Merge tag 'batadv-next-for-davem-20160704' of git://git.open-mesh.org/linux-merge
[deliverable/linux.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
1 /* Intel(R) Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2016 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21 #include <linux/types.h>
22 #include <linux/module.h>
23 #include <net/ipv6.h>
24 #include <net/ip.h>
25 #include <net/tcp.h>
26 #include <linux/if_macvlan.h>
27 #include <linux/prefetch.h>
28
29 #include "fm10k.h"
30
31 #define DRV_VERSION "0.19.3-k"
32 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver"
33 const char fm10k_driver_version[] = DRV_VERSION;
34 char fm10k_driver_name[] = "fm10k";
35 static const char fm10k_driver_string[] = DRV_SUMMARY;
36 static const char fm10k_copyright[] =
37 "Copyright (c) 2013 - 2016 Intel Corporation.";
38
39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40 MODULE_DESCRIPTION(DRV_SUMMARY);
41 MODULE_LICENSE("GPL");
42 MODULE_VERSION(DRV_VERSION);
43
44 /* single workqueue for entire fm10k driver */
45 struct workqueue_struct *fm10k_workqueue;
46
47 /**
48 * fm10k_init_module - Driver Registration Routine
49 *
50 * fm10k_init_module is the first routine called when the driver is
51 * loaded. All it does is register with the PCI subsystem.
52 **/
53 static int __init fm10k_init_module(void)
54 {
55 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
56 pr_info("%s\n", fm10k_copyright);
57
58 /* create driver workqueue */
59 fm10k_workqueue = alloc_workqueue("fm10k", WQ_MEM_RECLAIM, 0);
60
61 fm10k_dbg_init();
62
63 return fm10k_register_pci_driver();
64 }
65 module_init(fm10k_init_module);
66
67 /**
68 * fm10k_exit_module - Driver Exit Cleanup Routine
69 *
70 * fm10k_exit_module is called just before the driver is removed
71 * from memory.
72 **/
73 static void __exit fm10k_exit_module(void)
74 {
75 fm10k_unregister_pci_driver();
76
77 fm10k_dbg_exit();
78
79 /* destroy driver workqueue */
80 destroy_workqueue(fm10k_workqueue);
81 }
82 module_exit(fm10k_exit_module);
83
84 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
85 struct fm10k_rx_buffer *bi)
86 {
87 struct page *page = bi->page;
88 dma_addr_t dma;
89
90 /* Only page will be NULL if buffer was consumed */
91 if (likely(page))
92 return true;
93
94 /* alloc new page for storage */
95 page = dev_alloc_page();
96 if (unlikely(!page)) {
97 rx_ring->rx_stats.alloc_failed++;
98 return false;
99 }
100
101 /* map page for use */
102 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
103
104 /* if mapping failed free memory back to system since
105 * there isn't much point in holding memory we can't use
106 */
107 if (dma_mapping_error(rx_ring->dev, dma)) {
108 __free_page(page);
109
110 rx_ring->rx_stats.alloc_failed++;
111 return false;
112 }
113
114 bi->dma = dma;
115 bi->page = page;
116 bi->page_offset = 0;
117
118 return true;
119 }
120
121 /**
122 * fm10k_alloc_rx_buffers - Replace used receive buffers
123 * @rx_ring: ring to place buffers on
124 * @cleaned_count: number of buffers to replace
125 **/
126 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
127 {
128 union fm10k_rx_desc *rx_desc;
129 struct fm10k_rx_buffer *bi;
130 u16 i = rx_ring->next_to_use;
131
132 /* nothing to do */
133 if (!cleaned_count)
134 return;
135
136 rx_desc = FM10K_RX_DESC(rx_ring, i);
137 bi = &rx_ring->rx_buffer[i];
138 i -= rx_ring->count;
139
140 do {
141 if (!fm10k_alloc_mapped_page(rx_ring, bi))
142 break;
143
144 /* Refresh the desc even if buffer_addrs didn't change
145 * because each write-back erases this info.
146 */
147 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
148
149 rx_desc++;
150 bi++;
151 i++;
152 if (unlikely(!i)) {
153 rx_desc = FM10K_RX_DESC(rx_ring, 0);
154 bi = rx_ring->rx_buffer;
155 i -= rx_ring->count;
156 }
157
158 /* clear the status bits for the next_to_use descriptor */
159 rx_desc->d.staterr = 0;
160
161 cleaned_count--;
162 } while (cleaned_count);
163
164 i += rx_ring->count;
165
166 if (rx_ring->next_to_use != i) {
167 /* record the next descriptor to use */
168 rx_ring->next_to_use = i;
169
170 /* update next to alloc since we have filled the ring */
171 rx_ring->next_to_alloc = i;
172
173 /* Force memory writes to complete before letting h/w
174 * know there are new descriptors to fetch. (Only
175 * applicable for weak-ordered memory model archs,
176 * such as IA-64).
177 */
178 wmb();
179
180 /* notify hardware of new descriptors */
181 writel(i, rx_ring->tail);
182 }
183 }
184
185 /**
186 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
187 * @rx_ring: rx descriptor ring to store buffers on
188 * @old_buff: donor buffer to have page reused
189 *
190 * Synchronizes page for reuse by the interface
191 **/
192 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
193 struct fm10k_rx_buffer *old_buff)
194 {
195 struct fm10k_rx_buffer *new_buff;
196 u16 nta = rx_ring->next_to_alloc;
197
198 new_buff = &rx_ring->rx_buffer[nta];
199
200 /* update, and store next to alloc */
201 nta++;
202 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
203
204 /* transfer page from old buffer to new buffer */
205 *new_buff = *old_buff;
206
207 /* sync the buffer for use by the device */
208 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
209 old_buff->page_offset,
210 FM10K_RX_BUFSZ,
211 DMA_FROM_DEVICE);
212 }
213
214 static inline bool fm10k_page_is_reserved(struct page *page)
215 {
216 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
217 }
218
219 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
220 struct page *page,
221 unsigned int __maybe_unused truesize)
222 {
223 /* avoid re-using remote pages */
224 if (unlikely(fm10k_page_is_reserved(page)))
225 return false;
226
227 #if (PAGE_SIZE < 8192)
228 /* if we are only owner of page we can reuse it */
229 if (unlikely(page_count(page) != 1))
230 return false;
231
232 /* flip page offset to other buffer */
233 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
234 #else
235 /* move offset up to the next cache line */
236 rx_buffer->page_offset += truesize;
237
238 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
239 return false;
240 #endif
241
242 /* Even if we own the page, we are not allowed to use atomic_set()
243 * This would break get_page_unless_zero() users.
244 */
245 page_ref_inc(page);
246
247 return true;
248 }
249
250 /**
251 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
252 * @rx_buffer: buffer containing page to add
253 * @rx_desc: descriptor containing length of buffer written by hardware
254 * @skb: sk_buff to place the data into
255 *
256 * This function will add the data contained in rx_buffer->page to the skb.
257 * This is done either through a direct copy if the data in the buffer is
258 * less than the skb header size, otherwise it will just attach the page as
259 * a frag to the skb.
260 *
261 * The function will then update the page offset if necessary and return
262 * true if the buffer can be reused by the interface.
