Merge tag 'iwlwifi-next-for-kalle-2016-07-01' of git://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
1 /* Intel(R) Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2016 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21 #include <linux/types.h>
22 #include <linux/module.h>
23 #include <net/ipv6.h>
24 #include <net/ip.h>
25 #include <net/tcp.h>
26 #include <linux/if_macvlan.h>
27 #include <linux/prefetch.h>
28
29 #include "fm10k.h"
30
31 #define DRV_VERSION "0.19.3-k"
32 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver"
33 const char fm10k_driver_version[] = DRV_VERSION;
34 char fm10k_driver_name[] = "fm10k";
35 static const char fm10k_driver_string[] = DRV_SUMMARY;
36 static const char fm10k_copyright[] =
37 "Copyright (c) 2013 - 2016 Intel Corporation.";
38
39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40 MODULE_DESCRIPTION(DRV_SUMMARY);
41 MODULE_LICENSE("GPL");
42 MODULE_VERSION(DRV_VERSION);
43
44 /* single workqueue for entire fm10k driver */
45 struct workqueue_struct *fm10k_workqueue;
46
47 /**
48 * fm10k_init_module - Driver Registration Routine
49 *
50 * fm10k_init_module is the first routine called when the driver is
51 * loaded. All it does is register with the PCI subsystem.
52 **/
53 static int __init fm10k_init_module(void)
54 {
55 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
56 pr_info("%s\n", fm10k_copyright);
57
58 /* create driver workqueue */
59 fm10k_workqueue = create_workqueue("fm10k");
60
61 fm10k_dbg_init();
62
63 return fm10k_register_pci_driver();
64 }
65 module_init(fm10k_init_module);
66
67 /**
68 * fm10k_exit_module - Driver Exit Cleanup Routine
69 *
70 * fm10k_exit_module is called just before the driver is removed
71 * from memory.
72 **/
73 static void __exit fm10k_exit_module(void)
74 {
75 fm10k_unregister_pci_driver();
76
77 fm10k_dbg_exit();
78
79 /* destroy driver workqueue */
80 flush_workqueue(fm10k_workqueue);
81 destroy_workqueue(fm10k_workqueue);
82 }
83 module_exit(fm10k_exit_module);
84
85 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
86 struct fm10k_rx_buffer *bi)
87 {
88 struct page *page = bi->page;
89 dma_addr_t dma;
90
91 /* Only page will be NULL if buffer was consumed */
92 if (likely(page))
93 return true;
94
95 /* alloc new page for storage */
96 page = dev_alloc_page();
97 if (unlikely(!page)) {
98 rx_ring->rx_stats.alloc_failed++;
99 return false;
100 }
101
102 /* map page for use */
103 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
104
105 /* if mapping failed free memory back to system since
106 * there isn't much point in holding memory we can't use
107 */
108 if (dma_mapping_error(rx_ring->dev, dma)) {
109 __free_page(page);
110
111 rx_ring->rx_stats.alloc_failed++;
112 return false;
113 }
114
115 bi->dma = dma;
116 bi->page = page;
117 bi->page_offset = 0;
118
119 return true;
120 }
121
122 /**
123 * fm10k_alloc_rx_buffers - Replace used receive buffers
124 * @rx_ring: ring to place buffers on
125 * @cleaned_count: number of buffers to replace
126 **/
127 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
128 {
129 union fm10k_rx_desc *rx_desc;
130 struct fm10k_rx_buffer *bi;
131 u16 i = rx_ring->next_to_use;
132
133 /* nothing to do */
134 if (!cleaned_count)
135 return;
136
137 rx_desc = FM10K_RX_DESC(rx_ring, i);
138 bi = &rx_ring->rx_buffer[i];
139 i -= rx_ring->count;
140
141 do {
142 if (!fm10k_alloc_mapped_page(rx_ring, bi))
143 break;
144
145 /* Refresh the desc even if buffer_addrs didn't change
146 * because each write-back erases this info.
147 */
148 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
149
150 rx_desc++;
151 bi++;
152 i++;
153 if (unlikely(!i)) {
154 rx_desc = FM10K_RX_DESC(rx_ring, 0);
155 bi = rx_ring->rx_buffer;
156 i -= rx_ring->count;
157 }
158
159 /* clear the status bits for the next_to_use descriptor */
160 rx_desc->d.staterr = 0;
161
162 cleaned_count--;
163 } while (cleaned_count);
164
165 i += rx_ring->count;
166
167 if (rx_ring->next_to_use != i) {
168 /* record the next descriptor to use */
169 rx_ring->next_to_use = i;
170
171 /* update next to alloc since we have filled the ring */
172 rx_ring->next_to_alloc = i;
173
174 /* Force memory writes to complete before letting h/w
175 * know there are new descriptors to fetch. (Only
176 * applicable for weak-ordered memory model archs,
177 * such as IA-64).
178 */
179 wmb();
180
181 /* notify hardware of new descriptors */
182 writel(i, rx_ring->tail);
183 }
184 }
185
186 /**
187 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
188 * @rx_ring: rx descriptor ring to store buffers on
189 * @old_buff: donor buffer to have page reused
190 *
191 * Synchronizes page for reuse by the interface
192 **/
193 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
194 struct fm10k_rx_buffer *old_buff)
195 {
196 struct fm10k_rx_buffer *new_buff;
197 u16 nta = rx_ring->next_to_alloc;
198
199 new_buff = &rx_ring->rx_buffer[nta];
200
201 /* update, and store next to alloc */
202 nta++;
203 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
204
205 /* transfer page from old buffer to new buffer */
206 *new_buff = *old_buff;
207
208 /* sync the buffer for use by the device */
209 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
210 old_buff->page_offset,
211 FM10K_RX_BUFSZ,
212 DMA_FROM_DEVICE);
213 }
214
215 static inline bool fm10k_page_is_reserved(struct page *page)
216 {
217 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
218 }
219
220 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
221 struct page *page,
222 unsigned int __maybe_unused truesize)
223 {
224 /* avoid re-using remote pages */
225 if (unlikely(fm10k_page_is_reserved(page)))
226 return false;
227
228 #if (PAGE_SIZE < 8192)
229 /* if we are only owner of page we can reuse it */
230 if (unlikely(page_count(page) != 1))
231 return false;
232
233 /* flip page offset to other buffer */
234 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
235 #else
236 /* move offset up to the next cache line */
237 rx_buffer->page_offset += truesize;
238
239 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
240 return false;
241 #endif
242
243 /* Even if we own the page, we are not allowed to use atomic_set()
244 * This would break get_page_unless_zero() users.
245 */
246 page_ref_inc(page);
247
248 return true;
249 }
250
251 /**
252 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
253 * @rx_buffer: buffer containing page to add
254 * @rx_desc: descriptor containing length of buffer written by hardware
255 * @skb: sk_buff to place the data into
256 *
257 * This function will add the data contained in rx_buffer->page to the skb.
258 * This is done either through a direct copy if the data in the buffer is
259 * less than the skb header size, otherwise it will just attach the page as
260 * a frag to the skb.
261 *
262 * The function will then update the page offset if necessary and return
263 * true if the buffer can be reused by the interface.
