Merge tag 'v4.7-rc2' into v4l_for_linus
[deliverable/linux.git] / drivers / net / ethernet / intel / fm10k / fm10k_pf.c
1 /* Intel(R) Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2016 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21 #include "fm10k_pf.h"
22 #include "fm10k_vf.h"
23
24 /**
25 * fm10k_reset_hw_pf - PF hardware reset
26 * @hw: pointer to hardware structure
27 *
28 * This function should return the hardware to a state similar to the
29 * one it is in after being powered on.
30 **/
31 static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
32 {
33 s32 err;
34 u32 reg;
35 u16 i;
36
37 /* Disable interrupts */
38 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
39
40 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */
41 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
42 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
43
44 /* We assume here Tx and Rx queue 0 are owned by the PF */
45
46 /* Shut off VF access to their queues forcing them to queue 0 */
47 for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
48 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
49 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
50 }
51
52 /* shut down all rings */
53 err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
54 if (err)
55 return err;
56
57 /* Verify that DMA is no longer active */
58 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
59 if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
60 return FM10K_ERR_DMA_PENDING;
61
62 /* verify the switch is ready for reset */
63 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
64 if (!(reg & FM10K_DMA_CTRL2_SWITCH_READY))
65 goto out;
66
67 /* Inititate data path reset */
68 reg |= FM10K_DMA_CTRL_DATAPATH_RESET;
69 fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
70
71 /* Flush write and allow 100us for reset to complete */
72 fm10k_write_flush(hw);
73 udelay(FM10K_RESET_TIMEOUT);
74
75 /* Verify we made it out of reset */
76 reg = fm10k_read_reg(hw, FM10K_IP);
77 if (!(reg & FM10K_IP_NOTINRESET))
78 err = FM10K_ERR_RESET_FAILED;
79
80 out:
81 return err;
82 }
83
84 /**
85 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
86 * @hw: pointer to hardware structure
87 *
88 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
89 **/
90 static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
91 {
92 u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
93
94 return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
95 }
96
97 /**
98 * fm10k_init_hw_pf - PF hardware initialization
99 * @hw: pointer to hardware structure
100 *
101 **/
102 static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
103 {
104 u32 dma_ctrl, txqctl;
105 u16 i;
106
107 /* Establish default VSI as valid */
108 fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
109 fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
110 FM10K_DGLORTMAP_ANY);
111
112 /* Invalidate all other GLORT entries */
113 for (i = 1; i < FM10K_DGLORT_COUNT; i++)
114 fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
115
116 /* reset ITR2(0) to point to itself */
117 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
118
119 /* reset VF ITR2(0) to point to 0 avoid PF registers */
120 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
121
122 /* loop through all PF ITR2 registers pointing them to the previous */
123 for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
124 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
125
126 /* Enable interrupt moderator if not already enabled */
127 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
128
129 /* compute the default txqctl configuration */
130 txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
131 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
132
133 for (i = 0; i < FM10K_MAX_QUEUES; i++) {
134 /* configure rings for 256 Queue / 32 Descriptor cache mode */
135 fm10k_write_reg(hw, FM10K_TQDLOC(i),
136 (i * FM10K_TQDLOC_BASE_32_DESC) |
137 FM10K_TQDLOC_SIZE_32_DESC);
138 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
139
140 /* configure rings to provide TPH processing hints */
141 fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
142 FM10K_TPH_TXCTRL_DESC_TPHEN |
143 FM10K_TPH_TXCTRL_DESC_RROEN |
144 FM10K_TPH_TXCTRL_DESC_WROEN |
145 FM10K_TPH_TXCTRL_DATA_RROEN);
146 fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
147 FM10K_TPH_RXCTRL_DESC_TPHEN |
148 FM10K_TPH_RXCTRL_DESC_RROEN |
149 FM10K_TPH_RXCTRL_DATA_WROEN |
150 FM10K_TPH_RXCTRL_HDR_WROEN);
151 }
152
153 /* set max hold interval to align with 1.024 usec in all modes and
154 * store ITR scale
155 */
156 switch (hw->bus.speed) {
157 case fm10k_bus_speed_2500:
158 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
159 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
160 break;
161 case fm10k_bus_speed_5000:
162 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
163 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
164 break;
165 case fm10k_bus_speed_8000:
166 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
167 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
168 break;
169 default:
170 dma_ctrl = 0;
171 /* just in case, assume Gen3 ITR scale */
172 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
173 break;
174 }
175
176 /* Configure TSO flags */
177 fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
178 fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
179
180 /* Enable DMA engine
181 * Set Rx Descriptor size to 32
182 * Set Minimum MSS to 64
183 * Set Maximum number of Rx queues to 256 / 32 Descriptor
184 */
185 dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
186 FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
187 FM10K_DMA_CTRL_32_DESC;
188
189 fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
190
191 /* record maximum queue count, we limit ourselves to 128 */
192 hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
193
194 /* We support either 64 VFs or 7 VFs depending on if we have ARI */
195 hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
196
197 return 0;
198 }
199
200 /**
201 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
202 * @hw: pointer to hardware structure
203 * @vid: VLAN ID to add to table
204 * @vsi: Index indicating VF ID or PF ID in table
205 * @set: Indicates if this is a set or clear operation
206 *
207 * This function adds or removes the corresponding VLAN ID from the VLAN
208 * filter table for the corresponding function. In addition to the
209 * standard set/clear that supports one bit a multi-bit write is
210 * supported to set 64 bits at a time.
211 **/
212 static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
213 {
214 u32 vlan_table, reg, mask, bit, len;
215
216 /* verify the VSI index is valid */
217 if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
218 return FM10K_ERR_PARAM;
219
220 /* VLAN multi-bit write:
221 * The multi-bit write has several parts to it.
222 * 24 16 8 0
223 * 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
224 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
225 * | RSVD0 | Length |C|RSVD0| VLAN ID |
226 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
227 *
228 * VLAN ID: Vlan Starting value
229 * RSVD0: Reserved section, must be 0
230 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
231 * Length: Number of times to repeat the bit being set
232 */
233 len = vid >> 16;
234 vid = (vid << 17) >> 17;
235
236 /* verify the reserved 0 fields are 0 */
237 if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
238 return FM10K_ERR_PARAM;
239
240 /* Loop through the table updating all required VLANs */
241 for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
242 len < FM10K_VLAN_TABLE_VID_MAX;
243 len -= 32 - bit, reg++, bit = 0) {
244 /* record the initial state of the register */
245 vlan_table = fm10k_read_reg(hw, reg);
246
247 /* truncate mask if we are at the start or end of the run */
248 mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
249
250 /* make necessary modifications to the register */
251 mask &= set ? ~vlan_table : vlan_table;
252 if (mask)
253 fm10k_write_reg(hw, reg, vlan_table ^ mask);
254 }
255
256 return 0;
257 }
258
259 /**
260 * fm10k_read_mac_addr_pf - Read device MAC address
261 * @hw: pointer to the HW structure
262 *
263 * Reads the device MAC address from the SM_AREA and stores the value.