263 **/
264 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
265 union fm10k_rx_desc *rx_desc,
266 struct sk_buff *skb)
267 {
268 struct page *page = rx_buffer->page;
269 unsigned char *va = page_address(page) + rx_buffer->page_offset;
270 unsigned int size = le16_to_cpu(rx_desc->w.length);
271 #if (PAGE_SIZE < 8192)
272 unsigned int truesize = FM10K_RX_BUFSZ;
273 #else
274 unsigned int truesize = ALIGN(size, 512);
275 #endif
276 unsigned int pull_len;
277
278 if (unlikely(skb_is_nonlinear(skb)))
279 goto add_tail_frag;
280
281 if (likely(size <= FM10K_RX_HDR_LEN)) {
282 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
283
284 /* page is not reserved, we can reuse buffer as-is */
285 if (likely(!fm10k_page_is_reserved(page)))
286 return true;
287
288 /* this page cannot be reused so discard it */
289 __free_page(page);
290 return false;
291 }
292
293 /* we need the header to contain the greater of either ETH_HLEN or
294 * 60 bytes if the skb->len is less than 60 for skb_pad.
295 */
296 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
297
298 /* align pull length to size of long to optimize memcpy performance */
299 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
300
301 /* update all of the pointers */
302 va += pull_len;
303 size -= pull_len;
304
305 add_tail_frag:
306 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
307 (unsigned long)va & ~PAGE_MASK, size, truesize);
308
309 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
310 }
311
312 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
313 union fm10k_rx_desc *rx_desc,
314 struct sk_buff *skb)
315 {
316 struct fm10k_rx_buffer *rx_buffer;
317 struct page *page;
318
319 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
320 page = rx_buffer->page;
321 prefetchw(page);
322
323 if (likely(!skb)) {
324 void *page_addr = page_address(page) +
325 rx_buffer->page_offset;
326
327 /* prefetch first cache line of first page */
328 prefetch(page_addr);
329 #if L1_CACHE_BYTES < 128
330 prefetch(page_addr + L1_CACHE_BYTES);
331 #endif
332
333 /* allocate a skb to store the frags */
334 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
335 FM10K_RX_HDR_LEN);
336 if (unlikely(!skb)) {
337 rx_ring->rx_stats.alloc_failed++;
338 return NULL;
339 }
340
341 /* we will be copying header into skb->data in
342 * pskb_may_pull so it is in our interest to prefetch
343 * it now to avoid a possible cache miss
344 */
345 prefetchw(skb->data);
346 }
347
348 /* we are reusing so sync this buffer for CPU use */
349 dma_sync_single_range_for_cpu(rx_ring->dev,
350 rx_buffer->dma,
351 rx_buffer->page_offset,
352 FM10K_RX_BUFSZ,
353 DMA_FROM_DEVICE);
354
355 /* pull page into skb */
356 if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
357 /* hand second half of page back to the ring */
358 fm10k_reuse_rx_page(rx_ring, rx_buffer);
359 } else {
360 /* we are not reusing the buffer so unmap it */
361 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
362 PAGE_SIZE, DMA_FROM_DEVICE);
363 }
364
365 /* clear contents of rx_buffer */
366 rx_buffer->page = NULL;
367
368 return skb;
369 }
370
371 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
372 union fm10k_rx_desc *rx_desc,
373 struct sk_buff *skb)
374 {
375 skb_checksum_none_assert(skb);
376
377 /* Rx checksum disabled via ethtool */
378 if (!(ring->netdev->features & NETIF_F_RXCSUM))
379 return;
380
381 /* TCP/UDP checksum error bit is set */
382 if (fm10k_test_staterr(rx_desc,
383 FM10K_RXD_STATUS_L4E |
384 FM10K_RXD_STATUS_L4E2 |
385 FM10K_RXD_STATUS_IPE |
386 FM10K_RXD_STATUS_IPE2)) {
387 ring->rx_stats.csum_err++;
388 return;
389 }
390
391 /* It must be a TCP or UDP packet with a valid checksum */
392 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
393 skb->encapsulation = true;
394 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
395 return;
396
397 skb->ip_summed = CHECKSUM_UNNECESSARY;
398
399 ring->rx_stats.csum_good++;
400 }
401
402 #define FM10K_RSS_L4_TYPES_MASK \
403 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
404 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
405 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
406 BIT(FM10K_RSSTYPE_IPV6_UDP))
407
408 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
409 union fm10k_rx_desc *rx_desc,
410 struct sk_buff *skb)
411 {
412 u16 rss_type;
413
414 if (!(ring->netdev->features & NETIF_F_RXHASH))
415 return;
416
417 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
418 if (!rss_type)
419 return;
420
421 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
422 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
423 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
424 }
425
426 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
427 union fm10k_rx_desc __maybe_unused *rx_desc,
428 struct sk_buff *skb)
429 {
430 struct net_device *dev = rx_ring->netdev;
431 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
432
433 /* check to see if DGLORT belongs to a MACVLAN */
434 if (l2_accel) {
435 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
436
437 idx -= l2_accel->dglort;
438 if (idx < l2_accel->size && l2_accel->macvlan[idx])
439 dev = l2_accel->macvlan[idx];
440 else
441 l2_accel = NULL;
442 }
443
444 skb->protocol = eth_type_trans(skb, dev);
445
446 if (!l2_accel)
447 return;
448
449 /* update MACVLAN statistics */
450 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
451 !!(rx_desc->w.hdr_info &
452 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
453 }
454
455 /**
456 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
457 * @rx_ring: rx descriptor ring packet is being transacted on
458 * @rx_desc: pointer to the EOP Rx descriptor
459 * @skb: pointer to current skb being populated
460 *
461 * This function checks the ring, descriptor, and packet information in
462 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
463 * other fields within the skb.
464 **/
465 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
466 union fm10k_rx_desc *rx_desc,
467 struct sk_buff *skb)
468 {
469 unsigned int len = skb->len;
470
471 fm10k_rx_hash(rx_ring, rx_desc, skb);
472
473 fm10k_rx_checksum(rx_ring, rx_desc, skb);
474
475 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
476
477 skb_record_rx_queue(skb, rx_ring->queue_index);
478
479 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
480
481 if (rx_desc->w.vlan) {
482 u16 vid = le16_to_cpu(rx_desc->w.vlan);
483
484 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
485 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
486 else if (vid & VLAN_PRIO_MASK)
487 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
488 vid & VLAN_PRIO_MASK);
489 }
490
491 fm10k_type_trans(rx_ring, rx_desc, skb);
492
493 return len;
494 }
495
496 /**
497 * fm10k_is_non_eop - process handling of non-EOP buffers
498 * @rx_ring: Rx ring being processed
499 * @rx_desc: Rx descriptor for current buffer
500 *
501 * This function updates next to clean. If the buffer is an EOP buffer
502 * this function exits returning false, otherwise it will place the
503 * sk_buff in the next buffer to be chained and return true indicating
504 * that this is in fact a non-EOP buffer.
505 **/
506 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
507 union fm10k_rx_desc *rx_desc)
508 {
509 u32 ntc = rx_ring->next_to_clean + 1;
510
511 /* fetch, update, and store next to clean */
512 ntc = (ntc < rx_ring->count) ? ntc : 0;
513 rx_ring->next_to_clean = ntc;
514
515 prefetch(FM10K_RX_DESC(rx_ring, ntc));
516
517 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
518 return false;
519
520 return true;
521 }
522
523 /**
524 * fm10k_cleanup_headers - Correct corrupted or empty headers
525 * @rx_ring: rx descriptor ring packet is being transacted on
526 * @rx_desc: pointer to the EOP Rx descriptor
527 * @skb: pointer to current skb being fixed
528 *
529 * Address the case where we are pulling data in on pages only
530 * and as such no data is present in the skb header.
531 *
532 * In addition if skb is not at least 60 bytes we need to pad it so that
533 * it is large enough to qualify as a valid Ethernet frame.
