i40e: small clean ups from review
[deliverable/linux.git] / drivers / net / ethernet / intel / i40e / i40e_main.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * The full GNU General Public License is included in this distribution in
20 * the file called "COPYING".
21 *
22 * Contact Information:
23 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 *
26 ******************************************************************************/
27
28 /* Local includes */
29 #include "i40e.h"
30
31 const char i40e_driver_name[] = "i40e";
32 static const char i40e_driver_string[] =
33 "Intel(R) Ethernet Connection XL710 Network Driver";
34
35 #define DRV_KERN "-k"
36
37 #define DRV_VERSION_MAJOR 0
38 #define DRV_VERSION_MINOR 3
39 #define DRV_VERSION_BUILD 9
40 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
41 __stringify(DRV_VERSION_MINOR) "." \
42 __stringify(DRV_VERSION_BUILD) DRV_KERN
43 const char i40e_driver_version_str[] = DRV_VERSION;
44 static const char i40e_copyright[] = "Copyright (c) 2013 Intel Corporation.";
45
46 /* a bit of forward declarations */
47 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi);
48 static void i40e_handle_reset_warning(struct i40e_pf *pf);
49 static int i40e_add_vsi(struct i40e_vsi *vsi);
50 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi);
51 static int i40e_setup_pf_switch(struct i40e_pf *pf);
52 static int i40e_setup_misc_vector(struct i40e_pf *pf);
53 static void i40e_determine_queue_usage(struct i40e_pf *pf);
54 static int i40e_setup_pf_filter_control(struct i40e_pf *pf);
55
56 /* i40e_pci_tbl - PCI Device ID Table
57 *
58 * Last entry must be all 0s
59 *
60 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
61 * Class, Class Mask, private data (not used) }
62 */
63 static DEFINE_PCI_DEVICE_TABLE(i40e_pci_tbl) = {
64 {PCI_VDEVICE(INTEL, I40E_SFP_XL710_DEVICE_ID), 0},
65 {PCI_VDEVICE(INTEL, I40E_SFP_X710_DEVICE_ID), 0},
66 {PCI_VDEVICE(INTEL, I40E_QEMU_DEVICE_ID), 0},
67 {PCI_VDEVICE(INTEL, I40E_KX_A_DEVICE_ID), 0},
68 {PCI_VDEVICE(INTEL, I40E_KX_B_DEVICE_ID), 0},
69 {PCI_VDEVICE(INTEL, I40E_KX_C_DEVICE_ID), 0},
70 {PCI_VDEVICE(INTEL, I40E_KX_D_DEVICE_ID), 0},
71 {PCI_VDEVICE(INTEL, I40E_QSFP_A_DEVICE_ID), 0},
72 {PCI_VDEVICE(INTEL, I40E_QSFP_B_DEVICE_ID), 0},
73 {PCI_VDEVICE(INTEL, I40E_QSFP_C_DEVICE_ID), 0},
74 /* required last entry */
75 {0, }
76 };
77 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl);
78
79 #define I40E_MAX_VF_COUNT 128
80 static int debug = -1;
81 module_param(debug, int, 0);
82 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
83
84 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
85 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_VERSION);
88
89 /**
90 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code
91 * @hw: pointer to the HW structure
92 * @mem: ptr to mem struct to fill out
93 * @size: size of memory requested
94 * @alignment: what to align the allocation to
95 **/
96 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem,
97 u64 size, u32 alignment)
98 {
99 struct i40e_pf *pf = (struct i40e_pf *)hw->back;
100
101 mem->size = ALIGN(size, alignment);
102 mem->va = dma_zalloc_coherent(&pf->pdev->dev, mem->size,
103 &mem->pa, GFP_KERNEL);
104 if (!mem->va)
105 return -ENOMEM;
106
107 return 0;
108 }
109
110 /**
111 * i40e_free_dma_mem_d - OS specific memory free for shared code
112 * @hw: pointer to the HW structure
113 * @mem: ptr to mem struct to free
114 **/
115 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem)
116 {
117 struct i40e_pf *pf = (struct i40e_pf *)hw->back;
118
119 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa);
120 mem->va = NULL;
121 mem->pa = 0;
122 mem->size = 0;
123
124 return 0;
125 }
126
127 /**
128 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code