264 **/
265 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
266 union fm10k_rx_desc *rx_desc,
267 struct sk_buff *skb)
268 {
269 struct page *page = rx_buffer->page;
270 unsigned char *va = page_address(page) + rx_buffer->page_offset;
271 unsigned int size = le16_to_cpu(rx_desc->w.length);
272 #if (PAGE_SIZE < 8192)
273 unsigned int truesize = FM10K_RX_BUFSZ;
274 #else
275 unsigned int truesize = SKB_DATA_ALIGN(size);
276 #endif
277 unsigned int pull_len;
278
279 if (unlikely(skb_is_nonlinear(skb)))
280 goto add_tail_frag;
281
282 if (likely(size <= FM10K_RX_HDR_LEN)) {
283 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
284
285 /* page is not reserved, we can reuse buffer as-is */
286 if (likely(!fm10k_page_is_reserved(page)))
287 return true;
288
289 /* this page cannot be reused so discard it */
290 __free_page(page);
291 return false;
292 }
293
294 /* we need the header to contain the greater of either ETH_HLEN or
295 * 60 bytes if the skb->len is less than 60 for skb_pad.
296 */
297 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
298
299 /* align pull length to size of long to optimize memcpy performance */
300 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
301
302 /* update all of the pointers */
303 va += pull_len;
304 size -= pull_len;
305
306 add_tail_frag:
307 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
308 (unsigned long)va & ~PAGE_MASK, size, truesize);
309
310 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
311 }
312
313 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
314 union fm10k_rx_desc *rx_desc,
315 struct sk_buff *skb)
316 {
317 struct fm10k_rx_buffer *rx_buffer;
318 struct page *page;
319
320 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
321 page = rx_buffer->page;
322 prefetchw(page);
323
324 if (likely(!skb)) {
325 void *page_addr = page_address(page) +
326 rx_buffer->page_offset;
327
328 /* prefetch first cache line of first page */
329 prefetch(page_addr);
330 #if L1_CACHE_BYTES < 128
331 prefetch(page_addr + L1_CACHE_BYTES);
332 #endif
333
334 /* allocate a skb to store the frags */
335 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
336 FM10K_RX_HDR_LEN);
337 if (unlikely(!skb)) {
338 rx_ring->rx_stats.alloc_failed++;
339 return NULL;
340 }
341
342 /* we will be copying header into skb->data in
343 * pskb_may_pull so it is in our interest to prefetch
344 * it now to avoid a possible cache miss
345 */
346 prefetchw(skb->data);
347 }
348
349 /* we are reusing so sync this buffer for CPU use */
350 dma_sync_single_range_for_cpu(rx_ring->dev,
351 rx_buffer->dma,
352 rx_buffer->page_offset,
353 FM10K_RX_BUFSZ,
354 DMA_FROM_DEVICE);
355
356 /* pull page into skb */
357 if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
358 /* hand second half of page back to the ring */
359 fm10k_reuse_rx_page(rx_ring, rx_buffer);
360 } else {
361 /* we are not reusing the buffer so unmap it */
362 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
363 PAGE_SIZE, DMA_FROM_DEVICE);
364 }
365
366 /* clear contents of rx_buffer */
367 rx_buffer->page = NULL;
368
369 return skb;
370 }
371
372 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
373 union fm10k_rx_desc *rx_desc,
374 struct sk_buff *skb)
375 {
376 skb_checksum_none_assert(skb);
377
378 /* Rx checksum disabled via ethtool */
379 if (!(ring->netdev->features & NETIF_F_RXCSUM))
380 return;
381
382 /* TCP/UDP checksum error bit is set */
383 if (fm10k_test_staterr(rx_desc,
384 FM10K_RXD_STATUS_L4E |
385 FM10K_RXD_STATUS_L4E2 |
386 FM10K_RXD_STATUS_IPE |
387 FM10K_RXD_STATUS_IPE2)) {
388 ring->rx_stats.csum_err++;
389 return;
390 }
391
392 /* It must be a TCP or UDP packet with a valid checksum */
393 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
394 skb->encapsulation = true;
395 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
396 return;
397
398 skb->ip_summed = CHECKSUM_UNNECESSARY;
399
400 ring->rx_stats.csum_good++;
401 }
402
403 #define FM10K_RSS_L4_TYPES_MASK \
404 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
405 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
406 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
407 BIT(FM10K_RSSTYPE_IPV6_UDP))
408
409 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
410 union fm10k_rx_desc *rx_desc,
411 struct sk_buff *skb)
412 {
413 u16 rss_type;
414
415 if (!(ring->netdev->features & NETIF_F_RXHASH))
416 return;
417
418 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
419 if (!rss_type)
420 return;
421
422 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
423 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
424 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
425 }
426
427 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
428 union fm10k_rx_desc __maybe_unused *rx_desc,
429 struct sk_buff *skb)
430 {
431 struct net_device *dev = rx_ring->netdev;
432 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
433
434 /* check to see if DGLORT belongs to a MACVLAN */
435 if (l2_accel) {
436 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
437
438 idx -= l2_accel->dglort;
439 if (idx < l2_accel->size && l2_accel->macvlan[idx])
440 dev = l2_accel->macvlan[idx];
441 else
442 l2_accel = NULL;
443 }
444
445 skb->protocol = eth_type_trans(skb, dev);
446
447 if (!l2_accel)
448 return;
449
450 /* update MACVLAN statistics */
451 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
452 !!(rx_desc->w.hdr_info &
453 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
454 }
455
456 /**
457 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
458 * @rx_ring: rx descriptor ring packet is being transacted on
459 * @rx_desc: pointer to the EOP Rx descriptor
460 * @skb: pointer to current skb being populated
461 *
462 * This function checks the ring, descriptor, and packet information in
463 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
464 * other fields within the skb.
465 **/
466 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
467 union fm10k_rx_desc *rx_desc,
468 struct sk_buff *skb)
469 {
470 unsigned int len = skb->len;
471
472 fm10k_rx_hash(rx_ring, rx_desc, skb);
473
474 fm10k_rx_checksum(rx_ring, rx_desc, skb);
475
476 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
477
478 skb_record_rx_queue(skb, rx_ring->queue_index);
479
480 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
481
482 if (rx_desc->w.vlan) {
483 u16 vid = le16_to_cpu(rx_desc->w.vlan);
484
485 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
486 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
487 else if (vid & VLAN_PRIO_MASK)
488 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
489 vid & VLAN_PRIO_MASK);
490 }
491
492 fm10k_type_trans(rx_ring, rx_desc, skb);
493
494 return len;
495 }
496
497 /**
498 * fm10k_is_non_eop - process handling of non-EOP buffers
499 * @rx_ring: Rx ring being processed
500 * @rx_desc: Rx descriptor for current buffer
501 *
502 * This function updates next to clean. If the buffer is an EOP buffer
503 * this function exits returning false, otherwise it will place the
504 * sk_buff in the next buffer to be chained and return true indicating
505 * that this is in fact a non-EOP buffer.
506 **/
507 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
508 union fm10k_rx_desc *rx_desc)
509 {
510 u32 ntc = rx_ring->next_to_clean + 1;
511
512 /* fetch, update, and store next to clean */
513 ntc = (ntc < rx_ring->count) ? ntc : 0;
514 rx_ring->next_to_clean = ntc;
515
516 prefetch(FM10K_RX_DESC(rx_ring, ntc));
517
518 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
519 return false;
520
521 return true;
522 }
523
524 /**
525 * fm10k_cleanup_headers - Correct corrupted or empty headers
526 * @rx_ring: rx descriptor ring packet is being transacted on
527 * @rx_desc: pointer to the EOP Rx descriptor
528 * @skb: pointer to current skb being fixed
529 *
530 * Address the case where we are pulling data in on pages only
531 * and as such no data is present in the skb header.
532 *
533 * In addition if skb is not at least 60 bytes we need to pad it so that
534 * it is large enough to qualify as a valid Ethernet frame.
535 *
536 * Returns true if an error was encountered and skb was freed.