534 *
535 * Returns true if an error was encountered and skb was freed.
536 **/
537 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
538 union fm10k_rx_desc *rx_desc,
539 struct sk_buff *skb)
540 {
541 if (unlikely((fm10k_test_staterr(rx_desc,
542 FM10K_RXD_STATUS_RXE)))) {
543 #define FM10K_TEST_RXD_BIT(rxd, bit) \
544 ((rxd)->w.csum_err & cpu_to_le16(bit))
545 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
546 rx_ring->rx_stats.switch_errors++;
547 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
548 rx_ring->rx_stats.drops++;
549 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
550 rx_ring->rx_stats.pp_errors++;
551 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
552 rx_ring->rx_stats.link_errors++;
553 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
554 rx_ring->rx_stats.length_errors++;
555 dev_kfree_skb_any(skb);
556 rx_ring->rx_stats.errors++;
557 return true;
558 }
559
560 /* if eth_skb_pad returns an error the skb was freed */
561 if (eth_skb_pad(skb))
562 return true;
563
564 return false;
565 }
566
567 /**
568 * fm10k_receive_skb - helper function to handle rx indications
569 * @q_vector: structure containing interrupt and ring information
570 * @skb: packet to send up
571 **/
572 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
573 struct sk_buff *skb)
574 {
575 napi_gro_receive(&q_vector->napi, skb);
576 }
577
578 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
579 struct fm10k_ring *rx_ring,
580 int budget)
581 {
582 struct sk_buff *skb = rx_ring->skb;
583 unsigned int total_bytes = 0, total_packets = 0;
584 u16 cleaned_count = fm10k_desc_unused(rx_ring);
585
586 while (likely(total_packets < budget)) {
587 union fm10k_rx_desc *rx_desc;
588
589 /* return some buffers to hardware, one at a time is too slow */
590 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
591 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
592 cleaned_count = 0;
593 }
594
595 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
596
597 if (!rx_desc->d.staterr)
598 break;
599
600 /* This memory barrier is needed to keep us from reading
601 * any other fields out of the rx_desc until we know the
602 * descriptor has been written back
603 */
604 dma_rmb();
605
606 /* retrieve a buffer from the ring */
607 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
608
609 /* exit if we failed to retrieve a buffer */
610 if (!skb)
611 break;
612
613 cleaned_count++;
614
615 /* fetch next buffer in frame if non-eop */
616 if (fm10k_is_non_eop(rx_ring, rx_desc))
617 continue;
618
619 /* verify the packet layout is correct */
620 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
621 skb = NULL;
622 continue;
623 }
624
625 /* populate checksum, timestamp, VLAN, and protocol */
626 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
627
628 fm10k_receive_skb(q_vector, skb);
629
630 /* reset skb pointer */
631 skb = NULL;
632
633 /* update budget accounting */
634 total_packets++;
635 }
636
637 /* place incomplete frames back on ring for completion */
638 rx_ring->skb = skb;
639
640 u64_stats_update_begin(&rx_ring->syncp);
641 rx_ring->stats.packets += total_packets;
642 rx_ring->stats.bytes += total_bytes;
643 u64_stats_update_end(&rx_ring->syncp);
644 q_vector->rx.total_packets += total_packets;
645 q_vector->rx.total_bytes += total_bytes;
646
647 return total_packets;
648 }
649
650 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
651 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
652 {
653 struct fm10k_intfc *interface = netdev_priv(skb->dev);
654 struct fm10k_vxlan_port *vxlan_port;
655
656 /* we can only offload a vxlan if we recognize it as such */
657 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
658 struct fm10k_vxlan_port, list);
659
660 if (!vxlan_port)
661 return NULL;
662 if (vxlan_port->port != udp_hdr(skb)->dest)
663 return NULL;
664
665 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
666 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
667 }
668
669 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
670 #define NVGRE_TNI htons(0x2000)
671 struct fm10k_nvgre_hdr {
672 __be16 flags;
673 __be16 proto;
674 __be32 tni;
675 };
676
677 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
678 {
679 struct fm10k_nvgre_hdr *nvgre_hdr;
680 int hlen = ip_hdrlen(skb);
681
682 /* currently only IPv4 is supported due to hlen above */
683 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
684 return NULL;
685
686 /* our transport header should be NVGRE */
687 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
688
689 /* verify all reserved flags are 0 */
690 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
691 return NULL;
692
693 /* report start of ethernet header */
694 if (nvgre_hdr->flags & NVGRE_TNI)
695 return (struct ethhdr *)(nvgre_hdr + 1);
696
697 return (struct ethhdr *)(&nvgre_hdr->tni);
698 }
699
700 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
701 {
702 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
703 struct ethhdr *eth_hdr;
704
705 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
706 skb->inner_protocol != htons(ETH_P_TEB))
707 return 0;
708
709 switch (vlan_get_protocol(skb)) {
710 case htons(ETH_P_IP):
711 l4_hdr = ip_hdr(skb)->protocol;
712 break;
713 case htons(ETH_P_IPV6):
714 l4_hdr = ipv6_hdr(skb)->nexthdr;
715 break;
716 default:
717 return 0;
718 }
719
720 switch (l4_hdr) {
721 case IPPROTO_UDP:
722 eth_hdr = fm10k_port_is_vxlan(skb);
723 break;
724 case IPPROTO_GRE:
725 eth_hdr = fm10k_gre_is_nvgre(skb);
726 break;
727 default:
728 return 0;
729 }
730
731 if (!eth_hdr)
732 return 0;
733
734 switch (eth_hdr->h_proto) {
735 case htons(ETH_P_IP):
736 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
737 break;
738 case htons(ETH_P_IPV6):
739 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
740 break;
741 default:
742 return 0;
743 }
744
745 switch (inner_l4_hdr) {
746 case IPPROTO_TCP:
747 inner_l4_hlen = inner_tcp_hdrlen(skb);
748 break;
749 case IPPROTO_UDP:
750 inner_l4_hlen = 8;
751 break;
752 default:
753 return 0;
754 }
755
756 /* The hardware allows tunnel offloads only if the combined inner and
757 * outer header is 184 bytes or less
758 */
759 if (skb_inner_transport_header(skb) + inner_l4_hlen -
760 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
761 return 0;
762
763 return eth_hdr->h_proto;
764 }
765
766 static int fm10k_tso(struct fm10k_ring *tx_ring,
767 struct fm10k_tx_buffer *first)
768 {
769 struct sk_buff *skb = first->skb;
770 struct fm10k_tx_desc *tx_desc;
771 unsigned char *th;
772 u8 hdrlen;
773
774 if (skb->ip_summed != CHECKSUM_PARTIAL)
775 return 0;
776
777 if (!skb_is_gso(skb))
778 return 0;
779
780 /* compute header lengths */
781 if (skb->encapsulation) {
782 if (!fm10k_tx_encap_offload(skb))
783 goto err_vxlan;
784 th = skb_inner_transport_header(skb);
785 } else {
786 th = skb_transport_header(skb);
787 }
788
789 /* compute offset from SOF to transport header and add header len */
790 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
791
792 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
