Merge branch 'pm-cpufreq'
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52 #include <linux/prefetch.h>
53
54 #include "e1000.h"
55
56 #define DRV_EXTRAVERSION "-k"
57
58 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
59 char e1000e_driver_name[] = "e1000e";
60 const char e1000e_driver_version[] = DRV_VERSION;
61
62 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
63 static int debug = -1;
64 module_param(debug, int, 0);
65 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
66
67 static const struct e1000_info *e1000_info_tbl[] = {
68 [board_82571] = &e1000_82571_info,
69 [board_82572] = &e1000_82572_info,
70 [board_82573] = &e1000_82573_info,
71 [board_82574] = &e1000_82574_info,
72 [board_82583] = &e1000_82583_info,
73 [board_80003es2lan] = &e1000_es2_info,
74 [board_ich8lan] = &e1000_ich8_info,
75 [board_ich9lan] = &e1000_ich9_info,
76 [board_ich10lan] = &e1000_ich10_info,
77 [board_pchlan] = &e1000_pch_info,
78 [board_pch2lan] = &e1000_pch2_info,
79 [board_pch_lpt] = &e1000_pch_lpt_info,
80 };
81
82 struct e1000_reg_info {
83 u32 ofs;
84 char *name;
85 };
86
87 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
88 /* General Registers */
89 {E1000_CTRL, "CTRL"},
90 {E1000_STATUS, "STATUS"},
91 {E1000_CTRL_EXT, "CTRL_EXT"},
92
93 /* Interrupt Registers */
94 {E1000_ICR, "ICR"},
95
96 /* Rx Registers */
97 {E1000_RCTL, "RCTL"},
98 {E1000_RDLEN(0), "RDLEN"},
99 {E1000_RDH(0), "RDH"},
100 {E1000_RDT(0), "RDT"},
101 {E1000_RDTR, "RDTR"},
102 {E1000_RXDCTL(0), "RXDCTL"},
103 {E1000_ERT, "ERT"},
104 {E1000_RDBAL(0), "RDBAL"},
105 {E1000_RDBAH(0), "RDBAH"},
106 {E1000_RDFH, "RDFH"},
107 {E1000_RDFT, "RDFT"},
108 {E1000_RDFHS, "RDFHS"},
109 {E1000_RDFTS, "RDFTS"},
110 {E1000_RDFPC, "RDFPC"},
111
112 /* Tx Registers */
113 {E1000_TCTL, "TCTL"},
114 {E1000_TDBAL(0), "TDBAL"},
115 {E1000_TDBAH(0), "TDBAH"},
116 {E1000_TDLEN(0), "TDLEN"},
117 {E1000_TDH(0), "TDH"},
118 {E1000_TDT(0), "TDT"},
119 {E1000_TIDV, "TIDV"},
120 {E1000_TXDCTL(0), "TXDCTL"},
121 {E1000_TADV, "TADV"},
122 {E1000_TARC(0), "TARC"},
123 {E1000_TDFH, "TDFH"},
124 {E1000_TDFT, "TDFT"},
125 {E1000_TDFHS, "TDFHS"},
126 {E1000_TDFTS, "TDFTS"},
127 {E1000_TDFPC, "TDFPC"},
128
129 /* List Terminator */
130 {0, NULL}
131 };
132
133 /**
134 * e1000_regdump - register printout routine
135 * @hw: pointer to the HW structure
136 * @reginfo: pointer to the register info table
137 **/
138 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
139 {
140 int n = 0;
141 char rname[16];
142 u32 regs[8];
143
144 switch (reginfo->ofs) {
145 case E1000_RXDCTL(0):
146 for (n = 0; n < 2; n++)
147 regs[n] = __er32(hw, E1000_RXDCTL(n));
148 break;
149 case E1000_TXDCTL(0):
150 for (n = 0; n < 2; n++)
151 regs[n] = __er32(hw, E1000_TXDCTL(n));
152 break;
153 case E1000_TARC(0):
154 for (n = 0; n < 2; n++)
155 regs[n] = __er32(hw, E1000_TARC(n));
156 break;
157 default:
158 pr_info("%-15s %08x\n",
159 reginfo->name, __er32(hw, reginfo->ofs));
160 return;
161 }
162
163 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
164 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
165 }
166
167 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
168 struct e1000_buffer *bi)
169 {
170 int i;
171 struct e1000_ps_page *ps_page;
172
173 for (i = 0; i < adapter->rx_ps_pages; i++) {
174 ps_page = &bi->ps_pages[i];
175
176 if (ps_page->page) {
177 pr_info("packet dump for ps_page %d:\n", i);
178 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
179 16, 1, page_address(ps_page->page),
180 PAGE_SIZE, true);
181 }
182 }
183 }
184
185 /**
186 * e1000e_dump - Print registers, Tx-ring and Rx-ring
187 * @adapter: board private structure
188 **/
189 static void e1000e_dump(struct e1000_adapter *adapter)
190 {
191 struct net_device *netdev = adapter->netdev;
192 struct e1000_hw *hw = &adapter->hw;
193 struct e1000_reg_info *reginfo;
194 struct e1000_ring *tx_ring = adapter->tx_ring;
195 struct e1000_tx_desc *tx_desc;
196 struct my_u0 {
197 __le64 a;
198 __le64 b;
199 } *u0;
200 struct e1000_buffer *buffer_info;
201 struct e1000_ring *rx_ring = adapter->rx_ring;
202 union e1000_rx_desc_packet_split *rx_desc_ps;
203 union e1000_rx_desc_extended *rx_desc;
204 struct my_u1 {
205 __le64 a;
206 __le64 b;
207 __le64 c;
208 __le64 d;
209 } *u1;
210 u32 staterr;
211 int i = 0;
212
213 if (!netif_msg_hw(adapter))
214 return;
215
216 /* Print netdevice Info */
217 if (netdev) {
218 dev_info(&adapter->pdev->dev, "Net device Info\n");
219 pr_info("Device Name state trans_start last_rx\n");
220 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
221 netdev->state, netdev->trans_start, netdev->last_rx);
222 }
223
224 /* Print Registers */
225 dev_info(&adapter->pdev->dev, "Register Dump\n");
226 pr_info(" Register Name Value\n");
227 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
228 reginfo->name; reginfo++) {
229 e1000_regdump(hw, reginfo);
230 }
231
232 /* Print Tx Ring Summary */
233 if (!netdev || !netif_running(netdev))
234 return;
235
236 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
237 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
238 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
239 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
240 0, tx_ring->next_to_use, tx_ring->next_to_clean,
241 (unsigned long long)buffer_info->dma,
242 buffer_info->length,
243 buffer_info->next_to_watch,
244 (unsigned long long)buffer_info->time_stamp);
245
246 /* Print Tx Ring */
247 if (!netif_msg_tx_done(adapter))
248 goto rx_ring_summary;
249
250 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
251
252 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
253 *
254 * Legacy Transmit Descriptor
255 * +--------------------------------------------------------------+
256 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
257 * +--------------------------------------------------------------+
258 * 8 | Special | CSS | Status | CMD | CSO | Length |
259 * +--------------------------------------------------------------+
260 * 63 48 47 36 35 32 31 24 23 16 15 0
261 *
262 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
263 * 63 48 47 40 39 32 31 16 15 8 7 0
264 * +----------------------------------------------------------------+
265 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
266 * +----------------------------------------------------------------+
267 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
268 * +----------------------------------------------------------------+
269 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
270 *
271 * Extended Data Descriptor (DTYP=0x1)
272 * +----------------------------------------------------------------+
273 * 0 | Buffer Address [63:0] |
274 * +----------------------------------------------------------------+
275 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
276 * +----------------------------------------------------------------+
277 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
278 */
279 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
280 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
281 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
282 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
283 const char *next_desc;
284 tx_desc = E1000_TX_DESC(*tx_ring, i);
285 buffer_info = &tx_ring->buffer_info[i];
286 u0 = (struct my_u0 *)tx_desc;
287 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
288 next_desc = " NTC/U";
289 else if (i == tx_ring->next_to_use)
290 next_desc = " NTU";
291 else if (i == tx_ring->next_to_clean)
292 next_desc = " NTC";
293 else
294 next_desc = "";
295 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
296 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
297 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
298 i,
299 (unsigned long long)le64_to_cpu(u0->a),
300 (unsigned long long)le64_to_cpu(u0->b),
301 (unsigned long long)buffer_info->dma,
302 buffer_info->length, buffer_info->next_to_watch,
303 (unsigned long long)buffer_info->time_stamp,
304 buffer_info->skb, next_desc);
305
306 if (netif_msg_pktdata(adapter) && buffer_info->skb)
307 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
308 16, 1, buffer_info->skb->data,
309 buffer_info->skb->len, true);
310 }
311
312 /* Print Rx Ring Summary */
313 rx_ring_summary:
314 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
315 pr_info("Queue [NTU] [NTC]\n");
316 pr_info(" %5d %5X %5X\n",
317 0, rx_ring->next_to_use, rx_ring->next_to_clean);
318
319 /* Print Rx Ring */
320 if (!netif_msg_rx_status(adapter))
321 return;
322
323 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
324 switch (adapter->rx_ps_pages) {
325 case 1:
326 case 2:
327 case 3:
328 /* [Extended] Packet Split Receive Descriptor Format
329 *
330 * +-----------------------------------------------------+
331 * 0 | Buffer Address 0 [63:0] |
332 * +-----------------------------------------------------+
333 * 8 | Buffer Address 1 [63:0] |
334 * +-----------------------------------------------------+
335 * 16 | Buffer Address 2 [63:0] |
336 * +-----------------------------------------------------+
337 * 24 | Buffer Address 3 [63:0] |
338 * +-----------------------------------------------------+
339 */
340 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
341 /* [Extended] Receive Descriptor (Write-Back) Format
342 *
343 * 63 48 47 32 31 13 12 8 7 4 3 0
344 * +------------------------------------------------------+
345 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
346 * | Checksum | Ident | | Queue | | Type |
347 * +------------------------------------------------------+
348 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
349 * +------------------------------------------------------+
350 * 63 48 47 32 31 20 19 0
351 */
352 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
353 for (i = 0; i < rx_ring->count; i++) {
354 const char *next_desc;
355 buffer_info = &rx_ring->buffer_info[i];
356 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
357 u1 = (struct my_u1 *)rx_desc_ps;
358 staterr =
359 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
360
361 if (i == rx_ring->next_to_use)
362 next_desc = " NTU";
363 else if (i == rx_ring->next_to_clean)
364 next_desc = " NTC";
365 else
366 next_desc = "";
367
368 if (staterr & E1000_RXD_STAT_DD) {
369 /* Descriptor Done */
370 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
371 "RWB", i,
372 (unsigned long long)le64_to_cpu(u1->a),
373 (unsigned long long)le64_to_cpu(u1->b),
374 (unsigned long long)le64_to_cpu(u1->c),
375 (unsigned long long)le64_to_cpu(u1->d),
376 buffer_info->skb, next_desc);
377 } else {
378 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
379 "R ", i,
380 (unsigned long long)le64_to_cpu(u1->a),
381 (unsigned long long)le64_to_cpu(u1->b),
382 (unsigned long long)le64_to_cpu(u1->c),
383 (unsigned long long)le64_to_cpu(u1->d),
384 (unsigned long long)buffer_info->dma,
385 buffer_info->skb, next_desc);
386
387 if (netif_msg_pktdata(adapter))
388 e1000e_dump_ps_pages(adapter,
389 buffer_info);
390 }
391 }
392 break;
393 default:
394 case 0:
395 /* Extended Receive Descriptor (Read) Format
396 *
397 * +-----------------------------------------------------+
398 * 0 | Buffer Address [63:0] |
399 * +-----------------------------------------------------+
400 * 8 | Reserved |
401 * +-----------------------------------------------------+
402 */
403 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
404 /* Extended Receive Descriptor (Write-Back) Format
405 *
406 * 63 48 47 32 31 24 23 4 3 0
407 * +------------------------------------------------------+
408 * | RSS Hash | | | |
409 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
410 * | Packet | IP | | | Type |
411 * | Checksum | Ident | | | |
412 * +------------------------------------------------------+
413 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
414 * +------------------------------------------------------+
415 * 63 48 47 32 31 20 19 0
416 */
417 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
418
419 for (i = 0; i < rx_ring->count; i++) {
420 const char *next_desc;
421
422 buffer_info = &rx_ring->buffer_info[i];
423 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
424 u1 = (struct my_u1 *)rx_desc;
425 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
426
427 if (i == rx_ring->next_to_use)
428 next_desc = " NTU";
429 else if (i == rx_ring->next_to_clean)
430 next_desc = " NTC";
431 else
432 next_desc = "";
433
434 if (staterr & E1000_RXD_STAT_DD) {
435 /* Descriptor Done */
436 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
437 "RWB", i,
438 (unsigned long long)le64_to_cpu(u1->a),
439 (unsigned long long)le64_to_cpu(u1->b),
440 buffer_info->skb, next_desc);
441 } else {
442 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
443 "R ", i,
444 (unsigned long long)le64_to_cpu(u1->a),
445 (unsigned long long)le64_to_cpu(u1->b),
446 (unsigned long long)buffer_info->dma,
447 buffer_info->skb, next_desc);
448
449 if (netif_msg_pktdata(adapter) &&
450 buffer_info->skb)
451 print_hex_dump(KERN_INFO, "",
452 DUMP_PREFIX_ADDRESS, 16,
453 1,
454 buffer_info->skb->data,
455 adapter->rx_buffer_len,
456 true);
457 }
458 }
459 }
460 }
461
462 /**
463 * e1000_desc_unused - calculate if we have unused descriptors
464 **/
465 static int e1000_desc_unused(struct e1000_ring *ring)
466 {
467 if (ring->next_to_clean > ring->next_to_use)
468 return ring->next_to_clean - ring->next_to_use - 1;
469
470 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
471 }
472
473 /**
474 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
475 * @adapter: board private structure
476 * @hwtstamps: time stamp structure to update
477 * @systim: unsigned 64bit system time value.
478 *
479 * Convert the system time value stored in the RX/TXSTMP registers into a
480 * hwtstamp which can be used by the upper level time stamping functions.
481 *
482 * The 'systim_lock' spinlock is used to protect the consistency of the
483 * system time value. This is needed because reading the 64 bit time
484 * value involves reading two 32 bit registers. The first read latches the
485 * value.
486 **/
487 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
488 struct skb_shared_hwtstamps *hwtstamps,
489 u64 systim)
490 {
491 u64 ns;
492 unsigned long flags;
493
494 spin_lock_irqsave(&adapter->systim_lock, flags);
495 ns = timecounter_cyc2time(&adapter->tc, systim);
496 spin_unlock_irqrestore(&adapter->systim_lock, flags);
497
498 memset(hwtstamps, 0, sizeof(*hwtstamps));
499 hwtstamps->hwtstamp = ns_to_ktime(ns);
500 }
501
502 /**
503 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
504 * @adapter: board private structure
505 * @status: descriptor extended error and status field
506 * @skb: particular skb to include time stamp
507 *
508 * If the time stamp is valid, convert it into the timecounter ns value
509 * and store that result into the shhwtstamps structure which is passed
510 * up the network stack.
511 **/
512 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
513 struct sk_buff *skb)
514 {
515 struct e1000_hw *hw = &adapter->hw;
516 u64 rxstmp;
517
518 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
519 !(status & E1000_RXDEXT_STATERR_TST) ||
520 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
521 return;
522
523 /* The Rx time stamp registers contain the time stamp. No other
524 * received packet will be time stamped until the Rx time stamp
525 * registers are read. Because only one packet can be time stamped
526 * at a time, the register values must belong to this packet and
527 * therefore none of the other additional attributes need to be
528 * compared.
529 */
530 rxstmp = (u64)er32(RXSTMPL);
531 rxstmp |= (u64)er32(RXSTMPH) << 32;
532 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
533
534 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
535 }
536
537 /**
538 * e1000_receive_skb - helper function to handle Rx indications
539 * @adapter: board private structure
540 * @staterr: descriptor extended error and status field as written by hardware
541 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
542 * @skb: pointer to sk_buff to be indicated to stack
543 **/
544 static void e1000_receive_skb(struct e1000_adapter *adapter,
545 struct net_device *netdev, struct sk_buff *skb,
546 u32 staterr, __le16 vlan)
547 {
548 u16 tag = le16_to_cpu(vlan);
549
550 e1000e_rx_hwtstamp(adapter, staterr, skb);
551
552 skb->protocol = eth_type_trans(skb, netdev);
553
554 if (staterr & E1000_RXD_STAT_VP)
555 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
556
557 napi_gro_receive(&adapter->napi, skb);
558 }
559
560 /**
561 * e1000_rx_checksum - Receive Checksum Offload
562 * @adapter: board private structure
563 * @status_err: receive descriptor status and error fields
564 * @csum: receive descriptor csum field
565 * @sk_buff: socket buffer with received data
566 **/
567 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
568 struct sk_buff *skb)
569 {
570 u16 status = (u16)status_err;
571 u8 errors = (u8)(status_err >> 24);
572
573 skb_checksum_none_assert(skb);
574
575 /* Rx checksum disabled */
576 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
577 return;
578
579 /* Ignore Checksum bit is set */
580 if (status & E1000_RXD_STAT_IXSM)
581 return;
582
583 /* TCP/UDP checksum error bit or IP checksum error bit is set */
584 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
585 /* let the stack verify checksum errors */
586 adapter->hw_csum_err++;
587 return;
588 }
589
590 /* TCP/UDP Checksum has not been calculated */
591 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
592 return;
593
594 /* It must be a TCP or UDP packet with a valid checksum */
595 skb->ip_summed = CHECKSUM_UNNECESSARY;
596 adapter->hw_csum_good++;
597 }
598
599 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
600 {
601 struct e1000_adapter *adapter = rx_ring->adapter;
602 struct e1000_hw *hw = &adapter->hw;
603 s32 ret_val = __ew32_prepare(hw);
604
605 writel(i, rx_ring->tail);
606
607 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
608 u32 rctl = er32(RCTL);
609 ew32(RCTL, rctl & ~E1000_RCTL_EN);
610 e_err("ME firmware caused invalid RDT - resetting\n");
611 schedule_work(&adapter->reset_task);
612 }
613 }
614
615 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
616 {
617 struct e1000_adapter *adapter = tx_ring->adapter;
618 struct e1000_hw *hw = &adapter->hw;
619 s32 ret_val = __ew32_prepare(hw);
620
621 writel(i, tx_ring->tail);
622
623 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
624 u32 tctl = er32(TCTL);
625 ew32(TCTL, tctl & ~E1000_TCTL_EN);
626 e_err("ME firmware caused invalid TDT - resetting\n");
627 schedule_work(&adapter->reset_task);
628 }
629 }
630
631 /**
632 * e1000_alloc_rx_buffers - Replace used receive buffers
633 * @rx_ring: Rx descriptor ring
634 **/
635 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
636 int cleaned_count, gfp_t gfp)
637 {
638 struct e1000_adapter *adapter = rx_ring->adapter;
639 struct net_device *netdev = adapter->netdev;
640 struct pci_dev *pdev = adapter->pdev;
641 union e1000_rx_desc_extended *rx_desc;
642 struct e1000_buffer *buffer_info;
643 struct sk_buff *skb;
644 unsigned int i;
645 unsigned int bufsz = adapter->rx_buffer_len;
646
647 i = rx_ring->next_to_use;
648 buffer_info = &rx_ring->buffer_info[i];
649
650 while (cleaned_count--) {
651 skb = buffer_info->skb;
652 if (skb) {
653 skb_trim(skb, 0);
654 goto map_skb;
655 }
656
657 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
658 if (!skb) {
659 /* Better luck next round */
660 adapter->alloc_rx_buff_failed++;
661 break;
662 }
663
664 buffer_info->skb = skb;
665 map_skb:
666 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
667 adapter->rx_buffer_len,
668 DMA_FROM_DEVICE);
669 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
670 dev_err(&pdev->dev, "Rx DMA map failed\n");
671 adapter->rx_dma_failed++;
672 break;
673 }
674
675 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
676 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
677
678 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
679 /* Force memory writes to complete before letting h/w
680 * know there are new descriptors to fetch. (Only
681 * applicable for weak-ordered memory model archs,
682 * such as IA-64).
683 */
684 wmb();
685 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
686 e1000e_update_rdt_wa(rx_ring, i);
687 else
688 writel(i, rx_ring->tail);
689 }
690 i++;
691 if (i == rx_ring->count)
692 i = 0;
693 buffer_info = &rx_ring->buffer_info[i];
694 }
695
696 rx_ring->next_to_use = i;
697 }
698
699 /**
700 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
701 * @rx_ring: Rx descriptor ring
702 **/
703 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
704 int cleaned_count, gfp_t gfp)
705 {
706 struct e1000_adapter *adapter = rx_ring->adapter;
707 struct net_device *netdev = adapter->netdev;
708 struct pci_dev *pdev = adapter->pdev;
709 union e1000_rx_desc_packet_split *rx_desc;
710 struct e1000_buffer *buffer_info;
711 struct e1000_ps_page *ps_page;
712 struct sk_buff *skb;
713 unsigned int i, j;
714
715 i = rx_ring->next_to_use;
716 buffer_info = &rx_ring->buffer_info[i];
717
718 while (cleaned_count--) {
719 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
720
721 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
722 ps_page = &buffer_info->ps_pages[j];
723 if (j >= adapter->rx_ps_pages) {
724 /* all unused desc entries get hw null ptr */
725 rx_desc->read.buffer_addr[j + 1] =
726 ~cpu_to_le64(0);
727 continue;
728 }
729 if (!ps_page->page) {
730 ps_page->page = alloc_page(gfp);
731 if (!ps_page->page) {
732 adapter->alloc_rx_buff_failed++;
733 goto no_buffers;
734 }
735 ps_page->dma = dma_map_page(&pdev->dev,
736 ps_page->page,
737 0, PAGE_SIZE,
738 DMA_FROM_DEVICE);
739 if (dma_mapping_error(&pdev->dev,
740 ps_page->dma)) {
741 dev_err(&adapter->pdev->dev,
742 "Rx DMA page map failed\n");
743 adapter->rx_dma_failed++;
744 goto no_buffers;
745 }
746 }
747 /* Refresh the desc even if buffer_addrs
748 * didn't change because each write-back
749 * erases this info.
750 */
751 rx_desc->read.buffer_addr[j + 1] =
752 cpu_to_le64(ps_page->dma);
753 }
754
755 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
756 gfp);
757
758 if (!skb) {
759 adapter->alloc_rx_buff_failed++;
760 break;
761 }
762
763 buffer_info->skb = skb;
764 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
765 adapter->rx_ps_bsize0,
766 DMA_FROM_DEVICE);
767 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
768 dev_err(&pdev->dev, "Rx DMA map failed\n");
769 adapter->rx_dma_failed++;
770 /* cleanup skb */
771 dev_kfree_skb_any(skb);
772 buffer_info->skb = NULL;
773 break;
774 }
775
776 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
777
778 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
779 /* Force memory writes to complete before letting h/w
780 * know there are new descriptors to fetch. (Only
781 * applicable for weak-ordered memory model archs,
782 * such as IA-64).
783 */
784 wmb();
785 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
786 e1000e_update_rdt_wa(rx_ring, i << 1);
787 else
788 writel(i << 1, rx_ring->tail);
789 }
790
791 i++;
792 if (i == rx_ring->count)
793 i = 0;
794 buffer_info = &rx_ring->buffer_info[i];
795 }
796
797 no_buffers:
798 rx_ring->next_to_use = i;
799 }
800
801 /**
802 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
803 * @rx_ring: Rx descriptor ring
804 * @cleaned_count: number of buffers to allocate this pass
805 **/
806
807 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
808 int cleaned_count, gfp_t gfp)
809 {
810 struct e1000_adapter *adapter = rx_ring->adapter;
811 struct net_device *netdev = adapter->netdev;
812 struct pci_dev *pdev = adapter->pdev;
813 union e1000_rx_desc_extended *rx_desc;
814 struct e1000_buffer *buffer_info;
815 struct sk_buff *skb;
816 unsigned int i;
817 unsigned int bufsz = 256 - 16; /* for skb_reserve */
818
819 i = rx_ring->next_to_use;
820 buffer_info = &rx_ring->buffer_info[i];
821
822 while (cleaned_count--) {
823 skb = buffer_info->skb;
824 if (skb) {
825 skb_trim(skb, 0);
826 goto check_page;
827 }
828
829 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
830 if (unlikely(!skb)) {
831 /* Better luck next round */
832 adapter->alloc_rx_buff_failed++;
833 break;
834 }
835
836 buffer_info->skb = skb;
837 check_page:
838 /* allocate a new page if necessary */
839 if (!buffer_info->page) {
840 buffer_info->page = alloc_page(gfp);
841 if (unlikely(!buffer_info->page)) {
842 adapter->alloc_rx_buff_failed++;
843 break;
844 }
845 }
846
847 if (!buffer_info->dma) {
848 buffer_info->dma = dma_map_page(&pdev->dev,
849 buffer_info->page, 0,
850 PAGE_SIZE,
851 DMA_FROM_DEVICE);
852 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
853 adapter->alloc_rx_buff_failed++;
854 break;
855 }
856 }
857
858 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
859 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
860
861 if (unlikely(++i == rx_ring->count))
862 i = 0;
863 buffer_info = &rx_ring->buffer_info[i];
864 }
865
866 if (likely(rx_ring->next_to_use != i)) {
867 rx_ring->next_to_use = i;
868 if (unlikely(i-- == 0))
869 i = (rx_ring->count - 1);
870
871 /* Force memory writes to complete before letting h/w
872 * know there are new descriptors to fetch. (Only
873 * applicable for weak-ordered memory model archs,
874 * such as IA-64).