537 **/
538 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
539 union fm10k_rx_desc *rx_desc,
540 struct sk_buff *skb)
541 {
542 if (unlikely((fm10k_test_staterr(rx_desc,
543 FM10K_RXD_STATUS_RXE)))) {
544 #define FM10K_TEST_RXD_BIT(rxd, bit) \
545 ((rxd)->w.csum_err & cpu_to_le16(bit))
546 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
547 rx_ring->rx_stats.switch_errors++;
548 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
549 rx_ring->rx_stats.drops++;
550 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
551 rx_ring->rx_stats.pp_errors++;
552 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
553 rx_ring->rx_stats.link_errors++;
554 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
555 rx_ring->rx_stats.length_errors++;
556 dev_kfree_skb_any(skb);
557 rx_ring->rx_stats.errors++;
558 return true;
559 }
560
561 /* if eth_skb_pad returns an error the skb was freed */
562 if (eth_skb_pad(skb))
563 return true;
564
565 return false;
566 }
567
568 /**
569 * fm10k_receive_skb - helper function to handle rx indications
570 * @q_vector: structure containing interrupt and ring information
571 * @skb: packet to send up
572 **/
573 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
574 struct sk_buff *skb)
575 {
576 napi_gro_receive(&q_vector->napi, skb);
577 }
578
579 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
580 struct fm10k_ring *rx_ring,
581 int budget)
582 {
583 struct sk_buff *skb = rx_ring->skb;
584 unsigned int total_bytes = 0, total_packets = 0;
585 u16 cleaned_count = fm10k_desc_unused(rx_ring);
586
587 while (likely(total_packets < budget)) {
588 union fm10k_rx_desc *rx_desc;
589
590 /* return some buffers to hardware, one at a time is too slow */
591 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
592 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
593 cleaned_count = 0;
594 }
595
596 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
597
598 if (!rx_desc->d.staterr)
599 break;
600
601 /* This memory barrier is needed to keep us from reading
602 * any other fields out of the rx_desc until we know the
603 * descriptor has been written back
604 */
605 dma_rmb();
606
607 /* retrieve a buffer from the ring */
608 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
609
610 /* exit if we failed to retrieve a buffer */
611 if (!skb)
612 break;
613
614 cleaned_count++;
615
616 /* fetch next buffer in frame if non-eop */
617 if (fm10k_is_non_eop(rx_ring, rx_desc))
618 continue;
619
620 /* verify the packet layout is correct */
621 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
622 skb = NULL;
623 continue;
624 }
625
626 /* populate checksum, timestamp, VLAN, and protocol */
627 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
628
629 fm10k_receive_skb(q_vector, skb);
630
631 /* reset skb pointer */
632 skb = NULL;
633
634 /* update budget accounting */
635 total_packets++;
636 }
637
638 /* place incomplete frames back on ring for completion */
639 rx_ring->skb = skb;
640
641 u64_stats_update_begin(&rx_ring->syncp);
642 rx_ring->stats.packets += total_packets;
643 rx_ring->stats.bytes += total_bytes;
644 u64_stats_update_end(&rx_ring->syncp);
645 q_vector->rx.total_packets += total_packets;
646 q_vector->rx.total_bytes += total_bytes;
647
648 return total_packets;
649 }
650
651 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
652 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
653 {
654 struct fm10k_intfc *interface = netdev_priv(skb->dev);
655 struct fm10k_vxlan_port *vxlan_port;
656
657 /* we can only offload a vxlan if we recognize it as such */
658 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
659 struct fm10k_vxlan_port, list);
660
661 if (!vxlan_port)
662 return NULL;
663 if (vxlan_port->port != udp_hdr(skb)->dest)
664 return NULL;
665
666 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
667 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
668 }
669
670 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
671 #define NVGRE_TNI htons(0x2000)
672 struct fm10k_nvgre_hdr {
673 __be16 flags;
674 __be16 proto;
675 __be32 tni;
676 };
677
678 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
679 {
680 struct fm10k_nvgre_hdr *nvgre_hdr;
681 int hlen = ip_hdrlen(skb);
682
683 /* currently only IPv4 is supported due to hlen above */
684 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
685 return NULL;
686
687 /* our transport header should be NVGRE */
688 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
689
690 /* verify all reserved flags are 0 */
691 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
692 return NULL;
693
694 /* report start of ethernet header */
695 if (nvgre_hdr->flags & NVGRE_TNI)
696 return (struct ethhdr *)(nvgre_hdr + 1);
697
698 return (struct ethhdr *)(&nvgre_hdr->tni);
699 }
700
701 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
702 {
703 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
704 struct ethhdr *eth_hdr;
705
706 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
707 skb->inner_protocol != htons(ETH_P_TEB))
708 return 0;
709
710 switch (vlan_get_protocol(skb)) {
711 case htons(ETH_P_IP):
712 l4_hdr = ip_hdr(skb)->protocol;
713 break;
714 case htons(ETH_P_IPV6):
715 l4_hdr = ipv6_hdr(skb)->nexthdr;
716 break;
717 default:
718 return 0;
719 }
720
721 switch (l4_hdr) {
722 case IPPROTO_UDP:
723 eth_hdr = fm10k_port_is_vxlan(skb);
724 break;
725 case IPPROTO_GRE:
726 eth_hdr = fm10k_gre_is_nvgre(skb);
727 break;
728 default:
729 return 0;
730 }
731
732 if (!eth_hdr)
733 return 0;
734
735 switch (eth_hdr->h_proto) {
736 case htons(ETH_P_IP):
737 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
738 break;
739 case htons(ETH_P_IPV6):
740 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
741 break;
742 default:
743 return 0;
744 }
745
746 switch (inner_l4_hdr) {
747 case IPPROTO_TCP:
748 inner_l4_hlen = inner_tcp_hdrlen(skb);
749 break;
750 case IPPROTO_UDP:
751 inner_l4_hlen = 8;
752 break;
753 default:
754 return 0;
755 }
756
757 /* The hardware allows tunnel offloads only if the combined inner and
758 * outer header is 184 bytes or less
759 */
760 if (skb_inner_transport_header(skb) + inner_l4_hlen -
761 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
762 return 0;
763
764 return eth_hdr->h_proto;
765 }
766
767 static int fm10k_tso(struct fm10k_ring *tx_ring,
768 struct fm10k_tx_buffer *first)
769 {
770 struct sk_buff *skb = first->skb;
771 struct fm10k_tx_desc *tx_desc;
772 unsigned char *th;
773 u8 hdrlen;
774
775 if (skb->ip_summed != CHECKSUM_PARTIAL)
776 return 0;
777
778 if (!skb_is_gso(skb))
779 return 0;
780
781 /* compute header lengths */
782 if (skb->encapsulation) {
783 if (!fm10k_tx_encap_offload(skb))
784 goto err_vxlan;
785 th = skb_inner_transport_header(skb);
786 } else {
787 th = skb_transport_header(skb);
788 }
789
790 /* compute offset from SOF to transport header and add header len */
791 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
792
793 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
794