129 * @hw: pointer to the HW structure
130 * @mem: ptr to mem struct to fill out
131 * @size: size of memory requested
132 **/
133 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem,
134 u32 size)
135 {
136 mem->size = size;
137 mem->va = kzalloc(size, GFP_KERNEL);
138
139 if (!mem->va)
140 return -ENOMEM;
141
142 return 0;
143 }
144
145 /**
146 * i40e_free_virt_mem_d - OS specific memory free for shared code
147 * @hw: pointer to the HW structure
148 * @mem: ptr to mem struct to free
149 **/
150 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem)
151 {
152 /* it's ok to kfree a NULL pointer */
153 kfree(mem->va);
154 mem->va = NULL;
155 mem->size = 0;
156
157 return 0;
158 }
159
160 /**
161 * i40e_get_lump - find a lump of free generic resource
162 * @pf: board private structure
163 * @pile: the pile of resource to search
164 * @needed: the number of items needed
165 * @id: an owner id to stick on the items assigned
166 *
167 * Returns the base item index of the lump, or negative for error
168 *
169 * The search_hint trick and lack of advanced fit-finding only work
170 * because we're highly likely to have all the same size lump requests.
171 * Linear search time and any fragmentation should be minimal.
172 **/
173 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile,
174 u16 needed, u16 id)
175 {
176 int ret = -ENOMEM;
177 int i, j;
178
179 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) {
180 dev_info(&pf->pdev->dev,
181 "param err: pile=%p needed=%d id=0x%04x\n",
182 pile, needed, id);
183 return -EINVAL;
184 }
185
186 /* start the linear search with an imperfect hint */
187 i = pile->search_hint;
188 while (i < pile->num_entries) {
189 /* skip already allocated entries */
190 if (pile->list[i] & I40E_PILE_VALID_BIT) {
191 i++;
192 continue;
193 }
194
195 /* do we have enough in this lump? */
196 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) {
197 if (pile->list[i+j] & I40E_PILE_VALID_BIT)
198 break;
199 }
200
201 if (j == needed) {
202 /* there was enough, so assign it to the requestor */
203 for (j = 0; j < needed; j++)
204 pile->list[i+j] = id | I40E_PILE_VALID_BIT;
205 ret = i;
206 pile->search_hint = i + j;
207 break;
208 } else {
209 /* not enough, so skip over it and continue looking */
210 i += j;
211 }
212 }
213
214 return ret;
215 }
216
217 /**
218 * i40e_put_lump - return a lump of generic resource
219 * @pile: the pile of resource to search
220 * @index: the base item index
221 * @id: the owner id of the items assigned
222 *
223 * Returns the count of items in the lump
224 **/
225 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id)
226 {
227 int valid_id = (id | I40E_PILE_VALID_BIT);
228 int count = 0;
229 int i;
230
231 if (!pile || index >= pile->num_entries)
232 return -EINVAL;
233
234 for (i = index;
235 i < pile->num_entries && pile->list[i] == valid_id;
236 i++) {
237 pile->list[i] = 0;
238 count++;
239 }
240
241 if (count && index < pile->search_hint)
242 pile->search_hint = index;
243
244 return count;
245 }
246
247 /**
248 * i40e_service_event_schedule - Schedule the service task to wake up
249 * @pf: board private structure
250 *
251 * If not already scheduled, this puts the task into the work queue
252 **/
253 static void i40e_service_event_schedule(struct i40e_pf *pf)
254 {
255 if (!test_bit(__I40E_DOWN, &pf->state) &&
256 !test_bit(__I40E_RESET_RECOVERY_PENDING, &pf->state) &&
257 !test_and_set_bit(__I40E_SERVICE_SCHED, &pf->state))
258 schedule_work(&pf->service_task);
259 }
260
261 /**
262 * i40e_tx_timeout - Respond to a Tx Hang
263 * @netdev: network interface device structure
264 *
265 * If any port has noticed a Tx timeout, it is likely that the whole
266 * device is munged, not just the one netdev port, so go for the full
267 * reset.