793
794 /* update gso size and bytecount with header size */
795 first->gso_segs = skb_shinfo(skb)->gso_segs;
796 first->bytecount += (first->gso_segs - 1) * hdrlen;
797
798 /* populate Tx descriptor header size and mss */
799 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
800 tx_desc->hdrlen = hdrlen;
801 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
802
803 return 1;
804 err_vxlan:
805 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
806 if (!net_ratelimit())
807 netdev_err(tx_ring->netdev,
808 "TSO requested for unsupported tunnel, disabling offload\n");
809 return -1;
810 }
811
812 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
813 struct fm10k_tx_buffer *first)
814 {
815 struct sk_buff *skb = first->skb;
816 struct fm10k_tx_desc *tx_desc;
817 union {
818 struct iphdr *ipv4;
819 struct ipv6hdr *ipv6;
820 u8 *raw;
821 } network_hdr;
822 u8 *transport_hdr;
823 __be16 frag_off;
824 __be16 protocol;
825 u8 l4_hdr = 0;
826
827 if (skb->ip_summed != CHECKSUM_PARTIAL)
828 goto no_csum;
829
830 if (skb->encapsulation) {
831 protocol = fm10k_tx_encap_offload(skb);
832 if (!protocol) {
833 if (skb_checksum_help(skb)) {
834 dev_warn(tx_ring->dev,
835 "failed to offload encap csum!\n");
836 tx_ring->tx_stats.csum_err++;
837 }
838 goto no_csum;
839 }
840 network_hdr.raw = skb_inner_network_header(skb);
841 transport_hdr = skb_inner_transport_header(skb);
842 } else {
843 protocol = vlan_get_protocol(skb);
844 network_hdr.raw = skb_network_header(skb);
845 transport_hdr = skb_transport_header(skb);
846 }
847
848 switch (protocol) {
849 case htons(ETH_P_IP):
850 l4_hdr = network_hdr.ipv4->protocol;
851 break;
852 case htons(ETH_P_IPV6):
853 l4_hdr = network_hdr.ipv6->nexthdr;
854 if (likely((transport_hdr - network_hdr.raw) ==
855 sizeof(struct ipv6hdr)))
856 break;
857 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
858 sizeof(struct ipv6hdr),
859 &l4_hdr, &frag_off);
860 if (unlikely(frag_off))
861 l4_hdr = NEXTHDR_FRAGMENT;
862 break;
863 default:
864 break;
865 }
866
867 switch (l4_hdr) {
868 case IPPROTO_TCP:
869 case IPPROTO_UDP:
870 break;
871 case IPPROTO_GRE:
872 if (skb->encapsulation)
873 break;
874 default:
875 if (unlikely(net_ratelimit())) {
876 dev_warn(tx_ring->dev,
877 "partial checksum, version=%d l4 proto=%x\n",
878 protocol, l4_hdr);
879 }
880 skb_checksum_help(skb);
881 tx_ring->tx_stats.csum_err++;
882 goto no_csum;
883 }
884
885 /* update TX checksum flag */
886 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
887 tx_ring->tx_stats.csum_good++;
888
889 no_csum:
890 /* populate Tx descriptor header size and mss */
891 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
892 tx_desc->hdrlen = 0;
893 tx_desc->mss = 0;
894 }
895
896 #define FM10K_SET_FLAG(_input, _flag, _result) \
897 ((_flag <= _result) ? \
898 ((u32)(_input & _flag) * (_result / _flag)) : \
899 ((u32)(_input & _flag) / (_flag / _result)))
900
901 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
902 {
903 /* set type for advanced descriptor with frame checksum insertion */
904 u32 desc_flags = 0;
905
906 /* set checksum offload bits */
907 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
908 FM10K_TXD_FLAG_CSUM);
909
910 return desc_flags;
911 }
912
913 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
914 struct fm10k_tx_desc *tx_desc, u16 i,
915 dma_addr_t dma, unsigned int size, u8 desc_flags)
916 {
917 /* set RS and INT for last frame in a cache line */
918 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
919 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
920
921 /* record values to descriptor */
922 tx_desc->buffer_addr = cpu_to_le64(dma);
923 tx_desc->flags = desc_flags;
924 tx_desc->buflen = cpu_to_le16(size);
925
926 /* return true if we just wrapped the ring */
927 return i == tx_ring->count;
928 }
929
930 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
931 {
932 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
933
934 /* Memory barrier before checking head and tail */
935 smp_mb();
936
937 /* Check again in a case another CPU has just made room available */
938 if (likely(fm10k_desc_unused(tx_ring) < size))
939 return -EBUSY;
940
941 /* A reprieve! - use start_queue because it doesn't call schedule */
942 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
943 ++tx_ring->tx_stats.restart_queue;
944 return 0;
945 }
946
947 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
948 {
949 if (likely(fm10k_desc_unused(tx_ring) >= size))
950 return 0;
951 return __fm10k_maybe_stop_tx(tx_ring, size);
952 }
953
954 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
955 struct fm10k_tx_buffer *first)
956 {
957 struct sk_buff *skb = first->skb;
958 struct fm10k_tx_buffer *tx_buffer;
959 struct fm10k_tx_desc *tx_desc;
960 struct skb_frag_struct *frag;
961 unsigned char *data;
962 dma_addr_t dma;
963 unsigned int data_len, size;
964 u32 tx_flags = first->tx_flags;
965 u16 i = tx_ring->next_to_use;
966 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
967
968 tx_desc = FM10K_TX_DESC(tx_ring, i);
969
970 /* add HW VLAN tag */
971 if (skb_vlan_tag_present(skb))
972 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
973 else
974 tx_desc->vlan = 0;
975
976 size = skb_headlen(skb);
977 data = skb->data;
978
979 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
980
981 data_len = skb->data_len;
982 tx_buffer = first;
983
984 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
985 if (dma_mapping_error(tx_ring->dev, dma))
986 goto dma_error;
987
988 /* record length, and DMA address */
989 dma_unmap_len_set(tx_buffer, len, size);
990 dma_unmap_addr_set(tx_buffer, dma, dma);
991
992 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
993 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
994 FM10K_MAX_DATA_PER_TXD, flags)) {
995 tx_desc = FM10K_TX_DESC(tx_ring, 0);
996 i = 0;
997 }
998
999 dma += FM10K_MAX_DATA_PER_TXD;
1000 size -= FM10K_MAX_DATA_PER_TXD;
1001 }
1002
1003 if (likely(!data_len))
1004 break;
1005
1006 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1007 dma, size, flags)) {
1008 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1009 i = 0;
1010 }
1011
1012 size = skb_frag_size(frag);
1013 data_len -= size;
1014
1015 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1016 DMA_TO_DEVICE);
1017
1018 tx_buffer = &tx_ring->tx_buffer[i];
1019 }
1020
1021 /* write last descriptor with LAST bit set */
1022 flags |= FM10K_TXD_FLAG_LAST;
1023
1024 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1025 i = 0;
1026
1027 /* record bytecount for BQL */
1028 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1029
1030 /* record SW timestamp if HW timestamp is not available */
1031 skb_tx_timestamp(first->skb);
1032
1033 /* Force memory writes to complete before letting h/w know there
1034 * are new descriptors to fetch. (Only applicable for weak-ordered
1035 * memory model archs, such as IA-64).
1036 *
1037 * We also need this memory barrier to make certain all of the
1038 * status bits have been updated before next_to_watch is written.