795 /* update gso size and bytecount with header size */
796 first->gso_segs = skb_shinfo(skb)->gso_segs;
797 first->bytecount += (first->gso_segs - 1) * hdrlen;
798
799 /* populate Tx descriptor header size and mss */
800 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
801 tx_desc->hdrlen = hdrlen;
802 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
803
804 return 1;
805 err_vxlan:
806 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
807 if (!net_ratelimit())
808 netdev_err(tx_ring->netdev,
809 "TSO requested for unsupported tunnel, disabling offload\n");
810 return -1;
811 }
812
813 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
814 struct fm10k_tx_buffer *first)
815 {
816 struct sk_buff *skb = first->skb;
817 struct fm10k_tx_desc *tx_desc;
818 union {
819 struct iphdr *ipv4;
820 struct ipv6hdr *ipv6;
821 u8 *raw;
822 } network_hdr;
823 u8 *transport_hdr;
824 __be16 frag_off;
825 __be16 protocol;
826 u8 l4_hdr = 0;
827
828 if (skb->ip_summed != CHECKSUM_PARTIAL)
829 goto no_csum;
830
831 if (skb->encapsulation) {
832 protocol = fm10k_tx_encap_offload(skb);
833 if (!protocol) {
834 if (skb_checksum_help(skb)) {
835 dev_warn(tx_ring->dev,
836 "failed to offload encap csum!\n");
837 tx_ring->tx_stats.csum_err++;
838 }
839 goto no_csum;
840 }
841 network_hdr.raw = skb_inner_network_header(skb);
842 transport_hdr = skb_inner_transport_header(skb);
843 } else {
844 protocol = vlan_get_protocol(skb);
845 network_hdr.raw = skb_network_header(skb);
846 transport_hdr = skb_transport_header(skb);
847 }
848
849 switch (protocol) {
850 case htons(ETH_P_IP):
851 l4_hdr = network_hdr.ipv4->protocol;
852 break;
853 case htons(ETH_P_IPV6):
854 l4_hdr = network_hdr.ipv6->nexthdr;
855 if (likely((transport_hdr - network_hdr.raw) ==
856 sizeof(struct ipv6hdr)))
857 break;
858 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
859 sizeof(struct ipv6hdr),
860 &l4_hdr, &frag_off);
861 if (unlikely(frag_off))
862 l4_hdr = NEXTHDR_FRAGMENT;
863 break;
864 default:
865 break;
866 }
867
868 switch (l4_hdr) {
869 case IPPROTO_TCP:
870 case IPPROTO_UDP:
871 break;
872 case IPPROTO_GRE:
873 if (skb->encapsulation)
874 break;
875 default:
876 if (unlikely(net_ratelimit())) {
877 dev_warn(tx_ring->dev,
878 "partial checksum, version=%d l4 proto=%x\n",
879 protocol, l4_hdr);
880 }
881 skb_checksum_help(skb);
882 tx_ring->tx_stats.csum_err++;
883 goto no_csum;
884 }
885
886 /* update TX checksum flag */
887 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
888 tx_ring->tx_stats.csum_good++;
889
890 no_csum:
891 /* populate Tx descriptor header size and mss */
892 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
893 tx_desc->hdrlen = 0;
894 tx_desc->mss = 0;
895 }
896
897 #define FM10K_SET_FLAG(_input, _flag, _result) \
898 ((_flag <= _result) ? \
899 ((u32)(_input & _flag) * (_result / _flag)) : \
900 ((u32)(_input & _flag) / (_flag / _result)))
901
902 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
903 {
904 /* set type for advanced descriptor with frame checksum insertion */
905 u32 desc_flags = 0;
906
907 /* set checksum offload bits */
908 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
909 FM10K_TXD_FLAG_CSUM);
910
911 return desc_flags;
912 }
913
914 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
915 struct fm10k_tx_desc *tx_desc, u16 i,
916 dma_addr_t dma, unsigned int size, u8 desc_flags)
917 {
918 /* set RS and INT for last frame in a cache line */
919 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
920 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
921
922 /* record values to descriptor */
923 tx_desc->buffer_addr = cpu_to_le64(dma);
924 tx_desc->flags = desc_flags;
925 tx_desc->buflen = cpu_to_le16(size);
926
927 /* return true if we just wrapped the ring */
928 return i == tx_ring->count;
929 }
930
931 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
932 {
933 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
934
935 /* Memory barrier before checking head and tail */
936 smp_mb();
937
938 /* Check again in a case another CPU has just made room available */
939 if (likely(fm10k_desc_unused(tx_ring) < size))
940 return -EBUSY;
941
942 /* A reprieve! - use start_queue because it doesn't call schedule */
943 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
944 ++tx_ring->tx_stats.restart_queue;
945 return 0;
946 }
947
948 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
949 {
950 if (likely(fm10k_desc_unused(tx_ring) >= size))
951 return 0;
952 return __fm10k_maybe_stop_tx(tx_ring, size);
953 }
954
955 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
956 struct fm10k_tx_buffer *first)
957 {
958 struct sk_buff *skb = first->skb;
959 struct fm10k_tx_buffer *tx_buffer;
960 struct fm10k_tx_desc *tx_desc;
961 struct skb_frag_struct *frag;
962 unsigned char *data;
963 dma_addr_t dma;
964 unsigned int data_len, size;
965 u32 tx_flags = first->tx_flags;
966 u16 i = tx_ring->next_to_use;
967 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
968
969 tx_desc = FM10K_TX_DESC(tx_ring, i);
970
971 /* add HW VLAN tag */
972 if (skb_vlan_tag_present(skb))
973 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
974 else
975 tx_desc->vlan = 0;
976
977 size = skb_headlen(skb);
978 data = skb->data;
979
980 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
981
982 data_len = skb->data_len;
983 tx_buffer = first;
984
985 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
986 if (dma_mapping_error(tx_ring->dev, dma))
987 goto dma_error;
988
989 /* record length, and DMA address */
990 dma_unmap_len_set(tx_buffer, len, size);
991 dma_unmap_addr_set(tx_buffer, dma, dma);
992
993 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
994 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
995 FM10K_MAX_DATA_PER_TXD, flags)) {
996 tx_desc = FM10K_TX_DESC(tx_ring, 0);
997 i = 0;
998 }
999
1000 dma += FM10K_MAX_DATA_PER_TXD;
1001 size -= FM10K_MAX_DATA_PER_TXD;
1002 }
1003
1004 if (likely(!data_len))
1005 break;
1006
1007 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1008 dma, size, flags)) {
1009 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1010 i = 0;
1011 }
1012
1013 size = skb_frag_size(frag);
1014 data_len -= size;
1015
1016 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1017 DMA_TO_DEVICE);
1018
1019 tx_buffer = &tx_ring->tx_buffer[i];
1020 }
1021
1022 /* write last descriptor with LAST bit set */
1023 flags |= FM10K_TXD_FLAG_LAST;
1024
1025 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1026 i = 0;
1027
1028 /* record bytecount for BQL */
1029 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1030
1031 /* record SW timestamp if HW timestamp is not available */
1032 skb_tx_timestamp(first->skb);
1033
1034 /* Force memory writes to complete before letting h/w know there
1035 * are new descriptors to fetch. (Only applicable for weak-ordered
1036 * memory model archs, such as IA-64).
1037 *
1038 * We also need this memory barrier to make certain all of the
1039 * status bits have been updated before next_to_watch is written.
