fm10k: Add support for MACVLAN acceleration
[deliverable/linux.git] / drivers / net / ethernet / intel / fm10k / fm10k_netdev.c
1 /* Intel Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21 #include "fm10k.h"
22 #include <linux/vmalloc.h>
23 #if IS_ENABLED(CONFIG_VXLAN)
24 #include <net/vxlan.h>
25 #endif /* CONFIG_VXLAN */
26
27 /**
28 * fm10k_setup_tx_resources - allocate Tx resources (Descriptors)
29 * @tx_ring: tx descriptor ring (for a specific queue) to setup
30 *
31 * Return 0 on success, negative on failure
32 **/
33 int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring)
34 {
35 struct device *dev = tx_ring->dev;
36 int size;
37
38 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
39
40 tx_ring->tx_buffer = vzalloc(size);
41 if (!tx_ring->tx_buffer)
42 goto err;
43
44 u64_stats_init(&tx_ring->syncp);
45
46 /* round up to nearest 4K */
47 tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc);
48 tx_ring->size = ALIGN(tx_ring->size, 4096);
49
50 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
51 &tx_ring->dma, GFP_KERNEL);
52 if (!tx_ring->desc)
53 goto err;
54
55 return 0;
56
57 err:
58 vfree(tx_ring->tx_buffer);
59 tx_ring->tx_buffer = NULL;
60 return -ENOMEM;
61 }
62
63 /**
64 * fm10k_setup_all_tx_resources - allocate all queues Tx resources
65 * @interface: board private structure
66 *
67 * If this function returns with an error, then it's possible one or
68 * more of the rings is populated (while the rest are not). It is the
69 * callers duty to clean those orphaned rings.
70 *
71 * Return 0 on success, negative on failure
72 **/
73 static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface)
74 {
75 int i, err = 0;
76
77 for (i = 0; i < interface->num_tx_queues; i++) {
78 err = fm10k_setup_tx_resources(interface->tx_ring[i]);
79 if (!err)
80 continue;
81
82 netif_err(interface, probe, interface->netdev,
83 "Allocation for Tx Queue %u failed\n", i);
84 goto err_setup_tx;
85 }
86
87 return 0;
88 err_setup_tx:
89 /* rewind the index freeing the rings as we go */
90 while (i--)
91 fm10k_free_tx_resources(interface->tx_ring[i]);
92 return err;
93 }
94
95 /**
96 * fm10k_setup_rx_resources - allocate Rx resources (Descriptors)
97 * @rx_ring: rx descriptor ring (for a specific queue) to setup
98 *
99 * Returns 0 on success, negative on failure
100 **/
101 int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring)
102 {
103 struct device *dev = rx_ring->dev;
104 int size;
105
106 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
107
108 rx_ring->rx_buffer = vzalloc(size);
109 if (!rx_ring->rx_buffer)
110 goto err;
111
112 u64_stats_init(&rx_ring->syncp);
113
114 /* Round up to nearest 4K */
115 rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc);
116 rx_ring->size = ALIGN(rx_ring->size, 4096);
117
118 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
119 &rx_ring->dma, GFP_KERNEL);
120 if (!rx_ring->desc)
121 goto err;
122
123 return 0;
124 err:
125 vfree(rx_ring->rx_buffer);
126 rx_ring->rx_buffer = NULL;
127 return -ENOMEM;
128 }
129
130 /**
131 * fm10k_setup_all_rx_resources - allocate all queues Rx resources
132 * @interface: board private structure
133 *
134 * If this function returns with an error, then it's possible one or
135 * more of the rings is populated (while the rest are not). It is the
136 * callers duty to clean those orphaned rings.
137 *
138 * Return 0 on success, negative on failure
139 **/
140 static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface)
141 {
142 int i, err = 0;
143
144 for (i = 0; i < interface->num_rx_queues; i++) {
145 err = fm10k_setup_rx_resources(interface->rx_ring[i]);
146 if (!err)
147 continue;
148
149 netif_err(interface, probe, interface->netdev,
150 "Allocation for Rx Queue %u failed\n", i);
151 goto err_setup_rx;
152 }
153
154 return 0;
155 err_setup_rx:
156 /* rewind the index freeing the rings as we go */
157 while (i--)
158 fm10k_free_rx_resources(interface->rx_ring[i]);
159 return err;
160 }
161
162 void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring,
163 struct fm10k_tx_buffer *tx_buffer)
164 {
165 if (tx_buffer->skb) {
166 dev_kfree_skb_any(tx_buffer->skb);
167 if (dma_unmap_len(tx_buffer, len))
168 dma_unmap_single(ring->dev,
169 dma_unmap_addr(tx_buffer, dma),
170 dma_unmap_len(tx_buffer, len),
171 DMA_TO_DEVICE);
172 } else if (dma_unmap_len(tx_buffer, len)) {
173 dma_unmap_page(ring->dev,
174 dma_unmap_addr(tx_buffer, dma),
175 dma_unmap_len(tx_buffer, len),
176 DMA_TO_DEVICE);
177 }
178 tx_buffer->next_to_watch = NULL;
179 tx_buffer->skb = NULL;
180 dma_unmap_len_set(tx_buffer, len, 0);
181 /* tx_buffer must be completely set up in the transmit path */
182 }
183
184 /**
185 * fm10k_clean_tx_ring - Free Tx Buffers
186 * @tx_ring: ring to be cleaned
187 **/
188 static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring)
189 {
190 struct fm10k_tx_buffer *tx_buffer;
191 unsigned long size;
192 u16 i;
193
194 /* ring already cleared, nothing to do */
195 if (!tx_ring->tx_buffer)
196 return;
197
198 /* Free all the Tx ring sk_buffs */
199 for (i = 0; i < tx_ring->count; i++) {
200 tx_buffer = &tx_ring->tx_buffer[i];
201 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
202 }
203
204 /* reset BQL values */
205 netdev_tx_reset_queue(txring_txq(tx_ring));
206
207 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
208 memset(tx_ring->tx_buffer, 0, size);
209
210 /* Zero out the descriptor ring */
211 memset(tx_ring->desc, 0, tx_ring->size);
212 }
213
214 /**
215 * fm10k_free_tx_resources - Free Tx Resources per Queue
216 * @tx_ring: Tx descriptor ring for a specific queue
217 *
218 * Free all transmit software resources
219 **/
220 void fm10k_free_tx_resources(struct fm10k_ring *tx_ring)
221 {
222 fm10k_clean_tx_ring(tx_ring);
223
224 vfree(tx_ring->tx_buffer);
