rc = __e1000_resume(pdev);
6392 if (rc)
6393 return rc;
6394
6395 return e1000e_pm_thaw(dev);
6396 }
6397 #endif /* CONFIG_PM_SLEEP */
6398
6399 static int e1000e_pm_runtime_idle(struct device *dev)
6400 {
6401 struct pci_dev *pdev = to_pci_dev(dev);
6402 struct net_device *netdev = pci_get_drvdata(pdev);
6403 struct e1000_adapter *adapter = netdev_priv(netdev);
6404 u16 eee_lp;
6405
6406 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6407
6408 if (!e1000e_has_link(adapter)) {
6409 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6410 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6411 }
6412
6413 return -EBUSY;
6414 }
6415
6416 static int e1000e_pm_runtime_resume(struct device *dev)
6417 {
6418 struct pci_dev *pdev = to_pci_dev(dev);
6419 struct net_device *netdev = pci_get_drvdata(pdev);
6420 struct e1000_adapter *adapter = netdev_priv(netdev);
6421 int rc;
6422
6423 rc = __e1000_resume(pdev);
6424 if (rc)
6425 return rc;
6426
6427 if (netdev->flags & IFF_UP)
6428 rc = e1000e_up(adapter);
6429
6430 return rc;
6431 }
6432
6433 static int e1000e_pm_runtime_suspend(struct device *dev)
6434 {
6435 struct pci_dev *pdev = to_pci_dev(dev);
6436 struct net_device *netdev = pci_get_drvdata(pdev);
6437 struct e1000_adapter *adapter = netdev_priv(netdev);
6438
6439 if (netdev->flags & IFF_UP) {
6440 int count = E1000_CHECK_RESET_COUNT;
6441
6442 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6443 usleep_range(10000, 20000);
6444
6445 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6446
6447 /* Down the device without resetting the hardware */
6448 e1000e_down(adapter, false);
6449 }
6450
6451 if (__e1000_shutdown(pdev, true)) {
6452 e1000e_pm_runtime_resume(dev);
6453 return -EBUSY;
6454 }
6455
6456 return 0;
6457 }
6458 #endif /* CONFIG_PM */
6459
6460 static void e1000_shutdown(struct pci_dev *pdev)
6461 {
6462 e1000e_flush_lpic(pdev);
6463
6464 e1000e_pm_freeze(&pdev->dev);
6465
6466 __e1000_shutdown(pdev, false);
6467 }
6468
6469 #ifdef CONFIG_NET_POLL_CONTROLLER
6470
6471 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6472 {
6473 struct net_device *netdev = data;
6474 struct e1000_adapter *adapter = netdev_priv(netdev);
6475
6476 if (adapter->msix_entries) {
6477 int vector, msix_irq;
6478
6479 vector = 0;
6480 msix_irq = adapter->msix_entries[vector].vector;
6481 disable_irq(msix_irq);
6482 e1000_intr_msix_rx(msix_irq, netdev);
6483 enable_irq(msix_irq);
6484
6485 vector++;
6486 msix_irq = adapter->msix_entries[vector].vector;
6487 disable_irq(msix_irq);
6488 e1000_intr_msix_tx(msix_irq, netdev);
6489 enable_irq(msix_irq);
6490
6491 vector++;
6492 msix_irq = adapter->msix_entries[vector].vector;
6493 disable_irq(msix_irq);
6494 e1000_msix_other(msix_irq, netdev);
6495 enable_irq(msix_irq);
6496 }
6497
6498 return IRQ_HANDLED;
6499 }
6500
6501 /**
6502 * e1000_netpoll
6503 * @netdev: network interface device structure
6504 *
6505 * Polling 'interrupt' - used by things like netconsole to send skbs
6506 * without having to re-enable interrupts. It's not called while
6507 * the interrupt routine is executing.
6508 */
6509 static void e1000_netpoll(struct net_device *netdev)
6510 {
6511 struct e1000_adapter *adapter = netdev_priv(netdev);
6512
6513 switch (adapter->int_mode) {
6514 case E1000E_INT_MODE_MSIX:
6515 e1000_intr_msix(adapter->pdev->irq, netdev);
6516 break;
6517 case E1000E_INT_MODE_MSI:
6518 disable_irq(adapter->pdev->irq);
6519 e1000_intr_msi(adapter->pdev->irq, netdev);
6520 enable_irq(adapter->pdev->irq);
6521 break;
6522 default: /* E1000E_INT_MODE_LEGACY */
6523 disable_irq(adapter->pdev->irq);
6524 e1000_intr(adapter->pdev->irq, netdev);
6525 enable_irq(adapter->pdev->irq);
6526 break;
6527 }
6528 }
6529 #endif
6530
6531 /**
6532 * e1000_io_error_detected - called when PCI error is detected
6533 * @pdev: Pointer to PCI device
6534 * @state: The current pci connection state
6535 *
6536 * This function is called after a PCI bus error affecting
6537 * this device has been detected.