1040 */
1041 wmb();
1042
1043 /* set next_to_watch value indicating a packet is present */
1044 first->next_to_watch = tx_desc;
1045
1046 tx_ring->next_to_use = i;
1047
1048 /* Make sure there is space in the ring for the next send. */
1049 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1050
1051 /* notify HW of packet */
1052 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1053 writel(i, tx_ring->tail);
1054
1055 /* we need this if more than one processor can write to our tail
1056 * at a time, it synchronizes IO on IA64/Altix systems
1057 */
1058 mmiowb();
1059 }
1060
1061 return;
1062 dma_error:
1063 dev_err(tx_ring->dev, "TX DMA map failed\n");
1064
1065 /* clear dma mappings for failed tx_buffer map */
1066 for (;;) {
1067 tx_buffer = &tx_ring->tx_buffer[i];
1068 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1069 if (tx_buffer == first)
1070 break;
1071 if (i == 0)
1072 i = tx_ring->count;
1073 i--;
1074 }
1075
1076 tx_ring->next_to_use = i;
1077 }
1078
1079 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1080 struct fm10k_ring *tx_ring)
1081 {
1082 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1083 struct fm10k_tx_buffer *first;
1084 unsigned short f;
1085 u32 tx_flags = 0;
1086 int tso;
1087
1088 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1089 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1090 * + 2 desc gap to keep tail from touching head
1091 * otherwise try next time
1092 */
1093 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1094 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1095
1096 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1097 tx_ring->tx_stats.tx_busy++;
1098 return NETDEV_TX_BUSY;
1099 }
1100
1101 /* record the location of the first descriptor for this packet */
1102 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1103 first->skb = skb;
1104 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1105 first->gso_segs = 1;
1106
1107 /* record initial flags and protocol */
1108 first->tx_flags = tx_flags;
1109
1110 tso = fm10k_tso(tx_ring, first);
1111 if (tso < 0)
1112 goto out_drop;
1113 else if (!tso)
1114 fm10k_tx_csum(tx_ring, first);
1115
1116 fm10k_tx_map(tx_ring, first);
1117
1118 return NETDEV_TX_OK;
1119
1120 out_drop:
1121 dev_kfree_skb_any(first->skb);
1122 first->skb = NULL;
1123
1124 return NETDEV_TX_OK;
1125 }
1126
1127 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1128 {
1129 return ring->stats.packets;
1130 }
1131
1132 static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1133 {
1134 /* use SW head and tail until we have real hardware */
1135 u32 head = ring->next_to_clean;
1136 u32 tail = ring->next_to_use;
1137
1138 return ((head <= tail) ? tail : tail + ring->count) - head;
1139 }
1140
1141 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1142 {
1143 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1144 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1145 u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1146
1147 clear_check_for_tx_hang(tx_ring);
1148
1149 /* Check for a hung queue, but be thorough. This verifies
1150 * that a transmit has been completed since the previous
1151 * check AND there is at least one packet pending. By
1152 * requiring this to fail twice we avoid races with
1153 * clearing the ARMED bit and conditions where we
1154 * run the check_tx_hang logic with a transmit completion
1155 * pending but without time to complete it yet.
1156 */
1157 if (!tx_pending || (tx_done_old != tx_done)) {
1158 /* update completed stats and continue */
1159 tx_ring->tx_stats.tx_done_old = tx_done;
1160 /* reset the countdown */
1161 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1162
1163 return false;
1164 }
1165
1166 /* make sure it is true for two checks in a row */
1167 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1168 }
1169
1170 /**
1171 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1172 * @interface: driver private struct
1173 **/
1174 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1175 {
1176 /* Do the reset outside of interrupt context */
1177 if (!test_bit(__FM10K_DOWN, &interface->state)) {
1178 interface->tx_timeout_count++;
1179 interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1180 fm10k_service_event_schedule(interface);
1181 }
1182 }
1183
1184 /**
1185 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1186 * @q_vector: structure containing interrupt and ring information
1187 * @tx_ring: tx ring to clean
1188 * @napi_budget: Used to determine if we are in netpoll
1189 **/
1190 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1191 struct fm10k_ring *tx_ring, int napi_budget)
1192 {
1193 struct fm10k_intfc *interface = q_vector->interface;
1194 struct fm10k_tx_buffer *tx_buffer;
1195 struct fm10k_tx_desc *tx_desc;
1196 unsigned int total_bytes = 0, total_packets = 0;
1197 unsigned int budget = q_vector->tx.work_limit;
1198 unsigned int i = tx_ring->next_to_clean;
1199
1200 if (test_bit(__FM10K_DOWN, &interface->state))
1201 return true;
1202
1203 tx_buffer = &tx_ring->tx_buffer[i];
1204 tx_desc = FM10K_TX_DESC(tx_ring, i);
1205 i -= tx_ring->count;
1206
1207 do {
1208 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1209
1210 /* if next_to_watch is not set then there is no work pending */
1211 if (!eop_desc)
1212 break;
1213
1214 /* prevent any other reads prior to eop_desc */
1215 read_barrier_depends();
1216
1217 /* if DD is not set pending work has not been completed */
1218 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1219 break;
1220
1221 /* clear next_to_watch to prevent false hangs */
1222 tx_buffer->next_to_watch = NULL;
1223
1224 /* update the statistics for this packet */
1225 total_bytes += tx_buffer->bytecount;
1226 total_packets += tx_buffer->gso_segs;
1227
1228 /* free the skb */
1229 napi_consume_skb(tx_buffer->skb, napi_budget);
1230
1231 /* unmap skb header data */
1232 dma_unmap_single(tx_ring->dev,
1233 dma_unmap_addr(tx_buffer, dma),
1234 dma_unmap_len(tx_buffer, len),
1235 DMA_TO_DEVICE);
1236
1237 /* clear tx_buffer data */
1238 tx_buffer->skb = NULL;
1239 dma_unmap_len_set(tx_buffer, len, 0);
1240
1241 /* unmap remaining buffers */
1242 while (tx_desc != eop_desc) {
1243 tx_buffer++;
1244 tx_desc++;
1245 i++;
1246 if (unlikely(!i)) {
1247 i -= tx_ring->count;
1248 tx_buffer = tx_ring->tx_buffer;
1249 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1250 }
1251
1252 /* unmap any remaining paged data */
1253 if (dma_unmap_len(tx_buffer, len)) {
1254 dma_unmap_page(tx_ring->dev,
1255 dma_unmap_addr(tx_buffer, dma),
1256 dma_unmap_len(tx_buffer, len),
1257 DMA_TO_DEVICE);
1258 dma_unmap_len_set(tx_buffer, len, 0);
1259 }
1260 }
1261
1262 /* move us one more past the eop_desc for start of next pkt */
1263 tx_buffer++;
1264 tx_desc++;
1265 i++;
1266 if (unlikely(!i)) {
1267 i -= tx_ring->count;
1268 tx_buffer = tx_ring->tx_buffer;
1269 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1270 }
1271
1272 /* issue prefetch for next Tx descriptor */
1273 prefetch(tx_desc);
1274
1275 /* update budget accounting */
1276 budget--;
1277 } while (likely(budget));
1278
1279 i += tx_ring->count;
1280 tx_ring->next_to_clean = i;
1281 u64_stats_update_begin(&tx_ring->syncp);
1282 tx_ring->stats.bytes += total_bytes;
1283 tx_ring->stats.packets += total_packets;
1284 u64_stats_update_end(&tx_ring->syncp);
1285 q_vector->tx.total_bytes += total_bytes;
1286 q_vector->tx.total_packets += total_packets;
1287
1288 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1289 /* schedule immediate reset if we believe we hung */
1290 struct fm10k_hw *hw = &interface->hw;
1291
1292 netif_err(interface, drv, tx_ring->netdev,
1293 "Detected Tx Unit Hang\n"
1294 " Tx Queue <%d>\n"
1295 " TDH, TDT <%x>, <%x>\n"
1296 " next_to_use <%x>\n"
1297 " next_to_clean <%x>\n",
1298 tx_ring->queue_index,
1299 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1300 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1301 tx_ring->next_to_use, i);
1302
1303 netif_stop_subqueue(tx_ring->netdev,
1304 tx_ring->queue_index);
1305
1306 netif_info(interface, probe, tx_ring->netdev,
1307 "tx hang %d detected on queue %d, resetting interface\n",
1308 interface->tx_timeout_count + 1,
1309 tx_ring->queue_index);
1310
1311 fm10k_tx_timeout_reset(interface);
1312
1313 /* the netdev is about to reset, no point in enabling stuff */
1314 return true;
1315 }
1316
1317 /* notify netdev of completed buffers */
1318 netdev_tx_completed_queue(txring_txq(tx_ring),
1319 total_packets, total_bytes);
1320
1321 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1322 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1323 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1324 /* Make sure that anybody stopping the queue after this
1325 * sees the new next_to_clean.