225 tx_ring->tx_buffer = NULL;
226
227 /* if not set, then don't free */
228 if (!tx_ring->desc)
229 return;
230
231 dma_free_coherent(tx_ring->dev, tx_ring->size,
232 tx_ring->desc, tx_ring->dma);
233 tx_ring->desc = NULL;
234 }
235
236 /**
237 * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues
238 * @interface: board private structure
239 **/
240 void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface)
241 {
242 int i;
243
244 for (i = 0; i < interface->num_tx_queues; i++)
245 fm10k_clean_tx_ring(interface->tx_ring[i]);
246 }
247
248 /**
249 * fm10k_free_all_tx_resources - Free Tx Resources for All Queues
250 * @interface: board private structure
251 *
252 * Free all transmit software resources
253 **/
254 static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface)
255 {
256 int i = interface->num_tx_queues;
257
258 while (i--)
259 fm10k_free_tx_resources(interface->tx_ring[i]);
260 }
261
262 /**
263 * fm10k_clean_rx_ring - Free Rx Buffers per Queue
264 * @rx_ring: ring to free buffers from
265 **/
266 static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring)
267 {
268 unsigned long size;
269 u16 i;
270
271 if (!rx_ring->rx_buffer)
272 return;
273
274 if (rx_ring->skb)
275 dev_kfree_skb(rx_ring->skb);
276 rx_ring->skb = NULL;
277
278 /* Free all the Rx ring sk_buffs */
279 for (i = 0; i < rx_ring->count; i++) {
280 struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i];
281 /* clean-up will only set page pointer to NULL */
282 if (!buffer->page)
283 continue;
284
285 dma_unmap_page(rx_ring->dev, buffer->dma,
286 PAGE_SIZE, DMA_FROM_DEVICE);
287 __free_page(buffer->page);
288
289 buffer->page = NULL;
290 }
291
292 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
293 memset(rx_ring->rx_buffer, 0, size);
294
295 /* Zero out the descriptor ring */
296 memset(rx_ring->desc, 0, rx_ring->size);
297
298 rx_ring->next_to_alloc = 0;
299 rx_ring->next_to_clean = 0;
300 rx_ring->next_to_use = 0;
301 }
302
303 /**
304 * fm10k_free_rx_resources - Free Rx Resources
305 * @rx_ring: ring to clean the resources from
306 *
307 * Free all receive software resources
308 **/
309 void fm10k_free_rx_resources(struct fm10k_ring *rx_ring)
310 {
311 fm10k_clean_rx_ring(rx_ring);
312
313 vfree(rx_ring->rx_buffer);
314 rx_ring->rx_buffer = NULL;
315
316 /* if not set, then don't free */
317 if (!rx_ring->desc)
318 return;
319
320 dma_free_coherent(rx_ring->dev, rx_ring->size,
321 rx_ring->desc, rx_ring->dma);
322
323 rx_ring->desc = NULL;
324 }
325
326 /**
327 * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues
328 * @interface: board private structure
329 **/
330 void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface)
331 {
332 int i;
333
334 for (i = 0; i < interface->num_rx_queues; i++)
335 fm10k_clean_rx_ring(interface->rx_ring[i]);
336 }
337
338 /**
339 * fm10k_free_all_rx_resources - Free Rx Resources for All Queues
340 * @interface: board private structure
341 *
342 * Free all receive software resources
343 **/
344 static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface)
345 {
346 int i = interface->num_rx_queues;
347
348 while (i--)
349 fm10k_free_rx_resources(interface->rx_ring[i]);
350 }
351
352 /**
353 * fm10k_request_glort_range - Request GLORTs for use in configuring rules
354 * @interface: board private structure
355 *
356 * This function allocates a range of glorts for this inteface to use.
357 **/
358 static void fm10k_request_glort_range(struct fm10k_intfc *interface)
359 {
360 struct fm10k_hw *hw = &interface->hw;
361 u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT;
362
363 /* establish GLORT base */
364 interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE;
365 interface->glort_count = 0;
366
367 /* nothing we can do until mask is allocated */
368 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
369 return;
370
371 interface->glort_count = mask + 1;
372 }
373
374 /**
375 * fm10k_del_vxlan_port_all
376 * @interface: board private structure
377 *
378 * This function frees the entire vxlan_port list
379 **/
380 static void fm10k_del_vxlan_port_all(struct fm10k_intfc *interface)
381 {
382 struct fm10k_vxlan_port *vxlan_port;
383
384 /* flush all entries from list */
385 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
386 struct fm10k_vxlan_port, list);
387 while (vxlan_port) {
388 list_del(&vxlan_port->list);
389 kfree(vxlan_port);
390 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
391 struct fm10k_vxlan_port,
392 list);
393 }
394 }
395
396 /**
397 * fm10k_restore_vxlan_port
398 * @interface: board private structure
399 *
400 * This function restores the value in the tunnel_cfg register after reset
401 **/
402 static void fm10k_restore_vxlan_port(struct fm10k_intfc *interface)
403 {
404 struct fm10k_hw *hw = &interface->hw;
405 struct fm10k_vxlan_port *vxlan_port;
406
407 /* only the PF supports configuring tunnels */
408 if (hw->mac.type != fm10k_mac_pf)
409 return;
410
411 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
412 struct fm10k_vxlan_port, list);
413
414 /* restore tunnel configuration register */
415 fm10k_write_reg(hw, FM10K_TUNNEL_CFG,
416 (vxlan_port ? ntohs(vxlan_port->port) : 0) |
417 (ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT));
418 }
419
420 /**
421 * fm10k_add_vxlan_port
422 * @netdev: network interface device structure
423 * @sa_family: Address family of new port
424 * @port: port number used for VXLAN
425 *
426 * This funciton is called when a new VXLAN interface has added a new port
427 * number to the range that is currently in use for VXLAN. The new port
428 * number is always added to the tail so that the port number list should
429 * match the order in which the ports were allocated. The head of the list
430 * is always used as the VXLAN port number for offloads.