875 */
876 wmb();
877 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
878 e1000e_update_rdt_wa(rx_ring, i);
879 else
880 writel(i, rx_ring->tail);
881 }
882 }
883
884 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
885 struct sk_buff *skb)
886 {
887 if (netdev->features & NETIF_F_RXHASH)
888 skb->rxhash = le32_to_cpu(rss);
889 }
890
891 /**
892 * e1000_clean_rx_irq - Send received data up the network stack
893 * @rx_ring: Rx descriptor ring
894 *
895 * the return value indicates whether actual cleaning was done, there
896 * is no guarantee that everything was cleaned
897 **/
898 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
899 int work_to_do)
900 {
901 struct e1000_adapter *adapter = rx_ring->adapter;
902 struct net_device *netdev = adapter->netdev;
903 struct pci_dev *pdev = adapter->pdev;
904 struct e1000_hw *hw = &adapter->hw;
905 union e1000_rx_desc_extended *rx_desc, *next_rxd;
906 struct e1000_buffer *buffer_info, *next_buffer;
907 u32 length, staterr;
908 unsigned int i;
909 int cleaned_count = 0;
910 bool cleaned = false;
911 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
912
913 i = rx_ring->next_to_clean;
914 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
915 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
916 buffer_info = &rx_ring->buffer_info[i];
917
918 while (staterr & E1000_RXD_STAT_DD) {
919 struct sk_buff *skb;
920
921 if (*work_done >= work_to_do)
922 break;
923 (*work_done)++;
924 rmb(); /* read descriptor and rx_buffer_info after status DD */
925
926 skb = buffer_info->skb;
927 buffer_info->skb = NULL;
928
929 prefetch(skb->data - NET_IP_ALIGN);
930
931 i++;
932 if (i == rx_ring->count)
933 i = 0;
934 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
935 prefetch(next_rxd);
936
937 next_buffer = &rx_ring->buffer_info[i];
938
939 cleaned = true;
940 cleaned_count++;
941 dma_unmap_single(&pdev->dev, buffer_info->dma,
942 adapter->rx_buffer_len, DMA_FROM_DEVICE);
943 buffer_info->dma = 0;
944
945 length = le16_to_cpu(rx_desc->wb.upper.length);
946
947 /* !EOP means multiple descriptors were used to store a single
948 * packet, if that's the case we need to toss it. In fact, we
949 * need to toss every packet with the EOP bit clear and the
950 * next frame that _does_ have the EOP bit set, as it is by
951 * definition only a frame fragment
952 */
953 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
954 adapter->flags2 |= FLAG2_IS_DISCARDING;
955
956 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
957 /* All receives must fit into a single buffer */
958 e_dbg("Receive packet consumed multiple buffers\n");
959 /* recycle */
960 buffer_info->skb = skb;
961 if (staterr & E1000_RXD_STAT_EOP)
962 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
963 goto next_desc;
964 }
965
966 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
967 !(netdev->features & NETIF_F_RXALL))) {
968 /* recycle */
969 buffer_info->skb = skb;
970 goto next_desc;
971 }
972
973 /* adjust length to remove Ethernet CRC */
974 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
975 /* If configured to store CRC, don't subtract FCS,
976 * but keep the FCS bytes out of the total_rx_bytes
977 * counter
978 */
979 if (netdev->features & NETIF_F_RXFCS)
980 total_rx_bytes -= 4;
981 else
982 length -= 4;
983 }
984
985 total_rx_bytes += length;
986 total_rx_packets++;
987
988 /* code added for copybreak, this should improve
989 * performance for small packets with large amounts
990 * of reassembly being done in the stack
991 */
992 if (length < copybreak) {
993 struct sk_buff *new_skb =
994 netdev_alloc_skb_ip_align(netdev, length);
995 if (new_skb) {
996 skb_copy_to_linear_data_offset(new_skb,
997 -NET_IP_ALIGN,
998 (skb->data -
999 NET_IP_ALIGN),
1000 (length +
1001 NET_IP_ALIGN));
1002 /* save the skb in buffer_info as good */
1003 buffer_info->skb = skb;
1004 skb = new_skb;
1005 }
1006 /* else just continue with the old one */
1007 }
1008 /* end copybreak code */
1009 skb_put(skb, length);
1010
1011 /* Receive Checksum Offload */
1012 e1000_rx_checksum(adapter, staterr, skb);
1013
1014 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1015
1016 e1000_receive_skb(adapter, netdev, skb, staterr,
1017 rx_desc->wb.upper.vlan);
1018
1019 next_desc:
1020 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1021
1022 /* return some buffers to hardware, one at a time is too slow */
1023 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1024 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1025 GFP_ATOMIC);
1026 cleaned_count = 0;
1027 }
1028
1029 /* use prefetched values */
1030 rx_desc = next_rxd;
1031 buffer_info = next_buffer;
1032
1033 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1034 }
1035 rx_ring->next_to_clean = i;
1036
1037 cleaned_count = e1000_desc_unused(rx_ring);
1038 if (cleaned_count)
1039 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1040
1041 adapter->total_rx_bytes += total_rx_bytes;
1042 adapter->total_rx_packets += total_rx_packets;
1043 return cleaned;
1044 }
1045
1046 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1047 struct e1000_buffer *buffer_info)
1048 {
1049 struct e1000_adapter *adapter = tx_ring->adapter;
1050
1051 if (buffer_info->dma) {
1052 if (buffer_info->mapped_as_page)
1053 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1054 buffer_info->length, DMA_TO_DEVICE);
1055 else
1056 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1057 buffer_info->length, DMA_TO_DEVICE);
1058 buffer_info->dma = 0;
1059 }
1060 if (buffer_info->skb) {
1061 dev_kfree_skb_any(buffer_info->skb);
1062 buffer_info->skb = NULL;
1063 }
1064 buffer_info->time_stamp = 0;
1065 }
1066
1067 static void e1000_print_hw_hang(struct work_struct *work)
1068 {
1069 struct e1000_adapter *adapter = container_of(work,
1070 struct e1000_adapter,
1071 print_hang_task);
1072 struct net_device *netdev = adapter->netdev;
1073 struct e1000_ring *tx_ring = adapter->tx_ring;
1074 unsigned int i = tx_ring->next_to_clean;
1075 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1076 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1077 struct e1000_hw *hw = &adapter->hw;
1078 u16 phy_status, phy_1000t_status, phy_ext_status;
1079 u16 pci_status;
1080
1081 if (test_bit(__E1000_DOWN, &adapter->state))
1082 return;
1083
1084 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1085 /* May be block on write-back, flush and detect again
1086 * flush pending descriptor writebacks to memory
1087 */
1088 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1089 /* execute the writes immediately */
1090 e1e_flush();
1091 /* Due to rare timing issues, write to TIDV again to ensure
1092 * the write is successful
1093 */
1094 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1095 /* execute the writes immediately */
1096 e1e_flush();
1097 adapter->tx_hang_recheck = true;
1098 return;
1099 }
1100 /* Real hang detected */
1101 adapter->tx_hang_recheck = false;
1102 netif_stop_queue(netdev);
1103
1104 e1e_rphy(hw, MII_BMSR, &phy_status);
1105 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1106 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1107
1108 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1109
1110 /* detected Hardware unit hang */
1111 e_err("Detected Hardware Unit Hang:\n"
1112 " TDH <%x>\n"
1113 " TDT <%x>\n"
1114 " next_to_use <%x>\n"
1115 " next_to_clean <%x>\n"
1116 "buffer_info[next_to_clean]:\n"
1117 " time_stamp <%lx>\n"
1118 " next_to_watch <%x>\n"
1119 " jiffies <%lx>\n"
1120 " next_to_watch.status <%x>\n"
1121 "MAC Status <%x>\n"
1122 "PHY Status <%x>\n"
1123 "PHY 1000BASE-T Status <%x>\n"
1124 "PHY Extended Status <%x>\n"
1125 "PCI Status <%x>\n",
1126 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1127 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1128 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1129 phy_status, phy_1000t_status, phy_ext_status, pci_status);
1130
1131 /* Suggest workaround for known h/w issue */
1132 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1133 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1134 }
1135
1136 /**
1137 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1138 * @work: pointer to work struct
1139 *
1140 * This work function polls the TSYNCTXCTL valid bit to determine when a
1141 * timestamp has been taken for the current stored skb. The timestamp must
1142 * be for this skb because only one such packet is allowed in the queue.
1143 */
1144 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1145 {
1146 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1147 tx_hwtstamp_work);
1148 struct e1000_hw *hw = &adapter->hw;
1149
1150 if (!adapter->tx_hwtstamp_skb)
1151 return;
1152
1153 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1154 struct skb_shared_hwtstamps shhwtstamps;
1155 u64 txstmp;
1156
1157 txstmp = er32(TXSTMPL);
1158 txstmp |= (u64)er32(TXSTMPH) << 32;
1159
1160 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1161
1162 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1163 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1164 adapter->tx_hwtstamp_skb = NULL;
1165 } else {
1166 /* reschedule to check later */
1167 schedule_work(&adapter->tx_hwtstamp_work);
1168 }
1169 }
1170
1171 /**
1172 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1173 * @tx_ring: Tx descriptor ring
1174 *
1175 * the return value indicates whether actual cleaning was done, there
1176 * is no guarantee that everything was cleaned
1177 **/
1178 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1179 {
1180 struct e1000_adapter *adapter = tx_ring->adapter;
1181 struct net_device *netdev = adapter->netdev;
1182 struct e1000_hw *hw = &adapter->hw;
1183 struct e1000_tx_desc *tx_desc, *eop_desc;
1184 struct e1000_buffer *buffer_info;
1185 unsigned int i, eop;
1186 unsigned int count = 0;
1187 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1188 unsigned int bytes_compl = 0, pkts_compl = 0;
1189
1190 i = tx_ring->next_to_clean;
1191 eop = tx_ring->buffer_info[i].next_to_watch;
1192 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1193
1194 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1195 (count < tx_ring->count)) {
1196 bool cleaned = false;
1197 rmb(); /* read buffer_info after eop_desc */
1198 for (; !cleaned; count++) {
1199 tx_desc = E1000_TX_DESC(*tx_ring, i);
1200 buffer_info = &tx_ring->buffer_info[i];
1201 cleaned = (i == eop);
1202
1203 if (cleaned) {
1204 total_tx_packets += buffer_info->segs;
1205 total_tx_bytes += buffer_info->bytecount;
1206 if (buffer_info->skb) {
1207 bytes_compl += buffer_info->skb->len;
1208 pkts_compl++;
1209 }
1210 }
1211
1212 e1000_put_txbuf(tx_ring, buffer_info);
1213 tx_desc->upper.data = 0;
1214
1215 i++;
1216 if (i == tx_ring->count)
1217 i = 0;
1218 }
1219
1220 if (i == tx_ring->next_to_use)
1221 break;
1222 eop = tx_ring->buffer_info[i].next_to_watch;
1223 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1224 }
1225
1226 tx_ring->next_to_clean = i;
1227
1228 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1229
1230 #define TX_WAKE_THRESHOLD 32
1231 if (count && netif_carrier_ok(netdev) &&
1232 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1233 /* Make sure that anybody stopping the queue after this
1234 * sees the new next_to_clean.
1235 */
1236 smp_mb();
1237
1238 if (netif_queue_stopped(netdev) &&
1239 !(test_bit(__E1000_DOWN, &adapter->state))) {
1240 netif_wake_queue(netdev);
1241 ++adapter->restart_queue;
1242 }
1243 }
1244
1245 if (adapter->detect_tx_hung) {
1246 /* Detect a transmit hang in hardware, this serializes the
1247 * check with the clearing of time_stamp and movement of i
1248 */
1249 adapter->detect_tx_hung = false;
1250 if (tx_ring->buffer_info[i].time_stamp &&
1251 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1252 + (adapter->tx_timeout_factor * HZ)) &&
1253 !(er32(STATUS) & E1000_STATUS_TXOFF))
1254 schedule_work(&adapter->print_hang_task);
1255 else
1256 adapter->tx_hang_recheck = false;
1257 }
1258 adapter->total_tx_bytes += total_tx_bytes;
1259 adapter->total_tx_packets += total_tx_packets;
1260 return count < tx_ring->count;
1261 }
1262
1263 /**
1264 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1265 * @rx_ring: Rx descriptor ring
1266 *
1267 * the return value indicates whether actual cleaning was done, there
1268 * is no guarantee that everything was cleaned
1269 **/
1270 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1271 int work_to_do)
1272 {
1273 struct e1000_adapter *adapter = rx_ring->adapter;
1274 struct e1000_hw *hw = &adapter->hw;
1275 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1276 struct net_device *netdev = adapter->netdev;
1277 struct pci_dev *pdev = adapter->pdev;
1278 struct e1000_buffer *buffer_info, *next_buffer;
1279 struct e1000_ps_page *ps_page;
1280 struct sk_buff *skb;
1281 unsigned int i, j;
1282 u32 length, staterr;
1283 int cleaned_count = 0;
1284 bool cleaned = false;
1285 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1286
1287 i = rx_ring->next_to_clean;
1288 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1289 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1290 buffer_info = &rx_ring->buffer_info[i];
1291
1292 while (staterr & E1000_RXD_STAT_DD) {
1293 if (*work_done >= work_to_do)
1294 break;
1295 (*work_done)++;
1296 skb = buffer_info->skb;
1297 rmb(); /* read descriptor and rx_buffer_info after status DD */
1298
1299 /* in the packet split case this is header only */
1300 prefetch(skb->data - NET_IP_ALIGN);
1301
1302 i++;
1303 if (i == rx_ring->count)
1304 i = 0;
1305 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1306 prefetch(next_rxd);
1307
1308 next_buffer = &rx_ring->buffer_info[i];
1309
1310 cleaned = true;
1311 cleaned_count++;
1312 dma_unmap_single(&pdev->dev, buffer_info->dma,
1313 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1314 buffer_info->dma = 0;
1315
1316 /* see !EOP comment in other Rx routine */
1317 if (!(staterr & E1000_RXD_STAT_EOP))
1318 adapter->flags2 |= FLAG2_IS_DISCARDING;
1319
1320 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1321 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1322 dev_kfree_skb_irq(skb);
1323 if (staterr & E1000_RXD_STAT_EOP)
1324 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1325 goto next_desc;
1326 }
1327
1328 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1329 !(netdev->features & NETIF_F_RXALL))) {
1330 dev_kfree_skb_irq(skb);
1331 goto next_desc;
1332 }
1333
1334 length = le16_to_cpu(rx_desc->wb.middle.length0);
1335
1336 if (!length) {
1337 e_dbg("Last part of the packet spanning multiple descriptors\n");
1338 dev_kfree_skb_irq(skb);
1339 goto next_desc;
1340 }
1341
1342 /* Good Receive */
1343 skb_put(skb, length);
1344
1345 {
1346 /* this looks ugly, but it seems compiler issues make
1347 * it more efficient than reusing j
1348 */
1349 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1350
1351 /* page alloc/put takes too long and effects small
1352 * packet throughput, so unsplit small packets and
1353 * save the alloc/put only valid in softirq (napi)
1354 * context to call kmap_*
1355 */
1356 if (l1 && (l1 <= copybreak) &&
1357 ((length + l1) <= adapter->rx_ps_bsize0)) {
1358 u8 *vaddr;
1359
1360 ps_page = &buffer_info->ps_pages[0];
1361
1362 /* there is no documentation about how to call
1363 * kmap_atomic, so we can't hold the mapping
1364 * very long
1365 */
1366 dma_sync_single_for_cpu(&pdev->dev,
1367 ps_page->dma,
1368 PAGE_SIZE,
1369 DMA_FROM_DEVICE);
1370 vaddr = kmap_atomic(ps_page->page);
1371 memcpy(skb_tail_pointer(skb), vaddr, l1);
1372 kunmap_atomic(vaddr);
1373 dma_sync_single_for_device(&pdev->dev,
1374 ps_page->dma,
1375 PAGE_SIZE,
1376 DMA_FROM_DEVICE);
1377
1378 /* remove the CRC */
1379 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1380 if (!(netdev->features & NETIF_F_RXFCS))
1381 l1 -= 4;
1382 }
1383
1384 skb_put(skb, l1);
1385 goto copydone;
1386 } /* if */
1387 }
1388
1389 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1390 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1391 if (!length)
1392 break;
1393
1394 ps_page = &buffer_info->ps_pages[j];
1395 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1396 DMA_FROM_DEVICE);
1397 ps_page->dma = 0;
1398 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1399 ps_page->page = NULL;
1400 skb->len += length;
1401 skb->data_len += length;
1402 skb->truesize += PAGE_SIZE;
1403 }
1404
1405 /* strip the ethernet crc, problem is we're using pages now so
1406 * this whole operation can get a little cpu intensive
1407 */
1408 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1409 if (!(netdev->features & NETIF_F_RXFCS))
1410 pskb_trim(skb, skb->len - 4);
1411 }
1412
1413 copydone:
1414 total_rx_bytes += skb->len;
1415 total_rx_packets++;
1416
1417 e1000_rx_checksum(adapter, staterr, skb);
1418
1419 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1420
1421 if (rx_desc->wb.upper.header_status &
1422 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1423 adapter->rx_hdr_split++;
1424
1425 e1000_receive_skb(adapter, netdev, skb, staterr,
1426 rx_desc->wb.middle.vlan);
1427
1428 next_desc:
1429 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1430 buffer_info->skb = NULL;
1431
1432 /* return some buffers to hardware, one at a time is too slow */
1433 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1434 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1435 GFP_ATOMIC);
1436 cleaned_count = 0;
1437 }
1438
1439 /* use prefetched values */
1440 rx_desc = next_rxd;
1441 buffer_info = next_buffer;
1442
1443 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1444 }
1445 rx_ring->next_to_clean = i;
1446
1447 cleaned_count = e1000_desc_unused(rx_ring);
1448 if (cleaned_count)
1449 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1450
1451 adapter->total_rx_bytes += total_rx_bytes;
1452 adapter->total_rx_packets += total_rx_packets;
1453 return cleaned;
1454 }
1455
1456 /**
1457 * e1000_consume_page - helper function
1458 **/
1459 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1460 u16 length)
1461 {
1462 bi->page = NULL;
1463 skb->len += length;
1464 skb->data_len += length;
1465 skb->truesize += PAGE_SIZE;
1466 }
1467
1468 /**
1469 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1470 * @adapter: board private structure
1471 *
1472 * the return value indicates whether actual cleaning was done, there
1473 * is no guarantee that everything was cleaned
1474 **/
1475 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1476 int work_to_do)
1477 {
1478 struct e1000_adapter *adapter = rx_ring->adapter;
1479 struct net_device *netdev = adapter->netdev;
1480 struct pci_dev *pdev = adapter->pdev;
1481 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1482 struct e1000_buffer *buffer_info, *next_buffer;
1483 u32 length, staterr;
1484 unsigned int i;
1485 int cleaned_count = 0;
1486 bool cleaned = false;
1487 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1488 struct skb_shared_info *shinfo;
1489
1490 i = rx_ring->next_to_clean;
1491 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1492 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1493 buffer_info = &rx_ring->buffer_info[i];
1494
1495 while (staterr & E1000_RXD_STAT_DD) {
1496 struct sk_buff *skb;
1497
1498 if (*work_done >= work_to_do)
1499 break;
1500 (*work_done)++;
1501 rmb(); /* read descriptor and rx_buffer_info after status DD */
1502
1503 skb = buffer_info->skb;
1504 buffer_info->skb = NULL;
1505
1506 ++i;
1507 if (i == rx_ring->count)
1508 i = 0;
1509 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1510 prefetch(next_rxd);
1511
1512 next_buffer = &rx_ring->buffer_info[i];
1513
1514 cleaned = true;
1515 cleaned_count++;
1516 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1517 DMA_FROM_DEVICE);
1518 buffer_info->dma = 0;
1519
1520 length = le16_to_cpu(rx_desc->wb.upper.length);
1521
1522 /* errors is only valid for DD + EOP descriptors */
1523 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1524 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1525 !(netdev->features & NETIF_F_RXALL)))) {
1526 /* recycle both page and skb */
1527 buffer_info->skb = skb;
1528 /* an error means any chain goes out the window too */
1529 if (rx_ring->rx_skb_top)
1530 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1531 rx_ring->rx_skb_top = NULL;
1532 goto next_desc;
1533 }
1534 #define rxtop (rx_ring->rx_skb_top)
1535 if (!(staterr & E1000_RXD_STAT_EOP)) {
1536 /* this descriptor is only the beginning (or middle) */
1537 if (!rxtop) {
1538 /* this is the beginning of a chain */
1539 rxtop = skb;
1540 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1541 0, length);
1542 } else {
1543 /* this is the middle of a chain */
1544 shinfo = skb_shinfo(rxtop);
1545 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1546 buffer_info->page, 0,
1547 length);
1548 /* re-use the skb, only consumed the page */
1549 buffer_info->skb = skb;
1550 }
1551 e1000_consume_page(buffer_info, rxtop, length);
1552 goto next_desc;
1553 } else {
1554 if (rxtop) {
1555 /* end of the chain */
1556 shinfo = skb_shinfo(rxtop);
1557 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1558 buffer_info->page, 0,
1559 length);
1560 /* re-use the current skb, we only consumed the
1561 * page
1562 */
1563 buffer_info->skb = skb;
1564 skb = rxtop;
1565 rxtop = NULL;
1566 e1000_consume_page(buffer_info, skb, length);
1567 } else {
1568 /* no chain, got EOP, this buf is the packet
1569 * copybreak to save the put_page/alloc_page
1570 */
1571 if (length <= copybreak &&
1572 skb_tailroom(skb) >= length) {
1573 u8 *vaddr;
1574 vaddr = kmap_atomic(buffer_info->page);
1575 memcpy(skb_tail_pointer(skb), vaddr,
1576 length);
1577 kunmap_atomic(vaddr);
1578 /* re-use the page, so don't erase
1579 * buffer_info->page
1580 */
1581 skb_put(skb, length);
1582 } else {
1583 skb_fill_page_desc(skb, 0,
1584 buffer_info->page, 0,
1585 length);
1586 e1000_consume_page(buffer_info, skb,
1587 length);
1588 }
1589 }
1590 }
1591
1592 /* Receive Checksum Offload */
1593 e1000_rx_checksum(adapter, staterr, skb);
1594
1595 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1596
1597 /* probably a little skewed due to removing CRC */
1598 total_rx_bytes += skb->len;
1599 total_rx_packets++;
1600
1601 /* eth type trans needs skb->data to point to something */
1602 if (!pskb_may_pull(skb, ETH_HLEN)) {
1603 e_err("pskb_may_pull failed.\n");
1604 dev_kfree_skb_irq(skb);
1605 goto next_desc;
1606 }
1607
1608 e1000_receive_skb(adapter, netdev, skb, staterr,
1609 rx_desc->wb.upper.vlan);
1610
1611 next_desc:
1612 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1613
1614 /* return some buffers to hardware, one at a time is too slow */
1615 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1616 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1617 GFP_ATOMIC);
1618 cleaned_count = 0;
1619 }
1620
1621 /* use prefetched values */
1622 rx_desc = next_rxd;
1623 buffer_info = next_buffer;
1624
1625 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1626 }
1627 rx_ring->next_to_clean = i;
1628
1629 cleaned_count = e1000_desc_unused(rx_ring);
1630 if (cleaned_count)
1631 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1632
1633 adapter->total_rx_bytes += total_rx_bytes;
1634 adapter->total_rx_packets += total_rx_packets;
1635 return cleaned;
1636 }
1637
1638 /**
1639 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1640 * @rx_ring: Rx descriptor ring
1641 **/
1642 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1643 {
1644 struct e1000_adapter *adapter = rx_ring->adapter;
1645 struct e1000_buffer *buffer_info;
1646 struct e1000_ps_page *ps_page;
1647 struct pci_dev *pdev = adapter->pdev;
1648 unsigned int i, j;
1649
1650 /* Free all the Rx ring sk_buffs */
1651 for (i = 0; i < rx_ring->count; i++) {
1652 buffer_info = &rx_ring->buffer_info[i];
1653 if (buffer_info->dma) {
1654 if (adapter->clean_rx == e1000_clean_rx_irq)
1655 dma_unmap_single(&pdev->dev, buffer_info->dma,
1656 adapter->rx_buffer_len,
1657 DMA_FROM_DEVICE);
1658 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1659 dma_unmap_page(&pdev->dev, buffer_info->dma,
1660 PAGE_SIZE, DMA_FROM_DEVICE);
1661 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1662 dma_unmap_single(&pdev->dev, buffer_info->dma,
1663 adapter->rx_ps_bsize0,
1664 DMA_FROM_DEVICE);
1665 buffer_info->dma = 0;
1666 }
1667
1668 if (buffer_info->page) {
1669 put_page(buffer_info->page);
1670 buffer_info->page = NULL;
1671 }
1672
1673 if (buffer_info->skb) {
1674 dev_kfree_skb(buffer_info->skb);
1675 buffer_info->skb = NULL;
1676 }
1677
1678 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1679 ps_page = &buffer_info->ps_pages[j];
1680 if (!ps_page->page)
1681 break;
1682 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1683 DMA_FROM_DEVICE);
1684 ps_page->dma = 0;
1685 put_page(ps_page->page);
1686 ps_page->page = NULL;
1687 }
1688 }
1689
1690 /* there also may be some cached data from a chained receive */
1691 if (rx_ring->rx_skb_top) {
1692 dev_kfree_skb(rx_ring->rx_skb_top);
1693 rx_ring->rx_skb_top = NULL;
1694 }
1695
1696 /* Zero out the descriptor ring */
1697 memset(rx_ring->desc, 0, rx_ring->size);
1698
1699 rx_ring->next_to_clean = 0;
1700 rx_ring->next_to_use = 0;
1701 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1702
1703 writel(0, rx_ring->head);
1704 if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1705 e1000e_update_rdt_wa(rx_ring, 0);
1706 else
1707 writel(0, rx_ring->tail);
1708 }
1709
1710 static void e1000e_downshift_workaround(struct work_struct *work)
1711 {
1712 struct e1000_adapter *adapter = container_of(work,
1713 struct e1000_adapter,
1714 downshift_task);
1715
1716 if (test_bit(__E1000_DOWN, &adapter->state))
1717 return;
1718
1719 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1720 }
1721
1722 /**
1723 * e1000_intr_msi - Interrupt Handler
1724 * @irq: interrupt number
1725 * @data: pointer to a network interface device structure
1726 **/
1727 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1728 {
1729 struct net_device *netdev = data;
1730 struct e1000_adapter *adapter = netdev_priv(netdev);
1731 struct e1000_hw *hw = &adapter->hw;
1732 u32 icr = er32(ICR);
1733
1734 /* read ICR disables interrupts using IAM */
1735 if (icr & E1000_ICR_LSC) {
1736 hw->mac.get_link_status = true;
1737 /* ICH8 workaround-- Call gig speed drop workaround on cable
1738 * disconnect (LSC) before accessing any PHY registers
1739 */
1740 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1741 (!(er32(STATUS) & E1000_STATUS_LU)))
1742 schedule_work(&adapter->downshift_task);
1743
1744 /* 80003ES2LAN workaround-- For packet buffer work-around on
1745 * link down event; disable receives here in the ISR and reset
1746 * adapter in watchdog
1747 */
1748 if (netif_carrier_ok(netdev) &&
1749 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1750 /* disable receives */
1751 u32 rctl = er32(RCTL);
1752 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1753 adapter->flags |= FLAG_RESTART_NOW;
1754 }
1755 /* guard against interrupt when we're going down */
1756 if (!test_bit(__E1000_DOWN, &adapter->state))
1757 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1758 }
1759
1760 /* Reset on uncorrectable ECC error */
1761 if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1762 u32 pbeccsts = er32(PBECCSTS);
1763
1764 adapter->corr_errors +=
1765 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1766 adapter->uncorr_errors +=
1767 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1768 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1769
1770 /* Do the reset outside of interrupt context */
1771 schedule_work(&adapter->reset_task);
1772
1773 /* return immediately since reset is imminent */
1774 return IRQ_HANDLED;
1775 }
1776
1777 if (napi_schedule_prep(&adapter->napi)) {
1778 adapter->total_tx_bytes = 0;
1779 adapter->total_tx_packets = 0;
1780 adapter->total_rx_bytes = 0;
1781 adapter->total_rx_packets = 0;
1782 __napi_schedule(&adapter->napi);
1783 }
1784
1785 return IRQ_HANDLED;
1786 }
1787
1788 /**
1789 * e1000_intr - Interrupt Handler
1790 * @irq: interrupt number
1791 * @data: pointer to a network interface device structure
1792 **/
1793 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1794 {
1795 struct net_device *netdev = data;
1796 struct e1000_adapter *adapter = netdev_priv(netdev);
1797 struct e1000_hw *hw = &adapter->hw;
1798 u32 rctl, icr = er32(ICR);
1799
1800 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1801 return IRQ_NONE; /* Not our interrupt */
1802
1803 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1804 * not set, then the adapter didn't send an interrupt
1805 */
1806 if (!(icr & E1000_ICR_INT_ASSERTED))
1807 return IRQ_NONE;
1808
1809 /* Interrupt Auto-Mask...upon reading ICR,
1810 * interrupts are masked. No need for the
1811 * IMC write
1812 */
1813
1814 if (icr & E1000_ICR_LSC) {
1815 hw->mac.get_link_status = true;
1816 /* ICH8 workaround-- Call gig speed drop workaround on cable
1817 * disconnect (LSC) before accessing any PHY registers
1818 */
1819 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1820 (!(er32(STATUS) & E1000_STATUS_LU)))
1821 schedule_work(&adapter->downshift_task);
1822
1823 /* 80003ES2LAN workaround--
1824 * For packet buffer work-around on link down event;
1825 * disable receives here in the ISR and
1826 * reset adapter in watchdog
1827 */
1828 if (netif_carrier_ok(netdev) &&
1829 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1830 /* disable receives */
1831 rctl = er32(RCTL);
1832 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1833 adapter->flags |= FLAG_RESTART_NOW;
1834 }
1835 /* guard against interrupt when we're going down */
1836 if (!test_bit(__E1000_DOWN, &adapter->state))
1837 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1838 }
1839
1840 /* Reset on uncorrectable ECC error */
1841 if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1842 u32 pbeccsts = er32(PBECCSTS);
1843
1844 adapter->corr_errors +=
1845 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1846 adapter->uncorr_errors +=
1847 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1848 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1849
1850 /* Do the reset outside of interrupt context */
1851 schedule_work(&adapter->reset_task);
1852
1853 /* return immediately since reset is imminent */
1854 return IRQ_HANDLED;
1855 }
1856
1857 if (napi_schedule_prep(&adapter->napi)) {
1858 adapter->total_tx_bytes = 0;
1859 adapter->total_tx_packets = 0;
1860 adapter->total_rx_bytes = 0;
1861 adapter->total_rx_packets = 0;
1862 __napi_schedule(&adapter->napi);
1863 }
1864
1865 return IRQ_HANDLED;
1866 }
1867
1868 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1869 {
1870 struct net_device *netdev = data;
1871 struct e1000_adapter *adapter = netdev_priv(netdev);
1872 struct e1000_hw *hw = &adapter->hw;
1873 u32 icr = er32(ICR);
1874
1875 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1876 if (!test_bit(__E1000_DOWN, &adapter->state))
1877 ew32(IMS, E1000_IMS_OTHER);
1878 return IRQ_NONE;
1879 }
1880
1881 if (icr & adapter->eiac_mask)
1882 ew32(ICS, (icr & adapter->eiac_mask));
1883
1884 if (icr & E1000_ICR_OTHER) {
1885 if (!(icr & E1000_ICR_LSC))
1886 goto no_link_interrupt;
1887 hw->mac.get_link_status = true;
1888 /* guard against interrupt when we're going down */
1889 if (!test_bit(__E1000_DOWN, &adapter->state))
1890 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1891 }
1892
1893 no_link_interrupt:
1894 if (!test_bit(__E1000_DOWN, &adapter->state))
1895 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1896
1897 return IRQ_HANDLED;
1898 }
1899
1900 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1901 {
1902 struct net_device *netdev = data;
1903 struct e1000_adapter *adapter = netdev_priv(netdev);
1904 struct e1000_hw *hw = &adapter->hw;
1905 struct e1000_ring *tx_ring = adapter->tx_ring;
1906
1907 adapter->total_tx_bytes = 0;
1908 adapter->total_tx_packets = 0;
1909
1910 if (!e1000_clean_tx_irq(tx_ring))
1911 /* Ring was not completely cleaned, so fire another interrupt */
1912 ew32(ICS, tx_ring->ims_val);
1913
1914 return IRQ_HANDLED;
1915 }
1916
1917 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1918 {
1919 struct net_device *netdev = data;
1920 struct e1000_adapter *adapter = netdev_priv(netdev);
1921 struct e1000_ring *rx_ring = adapter->rx_ring;
1922
1923 /* Write the ITR value calculated at the end of the
1924 * previous interrupt.
