e1000e: implement 82577/579 MDI setting support
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / phy.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
32 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
33 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
34 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
35 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
36 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
37 u16 *data, bool read, bool page_set);
38 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
39 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
40 u16 *data, bool read);
41
42 /* Cable length tables */
43 static const u16 e1000_m88_cable_length_table[] = {
44 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
45 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
46 ARRAY_SIZE(e1000_m88_cable_length_table)
47
48 static const u16 e1000_igp_2_cable_length_table[] = {
49 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
50 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
51 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
52 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
53 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
54 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
55 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
56 124};
57 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
58 ARRAY_SIZE(e1000_igp_2_cable_length_table)
59
60 #define BM_PHY_REG_PAGE(offset) \
61 ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
62 #define BM_PHY_REG_NUM(offset) \
63 ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
64 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
65 ~MAX_PHY_REG_ADDRESS)))
66
67 #define HV_INTC_FC_PAGE_START 768
68 #define I82578_ADDR_REG 29
69 #define I82577_ADDR_REG 16
70 #define I82577_CFG_REG 22
71 #define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
72 #define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
73 #define I82577_CTRL_REG 23
74
75 /* 82577 specific PHY registers */
76 #define I82577_PHY_CTRL_2 18
77 #define I82577_PHY_STATUS_2 26
78 #define I82577_PHY_DIAG_STATUS 31
79
80 /* I82577 PHY Status 2 */
81 #define I82577_PHY_STATUS2_REV_POLARITY 0x0400
82 #define I82577_PHY_STATUS2_MDIX 0x0800
83 #define I82577_PHY_STATUS2_SPEED_MASK 0x0300
84 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
85
86 /* I82577 PHY Control 2 */
87 #define I82577_PHY_CTRL2_MANUAL_MDIX 0x0200
88 #define I82577_PHY_CTRL2_AUTO_MDI_MDIX 0x0400
89 #define I82577_PHY_CTRL2_MDIX_CFG_MASK 0x0600
90
91 /* I82577 PHY Diagnostics Status */
92 #define I82577_DSTATUS_CABLE_LENGTH 0x03FC
93 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
94
95 /* BM PHY Copper Specific Control 1 */
96 #define BM_CS_CTRL1 16
97
98 #define HV_MUX_DATA_CTRL PHY_REG(776, 16)
99 #define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
100 #define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
101
102 /**
103 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
104 * @hw: pointer to the HW structure
105 *
106 * Read the PHY management control register and check whether a PHY reset
107 * is blocked. If a reset is not blocked return 0, otherwise
108 * return E1000_BLK_PHY_RESET (12).
109 **/
110 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
111 {
112 u32 manc;
113
114 manc = er32(MANC);
115
116 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
117 E1000_BLK_PHY_RESET : 0;
118 }
119
120 /**
121 * e1000e_get_phy_id - Retrieve the PHY ID and revision
122 * @hw: pointer to the HW structure
123 *
124 * Reads the PHY registers and stores the PHY ID and possibly the PHY
125 * revision in the hardware structure.
126 **/
127 s32 e1000e_get_phy_id(struct e1000_hw *hw)
128 {
129 struct e1000_phy_info *phy = &hw->phy;
130 s32 ret_val = 0;
131 u16 phy_id;
132 u16 retry_count = 0;
133
134 if (!phy->ops.read_reg)
135 return 0;
136
137 while (retry_count < 2) {
138 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
139 if (ret_val)
140 return ret_val;
141
142 phy->id = (u32)(phy_id << 16);
143 udelay(20);
144 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
145 if (ret_val)
146 return ret_val;
147
148 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
149 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
150
151 if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
152 return 0;
153
154 retry_count++;
155 }
156
157 return 0;
158 }
159
160 /**
161 * e1000e_phy_reset_dsp - Reset PHY DSP
162 * @hw: pointer to the HW structure
163 *
164 * Reset the digital signal processor.
165 **/
166 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
167 {
168 s32 ret_val;
169
170 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
171 if (ret_val)
172 return ret_val;
173
174 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
175 }
176
177 /**
178 * e1000e_read_phy_reg_mdic - Read MDI control register
179 * @hw: pointer to the HW structure
180 * @offset: register offset to be read
181 * @data: pointer to the read data
182 *
183 * Reads the MDI control register in the PHY at offset and stores the
184 * information read to data.
185 **/
186 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
187 {
188 struct e1000_phy_info *phy = &hw->phy;
189 u32 i, mdic = 0;
190
191 if (offset > MAX_PHY_REG_ADDRESS) {
192 e_dbg("PHY Address %d is out of range\n", offset);
193 return -E1000_ERR_PARAM;
194 }
195
196 /*
197 * Set up Op-code, Phy Address, and register offset in the MDI
198 * Control register. The MAC will take care of interfacing with the
199 * PHY to retrieve the desired data.
200 */
201 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
202 (phy->addr << E1000_MDIC_PHY_SHIFT) |
203 (E1000_MDIC_OP_READ));
204
205 ew32(MDIC, mdic);
206
207 /*
208 * Poll the ready bit to see if the MDI read completed
209 * Increasing the time out as testing showed failures with
210 * the lower time out
211 */
212 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
213 udelay(50);
214 mdic = er32(MDIC);
215 if (mdic & E1000_MDIC_READY)
216 break;
217 }
218 if (!(mdic & E1000_MDIC_READY)) {
219 e_dbg("MDI Read did not complete\n");
220 return -E1000_ERR_PHY;
221 }
222 if (mdic & E1000_MDIC_ERROR) {
223 e_dbg("MDI Error\n");
224 return -E1000_ERR_PHY;
225 }
226 *data = (u16) mdic;
227
228 /*
229 * Allow some time after each MDIC transaction to avoid
230 * reading duplicate data in the next MDIC transaction.
231 */
232 if (hw->mac.type == e1000_pch2lan)
233 udelay(100);
234
235 return 0;
236 }
237
238 /**
239 * e1000e_write_phy_reg_mdic - Write MDI control register
240 * @hw: pointer to the HW structure
241 * @offset: register offset to write to
242 * @data: data to write to register at offset
243 *
244 * Writes data to MDI control register in the PHY at offset.
245 **/
246 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
247 {
248 struct e1000_phy_info *phy = &hw->phy;
249 u32 i, mdic = 0;
250
251 if (offset > MAX_PHY_REG_ADDRESS) {
252 e_dbg("PHY Address %d is out of range\n", offset);
253 return -E1000_ERR_PARAM;
254 }
255
256 /*
257 * Set up Op-code, Phy Address, and register offset in the MDI
258 * Control register. The MAC will take care of interfacing with the
259 * PHY to retrieve the desired data.
260 */
261 mdic = (((u32)data) |
262 (offset << E1000_MDIC_REG_SHIFT) |
263 (phy->addr << E1000_MDIC_PHY_SHIFT) |
264 (E1000_MDIC_OP_WRITE));
265
266 ew32(MDIC, mdic);
267
268 /*
269 * Poll the ready bit to see if the MDI read completed
270 * Increasing the time out as testing showed failures with
271 * the lower time out
272 */
273 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
274 udelay(50);
275 mdic = er32(MDIC);
276 if (mdic & E1000_MDIC_READY)
277 break;
278 }
279 if (!(mdic & E1000_MDIC_READY)) {
280 e_dbg("MDI Write did not complete\n");
281 return -E1000_ERR_PHY;
282 }
283 if (mdic & E1000_MDIC_ERROR) {
284 e_dbg("MDI Error\n");
285 return -E1000_ERR_PHY;
286 }
287
288 /*
289 * Allow some time after each MDIC transaction to avoid
290 * reading duplicate data in the next MDIC transaction.
291 */
292 if (hw->mac.type == e1000_pch2lan)
293 udelay(100);
294
295 return 0;
296 }
297
298 /**
299 * e1000e_read_phy_reg_m88 - Read m88 PHY register
300 * @hw: pointer to the HW structure
301 * @offset: register offset to be read
302 * @data: pointer to the read data
303 *
304 * Acquires semaphore, if necessary, then reads the PHY register at offset
305 * and storing the retrieved information in data. Release any acquired
306 * semaphores before exiting.
307 **/
308 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
309 {
310 s32 ret_val;
311
312 ret_val = hw->phy.ops.acquire(hw);
313 if (ret_val)
314 return ret_val;
315
316 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
317 data);
318
319 hw->phy.ops.release(hw);
320
321 return ret_val;
322 }
323
324 /**
325 * e1000e_write_phy_reg_m88 - Write m88 PHY register
326 * @hw: pointer to the HW structure
327 * @offset: register offset to write to
328 * @data: data to write at register offset
329 *
330 * Acquires semaphore, if necessary, then writes the data to PHY register
331 * at the offset. Release any acquired semaphores before exiting.
332 **/
333 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
334 {
335 s32 ret_val;
336
337 ret_val = hw->phy.ops.acquire(hw);
338 if (ret_val)
339 return ret_val;
340
341 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
342 data);
343
344 hw->phy.ops.release(hw);
345
346 return ret_val;
347 }
348
349 /**
350 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
351 * @hw: pointer to the HW structure
352 * @page: page to set (shifted left when necessary)
353 *
354 * Sets PHY page required for PHY register access. Assumes semaphore is
355 * already acquired. Note, this function sets phy.addr to 1 so the caller
356 * must set it appropriately (if necessary) after this function returns.
357 **/
358 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
359 {
360 e_dbg("Setting page 0x%x\n", page);
361
362 hw->phy.addr = 1;
363
364 return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
365 }
366
367 /**
368 * __e1000e_read_phy_reg_igp - Read igp PHY register
369 * @hw: pointer to the HW structure
370 * @offset: register offset to be read
371 * @data: pointer to the read data
372 * @locked: semaphore has already been acquired or not
373 *
374 * Acquires semaphore, if necessary, then reads the PHY register at offset
375 * and stores the retrieved information in data. Release any acquired
376 * semaphores before exiting.
377 **/
378 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
379 bool locked)
380 {
381 s32 ret_val = 0;
382
383 if (!locked) {
384 if (!hw->phy.ops.acquire)
385 return 0;
386
387 ret_val = hw->phy.ops.acquire(hw);
388 if (ret_val)
389 return ret_val;
390 }
391
392 if (offset > MAX_PHY_MULTI_PAGE_REG)
393 ret_val = e1000e_write_phy_reg_mdic(hw,
394 IGP01E1000_PHY_PAGE_SELECT,
395 (u16)offset);
396 if (!ret_val)
397 ret_val = e1000e_read_phy_reg_mdic(hw,
398 MAX_PHY_REG_ADDRESS & offset,
399 data);
400 if (!locked)
401 hw->phy.ops.release(hw);
402
403 return ret_val;
404 }
405
406 /**
407 * e1000e_read_phy_reg_igp - Read igp PHY register
408 * @hw: pointer to the HW structure
409 * @offset: register offset to be read
410 * @data: pointer to the read data
411 *
412 * Acquires semaphore then reads the PHY register at offset and stores the
413 * retrieved information in data.
414 * Release the acquired semaphore before exiting.
415 **/
416 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
417 {
418 return __e1000e_read_phy_reg_igp(hw, offset, data, false);
419 }
420
421 /**
422 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
423 * @hw: pointer to the HW structure
424 * @offset: register offset to be read
425 * @data: pointer to the read data
426 *
427 * Reads the PHY register at offset and stores the retrieved information
428 * in data. Assumes semaphore already acquired.
429 **/
430 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
431 {
432 return __e1000e_read_phy_reg_igp(hw, offset, data, true);
433 }
434
435 /**
436 * e1000e_write_phy_reg_igp - Write igp PHY register
437 * @hw: pointer to the HW structure
438 * @offset: register offset to write to
439 * @data: data to write at register offset
440 * @locked: semaphore has already been acquired or not
441 *
442 * Acquires semaphore, if necessary, then writes the data to PHY register
443 * at the offset. Release any acquired semaphores before exiting.