264 **/
265 static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
266 {
267 u8 perm_addr[ETH_ALEN];
268 u32 serial_num;
269
270 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
271
272 /* last byte should be all 1's */
273 if ((~serial_num) << 24)
274 return FM10K_ERR_INVALID_MAC_ADDR;
275
276 perm_addr[0] = (u8)(serial_num >> 24);
277 perm_addr[1] = (u8)(serial_num >> 16);
278 perm_addr[2] = (u8)(serial_num >> 8);
279
280 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
281
282 /* first byte should be all 1's */
283 if ((~serial_num) >> 24)
284 return FM10K_ERR_INVALID_MAC_ADDR;
285
286 perm_addr[3] = (u8)(serial_num >> 16);
287 perm_addr[4] = (u8)(serial_num >> 8);
288 perm_addr[5] = (u8)(serial_num);
289
290 ether_addr_copy(hw->mac.perm_addr, perm_addr);
291 ether_addr_copy(hw->mac.addr, perm_addr);
292
293 return 0;
294 }
295
296 /**
297 * fm10k_glort_valid_pf - Validate that the provided glort is valid
298 * @hw: pointer to the HW structure
299 * @glort: base glort to be validated
300 *
301 * This function will return an error if the provided glort is invalid
302 **/
303 bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
304 {
305 glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
306
307 return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
308 }
309
310 /**
311 * fm10k_update_xc_addr_pf - Update device addresses
312 * @hw: pointer to the HW structure
313 * @glort: base resource tag for this request
314 * @mac: MAC address to add/remove from table
315 * @vid: VLAN ID to add/remove from table
316 * @add: Indicates if this is an add or remove operation
317 * @flags: flags field to indicate add and secure
318 *
319 * This function generates a message to the Switch API requesting
320 * that the given logical port add/remove the given L2 MAC/VLAN address.
321 **/
322 static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
323 const u8 *mac, u16 vid, bool add, u8 flags)
324 {
325 struct fm10k_mbx_info *mbx = &hw->mbx;
326 struct fm10k_mac_update mac_update;
327 u32 msg[5];
328
329 /* clear set bit from VLAN ID */
330 vid &= ~FM10K_VLAN_CLEAR;
331
332 /* if glort or VLAN are not valid return error */
333 if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
334 return FM10K_ERR_PARAM;
335
336 /* record fields */
337 mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
338 ((u32)mac[3] << 16) |
339 ((u32)mac[4] << 8) |
340 ((u32)mac[5]));
341 mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
342 ((u16)mac[1]));
343 mac_update.vlan = cpu_to_le16(vid);
344 mac_update.glort = cpu_to_le16(glort);
345 mac_update.action = add ? 0 : 1;
346 mac_update.flags = flags;
347
348 /* populate mac_update fields */
349 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
350 fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
351 &mac_update, sizeof(mac_update));
352
353 /* load onto outgoing mailbox */
354 return mbx->ops.enqueue_tx(hw, mbx, msg);
355 }
356
357 /**
358 * fm10k_update_uc_addr_pf - Update device unicast addresses
359 * @hw: pointer to the HW structure
360 * @glort: base resource tag for this request
361 * @mac: MAC address to add/remove from table
362 * @vid: VLAN ID to add/remove from table
363 * @add: Indicates if this is an add or remove operation
364 * @flags: flags field to indicate add and secure
365 *
366 * This function is used to add or remove unicast addresses for
367 * the PF.
368 **/
369 static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
370 const u8 *mac, u16 vid, bool add, u8 flags)
371 {
372 /* verify MAC address is valid */
373 if (!is_valid_ether_addr(mac))
374 return FM10K_ERR_PARAM;
375
376 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
377 }
378
379 /**
380 * fm10k_update_mc_addr_pf - Update device multicast addresses
381 * @hw: pointer to the HW structure
382 * @glort: base resource tag for this request
383 * @mac: MAC address to add/remove from table
384 * @vid: VLAN ID to add/remove from table
385 * @add: Indicates if this is an add or remove operation
386 *
387 * This function is used to add or remove multicast MAC addresses for
388 * the PF.
389 **/
390 static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
391 const u8 *mac, u16 vid, bool add)
392 {
393 /* verify multicast address is valid */
394 if (!is_multicast_ether_addr(mac))
395 return FM10K_ERR_PARAM;
396
397 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
398 }
399
400 /**
401 * fm10k_update_xcast_mode_pf - Request update of multicast mode
402 * @hw: pointer to hardware structure
403 * @glort: base resource tag for this request
404 * @mode: integer value indicating mode being requested
405 *
406 * This function will attempt to request a higher mode for the port
407 * so that it can enable either multicast, multicast promiscuous, or
408 * promiscuous mode of operation.
409 **/
410 static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
411 {
412 struct fm10k_mbx_info *mbx = &hw->mbx;
413 u32 msg[3], xcast_mode;
414
415 if (mode > FM10K_XCAST_MODE_NONE)
416 return FM10K_ERR_PARAM;
417
418 /* if glort is not valid return error */
419 if (!fm10k_glort_valid_pf(hw, glort))
420 return FM10K_ERR_PARAM;
421
422 /* write xcast mode as a single u32 value,
423 * lower 16 bits: glort
424 * upper 16 bits: mode
425 */
426 xcast_mode = ((u32)mode << 16) | glort;
427
428 /* generate message requesting to change xcast mode */
429 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
430 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
431
432 /* load onto outgoing mailbox */
433 return mbx->ops.enqueue_tx(hw, mbx, msg);
434 }
435
436 /**
437 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list
438 * @hw: pointer to hardware structure
439 *
440 * This function walks through the MSI-X vector table to determine the
441 * number of active interrupts and based on that information updates the
442 * interrupt moderator linked list.
443 **/
444 static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
445 {
446 u32 i;
447
448 /* Disable interrupt moderator */
449 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
450
451 /* loop through PF from last to first looking enabled vectors */
452 for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
453 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
454 break;
455 }
456
457 /* always reset VFITR2[0] to point to last enabled PF vector */
458 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
459
460 /* reset ITR2[0] to point to last enabled PF vector */
461 if (!hw->iov.num_vfs)
462 fm10k_write_reg(hw, FM10K_ITR2(0), i);
463
464 /* Enable interrupt moderator */
465 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
466 }
467
468 /**
469 * fm10k_update_lport_state_pf - Notify the switch of a change in port state
470 * @hw: pointer to the HW structure
471 * @glort: base resource tag for this request
472 * @count: number of logical ports being updated
473 * @enable: boolean value indicating enable or disable
474 *
475 * This function is used to add/remove a logical port from the switch.