431 **/
432 static void fm10k_add_vxlan_port(struct net_device *dev,
433 sa_family_t sa_family, __be16 port) {
434 struct fm10k_intfc *interface = netdev_priv(dev);
435 struct fm10k_vxlan_port *vxlan_port;
436
437 /* only the PF supports configuring tunnels */
438 if (interface->hw.mac.type != fm10k_mac_pf)
439 return;
440
441 /* existing ports are pulled out so our new entry is always last */
442 fm10k_vxlan_port_for_each(vxlan_port, interface) {
443 if ((vxlan_port->port == port) &&
444 (vxlan_port->sa_family == sa_family)) {
445 list_del(&vxlan_port->list);
446 goto insert_tail;
447 }
448 }
449
450 /* allocate memory to track ports */
451 vxlan_port = kmalloc(sizeof(*vxlan_port), GFP_ATOMIC);
452 if (!vxlan_port)
453 return;
454 vxlan_port->port = port;
455 vxlan_port->sa_family = sa_family;
456
457 insert_tail:
458 /* add new port value to list */
459 list_add_tail(&vxlan_port->list, &interface->vxlan_port);
460
461 fm10k_restore_vxlan_port(interface);
462 }
463
464 /**
465 * fm10k_del_vxlan_port
466 * @netdev: network interface device structure
467 * @sa_family: Address family of freed port
468 * @port: port number used for VXLAN
469 *
470 * This funciton is called when a new VXLAN interface has freed a port
471 * number from the range that is currently in use for VXLAN. The freed
472 * port is removed from the list and the new head is used to determine
473 * the port number for offloads.
474 **/
475 static void fm10k_del_vxlan_port(struct net_device *dev,
476 sa_family_t sa_family, __be16 port) {
477 struct fm10k_intfc *interface = netdev_priv(dev);
478 struct fm10k_vxlan_port *vxlan_port;
479
480 if (interface->hw.mac.type != fm10k_mac_pf)
481 return;
482
483 /* find the port in the list and free it */
484 fm10k_vxlan_port_for_each(vxlan_port, interface) {
485 if ((vxlan_port->port == port) &&
486 (vxlan_port->sa_family == sa_family)) {
487 list_del(&vxlan_port->list);
488 kfree(vxlan_port);
489 break;
490 }
491 }
492
493 fm10k_restore_vxlan_port(interface);
494 }
495
496 /**
497 * fm10k_open - Called when a network interface is made active
498 * @netdev: network interface device structure
499 *
500 * Returns 0 on success, negative value on failure
501 *
502 * The open entry point is called when a network interface is made
503 * active by the system (IFF_UP). At this point all resources needed
504 * for transmit and receive operations are allocated, the interrupt
505 * handler is registered with the OS, the watchdog timer is started,
506 * and the stack is notified that the interface is ready.
507 **/
508 int fm10k_open(struct net_device *netdev)
509 {
510 struct fm10k_intfc *interface = netdev_priv(netdev);
511 int err;
512
513 /* allocate transmit descriptors */
514 err = fm10k_setup_all_tx_resources(interface);
515 if (err)
516 goto err_setup_tx;
517
518 /* allocate receive descriptors */
519 err = fm10k_setup_all_rx_resources(interface);
520 if (err)
521 goto err_setup_rx;
522
523 /* allocate interrupt resources */
524 err = fm10k_qv_request_irq(interface);
525 if (err)
526 goto err_req_irq;
527
528 /* setup GLORT assignment for this port */
529 fm10k_request_glort_range(interface);
530
531 /* Notify the stack of the actual queue counts */
532
533 err = netif_set_real_num_rx_queues(netdev,
534 interface->num_rx_queues);
535 if (err)
536 goto err_set_queues;
537
538 #if IS_ENABLED(CONFIG_VXLAN)
539 /* update VXLAN port configuration */
540 vxlan_get_rx_port(netdev);
541
542 #endif
543 fm10k_up(interface);
544
545 return 0;
546
547 err_set_queues:
548 fm10k_qv_free_irq(interface);
549 err_req_irq:
550 fm10k_free_all_rx_resources(interface);
551 err_setup_rx:
552 fm10k_free_all_tx_resources(interface);
553 err_setup_tx:
554 return err;
555 }
556
557 /**
558 * fm10k_close - Disables a network interface
559 * @netdev: network interface device structure
560 *
561 * Returns 0, this is not allowed to fail
562 *
563 * The close entry point is called when an interface is de-activated
564 * by the OS. The hardware is still under the drivers control, but
565 * needs to be disabled. A global MAC reset is issued to stop the
566 * hardware, and all transmit and receive resources are freed.