444 **/
445 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
446 bool locked)
447 {
448 s32 ret_val = 0;
449
450 if (!locked) {
451 if (!hw->phy.ops.acquire)
452 return 0;
453
454 ret_val = hw->phy.ops.acquire(hw);
455 if (ret_val)
456 return ret_val;
457 }
458
459 if (offset > MAX_PHY_MULTI_PAGE_REG)
460 ret_val = e1000e_write_phy_reg_mdic(hw,
461 IGP01E1000_PHY_PAGE_SELECT,
462 (u16)offset);
463 if (!ret_val)
464 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
465 offset,
466 data);
467 if (!locked)
468 hw->phy.ops.release(hw);
469
470 return ret_val;
471 }
472
473 /**
474 * e1000e_write_phy_reg_igp - Write igp PHY register
475 * @hw: pointer to the HW structure
476 * @offset: register offset to write to
477 * @data: data to write at register offset
478 *
479 * Acquires semaphore then writes the data to PHY register
480 * at the offset. Release any acquired semaphores before exiting.
481 **/
482 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
483 {
484 return __e1000e_write_phy_reg_igp(hw, offset, data, false);
485 }
486
487 /**
488 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
489 * @hw: pointer to the HW structure
490 * @offset: register offset to write to
491 * @data: data to write at register offset
492 *
493 * Writes the data to PHY register at the offset.
494 * Assumes semaphore already acquired.
495 **/
496 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
497 {
498 return __e1000e_write_phy_reg_igp(hw, offset, data, true);
499 }
500
501 /**
502 * __e1000_read_kmrn_reg - Read kumeran register
503 * @hw: pointer to the HW structure
504 * @offset: register offset to be read
505 * @data: pointer to the read data
506 * @locked: semaphore has already been acquired or not
507 *
508 * Acquires semaphore, if necessary. Then reads the PHY register at offset
509 * using the kumeran interface. The information retrieved is stored in data.
510 * Release any acquired semaphores before exiting.
511 **/
512 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
513 bool locked)
514 {
515 u32 kmrnctrlsta;
516
517 if (!locked) {
518 s32 ret_val = 0;
519
520 if (!hw->phy.ops.acquire)
521 return 0;
522
523 ret_val = hw->phy.ops.acquire(hw);
524 if (ret_val)
525 return ret_val;
526 }
527
528 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
529 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
530 ew32(KMRNCTRLSTA, kmrnctrlsta);
531 e1e_flush();
532
533 udelay(2);
534
535 kmrnctrlsta = er32(KMRNCTRLSTA);
536 *data = (u16)kmrnctrlsta;
537
538 if (!locked)
539 hw->phy.ops.release(hw);
540
541 return 0;
542 }
543
544 /**
545 * e1000e_read_kmrn_reg - Read kumeran register
546 * @hw: pointer to the HW structure
547 * @offset: register offset to be read
548 * @data: pointer to the read data
549 *
550 * Acquires semaphore then reads the PHY register at offset using the
551 * kumeran interface. The information retrieved is stored in data.
552 * Release the acquired semaphore before exiting.
553 **/
554 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
555 {
556 return __e1000_read_kmrn_reg(hw, offset, data, false);
557 }
558
559 /**
560 * e1000e_read_kmrn_reg_locked - Read kumeran register
561 * @hw: pointer to the HW structure
562 * @offset: register offset to be read
563 * @data: pointer to the read data
564 *
565 * Reads the PHY register at offset using the kumeran interface. The
566 * information retrieved is stored in data.
567 * Assumes semaphore already acquired.
568 **/
569 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
570 {
571 return __e1000_read_kmrn_reg(hw, offset, data, true);
572 }
573
574 /**
575 * __e1000_write_kmrn_reg - Write kumeran register
576 * @hw: pointer to the HW structure
577 * @offset: register offset to write to
578 * @data: data to write at register offset
579 * @locked: semaphore has already been acquired or not
580 *
581 * Acquires semaphore, if necessary. Then write the data to PHY register
582 * at the offset using the kumeran interface. Release any acquired semaphores
583 * before exiting.
584 **/
585 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
586 bool locked)
587 {
588 u32 kmrnctrlsta;
589
590 if (!locked) {
591 s32 ret_val = 0;
592
593 if (!hw->phy.ops.acquire)
594 return 0;
595
596 ret_val = hw->phy.ops.acquire(hw);
597 if (ret_val)
598 return ret_val;
599 }
600
601 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
602 E1000_KMRNCTRLSTA_OFFSET) | data;
603 ew32(KMRNCTRLSTA, kmrnctrlsta);
604 e1e_flush();
605
606 udelay(2);
607
608 if (!locked)
609 hw->phy.ops.release(hw);
610
611 return 0;
612 }
613
614 /**
615 * e1000e_write_kmrn_reg - Write kumeran register
616 * @hw: pointer to the HW structure
617 * @offset: register offset to write to
618 * @data: data to write at register offset
619 *
620 * Acquires semaphore then writes the data to the PHY register at the offset
621 * using the kumeran interface. Release the acquired semaphore before exiting.
622 **/
623 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
624 {
625 return __e1000_write_kmrn_reg(hw, offset, data, false);
626 }
627
628 /**
629 * e1000e_write_kmrn_reg_locked - Write kumeran register
630 * @hw: pointer to the HW structure
631 * @offset: register offset to write to
632 * @data: data to write at register offset
633 *
634 * Write the data to PHY register at the offset using the kumeran interface.
635 * Assumes semaphore already acquired.
636 **/
637 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
638 {
639 return __e1000_write_kmrn_reg(hw, offset, data, true);
640 }
641
642 /**
643 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
644 * @hw: pointer to the HW structure
645 *
646 * Sets up Master/slave mode
647 **/
648 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
649 {
650 s32 ret_val;
651 u16 phy_data;
652
653 /* Resolve Master/Slave mode */
654 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &phy_data);
655 if (ret_val)
656 return ret_val;
657
658 /* load defaults for future use */
659 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
660 ((phy_data & CR_1000T_MS_VALUE) ?
661 e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
662
663 switch (hw->phy.ms_type) {
664 case e1000_ms_force_master:
665 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
666 break;
667 case e1000_ms_force_slave:
668 phy_data |= CR_1000T_MS_ENABLE;
669 phy_data &= ~(CR_1000T_MS_VALUE);
670 break;
671 case e1000_ms_auto:
672 phy_data &= ~CR_1000T_MS_ENABLE;
673 /* fall-through */
674 default:
675 break;
676 }
677
678 return e1e_wphy(hw, PHY_1000T_CTRL, phy_data);
679 }
680
681 /**
682 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
683 * @hw: pointer to the HW structure
684 *
685 * Sets up Carrier-sense on Transmit and downshift values.
686 **/
687 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
688 {
689 s32 ret_val;
690 u16 phy_data;
691
692 /* Enable CRS on Tx. This must be set for half-duplex operation. */
693 ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
694 if (ret_val)
695 return ret_val;
696
697 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
698
699 /* Enable downshift */
700 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
701
702 ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
703 if (ret_val)
704 return ret_val;
705
706 /* Set MDI/MDIX mode */
707 ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
708 if (ret_val)
709 return ret_val;
710 phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
711 /*
712 * Options:
713 * 0 - Auto (default)
714 * 1 - MDI mode
715 * 2 - MDI-X mode
716 */
717 switch (hw->phy.mdix) {
718 case 1:
719 break;
720 case 2:
721 phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
722 break;
723 case 0:
724 default:
725 phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
726 break;
727 }
728 ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
729 if (ret_val)
730 return ret_val;
731
732 return e1000_set_master_slave_mode(hw);
733 }
734
735 /**
736 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
737 * @hw: pointer to the HW structure
738 *
739 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
740 * and downshift values are set also.
741 **/
742 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
743 {
744 struct e1000_phy_info *phy = &hw->phy;
745 s32 ret_val;
746 u16 phy_data;
747
748 /* Enable CRS on Tx. This must be set for half-duplex operation. */
749 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
750 if (ret_val)
751 return ret_val;
752
753 /* For BM PHY this bit is downshift enable */
754 if (phy->type != e1000_phy_bm)
755 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
756
757 /*
758 * Options:
759 * MDI/MDI-X = 0 (default)
760 * 0 - Auto for all speeds
761 * 1 - MDI mode
762 * 2 - MDI-X mode
763 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
764 */
765 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
766
767 switch (phy->mdix) {
768 case 1:
769 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
770 break;
771 case 2:
772 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
773 break;
774 case 3:
775 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
776 break;
777 case 0:
778 default:
779 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
780 break;
781 }
782
783 /*
784 * Options:
785 * disable_polarity_correction = 0 (default)
786 * Automatic Correction for Reversed Cable Polarity
787 * 0 - Disabled
788 * 1 - Enabled
789 */
790 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
791 if (phy->disable_polarity_correction)
792 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
793
794 /* Enable downshift on BM (disabled by default) */
795 if (phy->type == e1000_phy_bm) {
796 /* For 82574/82583, first disable then enable downshift */
797 if (phy->id == BME1000_E_PHY_ID_R2) {
798 phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
799 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
800 phy_data);
801 if (ret_val)
802 return ret_val;
803 /* Commit the changes. */
804 ret_val = e1000e_commit_phy(hw);
805 if (ret_val) {
806 e_dbg("Error committing the PHY changes\n");
807 return ret_val;
808 }
809 }
810
811 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
812 }
813
814 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
815 if (ret_val)
816 return ret_val;
817
818 if ((phy->type == e1000_phy_m88) &&
819 (phy->revision < E1000_REVISION_4) &&
820 (phy->id != BME1000_E_PHY_ID_R2)) {
821 /*
822 * Force TX_CLK in the Extended PHY Specific Control Register
823 * to 25MHz clock.
824 */
825 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
826 if (ret_val)
827 return ret_val;
828
829 phy_data |= M88E1000_EPSCR_TX_CLK_25;
830
831 if ((phy->revision == 2) &&
832 (phy->id == M88E1111_I_PHY_ID)) {
833 /* 82573L PHY - set the downshift counter to 5x. */
834 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
835 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
836 } else {
837 /* Configure Master and Slave downshift values */
838 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
839 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
840 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
841 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
842 }
843 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
844 if (ret_val)
845 return ret_val;
846 }
847
848 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
849 /* Set PHY page 0, register 29 to 0x0003 */
850 ret_val = e1e_wphy(hw, 29, 0x0003);
851 if (ret_val)
852 return ret_val;
853
854 /* Set PHY page 0, register 30 to 0x0000 */
855 ret_val = e1e_wphy(hw, 30, 0x0000);
856 if (ret_val)
857 return ret_val;
858 }
859
860 /* Commit the changes. */
861 ret_val = e1000e_commit_phy(hw);
862 if (ret_val) {
863 e_dbg("Error committing the PHY changes\n");
864 return ret_val;
865 }
866
867 if (phy->type == e1000_phy_82578) {
868 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
869 if (ret_val)
870 return ret_val;
871
872 /* 82578 PHY - set the downshift count to 1x. */
873 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
874 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
875 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
876 if (ret_val)
877 return ret_val;
878 }
879
880 return 0;
881 }
882
883 /**
884 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
885 * @hw: pointer to the HW structure
886 *
887 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
888 * igp PHY's.
889 **/
890 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
891 {
892 struct e1000_phy_info *phy = &hw->phy;
893 s32 ret_val;
894 u16 data;
895
896 ret_val = e1000_phy_hw_reset(hw);
897 if (ret_val) {
898 e_dbg("Error resetting the PHY.\n");
899 return ret_val;
900 }
901
902 /*
903 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
904 * timeout issues when LFS is enabled.