268 **/
269 static void i40e_tx_timeout(struct net_device *netdev)
270 {
271 struct i40e_netdev_priv *np = netdev_priv(netdev);
272 struct i40e_vsi *vsi = np->vsi;
273 struct i40e_pf *pf = vsi->back;
274
275 pf->tx_timeout_count++;
276
277 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20)))
278 pf->tx_timeout_recovery_level = 0;
279 pf->tx_timeout_last_recovery = jiffies;
280 netdev_info(netdev, "tx_timeout recovery level %d\n",
281 pf->tx_timeout_recovery_level);
282
283 switch (pf->tx_timeout_recovery_level) {
284 case 0:
285 /* disable and re-enable queues for the VSI */
286 if (in_interrupt()) {
287 set_bit(__I40E_REINIT_REQUESTED, &pf->state);
288 set_bit(__I40E_REINIT_REQUESTED, &vsi->state);
289 } else {
290 i40e_vsi_reinit_locked(vsi);
291 }
292 break;
293 case 1:
294 set_bit(__I40E_PF_RESET_REQUESTED, &pf->state);
295 break;
296 case 2:
297 set_bit(__I40E_CORE_RESET_REQUESTED, &pf->state);
298 break;
299 case 3:
300 set_bit(__I40E_GLOBAL_RESET_REQUESTED, &pf->state);
301 break;
302 default:
303 netdev_err(netdev, "tx_timeout recovery unsuccessful\n");
304 i40e_down(vsi);
305 break;
306 }
307 i40e_service_event_schedule(pf);
308 pf->tx_timeout_recovery_level++;
309 }
310
311 /**
312 * i40e_release_rx_desc - Store the new tail and head values
313 * @rx_ring: ring to bump
314 * @val: new head index
315 **/
316 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
317 {
318 rx_ring->next_to_use = val;
319
320 /* Force memory writes to complete before letting h/w
321 * know there are new descriptors to fetch. (Only
322 * applicable for weak-ordered memory model archs,
323 * such as IA-64).
324 */
325 wmb();
326 writel(val, rx_ring->tail);
327 }
328
329 /**
330 * i40e_get_vsi_stats_struct - Get System Network Statistics
331 * @vsi: the VSI we care about
332 *
333 * Returns the address of the device statistics structure.
334 * The statistics are actually updated from the service task.
335 **/
336 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi)
337 {
338 return &vsi->net_stats;
339 }
340
341 /**
342 * i40e_get_netdev_stats_struct - Get statistics for netdev interface
343 * @netdev: network interface device structure
344 *
345 * Returns the address of the device statistics structure.
346 * The statistics are actually updated from the service task.