567 **/
568 int fm10k_close(struct net_device *netdev)
569 {
570 struct fm10k_intfc *interface = netdev_priv(netdev);
571
572 fm10k_down(interface);
573
574 fm10k_qv_free_irq(interface);
575
576 fm10k_del_vxlan_port_all(interface);
577
578 fm10k_free_all_tx_resources(interface);
579 fm10k_free_all_rx_resources(interface);
580
581 return 0;
582 }
583
584 static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev)
585 {
586 struct fm10k_intfc *interface = netdev_priv(dev);
587 unsigned int r_idx = 0;
588 int err;
589
590 if ((skb->protocol == htons(ETH_P_8021Q)) &&
591 !vlan_tx_tag_present(skb)) {
592 /* FM10K only supports hardware tagging, any tags in frame
593 * are considered 2nd level or "outer" tags
594 */
595 struct vlan_hdr *vhdr;
596 __be16 proto;
597
598 /* make sure skb is not shared */
599 skb = skb_share_check(skb, GFP_ATOMIC);
600 if (!skb)
601 return NETDEV_TX_OK;
602
603 /* make sure there is enough room to move the ethernet header */
604 if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
605 return NETDEV_TX_OK;
606
607 /* verify the skb head is not shared */
608 err = skb_cow_head(skb, 0);
609 if (err)
610 return NETDEV_TX_OK;
611
612 /* locate vlan header */
613 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
614
615 /* pull the 2 key pieces of data out of it */
616 __vlan_hwaccel_put_tag(skb,
617 htons(ETH_P_8021Q),
618 ntohs(vhdr->h_vlan_TCI));
619 proto = vhdr->h_vlan_encapsulated_proto;
620 skb->protocol = (ntohs(proto) >= 1536) ? proto :
621 htons(ETH_P_802_2);
622
623 /* squash it by moving the ethernet addresses up 4 bytes */
624 memmove(skb->data + VLAN_HLEN, skb->data, 12);
625 __skb_pull(skb, VLAN_HLEN);
626 skb_reset_mac_header(skb);
627 }
628
629 /* The minimum packet size for a single buffer is 17B so pad the skb
630 * in order to meet this minimum size requirement.
631 */
632 if (unlikely(skb->len < 17)) {
633 int pad_len = 17 - skb->len;
634
635 if (skb_pad(skb, pad_len))
636 return NETDEV_TX_OK;
637 __skb_put(skb, pad_len);
638 }
639
640 if (r_idx >= interface->num_tx_queues)
641 r_idx %= interface->num_tx_queues;
642
643 err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]);
644
645 return err;
646 }
647
648 static int fm10k_change_mtu(struct net_device *dev, int new_mtu)
649 {
650 if (new_mtu < 68 || new_mtu > FM10K_MAX_JUMBO_FRAME_SIZE)
651 return -EINVAL;
652
653 dev->mtu = new_mtu;
654
655 return 0;
656 }
657
658 /**
659 * fm10k_tx_timeout - Respond to a Tx Hang
660 * @netdev: network interface device structure
661 **/
662 static void fm10k_tx_timeout(struct net_device *netdev)
663 {
664 struct fm10k_intfc *interface = netdev_priv(netdev);
665 bool real_tx_hang = false;
666 int i;
667
668 #define TX_TIMEO_LIMIT 16000
669 for (i = 0; i < interface->num_tx_queues; i++) {
670 struct fm10k_ring *tx_ring = interface->tx_ring[i];
671
672 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring))
673 real_tx_hang = true;
674 }
675
676 if (real_tx_hang) {
677 fm10k_tx_timeout_reset(interface);
678 } else {
679 netif_info(interface, drv, netdev,
680 "Fake Tx hang detected with timeout of %d seconds\n",
681 netdev->watchdog_timeo/HZ);
682
683 /* fake Tx hang - increase the kernel timeout */
684 if (netdev->watchdog_timeo < TX_TIMEO_LIMIT)
685 netdev->watchdog_timeo *= 2;
686 }
687 }
688
689 static int fm10k_uc_vlan_unsync(struct net_device *netdev,
690 const unsigned char *uc_addr)
691 {
692 struct fm10k_intfc *interface = netdev_priv(netdev);
693 struct fm10k_hw *hw = &interface->hw;
694 u16 glort = interface->glort;
695 u16 vid = interface->vid;
696 bool set = !!(vid / VLAN_N_VID);
697 int err;
698
699 /* drop any leading bits on the VLAN ID */
700 vid &= VLAN_N_VID - 1;
701
702 err = hw->mac.ops.update_uc_addr(hw, glort, uc_addr, vid, set, 0);
703 if (err)
704 return err;
705
706 /* return non-zero value as we are only doing a partial sync/unsync */
707 return 1;
708 }
709
710 static int fm10k_mc_vlan_unsync(struct net_device *netdev,
711 const unsigned char *mc_addr)
712 {
713 struct fm10k_intfc *interface = netdev_priv(netdev);
714 struct fm10k_hw *hw = &interface->hw;
715 u16 glort = interface->glort;
716 u16 vid = interface->vid;
717 bool set = !!(vid / VLAN_N_VID);
718 int err;
719
720 /* drop any leading bits on the VLAN ID */
721 vid &= VLAN_N_VID - 1;
722
723 err = hw->mac.ops.update_mc_addr(hw, glort, mc_addr, vid, set);
724 if (err)
725 return err;
726
727 /* return non-zero value as we are only doing a partial sync/unsync */
728 return 1;
729 }
730
731 static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set)
732 {
733 struct fm10k_intfc *interface = netdev_priv(netdev);
734 struct fm10k_hw *hw = &interface->hw;
735 s32 err;
736
737 /* updates do not apply to VLAN 0 */
738 if (!vid)
739 return 0;
740
741 if (vid >= VLAN_N_VID)