1925 */
1926 if (rx_ring->set_itr) {
1927 writel(1000000000 / (rx_ring->itr_val * 256),
1928 rx_ring->itr_register);
1929 rx_ring->set_itr = 0;
1930 }
1931
1932 if (napi_schedule_prep(&adapter->napi)) {
1933 adapter->total_rx_bytes = 0;
1934 adapter->total_rx_packets = 0;
1935 __napi_schedule(&adapter->napi);
1936 }
1937 return IRQ_HANDLED;
1938 }
1939
1940 /**
1941 * e1000_configure_msix - Configure MSI-X hardware
1942 *
1943 * e1000_configure_msix sets up the hardware to properly
1944 * generate MSI-X interrupts.
1945 **/
1946 static void e1000_configure_msix(struct e1000_adapter *adapter)
1947 {
1948 struct e1000_hw *hw = &adapter->hw;
1949 struct e1000_ring *rx_ring = adapter->rx_ring;
1950 struct e1000_ring *tx_ring = adapter->tx_ring;
1951 int vector = 0;
1952 u32 ctrl_ext, ivar = 0;
1953
1954 adapter->eiac_mask = 0;
1955
1956 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1957 if (hw->mac.type == e1000_82574) {
1958 u32 rfctl = er32(RFCTL);
1959 rfctl |= E1000_RFCTL_ACK_DIS;
1960 ew32(RFCTL, rfctl);
1961 }
1962
1963 /* Configure Rx vector */
1964 rx_ring->ims_val = E1000_IMS_RXQ0;
1965 adapter->eiac_mask |= rx_ring->ims_val;
1966 if (rx_ring->itr_val)
1967 writel(1000000000 / (rx_ring->itr_val * 256),
1968 rx_ring->itr_register);
1969 else
1970 writel(1, rx_ring->itr_register);
1971 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1972
1973 /* Configure Tx vector */
1974 tx_ring->ims_val = E1000_IMS_TXQ0;
1975 vector++;
1976 if (tx_ring->itr_val)
1977 writel(1000000000 / (tx_ring->itr_val * 256),
1978 tx_ring->itr_register);
1979 else
1980 writel(1, tx_ring->itr_register);
1981 adapter->eiac_mask |= tx_ring->ims_val;
1982 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1983
1984 /* set vector for Other Causes, e.g. link changes */
1985 vector++;
1986 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1987 if (rx_ring->itr_val)
1988 writel(1000000000 / (rx_ring->itr_val * 256),
1989 hw->hw_addr + E1000_EITR_82574(vector));
1990 else
1991 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1992
1993 /* Cause Tx interrupts on every write back */
1994 ivar |= (1 << 31);
1995
1996 ew32(IVAR, ivar);
1997
1998 /* enable MSI-X PBA support */
1999 ctrl_ext = er32(CTRL_EXT);
2000 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2001
2002 /* Auto-Mask Other interrupts upon ICR read */
2003 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2004 ctrl_ext |= E1000_CTRL_EXT_EIAME;
2005 ew32(CTRL_EXT, ctrl_ext);
2006 e1e_flush();
2007 }
2008
2009 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2010 {
2011 if (adapter->msix_entries) {
2012 pci_disable_msix(adapter->pdev);
2013 kfree(adapter->msix_entries);
2014 adapter->msix_entries = NULL;
2015 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2016 pci_disable_msi(adapter->pdev);
2017 adapter->flags &= ~FLAG_MSI_ENABLED;
2018 }
2019 }
2020
2021 /**
2022 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2023 *
2024 * Attempt to configure interrupts using the best available
2025 * capabilities of the hardware and kernel.
2026 **/
2027 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2028 {
2029 int err;
2030 int i;
2031
2032 switch (adapter->int_mode) {
2033 case E1000E_INT_MODE_MSIX:
2034 if (adapter->flags & FLAG_HAS_MSIX) {
2035 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2036 adapter->msix_entries = kcalloc(adapter->num_vectors,
2037 sizeof(struct
2038 msix_entry),
2039 GFP_KERNEL);
2040 if (adapter->msix_entries) {
2041 for (i = 0; i < adapter->num_vectors; i++)
2042 adapter->msix_entries[i].entry = i;
2043
2044 err = pci_enable_msix(adapter->pdev,
2045 adapter->msix_entries,
2046 adapter->num_vectors);
2047 if (err == 0)
2048 return;
2049 }
2050 /* MSI-X failed, so fall through and try MSI */
2051 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2052 e1000e_reset_interrupt_capability(adapter);
2053 }
2054 adapter->int_mode = E1000E_INT_MODE_MSI;
2055 /* Fall through */
2056 case E1000E_INT_MODE_MSI:
2057 if (!pci_enable_msi(adapter->pdev)) {
2058 adapter->flags |= FLAG_MSI_ENABLED;
2059 } else {
2060 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2061 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2062 }
2063 /* Fall through */
2064 case E1000E_INT_MODE_LEGACY:
2065 /* Don't do anything; this is the system default */
2066 break;
2067 }
2068
2069 /* store the number of vectors being used */
2070 adapter->num_vectors = 1;
2071 }
2072
2073 /**
2074 * e1000_request_msix - Initialize MSI-X interrupts
2075 *
2076 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2077 * kernel.
2078 **/
2079 static int e1000_request_msix(struct e1000_adapter *adapter)
2080 {
2081 struct net_device *netdev = adapter->netdev;
2082 int err = 0, vector = 0;
2083
2084 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2085 snprintf(adapter->rx_ring->name,
2086 sizeof(adapter->rx_ring->name) - 1,
2087 "%s-rx-0", netdev->name);
2088 else
2089 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2090 err = request_irq(adapter->msix_entries[vector].vector,
2091 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2092 netdev);
2093 if (err)
2094 return err;
2095 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2096 E1000_EITR_82574(vector);
2097 adapter->rx_ring->itr_val = adapter->itr;
2098 vector++;
2099
2100 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2101 snprintf(adapter->tx_ring->name,
2102 sizeof(adapter->tx_ring->name) - 1,
2103 "%s-tx-0", netdev->name);
2104 else
2105 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2106 err = request_irq(adapter->msix_entries[vector].vector,
2107 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2108 netdev);
2109 if (err)
2110 return err;
2111 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2112 E1000_EITR_82574(vector);
2113 adapter->tx_ring->itr_val = adapter->itr;
2114 vector++;
2115
2116 err = request_irq(adapter->msix_entries[vector].vector,
2117 e1000_msix_other, 0, netdev->name, netdev);
2118 if (err)
2119 return err;
2120
2121 e1000_configure_msix(adapter);
2122
2123 return 0;
2124 }
2125
2126 /**
2127 * e1000_request_irq - initialize interrupts
2128 *
2129 * Attempts to configure interrupts using the best available
2130 * capabilities of the hardware and kernel.
2131 **/
2132 static int e1000_request_irq(struct e1000_adapter *adapter)
2133 {
2134 struct net_device *netdev = adapter->netdev;
2135 int err;
2136
2137 if (adapter->msix_entries) {
2138 err = e1000_request_msix(adapter);
2139 if (!err)
2140 return err;
2141 /* fall back to MSI */
2142 e1000e_reset_interrupt_capability(adapter);
2143 adapter->int_mode = E1000E_INT_MODE_MSI;
2144 e1000e_set_interrupt_capability(adapter);
2145 }
2146 if (adapter->flags & FLAG_MSI_ENABLED) {
2147 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2148 netdev->name, netdev);
2149 if (!err)
2150 return err;
2151
2152 /* fall back to legacy interrupt */
2153 e1000e_reset_interrupt_capability(adapter);
2154 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2155 }
2156
2157 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2158 netdev->name, netdev);
2159 if (err)
2160 e_err("Unable to allocate interrupt, Error: %d\n", err);
2161
2162 return err;
2163 }
2164
2165 static void e1000_free_irq(struct e1000_adapter *adapter)
2166 {
2167 struct net_device *netdev = adapter->netdev;
2168
2169 if (adapter->msix_entries) {
2170 int vector = 0;
2171
2172 free_irq(adapter->msix_entries[vector].vector, netdev);
2173 vector++;
2174
2175 free_irq(adapter->msix_entries[vector].vector, netdev);
2176 vector++;
2177
2178 /* Other Causes interrupt vector */
2179 free_irq(adapter->msix_entries[vector].vector, netdev);
2180 return;
2181 }
2182
2183 free_irq(adapter->pdev->irq, netdev);
2184 }
2185
2186 /**
2187 * e1000_irq_disable - Mask off interrupt generation on the NIC
2188 **/
2189 static void e1000_irq_disable(struct e1000_adapter *adapter)
2190 {
2191 struct e1000_hw *hw = &adapter->hw;
2192
2193 ew32(IMC, ~0);
2194 if (adapter->msix_entries)
2195 ew32(EIAC_82574, 0);
2196 e1e_flush();
2197
2198 if (adapter->msix_entries) {
2199 int i;
2200 for (i = 0; i < adapter->num_vectors; i++)
2201 synchronize_irq(adapter->msix_entries[i].vector);
2202 } else {
2203 synchronize_irq(adapter->pdev->irq);
2204 }
2205 }
2206
2207 /**
2208 * e1000_irq_enable - Enable default interrupt generation settings
2209 **/
2210 static void e1000_irq_enable(struct e1000_adapter *adapter)
2211 {
2212 struct e1000_hw *hw = &adapter->hw;
2213
2214 if (adapter->msix_entries) {
2215 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2216 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2217 } else if (hw->mac.type == e1000_pch_lpt) {
2218 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2219 } else {
2220 ew32(IMS, IMS_ENABLE_MASK);
2221 }
2222 e1e_flush();
2223 }
2224
2225 /**
2226 * e1000e_get_hw_control - get control of the h/w from f/w
2227 * @adapter: address of board private structure
2228 *
2229 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2230 * For ASF and Pass Through versions of f/w this means that
2231 * the driver is loaded. For AMT version (only with 82573)
2232 * of the f/w this means that the network i/f is open.
2233 **/
2234 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2235 {
2236 struct e1000_hw *hw = &adapter->hw;
2237 u32 ctrl_ext;
2238 u32 swsm;
2239
2240 /* Let firmware know the driver has taken over */
2241 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2242 swsm = er32(SWSM);
2243 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2244 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2245 ctrl_ext = er32(CTRL_EXT);
2246 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2247 }
2248 }
2249
2250 /**
2251 * e1000e_release_hw_control - release control of the h/w to f/w
2252 * @adapter: address of board private structure
2253 *
2254 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2255 * For ASF and Pass Through versions of f/w this means that the
2256 * driver is no longer loaded. For AMT version (only with 82573) i
2257 * of the f/w this means that the network i/f is closed.
2258 *
2259 **/
2260 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2261 {
2262 struct e1000_hw *hw = &adapter->hw;
2263 u32 ctrl_ext;
2264 u32 swsm;
2265
2266 /* Let firmware taken over control of h/w */
2267 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2268 swsm = er32(SWSM);
2269 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2270 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2271 ctrl_ext = er32(CTRL_EXT);
2272 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2273 }
2274 }
2275
2276 /**
2277 * e1000_alloc_ring_dma - allocate memory for a ring structure
2278 **/
2279 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2280 struct e1000_ring *ring)
2281 {
2282 struct pci_dev *pdev = adapter->pdev;
2283
2284 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2285 GFP_KERNEL);
2286 if (!ring->desc)
2287 return -ENOMEM;
2288
2289 return 0;
2290 }
2291
2292 /**
2293 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2294 * @tx_ring: Tx descriptor ring
2295 *
2296 * Return 0 on success, negative on failure
2297 **/
2298 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2299 {
2300 struct e1000_adapter *adapter = tx_ring->adapter;
2301 int err = -ENOMEM, size;
2302
2303 size = sizeof(struct e1000_buffer) * tx_ring->count;
2304 tx_ring->buffer_info = vzalloc(size);
2305 if (!tx_ring->buffer_info)
2306 goto err;
2307
2308 /* round up to nearest 4K */
2309 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2310 tx_ring->size = ALIGN(tx_ring->size, 4096);
2311
2312 err = e1000_alloc_ring_dma(adapter, tx_ring);
2313 if (err)
2314 goto err;
2315
2316 tx_ring->next_to_use = 0;
2317 tx_ring->next_to_clean = 0;
2318
2319 return 0;
2320 err:
2321 vfree(tx_ring->buffer_info);
2322 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2323 return err;
2324 }
2325
2326 /**
2327 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2328 * @rx_ring: Rx descriptor ring
2329 *
2330 * Returns 0 on success, negative on failure
2331 **/
2332 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2333 {
2334 struct e1000_adapter *adapter = rx_ring->adapter;
2335 struct e1000_buffer *buffer_info;
2336 int i, size, desc_len, err = -ENOMEM;
2337
2338 size = sizeof(struct e1000_buffer) * rx_ring->count;
2339 rx_ring->buffer_info = vzalloc(size);
2340 if (!rx_ring->buffer_info)
2341 goto err;
2342
2343 for (i = 0; i < rx_ring->count; i++) {
2344 buffer_info = &rx_ring->buffer_info[i];
2345 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2346 sizeof(struct e1000_ps_page),
2347 GFP_KERNEL);
2348 if (!buffer_info->ps_pages)
2349 goto err_pages;
2350 }
2351
2352 desc_len = sizeof(union e1000_rx_desc_packet_split);
2353
2354 /* Round up to nearest 4K */
2355 rx_ring->size = rx_ring->count * desc_len;
2356 rx_ring->size = ALIGN(rx_ring->size, 4096);
2357
2358 err = e1000_alloc_ring_dma(adapter, rx_ring);
2359 if (err)
2360 goto err_pages;
2361
2362 rx_ring->next_to_clean = 0;
2363 rx_ring->next_to_use = 0;
2364 rx_ring->rx_skb_top = NULL;
2365
2366 return 0;
2367
2368 err_pages:
2369 for (i = 0; i < rx_ring->count; i++) {
2370 buffer_info = &rx_ring->buffer_info[i];
2371 kfree(buffer_info->ps_pages);
2372 }
2373 err:
2374 vfree(rx_ring->buffer_info);
2375 e_err("Unable to allocate memory for the receive descriptor ring\n");
2376 return err;
2377 }
2378
2379 /**
2380 * e1000_clean_tx_ring - Free Tx Buffers
2381 * @tx_ring: Tx descriptor ring
2382 **/
2383 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2384 {
2385 struct e1000_adapter *adapter = tx_ring->adapter;
2386 struct e1000_buffer *buffer_info;
2387 unsigned long size;
2388 unsigned int i;
2389
2390 for (i = 0; i < tx_ring->count; i++) {
2391 buffer_info = &tx_ring->buffer_info[i];
2392 e1000_put_txbuf(tx_ring, buffer_info);
2393 }
2394
2395 netdev_reset_queue(adapter->netdev);
2396 size = sizeof(struct e1000_buffer) * tx_ring->count;
2397 memset(tx_ring->buffer_info, 0, size);
2398
2399 memset(tx_ring->desc, 0, tx_ring->size);
2400
2401 tx_ring->next_to_use = 0;
2402 tx_ring->next_to_clean = 0;
2403
2404 writel(0, tx_ring->head);
2405 if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2406 e1000e_update_tdt_wa(tx_ring, 0);
2407 else
2408 writel(0, tx_ring->tail);
2409 }
2410
2411 /**
2412 * e1000e_free_tx_resources - Free Tx Resources per Queue
2413 * @tx_ring: Tx descriptor ring
2414 *
2415 * Free all transmit software resources
2416 **/
2417 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2418 {
2419 struct e1000_adapter *adapter = tx_ring->adapter;
2420 struct pci_dev *pdev = adapter->pdev;
2421
2422 e1000_clean_tx_ring(tx_ring);
2423
2424 vfree(tx_ring->buffer_info);
2425 tx_ring->buffer_info = NULL;
2426
2427 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2428 tx_ring->dma);
2429 tx_ring->desc = NULL;
2430 }
2431
2432 /**
2433 * e1000e_free_rx_resources - Free Rx Resources
2434 * @rx_ring: Rx descriptor ring
2435 *
2436 * Free all receive software resources
2437 **/
2438 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2439 {
2440 struct e1000_adapter *adapter = rx_ring->adapter;
2441 struct pci_dev *pdev = adapter->pdev;
2442 int i;
2443
2444 e1000_clean_rx_ring(rx_ring);
2445
2446 for (i = 0; i < rx_ring->count; i++)
2447 kfree(rx_ring->buffer_info[i].ps_pages);
2448
2449 vfree(rx_ring->buffer_info);
2450 rx_ring->buffer_info = NULL;
2451
2452 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2453 rx_ring->dma);
2454 rx_ring->desc = NULL;
2455 }
2456
2457 /**
2458 * e1000_update_itr - update the dynamic ITR value based on statistics
2459 * @adapter: pointer to adapter
2460 * @itr_setting: current adapter->itr
2461 * @packets: the number of packets during this measurement interval
2462 * @bytes: the number of bytes during this measurement interval
2463 *
2464 * Stores a new ITR value based on packets and byte
2465 * counts during the last interrupt. The advantage of per interrupt
2466 * computation is faster updates and more accurate ITR for the current
2467 * traffic pattern. Constants in this function were computed
2468 * based on theoretical maximum wire speed and thresholds were set based
2469 * on testing data as well as attempting to minimize response time
2470 * while increasing bulk throughput. This functionality is controlled
2471 * by the InterruptThrottleRate module parameter.
2472 **/
2473 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2474 {
2475 unsigned int retval = itr_setting;
2476
2477 if (packets == 0)
2478 return itr_setting;
2479
2480 switch (itr_setting) {
2481 case lowest_latency:
2482 /* handle TSO and jumbo frames */
2483 if (bytes / packets > 8000)
2484 retval = bulk_latency;
2485 else if ((packets < 5) && (bytes > 512))
2486 retval = low_latency;
2487 break;
2488 case low_latency: /* 50 usec aka 20000 ints/s */
2489 if (bytes > 10000) {
2490 /* this if handles the TSO accounting */
2491 if (bytes / packets > 8000)
2492 retval = bulk_latency;
2493 else if ((packets < 10) || ((bytes / packets) > 1200))
2494 retval = bulk_latency;
2495 else if ((packets > 35))
2496 retval = lowest_latency;
2497 } else if (bytes / packets > 2000) {
2498 retval = bulk_latency;
2499 } else if (packets <= 2 && bytes < 512) {
2500 retval = lowest_latency;
2501 }
2502 break;
2503 case bulk_latency: /* 250 usec aka 4000 ints/s */
2504 if (bytes > 25000) {
2505 if (packets > 35)
2506 retval = low_latency;
2507 } else if (bytes < 6000) {
2508 retval = low_latency;
2509 }
2510 break;
2511 }
2512
2513 return retval;
2514 }
2515
2516 static void e1000_set_itr(struct e1000_adapter *adapter)
2517 {
2518 u16 current_itr;
2519 u32 new_itr = adapter->itr;
2520
2521 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2522 if (adapter->link_speed != SPEED_1000) {
2523 current_itr = 0;
2524 new_itr = 4000;
2525 goto set_itr_now;
2526 }
2527
2528 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2529 new_itr = 0;
2530 goto set_itr_now;
2531 }
2532
2533 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2534 adapter->total_tx_packets,
2535 adapter->total_tx_bytes);
2536 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2537 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2538 adapter->tx_itr = low_latency;
2539
2540 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2541 adapter->total_rx_packets,
2542 adapter->total_rx_bytes);
2543 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2544 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2545 adapter->rx_itr = low_latency;
2546
2547 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2548
2549 /* counts and packets in update_itr are dependent on these numbers */
2550 switch (current_itr) {
2551 case lowest_latency:
2552 new_itr = 70000;
2553 break;
2554 case low_latency:
2555 new_itr = 20000; /* aka hwitr = ~200 */
2556 break;
2557 case bulk_latency:
2558 new_itr = 4000;
2559 break;
2560 default:
2561 break;
2562 }
2563
2564 set_itr_now:
2565 if (new_itr != adapter->itr) {
2566 /* this attempts to bias the interrupt rate towards Bulk
2567 * by adding intermediate steps when interrupt rate is
2568 * increasing
2569 */
2570 new_itr = new_itr > adapter->itr ?
2571 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2572 adapter->itr = new_itr;
2573 adapter->rx_ring->itr_val = new_itr;
2574 if (adapter->msix_entries)
2575 adapter->rx_ring->set_itr = 1;
2576 else
2577 e1000e_write_itr(adapter, new_itr);
2578 }
2579 }
2580
2581 /**
2582 * e1000e_write_itr - write the ITR value to the appropriate registers
2583 * @adapter: address of board private structure
2584 * @itr: new ITR value to program
2585 *
2586 * e1000e_write_itr determines if the adapter is in MSI-X mode
2587 * and, if so, writes the EITR registers with the ITR value.
2588 * Otherwise, it writes the ITR value into the ITR register.