347 **/
348 static struct rtnl_link_stats64 *i40e_get_netdev_stats_struct(
349 struct net_device *netdev,
350 struct rtnl_link_stats64 *storage)
351 {
352 struct i40e_netdev_priv *np = netdev_priv(netdev);
353 struct i40e_vsi *vsi = np->vsi;
354
355 *storage = *i40e_get_vsi_stats_struct(vsi);
356
357 return storage;
358 }
359
360 /**
361 * i40e_vsi_reset_stats - Resets all stats of the given vsi
362 * @vsi: the VSI to have its stats reset
363 **/
364 void i40e_vsi_reset_stats(struct i40e_vsi *vsi)
365 {
366 struct rtnl_link_stats64 *ns;
367 int i;
368
369 if (!vsi)
370 return;
371
372 ns = i40e_get_vsi_stats_struct(vsi);
373 memset(ns, 0, sizeof(*ns));
374 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets));
375 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats));
376 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets));
377 if (vsi->rx_rings)
378 for (i = 0; i < vsi->num_queue_pairs; i++) {
379 memset(&vsi->rx_rings[i].rx_stats, 0 ,
380 sizeof(vsi->rx_rings[i].rx_stats));
381 memset(&vsi->tx_rings[i].tx_stats, 0,
382 sizeof(vsi->tx_rings[i].tx_stats));
383 }
384 vsi->stat_offsets_loaded = false;
385 }
386
387 /**
388 * i40e_pf_reset_stats - Reset all of the stats for the given pf
389 * @pf: the PF to be reset
390 **/
391 void i40e_pf_reset_stats(struct i40e_pf *pf)
392 {
393 memset(&pf->stats, 0, sizeof(pf->stats));
394 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets));
395 pf->stat_offsets_loaded = false;
396 }
397
398 /**
399 * i40e_stat_update48 - read and update a 48 bit stat from the chip
400 * @hw: ptr to the hardware info
401 * @hireg: the high 32 bit reg to read
402 * @loreg: the low 32 bit reg to read
403 * @offset_loaded: has the initial offset been loaded yet
404 * @offset: ptr to current offset value
405 * @stat: ptr to the stat
406 *
407 * Since the device stats are not reset at PFReset, they likely will not
408 * be zeroed when the driver starts. We'll save the first values read
409 * and use them as offsets to be subtracted from the raw values in order
410 * to report stats that count from zero. In the process, we also manage
411 * the potential roll-over.
412 **/
413 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg,
414 bool offset_loaded, u64 *offset, u64 *stat)
415 {
416 u64 new_data;
417
418 if (hw->device_id == I40E_QEMU_DEVICE_ID) {
419 new_data = rd32(hw, loreg);
420 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
421 } else {
422 new_data = rd64(hw, loreg);
423 }
424 if (!offset_loaded)
425 *offset = new_data;
426 if (likely(new_data >= *offset))
427 *stat = new_data - *offset;
428 else
429 *stat = (new_data + ((u64)1 << 48)) - *offset;
430 *stat &= 0xFFFFFFFFFFFFULL;
431 }
432
433 /**
434 * i40e_stat_update32 - read and update a 32 bit stat from the chip
435 * @hw: ptr to the hardware info
436 * @reg: the hw reg to read
437 * @offset_loaded: has the initial offset been loaded yet
438 * @offset: ptr to current offset value
439 * @stat: ptr to the stat
440 **/
441 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg,
442 bool offset_loaded, u64 *offset, u64 *stat)
443 {
444 u32 new_data;
445
446 new_data = rd32(hw, reg);
447 if (!offset_loaded)
448 *offset = new_data;
449 if (likely(new_data >= *offset))
450 *stat = (u32)(new_data - *offset);
451 else
452 *stat = (u32)((new_data + ((u64)1 << 32)) - *offset);
453 }
454
455 /**
456 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters.
457 * @vsi: the VSI to be updated
458 **/
459 void i40e_update_eth_stats(struct i40e_vsi *vsi)
460 {
461 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx);
462 struct i40e_pf *pf = vsi->back;
463 struct i40e_hw *hw = &pf->hw;
464 struct i40e_eth_stats *oes;
465 struct i40e_eth_stats *es; /* device's eth stats */
466