905 */
906 msleep(100);
907
908 /* disable lplu d0 during driver init */
909 ret_val = e1000_set_d0_lplu_state(hw, false);
910 if (ret_val) {
911 e_dbg("Error Disabling LPLU D0\n");
912 return ret_val;
913 }
914 /* Configure mdi-mdix settings */
915 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
916 if (ret_val)
917 return ret_val;
918
919 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
920
921 switch (phy->mdix) {
922 case 1:
923 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
924 break;
925 case 2:
926 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
927 break;
928 case 0:
929 default:
930 data |= IGP01E1000_PSCR_AUTO_MDIX;
931 break;
932 }
933 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
934 if (ret_val)
935 return ret_val;
936
937 /* set auto-master slave resolution settings */
938 if (hw->mac.autoneg) {
939 /*
940 * when autonegotiation advertisement is only 1000Mbps then we
941 * should disable SmartSpeed and enable Auto MasterSlave
942 * resolution as hardware default.
943 */
944 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
945 /* Disable SmartSpeed */
946 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
947 &data);
948 if (ret_val)
949 return ret_val;
950
951 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
952 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
953 data);
954 if (ret_val)
955 return ret_val;
956
957 /* Set auto Master/Slave resolution process */
958 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
959 if (ret_val)
960 return ret_val;
961
962 data &= ~CR_1000T_MS_ENABLE;
963 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
964 if (ret_val)
965 return ret_val;
966 }
967
968 ret_val = e1000_set_master_slave_mode(hw);
969 }
970
971 return ret_val;
972 }
973
974 /**
975 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
976 * @hw: pointer to the HW structure
977 *
978 * Reads the MII auto-neg advertisement register and/or the 1000T control
979 * register and if the PHY is already setup for auto-negotiation, then
980 * return successful. Otherwise, setup advertisement and flow control to
981 * the appropriate values for the wanted auto-negotiation.
982 **/
983 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
984 {
985 struct e1000_phy_info *phy = &hw->phy;
986 s32 ret_val;
987 u16 mii_autoneg_adv_reg;
988 u16 mii_1000t_ctrl_reg = 0;
989
990 phy->autoneg_advertised &= phy->autoneg_mask;
991
992 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
993 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
994 if (ret_val)
995 return ret_val;
996
997 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
998 /* Read the MII 1000Base-T Control Register (Address 9). */
999 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1000 if (ret_val)
1001 return ret_val;
1002 }
1003
1004 /*
1005 * Need to parse both autoneg_advertised and fc and set up
1006 * the appropriate PHY registers. First we will parse for
1007 * autoneg_advertised software override. Since we can advertise
1008 * a plethora of combinations, we need to check each bit
1009 * individually.
1010 */
1011
1012 /*
1013 * First we clear all the 10/100 mb speed bits in the Auto-Neg
1014 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1015 * the 1000Base-T Control Register (Address 9).
1016 */
1017 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
1018 NWAY_AR_100TX_HD_CAPS |
1019 NWAY_AR_10T_FD_CAPS |
1020 NWAY_AR_10T_HD_CAPS);
1021 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
1022
1023 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
1024
1025 /* Do we want to advertise 10 Mb Half Duplex? */
1026 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1027 e_dbg("Advertise 10mb Half duplex\n");
1028 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1029 }
1030
1031 /* Do we want to advertise 10 Mb Full Duplex? */
1032 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1033 e_dbg("Advertise 10mb Full duplex\n");
1034 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1035 }
1036
1037 /* Do we want to advertise 100 Mb Half Duplex? */
1038 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1039 e_dbg("Advertise 100mb Half duplex\n");
1040 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1041 }
1042
1043 /* Do we want to advertise 100 Mb Full Duplex? */
1044 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1045 e_dbg("Advertise 100mb Full duplex\n");
1046 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1047 }
1048
1049 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1050 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1051 e_dbg("Advertise 1000mb Half duplex request denied!\n");
1052
1053 /* Do we want to advertise 1000 Mb Full Duplex? */
1054 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1055 e_dbg("Advertise 1000mb Full duplex\n");
1056 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1057 }
1058
1059 /*
1060 * Check for a software override of the flow control settings, and
1061 * setup the PHY advertisement registers accordingly. If
1062 * auto-negotiation is enabled, then software will have to set the
1063 * "PAUSE" bits to the correct value in the Auto-Negotiation
1064 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1065 * negotiation.
1066 *
1067 * The possible values of the "fc" parameter are:
1068 * 0: Flow control is completely disabled
1069 * 1: Rx flow control is enabled (we can receive pause frames
1070 * but not send pause frames).
1071 * 2: Tx flow control is enabled (we can send pause frames
1072 * but we do not support receiving pause frames).
1073 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1074 * other: No software override. The flow control configuration
1075 * in the EEPROM is used.
1076 */
1077 switch (hw->fc.current_mode) {
1078 case e1000_fc_none:
1079 /*
1080 * Flow control (Rx & Tx) is completely disabled by a
1081 * software over-ride.
1082 */
1083 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1084 break;
1085 case e1000_fc_rx_pause:
1086 /*
1087 * Rx Flow control is enabled, and Tx Flow control is
1088 * disabled, by a software over-ride.
1089 *
1090 * Since there really isn't a way to advertise that we are
1091 * capable of Rx Pause ONLY, we will advertise that we
1092 * support both symmetric and asymmetric Rx PAUSE. Later
1093 * (in e1000e_config_fc_after_link_up) we will disable the
1094 * hw's ability to send PAUSE frames.
1095 */
1096 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1097 break;
1098 case e1000_fc_tx_pause:
1099 /*
1100 * Tx Flow control is enabled, and Rx Flow control is
1101 * disabled, by a software over-ride.
1102 */
1103 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1104 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1105 break;
1106 case e1000_fc_full:
1107 /*
1108 * Flow control (both Rx and Tx) is enabled by a software
1109 * over-ride.
1110 */
1111 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1112 break;
1113 default:
1114 e_dbg("Flow control param set incorrectly\n");
1115 return -E1000_ERR_CONFIG;
1116 }
1117
1118 ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1119 if (ret_val)
1120 return ret_val;
1121
1122 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1123
1124 if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1125 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1126
1127 return ret_val;
1128 }
1129
1130 /**
1131 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1132 * @hw: pointer to the HW structure
1133 *
1134 * Performs initial bounds checking on autoneg advertisement parameter, then
1135 * configure to advertise the full capability. Setup the PHY to autoneg
1136 * and restart the negotiation process between the link partner. If
1137 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1138 **/
1139 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1140 {
1141 struct e1000_phy_info *phy = &hw->phy;
1142 s32 ret_val;
1143 u16 phy_ctrl;
1144
1145 /*
1146 * Perform some bounds checking on the autoneg advertisement
1147 * parameter.
1148 */
1149 phy->autoneg_advertised &= phy->autoneg_mask;
1150
1151 /*
1152 * If autoneg_advertised is zero, we assume it was not defaulted
1153 * by the calling code so we set to advertise full capability.
1154 */
1155 if (!phy->autoneg_advertised)
1156 phy->autoneg_advertised = phy->autoneg_mask;
1157
1158 e_dbg("Reconfiguring auto-neg advertisement params\n");
1159 ret_val = e1000_phy_setup_autoneg(hw);
1160 if (ret_val) {
1161 e_dbg("Error Setting up Auto-Negotiation\n");
1162 return ret_val;
1163 }
1164 e_dbg("Restarting Auto-Neg\n");
1165
1166 /*
1167 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1168 * the Auto Neg Restart bit in the PHY control register.
1169 */
1170 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1171 if (ret_val)
1172 return ret_val;
1173
1174 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1175 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1176 if (ret_val)
1177 return ret_val;
1178
1179 /*
1180 * Does the user want to wait for Auto-Neg to complete here, or
1181 * check at a later time (for example, callback routine).
1182 */
1183 if (phy->autoneg_wait_to_complete) {
1184 ret_val = e1000_wait_autoneg(hw);
1185 if (ret_val) {
1186 e_dbg("Error while waiting for autoneg to complete\n");
1187 return ret_val;
1188 }
1189 }
1190
1191 hw->mac.get_link_status = true;
1192
1193 return ret_val;
1194 }
1195
1196 /**
1197 * e1000e_setup_copper_link - Configure copper link settings
1198 * @hw: pointer to the HW structure
1199 *
1200 * Calls the appropriate function to configure the link for auto-neg or forced
1201 * speed and duplex. Then we check for link, once link is established calls
1202 * to configure collision distance and flow control are called. If link is
1203 * not established, we return -E1000_ERR_PHY (-2).
1204 **/
1205 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1206 {
1207 s32 ret_val;
1208 bool link;
1209
1210 if (hw->mac.autoneg) {
1211 /*
1212 * Setup autoneg and flow control advertisement and perform
1213 * autonegotiation.
1214 */
1215 ret_val = e1000_copper_link_autoneg(hw);
1216 if (ret_val)
1217 return ret_val;
1218 } else {
1219 /*
1220 * PHY will be set to 10H, 10F, 100H or 100F
1221 * depending on user settings.
1222 */
1223 e_dbg("Forcing Speed and Duplex\n");
1224 ret_val = e1000_phy_force_speed_duplex(hw);
1225 if (ret_val) {
1226 e_dbg("Error Forcing Speed and Duplex\n");
1227 return ret_val;
1228 }
1229 }
1230
1231 /*
1232 * Check link status. Wait up to 100 microseconds for link to become
1233 * valid.
1234 */
1235 ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1236 &link);
1237 if (ret_val)
1238 return ret_val;
1239
1240 if (link) {
1241 e_dbg("Valid link established!!!\n");
1242 hw->mac.ops.config_collision_dist(hw);
1243 ret_val = e1000e_config_fc_after_link_up(hw);
1244 } else {
1245 e_dbg("Unable to establish link!!!\n");
1246 }
1247
1248 return ret_val;
1249 }
1250
1251 /**
1252 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1253 * @hw: pointer to the HW structure
1254 *
1255 * Calls the PHY setup function to force speed and duplex. Clears the
1256 * auto-crossover to force MDI manually. Waits for link and returns
1257 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1258 **/
1259 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1260 {
1261 struct e1000_phy_info *phy = &hw->phy;
1262 s32 ret_val;
1263 u16 phy_data;
1264 bool link;
1265
1266 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1267 if (ret_val)
1268 return ret_val;
1269
1270 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1271
1272 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1273 if (ret_val)
1274 return ret_val;
1275
1276 /*
1277 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1278 * forced whenever speed and duplex are forced.
1279 */
1280 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1281 if (ret_val)
1282 return ret_val;
1283
1284 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1285 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1286
1287 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1288 if (ret_val)
1289 return ret_val;
1290
1291 e_dbg("IGP PSCR: %X\n", phy_data);
1292
1293 udelay(1);
1294
1295 if (phy->autoneg_wait_to_complete) {
1296 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1297
1298 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1299 100000, &link);
1300 if (ret_val)
1301 return ret_val;
1302
1303 if (!link)
1304 e_dbg("Link taking longer than expected.\n");
1305
1306 /* Try once more */
1307 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1308 100000, &link);
1309 }
1310
1311 return ret_val;
1312 }
1313
1314 /**
1315 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1316 * @hw: pointer to the HW structure
1317 *
1318 * Calls the PHY setup function to force speed and duplex. Clears the
1319 * auto-crossover to force MDI manually. Resets the PHY to commit the
1320 * changes. If time expires while waiting for link up, we reset the DSP.
1321 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1322 * successful completion, else return corresponding error code.
1323 **/
1324 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1325 {
1326 struct e1000_phy_info *phy = &hw->phy;
1327 s32 ret_val;
1328 u16 phy_data;
1329 bool link;
1330
1331 /*
1332 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1333 * forced whenever speed and duplex are forced.