6538 */
6539 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6540 pci_channel_state_t state)
6541 {
6542 struct net_device *netdev = pci_get_drvdata(pdev);
6543 struct e1000_adapter *adapter = netdev_priv(netdev);
6544
6545 netif_device_detach(netdev);
6546
6547 if (state == pci_channel_io_perm_failure)
6548 return PCI_ERS_RESULT_DISCONNECT;
6549
6550 if (netif_running(netdev))
6551 e1000e_down(adapter, true);
6552 pci_disable_device(pdev);
6553
6554 /* Request a slot slot reset. */
6555 return PCI_ERS_RESULT_NEED_RESET;
6556 }
6557
6558 /**
6559 * e1000_io_slot_reset - called after the pci bus has been reset.
6560 * @pdev: Pointer to PCI device
6561 *
6562 * Restart the card from scratch, as if from a cold-boot. Implementation
6563 * resembles the first-half of the e1000e_pm_resume routine.
6564 */
6565 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6566 {
6567 struct net_device *netdev = pci_get_drvdata(pdev);
6568 struct e1000_adapter *adapter = netdev_priv(netdev);
6569 struct e1000_hw *hw = &adapter->hw;
6570 u16 aspm_disable_flag = 0;
6571 int err;
6572 pci_ers_result_t result;
6573
6574 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6575 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6576 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6577 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6578 if (aspm_disable_flag)
6579 e1000e_disable_aspm(pdev, aspm_disable_flag);
6580
6581 err = pci_enable_device_mem(pdev);
6582 if (err) {
6583 dev_err(&pdev->dev,
6584 "Cannot re-enable PCI device after reset.\n");
6585 result = PCI_ERS_RESULT_DISCONNECT;
6586 } else {
6587 pdev->state_saved = true;
6588 pci_restore_state(pdev);
6589 pci_set_master(pdev);
6590
6591 pci_enable_wake(pdev, PCI_D3hot, 0);
6592 pci_enable_wake(pdev, PCI_D3cold, 0);
6593
6594 e1000e_reset(adapter);
6595 ew32(WUS, ~0);
6596 result = PCI_ERS_RESULT_RECOVERED;
6597 }
6598
6599 pci_cleanup_aer_uncorrect_error_status(pdev);
6600
6601 return result;
6602 }
6603
6604 /**
6605 * e1000_io_resume - called when traffic can start flowing again.
6606 * @pdev: Pointer to PCI device
6607 *
6608 * This callback is called when the error recovery driver tells us that
6609 * its OK to resume normal operation. Implementation resembles the
6610 * second-half of the e1000e_pm_resume routine.
6611 */
6612 static void e1000_io_resume(struct pci_dev *pdev)
6613 {
6614 struct net_device *netdev = pci_get_drvdata(pdev);
6615 struct e1000_adapter *adapter = netdev_priv(netdev);
6616
6617 e1000_init_manageability_pt(adapter);
6618
6619 if (netif_running(netdev)) {
6620 if (e1000e_up(adapter)) {
6621 dev_err(&pdev->dev,
6622 "can't bring device back up after reset\n");
6623 return;
6624 }
6625 }
6626
6627 netif_device_attach(netdev);
6628
6629 /* If the controller has AMT, do not set DRV_LOAD until the interface
6630 * is up. For all other cases, let the f/w know that the h/w is now
6631 * under the control of the driver.