476 **/
477 static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
478 u16 count, bool enable)
479 {
480 struct fm10k_mbx_info *mbx = &hw->mbx;
481 u32 msg[3], lport_msg;
482
483 /* do nothing if we are being asked to create or destroy 0 ports */
484 if (!count)
485 return 0;
486
487 /* if glort is not valid return error */
488 if (!fm10k_glort_valid_pf(hw, glort))
489 return FM10K_ERR_PARAM;
490
491 /* reset multicast mode if deleting lport */
492 if (!enable)
493 fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE);
494
495 /* construct the lport message from the 2 pieces of data we have */
496 lport_msg = ((u32)count << 16) | glort;
497
498 /* generate lport create/delete message */
499 fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
500 FM10K_PF_MSG_ID_LPORT_DELETE);
501 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
502
503 /* load onto outgoing mailbox */
504 return mbx->ops.enqueue_tx(hw, mbx, msg);
505 }
506
507 /**
508 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
509 * @hw: pointer to hardware structure
510 * @dglort: pointer to dglort configuration structure
511 *
512 * Reads the configuration structure contained in dglort_cfg and uses
513 * that information to then populate a DGLORTMAP/DEC entry and the queues
514 * to which it has been assigned.
515 **/
516 static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
517 struct fm10k_dglort_cfg *dglort)
518 {
519 u16 glort, queue_count, vsi_count, pc_count;
520 u16 vsi, queue, pc, q_idx;
521 u32 txqctl, dglortdec, dglortmap;
522
523 /* verify the dglort pointer */
524 if (!dglort)
525 return FM10K_ERR_PARAM;
526
527 /* verify the dglort values */
528 if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
529 (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
530 (dglort->queue_l > 8) || (dglort->queue_b >= 256))
531 return FM10K_ERR_PARAM;
532
533 /* determine count of VSIs and queues */
534 queue_count = BIT(dglort->rss_l + dglort->pc_l);
535 vsi_count = BIT(dglort->vsi_l + dglort->queue_l);
536 glort = dglort->glort;
537 q_idx = dglort->queue_b;
538
539 /* configure SGLORT for queues */
540 for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
541 for (queue = 0; queue < queue_count; queue++, q_idx++) {
542 if (q_idx >= FM10K_MAX_QUEUES)
543 break;
544
545 fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
546 fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
547 }
548 }
549
550 /* determine count of PCs and queues */
551 queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l);
552 pc_count = BIT(dglort->pc_l);
553
554 /* configure PC for Tx queues */
555 for (pc = 0; pc < pc_count; pc++) {
556 q_idx = pc + dglort->queue_b;
557 for (queue = 0; queue < queue_count; queue++) {
558 if (q_idx >= FM10K_MAX_QUEUES)
559 break;
560
561 txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
562 txqctl &= ~FM10K_TXQCTL_PC_MASK;
563 txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
564 fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
565
566 q_idx += pc_count;
567 }
568 }
569
570 /* configure DGLORTDEC */
571 dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
572 ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
573 ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
574 ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
575 ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
576 ((u32)(dglort->queue_l));
577 if (dglort->inner_rss)
578 dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE;
579
580 /* configure DGLORTMAP */
581 dglortmap = (dglort->idx == fm10k_dglort_default) ?
582 FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
583 dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
584 dglortmap |= dglort->glort;
585
586 /* write values to hardware */
587 fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
588 fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
589
590 return 0;
591 }
592
593 u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
594 {
595 u16 num_pools = hw->iov.num_pools;
596
597 return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
598 8 : FM10K_MAX_QUEUES_POOL;
599 }
600
601 u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
602 {
603 u16 num_vfs = hw->iov.num_vfs;
604 u16 vf_q_idx = FM10K_MAX_QUEUES;
605
606 vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
607
608 return vf_q_idx;
609 }
610
611 static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
612 {
613 u16 num_pools = hw->iov.num_pools;
614
615 return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
616 FM10K_MAX_VECTORS_POOL;
617 }
618
619 static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
620 {
621 u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
622
623 vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
624
625 return vf_v_idx;
626 }
627
628 /**
629 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
630 * @hw: pointer to the HW structure
631 * @num_vfs: number of VFs to be allocated
632 * @num_pools: number of virtualization pools to be allocated
633 *
634 * Allocates queues and traffic classes to virtualization entities to prepare
635 * the PF for SR-IOV and VMDq
636 **/
637 static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
638 u16 num_pools)
639 {
640 u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
641 u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
642 int i, j;
643
644 /* hardware only supports up to 64 pools */
645 if (num_pools > 64)
646 return FM10K_ERR_PARAM;
647
648 /* the number of VFs cannot exceed the number of pools */
649 if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
650 return FM10K_ERR_PARAM;
651
652 /* record number of virtualization entities */
653 hw->iov.num_vfs = num_vfs;
654 hw->iov.num_pools = num_pools;
655
656 /* determine qmap offsets and counts */
657 qmap_stride = (num_vfs > 8) ? 32 : 256;
658 qpp = fm10k_queues_per_pool(hw);
659 vpp = fm10k_vectors_per_pool(hw);
660
661 /* calculate starting index for queues */
662 vf_q_idx = fm10k_vf_queue_index(hw, 0);
663 qmap_idx = 0;
664
665 /* establish TCs with -1 credits and no quanta to prevent transmit */
666 for (i = 0; i < num_vfs; i++) {
667 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
668 fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
669 fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
670 FM10K_TC_CREDIT_CREDIT_MASK);
671 }
672
673 /* zero out all mbmem registers */
674 for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
675 fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
676
677 /* clear event notification of VF FLR */
678 fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
679 fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
680
681 /* loop through unallocated rings assigning them back to PF */
682 for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
683 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
684 fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
685 FM10K_TXQCTL_UNLIMITED_BW | vid);
686 fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
687 }
688
689 /* PF should have already updated VFITR2[0] */
690
691 /* update all ITR registers to flow to VFITR2[0] */
692 for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
693 if (!(i & (vpp - 1)))
694 fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
695 else
696 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
697 }
698
699 /* update PF ITR2[0] to reference the last vector */
700 fm10k_write_reg(hw, FM10K_ITR2(0),
701 fm10k_vf_vector_index(hw, num_vfs - 1));
702
703 /* loop through rings populating rings and TCs */
704 for (i = 0; i < num_vfs; i++) {
705 /* record index for VF queue 0 for use in end of loop */
706 vf_q_idx0 = vf_q_idx;
707
708 for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
709 /* assign VF and locked TC to queues */
710 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
711 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
712 (i << FM10K_TXQCTL_TC_SHIFT) | i |
713 FM10K_TXQCTL_VF | vid);
714 fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
715 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
716 FM10K_RXDCTL_DROP_ON_EMPTY);
717 fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
718 (i << FM10K_RXQCTL_VF_SHIFT) |
719 FM10K_RXQCTL_VF);
720
721 /* map queue pair to VF */
722 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
723 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
724 }
725
726 /* repeat the first ring for all of the remaining VF rings */
727 for (; j < qmap_stride; j++, qmap_idx++) {
728 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
729 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
730 }
731 }
732
733 /* loop through remaining indexes assigning all to queue 0 */
734 while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
735 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
736 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
737 qmap_idx++;
738 }
739
740 return 0;
741 }
742
743 /**
744 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF
745 * @hw: pointer to the HW structure
746 * @vf_idx: index of VF receiving GLORT
747 * @rate: Rate indicated in Mb/s
748 *
749 * Configured the TC for a given VF to allow only up to a given number
750 * of Mb/s of outgoing Tx throughput.