1334 */
1335 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1336 if (ret_val)
1337 return ret_val;
1338
1339 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1340 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1341 if (ret_val)
1342 return ret_val;
1343
1344 e_dbg("M88E1000 PSCR: %X\n", phy_data);
1345
1346 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1347 if (ret_val)
1348 return ret_val;
1349
1350 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1351
1352 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1353 if (ret_val)
1354 return ret_val;
1355
1356 /* Reset the phy to commit changes. */
1357 ret_val = e1000e_commit_phy(hw);
1358 if (ret_val)
1359 return ret_val;
1360
1361 if (phy->autoneg_wait_to_complete) {
1362 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1363
1364 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1365 100000, &link);
1366 if (ret_val)
1367 return ret_val;
1368
1369 if (!link) {
1370 if (hw->phy.type != e1000_phy_m88) {
1371 e_dbg("Link taking longer than expected.\n");
1372 } else {
1373 /*
1374 * We didn't get link.
1375 * Reset the DSP and cross our fingers.
1376 */
1377 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1378 0x001d);
1379 if (ret_val)
1380 return ret_val;
1381 ret_val = e1000e_phy_reset_dsp(hw);
1382 if (ret_val)
1383 return ret_val;
1384 }
1385 }
1386
1387 /* Try once more */
1388 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1389 100000, &link);
1390 if (ret_val)
1391 return ret_val;
1392 }
1393
1394 if (hw->phy.type != e1000_phy_m88)
1395 return 0;
1396
1397 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1398 if (ret_val)
1399 return ret_val;
1400
1401 /*
1402 * Resetting the phy means we need to re-force TX_CLK in the
1403 * Extended PHY Specific Control Register to 25MHz clock from
1404 * the reset value of 2.5MHz.
1405 */
1406 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1407 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1408 if (ret_val)
1409 return ret_val;
1410
1411 /*
1412 * In addition, we must re-enable CRS on Tx for both half and full
1413 * duplex.
1414 */
1415 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1416 if (ret_val)
1417 return ret_val;
1418
1419 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1420 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1421
1422 return ret_val;
1423 }
1424
1425 /**
1426 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1427 * @hw: pointer to the HW structure
1428 *
1429 * Forces the speed and duplex settings of the PHY.
1430 * This is a function pointer entry point only called by
1431 * PHY setup routines.
1432 **/
1433 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1434 {
1435 struct e1000_phy_info *phy = &hw->phy;
1436 s32 ret_val;
1437 u16 data;
1438 bool link;
1439
1440 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1441 if (ret_val)
1442 return ret_val;
1443
1444 e1000e_phy_force_speed_duplex_setup(hw, &data);
1445
1446 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1447 if (ret_val)
1448 return ret_val;
1449
1450 /* Disable MDI-X support for 10/100 */
1451 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1452 if (ret_val)
1453 return ret_val;
1454
1455 data &= ~IFE_PMC_AUTO_MDIX;
1456 data &= ~IFE_PMC_FORCE_MDIX;
1457
1458 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1459 if (ret_val)
1460 return ret_val;
1461
1462 e_dbg("IFE PMC: %X\n", data);
1463
1464 udelay(1);
1465
1466 if (phy->autoneg_wait_to_complete) {
1467 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1468
1469 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1470 100000, &link);
1471 if (ret_val)
1472 return ret_val;
1473
1474 if (!link)
1475 e_dbg("Link taking longer than expected.\n");
1476
1477 /* Try once more */
1478 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1479 100000, &link);
1480 if (ret_val)
1481 return ret_val;
1482 }
1483
1484 return 0;
1485 }
1486
1487 /**
1488 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1489 * @hw: pointer to the HW structure
1490 * @phy_ctrl: pointer to current value of PHY_CONTROL
1491 *
1492 * Forces speed and duplex on the PHY by doing the following: disable flow
1493 * control, force speed/duplex on the MAC, disable auto speed detection,
1494 * disable auto-negotiation, configure duplex, configure speed, configure
1495 * the collision distance, write configuration to CTRL register. The
1496 * caller must write to the PHY_CONTROL register for these settings to
1497 * take affect.
1498 **/
1499 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1500 {
1501 struct e1000_mac_info *mac = &hw->mac;
1502 u32 ctrl;
1503
1504 /* Turn off flow control when forcing speed/duplex */
1505 hw->fc.current_mode = e1000_fc_none;
1506
1507 /* Force speed/duplex on the mac */
1508 ctrl = er32(CTRL);
1509 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1510 ctrl &= ~E1000_CTRL_SPD_SEL;
1511
1512 /* Disable Auto Speed Detection */
1513 ctrl &= ~E1000_CTRL_ASDE;
1514
1515 /* Disable autoneg on the phy */
1516 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1517
1518 /* Forcing Full or Half Duplex? */
1519 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1520 ctrl &= ~E1000_CTRL_FD;
1521 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1522 e_dbg("Half Duplex\n");
1523 } else {
1524 ctrl |= E1000_CTRL_FD;
1525 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1526 e_dbg("Full Duplex\n");
1527 }
1528
1529 /* Forcing 10mb or 100mb? */
1530 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1531 ctrl |= E1000_CTRL_SPD_100;
1532 *phy_ctrl |= MII_CR_SPEED_100;
1533 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1534 e_dbg("Forcing 100mb\n");
1535 } else {
1536 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1537 *phy_ctrl |= MII_CR_SPEED_10;
1538 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1539 e_dbg("Forcing 10mb\n");
1540 }
1541
1542 hw->mac.ops.config_collision_dist(hw);
1543
1544 ew32(CTRL, ctrl);
1545 }
1546
1547 /**
1548 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1549 * @hw: pointer to the HW structure
1550 * @active: boolean used to enable/disable lplu
1551 *
1552 * Success returns 0, Failure returns 1
1553 *
1554 * The low power link up (lplu) state is set to the power management level D3
1555 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1556 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1557 * is used during Dx states where the power conservation is most important.
1558 * During driver activity, SmartSpeed should be enabled so performance is
1559 * maintained.
1560 **/
1561 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1562 {
1563 struct e1000_phy_info *phy = &hw->phy;
1564 s32 ret_val;
1565 u16 data;
1566
1567 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1568 if (ret_val)
1569 return ret_val;
1570
1571 if (!active) {
1572 data &= ~IGP02E1000_PM_D3_LPLU;
1573 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1574 if (ret_val)
1575 return ret_val;
1576 /*
1577 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1578 * during Dx states where the power conservation is most
1579 * important. During driver activity we should enable
1580 * SmartSpeed, so performance is maintained.
1581 */
1582 if (phy->smart_speed == e1000_smart_speed_on) {
1583 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1584 &data);
1585 if (ret_val)
1586 return ret_val;
1587
1588 data |= IGP01E1000_PSCFR_SMART_SPEED;
1589 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1590 data);
1591 if (ret_val)
1592 return ret_val;
1593 } else if (phy->smart_speed == e1000_smart_speed_off) {
1594 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1595 &data);
1596 if (ret_val)
1597 return ret_val;
1598
1599 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1600 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1601 data);
1602 if (ret_val)
1603 return ret_val;
1604 }
1605 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1606 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1607 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1608 data |= IGP02E1000_PM_D3_LPLU;
1609 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1610 if (ret_val)
1611 return ret_val;
1612
1613 /* When LPLU is enabled, we should disable SmartSpeed */
1614 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1615 if (ret_val)
1616 return ret_val;
1617
1618 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1619 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1620 }
1621
1622 return ret_val;
1623 }
1624
1625 /**
1626 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1627 * @hw: pointer to the HW structure
1628 *
1629 * Success returns 0, Failure returns 1
1630 *
1631 * A downshift is detected by querying the PHY link health.
1632 **/
1633 s32 e1000e_check_downshift(struct e1000_hw *hw)
1634 {
1635 struct e1000_phy_info *phy = &hw->phy;
1636 s32 ret_val;
1637 u16 phy_data, offset, mask;
1638
1639 switch (phy->type) {
1640 case e1000_phy_m88:
1641 case e1000_phy_gg82563:
1642 case e1000_phy_bm:
1643 case e1000_phy_82578:
1644 offset = M88E1000_PHY_SPEC_STATUS;
1645 mask = M88E1000_PSSR_DOWNSHIFT;
1646 break;
1647 case e1000_phy_igp_2:
1648 case e1000_phy_igp_3:
1649 offset = IGP01E1000_PHY_LINK_HEALTH;
1650 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1651 break;
1652 default:
1653 /* speed downshift not supported */
1654 phy->speed_downgraded = false;
1655 return 0;
1656 }
1657
1658 ret_val = e1e_rphy(hw, offset, &phy_data);
1659
1660 if (!ret_val)
1661 phy->speed_downgraded = !!(phy_data & mask);
1662
1663 return ret_val;
1664 }
1665
1666 /**
1667 * e1000_check_polarity_m88 - Checks the polarity.
1668 * @hw: pointer to the HW structure
1669 *
1670 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1671 *
1672 * Polarity is determined based on the PHY specific status register.
1673 **/
1674 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1675 {
1676 struct e1000_phy_info *phy = &hw->phy;
1677 s32 ret_val;
1678 u16 data;
1679
1680 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1681
1682 if (!ret_val)
1683 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1684 ? e1000_rev_polarity_reversed
1685 : e1000_rev_polarity_normal;
1686
1687 return ret_val;
1688 }
1689
1690 /**
1691 * e1000_check_polarity_igp - Checks the polarity.
1692 * @hw: pointer to the HW structure
1693 *
1694 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1695 *
1696 * Polarity is determined based on the PHY port status register, and the
1697 * current speed (since there is no polarity at 100Mbps).
1698 **/
1699 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1700 {
1701 struct e1000_phy_info *phy = &hw->phy;
1702 s32 ret_val;
1703 u16 data, offset, mask;
1704
1705 /*
1706 * Polarity is determined based on the speed of
1707 * our connection.
1708 */
1709 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1710 if (ret_val)
1711 return ret_val;
1712
1713 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1714 IGP01E1000_PSSR_SPEED_1000MBPS) {
1715 offset = IGP01E1000_PHY_PCS_INIT_REG;
1716 mask = IGP01E1000_PHY_POLARITY_MASK;
1717 } else {
1718 /*
1719 * This really only applies to 10Mbps since
1720 * there is no polarity for 100Mbps (always 0).
1721 */
1722 offset = IGP01E1000_PHY_PORT_STATUS;
1723 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1724 }
1725
1726 ret_val = e1e_rphy(hw, offset, &data);
1727
1728 if (!ret_val)
1729 phy->cable_polarity = (data & mask)
1730 ? e1000_rev_polarity_reversed
1731 : e1000_rev_polarity_normal;
1732
1733 return ret_val;
1734 }
1735
1736 /**
1737 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1738 * @hw: pointer to the HW structure
1739 *
1740 * Polarity is determined on the polarity reversal feature being enabled.
1741 **/
1742 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1743 {
1744 struct e1000_phy_info *phy = &hw->phy;
1745 s32 ret_val;
1746 u16 phy_data, offset, mask;
1747
1748 /*
1749 * Polarity is determined based on the reversal feature being enabled.
1750 */
1751 if (phy->polarity_correction) {
1752 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1753 mask = IFE_PESC_POLARITY_REVERSED;
1754 } else {
1755 offset = IFE_PHY_SPECIAL_CONTROL;
1756 mask = IFE_PSC_FORCE_POLARITY;
1757 }
1758
1759 ret_val = e1e_rphy(hw, offset, &phy_data);
1760
1761 if (!ret_val)
1762 phy->cable_polarity = (phy_data & mask)
1763 ? e1000_rev_polarity_reversed
1764 : e1000_rev_polarity_normal;
1765
1766 return ret_val;
1767 }
1768
1769 /**
1770 * e1000_wait_autoneg - Wait for auto-neg completion
1771 * @hw: pointer to the HW structure
1772 *
1773 * Waits for auto-negotiation to complete or for the auto-negotiation time
1774 * limit to expire, which ever happens first.