6632 */
6633 if (!(adapter->flags & FLAG_HAS_AMT))
6634 e1000e_get_hw_control(adapter);
6635 }
6636
6637 static void e1000_print_device_info(struct e1000_adapter *adapter)
6638 {
6639 struct e1000_hw *hw = &adapter->hw;
6640 struct net_device *netdev = adapter->netdev;
6641 u32 ret_val;
6642 u8 pba_str[E1000_PBANUM_LENGTH];
6643
6644 /* print bus type/speed/width info */
6645 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6646 /* bus width */
6647 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6648 "Width x1"),
6649 /* MAC address */
6650 netdev->dev_addr);
6651 e_info("Intel(R) PRO/%s Network Connection\n",
6652 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6653 ret_val = e1000_read_pba_string_generic(hw, pba_str,
6654 E1000_PBANUM_LENGTH);
6655 if (ret_val)
6656 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6657 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6658 hw->mac.type, hw->phy.type, pba_str);
6659 }
6660
6661 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6662 {
6663 struct e1000_hw *hw = &adapter->hw;
6664 int ret_val;
6665 u16 buf = 0;
6666
6667 if (hw->mac.type != e1000_82573)
6668 return;
6669
6670 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6671 le16_to_cpus(&buf);
6672 if (!ret_val && (!(buf & (1 << 0)))) {
6673 /* Deep Smart Power Down (DSPD) */
6674 dev_warn(&adapter->pdev->dev,
6675 "Warning: detected DSPD enabled in EEPROM\n");
6676 }
6677 }
6678
6679 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6680 netdev_features_t features)
6681 {
6682 struct e1000_adapter *adapter = netdev_priv(netdev);
6683 struct e1000_hw *hw = &adapter->hw;
6684
6685 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6686 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6687 features &= ~NETIF_F_RXFCS;
6688
6689 return features;
6690 }
6691
6692 static int e1000_set_features(struct net_device *netdev,
6693 netdev_features_t features)
6694 {
6695 struct e1000_adapter *adapter = netdev_priv(netdev);
6696 netdev_features_t changed = features ^ netdev->features;
6697
6698 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6699 adapter->flags |= FLAG_TSO_FORCE;
6700
6701 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6702 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6703 NETIF_F_RXALL)))
6704 return 0;
6705
6706 if (changed & NETIF_F_RXFCS) {
6707 if (features & NETIF_F_RXFCS) {
6708 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6709 } else {
6710 /* We need to take it back to defaults, which might mean
6711 * stripping is still disabled at the adapter level.
6712 */
6713 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6714 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6715 else
6716 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6717 }
6718 }
6719
6720 netdev->features = features;
6721
6722 if (netif_running(netdev))
6723 e1000e_reinit_locked(adapter);
6724 else
6725 e1000e_reset(adapter);
6726
6727 return 0;
6728 }
6729
6730 static const struct net_device_ops e1000e_netdev_ops = {
6731 .ndo_open = e1000_open,
6732 .ndo_stop = e1000_close,
6733 .ndo_start_xmit = e1000_xmit_frame,
6734 .ndo_get_stats64 = e1000e_get_stats64,
6735 .ndo_set_rx_mode = e1000e_set_rx_mode,
6736 .ndo_set_mac_address = e1000_set_mac,
6737 .ndo_change_mtu = e1000_change_mtu,
6738 .ndo_do_ioctl = e1000_ioctl,
6739 .ndo_tx_timeout = e1000_tx_timeout,
6740 .ndo_validate_addr = eth_validate_addr,
6741
6742 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
6743 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
6744 #ifdef CONFIG_NET_POLL_CONTROLLER
6745 .ndo_poll_controller = e1000_netpoll,
6746 #endif
6747 .ndo_set_features = e1000_set_features,
6748 .ndo_fix_features = e1000_fix_features,
6749 };
6750
6751 /**
6752 * e1000_probe - Device Initialization Routine
6753 * @pdev: PCI device information struct
6754 * @ent: entry in e1000_pci_tbl
6755 *
6756 * Returns 0 on success, negative on failure
6757 *
6758 * e1000_probe initializes an adapter identified by a pci_dev structure.
6759 * The OS initialization, configuring of the adapter private structure,
6760 * and a hardware reset occur.