751 **/
752 static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
753 {
754 /* configure defaults */
755 u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
756 u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
757
758 /* verify vf is in range */
759 if (vf_idx >= hw->iov.num_vfs)
760 return FM10K_ERR_PARAM;
761
762 /* set interval to align with 4.096 usec in all modes */
763 switch (hw->bus.speed) {
764 case fm10k_bus_speed_2500:
765 interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
766 break;
767 case fm10k_bus_speed_5000:
768 interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
769 break;
770 default:
771 break;
772 }
773
774 if (rate) {
775 if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
776 return FM10K_ERR_PARAM;
777
778 /* The quanta is measured in Bytes per 4.096 or 8.192 usec
779 * The rate is provided in Mbits per second
780 * To tralslate from rate to quanta we need to multiply the
781 * rate by 8.192 usec and divide by 8 bits/byte. To avoid
782 * dealing with floating point we can round the values up
783 * to the nearest whole number ratio which gives us 128 / 125.
784 */
785 tc_rate = (rate * 128) / 125;
786
787 /* try to keep the rate limiting accurate by increasing
788 * the number of credits and interval for rates less than 4Gb/s
789 */
790 if (rate < 4000)
791 interval <<= 1;
792 else
793 tc_rate >>= 1;
794 }
795
796 /* update rate limiter with new values */
797 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
798 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
799 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
800
801 return 0;
802 }
803
804 /**
805 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
806 * @hw: pointer to the HW structure
807 * @vf_idx: index of VF receiving GLORT
808 *
809 * Update the interrupt moderator linked list to include any MSI-X
810 * interrupts which the VF has enabled in the MSI-X vector table.
811 **/
812 static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
813 {
814 u16 vf_v_idx, vf_v_limit, i;
815
816 /* verify vf is in range */
817 if (vf_idx >= hw->iov.num_vfs)
818 return FM10K_ERR_PARAM;
819
820 /* determine vector offset and count */
821 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
822 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
823
824 /* search for first vector that is not masked */
825 for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
826 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
827 break;
828 }
829
830 /* reset linked list so it now includes our active vectors */
831 if (vf_idx == (hw->iov.num_vfs - 1))
832 fm10k_write_reg(hw, FM10K_ITR2(0), i);
833 else
834 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
835
836 return 0;
837 }
838
839 /**
840 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
841 * @hw: pointer to the HW structure
842 * @vf_info: pointer to VF information structure
843 *
844 * Assign a MAC address and default VLAN to a VF and notify it of the update
845 **/
846 static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
847 struct fm10k_vf_info *vf_info)
848 {
849 u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
850 u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
851 s32 err = 0;
852 u16 vf_idx, vf_vid;
853
854 /* verify vf is in range */
855 if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
856 return FM10K_ERR_PARAM;
857
858 /* determine qmap offsets and counts */
859 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
860 queues_per_pool = fm10k_queues_per_pool(hw);
861
862 /* calculate starting index for queues */
863 vf_idx = vf_info->vf_idx;
864 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
865 qmap_idx = qmap_stride * vf_idx;
866
867 /* MAP Tx queue back to 0 temporarily, and disable it */
868 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
869 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
870
871 /* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is
872 * used here to indicate to the VF that it will not have privilege to
873 * write VLAN_TABLE. All policy is enforced on the PF but this allows
874 * the VF to correctly report errors to userspace rqeuests.
875 */
876 if (vf_info->pf_vid)
877 vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE;
878 else
879 vf_vid = vf_info->sw_vid;
880
881 /* generate MAC_ADDR request */
882 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
883 fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
884 vf_info->mac, vf_vid);
885
886 /* load onto outgoing mailbox, ignore any errors on enqueue */
887 if (vf_info->mbx.ops.enqueue_tx)
888 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
889
890 /* verify ring has disabled before modifying base address registers */
891 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
892 for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
893 /* limit ourselves to a 1ms timeout */
894 if (timeout == 10) {
895 err = FM10K_ERR_DMA_PENDING;
896 goto err_out;
897 }
898
899 usleep_range(100, 200);
900 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
901 }
902
903 /* Update base address registers to contain MAC address */
904 if (is_valid_ether_addr(vf_info->mac)) {
905 tdbal = (((u32)vf_info->mac[3]) << 24) |
906 (((u32)vf_info->mac[4]) << 16) |
907 (((u32)vf_info->mac[5]) << 8);
908
909 tdbah = (((u32)0xFF) << 24) |
910 (((u32)vf_info->mac[0]) << 16) |
911 (((u32)vf_info->mac[1]) << 8) |
912 ((u32)vf_info->mac[2]);
913 }
914
915 /* Record the base address into queue 0 */
916 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
917 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
918
919 /* Provide the VF the ITR scale, using software-defined fields in TDLEN
920 * to pass the information during VF initialization. See definition of
921 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
922 */
923 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
924 FM10K_TDLEN_ITR_SCALE_SHIFT);
925
926 err_out:
927 /* configure Queue control register */
928 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
929 FM10K_TXQCTL_VID_MASK;
930 txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
931 FM10K_TXQCTL_VF | vf_idx;
932
933 /* assign VLAN ID */
934 for (i = 0; i < queues_per_pool; i++)
935 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
936
937 /* restore the queue back to VF ownership */
938 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
939 return err;
940 }
941
942 /**
943 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
944 * @hw: pointer to the HW structure
945 * @vf_info: pointer to VF information structure
946 *
947 * Reassign the interrupts and queues to a VF following an FLR
948 **/
949 static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
950 struct fm10k_vf_info *vf_info)
951 {
952 u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
953 u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
954 u16 vf_v_idx, vf_v_limit, vf_vid;
955 u8 vf_idx = vf_info->vf_idx;
956 int i;
957
958 /* verify vf is in range */
959 if (vf_idx >= hw->iov.num_vfs)
960 return FM10K_ERR_PARAM;
961
962 /* clear event notification of VF FLR */
963 fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32));
964
965 /* force timeout and then disconnect the mailbox */
966 vf_info->mbx.timeout = 0;
967 if (vf_info->mbx.ops.disconnect)
968 vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
969
970 /* determine vector offset and count */
971 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
972 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
973
974 /* determine qmap offsets and counts */
975 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
976 queues_per_pool = fm10k_queues_per_pool(hw);
977 qmap_idx = qmap_stride * vf_idx;
978
979 /* make all the queues inaccessible to the VF */
980 for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