1039 */
1040 wmb();
1041
1042 /* set next_to_watch value indicating a packet is present */
1043 first->next_to_watch = tx_desc;
1044
1045 tx_ring->next_to_use = i;
1046
1047 /* Make sure there is space in the ring for the next send. */
1048 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1049
1050 /* notify HW of packet */
1051 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1052 writel(i, tx_ring->tail);
1053
1054 /* we need this if more than one processor can write to our tail
1055 * at a time, it synchronizes IO on IA64/Altix systems
1056 */
1057 mmiowb();
1058 }
1059
1060 return;
1061 dma_error:
1062 dev_err(tx_ring->dev, "TX DMA map failed\n");
1063
1064 /* clear dma mappings for failed tx_buffer map */
1065 for (;;) {
1066 tx_buffer = &tx_ring->tx_buffer[i];
1067 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1068 if (tx_buffer == first)
1069 break;
1070 if (i == 0)
1071 i = tx_ring->count;
1072 i--;
1073 }
1074
1075 tx_ring->next_to_use = i;
1076 }
1077
1078 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1079 struct fm10k_ring *tx_ring)
1080 {
1081 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1082 struct fm10k_tx_buffer *first;
1083 unsigned short f;
1084 u32 tx_flags = 0;
1085 int tso;
1086
1087 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1088 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1089 * + 2 desc gap to keep tail from touching head
1090 * otherwise try next time
1091 */
1092 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1093 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1094
1095 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1096 tx_ring->tx_stats.tx_busy++;
1097 return NETDEV_TX_BUSY;
1098 }
1099
1100 /* record the location of the first descriptor for this packet */
1101 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1102 first->skb = skb;
1103 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1104 first->gso_segs = 1;
1105
1106 /* record initial flags and protocol */
1107 first->tx_flags = tx_flags;
1108
1109 tso = fm10k_tso(tx_ring, first);
1110 if (tso < 0)
1111 goto out_drop;
1112 else if (!tso)
1113 fm10k_tx_csum(tx_ring, first);
1114
1115 fm10k_tx_map(tx_ring, first);
1116
1117 return NETDEV_TX_OK;
1118
1119 out_drop:
1120 dev_kfree_skb_any(first->skb);
1121 first->skb = NULL;
1122
1123 return NETDEV_TX_OK;
1124 }
1125
1126 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1127 {
1128 return ring->stats.packets;
1129 }
1130
1131 static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1132 {
1133 /* use SW head and tail until we have real hardware */
1134 u32 head = ring->next_to_clean;
1135 u32 tail = ring->next_to_use;
1136
1137 return ((head <= tail) ? tail : tail + ring->count) - head;
1138 }
1139
1140 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1141 {
1142 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1143 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1144 u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1145
1146 clear_check_for_tx_hang(tx_ring);
1147
1148 /* Check for a hung queue, but be thorough. This verifies
1149 * that a transmit has been completed since the previous
1150 * check AND there is at least one packet pending. By
1151 * requiring this to fail twice we avoid races with
1152 * clearing the ARMED bit and conditions where we
1153 * run the check_tx_hang logic with a transmit completion
1154 * pending but without time to complete it yet.
1155 */
1156 if (!tx_pending || (tx_done_old != tx_done)) {
1157 /* update completed stats and continue */
1158 tx_ring->tx_stats.tx_done_old = tx_done;
1159 /* reset the countdown */
1160 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1161
1162 return false;
1163 }
1164
1165 /* make sure it is true for two checks in a row */
1166 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1167 }
1168
1169 /**
1170 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1171 * @interface: driver private struct
1172 **/
1173 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1174 {
1175 /* Do the reset outside of interrupt context */
1176 if (!test_bit(__FM10K_DOWN, &interface->state)) {
1177 interface->tx_timeout_count++;
1178 interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1179 fm10k_service_event_schedule(interface);
1180 }
1181 }
1182
1183 /**
1184 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1185 * @q_vector: structure containing interrupt and ring information
1186 * @tx_ring: tx ring to clean
1187 * @napi_budget: Used to determine if we are in netpoll
1188 **/
1189 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1190 struct fm10k_ring *tx_ring, int napi_budget)
1191 {
1192 struct fm10k_intfc *interface = q_vector->interface;
1193 struct fm10k_tx_buffer *tx_buffer;
1194 struct fm10k_tx_desc *tx_desc;
1195 unsigned int total_bytes = 0, total_packets = 0;
1196 unsigned int budget = q_vector->tx.work_limit;
1197 unsigned int i = tx_ring->next_to_clean;
1198
1199 if (test_bit(__FM10K_DOWN, &interface->state))
1200 return true;
1201
1202 tx_buffer = &tx_ring->tx_buffer[i];
1203 tx_desc = FM10K_TX_DESC(tx_ring, i);
1204 i -= tx_ring->count;
1205
1206 do {
1207 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1208
1209 /* if next_to_watch is not set then there is no work pending */
1210 if (!eop_desc)
1211 break;
1212
1213 /* prevent any other reads prior to eop_desc */
1214 read_barrier_depends();
1215
1216 /* if DD is not set pending work has not been completed */
1217 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1218 break;
1219
1220 /* clear next_to_watch to prevent false hangs */
1221 tx_buffer->next_to_watch = NULL;
1222
1223 /* update the statistics for this packet */
1224 total_bytes += tx_buffer->bytecount;
1225 total_packets += tx_buffer->gso_segs;
1226
1227 /* free the skb */
1228 napi_consume_skb(tx_buffer->skb, napi_budget);
1229
1230 /* unmap skb header data */
1231 dma_unmap_single(tx_ring->dev,
1232 dma_unmap_addr(tx_buffer, dma),
1233 dma_unmap_len(tx_buffer, len),
1234 DMA_TO_DEVICE);
1235
1236 /* clear tx_buffer data */
1237 tx_buffer->skb = NULL;
1238 dma_unmap_len_set(tx_buffer, len, 0);
1239
1240 /* unmap remaining buffers */
1241 while (tx_desc != eop_desc) {
1242 tx_buffer++;
1243 tx_desc++;
1244 i++;
1245 if (unlikely(!i)) {
1246 i -= tx_ring->count;
1247 tx_buffer = tx_ring->tx_buffer;
1248 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1249 }
1250
1251 /* unmap any remaining paged data */
1252 if (dma_unmap_len(tx_buffer, len)) {
1253 dma_unmap_page(tx_ring->dev,
1254 dma_unmap_addr(tx_buffer, dma),
1255 dma_unmap_len(tx_buffer, len),
1256 DMA_TO_DEVICE);
1257 dma_unmap_len_set(tx_buffer, len, 0);
1258 }
1259 }
1260
1261 /* move us one more past the eop_desc for start of next pkt */
1262 tx_buffer++;
1263 tx_desc++;
1264 i++;
1265 if (unlikely(!i)) {
1266 i -= tx_ring->count;
1267 tx_buffer = tx_ring->tx_buffer;
1268 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1269 }
1270
1271 /* issue prefetch for next Tx descriptor */
1272 prefetch(tx_desc);
1273
1274 /* update budget accounting */
1275 budget--;
1276 } while (likely(budget));
1277
1278 i += tx_ring->count;
1279 tx_ring->next_to_clean = i;
1280 u64_stats_update_begin(&tx_ring->syncp);
1281 tx_ring->stats.bytes += total_bytes;
1282 tx_ring->stats.packets += total_packets;
1283 u64_stats_update_end(&tx_ring->syncp);
1284 q_vector->tx.total_bytes += total_bytes;
1285 q_vector->tx.total_packets += total_packets;
1286
1287 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1288 /* schedule immediate reset if we believe we hung */
1289 struct fm10k_hw *hw = &interface->hw;
1290
1291 netif_err(interface, drv, tx_ring->netdev,
1292 "Detected Tx Unit Hang\n"
1293 " Tx Queue <%d>\n"
1294 " TDH, TDT <%x>, <%x>\n"
1295 " next_to_use <%x>\n"
1296 " next_to_clean <%x>\n",
1297 tx_ring->queue_index,
1298 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1299 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1300 tx_ring->next_to_use, i);
1301
1302 netif_stop_subqueue(tx_ring->netdev,
1303 tx_ring->queue_index);
1304
1305 netif_info(interface, probe, tx_ring->netdev,
1306 "tx hang %d detected on queue %d, resetting interface\n",
1307 interface->tx_timeout_count + 1,
1308 tx_ring->queue_index);
1309
1310 fm10k_tx_timeout_reset(interface);
1311
1312 /* the netdev is about to reset, no point in enabling stuff */
1313 return true;
1314 }
1315
1316 /* notify netdev of completed buffers */
1317 netdev_tx_completed_queue(txring_txq(tx_ring),
1318 total_packets, total_bytes);
1319
1320 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1321 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1322 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1323 /* Make sure that anybody stopping the queue after this
1324 * sees the new next_to_clean.