6761 **/
6762 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6763 {
6764 struct net_device *netdev;
6765 struct e1000_adapter *adapter;
6766 struct e1000_hw *hw;
6767 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6768 resource_size_t mmio_start, mmio_len;
6769 resource_size_t flash_start, flash_len;
6770 static int cards_found;
6771 u16 aspm_disable_flag = 0;
6772 int bars, i, err, pci_using_dac;
6773 u16 eeprom_data = 0;
6774 u16 eeprom_apme_mask = E1000_EEPROM_APME;
6775 s32 rval = 0;
6776
6777 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6778 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6779 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6780 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6781 if (aspm_disable_flag)
6782 e1000e_disable_aspm(pdev, aspm_disable_flag);
6783
6784 err = pci_enable_device_mem(pdev);
6785 if (err)
6786 return err;
6787
6788 pci_using_dac = 0;
6789 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6790 if (!err) {
6791 pci_using_dac = 1;
6792 } else {
6793 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6794 if (err) {
6795 dev_err(&pdev->dev,
6796 "No usable DMA configuration, aborting\n");
6797 goto err_dma;
6798 }
6799 }
6800
6801 bars = pci_select_bars(pdev, IORESOURCE_MEM);
6802 err = pci_request_selected_regions_exclusive(pdev, bars,
6803 e1000e_driver_name);
6804 if (err)
6805 goto err_pci_reg;
6806
6807 /* AER (Advanced Error Reporting) hooks */
6808 pci_enable_pcie_error_reporting(pdev);
6809
6810 pci_set_master(pdev);
6811 /* PCI config space info */
6812 err = pci_save_state(pdev);
6813 if (err)
6814 goto err_alloc_etherdev;
6815
6816 err = -ENOMEM;
6817 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6818 if (!netdev)
6819 goto err_alloc_etherdev;
6820
6821 SET_NETDEV_DEV(netdev, &pdev->dev);
6822
6823 netdev->irq = pdev->irq;
6824
6825 pci_set_drvdata(pdev, netdev);
6826 adapter = netdev_priv(netdev);
6827 hw = &adapter->hw;
6828 adapter->netdev = netdev;
6829 adapter->pdev = pdev;
6830 adapter->ei = ei;
6831 adapter->pba = ei->pba;
6832 adapter->flags = ei->flags;
6833 adapter->flags2 = ei->flags2;
6834 adapter->hw.adapter = adapter;
6835 adapter->hw.mac.type = ei->mac;
6836 adapter->max_hw_frame_size = ei->max_hw_frame_size;
6837 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6838
6839 mmio_start = pci_resource_start(pdev, 0);
6840 mmio_len = pci_resource_len(pdev, 0);
6841
6842 err = -EIO;
6843 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6844 if (!adapter->hw.hw_addr)
6845 goto err_ioremap;
6846
6847 if ((adapter->flags & FLAG_HAS_FLASH) &&
6848 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
6849 (hw->mac.type < e1000_pch_spt)) {
6850 flash_start = pci_resource_start(pdev, 1);
6851 flash_len = pci_resource_len(pdev, 1);
6852 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6853 if (!adapter->hw.flash_address)
6854 goto err_flashmap;
6855 }
6856
6857 /* Set default EEE advertisement */
6858 if (adapter->flags2 & FLAG2_HAS_EEE)
6859 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6860
6861 /* construct the net_device struct */
6862 netdev->netdev_ops = &e1000e_netdev_ops;
6863 e1000e_set_ethtool_ops(netdev);
6864 netdev->watchdog_timeo = 5 * HZ;
6865 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6866 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6867
6868 netdev->mem_start = mmio_start;
6869 netdev->mem_end = mmio_start + mmio_len;
6870
6871 adapter->bd_number = cards_found++;
6872
6873 e1000e_check_options(adapter);
6874
6875 /* setup adapter struct */
6876 err = e1000_sw_init(adapter);
6877 if (err)
6878 goto err_sw_init;
6879
6880 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6881 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6882 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6883
6884 err = ei->get_variants(adapter);
6885 if (err)
6886 goto err_hw_init;
6887
6888 if ((adapter->flags & FLAG_IS_ICH) &&
6889 (adapter->flags & FLAG_READ_ONLY_NVM) &&
6890 (hw->mac.type < e1000_pch_spt))
6891 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6892
6893 hw->mac.ops.get_bus_info(&adapter->hw);
6894
6895 adapter->hw.phy.autoneg_wait_to_complete = 0;
6896
6897 /* Copper options */
6898 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6899 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6900 adapter->hw.phy.disable_polarity_correction = 0;
6901 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6902 }
6903
6904 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6905 dev_info(&pdev->dev,
6906 "PHY reset is blocked due to SOL/IDER session.\n");
6907
6908 /* Set initial default active device features */
6909 netdev->features = (NETIF_F_SG |
6910 NETIF_F_HW_VLAN_CTAG_RX |
6911 NETIF_F_HW_VLAN_CTAG_TX |
6912 NETIF_F_TSO |
6913 NETIF_F_TSO6 |
6914 NETIF_F_RXHASH |