981 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
982 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
983 }
984
985 /* calculate starting index for queues */
986 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
987
988 /* determine correct default VLAN ID */
989 if (vf_info->pf_vid)
990 vf_vid = vf_info->pf_vid;
991 else
992 vf_vid = vf_info->sw_vid;
993
994 /* configure Queue control register */
995 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
996 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
997 FM10K_TXQCTL_VF | vf_idx;
998 rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF;
999
1000 /* stop further DMA and reset queue ownership back to VF */
1001 for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
1002 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
1003 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
1004 fm10k_write_reg(hw, FM10K_RXDCTL(i),
1005 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
1006 FM10K_RXDCTL_DROP_ON_EMPTY);
1007 fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
1008 }
1009
1010 /* reset TC with -1 credits and no quanta to prevent transmit */
1011 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1012 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1013 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1014 FM10K_TC_CREDIT_CREDIT_MASK);
1015
1016 /* update our first entry in the table based on previous VF */
1017 if (!vf_idx)
1018 hw->mac.ops.update_int_moderator(hw);
1019 else
1020 hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1021
1022 /* reset linked list so it now includes our active vectors */
1023 if (vf_idx == (hw->iov.num_vfs - 1))
1024 fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1025 else
1026 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1027
1028 /* link remaining vectors so that next points to previous */
1029 for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1030 fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1031
1032 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1033 for (i = FM10K_VFMBMEM_LEN; i--;)
1034 fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1035 for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1036 fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1037 for (i = FM10K_RETA_SIZE; i--;)
1038 fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1039 for (i = FM10K_RSSRK_SIZE; i--;)
1040 fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1041 fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1042
1043 /* Update base address registers to contain MAC address */
1044 if (is_valid_ether_addr(vf_info->mac)) {
1045 tdbal = (((u32)vf_info->mac[3]) << 24) |
1046 (((u32)vf_info->mac[4]) << 16) |
1047 (((u32)vf_info->mac[5]) << 8);
1048 tdbah = (((u32)0xFF) << 24) |
1049 (((u32)vf_info->mac[0]) << 16) |
1050 (((u32)vf_info->mac[1]) << 8) |
1051 ((u32)vf_info->mac[2]);
1052 }
1053
1054 /* map queue pairs back to VF from last to first */
1055 for (i = queues_per_pool; i--;) {
1056 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1057 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1058 /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1059 * explanation of how TDLEN is used.
1060 */
1061 fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
1062 hw->mac.itr_scale <<
1063 FM10K_TDLEN_ITR_SCALE_SHIFT);
1064 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1065 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1066 }
1067
1068 /* repeat the first ring for all the remaining VF rings */
1069 for (i = queues_per_pool; i < qmap_stride; i++) {
1070 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1071 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1072 }
1073
1074 return 0;
1075 }
1076
1077 /**
1078 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1079 * @hw: pointer to hardware structure
1080 * @vf_info: pointer to VF information structure
1081 * @lport_idx: Logical port offset from the hardware glort
1082 * @flags: Set of capability flags to extend port beyond basic functionality
1083 *
1084 * This function allows enabling a VF port by assigning it a GLORT and
1085 * setting the flags so that it can enable an Rx mode.
1086 **/
1087 static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1088 struct fm10k_vf_info *vf_info,
1089 u16 lport_idx, u8 flags)
1090 {
1091 u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1092
1093 /* if glort is not valid return error */
1094 if (!fm10k_glort_valid_pf(hw, glort))
1095 return FM10K_ERR_PARAM;
1096
1097 vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1098 vf_info->glort = glort;
1099
1100 return 0;
1101 }
1102
1103 /**
1104 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1105 * @hw: pointer to hardware structure
1106 * @vf_info: pointer to VF information structure
1107 *
1108 * This function disables a VF port by stripping it of a GLORT and
1109 * setting the flags so that it cannot enable any Rx mode.
1110 **/
1111 static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1112 struct fm10k_vf_info *vf_info)
1113 {
1114 u32 msg[1];
1115
1116 /* need to disable the port if it is already enabled */
1117 if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1118 /* notify switch that this port has been disabled */
1119 fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1120
1121 /* generate port state response to notify VF it is not ready */
1122 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1123 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1124 }
1125
1126 /* clear flags and glort if it exists */
1127 vf_info->vf_flags = 0;
1128 vf_info->glort = 0;
1129 }
1130
1131 /**
1132 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1133 * @hw: pointer to hardware structure
1134 * @q: stats for all queues of a VF
1135 * @vf_idx: index of VF
1136 *
1137 * This function collects queue stats for VFs.
1138 **/
1139 static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1140 struct fm10k_hw_stats_q *q,
1141 u16 vf_idx)
1142 {
1143 u32 idx, qpp;
1144
1145 /* get stats for all of the queues */
1146 qpp = fm10k_queues_per_pool(hw);
1147 idx = fm10k_vf_queue_index(hw, vf_idx);
1148 fm10k_update_hw_stats_q(hw, q, idx, qpp);
1149 }
1150
1151 /**
1152 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1153 * @hw: Pointer to hardware structure
1154 * @results: Pointer array to message, results[0] is pointer to message
1155 * @mbx: Pointer to mailbox information structure
1156 *
1157 * This function is a default handler for MSI-X requests from the VF. The
1158 * assumption is that in this case it is acceptable to just directly
1159 * hand off the message from the VF to the underlying shared code.
1160 **/
1161 s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1162 struct fm10k_mbx_info *mbx)
1163 {
1164 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1165 u8 vf_idx = vf_info->vf_idx;
1166
1167 return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1168 }
1169
1170 /**
1171 * fm10k_iov_select_vid - Select correct default VLAN ID
1172 * @hw: Pointer to hardware structure
1173 * @vid: VLAN ID to correct
1174 *
1175 * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1176 * return either the pf_vid or sw_vid depending on which one is set.
1177 */
1178 static s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
1179 {
1180 if (!vid)
1181 return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1182 else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1183 return FM10K_ERR_PARAM;
1184 else
1185 return vid;
1186 }
1187
1188 /**
1189 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1190 * @hw: Pointer to hardware structure
1191 * @results: Pointer array to message, results[0] is pointer to message
1192 * @mbx: Pointer to mailbox information structure
1193 *
1194 * This function is a default handler for MAC/VLAN requests from the VF.