1326 */
1327 smp_mb();
1328 if (__netif_subqueue_stopped(tx_ring->netdev,
1329 tx_ring->queue_index) &&
1330 !test_bit(__FM10K_DOWN, &interface->state)) {
1331 netif_wake_subqueue(tx_ring->netdev,
1332 tx_ring->queue_index);
1333 ++tx_ring->tx_stats.restart_queue;
1334 }
1335 }
1336
1337 return !!budget;
1338 }
1339
1340 /**
1341 * fm10k_update_itr - update the dynamic ITR value based on packet size
1342 *
1343 * Stores a new ITR value based on strictly on packet size. The
1344 * divisors and thresholds used by this function were determined based
1345 * on theoretical maximum wire speed and testing data, in order to
1346 * minimize response time while increasing bulk throughput.
1347 *
1348 * @ring_container: Container for rings to have ITR updated
1349 **/
1350 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1351 {
1352 unsigned int avg_wire_size, packets, itr_round;
1353
1354 /* Only update ITR if we are using adaptive setting */
1355 if (!ITR_IS_ADAPTIVE(ring_container->itr))
1356 goto clear_counts;
1357
1358 packets = ring_container->total_packets;
1359 if (!packets)
1360 goto clear_counts;
1361
1362 avg_wire_size = ring_container->total_bytes / packets;
1363
1364 /* The following is a crude approximation of:
1365 * wmem_default / (size + overhead) = desired_pkts_per_int
1366 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1367 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1368 *
1369 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1370 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1371 * formula down to
1372 *
1373 * (34 * (size + 24)) / (size + 640) = ITR
1374 *
1375 * We first do some math on the packet size and then finally bitshift
1376 * by 8 after rounding up. We also have to account for PCIe link speed
1377 * difference as ITR scales based on this.
1378 */
1379 if (avg_wire_size <= 360) {
1380 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1381 avg_wire_size *= 8;
1382 avg_wire_size += 376;
1383 } else if (avg_wire_size <= 1152) {
1384 /* 77K ints/sec to 45K ints/sec */
1385 avg_wire_size *= 3;
1386 avg_wire_size += 2176;
1387 } else if (avg_wire_size <= 1920) {
1388 /* 45K ints/sec to 38K ints/sec */
1389 avg_wire_size += 4480;
1390 } else {
1391 /* plateau at a limit of 38K ints/sec */
1392 avg_wire_size = 6656;
1393 }
1394
1395 /* Perform final bitshift for division after rounding up to ensure
1396 * that the calculation will never get below a 1. The bit shift
1397 * accounts for changes in the ITR due to PCIe link speed.
1398 */
1399 itr_round = ACCESS_ONCE(ring_container->itr_scale) + 8;
1400 avg_wire_size += BIT(itr_round) - 1;
1401 avg_wire_size >>= itr_round;
1402
1403 /* write back value and retain adaptive flag */
1404 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1405
1406 clear_counts:
1407 ring_container->total_bytes = 0;
1408 ring_container->total_packets = 0;
1409 }
1410
1411 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1412 {
1413 /* Enable auto-mask and clear the current mask */
1414 u32 itr = FM10K_ITR_ENABLE;
1415
1416 /* Update Tx ITR */
1417 fm10k_update_itr(&q_vector->tx);
1418
1419 /* Update Rx ITR */
1420 fm10k_update_itr(&q_vector->rx);
1421
1422 /* Store Tx itr in timer slot 0 */
1423 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1424
1425 /* Shift Rx itr to timer slot 1 */
1426 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1427
1428 /* Write the final value to the ITR register */
1429 writel(itr, q_vector->itr);
1430 }
1431
1432 static int fm10k_poll(struct napi_struct *napi, int budget)
1433 {
1434 struct fm10k_q_vector *q_vector =
1435 container_of(napi, struct fm10k_q_vector, napi);
1436 struct fm10k_ring *ring;
1437 int per_ring_budget, work_done = 0;
1438 bool clean_complete = true;
1439
1440 fm10k_for_each_ring(ring, q_vector->tx) {
1441 if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1442 clean_complete = false;
1443 }
1444
1445 /* Handle case where we are called by netpoll with a budget of 0 */
1446 if (budget <= 0)
1447 return budget;
1448
1449 /* attempt to distribute budget to each queue fairly, but don't
1450 * allow the budget to go below 1 because we'll exit polling
1451 */
1452 if (q_vector->rx.count > 1)
1453 per_ring_budget = max(budget / q_vector->rx.count, 1);
1454 else
1455 per_ring_budget = budget;
1456
1457 fm10k_for_each_ring(ring, q_vector->rx) {
1458 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1459
1460 work_done += work;
1461 if (work >= per_ring_budget)
1462 clean_complete = false;
1463 }
1464
1465 /* If all work not completed, return budget and keep polling */
1466 if (!clean_complete)
1467 return budget;
1468
1469 /* all work done, exit the polling mode */
1470 napi_complete_done(napi, work_done);
1471
1472 /* re-enable the q_vector */
1473 fm10k_qv_enable(q_vector);
1474
1475 return 0;
1476 }
1477
1478 /**
1479 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1480 * @interface: board private structure to initialize
1481 *
1482 * When QoS (Quality of Service) is enabled, allocate queues for
1483 * each traffic class. If multiqueue isn't available,then abort QoS
1484 * initialization.
1485 *
1486 * This function handles all combinations of Qos and RSS.
1487 *
1488 **/
1489 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1490 {
1491 struct net_device *dev = interface->netdev;
1492 struct fm10k_ring_feature *f;
1493 int rss_i, i;
1494 int pcs;
1495
1496 /* Map queue offset and counts onto allocated tx queues */
1497 pcs = netdev_get_num_tc(dev);
1498
1499 if (pcs <= 1)
1500 return false;
1501
1502 /* set QoS mask and indices */
1503 f = &interface->ring_feature[RING_F_QOS];
1504 f->indices = pcs;
1505 f->mask = BIT(fls(pcs - 1)) - 1;
1506
1507 /* determine the upper limit for our current DCB mode */
1508 rss_i = interface->hw.mac.max_queues / pcs;
1509 rss_i = BIT(fls(rss_i) - 1);
1510
1511 /* set RSS mask and indices */
1512 f = &interface->ring_feature[RING_F_RSS];
1513 rss_i = min_t(u16, rss_i, f->limit);
1514 f->indices = rss_i;
1515 f->mask = BIT(fls(rss_i - 1)) - 1;
1516
1517 /* configure pause class to queue mapping */
1518 for (i = 0; i < pcs; i++)
1519 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1520
1521 interface->num_rx_queues = rss_i * pcs;
1522 interface->num_tx_queues = rss_i * pcs;
1523
1524 return true;
1525 }
1526
1527 /**
1528 * fm10k_set_rss_queues: Allocate queues for RSS
1529 * @interface: board private structure to initialize
1530 *
1531 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1532 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1533 *
1534 **/
1535 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1536 {
1537 struct fm10k_ring_feature *f;
1538 u16 rss_i;
1539
1540 f = &interface->ring_feature[RING_F_RSS];
1541 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1542
1543 /* record indices and power of 2 mask for RSS */
1544 f->indices = rss_i;
1545 f->mask = BIT(fls(rss_i - 1)) - 1;
1546
1547 interface->num_rx_queues = rss_i;
1548 interface->num_tx_queues = rss_i;
1549
1550 return true;
1551 }
1552
1553 /**
1554 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1555 * @interface: board private structure to initialize
1556 *
1557 * This is the top level queue allocation routine. The order here is very
1558 * important, starting with the "most" number of features turned on at once,
1559 * and ending with the smallest set of features. This way large combinations
1560 * can be allocated if they're turned on, and smaller combinations are the
1561 * fallthrough conditions.