467 es = &vsi->eth_stats;
468 oes = &vsi->eth_stats_offsets;
469
470 /* Gather up the stats that the hw collects */
471 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx),
472 vsi->stat_offsets_loaded,
473 &oes->tx_errors, &es->tx_errors);
474 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx),
475 vsi->stat_offsets_loaded,
476 &oes->rx_discards, &es->rx_discards);
477
478 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx),
479 I40E_GLV_GORCL(stat_idx),
480 vsi->stat_offsets_loaded,
481 &oes->rx_bytes, &es->rx_bytes);
482 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx),
483 I40E_GLV_UPRCL(stat_idx),
484 vsi->stat_offsets_loaded,
485 &oes->rx_unicast, &es->rx_unicast);
486 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx),
487 I40E_GLV_MPRCL(stat_idx),
488 vsi->stat_offsets_loaded,
489 &oes->rx_multicast, &es->rx_multicast);
490 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx),
491 I40E_GLV_BPRCL(stat_idx),
492 vsi->stat_offsets_loaded,
493 &oes->rx_broadcast, &es->rx_broadcast);
494
495 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx),
496 I40E_GLV_GOTCL(stat_idx),
497 vsi->stat_offsets_loaded,
498 &oes->tx_bytes, &es->tx_bytes);
499 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx),
500 I40E_GLV_UPTCL(stat_idx),
501 vsi->stat_offsets_loaded,
502 &oes->tx_unicast, &es->tx_unicast);
503 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx),
504 I40E_GLV_MPTCL(stat_idx),
505 vsi->stat_offsets_loaded,
506 &oes->tx_multicast, &es->tx_multicast);
507 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx),
508 I40E_GLV_BPTCL(stat_idx),
509 vsi->stat_offsets_loaded,
510 &oes->tx_broadcast, &es->tx_broadcast);
511 vsi->stat_offsets_loaded = true;
512 }
513
514 /**
515 * i40e_update_veb_stats - Update Switch component statistics
516 * @veb: the VEB being updated
517 **/
518 static void i40e_update_veb_stats(struct i40e_veb *veb)
519 {
520 struct i40e_pf *pf = veb->pf;
521 struct i40e_hw *hw = &pf->hw;
522 struct i40e_eth_stats *oes;
523 struct i40e_eth_stats *es; /* device's eth stats */
524 int idx = 0;
525
526 idx = veb->stats_idx;
527 es = &veb->stats;
528 oes = &veb->stats_offsets;
529
530 /* Gather up the stats that the hw collects */
531 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx),
532 veb->stat_offsets_loaded,
533 &oes->tx_discards, &es->tx_discards);
534 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx),
535 veb->stat_offsets_loaded,
536 &oes->rx_unknown_protocol, &es->rx_unknown_protocol);
537
538 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx),
539 veb->stat_offsets_loaded,
540 &oes->rx_bytes, &es->rx_bytes);
541 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx),
542 veb->stat_offsets_loaded,
543 &oes->rx_unicast, &es->rx_unicast);
544 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx),
545 veb->stat_offsets_loaded,
546 &oes->rx_multicast, &es->rx_multicast);
547 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx),
548 veb->stat_offsets_loaded,
549 &oes->rx_broadcast, &es->rx_broadcast);
550
551 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx),
552 veb->stat_offsets_loaded,
553 &oes->tx_bytes, &es->tx_bytes);
554 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx),
555 veb->stat_offsets_loaded,
556 &oes->tx_unicast, &es->tx_unicast);
557 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx),
558 veb->stat_offsets_loaded,
559 &oes->tx_multicast, &es->tx_multicast);
560 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx),
561 veb->stat_offsets_loaded,
562 &oes->tx_broadcast, &es->tx_broadcast);
563 veb->stat_offsets_loaded = true;
564 }
565
566 /**
567 * i40e_update_link_xoff_rx - Update XOFF received in link flow control mode
568 * @pf: the corresponding PF
569 *