2589 **/
2590 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2591 {
2592 struct e1000_hw *hw = &adapter->hw;
2593 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2594
2595 if (adapter->msix_entries) {
2596 int vector;
2597
2598 for (vector = 0; vector < adapter->num_vectors; vector++)
2599 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2600 } else {
2601 ew32(ITR, new_itr);
2602 }
2603 }
2604
2605 /**
2606 * e1000_alloc_queues - Allocate memory for all rings
2607 * @adapter: board private structure to initialize
2608 **/
2609 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2610 {
2611 int size = sizeof(struct e1000_ring);
2612
2613 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2614 if (!adapter->tx_ring)
2615 goto err;
2616 adapter->tx_ring->count = adapter->tx_ring_count;
2617 adapter->tx_ring->adapter = adapter;
2618
2619 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2620 if (!adapter->rx_ring)
2621 goto err;
2622 adapter->rx_ring->count = adapter->rx_ring_count;
2623 adapter->rx_ring->adapter = adapter;
2624
2625 return 0;
2626 err:
2627 e_err("Unable to allocate memory for queues\n");
2628 kfree(adapter->rx_ring);
2629 kfree(adapter->tx_ring);
2630 return -ENOMEM;
2631 }
2632
2633 /**
2634 * e1000e_poll - NAPI Rx polling callback
2635 * @napi: struct associated with this polling callback
2636 * @weight: number of packets driver is allowed to process this poll
2637 **/
2638 static int e1000e_poll(struct napi_struct *napi, int weight)
2639 {
2640 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2641 napi);
2642 struct e1000_hw *hw = &adapter->hw;
2643 struct net_device *poll_dev = adapter->netdev;
2644 int tx_cleaned = 1, work_done = 0;
2645
2646 adapter = netdev_priv(poll_dev);
2647
2648 if (!adapter->msix_entries ||
2649 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2650 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2651
2652 adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2653
2654 if (!tx_cleaned)
2655 work_done = weight;
2656
2657 /* If weight not fully consumed, exit the polling mode */
2658 if (work_done < weight) {
2659 if (adapter->itr_setting & 3)
2660 e1000_set_itr(adapter);
2661 napi_complete(napi);
2662 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2663 if (adapter->msix_entries)
2664 ew32(IMS, adapter->rx_ring->ims_val);
2665 else
2666 e1000_irq_enable(adapter);
2667 }
2668 }
2669
2670 return work_done;
2671 }
2672
2673 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2674 __always_unused __be16 proto, u16 vid)
2675 {
2676 struct e1000_adapter *adapter = netdev_priv(netdev);
2677 struct e1000_hw *hw = &adapter->hw;
2678 u32 vfta, index;
2679
2680 /* don't update vlan cookie if already programmed */
2681 if ((adapter->hw.mng_cookie.status &
2682 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2683 (vid == adapter->mng_vlan_id))
2684 return 0;
2685
2686 /* add VID to filter table */
2687 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2688 index = (vid >> 5) & 0x7F;
2689 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2690 vfta |= (1 << (vid & 0x1F));
2691 hw->mac.ops.write_vfta(hw, index, vfta);
2692 }
2693
2694 set_bit(vid, adapter->active_vlans);
2695
2696 return 0;
2697 }
2698
2699 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2700 __always_unused __be16 proto, u16 vid)
2701 {
2702 struct e1000_adapter *adapter = netdev_priv(netdev);
2703 struct e1000_hw *hw = &adapter->hw;
2704 u32 vfta, index;
2705
2706 if ((adapter->hw.mng_cookie.status &
2707 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2708 (vid == adapter->mng_vlan_id)) {
2709 /* release control to f/w */
2710 e1000e_release_hw_control(adapter);
2711 return 0;
2712 }
2713
2714 /* remove VID from filter table */
2715 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2716 index = (vid >> 5) & 0x7F;
2717 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2718 vfta &= ~(1 << (vid & 0x1F));
2719 hw->mac.ops.write_vfta(hw, index, vfta);
2720 }
2721
2722 clear_bit(vid, adapter->active_vlans);
2723
2724 return 0;
2725 }
2726
2727 /**
2728 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2729 * @adapter: board private structure to initialize
2730 **/
2731 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2732 {
2733 struct net_device *netdev = adapter->netdev;
2734 struct e1000_hw *hw = &adapter->hw;
2735 u32 rctl;
2736
2737 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2738 /* disable VLAN receive filtering */
2739 rctl = er32(RCTL);
2740 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2741 ew32(RCTL, rctl);
2742
2743 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2744 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2745 adapter->mng_vlan_id);
2746 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2747 }
2748 }
2749 }
2750
2751 /**
2752 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2753 * @adapter: board private structure to initialize
2754 **/
2755 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2756 {
2757 struct e1000_hw *hw = &adapter->hw;
2758 u32 rctl;
2759
2760 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2761 /* enable VLAN receive filtering */
2762 rctl = er32(RCTL);
2763 rctl |= E1000_RCTL_VFE;
2764 rctl &= ~E1000_RCTL_CFIEN;
2765 ew32(RCTL, rctl);
2766 }
2767 }
2768
2769 /**
2770 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2771 * @adapter: board private structure to initialize
2772 **/
2773 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2774 {
2775 struct e1000_hw *hw = &adapter->hw;
2776 u32 ctrl;
2777
2778 /* disable VLAN tag insert/strip */
2779 ctrl = er32(CTRL);
2780 ctrl &= ~E1000_CTRL_VME;
2781 ew32(CTRL, ctrl);
2782 }
2783
2784 /**
2785 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2786 * @adapter: board private structure to initialize
2787 **/
2788 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2789 {
2790 struct e1000_hw *hw = &adapter->hw;
2791 u32 ctrl;
2792
2793 /* enable VLAN tag insert/strip */
2794 ctrl = er32(CTRL);
2795 ctrl |= E1000_CTRL_VME;
2796 ew32(CTRL, ctrl);
2797 }
2798
2799 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2800 {
2801 struct net_device *netdev = adapter->netdev;
2802 u16 vid = adapter->hw.mng_cookie.vlan_id;
2803 u16 old_vid = adapter->mng_vlan_id;
2804
2805 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2806 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2807 adapter->mng_vlan_id = vid;
2808 }
2809
2810 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2811 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2812 }
2813
2814 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2815 {
2816 u16 vid;
2817
2818 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2819
2820 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2821 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2822 }
2823
2824 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2825 {
2826 struct e1000_hw *hw = &adapter->hw;
2827 u32 manc, manc2h, mdef, i, j;
2828
2829 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2830 return;
2831
2832 manc = er32(MANC);
2833
2834 /* enable receiving management packets to the host. this will probably
2835 * generate destination unreachable messages from the host OS, but
2836 * the packets will be handled on SMBUS
2837 */
2838 manc |= E1000_MANC_EN_MNG2HOST;
2839 manc2h = er32(MANC2H);
2840
2841 switch (hw->mac.type) {
2842 default:
2843 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2844 break;
2845 case e1000_82574:
2846 case e1000_82583:
2847 /* Check if IPMI pass-through decision filter already exists;
2848 * if so, enable it.
2849 */
2850 for (i = 0, j = 0; i < 8; i++) {
2851 mdef = er32(MDEF(i));
2852
2853 /* Ignore filters with anything other than IPMI ports */
2854 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2855 continue;
2856
2857 /* Enable this decision filter in MANC2H */
2858 if (mdef)
2859 manc2h |= (1 << i);
2860
2861 j |= mdef;
2862 }
2863
2864 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2865 break;
2866
2867 /* Create new decision filter in an empty filter */
2868 for (i = 0, j = 0; i < 8; i++)
2869 if (er32(MDEF(i)) == 0) {
2870 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2871 E1000_MDEF_PORT_664));
2872 manc2h |= (1 << 1);
2873 j++;
2874 break;
2875 }
2876
2877 if (!j)
2878 e_warn("Unable to create IPMI pass-through filter\n");
2879 break;
2880 }
2881
2882 ew32(MANC2H, manc2h);
2883 ew32(MANC, manc);
2884 }
2885
2886 /**
2887 * e1000_configure_tx - Configure Transmit Unit after Reset
2888 * @adapter: board private structure
2889 *
2890 * Configure the Tx unit of the MAC after a reset.
2891 **/
2892 static void e1000_configure_tx(struct e1000_adapter *adapter)
2893 {
2894 struct e1000_hw *hw = &adapter->hw;
2895 struct e1000_ring *tx_ring = adapter->tx_ring;
2896 u64 tdba;
2897 u32 tdlen, tarc;
2898
2899 /* Setup the HW Tx Head and Tail descriptor pointers */
2900 tdba = tx_ring->dma;
2901 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2902 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2903 ew32(TDBAH(0), (tdba >> 32));
2904 ew32(TDLEN(0), tdlen);
2905 ew32(TDH(0), 0);
2906 ew32(TDT(0), 0);
2907 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2908 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2909
2910 /* Set the Tx Interrupt Delay register */
2911 ew32(TIDV, adapter->tx_int_delay);
2912 /* Tx irq moderation */
2913 ew32(TADV, adapter->tx_abs_int_delay);
2914
2915 if (adapter->flags2 & FLAG2_DMA_BURST) {
2916 u32 txdctl = er32(TXDCTL(0));
2917 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2918 E1000_TXDCTL_WTHRESH);
2919 /* set up some performance related parameters to encourage the
2920 * hardware to use the bus more efficiently in bursts, depends
2921 * on the tx_int_delay to be enabled,
2922 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2923 * hthresh = 1 ==> prefetch when one or more available
2924 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2925 * BEWARE: this seems to work but should be considered first if
2926 * there are Tx hangs or other Tx related bugs
2927 */
2928 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2929 ew32(TXDCTL(0), txdctl);
2930 }
2931 /* erratum work around: set txdctl the same for both queues */
2932 ew32(TXDCTL(1), er32(TXDCTL(0)));
2933
2934 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2935 tarc = er32(TARC(0));
2936 /* set the speed mode bit, we'll clear it if we're not at
2937 * gigabit link later
2938 */
2939 #define SPEED_MODE_BIT (1 << 21)
2940 tarc |= SPEED_MODE_BIT;
2941 ew32(TARC(0), tarc);
2942 }
2943
2944 /* errata: program both queues to unweighted RR */
2945 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2946 tarc = er32(TARC(0));
2947 tarc |= 1;
2948 ew32(TARC(0), tarc);
2949 tarc = er32(TARC(1));
2950 tarc |= 1;
2951 ew32(TARC(1), tarc);
2952 }
2953
2954 /* Setup Transmit Descriptor Settings for eop descriptor */
2955 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2956
2957 /* only set IDE if we are delaying interrupts using the timers */
2958 if (adapter->tx_int_delay)
2959 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2960
2961 /* enable Report Status bit */
2962 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2963
2964 hw->mac.ops.config_collision_dist(hw);
2965 }
2966
2967 /**
2968 * e1000_setup_rctl - configure the receive control registers
2969 * @adapter: Board private structure
2970 **/
2971 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2972 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2973 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2974 {
2975 struct e1000_hw *hw = &adapter->hw;
2976 u32 rctl, rfctl;
2977 u32 pages = 0;
2978
2979 /* Workaround Si errata on PCHx - configure jumbo frame flow */
2980 if ((hw->mac.type >= e1000_pch2lan) &&
2981 (adapter->netdev->mtu > ETH_DATA_LEN) &&
2982 e1000_lv_jumbo_workaround_ich8lan(hw, true))
2983 e_dbg("failed to enable jumbo frame workaround mode\n");
2984
2985 /* Program MC offset vector base */
2986 rctl = er32(RCTL);
2987 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2988 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2989 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2990 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2991
2992 /* Do not Store bad packets */
2993 rctl &= ~E1000_RCTL_SBP;
2994
2995 /* Enable Long Packet receive */
2996 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2997 rctl &= ~E1000_RCTL_LPE;
2998 else
2999 rctl |= E1000_RCTL_LPE;
3000
3001 /* Some systems expect that the CRC is included in SMBUS traffic. The
3002 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3003 * host memory when this is enabled
3004 */
3005 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3006 rctl |= E1000_RCTL_SECRC;
3007
3008 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3009 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3010 u16 phy_data;
3011
3012 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3013 phy_data &= 0xfff8;
3014 phy_data |= (1 << 2);
3015 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3016
3017 e1e_rphy(hw, 22, &phy_data);
3018 phy_data &= 0x0fff;
3019 phy_data |= (1 << 14);
3020 e1e_wphy(hw, 0x10, 0x2823);
3021 e1e_wphy(hw, 0x11, 0x0003);
3022 e1e_wphy(hw, 22, phy_data);
3023 }
3024
3025 /* Setup buffer sizes */
3026 rctl &= ~E1000_RCTL_SZ_4096;
3027 rctl |= E1000_RCTL_BSEX;
3028 switch (adapter->rx_buffer_len) {
3029 case 2048:
3030 default:
3031 rctl |= E1000_RCTL_SZ_2048;
3032 rctl &= ~E1000_RCTL_BSEX;
3033 break;
3034 case 4096:
3035 rctl |= E1000_RCTL_SZ_4096;
3036 break;
3037 case 8192:
3038 rctl |= E1000_RCTL_SZ_8192;
3039 break;
3040 case 16384:
3041 rctl |= E1000_RCTL_SZ_16384;
3042 break;
3043 }
3044
3045 /* Enable Extended Status in all Receive Descriptors */
3046 rfctl = er32(RFCTL);
3047 rfctl |= E1000_RFCTL_EXTEN;
3048 ew32(RFCTL, rfctl);
3049
3050 /* 82571 and greater support packet-split where the protocol
3051 * header is placed in skb->data and the packet data is
3052 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3053 * In the case of a non-split, skb->data is linearly filled,
3054 * followed by the page buffers. Therefore, skb->data is
3055 * sized to hold the largest protocol header.
3056 *
3057 * allocations using alloc_page take too long for regular MTU
3058 * so only enable packet split for jumbo frames
3059 *
3060 * Using pages when the page size is greater than 16k wastes
3061 * a lot of memory, since we allocate 3 pages at all times
3062 * per packet.
3063 */
3064 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3065 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3066 adapter->rx_ps_pages = pages;
3067 else
3068 adapter->rx_ps_pages = 0;
3069
3070 if (adapter->rx_ps_pages) {
3071 u32 psrctl = 0;
3072
3073 /* Enable Packet split descriptors */
3074 rctl |= E1000_RCTL_DTYP_PS;
3075
3076 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3077
3078 switch (adapter->rx_ps_pages) {
3079 case 3:
3080 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3081 /* fall-through */
3082 case 2:
3083 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3084 /* fall-through */
3085 case 1:
3086 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3087 break;
3088 }
3089
3090 ew32(PSRCTL, psrctl);
3091 }
3092
3093 /* This is useful for sniffing bad packets. */
3094 if (adapter->netdev->features & NETIF_F_RXALL) {
3095 /* UPE and MPE will be handled by normal PROMISC logic
3096 * in e1000e_set_rx_mode
3097 */
3098 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3099 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3100 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3101
3102 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3103 E1000_RCTL_DPF | /* Allow filtered pause */
3104 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3105 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3106 * and that breaks VLANs.
3107 */
3108 }
3109
3110 ew32(RCTL, rctl);
3111 /* just started the receive unit, no need to restart */
3112 adapter->flags &= ~FLAG_RESTART_NOW;
3113 }
3114
3115 /**
3116 * e1000_configure_rx - Configure Receive Unit after Reset
3117 * @adapter: board private structure
3118 *
3119 * Configure the Rx unit of the MAC after a reset.
3120 **/
3121 static void e1000_configure_rx(struct e1000_adapter *adapter)
3122 {
3123 struct e1000_hw *hw = &adapter->hw;
3124 struct e1000_ring *rx_ring = adapter->rx_ring;
3125 u64 rdba;
3126 u32 rdlen, rctl, rxcsum, ctrl_ext;
3127
3128 if (adapter->rx_ps_pages) {
3129 /* this is a 32 byte descriptor */
3130 rdlen = rx_ring->count *
3131 sizeof(union e1000_rx_desc_packet_split);
3132 adapter->clean_rx = e1000_clean_rx_irq_ps;
3133 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3134 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3135 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3136 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3137 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3138 } else {
3139 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3140 adapter->clean_rx = e1000_clean_rx_irq;
3141 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3142 }
3143
3144 /* disable receives while setting up the descriptors */
3145 rctl = er32(RCTL);
3146 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3147 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3148 e1e_flush();
3149 usleep_range(10000, 20000);
3150
3151 if (adapter->flags2 & FLAG2_DMA_BURST) {
3152 /* set the writeback threshold (only takes effect if the RDTR
3153 * is set). set GRAN=1 and write back up to 0x4 worth, and
3154 * enable prefetching of 0x20 Rx descriptors
3155 * granularity = 01
3156 * wthresh = 04,
3157 * hthresh = 04,
3158 * pthresh = 0x20
3159 */
3160 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3161 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3162
3163 /* override the delay timers for enabling bursting, only if
3164 * the value was not set by the user via module options
3165 */
3166 if (adapter->rx_int_delay == DEFAULT_RDTR)
3167 adapter->rx_int_delay = BURST_RDTR;
3168 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3169 adapter->rx_abs_int_delay = BURST_RADV;
3170 }
3171
3172 /* set the Receive Delay Timer Register */
3173 ew32(RDTR, adapter->rx_int_delay);
3174
3175 /* irq moderation */
3176 ew32(RADV, adapter->rx_abs_int_delay);
3177 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3178 e1000e_write_itr(adapter, adapter->itr);
3179
3180 ctrl_ext = er32(CTRL_EXT);
3181 /* Auto-Mask interrupts upon ICR access */
3182 ctrl_ext |= E1000_CTRL_EXT_IAME;
3183 ew32(IAM, 0xffffffff);
3184 ew32(CTRL_EXT, ctrl_ext);
3185 e1e_flush();
3186
3187 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3188 * the Base and Length of the Rx Descriptor Ring
3189 */
3190 rdba = rx_ring->dma;
3191 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3192 ew32(RDBAH(0), (rdba >> 32));
3193 ew32(RDLEN(0), rdlen);
3194 ew32(RDH(0), 0);
3195 ew32(RDT(0), 0);
3196 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3197 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3198
3199 /* Enable Receive Checksum Offload for TCP and UDP */
3200 rxcsum = er32(RXCSUM);
3201 if (adapter->netdev->features & NETIF_F_RXCSUM)
3202 rxcsum |= E1000_RXCSUM_TUOFL;
3203 else
3204 rxcsum &= ~E1000_RXCSUM_TUOFL;
3205 ew32(RXCSUM, rxcsum);
3206
3207 /* With jumbo frames, excessive C-state transition latencies result
3208 * in dropped transactions.
3209 */
3210 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3211 u32 lat =
3212 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3213 adapter->max_frame_size) * 8 / 1000;
3214
3215 if (adapter->flags & FLAG_IS_ICH) {
3216 u32 rxdctl = er32(RXDCTL(0));
3217 ew32(RXDCTL(0), rxdctl | 0x3);
3218 }
3219
3220 pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
3221 } else {
3222 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3223 PM_QOS_DEFAULT_VALUE);
3224 }
3225
3226 /* Enable Receives */
3227 ew32(RCTL, rctl);
3228 }
3229
3230 /**
3231 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3232 * @netdev: network interface device structure
3233 *
3234 * Writes multicast address list to the MTA hash table.
3235 * Returns: -ENOMEM on failure
3236 * 0 on no addresses written
3237 * X on writing X addresses to MTA
3238 */
3239 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3240 {
3241 struct e1000_adapter *adapter = netdev_priv(netdev);
3242 struct e1000_hw *hw = &adapter->hw;
3243 struct netdev_hw_addr *ha;
3244 u8 *mta_list;
3245 int i;
3246
3247 if (netdev_mc_empty(netdev)) {
3248 /* nothing to program, so clear mc list */
3249 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3250 return 0;
3251 }
3252
3253 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3254 if (!mta_list)
3255 return -ENOMEM;
3256
3257 /* update_mc_addr_list expects a packed array of only addresses. */
3258 i = 0;
3259 netdev_for_each_mc_addr(ha, netdev)
3260 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3261
3262 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3263 kfree(mta_list);
3264
3265 return netdev_mc_count(netdev);
3266 }
3267
3268 /**
3269 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3270 * @netdev: network interface device structure
3271 *
3272 * Writes unicast address list to the RAR table.
3273 * Returns: -ENOMEM on failure/insufficient address space
3274 * 0 on no addresses written
3275 * X on writing X addresses to the RAR table
3276 **/
3277 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3278 {
3279 struct e1000_adapter *adapter = netdev_priv(netdev);
3280 struct e1000_hw *hw = &adapter->hw;
3281 unsigned int rar_entries = hw->mac.rar_entry_count;
3282 int count = 0;
3283
3284 /* save a rar entry for our hardware address */
3285 rar_entries--;
3286
3287 /* save a rar entry for the LAA workaround */
3288 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3289 rar_entries--;
3290
3291 /* return ENOMEM indicating insufficient memory for addresses */
3292 if (netdev_uc_count(netdev) > rar_entries)
3293 return -ENOMEM;
3294
3295 if (!netdev_uc_empty(netdev) && rar_entries) {
3296 struct netdev_hw_addr *ha;
3297
3298 /* write the addresses in reverse order to avoid write
3299 * combining
3300 */
3301 netdev_for_each_uc_addr(ha, netdev) {
3302 if (!rar_entries)
3303 break;
3304 hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3305 count++;
3306 }
3307 }
3308
3309 /* zero out the remaining RAR entries not used above */
3310 for (; rar_entries > 0; rar_entries--) {
3311 ew32(RAH(rar_entries), 0);
3312 ew32(RAL(rar_entries), 0);
3313 }
3314 e1e_flush();
3315
3316 return count;
3317 }
3318
3319 /**
3320 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3321 * @netdev: network interface device structure
3322 *
3323 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3324 * address list or the network interface flags are updated. This routine is
3325 * responsible for configuring the hardware for proper unicast, multicast,
3326 * promiscuous mode, and all-multi behavior.
3327 **/
3328 static void e1000e_set_rx_mode(struct net_device *netdev)
3329 {
3330 struct e1000_adapter *adapter = netdev_priv(netdev);
3331 struct e1000_hw *hw = &adapter->hw;
3332 u32 rctl;
3333
3334 /* Check for Promiscuous and All Multicast modes */
3335 rctl = er32(RCTL);
3336
3337 /* clear the affected bits */
3338 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3339
3340 if (netdev->flags & IFF_PROMISC) {
3341 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3342 /* Do not hardware filter VLANs in promisc mode */
3343 e1000e_vlan_filter_disable(adapter);
3344 } else {
3345 int count;
3346
3347 if (netdev->flags & IFF_ALLMULTI) {
3348 rctl |= E1000_RCTL_MPE;
3349 } else {
3350 /* Write addresses to the MTA, if the attempt fails
3351 * then we should just turn on promiscuous mode so
3352 * that we can at least receive multicast traffic
3353 */
3354 count = e1000e_write_mc_addr_list(netdev);
3355 if (count < 0)
3356 rctl |= E1000_RCTL_MPE;
3357 }
3358 e1000e_vlan_filter_enable(adapter);
3359 /* Write addresses to available RAR registers, if there is not
3360 * sufficient space to store all the addresses then enable
3361 * unicast promiscuous mode
3362 */
3363 count = e1000e_write_uc_addr_list(netdev);
3364 if (count < 0)
3365 rctl |= E1000_RCTL_UPE;
3366 }
3367
3368 ew32(RCTL, rctl);
3369
3370 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3371 e1000e_vlan_strip_enable(adapter);
3372 else
3373 e1000e_vlan_strip_disable(adapter);
3374 }
3375
3376 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3377 {
3378 struct e1000_hw *hw = &adapter->hw;
3379 u32 mrqc, rxcsum;
3380 int i;
3381 static const u32 rsskey[10] = {
3382 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3383 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3384 };
3385
3386 /* Fill out hash function seed */
3387 for (i = 0; i < 10; i++)
3388 ew32(RSSRK(i), rsskey[i]);
3389
3390 /* Direct all traffic to queue 0 */
3391 for (i = 0; i < 32; i++)
3392 ew32(RETA(i), 0);
3393
3394 /* Disable raw packet checksumming so that RSS hash is placed in
3395 * descriptor on writeback.
3396 */
3397 rxcsum = er32(RXCSUM);
3398 rxcsum |= E1000_RXCSUM_PCSD;
3399
3400 ew32(RXCSUM, rxcsum);
3401
3402 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3403 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3404 E1000_MRQC_RSS_FIELD_IPV6 |
3405 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3406 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3407
3408 ew32(MRQC, mrqc);
3409 }
3410
3411 /**
3412 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3413 * @adapter: board private structure
3414 * @timinca: pointer to returned time increment attributes
3415 *
3416 * Get attributes for incrementing the System Time Register SYSTIML/H at
3417 * the default base frequency, and set the cyclecounter shift value.
3418 **/
3419 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3420 {
3421 struct e1000_hw *hw = &adapter->hw;
3422 u32 incvalue, incperiod, shift;
3423
3424 /* Make sure clock is enabled on I217 before checking the frequency */
3425 if ((hw->mac.type == e1000_pch_lpt) &&
3426 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3427 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3428 u32 fextnvm7 = er32(FEXTNVM7);
3429
3430 if (!(fextnvm7 & (1 << 0))) {
3431 ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3432 e1e_flush();
3433 }
3434 }
3435
3436 switch (hw->mac.type) {
3437 case e1000_pch2lan:
3438 case e1000_pch_lpt:
3439 /* On I217, the clock frequency is 25MHz or 96MHz as
3440 * indicated by the System Clock Frequency Indication
3441 */
3442 if ((hw->mac.type != e1000_pch_lpt) ||
3443 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3444 /* Stable 96MHz frequency */
3445 incperiod = INCPERIOD_96MHz;
3446 incvalue = INCVALUE_96MHz;
3447 shift = INCVALUE_SHIFT_96MHz;
3448 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3449 break;
3450 }
3451 /* fall-through */
3452 case e1000_82574:
3453 case e1000_82583:
3454 /* Stable 25MHz frequency */
3455 incperiod = INCPERIOD_25MHz;
3456 incvalue = INCVALUE_25MHz;
3457 shift = INCVALUE_SHIFT_25MHz;
3458 adapter->cc.shift = shift;
3459 break;
3460 default:
3461 return -EINVAL;
3462 }
3463
3464 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3465 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3466
3467 return 0;
3468 }
3469
3470 /**
3471 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3472 * @adapter: board private structure
3473 *
3474 * Outgoing time stamping can be enabled and disabled. Play nice and
3475 * disable it when requested, although it shouldn't cause any overhead
3476 * when no packet needs it. At most one packet in the queue may be
3477 * marked for time stamping, otherwise it would be impossible to tell
3478 * for sure to which packet the hardware time stamp belongs.
3479 *
3480 * Incoming time stamping has to be configured via the hardware filters.
3481 * Not all combinations are supported, in particular event type has to be
3482 * specified. Matching the kind of event packet is not supported, with the
3483 * exception of "all V2 events regardless of level 2 or 4".
3484 **/
3485 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3486 struct hwtstamp_config *config)
3487 {
3488 struct e1000_hw *hw = &adapter->hw;
3489 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3490 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3491 u32 rxmtrl = 0;
3492 u16 rxudp = 0;
3493 bool is_l4 = false;
3494 bool is_l2 = false;
3495 u32 regval;
3496 s32 ret_val;
3497
3498 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3499 return -EINVAL;
3500
3501 /* flags reserved for future extensions - must be zero */
3502 if (config->flags)
3503 return -EINVAL;
3504
3505 switch (config->tx_type) {
3506 case HWTSTAMP_TX_OFF:
3507 tsync_tx_ctl = 0;
3508 break;
3509 case HWTSTAMP_TX_ON:
3510 break;
3511 default:
3512 return -ERANGE;
3513 }
3514
3515 switch (config->rx_filter) {
3516 case HWTSTAMP_FILTER_NONE:
3517 tsync_rx_ctl = 0;
3518 break;
3519 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3520 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3521 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3522 is_l4 = true;
3523 break;
3524 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3525 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3526 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3527 is_l4 = true;
3528 break;
3529 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3530 /* Also time stamps V2 L2 Path Delay Request/Response */
3531 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3532 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3533 is_l2 = true;
3534 break;
3535 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3536 /* Also time stamps V2 L2 Path Delay Request/Response. */
3537 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3538 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3539 is_l2 = true;
3540 break;
3541 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3542 /* Hardware cannot filter just V2 L4 Sync messages;
3543 * fall-through to V2 (both L2 and L4) Sync.
3544 */
3545 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3546 /* Also time stamps V2 Path Delay Request/Response. */
3547 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3548 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3549 is_l2 = true;
3550 is_l4 = true;
3551 break;
3552 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3553 /* Hardware cannot filter just V2 L4 Delay Request messages;
3554 * fall-through to V2 (both L2 and L4) Delay Request.
3555 */
3556 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3557 /* Also time stamps V2 Path Delay Request/Response. */
3558 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3559 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3560 is_l2 = true;
3561 is_l4 = true;
3562 break;
3563 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3564 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3565 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3566 * fall-through to all V2 (both L2 and L4) Events.
3567 */
3568 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3569 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3570 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3571 is_l2 = true;
3572 is_l4 = true;
3573 break;
3574 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3575 /* For V1, the hardware can only filter Sync messages or
3576 * Delay Request messages but not both so fall-through to
3577 * time stamp all packets.