1562 *
1563 **/
1564 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1565 {
1566 /* Attempt to setup QoS and RSS first */
1567 if (fm10k_set_qos_queues(interface))
1568 return;
1569
1570 /* If we don't have QoS, just fallback to only RSS. */
1571 fm10k_set_rss_queues(interface);
1572 }
1573
1574 /**
1575 * fm10k_reset_num_queues - Reset the number of queues to zero
1576 * @interface: board private structure
1577 *
1578 * This function should be called whenever we need to reset the number of
1579 * queues after an error condition.
1580 */
1581 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1582 {
1583 interface->num_tx_queues = 0;
1584 interface->num_rx_queues = 0;
1585 interface->num_q_vectors = 0;
1586 }
1587
1588 /**
1589 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1590 * @interface: board private structure to initialize
1591 * @v_count: q_vectors allocated on interface, used for ring interleaving
1592 * @v_idx: index of vector in interface struct
1593 * @txr_count: total number of Tx rings to allocate
1594 * @txr_idx: index of first Tx ring to allocate
1595 * @rxr_count: total number of Rx rings to allocate
1596 * @rxr_idx: index of first Rx ring to allocate
1597 *
1598 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1599 **/
1600 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1601 unsigned int v_count, unsigned int v_idx,
1602 unsigned int txr_count, unsigned int txr_idx,
1603 unsigned int rxr_count, unsigned int rxr_idx)
1604 {
1605 struct fm10k_q_vector *q_vector;
1606 struct fm10k_ring *ring;
1607 int ring_count, size;
1608
1609 ring_count = txr_count + rxr_count;
1610 size = sizeof(struct fm10k_q_vector) +
1611 (sizeof(struct fm10k_ring) * ring_count);
1612
1613 /* allocate q_vector and rings */
1614 q_vector = kzalloc(size, GFP_KERNEL);
1615 if (!q_vector)
1616 return -ENOMEM;
1617
1618 /* initialize NAPI */
1619 netif_napi_add(interface->netdev, &q_vector->napi,
1620 fm10k_poll, NAPI_POLL_WEIGHT);
1621
1622 /* tie q_vector and interface together */
1623 interface->q_vector[v_idx] = q_vector;
1624 q_vector->interface = interface;
1625 q_vector->v_idx = v_idx;
1626
1627 /* initialize pointer to rings */
1628 ring = q_vector->ring;
1629
1630 /* save Tx ring container info */
1631 q_vector->tx.ring = ring;
1632 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1633 q_vector->tx.itr = interface->tx_itr;
1634 q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1635 q_vector->tx.count = txr_count;
1636
1637 while (txr_count) {
1638 /* assign generic ring traits */
1639 ring->dev = &interface->pdev->dev;
1640 ring->netdev = interface->netdev;
1641
1642 /* configure backlink on ring */
1643 ring->q_vector = q_vector;
1644
1645 /* apply Tx specific ring traits */
1646 ring->count = interface->tx_ring_count;
1647 ring->queue_index = txr_idx;
1648
1649 /* assign ring to interface */
1650 interface->tx_ring[txr_idx] = ring;
1651
1652 /* update count and index */
1653 txr_count--;
1654 txr_idx += v_count;
1655
1656 /* push pointer to next ring */
1657 ring++;
1658 }
1659
1660 /* save Rx ring container info */
1661 q_vector->rx.ring = ring;
1662 q_vector->rx.itr = interface->rx_itr;
1663 q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1664 q_vector->rx.count = rxr_count;
1665
1666 while (rxr_count) {
1667 /* assign generic ring traits */
1668 ring->dev = &interface->pdev->dev;
1669 ring->netdev = interface->netdev;
1670 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1671
1672 /* configure backlink on ring */
1673 ring->q_vector = q_vector;
1674
1675 /* apply Rx specific ring traits */
1676 ring->count = interface->rx_ring_count;
1677 ring->queue_index = rxr_idx;
1678
1679 /* assign ring to interface */
1680 interface->rx_ring[rxr_idx] = ring;
1681
1682 /* update count and index */
1683 rxr_count--;
1684 rxr_idx += v_count;
1685
1686 /* push pointer to next ring */
1687 ring++;
1688 }
1689
1690 fm10k_dbg_q_vector_init(q_vector);
1691
1692 return 0;
1693 }
1694
1695 /**
1696 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1697 * @interface: board private structure to initialize
1698 * @v_idx: Index of vector to be freed
1699 *
1700 * This function frees the memory allocated to the q_vector. In addition if
1701 * NAPI is enabled it will delete any references to the NAPI struct prior
1702 * to freeing the q_vector.
1703 **/
1704 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1705 {
1706 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1707 struct fm10k_ring *ring;
1708
1709 fm10k_dbg_q_vector_exit(q_vector);
1710
1711 fm10k_for_each_ring(ring, q_vector->tx)
1712 interface->tx_ring[ring->queue_index] = NULL;
1713
1714 fm10k_for_each_ring(ring, q_vector->rx)
1715 interface->rx_ring[ring->queue_index] = NULL;
1716
1717 interface->q_vector[v_idx] = NULL;
1718 netif_napi_del(&q_vector->napi);
1719 kfree_rcu(q_vector, rcu);
1720 }
1721
1722 /**
1723 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1724 * @interface: board private structure to initialize
1725 *
1726 * We allocate one q_vector per queue interrupt. If allocation fails we
1727 * return -ENOMEM.
1728 **/
1729 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1730 {
1731 unsigned int q_vectors = interface->num_q_vectors;
1732 unsigned int rxr_remaining = interface->num_rx_queues;
1733 unsigned int txr_remaining = interface->num_tx_queues;
1734 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1735 int err;
1736
1737 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1738 for (; rxr_remaining; v_idx++) {
1739 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1740 0, 0, 1, rxr_idx);
1741 if (err)
1742 goto err_out;
1743
1744 /* update counts and index */
1745 rxr_remaining--;
1746 rxr_idx++;
1747 }
1748 }
1749
1750 for (; v_idx < q_vectors; v_idx++) {
1751 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1752 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1753
1754 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1755 tqpv, txr_idx,
1756 rqpv, rxr_idx);
1757
1758 if (err)
1759 goto err_out;
1760
1761 /* update counts and index */
1762 rxr_remaining -= rqpv;
1763 txr_remaining -= tqpv;
1764 rxr_idx++;
1765 txr_idx++;
1766 }
1767
1768 return 0;
1769
1770 err_out:
1771 fm10k_reset_num_queues(interface);
1772
1773 while (v_idx--)
1774 fm10k_free_q_vector(interface, v_idx);
1775
1776 return -ENOMEM;
1777 }
1778
1779 /**
1780 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1781 * @interface: board private structure to initialize
1782 *
1783 * This function frees the memory allocated to the q_vectors. In addition if
1784 * NAPI is enabled it will delete any references to the NAPI struct prior
1785 * to freeing the q_vector.