742 return -EINVAL;
743
744 /* Verify we have permission to add VLANs */
745 if (hw->mac.vlan_override)
746 return -EACCES;
747
748 /* if default VLAN is already present do nothing */
749 if (vid == hw->mac.default_vid)
750 return -EBUSY;
751
752 /* update active_vlans bitmask */
753 set_bit(vid, interface->active_vlans);
754 if (!set)
755 clear_bit(vid, interface->active_vlans);
756
757 fm10k_mbx_lock(interface);
758
759 /* only need to update the VLAN if not in promiscous mode */
760 if (!(netdev->flags & IFF_PROMISC)) {
761 err = hw->mac.ops.update_vlan(hw, vid, 0, set);
762 if (err)
763 return err;
764 }
765
766 /* update our base MAC address */
767 err = hw->mac.ops.update_uc_addr(hw, interface->glort, hw->mac.addr,
768 vid, set, 0);
769 if (err)
770 return err;
771
772 /* set vid prior to syncing/unsyncing the VLAN */
773 interface->vid = vid + (set ? VLAN_N_VID : 0);
774
775 /* Update the unicast and multicast address list to add/drop VLAN */
776 __dev_uc_unsync(netdev, fm10k_uc_vlan_unsync);
777 __dev_mc_unsync(netdev, fm10k_mc_vlan_unsync);
778
779 fm10k_mbx_unlock(interface);
780
781 return 0;
782 }
783
784 static int fm10k_vlan_rx_add_vid(struct net_device *netdev,
785 __always_unused __be16 proto, u16 vid)
786 {
787 /* update VLAN and address table based on changes */
788 return fm10k_update_vid(netdev, vid, true);
789 }
790
791 static int fm10k_vlan_rx_kill_vid(struct net_device *netdev,
792 __always_unused __be16 proto, u16 vid)
793 {
794 /* update VLAN and address table based on changes */
795 return fm10k_update_vid(netdev, vid, false);
796 }
797
798 static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid)
799 {
800 struct fm10k_hw *hw = &interface->hw;
801 u16 default_vid = hw->mac.default_vid;
802 u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID;
803
804 vid = find_next_bit(interface->active_vlans, vid_limit, ++vid);
805
806 return vid;
807 }
808
809 static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface)
810 {
811 struct fm10k_hw *hw = &interface->hw;
812 u32 vid, prev_vid;
813
814 /* loop through and find any gaps in the table */
815 for (vid = 0, prev_vid = 0;
816 prev_vid < VLAN_N_VID;
817 prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) {
818 if (prev_vid == vid)
819 continue;
820
821 /* send request to clear multiple bits at a time */
822 prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT;
823 hw->mac.ops.update_vlan(hw, prev_vid, 0, false);
824 }
825 }
826
827 static int __fm10k_uc_sync(struct net_device *dev,
828 const unsigned char *addr, bool sync)
829 {
830 struct fm10k_intfc *interface = netdev_priv(dev);
831 struct fm10k_hw *hw = &interface->hw;
832 u16 vid, glort = interface->glort;
833 s32 err;
834
835 if (!is_valid_ether_addr(addr))
836 return -EADDRNOTAVAIL;
837
838 /* update table with current entries */
839 for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 0;
840 vid < VLAN_N_VID;
841 vid = fm10k_find_next_vlan(interface, vid)) {
842 err = hw->mac.ops.update_uc_addr(hw, glort, addr,
843 vid, sync, 0);
844 if (err)
845 return err;
846 }
847
848 return 0;
849 }
850
851 static int fm10k_uc_sync(struct net_device *dev,
852 const unsigned char *addr)
853 {
854 return __fm10k_uc_sync(dev, addr, true);
855 }
856
857 static int fm10k_uc_unsync(struct net_device *dev,
858 const unsigned char *addr)
859 {
860 return __fm10k_uc_sync(dev, addr, false);
861 }
862
863 static int fm10k_set_mac(struct net_device *dev, void *p)
864 {
865 struct fm10k_intfc *interface = netdev_priv(dev);
866 struct fm10k_hw *hw = &interface->hw;
867 struct sockaddr *addr = p;
868 s32 err = 0;
869
870 if (!is_valid_ether_addr(addr->sa_data))
871 return -EADDRNOTAVAIL;
872
873 if (dev->flags & IFF_UP) {
874 /* setting MAC address requires mailbox */
875 fm10k_mbx_lock(interface);
876
877 err = fm10k_uc_sync(dev, addr->sa_data);
878 if (!err)
879 fm10k_uc_unsync(dev, hw->mac.addr);
880
881 fm10k_mbx_unlock(interface);
882 }
883
884 if (!err) {
885 ether_addr_copy(dev->dev_addr, addr->sa_data);
886 ether_addr_copy(hw->mac.addr, addr->sa_data);
887 dev->addr_assign_type &= ~NET_ADDR_RANDOM;
888 }
889
890 /* if we had a mailbox error suggest trying again */
891 return err ? -EAGAIN : 0;
892 }
893
894 static int __fm10k_mc_sync(struct net_device *dev,
895 const unsigned char *addr, bool sync)
896 {
897 struct fm10k_intfc *interface = netdev_priv(dev);
898 struct fm10k_hw *hw = &interface->hw;
899 u16 vid, glort = interface->glort;
900 s32 err;
901
902 if (!is_multicast_ether_addr(addr))
903 return -EADDRNOTAVAIL;
904
905 /* update table with current entries */
906 for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 0;
907 vid < VLAN_N_VID;
908 vid = fm10k_find_next_vlan(interface, vid)) {
909 err = hw->mac.ops.update_mc_addr(hw, glort, addr, vid, sync);