3578 */
3579 case HWTSTAMP_FILTER_ALL:
3580 is_l2 = true;
3581 is_l4 = true;
3582 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3583 config->rx_filter = HWTSTAMP_FILTER_ALL;
3584 break;
3585 default:
3586 return -ERANGE;
3587 }
3588
3589 adapter->hwtstamp_config = *config;
3590
3591 /* enable/disable Tx h/w time stamping */
3592 regval = er32(TSYNCTXCTL);
3593 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3594 regval |= tsync_tx_ctl;
3595 ew32(TSYNCTXCTL, regval);
3596 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3597 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3598 e_err("Timesync Tx Control register not set as expected\n");
3599 return -EAGAIN;
3600 }
3601
3602 /* enable/disable Rx h/w time stamping */
3603 regval = er32(TSYNCRXCTL);
3604 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3605 regval |= tsync_rx_ctl;
3606 ew32(TSYNCRXCTL, regval);
3607 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3608 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3609 (regval & (E1000_TSYNCRXCTL_ENABLED |
3610 E1000_TSYNCRXCTL_TYPE_MASK))) {
3611 e_err("Timesync Rx Control register not set as expected\n");
3612 return -EAGAIN;
3613 }
3614
3615 /* L2: define ethertype filter for time stamped packets */
3616 if (is_l2)
3617 rxmtrl |= ETH_P_1588;
3618
3619 /* define which PTP packets get time stamped */
3620 ew32(RXMTRL, rxmtrl);
3621
3622 /* Filter by destination port */
3623 if (is_l4) {
3624 rxudp = PTP_EV_PORT;
3625 cpu_to_be16s(&rxudp);
3626 }
3627 ew32(RXUDP, rxudp);
3628
3629 e1e_flush();
3630
3631 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3632 er32(RXSTMPH);
3633 er32(TXSTMPH);
3634
3635 /* Get and set the System Time Register SYSTIM base frequency */
3636 ret_val = e1000e_get_base_timinca(adapter, &regval);
3637 if (ret_val)
3638 return ret_val;
3639 ew32(TIMINCA, regval);
3640
3641 /* reset the ns time counter */
3642 timecounter_init(&adapter->tc, &adapter->cc,
3643 ktime_to_ns(ktime_get_real()));
3644
3645 return 0;
3646 }
3647
3648 /**
3649 * e1000_configure - configure the hardware for Rx and Tx
3650 * @adapter: private board structure
3651 **/
3652 static void e1000_configure(struct e1000_adapter *adapter)
3653 {
3654 struct e1000_ring *rx_ring = adapter->rx_ring;
3655
3656 e1000e_set_rx_mode(adapter->netdev);
3657
3658 e1000_restore_vlan(adapter);
3659 e1000_init_manageability_pt(adapter);
3660
3661 e1000_configure_tx(adapter);
3662
3663 if (adapter->netdev->features & NETIF_F_RXHASH)
3664 e1000e_setup_rss_hash(adapter);
3665 e1000_setup_rctl(adapter);
3666 e1000_configure_rx(adapter);
3667 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3668 }
3669
3670 /**
3671 * e1000e_power_up_phy - restore link in case the phy was powered down
3672 * @adapter: address of board private structure
3673 *
3674 * The phy may be powered down to save power and turn off link when the
3675 * driver is unloaded and wake on lan is not enabled (among others)
3676 * *** this routine MUST be followed by a call to e1000e_reset ***
3677 **/
3678 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3679 {
3680 if (adapter->hw.phy.ops.power_up)
3681 adapter->hw.phy.ops.power_up(&adapter->hw);
3682
3683 adapter->hw.mac.ops.setup_link(&adapter->hw);
3684 }
3685
3686 /**
3687 * e1000_power_down_phy - Power down the PHY
3688 *
3689 * Power down the PHY so no link is implied when interface is down.
3690 * The PHY cannot be powered down if management or WoL is active.
3691 */
3692 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3693 {
3694 /* WoL is enabled */
3695 if (adapter->wol)
3696 return;
3697
3698 if (adapter->hw.phy.ops.power_down)
3699 adapter->hw.phy.ops.power_down(&adapter->hw);
3700 }
3701
3702 /**
3703 * e1000e_reset - bring the hardware into a known good state
3704 *
3705 * This function boots the hardware and enables some settings that
3706 * require a configuration cycle of the hardware - those cannot be
3707 * set/changed during runtime. After reset the device needs to be
3708 * properly configured for Rx, Tx etc.
3709 */
3710 void e1000e_reset(struct e1000_adapter *adapter)
3711 {
3712 struct e1000_mac_info *mac = &adapter->hw.mac;
3713 struct e1000_fc_info *fc = &adapter->hw.fc;
3714 struct e1000_hw *hw = &adapter->hw;
3715 u32 tx_space, min_tx_space, min_rx_space;
3716 u32 pba = adapter->pba;
3717 u16 hwm;
3718
3719 /* reset Packet Buffer Allocation to default */
3720 ew32(PBA, pba);
3721
3722 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3723 /* To maintain wire speed transmits, the Tx FIFO should be
3724 * large enough to accommodate two full transmit packets,
3725 * rounded up to the next 1KB and expressed in KB. Likewise,
3726 * the Rx FIFO should be large enough to accommodate at least
3727 * one full receive packet and is similarly rounded up and
3728 * expressed in KB.
3729 */
3730 pba = er32(PBA);
3731 /* upper 16 bits has Tx packet buffer allocation size in KB */
3732 tx_space = pba >> 16;
3733 /* lower 16 bits has Rx packet buffer allocation size in KB */
3734 pba &= 0xffff;
3735 /* the Tx fifo also stores 16 bytes of information about the Tx
3736 * but don't include ethernet FCS because hardware appends it
3737 */
3738 min_tx_space = (adapter->max_frame_size +
3739 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3740 min_tx_space = ALIGN(min_tx_space, 1024);
3741 min_tx_space >>= 10;
3742 /* software strips receive CRC, so leave room for it */
3743 min_rx_space = adapter->max_frame_size;
3744 min_rx_space = ALIGN(min_rx_space, 1024);
3745 min_rx_space >>= 10;
3746
3747 /* If current Tx allocation is less than the min Tx FIFO size,
3748 * and the min Tx FIFO size is less than the current Rx FIFO
3749 * allocation, take space away from current Rx allocation
3750 */
3751 if ((tx_space < min_tx_space) &&
3752 ((min_tx_space - tx_space) < pba)) {
3753 pba -= min_tx_space - tx_space;
3754
3755 /* if short on Rx space, Rx wins and must trump Tx
3756 * adjustment
3757 */
3758 if (pba < min_rx_space)
3759 pba = min_rx_space;
3760 }
3761
3762 ew32(PBA, pba);
3763 }
3764
3765 /* flow control settings
3766 *
3767 * The high water mark must be low enough to fit one full frame
3768 * (or the size used for early receive) above it in the Rx FIFO.
3769 * Set it to the lower of:
3770 * - 90% of the Rx FIFO size, and
3771 * - the full Rx FIFO size minus one full frame
3772 */
3773 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3774 fc->pause_time = 0xFFFF;
3775 else
3776 fc->pause_time = E1000_FC_PAUSE_TIME;
3777 fc->send_xon = true;
3778 fc->current_mode = fc->requested_mode;
3779
3780 switch (hw->mac.type) {
3781 case e1000_ich9lan:
3782 case e1000_ich10lan:
3783 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3784 pba = 14;
3785 ew32(PBA, pba);
3786 fc->high_water = 0x2800;
3787 fc->low_water = fc->high_water - 8;
3788 break;
3789 }
3790 /* fall-through */
3791 default:
3792 hwm = min(((pba << 10) * 9 / 10),
3793 ((pba << 10) - adapter->max_frame_size));
3794
3795 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3796 fc->low_water = fc->high_water - 8;
3797 break;
3798 case e1000_pchlan:
3799 /* Workaround PCH LOM adapter hangs with certain network
3800 * loads. If hangs persist, try disabling Tx flow control.
3801 */
3802 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3803 fc->high_water = 0x3500;
3804 fc->low_water = 0x1500;
3805 } else {
3806 fc->high_water = 0x5000;
3807 fc->low_water = 0x3000;
3808 }
3809 fc->refresh_time = 0x1000;
3810 break;
3811 case e1000_pch2lan:
3812 case e1000_pch_lpt:
3813 fc->refresh_time = 0x0400;
3814
3815 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3816 fc->high_water = 0x05C20;
3817 fc->low_water = 0x05048;
3818 fc->pause_time = 0x0650;
3819 break;
3820 }
3821
3822 pba = 14;
3823 ew32(PBA, pba);
3824 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3825 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3826 break;
3827 }
3828
3829 /* Alignment of Tx data is on an arbitrary byte boundary with the
3830 * maximum size per Tx descriptor limited only to the transmit
3831 * allocation of the packet buffer minus 96 bytes with an upper
3832 * limit of 24KB due to receive synchronization limitations.
3833 */
3834 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3835 24 << 10);
3836
3837 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3838 * fit in receive buffer.
3839 */
3840 if (adapter->itr_setting & 0x3) {
3841 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3842 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3843 dev_info(&adapter->pdev->dev,
3844 "Interrupt Throttle Rate off\n");
3845 adapter->flags2 |= FLAG2_DISABLE_AIM;
3846 e1000e_write_itr(adapter, 0);
3847 }
3848 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3849 dev_info(&adapter->pdev->dev,
3850 "Interrupt Throttle Rate on\n");
3851 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3852 adapter->itr = 20000;
3853 e1000e_write_itr(adapter, adapter->itr);
3854 }
3855 }
3856
3857 /* Allow time for pending master requests to run */
3858 mac->ops.reset_hw(hw);
3859
3860 /* For parts with AMT enabled, let the firmware know
3861 * that the network interface is in control
3862 */
3863 if (adapter->flags & FLAG_HAS_AMT)
3864 e1000e_get_hw_control(adapter);
3865
3866 ew32(WUC, 0);
3867
3868 if (mac->ops.init_hw(hw))
3869 e_err("Hardware Error\n");
3870
3871 e1000_update_mng_vlan(adapter);
3872
3873 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3874 ew32(VET, ETH_P_8021Q);
3875
3876 e1000e_reset_adaptive(hw);
3877
3878 /* initialize systim and reset the ns time counter */
3879 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3880
3881 /* Set EEE advertisement as appropriate */
3882 if (adapter->flags2 & FLAG2_HAS_EEE) {
3883 s32 ret_val;
3884 u16 adv_addr;
3885
3886 switch (hw->phy.type) {
3887 case e1000_phy_82579:
3888 adv_addr = I82579_EEE_ADVERTISEMENT;
3889 break;
3890 case e1000_phy_i217:
3891 adv_addr = I217_EEE_ADVERTISEMENT;
3892 break;
3893 default:
3894 dev_err(&adapter->pdev->dev,
3895 "Invalid PHY type setting EEE advertisement\n");
3896 return;
3897 }
3898
3899 ret_val = hw->phy.ops.acquire(hw);
3900 if (ret_val) {
3901 dev_err(&adapter->pdev->dev,
3902 "EEE advertisement - unable to acquire PHY\n");
3903 return;
3904 }
3905
3906 e1000_write_emi_reg_locked(hw, adv_addr,
3907 hw->dev_spec.ich8lan.eee_disable ?
3908 0 : adapter->eee_advert);
3909
3910 hw->phy.ops.release(hw);
3911 }
3912
3913 if (!netif_running(adapter->netdev) &&
3914 !test_bit(__E1000_TESTING, &adapter->state)) {
3915 e1000_power_down_phy(adapter);
3916 return;
3917 }
3918
3919 e1000_get_phy_info(hw);
3920
3921 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3922 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3923 u16 phy_data = 0;
3924 /* speed up time to link by disabling smart power down, ignore
3925 * the return value of this function because there is nothing
3926 * different we would do if it failed
3927 */
3928 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3929 phy_data &= ~IGP02E1000_PM_SPD;
3930 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3931 }
3932 }
3933
3934 int e1000e_up(struct e1000_adapter *adapter)
3935 {
3936 struct e1000_hw *hw = &adapter->hw;
3937
3938 /* hardware has been reset, we need to reload some things */
3939 e1000_configure(adapter);
3940
3941 clear_bit(__E1000_DOWN, &adapter->state);
3942
3943 if (adapter->msix_entries)
3944 e1000_configure_msix(adapter);
3945 e1000_irq_enable(adapter);
3946
3947 netif_start_queue(adapter->netdev);
3948
3949 /* fire a link change interrupt to start the watchdog */
3950 if (adapter->msix_entries)
3951 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3952 else
3953 ew32(ICS, E1000_ICS_LSC);
3954
3955 return 0;
3956 }
3957
3958 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3959 {
3960 struct e1000_hw *hw = &adapter->hw;
3961
3962 if (!(adapter->flags2 & FLAG2_DMA_BURST))
3963 return;
3964
3965 /* flush pending descriptor writebacks to memory */
3966 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3967 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3968
3969 /* execute the writes immediately */
3970 e1e_flush();
3971
3972 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
3973 * write is successful
3974 */
3975 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3976 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3977
3978 /* execute the writes immediately */
3979 e1e_flush();
3980 }
3981
3982 static void e1000e_update_stats(struct e1000_adapter *adapter);
3983
3984 void e1000e_down(struct e1000_adapter *adapter)
3985 {
3986 struct net_device *netdev = adapter->netdev;
3987 struct e1000_hw *hw = &adapter->hw;
3988 u32 tctl, rctl;
3989
3990 /* signal that we're down so the interrupt handler does not
3991 * reschedule our watchdog timer
3992 */
3993 set_bit(__E1000_DOWN, &adapter->state);
3994
3995 /* disable receives in the hardware */
3996 rctl = er32(RCTL);
3997 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3998 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3999 /* flush and sleep below */
4000
4001 netif_stop_queue(netdev);
4002
4003 /* disable transmits in the hardware */
4004 tctl = er32(TCTL);
4005 tctl &= ~E1000_TCTL_EN;
4006 ew32(TCTL, tctl);
4007
4008 /* flush both disables and wait for them to finish */
4009 e1e_flush();
4010 usleep_range(10000, 20000);
4011
4012 e1000_irq_disable(adapter);
4013
4014 napi_synchronize(&adapter->napi);
4015
4016 del_timer_sync(&adapter->watchdog_timer);
4017 del_timer_sync(&adapter->phy_info_timer);
4018
4019 netif_carrier_off(netdev);
4020
4021 spin_lock(&adapter->stats64_lock);
4022 e1000e_update_stats(adapter);
4023 spin_unlock(&adapter->stats64_lock);
4024
4025 e1000e_flush_descriptors(adapter);
4026 e1000_clean_tx_ring(adapter->tx_ring);
4027 e1000_clean_rx_ring(adapter->rx_ring);
4028
4029 adapter->link_speed = 0;
4030 adapter->link_duplex = 0;
4031
4032 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4033 if ((hw->mac.type >= e1000_pch2lan) &&
4034 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4035 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4036 e_dbg("failed to disable jumbo frame workaround mode\n");
4037
4038 if (!pci_channel_offline(adapter->pdev))
4039 e1000e_reset(adapter);
4040
4041 /* TODO: for power management, we could drop the link and
4042 * pci_disable_device here.
4043 */
4044 }
4045
4046 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4047 {
4048 might_sleep();
4049 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4050 usleep_range(1000, 2000);
4051 e1000e_down(adapter);
4052 e1000e_up(adapter);
4053 clear_bit(__E1000_RESETTING, &adapter->state);
4054 }
4055
4056 /**
4057 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4058 * @cc: cyclecounter structure
4059 **/
4060 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4061 {
4062 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4063 cc);
4064 struct e1000_hw *hw = &adapter->hw;
4065 cycle_t systim;
4066
4067 /* latch SYSTIMH on read of SYSTIML */
4068 systim = (cycle_t)er32(SYSTIML);
4069 systim |= (cycle_t)er32(SYSTIMH) << 32;
4070
4071 return systim;
4072 }
4073
4074 /**
4075 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4076 * @adapter: board private structure to initialize
4077 *
4078 * e1000_sw_init initializes the Adapter private data structure.
4079 * Fields are initialized based on PCI device information and
4080 * OS network device settings (MTU size).
4081 **/
4082 static int e1000_sw_init(struct e1000_adapter *adapter)
4083 {
4084 struct net_device *netdev = adapter->netdev;
4085
4086 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4087 adapter->rx_ps_bsize0 = 128;
4088 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4089 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4090 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4091 adapter->rx_ring_count = E1000_DEFAULT_RXD;
4092
4093 spin_lock_init(&adapter->stats64_lock);
4094
4095 e1000e_set_interrupt_capability(adapter);
4096
4097 if (e1000_alloc_queues(adapter))
4098 return -ENOMEM;
4099
4100 /* Setup hardware time stamping cyclecounter */
4101 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4102 adapter->cc.read = e1000e_cyclecounter_read;
4103 adapter->cc.mask = CLOCKSOURCE_MASK(64);
4104 adapter->cc.mult = 1;
4105 /* cc.shift set in e1000e_get_base_tininca() */
4106
4107 spin_lock_init(&adapter->systim_lock);
4108 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4109 }
4110
4111 /* Explicitly disable IRQ since the NIC can be in any state. */
4112 e1000_irq_disable(adapter);
4113
4114 set_bit(__E1000_DOWN, &adapter->state);
4115 return 0;
4116 }
4117
4118 /**
4119 * e1000_intr_msi_test - Interrupt Handler
4120 * @irq: interrupt number
4121 * @data: pointer to a network interface device structure
4122 **/
4123 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4124 {
4125 struct net_device *netdev = data;
4126 struct e1000_adapter *adapter = netdev_priv(netdev);
4127 struct e1000_hw *hw = &adapter->hw;
4128 u32 icr = er32(ICR);
4129
4130 e_dbg("icr is %08X\n", icr);
4131 if (icr & E1000_ICR_RXSEQ) {
4132 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4133 /* Force memory writes to complete before acknowledging the
4134 * interrupt is handled.
4135 */
4136 wmb();
4137 }
4138
4139 return IRQ_HANDLED;
4140 }
4141
4142 /**
4143 * e1000_test_msi_interrupt - Returns 0 for successful test
4144 * @adapter: board private struct
4145 *
4146 * code flow taken from tg3.c
4147 **/
4148 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4149 {
4150 struct net_device *netdev = adapter->netdev;
4151 struct e1000_hw *hw = &adapter->hw;
4152 int err;
4153
4154 /* poll_enable hasn't been called yet, so don't need disable */
4155 /* clear any pending events */
4156 er32(ICR);
4157
4158 /* free the real vector and request a test handler */
4159 e1000_free_irq(adapter);
4160 e1000e_reset_interrupt_capability(adapter);
4161
4162 /* Assume that the test fails, if it succeeds then the test
4163 * MSI irq handler will unset this flag
4164 */
4165 adapter->flags |= FLAG_MSI_TEST_FAILED;
4166
4167 err = pci_enable_msi(adapter->pdev);
4168 if (err)
4169 goto msi_test_failed;
4170
4171 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4172 netdev->name, netdev);
4173 if (err) {
4174 pci_disable_msi(adapter->pdev);
4175 goto msi_test_failed;
4176 }
4177
4178 /* Force memory writes to complete before enabling and firing an
4179 * interrupt.
4180 */
4181 wmb();
4182
4183 e1000_irq_enable(adapter);
4184
4185 /* fire an unusual interrupt on the test handler */
4186 ew32(ICS, E1000_ICS_RXSEQ);
4187 e1e_flush();
4188 msleep(100);
4189
4190 e1000_irq_disable(adapter);
4191
4192 rmb(); /* read flags after interrupt has been fired */
4193
4194 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4195 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4196 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4197 } else {
4198 e_dbg("MSI interrupt test succeeded!\n");
4199 }
4200
4201 free_irq(adapter->pdev->irq, netdev);
4202 pci_disable_msi(adapter->pdev);
4203
4204 msi_test_failed:
4205 e1000e_set_interrupt_capability(adapter);
4206 return e1000_request_irq(adapter);
4207 }
4208
4209 /**
4210 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4211 * @adapter: board private struct
4212 *
4213 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4214 **/
4215 static int e1000_test_msi(struct e1000_adapter *adapter)
4216 {
4217 int err;
4218 u16 pci_cmd;
4219
4220 if (!(adapter->flags & FLAG_MSI_ENABLED))
4221 return 0;
4222
4223 /* disable SERR in case the MSI write causes a master abort */
4224 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4225 if (pci_cmd & PCI_COMMAND_SERR)
4226 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4227 pci_cmd & ~PCI_COMMAND_SERR);
4228
4229 err = e1000_test_msi_interrupt(adapter);
4230
4231 /* re-enable SERR */
4232 if (pci_cmd & PCI_COMMAND_SERR) {
4233 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4234 pci_cmd |= PCI_COMMAND_SERR;
4235 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4236 }
4237
4238 return err;
4239 }
4240
4241 /**
4242 * e1000_open - Called when a network interface is made active
4243 * @netdev: network interface device structure
4244 *
4245 * Returns 0 on success, negative value on failure
4246 *
4247 * The open entry point is called when a network interface is made
4248 * active by the system (IFF_UP). At this point all resources needed
4249 * for transmit and receive operations are allocated, the interrupt
4250 * handler is registered with the OS, the watchdog timer is started,
4251 * and the stack is notified that the interface is ready.
4252 **/
4253 static int e1000_open(struct net_device *netdev)
4254 {
4255 struct e1000_adapter *adapter = netdev_priv(netdev);
4256 struct e1000_hw *hw = &adapter->hw;
4257 struct pci_dev *pdev = adapter->pdev;
4258 int err;
4259
4260 /* disallow open during test */
4261 if (test_bit(__E1000_TESTING, &adapter->state))
4262 return -EBUSY;
4263
4264 pm_runtime_get_sync(&pdev->dev);
4265
4266 netif_carrier_off(netdev);
4267
4268 /* allocate transmit descriptors */
4269 err = e1000e_setup_tx_resources(adapter->tx_ring);
4270 if (err)
4271 goto err_setup_tx;
4272
4273 /* allocate receive descriptors */
4274 err = e1000e_setup_rx_resources(adapter->rx_ring);
4275 if (err)
4276 goto err_setup_rx;
4277
4278 /* If AMT is enabled, let the firmware know that the network
4279 * interface is now open and reset the part to a known state.
4280 */
4281 if (adapter->flags & FLAG_HAS_AMT) {
4282 e1000e_get_hw_control(adapter);
4283 e1000e_reset(adapter);
4284 }
4285
4286 e1000e_power_up_phy(adapter);
4287
4288 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4289 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4290 e1000_update_mng_vlan(adapter);
4291
4292 /* DMA latency requirement to workaround jumbo issue */
4293 pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4294 PM_QOS_DEFAULT_VALUE);
4295
4296 /* before we allocate an interrupt, we must be ready to handle it.
4297 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4298 * as soon as we call pci_request_irq, so we have to setup our
4299 * clean_rx handler before we do so.
4300 */
4301 e1000_configure(adapter);
4302
4303 err = e1000_request_irq(adapter);
4304 if (err)
4305 goto err_req_irq;
4306
4307 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4308 * ignore e1000e MSI messages, which means we need to test our MSI
4309 * interrupt now
4310 */
4311 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4312 err = e1000_test_msi(adapter);
4313 if (err) {
4314 e_err("Interrupt allocation failed\n");
4315 goto err_req_irq;
4316 }
4317 }
4318
4319 /* From here on the code is the same as e1000e_up() */
4320 clear_bit(__E1000_DOWN, &adapter->state);
4321
4322 napi_enable(&adapter->napi);
4323
4324 e1000_irq_enable(adapter);
4325
4326 adapter->tx_hang_recheck = false;
4327 netif_start_queue(netdev);
4328
4329 adapter->idle_check = true;
4330 hw->mac.get_link_status = true;
4331 pm_runtime_put(&pdev->dev);
4332
4333 /* fire a link status change interrupt to start the watchdog */
4334 if (adapter->msix_entries)
4335 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4336 else
4337 ew32(ICS, E1000_ICS_LSC);
4338
4339 return 0;
4340
4341 err_req_irq:
4342 e1000e_release_hw_control(adapter);
4343 e1000_power_down_phy(adapter);
4344 e1000e_free_rx_resources(adapter->rx_ring);
4345 err_setup_rx:
4346 e1000e_free_tx_resources(adapter->tx_ring);
4347 err_setup_tx:
4348 e1000e_reset(adapter);
4349 pm_runtime_put_sync(&pdev->dev);
4350
4351 return err;
4352 }
4353
4354 /**
4355 * e1000_close - Disables a network interface
4356 * @netdev: network interface device structure
4357 *
4358 * Returns 0, this is not allowed to fail
4359 *
4360 * The close entry point is called when an interface is de-activated
4361 * by the OS. The hardware is still under the drivers control, but
4362 * needs to be disabled. A global MAC reset is issued to stop the
4363 * hardware, and all transmit and receive resources are freed.
4364 **/
4365 static int e1000_close(struct net_device *netdev)
4366 {
4367 struct e1000_adapter *adapter = netdev_priv(netdev);
4368 struct pci_dev *pdev = adapter->pdev;
4369 int count = E1000_CHECK_RESET_COUNT;
4370
4371 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4372 usleep_range(10000, 20000);
4373
4374 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4375
4376 pm_runtime_get_sync(&pdev->dev);
4377
4378 if (!test_bit(__E1000_DOWN, &adapter->state)) {
4379 e1000e_down(adapter);
4380 e1000_free_irq(adapter);
4381 }
4382
4383 napi_disable(&adapter->napi);
4384
4385 e1000_power_down_phy(adapter);
4386
4387 e1000e_free_tx_resources(adapter->tx_ring);
4388 e1000e_free_rx_resources(adapter->rx_ring);
4389
4390 /* kill manageability vlan ID if supported, but not if a vlan with
4391 * the same ID is registered on the host OS (let 8021q kill it)
4392 */
4393 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4394 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4395 adapter->mng_vlan_id);
4396
4397 /* If AMT is enabled, let the firmware know that the network
4398 * interface is now closed
4399 */
4400 if ((adapter->flags & FLAG_HAS_AMT) &&
4401 !test_bit(__E1000_TESTING, &adapter->state))
4402 e1000e_release_hw_control(adapter);
4403
4404 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4405
4406 pm_runtime_put_sync(&pdev->dev);
4407
4408 return 0;
4409 }
4410
4411 /**
4412 * e1000_set_mac - Change the Ethernet Address of the NIC
4413 * @netdev: network interface device structure
4414 * @p: pointer to an address structure
4415 *
4416 * Returns 0 on success, negative on failure
4417 **/
4418 static int e1000_set_mac(struct net_device *netdev, void *p)
4419 {
4420 struct e1000_adapter *adapter = netdev_priv(netdev);
4421 struct e1000_hw *hw = &adapter->hw;
4422 struct sockaddr *addr = p;
4423
4424 if (!is_valid_ether_addr(addr->sa_data))
4425 return -EADDRNOTAVAIL;
4426
4427 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4428 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4429
4430 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4431
4432 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4433 /* activate the work around */
4434 e1000e_set_laa_state_82571(&adapter->hw, 1);
4435
4436 /* Hold a copy of the LAA in RAR[14] This is done so that
4437 * between the time RAR[0] gets clobbered and the time it
4438 * gets fixed (in e1000_watchdog), the actual LAA is in one
4439 * of the RARs and no incoming packets directed to this port
4440 * are dropped. Eventually the LAA will be in RAR[0] and
4441 * RAR[14]
4442 */
4443 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4444 adapter->hw.mac.rar_entry_count - 1);
4445 }
4446
4447 return 0;
4448 }
4449
4450 /**
4451 * e1000e_update_phy_task - work thread to update phy
4452 * @work: pointer to our work struct
4453 *
4454 * this worker thread exists because we must acquire a
4455 * semaphore to read the phy, which we could msleep while
4456 * waiting for it, and we can't msleep in a timer.