6915 NETIF_F_RXCSUM |
6916 NETIF_F_HW_CSUM);
6917
6918 /* Set user-changeable features (subset of all device features) */
6919 netdev->hw_features = netdev->features;
6920 netdev->hw_features |= NETIF_F_RXFCS;
6921 netdev->priv_flags |= IFF_SUPP_NOFCS;
6922 netdev->hw_features |= NETIF_F_RXALL;
6923
6924 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6925 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6926
6927 netdev->vlan_features |= (NETIF_F_SG |
6928 NETIF_F_TSO |
6929 NETIF_F_TSO6 |
6930 NETIF_F_HW_CSUM);
6931
6932 netdev->priv_flags |= IFF_UNICAST_FLT;
6933
6934 if (pci_using_dac) {
6935 netdev->features |= NETIF_F_HIGHDMA;
6936 netdev->vlan_features |= NETIF_F_HIGHDMA;
6937 }
6938
6939 if (e1000e_enable_mng_pass_thru(&adapter->hw))
6940 adapter->flags |= FLAG_MNG_PT_ENABLED;
6941
6942 /* before reading the NVM, reset the controller to
6943 * put the device in a known good starting state
6944 */
6945 adapter->hw.mac.ops.reset_hw(&adapter->hw);
6946
6947 /* systems with ASPM and others may see the checksum fail on the first
6948 * attempt. Let's give it a few tries
6949 */
6950 for (i = 0;; i++) {
6951 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6952 break;
6953 if (i == 2) {
6954 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6955 err = -EIO;
6956 goto err_eeprom;
6957 }
6958 }
6959
6960 e1000_eeprom_checks(adapter);
6961
6962 /* copy the MAC address */
6963 if (e1000e_read_mac_addr(&adapter->hw))
6964 dev_err(&pdev->dev,
6965 "NVM Read Error while reading MAC address\n");
6966
6967 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6968
6969 if (!is_valid_ether_addr(netdev->dev_addr)) {
6970 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6971 netdev->dev_addr);
6972 err = -EIO;
6973 goto err_eeprom;
6974 }
6975
6976 init_timer(&adapter->watchdog_timer);
6977 adapter->watchdog_timer.function = e1000_watchdog;
6978 adapter->watchdog_timer.data = (unsigned long)adapter;
6979
6980 init_timer(&adapter->phy_info_timer);
6981 adapter->phy_info_timer.function = e1000_update_phy_info;
6982 adapter->phy_info_timer.data = (unsigned long)adapter;
6983
6984 INIT_WORK(&adapter->reset_task, e1000_reset_task);
6985 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6986 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6987 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6988 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6989
6990 /* Initialize link parameters. User can change them with ethtool */
6991 adapter->hw.mac.autoneg = 1;
6992 adapter->fc_autoneg = true;
6993 adapter->hw.fc.requested_mode = e1000_fc_default;
6994 adapter->hw.fc.current_mode = e1000_fc_default;
6995 adapter->hw.phy.autoneg_advertised = 0x2f;
6996
6997 /* Initial Wake on LAN setting - If APM wake is enabled in
6998 * the EEPROM, enable the ACPI Magic Packet filter
6999 */
7000 if (adapter->flags & FLAG_APME_IN_WUC) {
7001 /* APME bit in EEPROM is mapped to WUC.APME */
7002 eeprom_data = er32(WUC);
7003 eeprom_apme_mask = E1000_WUC_APME;
7004 if ((hw->mac.type > e1000_ich10lan) &&
7005 (eeprom_data & E1000_WUC_PHY_WAKE))
7006 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7007 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7008 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7009 (adapter->hw.bus.func == 1))
7010 rval = e1000_read_nvm(&adapter->hw,
7011 NVM_INIT_CONTROL3_PORT_B,
7012 1, &eeprom_data);
7013 else
7014 rval = e1000_read_nvm(&adapter->hw,
7015 NVM_INIT_CONTROL3_PORT_A,
7016 1, &eeprom_data);
7017 }
7018
7019 /* fetch WoL from EEPROM */
7020 if (rval)
7021 e_dbg("NVM read error getting WoL initial values: %d\n", rval);
7022 else if (eeprom_data & eeprom_apme_mask)
7023 adapter->eeprom_wol |= E1000_WUFC_MAG;
7024
7025 /* now that we have the eeprom settings, apply the special cases
7026 * where the eeprom may be wrong or the board simply won't support
7027 * wake on lan on a particular port
7028 */
7029 if (!(adapter->flags & FLAG_HAS_WOL))
7030 adapter->eeprom_wol = 0;
7031
7032 /* initialize the wol settings based on the eeprom settings */
7033 adapter->wol = adapter->eeprom_wol;
7034
7035 /* make sure adapter isn't asleep if manageability is enabled */
7036 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7037 (hw->mac.ops.check_mng_mode(hw)))
7038 device_wakeup_enable(&pdev->dev);
7039
7040 /* save off EEPROM version number */
7041 rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7042
7043 if (rval) {
7044 e_dbg("NVM read error getting EEPROM version: %d\n", rval);
7045 adapter->eeprom_vers = 0;
7046 }
7047
7048 /* reset the hardware with the new settings */
7049 e1000e_reset(adapter);
7050
7051 /* If the controller has AMT, do not set DRV_LOAD until the interface
7052 * is up. For all other cases, let the f/w know that the h/w is now
7053 * under the control of the driver.