1775 **/
1776 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1777 {
1778 s32 ret_val = 0;
1779 u16 i, phy_status;
1780
1781 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1782 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1783 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1784 if (ret_val)
1785 break;
1786 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1787 if (ret_val)
1788 break;
1789 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1790 break;
1791 msleep(100);
1792 }
1793
1794 /*
1795 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1796 * has completed.
1797 */
1798 return ret_val;
1799 }
1800
1801 /**
1802 * e1000e_phy_has_link_generic - Polls PHY for link
1803 * @hw: pointer to the HW structure
1804 * @iterations: number of times to poll for link
1805 * @usec_interval: delay between polling attempts
1806 * @success: pointer to whether polling was successful or not
1807 *
1808 * Polls the PHY status register for link, 'iterations' number of times.
1809 **/
1810 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1811 u32 usec_interval, bool *success)
1812 {
1813 s32 ret_val = 0;
1814 u16 i, phy_status;
1815
1816 for (i = 0; i < iterations; i++) {
1817 /*
1818 * Some PHYs require the PHY_STATUS register to be read
1819 * twice due to the link bit being sticky. No harm doing
1820 * it across the board.
1821 */
1822 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1823 if (ret_val)
1824 /*
1825 * If the first read fails, another entity may have
1826 * ownership of the resources, wait and try again to
1827 * see if they have relinquished the resources yet.
1828 */
1829 udelay(usec_interval);
1830 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1831 if (ret_val)
1832 break;
1833 if (phy_status & MII_SR_LINK_STATUS)
1834 break;
1835 if (usec_interval >= 1000)
1836 mdelay(usec_interval/1000);
1837 else
1838 udelay(usec_interval);
1839 }
1840
1841 *success = (i < iterations);
1842
1843 return ret_val;
1844 }
1845
1846 /**
1847 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1848 * @hw: pointer to the HW structure
1849 *
1850 * Reads the PHY specific status register to retrieve the cable length
1851 * information. The cable length is determined by averaging the minimum and
1852 * maximum values to get the "average" cable length. The m88 PHY has four
1853 * possible cable length values, which are:
1854 * Register Value Cable Length
1855 * 0 < 50 meters
1856 * 1 50 - 80 meters
1857 * 2 80 - 110 meters
1858 * 3 110 - 140 meters
1859 * 4 > 140 meters
1860 **/
1861 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1862 {
1863 struct e1000_phy_info *phy = &hw->phy;
1864 s32 ret_val;
1865 u16 phy_data, index;
1866
1867 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1868 if (ret_val)
1869 return ret_val;
1870
1871 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1872 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1873
1874 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1875 return -E1000_ERR_PHY;
1876
1877 phy->min_cable_length = e1000_m88_cable_length_table[index];
1878 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1879
1880 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1881
1882 return 0;
1883 }
1884
1885 /**
1886 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1887 * @hw: pointer to the HW structure
1888 *
1889 * The automatic gain control (agc) normalizes the amplitude of the
1890 * received signal, adjusting for the attenuation produced by the
1891 * cable. By reading the AGC registers, which represent the
1892 * combination of coarse and fine gain value, the value can be put
1893 * into a lookup table to obtain the approximate cable length
1894 * for each channel.
1895 **/
1896 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1897 {
1898 struct e1000_phy_info *phy = &hw->phy;
1899 s32 ret_val;
1900 u16 phy_data, i, agc_value = 0;
1901 u16 cur_agc_index, max_agc_index = 0;
1902 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1903 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1904 IGP02E1000_PHY_AGC_A,
1905 IGP02E1000_PHY_AGC_B,
1906 IGP02E1000_PHY_AGC_C,
1907 IGP02E1000_PHY_AGC_D
1908 };
1909
1910 /* Read the AGC registers for all channels */
1911 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1912 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1913 if (ret_val)
1914 return ret_val;
1915
1916 /*
1917 * Getting bits 15:9, which represent the combination of
1918 * coarse and fine gain values. The result is a number
1919 * that can be put into the lookup table to obtain the
1920 * approximate cable length.
1921 */
1922 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1923 IGP02E1000_AGC_LENGTH_MASK;
1924
1925 /* Array index bound check. */
1926 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1927 (cur_agc_index == 0))
1928 return -E1000_ERR_PHY;
1929
1930 /* Remove min & max AGC values from calculation. */
1931 if (e1000_igp_2_cable_length_table[min_agc_index] >
1932 e1000_igp_2_cable_length_table[cur_agc_index])
1933 min_agc_index = cur_agc_index;
1934 if (e1000_igp_2_cable_length_table[max_agc_index] <
1935 e1000_igp_2_cable_length_table[cur_agc_index])
1936 max_agc_index = cur_agc_index;
1937
1938 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1939 }
1940
1941 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1942 e1000_igp_2_cable_length_table[max_agc_index]);
1943 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1944
1945 /* Calculate cable length with the error range of +/- 10 meters. */
1946 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1947 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1948 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1949
1950 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1951
1952 return 0;
1953 }
1954
1955 /**
1956 * e1000e_get_phy_info_m88 - Retrieve PHY information
1957 * @hw: pointer to the HW structure
1958 *
1959 * Valid for only copper links. Read the PHY status register (sticky read)
1960 * to verify that link is up. Read the PHY special control register to
1961 * determine the polarity and 10base-T extended distance. Read the PHY
1962 * special status register to determine MDI/MDIx and current speed. If
1963 * speed is 1000, then determine cable length, local and remote receiver.
1964 **/
1965 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1966 {
1967 struct e1000_phy_info *phy = &hw->phy;
1968 s32 ret_val;
1969 u16 phy_data;
1970 bool link;
1971
1972 if (phy->media_type != e1000_media_type_copper) {
1973 e_dbg("Phy info is only valid for copper media\n");
1974 return -E1000_ERR_CONFIG;
1975 }
1976
1977 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1978 if (ret_val)
1979 return ret_val;
1980
1981 if (!link) {
1982 e_dbg("Phy info is only valid if link is up\n");
1983 return -E1000_ERR_CONFIG;
1984 }
1985
1986 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1987 if (ret_val)
1988 return ret_val;
1989
1990 phy->polarity_correction = !!(phy_data &
1991 M88E1000_PSCR_POLARITY_REVERSAL);
1992
1993 ret_val = e1000_check_polarity_m88(hw);
1994 if (ret_val)
1995 return ret_val;
1996
1997 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1998 if (ret_val)
1999 return ret_val;
2000
2001 phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
2002
2003 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
2004 ret_val = e1000_get_cable_length(hw);
2005 if (ret_val)
2006 return ret_val;
2007
2008 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
2009 if (ret_val)
2010 return ret_val;
2011
2012 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
2013 ? e1000_1000t_rx_status_ok
2014 : e1000_1000t_rx_status_not_ok;
2015
2016 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
2017 ? e1000_1000t_rx_status_ok
2018 : e1000_1000t_rx_status_not_ok;
2019 } else {
2020 /* Set values to "undefined" */
2021 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2022 phy->local_rx = e1000_1000t_rx_status_undefined;
2023 phy->remote_rx = e1000_1000t_rx_status_undefined;
2024 }
2025
2026 return ret_val;
2027 }
2028
2029 /**
2030 * e1000e_get_phy_info_igp - Retrieve igp PHY information
2031 * @hw: pointer to the HW structure
2032 *
2033 * Read PHY status to determine if link is up. If link is up, then
2034 * set/determine 10base-T extended distance and polarity correction. Read
2035 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2036 * determine on the cable length, local and remote receiver.
2037 **/
2038 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2039 {
2040 struct e1000_phy_info *phy = &hw->phy;
2041 s32 ret_val;
2042 u16 data;
2043 bool link;
2044
2045 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2046 if (ret_val)
2047 return ret_val;
2048
2049 if (!link) {
2050 e_dbg("Phy info is only valid if link is up\n");
2051 return -E1000_ERR_CONFIG;
2052 }
2053
2054 phy->polarity_correction = true;
2055
2056 ret_val = e1000_check_polarity_igp(hw);
2057 if (ret_val)
2058 return ret_val;
2059
2060 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2061 if (ret_val)
2062 return ret_val;
2063
2064 phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2065
2066 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2067 IGP01E1000_PSSR_SPEED_1000MBPS) {
2068 ret_val = e1000_get_cable_length(hw);
2069 if (ret_val)
2070 return ret_val;
2071
2072 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2073 if (ret_val)
2074 return ret_val;
2075
2076 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2077 ? e1000_1000t_rx_status_ok
2078 : e1000_1000t_rx_status_not_ok;
2079
2080 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2081 ? e1000_1000t_rx_status_ok
2082 : e1000_1000t_rx_status_not_ok;
2083 } else {
2084 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2085 phy->local_rx = e1000_1000t_rx_status_undefined;
2086 phy->remote_rx = e1000_1000t_rx_status_undefined;
2087 }
2088
2089 return ret_val;
2090 }
2091
2092 /**
2093 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2094 * @hw: pointer to the HW structure
2095 *
2096 * Populates "phy" structure with various feature states.
2097 **/
2098 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2099 {
2100 struct e1000_phy_info *phy = &hw->phy;
2101 s32 ret_val;
2102 u16 data;
2103 bool link;
2104
2105 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2106 if (ret_val)
2107 return ret_val;
2108
2109 if (!link) {
2110 e_dbg("Phy info is only valid if link is up\n");
2111 return -E1000_ERR_CONFIG;
2112 }
2113
2114 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2115 if (ret_val)
2116 return ret_val;
2117 phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2118
2119 if (phy->polarity_correction) {
2120 ret_val = e1000_check_polarity_ife(hw);
2121 if (ret_val)
2122 return ret_val;
2123 } else {
2124 /* Polarity is forced */
2125 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2126 ? e1000_rev_polarity_reversed
2127 : e1000_rev_polarity_normal;
2128 }
2129
2130 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2131 if (ret_val)
2132 return ret_val;
2133
2134 phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2135
2136 /* The following parameters are undefined for 10/100 operation. */
2137 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2138 phy->local_rx = e1000_1000t_rx_status_undefined;
2139 phy->remote_rx = e1000_1000t_rx_status_undefined;
2140
2141 return 0;
2142 }
2143
2144 /**
2145 * e1000e_phy_sw_reset - PHY software reset
2146 * @hw: pointer to the HW structure
2147 *
2148 * Does a software reset of the PHY by reading the PHY control register and
2149 * setting/write the control register reset bit to the PHY.
2150 **/
2151 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2152 {
2153 s32 ret_val;
2154 u16 phy_ctrl;
2155
2156 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2157 if (ret_val)
2158 return ret_val;
2159
2160 phy_ctrl |= MII_CR_RESET;
2161 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2162 if (ret_val)
2163 return ret_val;
2164
2165 udelay(1);
2166
2167 return ret_val;
2168 }
2169
2170 /**
2171 * e1000e_phy_hw_reset_generic - PHY hardware reset
2172 * @hw: pointer to the HW structure
2173 *
2174 * Verify the reset block is not blocking us from resetting. Acquire
2175 * semaphore (if necessary) and read/set/write the device control reset
2176 * bit in the PHY. Wait the appropriate delay time for the device to
2177 * reset and release the semaphore (if necessary).