4457 **/
4458 static void e1000e_update_phy_task(struct work_struct *work)
4459 {
4460 struct e1000_adapter *adapter = container_of(work,
4461 struct e1000_adapter,
4462 update_phy_task);
4463
4464 if (test_bit(__E1000_DOWN, &adapter->state))
4465 return;
4466
4467 e1000_get_phy_info(&adapter->hw);
4468 }
4469
4470 /**
4471 * e1000_update_phy_info - timre call-back to update PHY info
4472 * @data: pointer to adapter cast into an unsigned long
4473 *
4474 * Need to wait a few seconds after link up to get diagnostic information from
4475 * the phy
4476 **/
4477 static void e1000_update_phy_info(unsigned long data)
4478 {
4479 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4480
4481 if (test_bit(__E1000_DOWN, &adapter->state))
4482 return;
4483
4484 schedule_work(&adapter->update_phy_task);
4485 }
4486
4487 /**
4488 * e1000e_update_phy_stats - Update the PHY statistics counters
4489 * @adapter: board private structure
4490 *
4491 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4492 **/
4493 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4494 {
4495 struct e1000_hw *hw = &adapter->hw;
4496 s32 ret_val;
4497 u16 phy_data;
4498
4499 ret_val = hw->phy.ops.acquire(hw);
4500 if (ret_val)
4501 return;
4502
4503 /* A page set is expensive so check if already on desired page.
4504 * If not, set to the page with the PHY status registers.
4505 */
4506 hw->phy.addr = 1;
4507 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4508 &phy_data);
4509 if (ret_val)
4510 goto release;
4511 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4512 ret_val = hw->phy.ops.set_page(hw,
4513 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4514 if (ret_val)
4515 goto release;
4516 }
4517
4518 /* Single Collision Count */
4519 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4520 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4521 if (!ret_val)
4522 adapter->stats.scc += phy_data;
4523
4524 /* Excessive Collision Count */
4525 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4526 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4527 if (!ret_val)
4528 adapter->stats.ecol += phy_data;
4529
4530 /* Multiple Collision Count */
4531 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4532 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4533 if (!ret_val)
4534 adapter->stats.mcc += phy_data;
4535
4536 /* Late Collision Count */
4537 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4538 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4539 if (!ret_val)
4540 adapter->stats.latecol += phy_data;
4541
4542 /* Collision Count - also used for adaptive IFS */
4543 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4544 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4545 if (!ret_val)
4546 hw->mac.collision_delta = phy_data;
4547
4548 /* Defer Count */
4549 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4550 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4551 if (!ret_val)
4552 adapter->stats.dc += phy_data;
4553
4554 /* Transmit with no CRS */
4555 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4556 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4557 if (!ret_val)
4558 adapter->stats.tncrs += phy_data;
4559
4560 release:
4561 hw->phy.ops.release(hw);
4562 }
4563
4564 /**
4565 * e1000e_update_stats - Update the board statistics counters
4566 * @adapter: board private structure
4567 **/
4568 static void e1000e_update_stats(struct e1000_adapter *adapter)
4569 {
4570 struct net_device *netdev = adapter->netdev;
4571 struct e1000_hw *hw = &adapter->hw;
4572 struct pci_dev *pdev = adapter->pdev;
4573
4574 /* Prevent stats update while adapter is being reset, or if the pci
4575 * connection is down.
4576 */
4577 if (adapter->link_speed == 0)
4578 return;
4579 if (pci_channel_offline(pdev))
4580 return;
4581
4582 adapter->stats.crcerrs += er32(CRCERRS);
4583 adapter->stats.gprc += er32(GPRC);
4584 adapter->stats.gorc += er32(GORCL);
4585 er32(GORCH); /* Clear gorc */
4586 adapter->stats.bprc += er32(BPRC);
4587 adapter->stats.mprc += er32(MPRC);
4588 adapter->stats.roc += er32(ROC);
4589
4590 adapter->stats.mpc += er32(MPC);
4591
4592 /* Half-duplex statistics */
4593 if (adapter->link_duplex == HALF_DUPLEX) {
4594 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4595 e1000e_update_phy_stats(adapter);
4596 } else {
4597 adapter->stats.scc += er32(SCC);
4598 adapter->stats.ecol += er32(ECOL);
4599 adapter->stats.mcc += er32(MCC);
4600 adapter->stats.latecol += er32(LATECOL);
4601 adapter->stats.dc += er32(DC);
4602
4603 hw->mac.collision_delta = er32(COLC);
4604
4605 if ((hw->mac.type != e1000_82574) &&
4606 (hw->mac.type != e1000_82583))
4607 adapter->stats.tncrs += er32(TNCRS);
4608 }
4609 adapter->stats.colc += hw->mac.collision_delta;
4610 }
4611
4612 adapter->stats.xonrxc += er32(XONRXC);
4613 adapter->stats.xontxc += er32(XONTXC);
4614 adapter->stats.xoffrxc += er32(XOFFRXC);
4615 adapter->stats.xofftxc += er32(XOFFTXC);
4616 adapter->stats.gptc += er32(GPTC);
4617 adapter->stats.gotc += er32(GOTCL);
4618 er32(GOTCH); /* Clear gotc */
4619 adapter->stats.rnbc += er32(RNBC);
4620 adapter->stats.ruc += er32(RUC);
4621
4622 adapter->stats.mptc += er32(MPTC);
4623 adapter->stats.bptc += er32(BPTC);
4624
4625 /* used for adaptive IFS */
4626
4627 hw->mac.tx_packet_delta = er32(TPT);
4628 adapter->stats.tpt += hw->mac.tx_packet_delta;
4629
4630 adapter->stats.algnerrc += er32(ALGNERRC);
4631 adapter->stats.rxerrc += er32(RXERRC);
4632 adapter->stats.cexterr += er32(CEXTERR);
4633 adapter->stats.tsctc += er32(TSCTC);
4634 adapter->stats.tsctfc += er32(TSCTFC);
4635
4636 /* Fill out the OS statistics structure */
4637 netdev->stats.multicast = adapter->stats.mprc;
4638 netdev->stats.collisions = adapter->stats.colc;
4639
4640 /* Rx Errors */
4641
4642 /* RLEC on some newer hardware can be incorrect so build
4643 * our own version based on RUC and ROC
4644 */
4645 netdev->stats.rx_errors = adapter->stats.rxerrc +
4646 adapter->stats.crcerrs + adapter->stats.algnerrc +
4647 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4648 netdev->stats.rx_length_errors = adapter->stats.ruc +
4649 adapter->stats.roc;
4650 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4651 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4652 netdev->stats.rx_missed_errors = adapter->stats.mpc;
4653
4654 /* Tx Errors */
4655 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4656 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4657 netdev->stats.tx_window_errors = adapter->stats.latecol;
4658 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4659
4660 /* Tx Dropped needs to be maintained elsewhere */
4661
4662 /* Management Stats */
4663 adapter->stats.mgptc += er32(MGTPTC);
4664 adapter->stats.mgprc += er32(MGTPRC);
4665 adapter->stats.mgpdc += er32(MGTPDC);
4666
4667 /* Correctable ECC Errors */
4668 if (hw->mac.type == e1000_pch_lpt) {
4669 u32 pbeccsts = er32(PBECCSTS);
4670 adapter->corr_errors +=
4671 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4672 adapter->uncorr_errors +=
4673 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4674 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4675 }
4676 }
4677
4678 /**
4679 * e1000_phy_read_status - Update the PHY register status snapshot
4680 * @adapter: board private structure
4681 **/
4682 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4683 {
4684 struct e1000_hw *hw = &adapter->hw;
4685 struct e1000_phy_regs *phy = &adapter->phy_regs;
4686
4687 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4688 (er32(STATUS) & E1000_STATUS_LU) &&
4689 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4690 int ret_val;
4691
4692 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4693 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4694 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4695 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4696 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4697 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4698 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4699 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4700 if (ret_val)
4701 e_warn("Error reading PHY register\n");
4702 } else {
4703 /* Do not read PHY registers if link is not up
4704 * Set values to typical power-on defaults
4705 */
4706 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4707 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4708 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4709 BMSR_ERCAP);
4710 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4711 ADVERTISE_ALL | ADVERTISE_CSMA);
4712 phy->lpa = 0;
4713 phy->expansion = EXPANSION_ENABLENPAGE;
4714 phy->ctrl1000 = ADVERTISE_1000FULL;
4715 phy->stat1000 = 0;
4716 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4717 }
4718 }
4719
4720 static void e1000_print_link_info(struct e1000_adapter *adapter)
4721 {
4722 struct e1000_hw *hw = &adapter->hw;
4723 u32 ctrl = er32(CTRL);
4724
4725 /* Link status message must follow this format for user tools */
4726 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4727 adapter->netdev->name, adapter->link_speed,
4728 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4729 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4730 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4731 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4732 }
4733
4734 static bool e1000e_has_link(struct e1000_adapter *adapter)
4735 {
4736 struct e1000_hw *hw = &adapter->hw;
4737 bool link_active = false;
4738 s32 ret_val = 0;
4739
4740 /* get_link_status is set on LSC (link status) interrupt or
4741 * Rx sequence error interrupt. get_link_status will stay
4742 * false until the check_for_link establishes link
4743 * for copper adapters ONLY
4744 */
4745 switch (hw->phy.media_type) {
4746 case e1000_media_type_copper:
4747 if (hw->mac.get_link_status) {
4748 ret_val = hw->mac.ops.check_for_link(hw);
4749 link_active = !hw->mac.get_link_status;
4750 } else {
4751 link_active = true;
4752 }
4753 break;
4754 case e1000_media_type_fiber:
4755 ret_val = hw->mac.ops.check_for_link(hw);
4756 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4757 break;
4758 case e1000_media_type_internal_serdes:
4759 ret_val = hw->mac.ops.check_for_link(hw);
4760 link_active = adapter->hw.mac.serdes_has_link;
4761 break;
4762 default:
4763 case e1000_media_type_unknown:
4764 break;
4765 }
4766
4767 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4768 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4769 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4770 e_info("Gigabit has been disabled, downgrading speed\n");
4771 }
4772
4773 return link_active;
4774 }
4775
4776 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4777 {
4778 /* make sure the receive unit is started */
4779 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4780 (adapter->flags & FLAG_RESTART_NOW)) {
4781 struct e1000_hw *hw = &adapter->hw;
4782 u32 rctl = er32(RCTL);
4783 ew32(RCTL, rctl | E1000_RCTL_EN);
4784 adapter->flags &= ~FLAG_RESTART_NOW;
4785 }
4786 }
4787
4788 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4789 {
4790 struct e1000_hw *hw = &adapter->hw;
4791
4792 /* With 82574 controllers, PHY needs to be checked periodically
4793 * for hung state and reset, if two calls return true
4794 */
4795 if (e1000_check_phy_82574(hw))
4796 adapter->phy_hang_count++;
4797 else
4798 adapter->phy_hang_count = 0;
4799
4800 if (adapter->phy_hang_count > 1) {
4801 adapter->phy_hang_count = 0;
4802 schedule_work(&adapter->reset_task);
4803 }
4804 }
4805
4806 /**
4807 * e1000_watchdog - Timer Call-back
4808 * @data: pointer to adapter cast into an unsigned long
4809 **/
4810 static void e1000_watchdog(unsigned long data)
4811 {
4812 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4813
4814 /* Do the rest outside of interrupt context */
4815 schedule_work(&adapter->watchdog_task);
4816
4817 /* TODO: make this use queue_delayed_work() */
4818 }
4819
4820 static void e1000_watchdog_task(struct work_struct *work)
4821 {
4822 struct e1000_adapter *adapter = container_of(work,
4823 struct e1000_adapter,
4824 watchdog_task);
4825 struct net_device *netdev = adapter->netdev;
4826 struct e1000_mac_info *mac = &adapter->hw.mac;
4827 struct e1000_phy_info *phy = &adapter->hw.phy;
4828 struct e1000_ring *tx_ring = adapter->tx_ring;
4829 struct e1000_hw *hw = &adapter->hw;
4830 u32 link, tctl;
4831
4832 if (test_bit(__E1000_DOWN, &adapter->state))
4833 return;
4834
4835 link = e1000e_has_link(adapter);
4836 if ((netif_carrier_ok(netdev)) && link) {
4837 /* Cancel scheduled suspend requests. */
4838 pm_runtime_resume(netdev->dev.parent);
4839
4840 e1000e_enable_receives(adapter);
4841 goto link_up;
4842 }
4843
4844 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4845 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4846 e1000_update_mng_vlan(adapter);
4847
4848 if (link) {
4849 if (!netif_carrier_ok(netdev)) {
4850 bool txb2b = true;
4851
4852 /* Cancel scheduled suspend requests. */
4853 pm_runtime_resume(netdev->dev.parent);
4854
4855 /* update snapshot of PHY registers on LSC */
4856 e1000_phy_read_status(adapter);
4857 mac->ops.get_link_up_info(&adapter->hw,
4858 &adapter->link_speed,
4859 &adapter->link_duplex);
4860 e1000_print_link_info(adapter);
4861
4862 /* check if SmartSpeed worked */
4863 e1000e_check_downshift(hw);
4864 if (phy->speed_downgraded)
4865 netdev_warn(netdev,
4866 "Link Speed was downgraded by SmartSpeed\n");
4867
4868 /* On supported PHYs, check for duplex mismatch only
4869 * if link has autonegotiated at 10/100 half
4870 */
4871 if ((hw->phy.type == e1000_phy_igp_3 ||
4872 hw->phy.type == e1000_phy_bm) &&
4873 hw->mac.autoneg &&
4874 (adapter->link_speed == SPEED_10 ||
4875 adapter->link_speed == SPEED_100) &&
4876 (adapter->link_duplex == HALF_DUPLEX)) {
4877 u16 autoneg_exp;
4878
4879 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4880
4881 if (!(autoneg_exp & EXPANSION_NWAY))
4882 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
4883 }
4884
4885 /* adjust timeout factor according to speed/duplex */
4886 adapter->tx_timeout_factor = 1;
4887 switch (adapter->link_speed) {
4888 case SPEED_10:
4889 txb2b = false;
4890 adapter->tx_timeout_factor = 16;
4891 break;
4892 case SPEED_100:
4893 txb2b = false;
4894 adapter->tx_timeout_factor = 10;
4895 break;
4896 }
4897
4898 /* workaround: re-program speed mode bit after
4899 * link-up event
4900 */
4901 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4902 !txb2b) {
4903 u32 tarc0;
4904 tarc0 = er32(TARC(0));
4905 tarc0 &= ~SPEED_MODE_BIT;
4906 ew32(TARC(0), tarc0);
4907 }
4908
4909 /* disable TSO for pcie and 10/100 speeds, to avoid
4910 * some hardware issues
4911 */
4912 if (!(adapter->flags & FLAG_TSO_FORCE)) {
4913 switch (adapter->link_speed) {
4914 case SPEED_10:
4915 case SPEED_100:
4916 e_info("10/100 speed: disabling TSO\n");
4917 netdev->features &= ~NETIF_F_TSO;
4918 netdev->features &= ~NETIF_F_TSO6;
4919 break;
4920 case SPEED_1000:
4921 netdev->features |= NETIF_F_TSO;
4922 netdev->features |= NETIF_F_TSO6;
4923 break;
4924 default:
4925 /* oops */
4926 break;
4927 }
4928 }
4929
4930 /* enable transmits in the hardware, need to do this
4931 * after setting TARC(0)
4932 */
4933 tctl = er32(TCTL);
4934 tctl |= E1000_TCTL_EN;
4935 ew32(TCTL, tctl);
4936
4937 /* Perform any post-link-up configuration before
4938 * reporting link up.
4939 */
4940 if (phy->ops.cfg_on_link_up)
4941 phy->ops.cfg_on_link_up(hw);
4942
4943 netif_carrier_on(netdev);
4944
4945 if (!test_bit(__E1000_DOWN, &adapter->state))
4946 mod_timer(&adapter->phy_info_timer,
4947 round_jiffies(jiffies + 2 * HZ));
4948 }
4949 } else {
4950 if (netif_carrier_ok(netdev)) {
4951 adapter->link_speed = 0;
4952 adapter->link_duplex = 0;
4953 /* Link status message must follow this format */
4954 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4955 netif_carrier_off(netdev);
4956 if (!test_bit(__E1000_DOWN, &adapter->state))
4957 mod_timer(&adapter->phy_info_timer,
4958 round_jiffies(jiffies + 2 * HZ));
4959
4960 /* The link is lost so the controller stops DMA.
4961 * If there is queued Tx work that cannot be done
4962 * or if on an 8000ES2LAN which requires a Rx packet
4963 * buffer work-around on link down event, reset the
4964 * controller to flush the Tx/Rx packet buffers.
4965 * (Do the reset outside of interrupt context).
4966 */
4967 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) ||
4968 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
4969 adapter->flags |= FLAG_RESTART_NOW;
4970 else
4971 pm_schedule_suspend(netdev->dev.parent,
4972 LINK_TIMEOUT);
4973 }
4974 }
4975
4976 link_up:
4977 spin_lock(&adapter->stats64_lock);
4978 e1000e_update_stats(adapter);
4979
4980 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4981 adapter->tpt_old = adapter->stats.tpt;
4982 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4983 adapter->colc_old = adapter->stats.colc;
4984
4985 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4986 adapter->gorc_old = adapter->stats.gorc;
4987 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4988 adapter->gotc_old = adapter->stats.gotc;
4989 spin_unlock(&adapter->stats64_lock);
4990
4991 if (adapter->flags & FLAG_RESTART_NOW) {
4992 schedule_work(&adapter->reset_task);
4993 /* return immediately since reset is imminent */
4994 return;
4995 }
4996
4997 e1000e_update_adaptive(&adapter->hw);
4998
4999 /* Simple mode for Interrupt Throttle Rate (ITR) */
5000 if (adapter->itr_setting == 4) {
5001 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5002 * Total asymmetrical Tx or Rx gets ITR=8000;
5003 * everyone else is between 2000-8000.
5004 */
5005 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5006 u32 dif = (adapter->gotc > adapter->gorc ?
5007 adapter->gotc - adapter->gorc :
5008 adapter->gorc - adapter->gotc) / 10000;
5009 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5010
5011 e1000e_write_itr(adapter, itr);
5012 }
5013
5014 /* Cause software interrupt to ensure Rx ring is cleaned */
5015 if (adapter->msix_entries)
5016 ew32(ICS, adapter->rx_ring->ims_val);
5017 else
5018 ew32(ICS, E1000_ICS_RXDMT0);
5019
5020 /* flush pending descriptors to memory before detecting Tx hang */
5021 e1000e_flush_descriptors(adapter);
5022
5023 /* Force detection of hung controller every watchdog period */
5024 adapter->detect_tx_hung = true;
5025
5026 /* With 82571 controllers, LAA may be overwritten due to controller
5027 * reset from the other port. Set the appropriate LAA in RAR[0]
5028 */
5029 if (e1000e_get_laa_state_82571(hw))
5030 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5031
5032 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5033 e1000e_check_82574_phy_workaround(adapter);
5034
5035 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5036 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5037 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5038 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5039 er32(RXSTMPH);
5040 adapter->rx_hwtstamp_cleared++;
5041 } else {
5042 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5043 }
5044 }
5045
5046 /* Reset the timer */
5047 if (!test_bit(__E1000_DOWN, &adapter->state))
5048 mod_timer(&adapter->watchdog_timer,
5049 round_jiffies(jiffies + 2 * HZ));
5050 }
5051
5052 #define E1000_TX_FLAGS_CSUM 0x00000001
5053 #define E1000_TX_FLAGS_VLAN 0x00000002
5054 #define E1000_TX_FLAGS_TSO 0x00000004
5055 #define E1000_TX_FLAGS_IPV4 0x00000008
5056 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5057 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5058 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5059 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5060
5061 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
5062 {
5063 struct e1000_context_desc *context_desc;
5064 struct e1000_buffer *buffer_info;
5065 unsigned int i;
5066 u32 cmd_length = 0;
5067 u16 ipcse = 0, mss;
5068 u8 ipcss, ipcso, tucss, tucso, hdr_len;
5069
5070 if (!skb_is_gso(skb))
5071 return 0;
5072
5073 if (skb_header_cloned(skb)) {
5074 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5075
5076 if (err)
5077 return err;
5078 }
5079
5080 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5081 mss = skb_shinfo(skb)->gso_size;
5082 if (skb->protocol == htons(ETH_P_IP)) {
5083 struct iphdr *iph = ip_hdr(skb);
5084 iph->tot_len = 0;
5085 iph->check = 0;
5086 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5087 0, IPPROTO_TCP, 0);
5088 cmd_length = E1000_TXD_CMD_IP;
5089 ipcse = skb_transport_offset(skb) - 1;
5090 } else if (skb_is_gso_v6(skb)) {
5091 ipv6_hdr(skb)->payload_len = 0;
5092 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5093 &ipv6_hdr(skb)->daddr,
5094 0, IPPROTO_TCP, 0);
5095 ipcse = 0;
5096 }
5097 ipcss = skb_network_offset(skb);
5098 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5099 tucss = skb_transport_offset(skb);
5100 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5101
5102 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5103 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5104
5105 i = tx_ring->next_to_use;
5106 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5107 buffer_info = &tx_ring->buffer_info[i];
5108
5109 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5110 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5111 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5112 context_desc->upper_setup.tcp_fields.tucss = tucss;
5113 context_desc->upper_setup.tcp_fields.tucso = tucso;
5114 context_desc->upper_setup.tcp_fields.tucse = 0;
5115 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5116 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5117 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5118
5119 buffer_info->time_stamp = jiffies;
5120 buffer_info->next_to_watch = i;
5121
5122 i++;
5123 if (i == tx_ring->count)
5124 i = 0;
5125 tx_ring->next_to_use = i;
5126
5127 return 1;
5128 }
5129
5130 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
5131 {
5132 struct e1000_adapter *adapter = tx_ring->adapter;
5133 struct e1000_context_desc *context_desc;
5134 struct e1000_buffer *buffer_info;
5135 unsigned int i;
5136 u8 css;
5137 u32 cmd_len = E1000_TXD_CMD_DEXT;
5138 __be16 protocol;
5139
5140 if (skb->ip_summed != CHECKSUM_PARTIAL)
5141 return 0;
5142
5143 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
5144 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
5145 else
5146 protocol = skb->protocol;
5147
5148 switch (protocol) {
5149 case cpu_to_be16(ETH_P_IP):
5150 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5151 cmd_len |= E1000_TXD_CMD_TCP;
5152 break;
5153 case cpu_to_be16(ETH_P_IPV6):
5154 /* XXX not handling all IPV6 headers */
5155 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5156 cmd_len |= E1000_TXD_CMD_TCP;
5157 break;
5158 default:
5159 if (unlikely(net_ratelimit()))
5160 e_warn("checksum_partial proto=%x!\n",
5161 be16_to_cpu(protocol));
5162 break;
5163 }
5164
5165 css = skb_checksum_start_offset(skb);
5166
5167 i = tx_ring->next_to_use;
5168 buffer_info = &tx_ring->buffer_info[i];
5169 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5170
5171 context_desc->lower_setup.ip_config = 0;
5172 context_desc->upper_setup.tcp_fields.tucss = css;
5173 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5174 context_desc->upper_setup.tcp_fields.tucse = 0;
5175 context_desc->tcp_seg_setup.data = 0;
5176 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5177
5178 buffer_info->time_stamp = jiffies;
5179 buffer_info->next_to_watch = i;
5180
5181 i++;
5182 if (i == tx_ring->count)
5183 i = 0;
5184 tx_ring->next_to_use = i;
5185
5186 return 1;
5187 }
5188
5189 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5190 unsigned int first, unsigned int max_per_txd,
5191 unsigned int nr_frags)
5192 {
5193 struct e1000_adapter *adapter = tx_ring->adapter;
5194 struct pci_dev *pdev = adapter->pdev;
5195 struct e1000_buffer *buffer_info;
5196 unsigned int len = skb_headlen(skb);
5197 unsigned int offset = 0, size, count = 0, i;
5198 unsigned int f, bytecount, segs;
5199
5200 i = tx_ring->next_to_use;
5201
5202 while (len) {
5203 buffer_info = &tx_ring->buffer_info[i];
5204 size = min(len, max_per_txd);
5205
5206 buffer_info->length = size;
5207 buffer_info->time_stamp = jiffies;
5208 buffer_info->next_to_watch = i;
5209 buffer_info->dma = dma_map_single(&pdev->dev,
5210 skb->data + offset,
5211 size, DMA_TO_DEVICE);
5212 buffer_info->mapped_as_page = false;
5213 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5214 goto dma_error;
5215
5216 len -= size;
5217 offset += size;
5218 count++;
5219
5220 if (len) {
5221 i++;
5222 if (i == tx_ring->count)
5223 i = 0;
5224 }
5225 }
5226
5227 for (f = 0; f < nr_frags; f++) {
5228 const struct skb_frag_struct *frag;
5229
5230 frag = &skb_shinfo(skb)->frags[f];
5231 len = skb_frag_size(frag);
5232 offset = 0;
5233
5234 while (len) {
5235 i++;
5236 if (i == tx_ring->count)
5237 i = 0;
5238
5239 buffer_info = &tx_ring->buffer_info[i];
5240 size = min(len, max_per_txd);
5241
5242 buffer_info->length = size;
5243 buffer_info->time_stamp = jiffies;
5244 buffer_info->next_to_watch = i;
5245 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5246 offset, size,
5247 DMA_TO_DEVICE);
5248 buffer_info->mapped_as_page = true;
5249 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5250 goto dma_error;
5251
5252 len -= size;
5253 offset += size;
5254 count++;
5255 }
5256 }
5257
5258 segs = skb_shinfo(skb)->gso_segs ? : 1;
5259 /* multiply data chunks by size of headers */
5260 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5261
5262 tx_ring->buffer_info[i].skb = skb;
5263 tx_ring->buffer_info[i].segs = segs;
5264 tx_ring->buffer_info[i].bytecount = bytecount;
5265 tx_ring->buffer_info[first].next_to_watch = i;
5266
5267 return count;
5268
5269 dma_error:
5270 dev_err(&pdev->dev, "Tx DMA map failed\n");
5271 buffer_info->dma = 0;
5272 if (count)
5273 count--;
5274
5275 while (count--) {
5276 if (i == 0)
5277 i += tx_ring->count;
5278 i--;
5279 buffer_info = &tx_ring->buffer_info[i];
5280 e1000_put_txbuf(tx_ring, buffer_info);
5281 }
5282
5283 return 0;
5284 }
5285
5286 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5287 {
5288 struct e1000_adapter *adapter = tx_ring->adapter;
5289 struct e1000_tx_desc *tx_desc = NULL;
5290 struct e1000_buffer *buffer_info;
5291 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5292 unsigned int i;
5293
5294 if (tx_flags & E1000_TX_FLAGS_TSO) {
5295 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5296 E1000_TXD_CMD_TSE;
5297 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5298
5299 if (tx_flags & E1000_TX_FLAGS_IPV4)
5300 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5301 }
5302
5303 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5304 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5305 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5306 }
5307
5308 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5309 txd_lower |= E1000_TXD_CMD_VLE;
5310 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5311 }
5312
5313 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5314 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5315
5316 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5317 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5318 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5319 }
5320
5321 i = tx_ring->next_to_use;
5322
5323 do {
5324 buffer_info = &tx_ring->buffer_info[i];
5325 tx_desc = E1000_TX_DESC(*tx_ring, i);
5326 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5327 tx_desc->lower.data = cpu_to_le32(txd_lower |
5328 buffer_info->length);
5329 tx_desc->upper.data = cpu_to_le32(txd_upper);
5330
5331 i++;
5332 if (i == tx_ring->count)
5333 i = 0;
5334 } while (--count > 0);
5335
5336 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5337
5338 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5339 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5340 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5341
5342 /* Force memory writes to complete before letting h/w
5343 * know there are new descriptors to fetch. (Only
5344 * applicable for weak-ordered memory model archs,
5345 * such as IA-64).