910 if (err)
911 return err;
912 }
913
914 return 0;
915 }
916
917 static int fm10k_mc_sync(struct net_device *dev,
918 const unsigned char *addr)
919 {
920 return __fm10k_mc_sync(dev, addr, true);
921 }
922
923 static int fm10k_mc_unsync(struct net_device *dev,
924 const unsigned char *addr)
925 {
926 return __fm10k_mc_sync(dev, addr, false);
927 }
928
929 static void fm10k_set_rx_mode(struct net_device *dev)
930 {
931 struct fm10k_intfc *interface = netdev_priv(dev);
932 struct fm10k_hw *hw = &interface->hw;
933 int xcast_mode;
934
935 /* no need to update the harwdare if we are not running */
936 if (!(dev->flags & IFF_UP))
937 return;
938
939 /* determine new mode based on flags */
940 xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC :
941 (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI :
942 (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
943 FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE;
944
945 fm10k_mbx_lock(interface);
946
947 /* syncronize all of the addresses */
948 if (xcast_mode != FM10K_XCAST_MODE_PROMISC) {
949 __dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync);
950 if (xcast_mode != FM10K_XCAST_MODE_ALLMULTI)
951 __dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync);
952 }
953
954 /* if we aren't changing modes there is nothing to do */
955 if (interface->xcast_mode != xcast_mode) {
956 /* update VLAN table */
957 if (xcast_mode == FM10K_XCAST_MODE_PROMISC)
958 hw->mac.ops.update_vlan(hw, FM10K_VLAN_ALL, 0, true);
959 if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC)
960 fm10k_clear_unused_vlans(interface);
961
962 /* update xcast mode */
963 hw->mac.ops.update_xcast_mode(hw, interface->glort, xcast_mode);
964
965 /* record updated xcast mode state */
966 interface->xcast_mode = xcast_mode;
967 }
968
969 fm10k_mbx_unlock(interface);
970 }
971
972 void fm10k_restore_rx_state(struct fm10k_intfc *interface)
973 {
974 struct net_device *netdev = interface->netdev;
975 struct fm10k_hw *hw = &interface->hw;
976 int xcast_mode;
977 u16 vid, glort;
978
979 /* record glort for this interface */
980 glort = interface->glort;
981
982 /* convert interface flags to xcast mode */
983 if (netdev->flags & IFF_PROMISC)
984 xcast_mode = FM10K_XCAST_MODE_PROMISC;
985 else if (netdev->flags & IFF_ALLMULTI)
986 xcast_mode = FM10K_XCAST_MODE_ALLMULTI;
987 else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST))
988 xcast_mode = FM10K_XCAST_MODE_MULTI;
989 else
990 xcast_mode = FM10K_XCAST_MODE_NONE;
991
992 fm10k_mbx_lock(interface);
993
994 /* Enable logical port */
995 hw->mac.ops.update_lport_state(hw, glort, interface->glort_count, true);
996
997 /* update VLAN table */
998 hw->mac.ops.update_vlan(hw, FM10K_VLAN_ALL, 0,
999 xcast_mode == FM10K_XCAST_MODE_PROMISC);
1000
1001 /* Add filter for VLAN 0 */
1002 hw->mac.ops.update_vlan(hw, 0, 0, true);
1003
1004 /* update table with current entries */
1005 for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 0;
1006 vid < VLAN_N_VID;
1007 vid = fm10k_find_next_vlan(interface, vid)) {
1008 hw->mac.ops.update_vlan(hw, vid, 0, true);
1009 hw->mac.ops.update_uc_addr(hw, glort, hw->mac.addr,
1010 vid, true, 0);
1011 }
1012
1013 /* syncronize all of the addresses */
1014 if (xcast_mode != FM10K_XCAST_MODE_PROMISC) {
1015 __dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync);
1016 if (xcast_mode != FM10K_XCAST_MODE_ALLMULTI)
1017 __dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync);
1018 }
1019
1020 /* update xcast mode */
1021 hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode);
1022
1023 fm10k_mbx_unlock(interface);
1024
1025 /* record updated xcast mode state */
1026 interface->xcast_mode = xcast_mode;
1027
1028 /* Restore tunnel configuration */
1029 fm10k_restore_vxlan_port(interface);
1030 }
1031
1032 void fm10k_reset_rx_state(struct fm10k_intfc *interface)
1033 {
1034 struct net_device *netdev = interface->netdev;
1035 struct fm10k_hw *hw = &interface->hw;
1036
1037 fm10k_mbx_lock(interface);
1038
1039 /* clear the logical port state on lower device */
1040 hw->mac.ops.update_lport_state(hw, interface->glort,
1041 interface->glort_count, false);
1042
1043 fm10k_mbx_unlock(interface);
1044
1045 /* reset flags to default state */
1046 interface->xcast_mode = FM10K_XCAST_MODE_NONE;
1047
1048 /* clear the sync flag since the lport has been dropped */
1049 __dev_uc_unsync(netdev, NULL);
1050 __dev_mc_unsync(netdev, NULL);
1051 }
1052
1053 /**
1054 * fm10k_get_stats64 - Get System Network Statistics
1055 * @netdev: network interface device structure
1056 * @stats: storage space for 64bit statistics
1057 *
1058 * Returns 64bit statistics, for use in the ndo_get_stats64 callback. This
1059 * function replaces fm10k_get_stats for kernels which support it.