1195 * The assumption is that in this case it is acceptable to just directly
1196 * hand off the message from the VF to the underlying shared code.
1197 **/
1198 s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1199 struct fm10k_mbx_info *mbx)
1200 {
1201 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1202 u8 mac[ETH_ALEN];
1203 u32 *result;
1204 int err = 0;
1205 bool set;
1206 u16 vlan;
1207 u32 vid;
1208
1209 /* we shouldn't be updating rules on a disabled interface */
1210 if (!FM10K_VF_FLAG_ENABLED(vf_info))
1211 err = FM10K_ERR_PARAM;
1212
1213 if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1214 result = results[FM10K_MAC_VLAN_MSG_VLAN];
1215
1216 /* record VLAN id requested */
1217 err = fm10k_tlv_attr_get_u32(result, &vid);
1218 if (err)
1219 return err;
1220
1221 set = !(vid & FM10K_VLAN_CLEAR);
1222 vid &= ~FM10K_VLAN_CLEAR;
1223
1224 /* if the length field has been set, this is a multi-bit
1225 * update request. For multi-bit requests, simply disallow
1226 * them when the pf_vid has been set. In this case, the PF
1227 * should have already cleared the VLAN_TABLE, and if we
1228 * allowed them, it could allow a rogue VF to receive traffic
1229 * on a VLAN it was not assigned. In the single-bit case, we
1230 * need to modify requests for VLAN 0 to use the default PF or
1231 * SW vid when assigned.
1232 */
1233
1234 if (vid >> 16) {
1235 /* prevent multi-bit requests when PF has
1236 * administratively set the VLAN for this VF
1237 */
1238 if (vf_info->pf_vid)
1239 return FM10K_ERR_PARAM;
1240 } else {
1241 err = fm10k_iov_select_vid(vf_info, (u16)vid);
1242 if (err < 0)
1243 return err;
1244
1245 vid = err;
1246 }
1247
1248 /* update VSI info for VF in regards to VLAN table */
1249 err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
1250 }
1251
1252 if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1253 result = results[FM10K_MAC_VLAN_MSG_MAC];
1254
1255 /* record unicast MAC address requested */
1256 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1257 if (err)
1258 return err;
1259
1260 /* block attempts to set MAC for a locked device */
1261 if (is_valid_ether_addr(vf_info->mac) &&
1262 !ether_addr_equal(mac, vf_info->mac))
1263 return FM10K_ERR_PARAM;
1264
1265 set = !(vlan & FM10K_VLAN_CLEAR);
1266 vlan &= ~FM10K_VLAN_CLEAR;
1267
1268 err = fm10k_iov_select_vid(vf_info, vlan);
1269 if (err < 0)
1270 return err;
1271
1272 vlan = (u16)err;
1273
1274 /* notify switch of request for new unicast address */
1275 err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1276 mac, vlan, set, 0);
1277 }
1278
1279 if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1280 result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1281
1282 /* record multicast MAC address requested */
1283 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1284 if (err)
1285 return err;
1286
1287 /* verify that the VF is allowed to request multicast */
1288 if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1289 return FM10K_ERR_PARAM;
1290
1291 set = !(vlan & FM10K_VLAN_CLEAR);
1292 vlan &= ~FM10K_VLAN_CLEAR;
1293
1294 err = fm10k_iov_select_vid(vf_info, vlan);
1295 if (err < 0)
1296 return err;
1297
1298 vlan = (u16)err;
1299
1300 /* notify switch of request for new multicast address */
1301 err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1302 mac, vlan, set);
1303 }
1304
1305 return err;
1306 }
1307
1308 /**
1309 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1310 * @vf_info: VF info structure containing capability flags
1311 * @mode: Requested xcast mode
1312 *
1313 * This function outputs the mode that most closely matches the requested
1314 * mode. If not modes match it will request we disable the port
1315 **/
1316 static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1317 u8 mode)
1318 {
1319 u8 vf_flags = vf_info->vf_flags;
1320
1321 /* match up mode to capabilities as best as possible */
1322 switch (mode) {
1323 case FM10K_XCAST_MODE_PROMISC:
1324 if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1325 return FM10K_XCAST_MODE_PROMISC;
1326 /* fallthough */
1327 case FM10K_XCAST_MODE_ALLMULTI:
1328 if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1329 return FM10K_XCAST_MODE_ALLMULTI;
1330 /* fallthough */
1331 case FM10K_XCAST_MODE_MULTI:
1332 if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1333 return FM10K_XCAST_MODE_MULTI;
1334 /* fallthough */
1335 case FM10K_XCAST_MODE_NONE:
1336 if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1337 return FM10K_XCAST_MODE_NONE;
1338 /* fallthough */
1339 default:
1340 break;
1341 }
1342
1343 /* disable interface as it should not be able to request any */
1344 return FM10K_XCAST_MODE_DISABLE;
1345 }
1346
1347 /**
1348 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1349 * @hw: Pointer to hardware structure
1350 * @results: Pointer array to message, results[0] is pointer to message
1351 * @mbx: Pointer to mailbox information structure
1352 *
1353 * This function is a default handler for port state requests. The port
1354 * state requests for now are basic and consist of enabling or disabling
1355 * the port.
1356 **/
1357 s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1358 struct fm10k_mbx_info *mbx)
1359 {
1360 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1361 u32 *result;
1362 s32 err = 0;
1363 u32 msg[2];
1364 u8 mode = 0;
1365
1366 /* verify VF is allowed to enable even minimal mode */
1367 if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1368 return FM10K_ERR_PARAM;
1369
1370 if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1371 result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1372
1373 /* XCAST mode update requested */
1374 err = fm10k_tlv_attr_get_u8(result, &mode);
1375 if (err)
1376 return FM10K_ERR_PARAM;
1377
1378 /* prep for possible demotion depending on capabilities */
1379 mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1380
1381 /* if mode is not currently enabled, enable it */
1382 if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode)))
1383 fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1384
1385 /* swap mode back to a bit flag */
1386 mode = FM10K_VF_FLAG_SET_MODE(mode);
1387 } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1388 /* need to disable the port if it is already enabled */
1389 if (FM10K_VF_FLAG_ENABLED(vf_info))
1390 err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1391 1, false);
1392
1393 /* we need to clear VF_FLAG_ENABLED flags in order to ensure
1394 * that we actually re-enable the LPORT state below. Note that
1395 * this has no impact if the VF is already disabled, as the
1396 * flags are already cleared.