1325 */
1326 smp_mb();
1327 if (__netif_subqueue_stopped(tx_ring->netdev,
1328 tx_ring->queue_index) &&
1329 !test_bit(__FM10K_DOWN, &interface->state)) {
1330 netif_wake_subqueue(tx_ring->netdev,
1331 tx_ring->queue_index);
1332 ++tx_ring->tx_stats.restart_queue;
1333 }
1334 }
1335
1336 return !!budget;
1337 }
1338
1339 /**
1340 * fm10k_update_itr - update the dynamic ITR value based on packet size
1341 *
1342 * Stores a new ITR value based on strictly on packet size. The
1343 * divisors and thresholds used by this function were determined based
1344 * on theoretical maximum wire speed and testing data, in order to
1345 * minimize response time while increasing bulk throughput.
1346 *
1347 * @ring_container: Container for rings to have ITR updated
1348 **/
1349 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1350 {
1351 unsigned int avg_wire_size, packets, itr_round;
1352
1353 /* Only update ITR if we are using adaptive setting */
1354 if (!ITR_IS_ADAPTIVE(ring_container->itr))
1355 goto clear_counts;
1356
1357 packets = ring_container->total_packets;
1358 if (!packets)
1359 goto clear_counts;
1360
1361 avg_wire_size = ring_container->total_bytes / packets;
1362
1363 /* The following is a crude approximation of:
1364 * wmem_default / (size + overhead) = desired_pkts_per_int
1365 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1366 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1367 *
1368 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1369 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1370 * formula down to
1371 *
1372 * (34 * (size + 24)) / (size + 640) = ITR
1373 *
1374 * We first do some math on the packet size and then finally bitshift
1375 * by 8 after rounding up. We also have to account for PCIe link speed
1376 * difference as ITR scales based on this.
1377 */
1378 if (avg_wire_size <= 360) {
1379 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1380 avg_wire_size *= 8;
1381 avg_wire_size += 376;
1382 } else if (avg_wire_size <= 1152) {
1383 /* 77K ints/sec to 45K ints/sec */
1384 avg_wire_size *= 3;
1385 avg_wire_size += 2176;
1386 } else if (avg_wire_size <= 1920) {
1387 /* 45K ints/sec to 38K ints/sec */
1388 avg_wire_size += 4480;
1389 } else {
1390 /* plateau at a limit of 38K ints/sec */
1391 avg_wire_size = 6656;
1392 }
1393
1394 /* Perform final bitshift for division after rounding up to ensure
1395 * that the calculation will never get below a 1. The bit shift
1396 * accounts for changes in the ITR due to PCIe link speed.
1397 */
1398 itr_round = ACCESS_ONCE(ring_container->itr_scale) + 8;
1399 avg_wire_size += BIT(itr_round) - 1;
1400 avg_wire_size >>= itr_round;
1401
1402 /* write back value and retain adaptive flag */
1403 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1404
1405 clear_counts:
1406 ring_container->total_bytes = 0;
1407 ring_container->total_packets = 0;
1408 }
1409
1410 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1411 {
1412 /* Enable auto-mask and clear the current mask */
1413 u32 itr = FM10K_ITR_ENABLE;
1414
1415 /* Update Tx ITR */
1416 fm10k_update_itr(&q_vector->tx);
1417
1418 /* Update Rx ITR */
1419 fm10k_update_itr(&q_vector->rx);
1420
1421 /* Store Tx itr in timer slot 0 */
1422 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1423
1424 /* Shift Rx itr to timer slot 1 */
1425 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1426
1427 /* Write the final value to the ITR register */
1428 writel(itr, q_vector->itr);
1429 }
1430
1431 static int fm10k_poll(struct napi_struct *napi, int budget)
1432 {
1433 struct fm10k_q_vector *q_vector =
1434 container_of(napi, struct fm10k_q_vector, napi);
1435 struct fm10k_ring *ring;
1436 int per_ring_budget, work_done = 0;
1437 bool clean_complete = true;
1438
1439 fm10k_for_each_ring(ring, q_vector->tx) {
1440 if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1441 clean_complete = false;
1442 }
1443
1444 /* Handle case where we are called by netpoll with a budget of 0 */
1445 if (budget <= 0)
1446 return budget;
1447
1448 /* attempt to distribute budget to each queue fairly, but don't
1449 * allow the budget to go below 1 because we'll exit polling
1450 */
1451 if (q_vector->rx.count > 1)
1452 per_ring_budget = max(budget / q_vector->rx.count, 1);
1453 else
1454 per_ring_budget = budget;
1455
1456 fm10k_for_each_ring(ring, q_vector->rx) {
1457 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1458
1459 work_done += work;
1460 if (work >= per_ring_budget)
1461 clean_complete = false;
1462 }
1463
1464 /* If all work not completed, return budget and keep polling */
1465 if (!clean_complete)
1466 return budget;
1467
1468 /* all work done, exit the polling mode */
1469 napi_complete_done(napi, work_done);
1470
1471 /* re-enable the q_vector */
1472 fm10k_qv_enable(q_vector);
1473
1474 return 0;
1475 }
1476
1477 /**
1478 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1479 * @interface: board private structure to initialize
1480 *
1481 * When QoS (Quality of Service) is enabled, allocate queues for
1482 * each traffic class. If multiqueue isn't available,then abort QoS
1483 * initialization.
1484 *
1485 * This function handles all combinations of Qos and RSS.
1486 *
1487 **/
1488 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1489 {
1490 struct net_device *dev = interface->netdev;
1491 struct fm10k_ring_feature *f;
1492 int rss_i, i;
1493 int pcs;
1494
1495 /* Map queue offset and counts onto allocated tx queues */
1496 pcs = netdev_get_num_tc(dev);
1497
1498 if (pcs <= 1)
1499 return false;
1500
1501 /* set QoS mask and indices */
1502 f = &interface->ring_feature[RING_F_QOS];
1503 f->indices = pcs;
1504 f->mask = BIT(fls(pcs - 1)) - 1;
1505
1506 /* determine the upper limit for our current DCB mode */
1507 rss_i = interface->hw.mac.max_queues / pcs;
1508 rss_i = BIT(fls(rss_i) - 1);
1509
1510 /* set RSS mask and indices */
1511 f = &interface->ring_feature[RING_F_RSS];
1512 rss_i = min_t(u16, rss_i, f->limit);
1513 f->indices = rss_i;
1514 f->mask = BIT(fls(rss_i - 1)) - 1;
1515
1516 /* configure pause class to queue mapping */
1517 for (i = 0; i < pcs; i++)
1518 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1519
1520 interface->num_rx_queues = rss_i * pcs;
1521 interface->num_tx_queues = rss_i * pcs;
1522
1523 return true;
1524 }
1525
1526 /**
1527 * fm10k_set_rss_queues: Allocate queues for RSS
1528 * @interface: board private structure to initialize
1529 *
1530 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1531 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1532 *
1533 **/
1534 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1535 {
1536 struct fm10k_ring_feature *f;
1537 u16 rss_i;
1538
1539 f = &interface->ring_feature[RING_F_RSS];
1540 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1541
1542 /* record indices and power of 2 mask for RSS */
1543 f->indices = rss_i;
1544 f->mask = BIT(fls(rss_i - 1)) - 1;
1545
1546 interface->num_rx_queues = rss_i;
1547 interface->num_tx_queues = rss_i;
1548
1549 return true;
1550 }
1551
1552 /**
1553 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1554 * @interface: board private structure to initialize
1555 *
1556 * This is the top level queue allocation routine. The order here is very
1557 * important, starting with the "most" number of features turned on at once,
1558 * and ending with the smallest set of features. This way large combinations
1559 * can be allocated if they're turned on, and smaller combinations are the
1560 * fallthrough conditions.