2178 **/
2179 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2180 {
2181 struct e1000_phy_info *phy = &hw->phy;
2182 s32 ret_val;
2183 u32 ctrl;
2184
2185 if (phy->ops.check_reset_block) {
2186 ret_val = phy->ops.check_reset_block(hw);
2187 if (ret_val)
2188 return 0;
2189 }
2190
2191 ret_val = phy->ops.acquire(hw);
2192 if (ret_val)
2193 return ret_val;
2194
2195 ctrl = er32(CTRL);
2196 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2197 e1e_flush();
2198
2199 udelay(phy->reset_delay_us);
2200
2201 ew32(CTRL, ctrl);
2202 e1e_flush();
2203
2204 udelay(150);
2205
2206 phy->ops.release(hw);
2207
2208 return e1000_get_phy_cfg_done(hw);
2209 }
2210
2211 /**
2212 * e1000e_get_cfg_done - Generic configuration done
2213 * @hw: pointer to the HW structure
2214 *
2215 * Generic function to wait 10 milli-seconds for configuration to complete
2216 * and return success.
2217 **/
2218 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2219 {
2220 mdelay(10);
2221
2222 return 0;
2223 }
2224
2225 /**
2226 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2227 * @hw: pointer to the HW structure
2228 *
2229 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2230 **/
2231 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2232 {
2233 e_dbg("Running IGP 3 PHY init script\n");
2234
2235 /* PHY init IGP 3 */
2236 /* Enable rise/fall, 10-mode work in class-A */
2237 e1e_wphy(hw, 0x2F5B, 0x9018);
2238 /* Remove all caps from Replica path filter */
2239 e1e_wphy(hw, 0x2F52, 0x0000);
2240 /* Bias trimming for ADC, AFE and Driver (Default) */
2241 e1e_wphy(hw, 0x2FB1, 0x8B24);
2242 /* Increase Hybrid poly bias */
2243 e1e_wphy(hw, 0x2FB2, 0xF8F0);
2244 /* Add 4% to Tx amplitude in Gig mode */
2245 e1e_wphy(hw, 0x2010, 0x10B0);
2246 /* Disable trimming (TTT) */
2247 e1e_wphy(hw, 0x2011, 0x0000);
2248 /* Poly DC correction to 94.6% + 2% for all channels */
2249 e1e_wphy(hw, 0x20DD, 0x249A);
2250 /* ABS DC correction to 95.9% */
2251 e1e_wphy(hw, 0x20DE, 0x00D3);
2252 /* BG temp curve trim */
2253 e1e_wphy(hw, 0x28B4, 0x04CE);
2254 /* Increasing ADC OPAMP stage 1 currents to max */
2255 e1e_wphy(hw, 0x2F70, 0x29E4);
2256 /* Force 1000 ( required for enabling PHY regs configuration) */
2257 e1e_wphy(hw, 0x0000, 0x0140);
2258 /* Set upd_freq to 6 */
2259 e1e_wphy(hw, 0x1F30, 0x1606);
2260 /* Disable NPDFE */
2261 e1e_wphy(hw, 0x1F31, 0xB814);
2262 /* Disable adaptive fixed FFE (Default) */
2263 e1e_wphy(hw, 0x1F35, 0x002A);
2264 /* Enable FFE hysteresis */
2265 e1e_wphy(hw, 0x1F3E, 0x0067);
2266 /* Fixed FFE for short cable lengths */
2267 e1e_wphy(hw, 0x1F54, 0x0065);
2268 /* Fixed FFE for medium cable lengths */
2269 e1e_wphy(hw, 0x1F55, 0x002A);
2270 /* Fixed FFE for long cable lengths */
2271 e1e_wphy(hw, 0x1F56, 0x002A);
2272 /* Enable Adaptive Clip Threshold */
2273 e1e_wphy(hw, 0x1F72, 0x3FB0);
2274 /* AHT reset limit to 1 */
2275 e1e_wphy(hw, 0x1F76, 0xC0FF);
2276 /* Set AHT master delay to 127 msec */
2277 e1e_wphy(hw, 0x1F77, 0x1DEC);
2278 /* Set scan bits for AHT */
2279 e1e_wphy(hw, 0x1F78, 0xF9EF);
2280 /* Set AHT Preset bits */
2281 e1e_wphy(hw, 0x1F79, 0x0210);
2282 /* Change integ_factor of channel A to 3 */
2283 e1e_wphy(hw, 0x1895, 0x0003);
2284 /* Change prop_factor of channels BCD to 8 */
2285 e1e_wphy(hw, 0x1796, 0x0008);
2286 /* Change cg_icount + enable integbp for channels BCD */
2287 e1e_wphy(hw, 0x1798, 0xD008);
2288 /*
2289 * Change cg_icount + enable integbp + change prop_factor_master
2290 * to 8 for channel A
2291 */
2292 e1e_wphy(hw, 0x1898, 0xD918);
2293 /* Disable AHT in Slave mode on channel A */
2294 e1e_wphy(hw, 0x187A, 0x0800);
2295 /*
2296 * Enable LPLU and disable AN to 1000 in non-D0a states,
2297 * Enable SPD+B2B
2298 */
2299 e1e_wphy(hw, 0x0019, 0x008D);
2300 /* Enable restart AN on an1000_dis change */
2301 e1e_wphy(hw, 0x001B, 0x2080);
2302 /* Enable wh_fifo read clock in 10/100 modes */
2303 e1e_wphy(hw, 0x0014, 0x0045);
2304 /* Restart AN, Speed selection is 1000 */
2305 e1e_wphy(hw, 0x0000, 0x1340);
2306
2307 return 0;
2308 }
2309
2310 /* Internal function pointers */
2311
2312 /**
2313 * e1000_get_phy_cfg_done - Generic PHY configuration done
2314 * @hw: pointer to the HW structure
2315 *
2316 * Return success if silicon family did not implement a family specific
2317 * get_cfg_done function.
2318 **/
2319 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2320 {
2321 if (hw->phy.ops.get_cfg_done)
2322 return hw->phy.ops.get_cfg_done(hw);
2323
2324 return 0;
2325 }
2326
2327 /**
2328 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2329 * @hw: pointer to the HW structure
2330 *
2331 * When the silicon family has not implemented a forced speed/duplex
2332 * function for the PHY, simply return 0.
2333 **/
2334 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2335 {
2336 if (hw->phy.ops.force_speed_duplex)
2337 return hw->phy.ops.force_speed_duplex(hw);
2338
2339 return 0;
2340 }
2341
2342 /**
2343 * e1000e_get_phy_type_from_id - Get PHY type from id
2344 * @phy_id: phy_id read from the phy
2345 *
2346 * Returns the phy type from the id.
2347 **/
2348 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2349 {
2350 enum e1000_phy_type phy_type = e1000_phy_unknown;
2351
2352 switch (phy_id) {
2353 case M88E1000_I_PHY_ID:
2354 case M88E1000_E_PHY_ID:
2355 case M88E1111_I_PHY_ID:
2356 case M88E1011_I_PHY_ID:
2357 phy_type = e1000_phy_m88;
2358 break;
2359 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2360 phy_type = e1000_phy_igp_2;
2361 break;
2362 case GG82563_E_PHY_ID:
2363 phy_type = e1000_phy_gg82563;
2364 break;
2365 case IGP03E1000_E_PHY_ID:
2366 phy_type = e1000_phy_igp_3;
2367 break;
2368 case IFE_E_PHY_ID:
2369 case IFE_PLUS_E_PHY_ID:
2370 case IFE_C_E_PHY_ID:
2371 phy_type = e1000_phy_ife;
2372 break;
2373 case BME1000_E_PHY_ID:
2374 case BME1000_E_PHY_ID_R2:
2375 phy_type = e1000_phy_bm;
2376 break;
2377 case I82578_E_PHY_ID:
2378 phy_type = e1000_phy_82578;
2379 break;
2380 case I82577_E_PHY_ID:
2381 phy_type = e1000_phy_82577;
2382 break;
2383 case I82579_E_PHY_ID:
2384 phy_type = e1000_phy_82579;
2385 break;
2386 case I217_E_PHY_ID:
2387 phy_type = e1000_phy_i217;
2388 break;
2389 default:
2390 phy_type = e1000_phy_unknown;
2391 break;
2392 }
2393 return phy_type;
2394 }
2395
2396 /**
2397 * e1000e_determine_phy_address - Determines PHY address.
2398 * @hw: pointer to the HW structure
2399 *
2400 * This uses a trial and error method to loop through possible PHY
2401 * addresses. It tests each by reading the PHY ID registers and
2402 * checking for a match.
2403 **/
2404 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2405 {
2406 u32 phy_addr = 0;
2407 u32 i;
2408 enum e1000_phy_type phy_type = e1000_phy_unknown;
2409
2410 hw->phy.id = phy_type;
2411
2412 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2413 hw->phy.addr = phy_addr;
2414 i = 0;
2415
2416 do {
2417 e1000e_get_phy_id(hw);
2418 phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2419
2420 /*
2421 * If phy_type is valid, break - we found our
2422 * PHY address
2423 */
2424 if (phy_type != e1000_phy_unknown)
2425 return 0;
2426
2427 usleep_range(1000, 2000);
2428 i++;
2429 } while (i < 10);
2430 }
2431
2432 return -E1000_ERR_PHY_TYPE;
2433 }
2434
2435 /**
2436 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2437 * @page: page to access
2438 *
2439 * Returns the phy address for the page requested.
2440 **/
2441 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2442 {
2443 u32 phy_addr = 2;
2444
2445 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2446 phy_addr = 1;
2447
2448 return phy_addr;
2449 }
2450
2451 /**
2452 * e1000e_write_phy_reg_bm - Write BM PHY register
2453 * @hw: pointer to the HW structure
2454 * @offset: register offset to write to
2455 * @data: data to write at register offset
2456 *
2457 * Acquires semaphore, if necessary, then writes the data to PHY register
2458 * at the offset. Release any acquired semaphores before exiting.
2459 **/
2460 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2461 {
2462 s32 ret_val;
2463 u32 page = offset >> IGP_PAGE_SHIFT;
2464
2465 ret_val = hw->phy.ops.acquire(hw);
2466 if (ret_val)
2467 return ret_val;
2468
2469 /* Page 800 works differently than the rest so it has its own func */
2470 if (page == BM_WUC_PAGE) {
2471 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2472 false, false);
2473 goto release;
2474 }
2475
2476 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2477
2478 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2479 u32 page_shift, page_select;
2480
2481 /*
2482 * Page select is register 31 for phy address 1 and 22 for
2483 * phy address 2 and 3. Page select is shifted only for
2484 * phy address 1.
2485 */
2486 if (hw->phy.addr == 1) {
2487 page_shift = IGP_PAGE_SHIFT;
2488 page_select = IGP01E1000_PHY_PAGE_SELECT;
2489 } else {
2490 page_shift = 0;
2491 page_select = BM_PHY_PAGE_SELECT;
2492 }
2493
2494 /* Page is shifted left, PHY expects (page x 32) */
2495 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2496 (page << page_shift));
2497 if (ret_val)
2498 goto release;
2499 }
2500
2501 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2502 data);
2503
2504 release:
2505 hw->phy.ops.release(hw);
2506 return ret_val;
2507 }
2508
2509 /**
2510 * e1000e_read_phy_reg_bm - Read BM PHY register
2511 * @hw: pointer to the HW structure
2512 * @offset: register offset to be read
2513 * @data: pointer to the read data
2514 *
2515 * Acquires semaphore, if necessary, then reads the PHY register at offset
2516 * and storing the retrieved information in data. Release any acquired
2517 * semaphores before exiting.