5346 */
5347 wmb();
5348
5349 tx_ring->next_to_use = i;
5350
5351 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5352 e1000e_update_tdt_wa(tx_ring, i);
5353 else
5354 writel(i, tx_ring->tail);
5355
5356 /* we need this if more than one processor can write to our tail
5357 * at a time, it synchronizes IO on IA64/Altix systems
5358 */
5359 mmiowb();
5360 }
5361
5362 #define MINIMUM_DHCP_PACKET_SIZE 282
5363 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5364 struct sk_buff *skb)
5365 {
5366 struct e1000_hw *hw = &adapter->hw;
5367 u16 length, offset;
5368
5369 if (vlan_tx_tag_present(skb) &&
5370 !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5371 (adapter->hw.mng_cookie.status &
5372 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5373 return 0;
5374
5375 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5376 return 0;
5377
5378 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5379 return 0;
5380
5381 {
5382 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5383 struct udphdr *udp;
5384
5385 if (ip->protocol != IPPROTO_UDP)
5386 return 0;
5387
5388 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5389 if (ntohs(udp->dest) != 67)
5390 return 0;
5391
5392 offset = (u8 *)udp + 8 - skb->data;
5393 length = skb->len - offset;
5394 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5395 }
5396
5397 return 0;
5398 }
5399
5400 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5401 {
5402 struct e1000_adapter *adapter = tx_ring->adapter;
5403
5404 netif_stop_queue(adapter->netdev);
5405 /* Herbert's original patch had:
5406 * smp_mb__after_netif_stop_queue();
5407 * but since that doesn't exist yet, just open code it.
5408 */
5409 smp_mb();
5410
5411 /* We need to check again in a case another CPU has just
5412 * made room available.
5413 */
5414 if (e1000_desc_unused(tx_ring) < size)
5415 return -EBUSY;
5416
5417 /* A reprieve! */
5418 netif_start_queue(adapter->netdev);
5419 ++adapter->restart_queue;
5420 return 0;
5421 }
5422
5423 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5424 {
5425 BUG_ON(size > tx_ring->count);
5426
5427 if (e1000_desc_unused(tx_ring) >= size)
5428 return 0;
5429 return __e1000_maybe_stop_tx(tx_ring, size);
5430 }
5431
5432 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5433 struct net_device *netdev)
5434 {
5435 struct e1000_adapter *adapter = netdev_priv(netdev);
5436 struct e1000_ring *tx_ring = adapter->tx_ring;
5437 unsigned int first;
5438 unsigned int tx_flags = 0;
5439 unsigned int len = skb_headlen(skb);
5440 unsigned int nr_frags;
5441 unsigned int mss;
5442 int count = 0;
5443 int tso;
5444 unsigned int f;
5445
5446 if (test_bit(__E1000_DOWN, &adapter->state)) {
5447 dev_kfree_skb_any(skb);
5448 return NETDEV_TX_OK;
5449 }
5450
5451 if (skb->len <= 0) {
5452 dev_kfree_skb_any(skb);
5453 return NETDEV_TX_OK;
5454 }
5455
5456 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5457 * pad skb in order to meet this minimum size requirement
5458 */
5459 if (unlikely(skb->len < 17)) {
5460 if (skb_pad(skb, 17 - skb->len))
5461 return NETDEV_TX_OK;
5462 skb->len = 17;
5463 skb_set_tail_pointer(skb, 17);
5464 }
5465
5466 mss = skb_shinfo(skb)->gso_size;
5467 if (mss) {
5468 u8 hdr_len;
5469
5470 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5471 * points to just header, pull a few bytes of payload from
5472 * frags into skb->data
5473 */
5474 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5475 /* we do this workaround for ES2LAN, but it is un-necessary,
5476 * avoiding it could save a lot of cycles
5477 */
5478 if (skb->data_len && (hdr_len == len)) {
5479 unsigned int pull_size;
5480
5481 pull_size = min_t(unsigned int, 4, skb->data_len);
5482 if (!__pskb_pull_tail(skb, pull_size)) {
5483 e_err("__pskb_pull_tail failed.\n");
5484 dev_kfree_skb_any(skb);
5485 return NETDEV_TX_OK;
5486 }
5487 len = skb_headlen(skb);
5488 }
5489 }
5490
5491 /* reserve a descriptor for the offload context */
5492 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5493 count++;
5494 count++;
5495
5496 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5497
5498 nr_frags = skb_shinfo(skb)->nr_frags;
5499 for (f = 0; f < nr_frags; f++)
5500 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5501 adapter->tx_fifo_limit);
5502
5503 if (adapter->hw.mac.tx_pkt_filtering)
5504 e1000_transfer_dhcp_info(adapter, skb);
5505
5506 /* need: count + 2 desc gap to keep tail from touching
5507 * head, otherwise try next time
5508 */
5509 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5510 return NETDEV_TX_BUSY;
5511
5512 if (vlan_tx_tag_present(skb)) {
5513 tx_flags |= E1000_TX_FLAGS_VLAN;
5514 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5515 }
5516
5517 first = tx_ring->next_to_use;
5518
5519 tso = e1000_tso(tx_ring, skb);
5520 if (tso < 0) {
5521 dev_kfree_skb_any(skb);
5522 return NETDEV_TX_OK;
5523 }
5524
5525 if (tso)
5526 tx_flags |= E1000_TX_FLAGS_TSO;
5527 else if (e1000_tx_csum(tx_ring, skb))
5528 tx_flags |= E1000_TX_FLAGS_CSUM;
5529
5530 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5531 * 82571 hardware supports TSO capabilities for IPv6 as well...
5532 * no longer assume, we must.
5533 */
5534 if (skb->protocol == htons(ETH_P_IP))
5535 tx_flags |= E1000_TX_FLAGS_IPV4;
5536
5537 if (unlikely(skb->no_fcs))
5538 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5539
5540 /* if count is 0 then mapping error has occurred */
5541 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5542 nr_frags);
5543 if (count) {
5544 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5545 !adapter->tx_hwtstamp_skb)) {
5546 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5547 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5548 adapter->tx_hwtstamp_skb = skb_get(skb);
5549 schedule_work(&adapter->tx_hwtstamp_work);
5550 } else {
5551 skb_tx_timestamp(skb);
5552 }
5553
5554 netdev_sent_queue(netdev, skb->len);
5555 e1000_tx_queue(tx_ring, tx_flags, count);
5556 /* Make sure there is space in the ring for the next send. */
5557 e1000_maybe_stop_tx(tx_ring,
5558 (MAX_SKB_FRAGS *
5559 DIV_ROUND_UP(PAGE_SIZE,
5560 adapter->tx_fifo_limit) + 2));
5561 } else {
5562 dev_kfree_skb_any(skb);
5563 tx_ring->buffer_info[first].time_stamp = 0;
5564 tx_ring->next_to_use = first;
5565 }
5566
5567 return NETDEV_TX_OK;
5568 }
5569
5570 /**
5571 * e1000_tx_timeout - Respond to a Tx Hang
5572 * @netdev: network interface device structure
5573 **/
5574 static void e1000_tx_timeout(struct net_device *netdev)
5575 {
5576 struct e1000_adapter *adapter = netdev_priv(netdev);
5577
5578 /* Do the reset outside of interrupt context */
5579 adapter->tx_timeout_count++;
5580 schedule_work(&adapter->reset_task);
5581 }
5582
5583 static void e1000_reset_task(struct work_struct *work)
5584 {
5585 struct e1000_adapter *adapter;
5586 adapter = container_of(work, struct e1000_adapter, reset_task);
5587
5588 /* don't run the task if already down */
5589 if (test_bit(__E1000_DOWN, &adapter->state))
5590 return;
5591
5592 if (!(adapter->flags & FLAG_RESTART_NOW)) {
5593 e1000e_dump(adapter);
5594 e_err("Reset adapter unexpectedly\n");
5595 }
5596 e1000e_reinit_locked(adapter);
5597 }
5598
5599 /**
5600 * e1000_get_stats64 - Get System Network Statistics
5601 * @netdev: network interface device structure
5602 * @stats: rtnl_link_stats64 pointer
5603 *
5604 * Returns the address of the device statistics structure.
5605 **/
5606 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5607 struct rtnl_link_stats64 *stats)
5608 {
5609 struct e1000_adapter *adapter = netdev_priv(netdev);
5610
5611 memset(stats, 0, sizeof(struct rtnl_link_stats64));
5612 spin_lock(&adapter->stats64_lock);
5613 e1000e_update_stats(adapter);
5614 /* Fill out the OS statistics structure */
5615 stats->rx_bytes = adapter->stats.gorc;
5616 stats->rx_packets = adapter->stats.gprc;
5617 stats->tx_bytes = adapter->stats.gotc;
5618 stats->tx_packets = adapter->stats.gptc;
5619 stats->multicast = adapter->stats.mprc;
5620 stats->collisions = adapter->stats.colc;
5621
5622 /* Rx Errors */
5623
5624 /* RLEC on some newer hardware can be incorrect so build
5625 * our own version based on RUC and ROC
5626 */
5627 stats->rx_errors = adapter->stats.rxerrc +
5628 adapter->stats.crcerrs + adapter->stats.algnerrc +
5629 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5630 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5631 stats->rx_crc_errors = adapter->stats.crcerrs;
5632 stats->rx_frame_errors = adapter->stats.algnerrc;
5633 stats->rx_missed_errors = adapter->stats.mpc;
5634
5635 /* Tx Errors */
5636 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5637 stats->tx_aborted_errors = adapter->stats.ecol;
5638 stats->tx_window_errors = adapter->stats.latecol;
5639 stats->tx_carrier_errors = adapter->stats.tncrs;
5640
5641 /* Tx Dropped needs to be maintained elsewhere */
5642
5643 spin_unlock(&adapter->stats64_lock);
5644 return stats;
5645 }
5646
5647 /**
5648 * e1000_change_mtu - Change the Maximum Transfer Unit
5649 * @netdev: network interface device structure
5650 * @new_mtu: new value for maximum frame size
5651 *
5652 * Returns 0 on success, negative on failure
5653 **/
5654 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5655 {
5656 struct e1000_adapter *adapter = netdev_priv(netdev);
5657 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5658
5659 /* Jumbo frame support */
5660 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5661 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5662 e_err("Jumbo Frames not supported.\n");
5663 return -EINVAL;
5664 }
5665
5666 /* Supported frame sizes */
5667 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5668 (max_frame > adapter->max_hw_frame_size)) {
5669 e_err("Unsupported MTU setting\n");
5670 return -EINVAL;
5671 }
5672
5673 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5674 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5675 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5676 (new_mtu > ETH_DATA_LEN)) {
5677 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5678 return -EINVAL;
5679 }
5680
5681 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5682 usleep_range(1000, 2000);
5683 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5684 adapter->max_frame_size = max_frame;
5685 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5686 netdev->mtu = new_mtu;
5687 if (netif_running(netdev))
5688 e1000e_down(adapter);
5689
5690 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5691 * means we reserve 2 more, this pushes us to allocate from the next
5692 * larger slab size.
5693 * i.e. RXBUFFER_2048 --> size-4096 slab
5694 * However with the new *_jumbo_rx* routines, jumbo receives will use
5695 * fragmented skbs
5696 */
5697
5698 if (max_frame <= 2048)
5699 adapter->rx_buffer_len = 2048;
5700 else
5701 adapter->rx_buffer_len = 4096;
5702
5703 /* adjust allocation if LPE protects us, and we aren't using SBP */
5704 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5705 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5706 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5707 + ETH_FCS_LEN;
5708
5709 if (netif_running(netdev))
5710 e1000e_up(adapter);
5711 else
5712 e1000e_reset(adapter);
5713
5714 clear_bit(__E1000_RESETTING, &adapter->state);
5715
5716 return 0;
5717 }
5718
5719 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5720 int cmd)
5721 {
5722 struct e1000_adapter *adapter = netdev_priv(netdev);
5723 struct mii_ioctl_data *data = if_mii(ifr);
5724
5725 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5726 return -EOPNOTSUPP;
5727
5728 switch (cmd) {
5729 case SIOCGMIIPHY:
5730 data->phy_id = adapter->hw.phy.addr;
5731 break;
5732 case SIOCGMIIREG:
5733 e1000_phy_read_status(adapter);
5734
5735 switch (data->reg_num & 0x1F) {
5736 case MII_BMCR:
5737 data->val_out = adapter->phy_regs.bmcr;
5738 break;
5739 case MII_BMSR:
5740 data->val_out = adapter->phy_regs.bmsr;
5741 break;
5742 case MII_PHYSID1:
5743 data->val_out = (adapter->hw.phy.id >> 16);
5744 break;
5745 case MII_PHYSID2:
5746 data->val_out = (adapter->hw.phy.id & 0xFFFF);
5747 break;
5748 case MII_ADVERTISE:
5749 data->val_out = adapter->phy_regs.advertise;
5750 break;
5751 case MII_LPA:
5752 data->val_out = adapter->phy_regs.lpa;
5753 break;
5754 case MII_EXPANSION:
5755 data->val_out = adapter->phy_regs.expansion;
5756 break;
5757 case MII_CTRL1000:
5758 data->val_out = adapter->phy_regs.ctrl1000;
5759 break;
5760 case MII_STAT1000:
5761 data->val_out = adapter->phy_regs.stat1000;
5762 break;
5763 case MII_ESTATUS:
5764 data->val_out = adapter->phy_regs.estatus;
5765 break;
5766 default:
5767 return -EIO;
5768 }
5769 break;
5770 case SIOCSMIIREG:
5771 default:
5772 return -EOPNOTSUPP;
5773 }
5774 return 0;
5775 }
5776
5777 /**
5778 * e1000e_hwtstamp_ioctl - control hardware time stamping
5779 * @netdev: network interface device structure
5780 * @ifreq: interface request
5781 *
5782 * Outgoing time stamping can be enabled and disabled. Play nice and
5783 * disable it when requested, although it shouldn't cause any overhead
5784 * when no packet needs it. At most one packet in the queue may be
5785 * marked for time stamping, otherwise it would be impossible to tell
5786 * for sure to which packet the hardware time stamp belongs.
5787 *
5788 * Incoming time stamping has to be configured via the hardware filters.
5789 * Not all combinations are supported, in particular event type has to be
5790 * specified. Matching the kind of event packet is not supported, with the
5791 * exception of "all V2 events regardless of level 2 or 4".
5792 **/
5793 static int e1000e_hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
5794 {
5795 struct e1000_adapter *adapter = netdev_priv(netdev);
5796 struct hwtstamp_config config;
5797 int ret_val;
5798
5799 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5800 return -EFAULT;
5801
5802 ret_val = e1000e_config_hwtstamp(adapter, &config);
5803 if (ret_val)
5804 return ret_val;
5805
5806 switch (config.rx_filter) {
5807 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5808 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5809 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5810 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5811 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5812 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5813 /* With V2 type filters which specify a Sync or Delay Request,
5814 * Path Delay Request/Response messages are also time stamped
5815 * by hardware so notify the caller the requested packets plus
5816 * some others are time stamped.
5817 */
5818 config.rx_filter = HWTSTAMP_FILTER_SOME;
5819 break;
5820 default:
5821 break;
5822 }
5823
5824 return copy_to_user(ifr->ifr_data, &config,
5825 sizeof(config)) ? -EFAULT : 0;
5826 }
5827
5828 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5829 {
5830 switch (cmd) {
5831 case SIOCGMIIPHY:
5832 case SIOCGMIIREG:
5833 case SIOCSMIIREG:
5834 return e1000_mii_ioctl(netdev, ifr, cmd);
5835 case SIOCSHWTSTAMP:
5836 return e1000e_hwtstamp_ioctl(netdev, ifr);
5837 default:
5838 return -EOPNOTSUPP;
5839 }
5840 }
5841
5842 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5843 {
5844 struct e1000_hw *hw = &adapter->hw;
5845 u32 i, mac_reg;
5846 u16 phy_reg, wuc_enable;
5847 int retval;
5848
5849 /* copy MAC RARs to PHY RARs */
5850 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5851
5852 retval = hw->phy.ops.acquire(hw);
5853 if (retval) {
5854 e_err("Could not acquire PHY\n");
5855 return retval;
5856 }
5857
5858 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5859 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5860 if (retval)
5861 goto release;
5862
5863 /* copy MAC MTA to PHY MTA - only needed for pchlan */
5864 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5865 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5866 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5867 (u16)(mac_reg & 0xFFFF));
5868 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5869 (u16)((mac_reg >> 16) & 0xFFFF));
5870 }
5871
5872 /* configure PHY Rx Control register */
5873 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5874 mac_reg = er32(RCTL);
5875 if (mac_reg & E1000_RCTL_UPE)
5876 phy_reg |= BM_RCTL_UPE;
5877 if (mac_reg & E1000_RCTL_MPE)
5878 phy_reg |= BM_RCTL_MPE;
5879 phy_reg &= ~(BM_RCTL_MO_MASK);
5880 if (mac_reg & E1000_RCTL_MO_3)
5881 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5882 << BM_RCTL_MO_SHIFT);
5883 if (mac_reg & E1000_RCTL_BAM)
5884 phy_reg |= BM_RCTL_BAM;
5885 if (mac_reg & E1000_RCTL_PMCF)
5886 phy_reg |= BM_RCTL_PMCF;
5887 mac_reg = er32(CTRL);
5888 if (mac_reg & E1000_CTRL_RFCE)
5889 phy_reg |= BM_RCTL_RFCE;
5890 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5891
5892 /* enable PHY wakeup in MAC register */
5893 ew32(WUFC, wufc);
5894 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5895
5896 /* configure and enable PHY wakeup in PHY registers */
5897 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5898 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5899
5900 /* activate PHY wakeup */
5901 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5902 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5903 if (retval)
5904 e_err("Could not set PHY Host Wakeup bit\n");
5905 release:
5906 hw->phy.ops.release(hw);
5907
5908 return retval;
5909 }
5910
5911 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
5912 {
5913 struct net_device *netdev = pci_get_drvdata(pdev);
5914 struct e1000_adapter *adapter = netdev_priv(netdev);
5915 struct e1000_hw *hw = &adapter->hw;
5916 u32 ctrl, ctrl_ext, rctl, status;
5917 /* Runtime suspend should only enable wakeup for link changes */
5918 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5919 int retval = 0;
5920
5921 netif_device_detach(netdev);
5922
5923 if (netif_running(netdev)) {
5924 int count = E1000_CHECK_RESET_COUNT;
5925
5926 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5927 usleep_range(10000, 20000);
5928
5929 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5930 e1000e_down(adapter);
5931 e1000_free_irq(adapter);
5932 }
5933 e1000e_reset_interrupt_capability(adapter);
5934
5935 status = er32(STATUS);
5936 if (status & E1000_STATUS_LU)
5937 wufc &= ~E1000_WUFC_LNKC;
5938
5939 if (wufc) {
5940 e1000_setup_rctl(adapter);
5941 e1000e_set_rx_mode(netdev);
5942
5943 /* turn on all-multi mode if wake on multicast is enabled */
5944 if (wufc & E1000_WUFC_MC) {
5945 rctl = er32(RCTL);
5946 rctl |= E1000_RCTL_MPE;
5947 ew32(RCTL, rctl);
5948 }
5949
5950 ctrl = er32(CTRL);
5951 ctrl |= E1000_CTRL_ADVD3WUC;
5952 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5953 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5954 ew32(CTRL, ctrl);
5955
5956 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5957 adapter->hw.phy.media_type ==
5958 e1000_media_type_internal_serdes) {
5959 /* keep the laser running in D3 */
5960 ctrl_ext = er32(CTRL_EXT);
5961 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5962 ew32(CTRL_EXT, ctrl_ext);
5963 }
5964
5965 if (adapter->flags & FLAG_IS_ICH)
5966 e1000_suspend_workarounds_ich8lan(&adapter->hw);
5967
5968 /* Allow time for pending master requests to run */
5969 e1000e_disable_pcie_master(&adapter->hw);
5970
5971 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5972 /* enable wakeup by the PHY */
5973 retval = e1000_init_phy_wakeup(adapter, wufc);
5974 if (retval)
5975 return retval;
5976 } else {
5977 /* enable wakeup by the MAC */
5978 ew32(WUFC, wufc);
5979 ew32(WUC, E1000_WUC_PME_EN);
5980 }
5981 } else {
5982 ew32(WUC, 0);
5983 ew32(WUFC, 0);
5984 }
5985
5986 if (adapter->hw.phy.type == e1000_phy_igp_3)
5987 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5988
5989 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5990 * would have already happened in close and is redundant.
5991 */
5992 e1000e_release_hw_control(adapter);
5993
5994 pci_clear_master(pdev);
5995
5996 /* The pci-e switch on some quad port adapters will report a
5997 * correctable error when the MAC transitions from D0 to D3. To
5998 * prevent this we need to mask off the correctable errors on the
5999 * downstream port of the pci-e switch.
6000 *
6001 * We don't have the associated upstream bridge while assigning
6002 * the PCI device into guest. For example, the KVM on power is
6003 * one of the cases.
6004 */
6005 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6006 struct pci_dev *us_dev = pdev->bus->self;
6007 u16 devctl;
6008
6009 if (!us_dev)
6010 return 0;
6011
6012 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6013 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6014 (devctl & ~PCI_EXP_DEVCTL_CERE));
6015
6016 pci_save_state(pdev);
6017 pci_prepare_to_sleep(pdev);
6018
6019 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6020 }
6021
6022 return 0;
6023 }
6024
6025 /**
6026 * e1000e_disable_aspm - Disable ASPM states
6027 * @pdev: pointer to PCI device struct
6028 * @state: bit-mask of ASPM states to disable
6029 *
6030 * Some devices *must* have certain ASPM states disabled per hardware errata.
6031 **/
6032 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6033 {
6034 struct pci_dev *parent = pdev->bus->self;
6035 u16 aspm_dis_mask = 0;
6036 u16 pdev_aspmc, parent_aspmc;
6037
6038 switch (state) {
6039 case PCIE_LINK_STATE_L0S:
6040 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6041 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6042 /* fall-through - can't have L1 without L0s */
6043 case PCIE_LINK_STATE_L1:
6044 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6045 break;
6046 default:
6047 return;
6048 }
6049
6050 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6051 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6052
6053 if (parent) {
6054 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6055 &parent_aspmc);
6056 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6057 }
6058
6059 /* Nothing to do if the ASPM states to be disabled already are */
6060 if (!(pdev_aspmc & aspm_dis_mask) &&
6061 (!parent || !(parent_aspmc & aspm_dis_mask)))
6062 return;
6063
6064 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6065 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6066 "L0s" : "",
6067 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6068 "L1" : "");
6069
6070 #ifdef CONFIG_PCIEASPM
6071 pci_disable_link_state_locked(pdev, state);
6072
6073 /* Double-check ASPM control. If not disabled by the above, the
6074 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6075 * not enabled); override by writing PCI config space directly.
6076 */
6077 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6078 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6079
6080 if (!(aspm_dis_mask & pdev_aspmc))
6081 return;
6082 #endif
6083
6084 /* Both device and parent should have the same ASPM setting.
6085 * Disable ASPM in downstream component first and then upstream.
6086 */
6087 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6088
6089 if (parent)
6090 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6091 aspm_dis_mask);
6092 }
6093
6094 #ifdef CONFIG_PM
6095 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
6096 {
6097 return !!adapter->tx_ring->buffer_info;
6098 }
6099
6100 static int __e1000_resume(struct pci_dev *pdev)
6101 {
6102 struct net_device *netdev = pci_get_drvdata(pdev);
6103 struct e1000_adapter *adapter = netdev_priv(netdev);
6104 struct e1000_hw *hw = &adapter->hw;
6105 u16 aspm_disable_flag = 0;
6106 u32 err;
6107
6108 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6109 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6110 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6111 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6112 if (aspm_disable_flag)
6113 e1000e_disable_aspm(pdev, aspm_disable_flag);
6114
6115 pci_set_master(pdev);
6116
6117 e1000e_set_interrupt_capability(adapter);
6118 if (netif_running(netdev)) {
6119 err = e1000_request_irq(adapter);
6120 if (err)
6121 return err;
6122 }
6123
6124 if (hw->mac.type >= e1000_pch2lan)
6125 e1000_resume_workarounds_pchlan(&adapter->hw);
6126
6127 e1000e_power_up_phy(adapter);
6128
6129 /* report the system wakeup cause from S3/S4 */
6130 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6131 u16 phy_data;
6132
6133 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6134 if (phy_data) {
6135 e_info("PHY Wakeup cause - %s\n",
6136 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6137 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6138 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6139 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6140 phy_data & E1000_WUS_LNKC ?
6141 "Link Status Change" : "other");
6142 }
6143 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6144 } else {
6145 u32 wus = er32(WUS);
6146 if (wus) {
6147 e_info("MAC Wakeup cause - %s\n",
6148 wus & E1000_WUS_EX ? "Unicast Packet" :
6149 wus & E1000_WUS_MC ? "Multicast Packet" :
6150 wus & E1000_WUS_BC ? "Broadcast Packet" :
6151 wus & E1000_WUS_MAG ? "Magic Packet" :
6152 wus & E1000_WUS_LNKC ? "Link Status Change" :
6153 "other");
6154 }
6155 ew32(WUS, ~0);
6156 }
6157
6158 e1000e_reset(adapter);
6159
6160 e1000_init_manageability_pt(adapter);
6161
6162 if (netif_running(netdev))
6163 e1000e_up(adapter);
6164
6165 netif_device_attach(netdev);
6166
6167 /* If the controller has AMT, do not set DRV_LOAD until the interface
6168 * is up. For all other cases, let the f/w know that the h/w is now
6169 * under the control of the driver.