1561 *
1562 **/
1563 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1564 {
1565 /* Attempt to setup QoS and RSS first */
1566 if (fm10k_set_qos_queues(interface))
1567 return;
1568
1569 /* If we don't have QoS, just fallback to only RSS. */
1570 fm10k_set_rss_queues(interface);
1571 }
1572
1573 /**
1574 * fm10k_reset_num_queues - Reset the number of queues to zero
1575 * @interface: board private structure
1576 *
1577 * This function should be called whenever we need to reset the number of
1578 * queues after an error condition.
1579 */
1580 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1581 {
1582 interface->num_tx_queues = 0;
1583 interface->num_rx_queues = 0;
1584 interface->num_q_vectors = 0;
1585 }
1586
1587 /**
1588 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1589 * @interface: board private structure to initialize
1590 * @v_count: q_vectors allocated on interface, used for ring interleaving
1591 * @v_idx: index of vector in interface struct
1592 * @txr_count: total number of Tx rings to allocate
1593 * @txr_idx: index of first Tx ring to allocate
1594 * @rxr_count: total number of Rx rings to allocate
1595 * @rxr_idx: index of first Rx ring to allocate
1596 *
1597 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1598 **/
1599 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1600 unsigned int v_count, unsigned int v_idx,
1601 unsigned int txr_count, unsigned int txr_idx,
1602 unsigned int rxr_count, unsigned int rxr_idx)
1603 {
1604 struct fm10k_q_vector *q_vector;
1605 struct fm10k_ring *ring;
1606 int ring_count, size;
1607
1608 ring_count = txr_count + rxr_count;
1609 size = sizeof(struct fm10k_q_vector) +
1610 (sizeof(struct fm10k_ring) * ring_count);
1611
1612 /* allocate q_vector and rings */
1613 q_vector = kzalloc(size, GFP_KERNEL);
1614 if (!q_vector)
1615 return -ENOMEM;
1616
1617 /* initialize NAPI */
1618 netif_napi_add(interface->netdev, &q_vector->napi,
1619 fm10k_poll, NAPI_POLL_WEIGHT);
1620
1621 /* tie q_vector and interface together */
1622 interface->q_vector[v_idx] = q_vector;
1623 q_vector->interface = interface;
1624 q_vector->v_idx = v_idx;
1625
1626 /* initialize pointer to rings */
1627 ring = q_vector->ring;
1628
1629 /* save Tx ring container info */
1630 q_vector->tx.ring = ring;
1631 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1632 q_vector->tx.itr = interface->tx_itr;
1633 q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1634 q_vector->tx.count = txr_count;
1635
1636 while (txr_count) {
1637 /* assign generic ring traits */
1638 ring->dev = &interface->pdev->dev;
1639 ring->netdev = interface->netdev;
1640
1641 /* configure backlink on ring */
1642 ring->q_vector = q_vector;
1643
1644 /* apply Tx specific ring traits */
1645 ring->count = interface->tx_ring_count;
1646 ring->queue_index = txr_idx;
1647
1648 /* assign ring to interface */
1649 interface->tx_ring[txr_idx] = ring;
1650
1651 /* update count and index */
1652 txr_count--;
1653 txr_idx += v_count;
1654
1655 /* push pointer to next ring */
1656 ring++;
1657 }
1658
1659 /* save Rx ring container info */
1660 q_vector->rx.ring = ring;
1661 q_vector->rx.itr = interface->rx_itr;
1662 q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1663 q_vector->rx.count = rxr_count;
1664
1665 while (rxr_count) {
1666 /* assign generic ring traits */
1667 ring->dev = &interface->pdev->dev;
1668 ring->netdev = interface->netdev;
1669 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1670
1671 /* configure backlink on ring */
1672 ring->q_vector = q_vector;
1673
1674 /* apply Rx specific ring traits */
1675 ring->count = interface->rx_ring_count;
1676 ring->queue_index = rxr_idx;
1677
1678 /* assign ring to interface */
1679 interface->rx_ring[rxr_idx] = ring;
1680
1681 /* update count and index */
1682 rxr_count--;
1683 rxr_idx += v_count;
1684
1685 /* push pointer to next ring */
1686 ring++;
1687 }
1688
1689 fm10k_dbg_q_vector_init(q_vector);
1690
1691 return 0;
1692 }
1693
1694 /**
1695 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1696 * @interface: board private structure to initialize
1697 * @v_idx: Index of vector to be freed
1698 *
1699 * This function frees the memory allocated to the q_vector. In addition if
1700 * NAPI is enabled it will delete any references to the NAPI struct prior
1701 * to freeing the q_vector.
1702 **/
1703 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1704 {
1705 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1706 struct fm10k_ring *ring;
1707
1708 fm10k_dbg_q_vector_exit(q_vector);
1709
1710 fm10k_for_each_ring(ring, q_vector->tx)
1711 interface->tx_ring[ring->queue_index] = NULL;
1712
1713 fm10k_for_each_ring(ring, q_vector->rx)
1714 interface->rx_ring[ring->queue_index] = NULL;
1715
1716 interface->q_vector[v_idx] = NULL;
1717 netif_napi_del(&q_vector->napi);
1718 kfree_rcu(q_vector, rcu);
1719 }
1720
1721 /**
1722 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1723 * @interface: board private structure to initialize
1724 *
1725 * We allocate one q_vector per queue interrupt. If allocation fails we
1726 * return -ENOMEM.
1727 **/
1728 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1729 {
1730 unsigned int q_vectors = interface->num_q_vectors;
1731 unsigned int rxr_remaining = interface->num_rx_queues;
1732 unsigned int txr_remaining = interface->num_tx_queues;
1733 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1734 int err;
1735
1736 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1737 for (; rxr_remaining; v_idx++) {
1738 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1739 0, 0, 1, rxr_idx);
1740 if (err)
1741 goto err_out;
1742
1743 /* update counts and index */
1744 rxr_remaining--;
1745 rxr_idx++;
1746 }
1747 }
1748
1749 for (; v_idx < q_vectors; v_idx++) {
1750 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1751 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1752
1753 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1754 tqpv, txr_idx,
1755 rqpv, rxr_idx);
1756
1757 if (err)
1758 goto err_out;
1759
1760 /* update counts and index */
1761 rxr_remaining -= rqpv;
1762 txr_remaining -= tqpv;
1763 rxr_idx++;
1764 txr_idx++;
1765 }
1766
1767 return 0;
1768
1769 err_out:
1770 fm10k_reset_num_queues(interface);
1771
1772 while (v_idx--)
1773 fm10k_free_q_vector(interface, v_idx);
1774
1775 return -ENOMEM;
1776 }
1777
1778 /**
1779 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1780 * @interface: board private structure to initialize
1781 *
1782 * This function frees the memory allocated to the q_vectors. In addition if
1783 * NAPI is enabled it will delete any references to the NAPI struct prior
1784 * to freeing the q_vector.