7054 */
7055 if (!(adapter->flags & FLAG_HAS_AMT))
7056 e1000e_get_hw_control(adapter);
7057
7058 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7059 err = register_netdev(netdev);
7060 if (err)
7061 goto err_register;
7062
7063 /* carrier off reporting is important to ethtool even BEFORE open */
7064 netif_carrier_off(netdev);
7065
7066 /* init PTP hardware clock */
7067 e1000e_ptp_init(adapter);
7068
7069 e1000_print_device_info(adapter);
7070
7071 if (pci_dev_run_wake(pdev))
7072 pm_runtime_put_noidle(&pdev->dev);
7073
7074 return 0;
7075
7076 err_register:
7077 if (!(adapter->flags & FLAG_HAS_AMT))
7078 e1000e_release_hw_control(adapter);
7079 err_eeprom:
7080 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7081 e1000_phy_hw_reset(&adapter->hw);
7082 err_hw_init:
7083 kfree(adapter->tx_ring);
7084 kfree(adapter->rx_ring);
7085 err_sw_init:
7086 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7087 iounmap(adapter->hw.flash_address);
7088 e1000e_reset_interrupt_capability(adapter);
7089 err_flashmap:
7090 iounmap(adapter->hw.hw_addr);
7091 err_ioremap:
7092 free_netdev(netdev);
7093 err_alloc_etherdev:
7094 pci_release_selected_regions(pdev,
7095 pci_select_bars(pdev, IORESOURCE_MEM));
7096 err_pci_reg:
7097 err_dma:
7098 pci_disable_device(pdev);
7099 return err;
7100 }
7101
7102 /**
7103 * e1000_remove - Device Removal Routine
7104 * @pdev: PCI device information struct
7105 *
7106 * e1000_remove is called by the PCI subsystem to alert the driver
7107 * that it should release a PCI device. The could be caused by a
7108 * Hot-Plug event, or because the driver is going to be removed from
7109 * memory.
7110 **/
7111 static void e1000_remove(struct pci_dev *pdev)
7112 {
7113 struct net_device *netdev = pci_get_drvdata(pdev);
7114 struct e1000_adapter *adapter = netdev_priv(netdev);
7115 bool down = test_bit(__E1000_DOWN, &adapter->state);
7116
7117 e1000e_ptp_remove(adapter);
7118
7119 /* The timers may be rescheduled, so explicitly disable them
7120 * from being rescheduled.
7121 */
7122 if (!down)
7123 set_bit(__E1000_DOWN, &adapter->state);
7124 del_timer_sync(&adapter->watchdog_timer);
7125 del_timer_sync(&adapter->phy_info_timer);
7126
7127 cancel_work_sync(&adapter->reset_task);
7128 cancel_work_sync(&adapter->watchdog_task);
7129 cancel_work_sync(&adapter->downshift_task);
7130 cancel_work_sync(&adapter->update_phy_task);
7131 cancel_work_sync(&adapter->print_hang_task);
7132
7133 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7134 cancel_work_sync(&adapter->tx_hwtstamp_work);
7135 if (adapter->tx_hwtstamp_skb) {
7136 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7137 adapter->tx_hwtstamp_skb = NULL;
7138 }
7139 }
7140
7141 /* Don't lie to e1000_close() down the road. */
7142 if (!down)
7143 clear_bit(__E1000_DOWN, &adapter->state);
7144 unregister_netdev(netdev);
7145
7146 if (pci_dev_run_wake(pdev))
7147 pm_runtime_get_noresume(&pdev->dev);
7148
7149 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7150 * would have already happened in close and is redundant.