6170 */
6171 if (!(adapter->flags & FLAG_HAS_AMT))
6172 e1000e_get_hw_control(adapter);
6173
6174 return 0;
6175 }
6176
6177 #ifdef CONFIG_PM_SLEEP
6178 static int e1000_suspend(struct device *dev)
6179 {
6180 struct pci_dev *pdev = to_pci_dev(dev);
6181
6182 return __e1000_shutdown(pdev, false);
6183 }
6184
6185 static int e1000_resume(struct device *dev)
6186 {
6187 struct pci_dev *pdev = to_pci_dev(dev);
6188 struct net_device *netdev = pci_get_drvdata(pdev);
6189 struct e1000_adapter *adapter = netdev_priv(netdev);
6190
6191 if (e1000e_pm_ready(adapter))
6192 adapter->idle_check = true;
6193
6194 return __e1000_resume(pdev);
6195 }
6196 #endif /* CONFIG_PM_SLEEP */
6197
6198 #ifdef CONFIG_PM_RUNTIME
6199 static int e1000_runtime_suspend(struct device *dev)
6200 {
6201 struct pci_dev *pdev = to_pci_dev(dev);
6202 struct net_device *netdev = pci_get_drvdata(pdev);
6203 struct e1000_adapter *adapter = netdev_priv(netdev);
6204
6205 if (!e1000e_pm_ready(adapter))
6206 return 0;
6207
6208 return __e1000_shutdown(pdev, true);
6209 }
6210
6211 static int e1000_idle(struct device *dev)
6212 {
6213 struct pci_dev *pdev = to_pci_dev(dev);
6214 struct net_device *netdev = pci_get_drvdata(pdev);
6215 struct e1000_adapter *adapter = netdev_priv(netdev);
6216
6217 if (!e1000e_pm_ready(adapter))
6218 return 0;
6219
6220 if (adapter->idle_check) {
6221 adapter->idle_check = false;
6222 if (!e1000e_has_link(adapter))
6223 pm_schedule_suspend(dev, MSEC_PER_SEC);
6224 }
6225
6226 return -EBUSY;
6227 }
6228
6229 static int e1000_runtime_resume(struct device *dev)
6230 {
6231 struct pci_dev *pdev = to_pci_dev(dev);
6232 struct net_device *netdev = pci_get_drvdata(pdev);
6233 struct e1000_adapter *adapter = netdev_priv(netdev);
6234
6235 if (!e1000e_pm_ready(adapter))
6236 return 0;
6237
6238 adapter->idle_check = !dev->power.runtime_auto;
6239 return __e1000_resume(pdev);
6240 }
6241 #endif /* CONFIG_PM_RUNTIME */
6242 #endif /* CONFIG_PM */
6243
6244 static void e1000_shutdown(struct pci_dev *pdev)
6245 {
6246 __e1000_shutdown(pdev, false);
6247 }
6248
6249 #ifdef CONFIG_NET_POLL_CONTROLLER
6250
6251 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6252 {
6253 struct net_device *netdev = data;
6254 struct e1000_adapter *adapter = netdev_priv(netdev);
6255
6256 if (adapter->msix_entries) {
6257 int vector, msix_irq;
6258
6259 vector = 0;
6260 msix_irq = adapter->msix_entries[vector].vector;
6261 disable_irq(msix_irq);
6262 e1000_intr_msix_rx(msix_irq, netdev);
6263 enable_irq(msix_irq);
6264
6265 vector++;
6266 msix_irq = adapter->msix_entries[vector].vector;
6267 disable_irq(msix_irq);
6268 e1000_intr_msix_tx(msix_irq, netdev);
6269 enable_irq(msix_irq);
6270
6271 vector++;
6272 msix_irq = adapter->msix_entries[vector].vector;
6273 disable_irq(msix_irq);
6274 e1000_msix_other(msix_irq, netdev);
6275 enable_irq(msix_irq);
6276 }
6277
6278 return IRQ_HANDLED;
6279 }
6280
6281 /**
6282 * e1000_netpoll
6283 * @netdev: network interface device structure
6284 *
6285 * Polling 'interrupt' - used by things like netconsole to send skbs
6286 * without having to re-enable interrupts. It's not called while
6287 * the interrupt routine is executing.
6288 */
6289 static void e1000_netpoll(struct net_device *netdev)
6290 {
6291 struct e1000_adapter *adapter = netdev_priv(netdev);
6292
6293 switch (adapter->int_mode) {
6294 case E1000E_INT_MODE_MSIX:
6295 e1000_intr_msix(adapter->pdev->irq, netdev);
6296 break;
6297 case E1000E_INT_MODE_MSI:
6298 disable_irq(adapter->pdev->irq);
6299 e1000_intr_msi(adapter->pdev->irq, netdev);
6300 enable_irq(adapter->pdev->irq);
6301 break;
6302 default: /* E1000E_INT_MODE_LEGACY */
6303 disable_irq(adapter->pdev->irq);
6304 e1000_intr(adapter->pdev->irq, netdev);
6305 enable_irq(adapter->pdev->irq);
6306 break;
6307 }
6308 }
6309 #endif
6310
6311 /**
6312 * e1000_io_error_detected - called when PCI error is detected
6313 * @pdev: Pointer to PCI device
6314 * @state: The current pci connection state
6315 *
6316 * This function is called after a PCI bus error affecting
6317 * this device has been detected.
6318 */
6319 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6320 pci_channel_state_t state)
6321 {
6322 struct net_device *netdev = pci_get_drvdata(pdev);
6323 struct e1000_adapter *adapter = netdev_priv(netdev);
6324
6325 netif_device_detach(netdev);
6326
6327 if (state == pci_channel_io_perm_failure)
6328 return PCI_ERS_RESULT_DISCONNECT;
6329
6330 if (netif_running(netdev))
6331 e1000e_down(adapter);
6332 pci_disable_device(pdev);
6333
6334 /* Request a slot slot reset. */
6335 return PCI_ERS_RESULT_NEED_RESET;
6336 }
6337
6338 /**
6339 * e1000_io_slot_reset - called after the pci bus has been reset.
6340 * @pdev: Pointer to PCI device
6341 *
6342 * Restart the card from scratch, as if from a cold-boot. Implementation
6343 * resembles the first-half of the e1000_resume routine.
6344 */
6345 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6346 {
6347 struct net_device *netdev = pci_get_drvdata(pdev);
6348 struct e1000_adapter *adapter = netdev_priv(netdev);
6349 struct e1000_hw *hw = &adapter->hw;
6350 u16 aspm_disable_flag = 0;
6351 int err;
6352 pci_ers_result_t result;
6353
6354 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6355 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6356 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6357 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6358 if (aspm_disable_flag)
6359 e1000e_disable_aspm(pdev, aspm_disable_flag);
6360
6361 err = pci_enable_device_mem(pdev);
6362 if (err) {
6363 dev_err(&pdev->dev,
6364 "Cannot re-enable PCI device after reset.\n");
6365 result = PCI_ERS_RESULT_DISCONNECT;
6366 } else {
6367 pdev->state_saved = true;
6368 pci_restore_state(pdev);
6369 pci_set_master(pdev);
6370
6371 pci_enable_wake(pdev, PCI_D3hot, 0);
6372 pci_enable_wake(pdev, PCI_D3cold, 0);
6373
6374 e1000e_reset(adapter);
6375 ew32(WUS, ~0);
6376 result = PCI_ERS_RESULT_RECOVERED;
6377 }
6378
6379 pci_cleanup_aer_uncorrect_error_status(pdev);
6380
6381 return result;
6382 }
6383
6384 /**
6385 * e1000_io_resume - called when traffic can start flowing again.
6386 * @pdev: Pointer to PCI device
6387 *
6388 * This callback is called when the error recovery driver tells us that
6389 * its OK to resume normal operation. Implementation resembles the
6390 * second-half of the e1000_resume routine.
6391 */
6392 static void e1000_io_resume(struct pci_dev *pdev)
6393 {
6394 struct net_device *netdev = pci_get_drvdata(pdev);
6395 struct e1000_adapter *adapter = netdev_priv(netdev);
6396
6397 e1000_init_manageability_pt(adapter);
6398
6399 if (netif_running(netdev)) {
6400 if (e1000e_up(adapter)) {
6401 dev_err(&pdev->dev,
6402 "can't bring device back up after reset\n");
6403 return;
6404 }
6405 }
6406
6407 netif_device_attach(netdev);
6408
6409 /* If the controller has AMT, do not set DRV_LOAD until the interface
6410 * is up. For all other cases, let the f/w know that the h/w is now
6411 * under the control of the driver.
6412 */
6413 if (!(adapter->flags & FLAG_HAS_AMT))
6414 e1000e_get_hw_control(adapter);
6415 }
6416
6417 static void e1000_print_device_info(struct e1000_adapter *adapter)
6418 {
6419 struct e1000_hw *hw = &adapter->hw;
6420 struct net_device *netdev = adapter->netdev;
6421 u32 ret_val;
6422 u8 pba_str[E1000_PBANUM_LENGTH];
6423
6424 /* print bus type/speed/width info */
6425 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6426 /* bus width */
6427 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6428 "Width x1"),
6429 /* MAC address */
6430 netdev->dev_addr);
6431 e_info("Intel(R) PRO/%s Network Connection\n",
6432 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6433 ret_val = e1000_read_pba_string_generic(hw, pba_str,
6434 E1000_PBANUM_LENGTH);
6435 if (ret_val)
6436 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6437 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6438 hw->mac.type, hw->phy.type, pba_str);
6439 }
6440
6441 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6442 {
6443 struct e1000_hw *hw = &adapter->hw;
6444 int ret_val;
6445 u16 buf = 0;
6446
6447 if (hw->mac.type != e1000_82573)
6448 return;
6449
6450 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6451 le16_to_cpus(&buf);
6452 if (!ret_val && (!(buf & (1 << 0)))) {
6453 /* Deep Smart Power Down (DSPD) */
6454 dev_warn(&adapter->pdev->dev,
6455 "Warning: detected DSPD enabled in EEPROM\n");
6456 }
6457 }
6458
6459 static int e1000_set_features(struct net_device *netdev,
6460 netdev_features_t features)
6461 {
6462 struct e1000_adapter *adapter = netdev_priv(netdev);
6463 netdev_features_t changed = features ^ netdev->features;
6464
6465 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6466 adapter->flags |= FLAG_TSO_FORCE;
6467
6468 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6469 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6470 NETIF_F_RXALL)))
6471 return 0;
6472
6473 if (changed & NETIF_F_RXFCS) {
6474 if (features & NETIF_F_RXFCS) {
6475 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6476 } else {
6477 /* We need to take it back to defaults, which might mean
6478 * stripping is still disabled at the adapter level.
6479 */
6480 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6481 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6482 else
6483 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6484 }
6485 }
6486
6487 netdev->features = features;
6488
6489 if (netif_running(netdev))
6490 e1000e_reinit_locked(adapter);
6491 else
6492 e1000e_reset(adapter);
6493
6494 return 0;
6495 }
6496
6497 static const struct net_device_ops e1000e_netdev_ops = {
6498 .ndo_open = e1000_open,
6499 .ndo_stop = e1000_close,
6500 .ndo_start_xmit = e1000_xmit_frame,
6501 .ndo_get_stats64 = e1000e_get_stats64,
6502 .ndo_set_rx_mode = e1000e_set_rx_mode,
6503 .ndo_set_mac_address = e1000_set_mac,
6504 .ndo_change_mtu = e1000_change_mtu,
6505 .ndo_do_ioctl = e1000_ioctl,
6506 .ndo_tx_timeout = e1000_tx_timeout,
6507 .ndo_validate_addr = eth_validate_addr,
6508
6509 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
6510 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
6511 #ifdef CONFIG_NET_POLL_CONTROLLER
6512 .ndo_poll_controller = e1000_netpoll,
6513 #endif
6514 .ndo_set_features = e1000_set_features,
6515 };
6516
6517 /**
6518 * e1000_probe - Device Initialization Routine
6519 * @pdev: PCI device information struct
6520 * @ent: entry in e1000_pci_tbl
6521 *
6522 * Returns 0 on success, negative on failure
6523 *
6524 * e1000_probe initializes an adapter identified by a pci_dev structure.
6525 * The OS initialization, configuring of the adapter private structure,
6526 * and a hardware reset occur.
6527 **/
6528 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6529 {
6530 struct net_device *netdev;
6531 struct e1000_adapter *adapter;
6532 struct e1000_hw *hw;
6533 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6534 resource_size_t mmio_start, mmio_len;
6535 resource_size_t flash_start, flash_len;
6536 static int cards_found;
6537 u16 aspm_disable_flag = 0;
6538 int bars, i, err, pci_using_dac;
6539 u16 eeprom_data = 0;
6540 u16 eeprom_apme_mask = E1000_EEPROM_APME;
6541
6542 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6543 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6544 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6545 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6546 if (aspm_disable_flag)
6547 e1000e_disable_aspm(pdev, aspm_disable_flag);
6548
6549 err = pci_enable_device_mem(pdev);
6550 if (err)
6551 return err;
6552
6553 pci_using_dac = 0;
6554 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6555 if (!err) {
6556 pci_using_dac = 1;
6557 } else {
6558 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6559 if (err) {
6560 dev_err(&pdev->dev,
6561 "No usable DMA configuration, aborting\n");
6562 goto err_dma;
6563 }
6564 }
6565
6566 bars = pci_select_bars(pdev, IORESOURCE_MEM);
6567 err = pci_request_selected_regions_exclusive(pdev, bars,
6568 e1000e_driver_name);
6569 if (err)
6570 goto err_pci_reg;
6571
6572 /* AER (Advanced Error Reporting) hooks */
6573 pci_enable_pcie_error_reporting(pdev);
6574
6575 pci_set_master(pdev);
6576 /* PCI config space info */
6577 err = pci_save_state(pdev);
6578 if (err)
6579 goto err_alloc_etherdev;
6580
6581 err = -ENOMEM;
6582 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6583 if (!netdev)
6584 goto err_alloc_etherdev;
6585
6586 SET_NETDEV_DEV(netdev, &pdev->dev);
6587
6588 netdev->irq = pdev->irq;
6589
6590 pci_set_drvdata(pdev, netdev);
6591 adapter = netdev_priv(netdev);
6592 hw = &adapter->hw;
6593 adapter->netdev = netdev;
6594 adapter->pdev = pdev;
6595 adapter->ei = ei;
6596 adapter->pba = ei->pba;
6597 adapter->flags = ei->flags;
6598 adapter->flags2 = ei->flags2;
6599 adapter->hw.adapter = adapter;
6600 adapter->hw.mac.type = ei->mac;
6601 adapter->max_hw_frame_size = ei->max_hw_frame_size;
6602 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6603
6604 mmio_start = pci_resource_start(pdev, 0);
6605 mmio_len = pci_resource_len(pdev, 0);
6606
6607 err = -EIO;
6608 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6609 if (!adapter->hw.hw_addr)
6610 goto err_ioremap;
6611
6612 if ((adapter->flags & FLAG_HAS_FLASH) &&
6613 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6614 flash_start = pci_resource_start(pdev, 1);
6615 flash_len = pci_resource_len(pdev, 1);
6616 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6617 if (!adapter->hw.flash_address)
6618 goto err_flashmap;
6619 }
6620
6621 /* Set default EEE advertisement */
6622 if (adapter->flags2 & FLAG2_HAS_EEE)
6623 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6624
6625 /* construct the net_device struct */
6626 netdev->netdev_ops = &e1000e_netdev_ops;
6627 e1000e_set_ethtool_ops(netdev);
6628 netdev->watchdog_timeo = 5 * HZ;
6629 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6630 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6631
6632 netdev->mem_start = mmio_start;
6633 netdev->mem_end = mmio_start + mmio_len;
6634
6635 adapter->bd_number = cards_found++;
6636
6637 e1000e_check_options(adapter);
6638
6639 /* setup adapter struct */
6640 err = e1000_sw_init(adapter);
6641 if (err)
6642 goto err_sw_init;
6643
6644 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6645 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6646 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6647
6648 err = ei->get_variants(adapter);
6649 if (err)
6650 goto err_hw_init;
6651
6652 if ((adapter->flags & FLAG_IS_ICH) &&
6653 (adapter->flags & FLAG_READ_ONLY_NVM))
6654 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6655
6656 hw->mac.ops.get_bus_info(&adapter->hw);
6657
6658 adapter->hw.phy.autoneg_wait_to_complete = 0;
6659
6660 /* Copper options */
6661 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6662 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6663 adapter->hw.phy.disable_polarity_correction = 0;
6664 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6665 }
6666
6667 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6668 dev_info(&pdev->dev,
6669 "PHY reset is blocked due to SOL/IDER session.\n");
6670
6671 /* Set initial default active device features */
6672 netdev->features = (NETIF_F_SG |
6673 NETIF_F_HW_VLAN_CTAG_RX |
6674 NETIF_F_HW_VLAN_CTAG_TX |
6675 NETIF_F_TSO |
6676 NETIF_F_TSO6 |
6677 NETIF_F_RXHASH |
6678 NETIF_F_RXCSUM |
6679 NETIF_F_HW_CSUM);
6680
6681 /* Set user-changeable features (subset of all device features) */
6682 netdev->hw_features = netdev->features;
6683 netdev->hw_features |= NETIF_F_RXFCS;
6684 netdev->priv_flags |= IFF_SUPP_NOFCS;
6685 netdev->hw_features |= NETIF_F_RXALL;
6686
6687 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6688 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6689
6690 netdev->vlan_features |= (NETIF_F_SG |
6691 NETIF_F_TSO |
6692 NETIF_F_TSO6 |
6693 NETIF_F_HW_CSUM);
6694
6695 netdev->priv_flags |= IFF_UNICAST_FLT;
6696
6697 if (pci_using_dac) {
6698 netdev->features |= NETIF_F_HIGHDMA;
6699 netdev->vlan_features |= NETIF_F_HIGHDMA;
6700 }
6701
6702 if (e1000e_enable_mng_pass_thru(&adapter->hw))
6703 adapter->flags |= FLAG_MNG_PT_ENABLED;
6704
6705 /* before reading the NVM, reset the controller to
6706 * put the device in a known good starting state
6707 */
6708 adapter->hw.mac.ops.reset_hw(&adapter->hw);
6709
6710 /* systems with ASPM and others may see the checksum fail on the first
6711 * attempt. Let's give it a few tries
6712 */
6713 for (i = 0;; i++) {
6714 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6715 break;
6716 if (i == 2) {
6717 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6718 err = -EIO;
6719 goto err_eeprom;
6720 }
6721 }
6722
6723 e1000_eeprom_checks(adapter);
6724
6725 /* copy the MAC address */
6726 if (e1000e_read_mac_addr(&adapter->hw))
6727 dev_err(&pdev->dev,
6728 "NVM Read Error while reading MAC address\n");
6729
6730 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6731
6732 if (!is_valid_ether_addr(netdev->dev_addr)) {
6733 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6734 netdev->dev_addr);
6735 err = -EIO;
6736 goto err_eeprom;
6737 }
6738
6739 init_timer(&adapter->watchdog_timer);
6740 adapter->watchdog_timer.function = e1000_watchdog;
6741 adapter->watchdog_timer.data = (unsigned long)adapter;
6742
6743 init_timer(&adapter->phy_info_timer);
6744 adapter->phy_info_timer.function = e1000_update_phy_info;
6745 adapter->phy_info_timer.data = (unsigned long)adapter;
6746
6747 INIT_WORK(&adapter->reset_task, e1000_reset_task);
6748 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6749 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6750 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6751 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6752
6753 /* Initialize link parameters. User can change them with ethtool */
6754 adapter->hw.mac.autoneg = 1;
6755 adapter->fc_autoneg = true;
6756 adapter->hw.fc.requested_mode = e1000_fc_default;
6757 adapter->hw.fc.current_mode = e1000_fc_default;
6758 adapter->hw.phy.autoneg_advertised = 0x2f;
6759
6760 /* Initial Wake on LAN setting - If APM wake is enabled in
6761 * the EEPROM, enable the ACPI Magic Packet filter
6762 */
6763 if (adapter->flags & FLAG_APME_IN_WUC) {
6764 /* APME bit in EEPROM is mapped to WUC.APME */
6765 eeprom_data = er32(WUC);
6766 eeprom_apme_mask = E1000_WUC_APME;
6767 if ((hw->mac.type > e1000_ich10lan) &&
6768 (eeprom_data & E1000_WUC_PHY_WAKE))
6769 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6770 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6771 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6772 (adapter->hw.bus.func == 1))
6773 e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6774 1, &eeprom_data);
6775 else
6776 e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6777 1, &eeprom_data);
6778 }
6779
6780 /* fetch WoL from EEPROM */
6781 if (eeprom_data & eeprom_apme_mask)
6782 adapter->eeprom_wol |= E1000_WUFC_MAG;
6783
6784 /* now that we have the eeprom settings, apply the special cases
6785 * where the eeprom may be wrong or the board simply won't support
6786 * wake on lan on a particular port
6787 */
6788 if (!(adapter->flags & FLAG_HAS_WOL))
6789 adapter->eeprom_wol = 0;
6790
6791 /* initialize the wol settings based on the eeprom settings */
6792 adapter->wol = adapter->eeprom_wol;
6793
6794 /* make sure adapter isn't asleep if manageability is enabled */
6795 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
6796 (hw->mac.ops.check_mng_mode(hw)))
6797 device_wakeup_enable(&pdev->dev);
6798
6799 /* save off EEPROM version number */
6800 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6801
6802 /* reset the hardware with the new settings */
6803 e1000e_reset(adapter);
6804
6805 /* If the controller has AMT, do not set DRV_LOAD until the interface
6806 * is up. For all other cases, let the f/w know that the h/w is now
6807 * under the control of the driver.
6808 */
6809 if (!(adapter->flags & FLAG_HAS_AMT))
6810 e1000e_get_hw_control(adapter);
6811
6812 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6813 err = register_netdev(netdev);
6814 if (err)
6815 goto err_register;
6816
6817 /* carrier off reporting is important to ethtool even BEFORE open */
6818 netif_carrier_off(netdev);
6819
6820 /* init PTP hardware clock */
6821 e1000e_ptp_init(adapter);
6822
6823 e1000_print_device_info(adapter);
6824
6825 if (pci_dev_run_wake(pdev))
6826 pm_runtime_put_noidle(&pdev->dev);
6827
6828 return 0;
6829
6830 err_register:
6831 if (!(adapter->flags & FLAG_HAS_AMT))
6832 e1000e_release_hw_control(adapter);
6833 err_eeprom:
6834 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6835 e1000_phy_hw_reset(&adapter->hw);
6836 err_hw_init:
6837 kfree(adapter->tx_ring);
6838 kfree(adapter->rx_ring);
6839 err_sw_init:
6840 if (adapter->hw.flash_address)
6841 iounmap(adapter->hw.flash_address);
6842 e1000e_reset_interrupt_capability(adapter);
6843 err_flashmap:
6844 iounmap(adapter->hw.hw_addr);
6845 err_ioremap:
6846 free_netdev(netdev);
6847 err_alloc_etherdev:
6848 pci_release_selected_regions(pdev,
6849 pci_select_bars(pdev, IORESOURCE_MEM));
6850 err_pci_reg:
6851 err_dma:
6852 pci_disable_device(pdev);
6853 return err;
6854 }
6855
6856 /**
6857 * e1000_remove - Device Removal Routine
6858 * @pdev: PCI device information struct
6859 *
6860 * e1000_remove is called by the PCI subsystem to alert the driver
6861 * that it should release a PCI device. The could be caused by a
6862 * Hot-Plug event, or because the driver is going to be removed from
6863 * memory.
6864 **/
6865 static void e1000_remove(struct pci_dev *pdev)
6866 {
6867 struct net_device *netdev = pci_get_drvdata(pdev);
6868 struct e1000_adapter *adapter = netdev_priv(netdev);
6869 bool down = test_bit(__E1000_DOWN, &adapter->state);
6870
6871 e1000e_ptp_remove(adapter);
6872
6873 /* The timers may be rescheduled, so explicitly disable them
6874 * from being rescheduled.
6875 */
6876 if (!down)
6877 set_bit(__E1000_DOWN, &adapter->state);
6878 del_timer_sync(&adapter->watchdog_timer);
6879 del_timer_sync(&adapter->phy_info_timer);
6880
6881 cancel_work_sync(&adapter->reset_task);
6882 cancel_work_sync(&adapter->watchdog_task);
6883 cancel_work_sync(&adapter->downshift_task);
6884 cancel_work_sync(&adapter->update_phy_task);
6885 cancel_work_sync(&adapter->print_hang_task);
6886
6887 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
6888 cancel_work_sync(&adapter->tx_hwtstamp_work);
6889 if (adapter->tx_hwtstamp_skb) {
6890 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
6891 adapter->tx_hwtstamp_skb = NULL;
6892 }
6893 }
6894
6895 if (!(netdev->flags & IFF_UP))
6896 e1000_power_down_phy(adapter);
6897
6898 /* Don't lie to e1000_close() down the road. */
6899 if (!down)
6900 clear_bit(__E1000_DOWN, &adapter->state);
6901 unregister_netdev(netdev);
6902
6903 if (pci_dev_run_wake(pdev))
6904 pm_runtime_get_noresume(&pdev->dev);
6905
6906 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6907 * would have already happened in close and is redundant.
6908 */
6909 e1000e_release_hw_control(adapter);
6910
6911 e1000e_reset_interrupt_capability(adapter);
6912 kfree(adapter->tx_ring);
6913 kfree(adapter->rx_ring);
6914
6915 iounmap(adapter->hw.hw_addr);
6916 if (adapter->hw.flash_address)
6917 iounmap(adapter->hw.flash_address);
6918 pci_release_selected_regions(pdev,
6919 pci_select_bars(pdev, IORESOURCE_MEM));
6920
6921 free_netdev(netdev);
6922
6923 /* AER disable */
6924 pci_disable_pcie_error_reporting(pdev);
6925
6926 pci_disable_device(pdev);
6927 }
6928
6929 /* PCI Error Recovery (ERS) */
6930 static const struct pci_error_handlers e1000_err_handler = {
6931 .error_detected = e1000_io_error_detected,
6932 .slot_reset = e1000_io_slot_reset,
6933 .resume = e1000_io_resume,
6934 };
6935
6936 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6937 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6938 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6939 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6940 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
6941 board_82571 },
6942 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6943 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6944 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6945 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6946 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6947
6948 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6949 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6950 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6951 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6952
6953 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6954 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6955 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6956
6957 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6958 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6959 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6960
6961 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6962 board_80003es2lan },
6963 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6964 board_80003es2lan },
6965 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6966 board_80003es2lan },
6967 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6968 board_80003es2lan },
6969
6970 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6971 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6972 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6973 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6974 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6975 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6976 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6977 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6978
6979 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6980 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6981 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6982 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6983 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6984 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6985 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6986 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6987 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6988
6989 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6990 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6991 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6992
6993 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6994 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6995 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6996
6997 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6998 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6999 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7000 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7001
7002 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7003 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7004
7005 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7006 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7007 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7008 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7009 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7010 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7011 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7012 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7013
7014 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7015 };
7016 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7017
7018 #ifdef CONFIG_PM
7019 static const struct dev_pm_ops e1000_pm_ops = {
7020 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
7021 SET_RUNTIME_PM_OPS(e1000_runtime_suspend, e1000_runtime_resume,
7022 e1000_idle)
7023 };
7024 #endif
7025
7026 /* PCI Device API Driver */
7027 static struct pci_driver e1000_driver = {
7028 .name = e1000e_driver_name,
7029 .id_table = e1000_pci_tbl,
7030 .probe = e1000_probe,
7031 .remove = e1000_remove,
7032 #ifdef CONFIG_PM
7033 .driver = {
7034 .pm = &e1000_pm_ops,
7035 },
7036 #endif
7037 .shutdown = e1000_shutdown,
7038 .err_handler = &e1000_err_handler
7039 };
7040
7041 /**
7042 * e1000_init_module - Driver Registration Routine
7043 *
7044 * e1000_init_module is the first routine called when the driver is
7045 * loaded. All it does is register with the PCI subsystem.
7046 **/
7047 static int __init e1000_init_module(void)
7048 {
7049 int ret;
7050 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7051 e1000e_driver_version);
7052 pr_info("Copyright(c) 1999 - 2013 Intel Corporation.\n");
7053 ret = pci_register_driver(&e1000_driver);
7054
7055 return ret;
7056 }
7057 module_init(e1000_init_module);
7058
7059 /**
7060 * e1000_exit_module - Driver Exit Cleanup Routine
7061 *
7062 * e1000_exit_module is called just before the driver is removed
7063 * from memory.
7064 **/
7065 static void __exit e1000_exit_module(void)
7066 {
7067 pci_unregister_driver(&e1000_driver);
7068 }
7069 module_exit(e1000_exit_module);
7070
7071 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7072 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7073 MODULE_LICENSE("GPL");
7074 MODULE_VERSION(DRV_VERSION);
7075
7076 /* netdev.c */
This page took 0.212441 seconds and 6 git commands to generate.