1785 **/
1786 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1787 {
1788 int v_idx = interface->num_q_vectors;
1789
1790 fm10k_reset_num_queues(interface);
1791
1792 while (v_idx--)
1793 fm10k_free_q_vector(interface, v_idx);
1794 }
1795
1796 /**
1797 * f10k_reset_msix_capability - reset MSI-X capability
1798 * @interface: board private structure to initialize
1799 *
1800 * Reset the MSI-X capability back to its starting state
1801 **/
1802 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1803 {
1804 pci_disable_msix(interface->pdev);
1805 kfree(interface->msix_entries);
1806 interface->msix_entries = NULL;
1807 }
1808
1809 /**
1810 * f10k_init_msix_capability - configure MSI-X capability
1811 * @interface: board private structure to initialize
1812 *
1813 * Attempt to configure the interrupts using the best available
1814 * capabilities of the hardware and the kernel.
1815 **/
1816 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1817 {
1818 struct fm10k_hw *hw = &interface->hw;
1819 int v_budget, vector;
1820
1821 /* It's easy to be greedy for MSI-X vectors, but it really
1822 * doesn't do us much good if we have a lot more vectors
1823 * than CPU's. So let's be conservative and only ask for
1824 * (roughly) the same number of vectors as there are CPU's.
1825 * the default is to use pairs of vectors
1826 */
1827 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1828 v_budget = min_t(u16, v_budget, num_online_cpus());
1829
1830 /* account for vectors not related to queues */
1831 v_budget += NON_Q_VECTORS(hw);
1832
1833 /* At the same time, hardware can only support a maximum of
1834 * hw.mac->max_msix_vectors vectors. With features
1835 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1836 * descriptor queues supported by our device. Thus, we cap it off in
1837 * those rare cases where the cpu count also exceeds our vector limit.
1838 */
1839 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1840
1841 /* A failure in MSI-X entry allocation is fatal. */
1842 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1843 GFP_KERNEL);
1844 if (!interface->msix_entries)
1845 return -ENOMEM;
1846
1847 /* populate entry values */
1848 for (vector = 0; vector < v_budget; vector++)
1849 interface->msix_entries[vector].entry = vector;
1850
1851 /* Attempt to enable MSI-X with requested value */
1852 v_budget = pci_enable_msix_range(interface->pdev,
1853 interface->msix_entries,
1854 MIN_MSIX_COUNT(hw),
1855 v_budget);
1856 if (v_budget < 0) {
1857 kfree(interface->msix_entries);
1858 interface->msix_entries = NULL;
1859 return -ENOMEM;
1860 }
1861
1862 /* record the number of queues available for q_vectors */
1863 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1864
1865 return 0;
1866 }
1867
1868 /**
1869 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1870 * @interface: Interface structure continaining rings and devices
1871 *
1872 * Cache the descriptor ring offsets for Qos
1873 **/
1874 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1875 {
1876 struct net_device *dev = interface->netdev;
1877 int pc, offset, rss_i, i, q_idx;
1878 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1879 u8 num_pcs = netdev_get_num_tc(dev);
1880
1881 if (num_pcs <= 1)
1882 return false;
1883
1884 rss_i = interface->ring_feature[RING_F_RSS].indices;
1885
1886 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1887 q_idx = pc;
1888 for (i = 0; i < rss_i; i++) {
1889 interface->tx_ring[offset + i]->reg_idx = q_idx;
1890 interface->tx_ring[offset + i]->qos_pc = pc;
1891 interface->rx_ring[offset + i]->reg_idx = q_idx;
1892 interface->rx_ring[offset + i]->qos_pc = pc;
1893 q_idx += pc_stride;
1894 }
1895 }
1896
1897 return true;
1898 }
1899
1900 /**
1901 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1902 * @interface: Interface structure continaining rings and devices
1903 *
1904 * Cache the descriptor ring offsets for RSS
1905 **/
1906 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1907 {
1908 int i;
1909
1910 for (i = 0; i < interface->num_rx_queues; i++)
1911 interface->rx_ring[i]->reg_idx = i;
1912
1913 for (i = 0; i < interface->num_tx_queues; i++)
1914 interface->tx_ring[i]->reg_idx = i;
1915 }
1916
1917 /**
1918 * fm10k_assign_rings - Map rings to network devices
1919 * @interface: Interface structure containing rings and devices
1920 *
1921 * This function is meant to go though and configure both the network
1922 * devices so that they contain rings, and configure the rings so that
1923 * they function with their network devices.
1924 **/
1925 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1926 {
1927 if (fm10k_cache_ring_qos(interface))
1928 return;
1929
1930 fm10k_cache_ring_rss(interface);
1931 }
1932
1933 static void fm10k_init_reta(struct fm10k_intfc *interface)
1934 {
1935 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1936 u32 reta;
1937
1938 /* If the Rx flow indirection table has been configured manually, we
1939 * need to maintain it when possible.
1940 */
1941 if (netif_is_rxfh_configured(interface->netdev)) {
1942 for (i = FM10K_RETA_SIZE; i--;) {
1943 reta = interface->reta[i];
1944 if ((((reta << 24) >> 24) < rss_i) &&
1945 (((reta << 16) >> 24) < rss_i) &&
1946 (((reta << 8) >> 24) < rss_i) &&
1947 (((reta) >> 24) < rss_i))
1948 continue;
1949
1950 /* this should never happen */
1951 dev_err(&interface->pdev->dev,
1952 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1953 goto repopulate_reta;
1954 }
1955
1956 /* do nothing if all of the elements are in bounds */
1957 return;
1958 }
1959
1960 repopulate_reta:
1961 fm10k_write_reta(interface, NULL);
1962 }
1963
1964 /**
1965 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1966 * @interface: board private structure to initialize
1967 *
1968 * We determine which queueing scheme to use based on...
1969 * - Hardware queue count (num_*_queues)
1970 * - defined by miscellaneous hardware support/features (RSS, etc.)
1971 **/
1972 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1973 {
1974 int err;
1975
1976 /* Number of supported queues */
1977 fm10k_set_num_queues(interface);
1978
1979 /* Configure MSI-X capability */
1980 err = fm10k_init_msix_capability(interface);
1981 if (err) {
1982 dev_err(&interface->pdev->dev,
1983 "Unable to initialize MSI-X capability\n");
1984 goto err_init_msix;
1985 }
1986
1987 /* Allocate memory for queues */
1988 err = fm10k_alloc_q_vectors(interface);
1989 if (err) {
1990 dev_err(&interface->pdev->dev,
1991 "Unable to allocate queue vectors\n");
1992 goto err_alloc_q_vectors;
1993 }
1994
1995 /* Map rings to devices, and map devices to physical queues */
1996 fm10k_assign_rings(interface);
1997
1998 /* Initialize RSS redirection table */
1999 fm10k_init_reta(interface);
2000
2001 return 0;
2002
2003 err_alloc_q_vectors:
2004 fm10k_reset_msix_capability(interface);
2005 err_init_msix:
2006 fm10k_reset_num_queues(interface);
2007 return err;
2008 }
2009
2010 /**
2011 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2012 * @interface: board private structure to clear queueing scheme on
2013 *
2014 * We go through and clear queueing specific resources and reset the structure
2015 * to pre-load conditions
2016 **/
2017 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2018 {
2019 fm10k_free_q_vectors(interface);
2020 fm10k_reset_msix_capability(interface);
2021 }
This page took 0.072442 seconds and 6 git commands to generate.