1397 */
1398 if (!err)
1399 vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1400
1401 /* when enabling the port we should reset the rate limiters */
1402 hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1403
1404 /* set mode for minimal functionality */
1405 mode = FM10K_VF_FLAG_SET_MODE_NONE;
1406
1407 /* generate port state response to notify VF it is ready */
1408 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1409 fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1410 mbx->ops.enqueue_tx(hw, mbx, msg);
1411 }
1412
1413 /* if enable state toggled note the update */
1414 if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1415 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1416 !!mode);
1417
1418 /* if state change succeeded, then update our stored state */
1419 mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1420 if (!err)
1421 vf_info->vf_flags = mode;
1422
1423 return err;
1424 }
1425
1426 /**
1427 * fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1428 * @hw: pointer to hardware structure
1429 * @stats: pointer to the stats structure to update
1430 *
1431 * This function collects and aggregates global and per queue hardware
1432 * statistics.
1433 **/
1434 static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1435 struct fm10k_hw_stats *stats)
1436 {
1437 u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1438 u32 id, id_prev;
1439
1440 /* Use Tx queue 0 as a canary to detect a reset */
1441 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1442
1443 /* Read Global Statistics */
1444 do {
1445 timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1446 &stats->timeout);
1447 ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1448 ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1449 um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1450 xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1451 vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1452 &stats->vlan_drop);
1453 loopback_drop =
1454 fm10k_read_hw_stats_32b(hw,
1455 FM10K_STATS_LOOPBACK_DROP,
1456 &stats->loopback_drop);
1457 nodesc_drop = fm10k_read_hw_stats_32b(hw,
1458 FM10K_STATS_NODESC_DROP,
1459 &stats->nodesc_drop);
1460
1461 /* if value has not changed then we have consistent data */
1462 id_prev = id;
1463 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1464 } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1465
1466 /* drop non-ID bits and set VALID ID bit */
1467 id &= FM10K_TXQCTL_ID_MASK;
1468 id |= FM10K_STAT_VALID;
1469
1470 /* Update Global Statistics */
1471 if (stats->stats_idx == id) {
1472 stats->timeout.count += timeout;
1473 stats->ur.count += ur;
1474 stats->ca.count += ca;
1475 stats->um.count += um;
1476 stats->xec.count += xec;
1477 stats->vlan_drop.count += vlan_drop;
1478 stats->loopback_drop.count += loopback_drop;
1479 stats->nodesc_drop.count += nodesc_drop;
1480 }
1481
1482 /* Update bases and record current PF id */
1483 fm10k_update_hw_base_32b(&stats->timeout, timeout);
1484 fm10k_update_hw_base_32b(&stats->ur, ur);
1485 fm10k_update_hw_base_32b(&stats->ca, ca);
1486 fm10k_update_hw_base_32b(&stats->um, um);
1487 fm10k_update_hw_base_32b(&stats->xec, xec);
1488 fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1489 fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1490 fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1491 stats->stats_idx = id;
1492
1493 /* Update Queue Statistics */
1494 fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1495 }
1496
1497 /**
1498 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1499 * @hw: pointer to hardware structure
1500 * @stats: pointer to the stats structure to update
1501 *
1502 * This function resets the base for global and per queue hardware
1503 * statistics.
1504 **/
1505 static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1506 struct fm10k_hw_stats *stats)
1507 {
1508 /* Unbind Global Statistics */
1509 fm10k_unbind_hw_stats_32b(&stats->timeout);
1510 fm10k_unbind_hw_stats_32b(&stats->ur);
1511 fm10k_unbind_hw_stats_32b(&stats->ca);
1512 fm10k_unbind_hw_stats_32b(&stats->um);
1513 fm10k_unbind_hw_stats_32b(&stats->xec);
1514 fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1515 fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1516 fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1517
1518 /* Unbind Queue Statistics */
1519 fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1520
1521 /* Reinitialize bases for all stats */
1522 fm10k_update_hw_stats_pf(hw, stats);
1523 }
1524
1525 /**
1526 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1527 * @hw: pointer to hardware structure
1528 * @dma_mask: 64 bit DMA mask required for platform
1529 *
1530 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1531 * to limit the access to memory beyond what is physically in the system.
1532 **/
1533 static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1534 {
1535 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1536 u32 phyaddr = (u32)(dma_mask >> 32);
1537
1538 fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1539 }
1540
1541 /**
1542 * fm10k_get_fault_pf - Record a fault in one of the interface units
1543 * @hw: pointer to hardware structure
1544 * @type: pointer to fault type register offset
1545 * @fault: pointer to memory location to record the fault
1546 *
1547 * Record the fault register contents to the fault data structure and
1548 * clear the entry from the register.
1549 *
1550 * Returns ERR_PARAM if invalid register is specified or no error is present.
1551 **/
1552 static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1553 struct fm10k_fault *fault)
1554 {
1555 u32 func;
1556
1557 /* verify the fault register is in range and is aligned */
1558 switch (type) {
1559 case FM10K_PCA_FAULT:
1560 case FM10K_THI_FAULT:
1561 case FM10K_FUM_FAULT:
1562 break;
1563 default:
1564 return FM10K_ERR_PARAM;
1565 }
1566
1567 /* only service faults that are valid */
1568 func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1569 if (!(func & FM10K_FAULT_FUNC_VALID))
1570 return FM10K_ERR_PARAM;
1571
1572 /* read remaining fields */
1573 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1574 fault->address <<= 32;
1575 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1576 fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1577
1578 /* clear valid bit to allow for next error */
1579 fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1580
1581 /* Record which function triggered the error */
1582 if (func & FM10K_FAULT_FUNC_PF)
1583 fault->func = 0;
1584 else
1585 fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1586 FM10K_FAULT_FUNC_VF_SHIFT);
1587
1588 /* record fault type */
1589 fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1590
1591 return 0;
1592 }
1593
1594 /**
1595 * fm10k_request_lport_map_pf - Request LPORT map from the switch API
1596 * @hw: pointer to hardware structure
1597 *
1598 **/
1599 static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1600 {
1601 struct fm10k_mbx_info *mbx = &hw->mbx;
1602 u32 msg[1];
1603
1604 /* issue request asking for LPORT map */
1605 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1606
1607 /* load onto outgoing mailbox */
1608 return mbx->ops.enqueue_tx(hw, mbx, msg);
1609 }
1610
1611 /**
1612 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1613 * @hw: pointer to hardware structure
1614 * @switch_ready: pointer to boolean value that will record switch state
1615 *
1616 * This function will check the DMA_CTRL2 register and mailbox in order
1617 * to determine if the switch is ready for the PF to begin requesting
1618 * addresses and mapping traffic to the local interface.