2518 **/
2519 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2520 {
2521 s32 ret_val;
2522 u32 page = offset >> IGP_PAGE_SHIFT;
2523
2524 ret_val = hw->phy.ops.acquire(hw);
2525 if (ret_val)
2526 return ret_val;
2527
2528 /* Page 800 works differently than the rest so it has its own func */
2529 if (page == BM_WUC_PAGE) {
2530 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2531 true, false);
2532 goto release;
2533 }
2534
2535 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2536
2537 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2538 u32 page_shift, page_select;
2539
2540 /*
2541 * Page select is register 31 for phy address 1 and 22 for
2542 * phy address 2 and 3. Page select is shifted only for
2543 * phy address 1.
2544 */
2545 if (hw->phy.addr == 1) {
2546 page_shift = IGP_PAGE_SHIFT;
2547 page_select = IGP01E1000_PHY_PAGE_SELECT;
2548 } else {
2549 page_shift = 0;
2550 page_select = BM_PHY_PAGE_SELECT;
2551 }
2552
2553 /* Page is shifted left, PHY expects (page x 32) */
2554 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2555 (page << page_shift));
2556 if (ret_val)
2557 goto release;
2558 }
2559
2560 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2561 data);
2562 release:
2563 hw->phy.ops.release(hw);
2564 return ret_val;
2565 }
2566
2567 /**
2568 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2569 * @hw: pointer to the HW structure
2570 * @offset: register offset to be read
2571 * @data: pointer to the read data
2572 *
2573 * Acquires semaphore, if necessary, then reads the PHY register at offset
2574 * and storing the retrieved information in data. Release any acquired
2575 * semaphores before exiting.
2576 **/
2577 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2578 {
2579 s32 ret_val;
2580 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2581
2582 ret_val = hw->phy.ops.acquire(hw);
2583 if (ret_val)
2584 return ret_val;
2585
2586 /* Page 800 works differently than the rest so it has its own func */
2587 if (page == BM_WUC_PAGE) {
2588 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2589 true, false);
2590 goto release;
2591 }
2592
2593 hw->phy.addr = 1;
2594
2595 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2596
2597 /* Page is shifted left, PHY expects (page x 32) */
2598 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2599 page);
2600
2601 if (ret_val)
2602 goto release;
2603 }
2604
2605 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2606 data);
2607 release:
2608 hw->phy.ops.release(hw);
2609 return ret_val;
2610 }
2611
2612 /**
2613 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2614 * @hw: pointer to the HW structure
2615 * @offset: register offset to write to
2616 * @data: data to write at register offset
2617 *
2618 * Acquires semaphore, if necessary, then writes the data to PHY register
2619 * at the offset. Release any acquired semaphores before exiting.
2620 **/
2621 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2622 {
2623 s32 ret_val;
2624 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2625
2626 ret_val = hw->phy.ops.acquire(hw);
2627 if (ret_val)
2628 return ret_val;
2629
2630 /* Page 800 works differently than the rest so it has its own func */
2631 if (page == BM_WUC_PAGE) {
2632 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2633 false, false);
2634 goto release;
2635 }
2636
2637 hw->phy.addr = 1;
2638
2639 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2640 /* Page is shifted left, PHY expects (page x 32) */
2641 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2642 page);
2643
2644 if (ret_val)
2645 goto release;
2646 }
2647
2648 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2649 data);
2650
2651 release:
2652 hw->phy.ops.release(hw);
2653 return ret_val;
2654 }
2655
2656 /**
2657 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2658 * @hw: pointer to the HW structure
2659 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2660 *
2661 * Assumes semaphore already acquired and phy_reg points to a valid memory
2662 * address to store contents of the BM_WUC_ENABLE_REG register.
2663 **/
2664 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2665 {
2666 s32 ret_val;
2667 u16 temp;
2668
2669 /* All page select, port ctrl and wakeup registers use phy address 1 */
2670 hw->phy.addr = 1;
2671
2672 /* Select Port Control Registers page */
2673 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2674 if (ret_val) {
2675 e_dbg("Could not set Port Control page\n");
2676 return ret_val;
2677 }
2678
2679 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2680 if (ret_val) {
2681 e_dbg("Could not read PHY register %d.%d\n",
2682 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2683 return ret_val;
2684 }
2685
2686 /*
2687 * Enable both PHY wakeup mode and Wakeup register page writes.
2688 * Prevent a power state change by disabling ME and Host PHY wakeup.
2689 */
2690 temp = *phy_reg;
2691 temp |= BM_WUC_ENABLE_BIT;
2692 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2693
2694 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2695 if (ret_val) {
2696 e_dbg("Could not write PHY register %d.%d\n",
2697 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2698 return ret_val;
2699 }
2700
2701 /*
2702 * Select Host Wakeup Registers page - caller now able to write
2703 * registers on the Wakeup registers page
2704 */
2705 return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2706 }
2707
2708 /**
2709 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2710 * @hw: pointer to the HW structure
2711 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2712 *
2713 * Restore BM_WUC_ENABLE_REG to its original value.
2714 *
2715 * Assumes semaphore already acquired and *phy_reg is the contents of the
2716 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2717 * caller.
2718 **/
2719 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2720 {
2721 s32 ret_val = 0;
2722
2723 /* Select Port Control Registers page */
2724 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2725 if (ret_val) {
2726 e_dbg("Could not set Port Control page\n");
2727 return ret_val;
2728 }
2729
2730 /* Restore 769.17 to its original value */
2731 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2732 if (ret_val)
2733 e_dbg("Could not restore PHY register %d.%d\n",
2734 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2735
2736 return ret_val;
2737 }
2738
2739 /**
2740 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2741 * @hw: pointer to the HW structure
2742 * @offset: register offset to be read or written
2743 * @data: pointer to the data to read or write
2744 * @read: determines if operation is read or write
2745 * @page_set: BM_WUC_PAGE already set and access enabled
2746 *
2747 * Read the PHY register at offset and store the retrieved information in
2748 * data, or write data to PHY register at offset. Note the procedure to
2749 * access the PHY wakeup registers is different than reading the other PHY
2750 * registers. It works as such:
2751 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2752 * 2) Set page to 800 for host (801 if we were manageability)
2753 * 3) Write the address using the address opcode (0x11)
2754 * 4) Read or write the data using the data opcode (0x12)
2755 * 5) Restore 769.17.2 to its original value
2756 *
2757 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2758 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2759 *
2760 * Assumes semaphore is already acquired. When page_set==true, assumes
2761 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2762 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2763 **/
2764 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2765 u16 *data, bool read, bool page_set)
2766 {
2767 s32 ret_val;
2768 u16 reg = BM_PHY_REG_NUM(offset);
2769 u16 page = BM_PHY_REG_PAGE(offset);
2770 u16 phy_reg = 0;
2771
2772 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2773 if ((hw->mac.type == e1000_pchlan) &&
2774 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2775 e_dbg("Attempting to access page %d while gig enabled.\n",
2776 page);
2777
2778 if (!page_set) {
2779 /* Enable access to PHY wakeup registers */
2780 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2781 if (ret_val) {
2782 e_dbg("Could not enable PHY wakeup reg access\n");
2783 return ret_val;
2784 }
2785 }
2786
2787 e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2788
2789 /* Write the Wakeup register page offset value using opcode 0x11 */
2790 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2791 if (ret_val) {
2792 e_dbg("Could not write address opcode to page %d\n", page);
2793 return ret_val;
2794 }
2795
2796 if (read) {
2797 /* Read the Wakeup register page value using opcode 0x12 */
2798 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2799 data);
2800 } else {
2801 /* Write the Wakeup register page value using opcode 0x12 */
2802 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2803 *data);
2804 }
2805
2806 if (ret_val) {
2807 e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2808 return ret_val;
2809 }
2810
2811 if (!page_set)
2812 ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2813
2814 return ret_val;
2815 }
2816
2817 /**
2818 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2819 * @hw: pointer to the HW structure
2820 *
2821 * In the case of a PHY power down to save power, or to turn off link during a
2822 * driver unload, or wake on lan is not enabled, restore the link to previous
2823 * settings.
2824 **/
2825 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2826 {
2827 u16 mii_reg = 0;
2828
2829 /* The PHY will retain its settings across a power down/up cycle */
2830 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2831 mii_reg &= ~MII_CR_POWER_DOWN;
2832 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2833 }
2834
2835 /**
2836 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2837 * @hw: pointer to the HW structure
2838 *
2839 * In the case of a PHY power down to save power, or to turn off link during a
2840 * driver unload, or wake on lan is not enabled, restore the link to previous
2841 * settings.
2842 **/
2843 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2844 {
2845 u16 mii_reg = 0;
2846
2847 /* The PHY will retain its settings across a power down/up cycle */
2848 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2849 mii_reg |= MII_CR_POWER_DOWN;
2850 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2851 usleep_range(1000, 2000);
2852 }
2853
2854 /**
2855 * e1000e_commit_phy - Soft PHY reset
2856 * @hw: pointer to the HW structure
2857 *
2858 * Performs a soft PHY reset on those that apply. This is a function pointer
2859 * entry point called by drivers.
2860 **/
2861 s32 e1000e_commit_phy(struct e1000_hw *hw)
2862 {
2863 if (hw->phy.ops.commit)
2864 return hw->phy.ops.commit(hw);
2865
2866 return 0;
2867 }
2868
2869 /**
2870 * e1000_set_d0_lplu_state - Sets low power link up state for D0
2871 * @hw: pointer to the HW structure
2872 * @active: boolean used to enable/disable lplu
2873 *
2874 * Success returns 0, Failure returns 1
2875 *
2876 * The low power link up (lplu) state is set to the power management level D0
2877 * and SmartSpeed is disabled when active is true, else clear lplu for D0
2878 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
2879 * is used during Dx states where the power conservation is most important.
2880 * During driver activity, SmartSpeed should be enabled so performance is
2881 * maintained. This is a function pointer entry point called by drivers.
2882 **/
2883 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2884 {
2885 if (hw->phy.ops.set_d0_lplu_state)
2886 return hw->phy.ops.set_d0_lplu_state(hw, active);
2887
2888 return 0;
2889 }
2890
2891 /**
2892 * __e1000_read_phy_reg_hv - Read HV PHY register
2893 * @hw: pointer to the HW structure
2894 * @offset: register offset to be read
2895 * @data: pointer to the read data
2896 * @locked: semaphore has already been acquired or not
2897 *
2898 * Acquires semaphore, if necessary, then reads the PHY register at offset
2899 * and stores the retrieved information in data. Release any acquired
2900 * semaphore before exiting.
2901 **/
2902 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2903 bool locked, bool page_set)
2904 {
2905 s32 ret_val;
2906 u16 page = BM_PHY_REG_PAGE(offset);
2907 u16 reg = BM_PHY_REG_NUM(offset);
2908 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2909
2910 if (!locked) {
2911 ret_val = hw->phy.ops.acquire(hw);
2912 if (ret_val)
2913 return ret_val;
2914 }
2915
2916 /* Page 800 works differently than the rest so it has its own func */
2917 if (page == BM_WUC_PAGE) {
2918 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2919 true, page_set);
2920 goto out;
2921 }
2922
2923 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2924 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2925 data, true);
2926 goto out;
2927 }
2928
2929 if (!page_set) {
2930 if (page == HV_INTC_FC_PAGE_START)
2931 page = 0;
2932
2933 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2934 /* Page is shifted left, PHY expects (page x 32) */
2935 ret_val = e1000_set_page_igp(hw,
2936 (page << IGP_PAGE_SHIFT));
2937
2938 hw->phy.addr = phy_addr;
2939
2940 if (ret_val)
2941 goto out;
2942 }
2943 }
2944
2945 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2946 page << IGP_PAGE_SHIFT, reg);
2947
2948 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2949 data);
2950 out:
2951 if (!locked)
2952 hw->phy.ops.release(hw);
2953
2954 return ret_val;
2955 }
2956
2957 /**
2958 * e1000_read_phy_reg_hv - Read HV PHY register
2959 * @hw: pointer to the HW structure
2960 * @offset: register offset to be read
2961 * @data: pointer to the read data
2962 *
2963 * Acquires semaphore then reads the PHY register at offset and stores
2964 * the retrieved information in data. Release the acquired semaphore
2965 * before exiting.