1060 */
1061 static struct rtnl_link_stats64 *fm10k_get_stats64(struct net_device *netdev,
1062 struct rtnl_link_stats64 *stats)
1063 {
1064 struct fm10k_intfc *interface = netdev_priv(netdev);
1065 struct fm10k_ring *ring;
1066 unsigned int start, i;
1067 u64 bytes, packets;
1068
1069 rcu_read_lock();
1070
1071 for (i = 0; i < interface->num_rx_queues; i++) {
1072 ring = ACCESS_ONCE(interface->rx_ring[i]);
1073
1074 if (!ring)
1075 continue;
1076
1077 do {
1078 start = u64_stats_fetch_begin_irq(&ring->syncp);
1079 packets = ring->stats.packets;
1080 bytes = ring->stats.bytes;
1081 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1082
1083 stats->rx_packets += packets;
1084 stats->rx_bytes += bytes;
1085 }
1086
1087 for (i = 0; i < interface->num_tx_queues; i++) {
1088 ring = ACCESS_ONCE(interface->rx_ring[i]);
1089
1090 if (!ring)
1091 continue;
1092
1093 do {
1094 start = u64_stats_fetch_begin_irq(&ring->syncp);
1095 packets = ring->stats.packets;
1096 bytes = ring->stats.bytes;
1097 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1098
1099 stats->tx_packets += packets;
1100 stats->tx_bytes += bytes;
1101 }
1102
1103 rcu_read_unlock();
1104
1105 /* following stats updated by fm10k_service_task() */
1106 stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1107
1108 return stats;
1109 }
1110
1111 int fm10k_setup_tc(struct net_device *dev, u8 tc)
1112 {
1113 struct fm10k_intfc *interface = netdev_priv(dev);
1114
1115 /* Currently only the PF supports priority classes */
1116 if (tc && (interface->hw.mac.type != fm10k_mac_pf))
1117 return -EINVAL;
1118
1119 /* Hardware supports up to 8 traffic classes */
1120 if (tc > 8)
1121 return -EINVAL;
1122
1123 /* Hardware has to reinitialize queues to match packet
1124 * buffer alignment. Unfortunately, the hardware is not
1125 * flexible enough to do this dynamically.
1126 */
1127 if (netif_running(dev))
1128 fm10k_close(dev);
1129
1130 fm10k_mbx_free_irq(interface);
1131
1132 fm10k_clear_queueing_scheme(interface);
1133
1134 /* we expect the prio_tc map to be repopulated later */
1135 netdev_reset_tc(dev);
1136 netdev_set_num_tc(dev, tc);
1137
1138 fm10k_init_queueing_scheme(interface);
1139
1140 fm10k_mbx_request_irq(interface);
1141
1142 if (netif_running(dev))
1143 fm10k_open(dev);
1144
1145 /* flag to indicate SWPRI has yet to be updated */
1146 interface->flags |= FM10K_FLAG_SWPRI_CONFIG;
1147
1148 return 0;
1149 }
1150
1151 static void fm10k_assign_l2_accel(struct fm10k_intfc *interface,
1152 struct fm10k_l2_accel *l2_accel)
1153 {
1154 struct fm10k_ring *ring;
1155 int i;
1156
1157 for (i = 0; i < interface->num_rx_queues; i++) {
1158 ring = interface->rx_ring[i];
1159 rcu_assign_pointer(ring->l2_accel, l2_accel);
1160 }
1161
1162 interface->l2_accel = l2_accel;
1163 }
1164
1165 static void *fm10k_dfwd_add_station(struct net_device *dev,
1166 struct net_device *sdev)
1167 {
1168 struct fm10k_intfc *interface = netdev_priv(dev);
1169 struct fm10k_l2_accel *l2_accel = interface->l2_accel;
1170 struct fm10k_l2_accel *old_l2_accel = NULL;
1171 struct fm10k_dglort_cfg dglort = { 0 };
1172 struct fm10k_hw *hw = &interface->hw;
1173 int size = 0, i;
1174 u16 glort;
1175
1176 /* allocate l2 accel structure if it is not available */
1177 if (!l2_accel) {
1178 /* verify there is enough free GLORTs to support l2_accel */
1179 if (interface->glort_count < 7)
1180 return ERR_PTR(-EBUSY);
1181
1182 size = offsetof(struct fm10k_l2_accel, macvlan[7]);
1183 l2_accel = kzalloc(size, GFP_KERNEL);
1184 if (!l2_accel)
1185 return ERR_PTR(-ENOMEM);
1186
1187 l2_accel->size = 7;
1188 l2_accel->dglort = interface->glort;
1189
1190 /* update pointers */
1191 fm10k_assign_l2_accel(interface, l2_accel);
1192 /* do not expand if we are at our limit */
1193 } else if ((l2_accel->count == FM10K_MAX_STATIONS) ||
1194 (l2_accel->count == (interface->glort_count - 1))) {
1195 return ERR_PTR(-EBUSY);
1196 /* expand if we have hit the size limit */
1197 } else if (l2_accel->count == l2_accel->size) {
1198 old_l2_accel = l2_accel;
1199 size = offsetof(struct fm10k_l2_accel,
1200 macvlan[(l2_accel->size * 2) + 1]);
1201 l2_accel = kzalloc(size, GFP_KERNEL);
1202 if (!l2_accel)
1203 return ERR_PTR(-ENOMEM);
1204
1205 memcpy(l2_accel, old_l2_accel,
1206 offsetof(struct fm10k_l2_accel,
1207 macvlan[old_l2_accel->size]));
1208
1209 l2_accel->size = (old_l2_accel->size * 2) + 1;
1210
1211 /* update pointers */
1212 fm10k_assign_l2_accel(interface, l2_accel);
1213 kfree_rcu(old_l2_accel, rcu);
1214 }
1215
1216 /* add macvlan to accel table, and record GLORT for position */
1217 for (i = 0; i < l2_accel->size; i++) {
1218 if (!l2_accel->macvlan[i])
1219 break;
1220 }
1221
1222 /* record station */
1223 l2_accel->macvlan[i] = sdev;
1224 l2_accel->count++;
1225
1226 /* configure default DGLORT mapping for RSS/DCB */
1227 dglort.idx = fm10k_dglort_pf_rss;