1619 **/
1620 static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1621 {
1622 s32 ret_val = 0;
1623 u32 dma_ctrl2;
1624
1625 /* verify the switch is ready for interaction */
1626 dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1627 if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1628 goto out;
1629
1630 /* retrieve generic host state info */
1631 ret_val = fm10k_get_host_state_generic(hw, switch_ready);
1632 if (ret_val)
1633 goto out;
1634
1635 /* interface cannot receive traffic without logical ports */
1636 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
1637 ret_val = fm10k_request_lport_map_pf(hw);
1638
1639 out:
1640 return ret_val;
1641 }
1642
1643 /* This structure defines the attibutes to be parsed below */
1644 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1645 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1646 sizeof(struct fm10k_swapi_error)),
1647 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1648 FM10K_TLV_ATTR_LAST
1649 };
1650
1651 /**
1652 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1653 * @hw: Pointer to hardware structure
1654 * @results: pointer array containing parsed data
1655 * @mbx: Pointer to mailbox information structure
1656 *
1657 * This handler configures the lport mapping based on the reply from the
1658 * switch API.
1659 **/
1660 s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1661 struct fm10k_mbx_info *mbx)
1662 {
1663 u16 glort, mask;
1664 u32 dglort_map;
1665 s32 err;
1666
1667 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1668 &dglort_map);
1669 if (err)
1670 return err;
1671
1672 /* extract values out of the header */
1673 glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1674 mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1675
1676 /* verify mask is set and none of the masked bits in glort are set */
1677 if (!mask || (glort & ~mask))
1678 return FM10K_ERR_PARAM;
1679
1680 /* verify the mask is contiguous, and that it is 1's followed by 0's */
1681 if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1682 return FM10K_ERR_PARAM;
1683
1684 /* record the glort, mask, and port count */
1685 hw->mac.dglort_map = dglort_map;
1686
1687 return 0;
1688 }
1689
1690 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1691 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1692 FM10K_TLV_ATTR_LAST
1693 };
1694
1695 /**
1696 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1697 * @hw: Pointer to hardware structure
1698 * @results: pointer array containing parsed data
1699 * @mbx: Pointer to mailbox information structure
1700 *
1701 * This handler configures the default VLAN for the PF
1702 **/
1703 static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1704 struct fm10k_mbx_info *mbx)
1705 {
1706 u16 glort, pvid;
1707 u32 pvid_update;
1708 s32 err;
1709
1710 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1711 &pvid_update);
1712 if (err)
1713 return err;
1714
1715 /* extract values from the pvid update */
1716 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1717 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1718
1719 /* if glort is not valid return error */
1720 if (!fm10k_glort_valid_pf(hw, glort))
1721 return FM10K_ERR_PARAM;
1722
1723 /* verify VLAN ID is valid */
1724 if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1725 return FM10K_ERR_PARAM;
1726
1727 /* record the port VLAN ID value */
1728 hw->mac.default_vid = pvid;
1729
1730 return 0;
1731 }
1732
1733 /**
1734 * fm10k_record_global_table_data - Move global table data to swapi table info
1735 * @from: pointer to source table data structure
1736 * @to: pointer to destination table info structure
1737 *
1738 * This function is will copy table_data to the table_info contained in
1739 * the hw struct.
1740 **/
1741 static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1742 struct fm10k_swapi_table_info *to)
1743 {
1744 /* convert from le32 struct to CPU byte ordered values */
1745 to->used = le32_to_cpu(from->used);
1746 to->avail = le32_to_cpu(from->avail);
1747 }
1748
1749 const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1750 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1751 sizeof(struct fm10k_swapi_error)),
1752 FM10K_TLV_ATTR_LAST
1753 };
1754
1755 /**
1756 * fm10k_msg_err_pf - Message handler for error reply
1757 * @hw: Pointer to hardware structure
1758 * @results: pointer array containing parsed data
1759 * @mbx: Pointer to mailbox information structure
1760 *
1761 * This handler will capture the data for any error replies to previous
1762 * messages that the PF has sent.
1763 **/
1764 s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1765 struct fm10k_mbx_info *mbx)
1766 {
1767 struct fm10k_swapi_error err_msg;
1768 s32 err;
1769
1770 /* extract structure from message */
1771 err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1772 &err_msg, sizeof(err_msg));
1773 if (err)
1774 return err;
1775
1776 /* record table status */
1777 fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1778 fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1779 fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1780
1781 /* record SW API status value */
1782 hw->swapi.status = le32_to_cpu(err_msg.status);
1783
1784 return 0;
1785 }
1786
1787 static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1788 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1789 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1790 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1791 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1792 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1793 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1794 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1795 };
1796
1797 static const struct fm10k_mac_ops mac_ops_pf = {
1798 .get_bus_info = fm10k_get_bus_info_generic,
1799 .reset_hw = fm10k_reset_hw_pf,
1800 .init_hw = fm10k_init_hw_pf,
1801 .start_hw = fm10k_start_hw_generic,
1802 .stop_hw = fm10k_stop_hw_generic,
1803 .update_vlan = fm10k_update_vlan_pf,
1804 .read_mac_addr = fm10k_read_mac_addr_pf,
1805 .update_uc_addr = fm10k_update_uc_addr_pf,
1806 .update_mc_addr = fm10k_update_mc_addr_pf,
1807 .update_xcast_mode = fm10k_update_xcast_mode_pf,
1808 .update_int_moderator = fm10k_update_int_moderator_pf,
1809 .update_lport_state = fm10k_update_lport_state_pf,
1810 .update_hw_stats = fm10k_update_hw_stats_pf,
1811 .rebind_hw_stats = fm10k_rebind_hw_stats_pf,
1812 .configure_dglort_map = fm10k_configure_dglort_map_pf,
1813 .set_dma_mask = fm10k_set_dma_mask_pf,
1814 .get_fault = fm10k_get_fault_pf,
1815 .get_host_state = fm10k_get_host_state_pf,
1816 };
1817
1818 static const struct fm10k_iov_ops iov_ops_pf = {
1819 .assign_resources = fm10k_iov_assign_resources_pf,
1820 .configure_tc = fm10k_iov_configure_tc_pf,
1821 .assign_int_moderator = fm10k_iov_assign_int_moderator_pf,
1822 .assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf,
1823 .reset_resources = fm10k_iov_reset_resources_pf,
1824 .set_lport = fm10k_iov_set_lport_pf,
1825 .reset_lport = fm10k_iov_reset_lport_pf,
1826 .update_stats = fm10k_iov_update_stats_pf,
1827 };
1828
1829 static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1830 {
1831 fm10k_get_invariants_generic(hw);
1832
1833 return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1834 }
1835
1836 const struct fm10k_info fm10k_pf_info = {
1837 .mac = fm10k_mac_pf,
1838 .get_invariants = fm10k_get_invariants_pf,
1839 .mac_ops = &mac_ops_pf,
1840 .iov_ops = &iov_ops_pf,
1841 };
This page took 0.087736 seconds and 5 git commands to generate.