1786 **/
1787 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1788 {
1789 int v_idx = interface->num_q_vectors;
1790
1791 fm10k_reset_num_queues(interface);
1792
1793 while (v_idx--)
1794 fm10k_free_q_vector(interface, v_idx);
1795 }
1796
1797 /**
1798 * f10k_reset_msix_capability - reset MSI-X capability
1799 * @interface: board private structure to initialize
1800 *
1801 * Reset the MSI-X capability back to its starting state
1802 **/
1803 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1804 {
1805 pci_disable_msix(interface->pdev);
1806 kfree(interface->msix_entries);
1807 interface->msix_entries = NULL;
1808 }
1809
1810 /**
1811 * f10k_init_msix_capability - configure MSI-X capability
1812 * @interface: board private structure to initialize
1813 *
1814 * Attempt to configure the interrupts using the best available
1815 * capabilities of the hardware and the kernel.
1816 **/
1817 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1818 {
1819 struct fm10k_hw *hw = &interface->hw;
1820 int v_budget, vector;
1821
1822 /* It's easy to be greedy for MSI-X vectors, but it really
1823 * doesn't do us much good if we have a lot more vectors
1824 * than CPU's. So let's be conservative and only ask for
1825 * (roughly) the same number of vectors as there are CPU's.
1826 * the default is to use pairs of vectors
1827 */
1828 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1829 v_budget = min_t(u16, v_budget, num_online_cpus());
1830
1831 /* account for vectors not related to queues */
1832 v_budget += NON_Q_VECTORS(hw);
1833
1834 /* At the same time, hardware can only support a maximum of
1835 * hw.mac->max_msix_vectors vectors. With features
1836 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1837 * descriptor queues supported by our device. Thus, we cap it off in
1838 * those rare cases where the cpu count also exceeds our vector limit.
1839 */
1840 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1841
1842 /* A failure in MSI-X entry allocation is fatal. */
1843 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1844 GFP_KERNEL);
1845 if (!interface->msix_entries)
1846 return -ENOMEM;
1847
1848 /* populate entry values */
1849 for (vector = 0; vector < v_budget; vector++)
1850 interface->msix_entries[vector].entry = vector;
1851
1852 /* Attempt to enable MSI-X with requested value */
1853 v_budget = pci_enable_msix_range(interface->pdev,
1854 interface->msix_entries,
1855 MIN_MSIX_COUNT(hw),
1856 v_budget);
1857 if (v_budget < 0) {
1858 kfree(interface->msix_entries);
1859 interface->msix_entries = NULL;
1860 return -ENOMEM;
1861 }
1862
1863 /* record the number of queues available for q_vectors */
1864 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1865
1866 return 0;
1867 }
1868
1869 /**
1870 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1871 * @interface: Interface structure continaining rings and devices
1872 *
1873 * Cache the descriptor ring offsets for Qos
1874 **/
1875 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1876 {
1877 struct net_device *dev = interface->netdev;
1878 int pc, offset, rss_i, i, q_idx;
1879 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1880 u8 num_pcs = netdev_get_num_tc(dev);
1881
1882 if (num_pcs <= 1)
1883 return false;
1884
1885 rss_i = interface->ring_feature[RING_F_RSS].indices;
1886
1887 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1888 q_idx = pc;
1889 for (i = 0; i < rss_i; i++) {
1890 interface->tx_ring[offset + i]->reg_idx = q_idx;
1891 interface->tx_ring[offset + i]->qos_pc = pc;
1892 interface->rx_ring[offset + i]->reg_idx = q_idx;
1893 interface->rx_ring[offset + i]->qos_pc = pc;
1894 q_idx += pc_stride;
1895 }
1896 }
1897
1898 return true;
1899 }
1900
1901 /**
1902 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1903 * @interface: Interface structure continaining rings and devices
1904 *
1905 * Cache the descriptor ring offsets for RSS
1906 **/
1907 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1908 {
1909 int i;
1910
1911 for (i = 0; i < interface->num_rx_queues; i++)
1912 interface->rx_ring[i]->reg_idx = i;
1913
1914 for (i = 0; i < interface->num_tx_queues; i++)
1915 interface->tx_ring[i]->reg_idx = i;
1916 }
1917
1918 /**
1919 * fm10k_assign_rings - Map rings to network devices
1920 * @interface: Interface structure containing rings and devices
1921 *
1922 * This function is meant to go though and configure both the network
1923 * devices so that they contain rings, and configure the rings so that
1924 * they function with their network devices.
1925 **/
1926 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1927 {
1928 if (fm10k_cache_ring_qos(interface))
1929 return;
1930
1931 fm10k_cache_ring_rss(interface);
1932 }
1933
1934 static void fm10k_init_reta(struct fm10k_intfc *interface)
1935 {
1936 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1937 u32 reta;
1938
1939 /* If the Rx flow indirection table has been configured manually, we
1940 * need to maintain it when possible.
1941 */
1942 if (netif_is_rxfh_configured(interface->netdev)) {
1943 for (i = FM10K_RETA_SIZE; i--;) {
1944 reta = interface->reta[i];
1945 if ((((reta << 24) >> 24) < rss_i) &&
1946 (((reta << 16) >> 24) < rss_i) &&
1947 (((reta << 8) >> 24) < rss_i) &&
1948 (((reta) >> 24) < rss_i))
1949 continue;
1950
1951 /* this should never happen */
1952 dev_err(&interface->pdev->dev,
1953 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1954 goto repopulate_reta;
1955 }
1956
1957 /* do nothing if all of the elements are in bounds */
1958 return;
1959 }
1960
1961 repopulate_reta:
1962 fm10k_write_reta(interface, NULL);
1963 }
1964
1965 /**
1966 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1967 * @interface: board private structure to initialize
1968 *
1969 * We determine which queueing scheme to use based on...
1970 * - Hardware queue count (num_*_queues)
1971 * - defined by miscellaneous hardware support/features (RSS, etc.)
1972 **/
1973 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1974 {
1975 int err;
1976
1977 /* Number of supported queues */
1978 fm10k_set_num_queues(interface);
1979
1980 /* Configure MSI-X capability */
1981 err = fm10k_init_msix_capability(interface);
1982 if (err) {
1983 dev_err(&interface->pdev->dev,
1984 "Unable to initialize MSI-X capability\n");
1985 goto err_init_msix;
1986 }
1987
1988 /* Allocate memory for queues */
1989 err = fm10k_alloc_q_vectors(interface);
1990 if (err) {
1991 dev_err(&interface->pdev->dev,
1992 "Unable to allocate queue vectors\n");
1993 goto err_alloc_q_vectors;
1994 }
1995
1996 /* Map rings to devices, and map devices to physical queues */
1997 fm10k_assign_rings(interface);
1998
1999 /* Initialize RSS redirection table */
2000 fm10k_init_reta(interface);
2001
2002 return 0;
2003
2004 err_alloc_q_vectors:
2005 fm10k_reset_msix_capability(interface);
2006 err_init_msix:
2007 fm10k_reset_num_queues(interface);
2008 return err;
2009 }
2010
2011 /**
2012 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2013 * @interface: board private structure to clear queueing scheme on
2014 *
2015 * We go through and clear queueing specific resources and reset the structure
2016 * to pre-load conditions
2017 **/
2018 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2019 {
2020 fm10k_free_q_vectors(interface);
2021 fm10k_reset_msix_capability(interface);
2022 }
This page took 0.072622 seconds and 6 git commands to generate.