1228 dglort.inner_rss = 1;
1229 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1230 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1231 dglort.glort = interface->glort;
1232 dglort.shared_l = fls(l2_accel->size);
1233 hw->mac.ops.configure_dglort_map(hw, &dglort);
1234
1235 /* Add rules for this specific dglort to the switch */
1236 fm10k_mbx_lock(interface);
1237
1238 glort = l2_accel->dglort + 1 + i;
1239 hw->mac.ops.update_xcast_mode(hw, glort, FM10K_XCAST_MODE_MULTI);
1240 hw->mac.ops.update_uc_addr(hw, glort, sdev->dev_addr, 0, true, 0);
1241
1242 fm10k_mbx_unlock(interface);
1243
1244 return sdev;
1245 }
1246
1247 static void fm10k_dfwd_del_station(struct net_device *dev, void *priv)
1248 {
1249 struct fm10k_intfc *interface = netdev_priv(dev);
1250 struct fm10k_l2_accel *l2_accel = ACCESS_ONCE(interface->l2_accel);
1251 struct fm10k_dglort_cfg dglort = { 0 };
1252 struct fm10k_hw *hw = &interface->hw;
1253 struct net_device *sdev = priv;
1254 int i;
1255 u16 glort;
1256
1257 if (!l2_accel)
1258 return;
1259
1260 /* search table for matching interface */
1261 for (i = 0; i < l2_accel->size; i++) {
1262 if (l2_accel->macvlan[i] == sdev)
1263 break;
1264 }
1265
1266 /* exit if macvlan not found */
1267 if (i == l2_accel->size)
1268 return;
1269
1270 /* Remove any rules specific to this dglort */
1271 fm10k_mbx_lock(interface);
1272
1273 glort = l2_accel->dglort + 1 + i;
1274 hw->mac.ops.update_xcast_mode(hw, glort, FM10K_XCAST_MODE_NONE);
1275 hw->mac.ops.update_uc_addr(hw, glort, sdev->dev_addr, 0, false, 0);
1276
1277 fm10k_mbx_unlock(interface);
1278
1279 /* record removal */
1280 l2_accel->macvlan[i] = NULL;
1281 l2_accel->count--;
1282
1283 /* configure default DGLORT mapping for RSS/DCB */
1284 dglort.idx = fm10k_dglort_pf_rss;
1285 dglort.inner_rss = 1;
1286 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1287 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1288 dglort.glort = interface->glort;
1289 if (l2_accel)
1290 dglort.shared_l = fls(l2_accel->size);
1291 hw->mac.ops.configure_dglort_map(hw, &dglort);
1292
1293 /* If table is empty remove it */
1294 if (l2_accel->count == 0) {
1295 fm10k_assign_l2_accel(interface, NULL);
1296 kfree_rcu(l2_accel, rcu);
1297 }
1298 }
1299
1300 static const struct net_device_ops fm10k_netdev_ops = {
1301 .ndo_open = fm10k_open,
1302 .ndo_stop = fm10k_close,
1303 .ndo_validate_addr = eth_validate_addr,
1304 .ndo_start_xmit = fm10k_xmit_frame,
1305 .ndo_set_mac_address = fm10k_set_mac,
1306 .ndo_change_mtu = fm10k_change_mtu,
1307 .ndo_tx_timeout = fm10k_tx_timeout,
1308 .ndo_vlan_rx_add_vid = fm10k_vlan_rx_add_vid,
1309 .ndo_vlan_rx_kill_vid = fm10k_vlan_rx_kill_vid,
1310 .ndo_set_rx_mode = fm10k_set_rx_mode,
1311 .ndo_get_stats64 = fm10k_get_stats64,
1312 .ndo_setup_tc = fm10k_setup_tc,
1313 .ndo_add_vxlan_port = fm10k_add_vxlan_port,
1314 .ndo_del_vxlan_port = fm10k_del_vxlan_port,
1315 .ndo_dfwd_add_station = fm10k_dfwd_add_station,
1316 .ndo_dfwd_del_station = fm10k_dfwd_del_station,
1317 };
1318
1319 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
1320
1321 struct net_device *fm10k_alloc_netdev(void)
1322 {
1323 struct fm10k_intfc *interface;
1324 struct net_device *dev;
1325
1326 dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES);
1327 if (!dev)
1328 return NULL;
1329
1330 /* set net device and ethtool ops */
1331 dev->netdev_ops = &fm10k_netdev_ops;
1332 fm10k_set_ethtool_ops(dev);
1333
1334 /* configure default debug level */
1335 interface = netdev_priv(dev);
1336 interface->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
1337
1338 /* configure default features */
1339 dev->features |= NETIF_F_IP_CSUM |
1340 NETIF_F_IPV6_CSUM |
1341 NETIF_F_SG |
1342 NETIF_F_TSO |
1343 NETIF_F_TSO6 |
1344 NETIF_F_TSO_ECN |
1345 NETIF_F_GSO_UDP_TUNNEL |
1346 NETIF_F_RXHASH |
1347 NETIF_F_RXCSUM;
1348
1349 /* all features defined to this point should be changeable */
1350 dev->hw_features |= dev->features;
1351
1352 /* allow user to enable L2 forwarding acceleration */
1353 dev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD;
1354
1355 /* configure VLAN features */
1356 dev->vlan_features |= dev->features;
1357
1358 /* configure tunnel offloads */
1359 dev->hw_enc_features = NETIF_F_IP_CSUM |
1360 NETIF_F_TSO |
1361 NETIF_F_TSO6 |
1362 NETIF_F_TSO_ECN |
1363 NETIF_F_GSO_UDP_TUNNEL |
1364 NETIF_F_IPV6_CSUM |
1365 NETIF_F_SG;
1366
1367 /* we want to leave these both on as we cannot disable VLAN tag
1368 * insertion or stripping on the hardware since it is contained
1369 * in the FTAG and not in the frame itself.
1370 */
1371 dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1372 NETIF_F_HW_VLAN_CTAG_RX |
1373 NETIF_F_HW_VLAN_CTAG_FILTER;
1374
1375 dev->priv_flags |= IFF_UNICAST_FLT;
1376
1377 return dev;
1378 }
This page took 0.082768 seconds and 6 git commands to generate.