7151 */
7152 e1000e_release_hw_control(adapter);
7153
7154 e1000e_reset_interrupt_capability(adapter);
7155 kfree(adapter->tx_ring);
7156 kfree(adapter->rx_ring);
7157
7158 iounmap(adapter->hw.hw_addr);
7159 if ((adapter->hw.flash_address) &&
7160 (adapter->hw.mac.type < e1000_pch_spt))
7161 iounmap(adapter->hw.flash_address);
7162 pci_release_selected_regions(pdev,
7163 pci_select_bars(pdev, IORESOURCE_MEM));
7164
7165 free_netdev(netdev);
7166
7167 /* AER disable */
7168 pci_disable_pcie_error_reporting(pdev);
7169
7170 pci_disable_device(pdev);
7171 }
7172
7173 /* PCI Error Recovery (ERS) */
7174 static const struct pci_error_handlers e1000_err_handler = {
7175 .error_detected = e1000_io_error_detected,
7176 .slot_reset = e1000_io_slot_reset,
7177 .resume = e1000_io_resume,
7178 };
7179
7180 static const struct pci_device_id e1000_pci_tbl[] = {
7181 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7182 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7183 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7184 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7185 board_82571 },
7186 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7187 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7188 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7189 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7190 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7191
7192 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7193 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7194 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7195 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7196
7197 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7198 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7199 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7200
7201 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7202 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7203 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7204
7205 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7206 board_80003es2lan },
7207 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7208 board_80003es2lan },
7209 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7210 board_80003es2lan },
7211 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7212 board_80003es2lan },
7213
7214 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7215 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7216 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7217 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7218 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7219 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7220 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7221 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7222
7223 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7224 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7225 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7226 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7227 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7228 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7229 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7230 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7231 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7232
7233 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7234 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7235 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7236
7237 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7238 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7239 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7240
7241 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7242 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7243 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7244 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7245
7246 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7247 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7248
7249 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7250 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7251 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7252 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7253 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7254 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7255 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7256 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7257 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7258 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7259 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7260 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7261
7262 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7263 };
7264 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7265
7266 static const struct dev_pm_ops e1000_pm_ops = {
7267 #ifdef CONFIG_PM_SLEEP
7268 .suspend = e1000e_pm_suspend,
7269 .resume = e1000e_pm_resume,
7270 .freeze = e1000e_pm_freeze,
7271 .thaw = e1000e_pm_thaw,
7272 .poweroff = e1000e_pm_suspend,
7273 .restore = e1000e_pm_resume,
7274 #endif
7275 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7276 e1000e_pm_runtime_idle)
7277 };
7278
7279 /* PCI Device API Driver */
7280 static struct pci_driver e1000_driver = {
7281 .name = e1000e_driver_name,
7282 .id_table = e1000_pci_tbl,
7283 .probe = e1000_probe,
7284 .remove = e1000_remove,
7285 .driver = {
7286 .pm = &e1000_pm_ops,
7287 },
7288 .shutdown = e1000_shutdown,
7289 .err_handler = &e1000_err_handler
7290 };
7291
7292 /**
7293 * e1000_init_module - Driver Registration Routine
7294 *
7295 * e1000_init_module is the first routine called when the driver is
7296 * loaded. All it does is register with the PCI subsystem.
7297 **/
7298 static int __init e1000_init_module(void)
7299 {
7300 int ret;
7301
7302 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7303 e1000e_driver_version);
7304 pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n");
7305 ret = pci_register_driver(&e1000_driver);
7306
7307 return ret;
7308 }
7309 module_init(e1000_init_module);
7310
7311 /**
7312 * e1000_exit_module - Driver Exit Cleanup Routine
7313 *
7314 * e1000_exit_module is called just before the driver is removed
7315 * from memory.
7316 **/
7317 static void __exit e1000_exit_module(void)
7318 {
7319 pci_unregister_driver(&e1000_driver);
7320 }
7321 module_exit(e1000_exit_module);
7322
7323 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7324 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7325 MODULE_LICENSE("GPL");
7326 MODULE_VERSION(DRV_VERSION);
7327
7328 /* netdev.c */
This page took 0.192029 seconds and 5 git commands to generate.