2966 **/
2967 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2968 {
2969 return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2970 }
2971
2972 /**
2973 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2974 * @hw: pointer to the HW structure
2975 * @offset: register offset to be read
2976 * @data: pointer to the read data
2977 *
2978 * Reads the PHY register at offset and stores the retrieved information
2979 * in data. Assumes semaphore already acquired.
2980 **/
2981 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2982 {
2983 return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2984 }
2985
2986 /**
2987 * e1000_read_phy_reg_page_hv - Read HV PHY register
2988 * @hw: pointer to the HW structure
2989 * @offset: register offset to write to
2990 * @data: data to write at register offset
2991 *
2992 * Reads the PHY register at offset and stores the retrieved information
2993 * in data. Assumes semaphore already acquired and page already set.
2994 **/
2995 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2996 {
2997 return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2998 }
2999
3000 /**
3001 * __e1000_write_phy_reg_hv - Write HV PHY register
3002 * @hw: pointer to the HW structure
3003 * @offset: register offset to write to
3004 * @data: data to write at register offset
3005 * @locked: semaphore has already been acquired or not
3006 *
3007 * Acquires semaphore, if necessary, then writes the data to PHY register
3008 * at the offset. Release any acquired semaphores before exiting.
3009 **/
3010 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
3011 bool locked, bool page_set)
3012 {
3013 s32 ret_val;
3014 u16 page = BM_PHY_REG_PAGE(offset);
3015 u16 reg = BM_PHY_REG_NUM(offset);
3016 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
3017
3018 if (!locked) {
3019 ret_val = hw->phy.ops.acquire(hw);
3020 if (ret_val)
3021 return ret_val;
3022 }
3023
3024 /* Page 800 works differently than the rest so it has its own func */
3025 if (page == BM_WUC_PAGE) {
3026 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
3027 false, page_set);
3028 goto out;
3029 }
3030
3031 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3032 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3033 &data, false);
3034 goto out;
3035 }
3036
3037 if (!page_set) {
3038 if (page == HV_INTC_FC_PAGE_START)
3039 page = 0;
3040
3041 /*
3042 * Workaround MDIO accesses being disabled after entering IEEE
3043 * Power Down (when bit 11 of the PHY Control register is set)
3044 */
3045 if ((hw->phy.type == e1000_phy_82578) &&
3046 (hw->phy.revision >= 1) &&
3047 (hw->phy.addr == 2) &&
3048 !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
3049 u16 data2 = 0x7EFF;
3050 ret_val = e1000_access_phy_debug_regs_hv(hw,
3051 (1 << 6) | 0x3,
3052 &data2, false);
3053 if (ret_val)
3054 goto out;
3055 }
3056
3057 if (reg > MAX_PHY_MULTI_PAGE_REG) {
3058 /* Page is shifted left, PHY expects (page x 32) */
3059 ret_val = e1000_set_page_igp(hw,
3060 (page << IGP_PAGE_SHIFT));
3061
3062 hw->phy.addr = phy_addr;
3063
3064 if (ret_val)
3065 goto out;
3066 }
3067 }
3068
3069 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3070 page << IGP_PAGE_SHIFT, reg);
3071
3072 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3073 data);
3074
3075 out:
3076 if (!locked)
3077 hw->phy.ops.release(hw);
3078
3079 return ret_val;
3080 }
3081
3082 /**
3083 * e1000_write_phy_reg_hv - Write HV PHY register
3084 * @hw: pointer to the HW structure
3085 * @offset: register offset to write to
3086 * @data: data to write at register offset
3087 *
3088 * Acquires semaphore then writes the data to PHY register at the offset.
3089 * Release the acquired semaphores before exiting.
3090 **/
3091 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3092 {
3093 return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
3094 }
3095
3096 /**
3097 * e1000_write_phy_reg_hv_locked - Write HV PHY register
3098 * @hw: pointer to the HW structure
3099 * @offset: register offset to write to
3100 * @data: data to write at register offset
3101 *
3102 * Writes the data to PHY register at the offset. Assumes semaphore
3103 * already acquired.
3104 **/
3105 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3106 {
3107 return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3108 }
3109
3110 /**
3111 * e1000_write_phy_reg_page_hv - Write HV PHY register
3112 * @hw: pointer to the HW structure
3113 * @offset: register offset to write to
3114 * @data: data to write at register offset
3115 *
3116 * Writes the data to PHY register at the offset. Assumes semaphore
3117 * already acquired and page already set.
3118 **/
3119 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3120 {
3121 return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3122 }
3123
3124 /**
3125 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3126 * @page: page to be accessed
3127 **/
3128 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3129 {
3130 u32 phy_addr = 2;
3131
3132 if (page >= HV_INTC_FC_PAGE_START)
3133 phy_addr = 1;
3134
3135 return phy_addr;
3136 }
3137
3138 /**
3139 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3140 * @hw: pointer to the HW structure
3141 * @offset: register offset to be read or written
3142 * @data: pointer to the data to be read or written
3143 * @read: determines if operation is read or write
3144 *
3145 * Reads the PHY register at offset and stores the retreived information
3146 * in data. Assumes semaphore already acquired. Note that the procedure
3147 * to access these regs uses the address port and data port to read/write.
3148 * These accesses done with PHY address 2 and without using pages.
3149 **/
3150 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3151 u16 *data, bool read)
3152 {
3153 s32 ret_val;
3154 u32 addr_reg = 0;
3155 u32 data_reg = 0;
3156
3157 /* This takes care of the difference with desktop vs mobile phy */
3158 addr_reg = (hw->phy.type == e1000_phy_82578) ?
3159 I82578_ADDR_REG : I82577_ADDR_REG;
3160 data_reg = addr_reg + 1;
3161
3162 /* All operations in this function are phy address 2 */
3163 hw->phy.addr = 2;
3164
3165 /* masking with 0x3F to remove the page from offset */
3166 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3167 if (ret_val) {
3168 e_dbg("Could not write the Address Offset port register\n");
3169 return ret_val;
3170 }
3171
3172 /* Read or write the data value next */
3173 if (read)
3174 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3175 else
3176 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3177
3178 if (ret_val)
3179 e_dbg("Could not access the Data port register\n");
3180
3181 return ret_val;
3182 }
3183
3184 /**
3185 * e1000_link_stall_workaround_hv - Si workaround
3186 * @hw: pointer to the HW structure
3187 *
3188 * This function works around a Si bug where the link partner can get
3189 * a link up indication before the PHY does. If small packets are sent
3190 * by the link partner they can be placed in the packet buffer without
3191 * being properly accounted for by the PHY and will stall preventing
3192 * further packets from being received. The workaround is to clear the
3193 * packet buffer after the PHY detects link up.
3194 **/
3195 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3196 {
3197 s32 ret_val = 0;
3198 u16 data;
3199
3200 if (hw->phy.type != e1000_phy_82578)
3201 return 0;
3202
3203 /* Do not apply workaround if in PHY loopback bit 14 set */
3204 e1e_rphy(hw, PHY_CONTROL, &data);
3205 if (data & PHY_CONTROL_LB)
3206 return 0;
3207
3208 /* check if link is up and at 1Gbps */
3209 ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3210 if (ret_val)
3211 return ret_val;
3212
3213 data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3214 BM_CS_STATUS_SPEED_MASK;
3215
3216 if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3217 BM_CS_STATUS_SPEED_1000))
3218 return 0;
3219
3220 msleep(200);
3221
3222 /* flush the packets in the fifo buffer */
3223 ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
3224 HV_MUX_DATA_CTRL_FORCE_SPEED);
3225 if (ret_val)
3226 return ret_val;
3227
3228 return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3229 }
3230
3231 /**
3232 * e1000_check_polarity_82577 - Checks the polarity.
3233 * @hw: pointer to the HW structure
3234 *
3235 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3236 *
3237 * Polarity is determined based on the PHY specific status register.
3238 **/
3239 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3240 {
3241 struct e1000_phy_info *phy = &hw->phy;
3242 s32 ret_val;
3243 u16 data;
3244
3245 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3246
3247 if (!ret_val)
3248 phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3249 ? e1000_rev_polarity_reversed
3250 : e1000_rev_polarity_normal;
3251
3252 return ret_val;
3253 }
3254
3255 /**
3256 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3257 * @hw: pointer to the HW structure
3258 *
3259 * Calls the PHY setup function to force speed and duplex.
3260 **/
3261 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3262 {
3263 struct e1000_phy_info *phy = &hw->phy;
3264 s32 ret_val;
3265 u16 phy_data;
3266 bool link;
3267
3268 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3269 if (ret_val)
3270 return ret_val;
3271
3272 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3273
3274 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3275 if (ret_val)
3276 return ret_val;
3277
3278 udelay(1);
3279
3280 if (phy->autoneg_wait_to_complete) {
3281 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3282
3283 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3284 100000, &link);
3285 if (ret_val)
3286 return ret_val;
3287
3288 if (!link)
3289 e_dbg("Link taking longer than expected.\n");
3290
3291 /* Try once more */
3292 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3293 100000, &link);
3294 }
3295
3296 return ret_val;
3297 }
3298
3299 /**
3300 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3301 * @hw: pointer to the HW structure
3302 *
3303 * Read PHY status to determine if link is up. If link is up, then
3304 * set/determine 10base-T extended distance and polarity correction. Read
3305 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3306 * determine on the cable length, local and remote receiver.
3307 **/
3308 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3309 {
3310 struct e1000_phy_info *phy = &hw->phy;
3311 s32 ret_val;
3312 u16 data;
3313 bool link;
3314
3315 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3316 if (ret_val)
3317 return ret_val;
3318
3319 if (!link) {
3320 e_dbg("Phy info is only valid if link is up\n");
3321 return -E1000_ERR_CONFIG;
3322 }
3323
3324 phy->polarity_correction = true;
3325
3326 ret_val = e1000_check_polarity_82577(hw);
3327 if (ret_val)
3328 return ret_val;
3329
3330 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3331 if (ret_val)
3332 return ret_val;
3333
3334 phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3335
3336 if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3337 I82577_PHY_STATUS2_SPEED_1000MBPS) {
3338 ret_val = hw->phy.ops.get_cable_length(hw);
3339 if (ret_val)
3340 return ret_val;
3341
3342 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3343 if (ret_val)
3344 return ret_val;
3345
3346 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3347 ? e1000_1000t_rx_status_ok
3348 : e1000_1000t_rx_status_not_ok;
3349
3350 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3351 ? e1000_1000t_rx_status_ok
3352 : e1000_1000t_rx_status_not_ok;
3353 } else {
3354 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3355 phy->local_rx = e1000_1000t_rx_status_undefined;
3356 phy->remote_rx = e1000_1000t_rx_status_undefined;
3357 }
3358
3359 return 0;
3360 }
3361
3362 /**
3363 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3364 * @hw: pointer to the HW structure
3365 *
3366 * Reads the diagnostic status register and verifies result is valid before
3367 * placing it in the phy_cable_length field.
3368 **/
3369 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3370 {
3371 struct e1000_phy_info *phy = &hw->phy;
3372 s32 ret_val;
3373 u16 phy_data, length;
3374
3375 ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3376 if (ret_val)
3377 return ret_val;
3378
3379 length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3380 I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3381
3382 if (length == E1000_CABLE_LENGTH_UNDEFINED)
3383 ret_val = -E1000_ERR_PHY;
3384
3385 phy->cable_length = length;
3386
3387 return 0;
3388 }
This page took 0.107466 seconds and 5 git commands to generate.