570 * Update the Rx XOFF counter (PAUSE frames) in link flow control mode
571 **/
572 static void i40e_update_link_xoff_rx(struct i40e_pf *pf)
573 {
574 struct i40e_hw_port_stats *osd = &pf->stats_offsets;
575 struct i40e_hw_port_stats *nsd = &pf->stats;
576 struct i40e_hw *hw = &pf->hw;
577 u64 xoff = 0;
578 u16 i, v;
579
580 if ((hw->fc.current_mode != I40E_FC_FULL) &&
581 (hw->fc.current_mode != I40E_FC_RX_PAUSE))
582 return;
583
584 xoff = nsd->link_xoff_rx;
585 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port),
586 pf->stat_offsets_loaded,
587 &osd->link_xoff_rx, &nsd->link_xoff_rx);
588
589 /* No new LFC xoff rx */
590 if (!(nsd->link_xoff_rx - xoff))
591 return;
592
593 /* Clear the __I40E_HANG_CHECK_ARMED bit for all Tx rings */
594 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) {
595 struct i40e_vsi *vsi = pf->vsi[v];
596
597 if (!vsi)
598 continue;
599
600 for (i = 0; i < vsi->num_queue_pairs; i++) {
601 struct i40e_ring *ring = &vsi->tx_rings[i];
602 clear_bit(__I40E_HANG_CHECK_ARMED, &ring->state);
603 }
604 }
605 }
606
607 /**
608 * i40e_update_prio_xoff_rx - Update XOFF received in PFC mode
609 * @pf: the corresponding PF
610 *
611 * Update the Rx XOFF counter (PAUSE frames) in PFC mode
612 **/
613 static void i40e_update_prio_xoff_rx(struct i40e_pf *pf)
614 {
615 struct i40e_hw_port_stats *osd = &pf->stats_offsets;
616 struct i40e_hw_port_stats *nsd = &pf->stats;
617 bool xoff[I40E_MAX_TRAFFIC_CLASS] = {false};
618 struct i40e_dcbx_config *dcb_cfg;
619 struct i40e_hw *hw = &pf->hw;
620 u16 i, v;
621 u8 tc;
622
623 dcb_cfg = &hw->local_dcbx_config;
624
625 /* See if DCB enabled with PFC TC */
626 if (!(pf->flags & I40E_FLAG_DCB_ENABLED) ||
627 !(dcb_cfg->pfc.pfcenable)) {
628 i40e_update_link_xoff_rx(pf);
629 return;
630 }
631
632 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) {
633 u64 prio_xoff = nsd->priority_xoff_rx[i];
634 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i),
635 pf->stat_offsets_loaded,
636 &osd->priority_xoff_rx[i],
637 &nsd->priority_xoff_rx[i]);
638
639 /* No new PFC xoff rx */
640 if (!(nsd->priority_xoff_rx[i] - prio_xoff))
641 continue;
642 /* Get the TC for given priority */
643 tc = dcb_cfg->etscfg.prioritytable[i];
644 xoff[tc] = true;
645 }
646
647 /* Clear the __I40E_HANG_CHECK_ARMED bit for Tx rings */
648 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) {
649 struct i40e_vsi *vsi = pf->vsi[v];
650
651 if (!vsi)
652 continue;
653
654 for (i = 0; i < vsi->num_queue_pairs; i++) {
655 struct i40e_ring *ring = &vsi->tx_rings[i];
656
657 tc = ring->dcb_tc;
658 if (xoff[tc])
659 clear_bit(__I40E_HANG_CHECK_ARMED,
660 &ring->state);
661 }
662 }
663 }
664
665 /**
666 * i40e_update_stats - Update the board statistics counters.
667 * @vsi: the VSI to be updated
668 *
669 * There are a few instances where we store the same stat in a
670 * couple of different structs. This is partly because we have
671 * the netdev stats that need to be filled out, which is slightly
672 * different from the "eth_stats" defined by the chip and used in
673 * VF communications. We sort it all out here in a central place.
674 **/
675 void i40e_update_stats(struct i40e_vsi *vsi)
676 {
677 struct i40e_pf *pf = vsi->back;
678 struct i40e_hw *hw = &pf->hw;
679 struct rtnl_link_stats64 *ons;
680 struct rtnl_link_stats64 *ns; /* netdev stats */
681 struct i40e_eth_stats *oes;
682 struct i40e_eth_stats *es; /* device's eth stats */
683 u32 tx_restart, tx_busy;
684 u32 rx_page, rx_buf;
685 u64 rx_p, rx_b;
686 u64 tx_p, tx_b;
687 int i;
688 u16 q;
689
690 if (test_bit(__I40E_DOWN, &vsi->state) ||
691 test_bit(__I40E_CONFIG_BUSY, &pf->state))
692 return;
693
694 ns = i40e_get_vsi_stats_struct(vsi);
695 ons = &vsi->net_stats_offsets;
696 es = &vsi->eth_stats;
697 oes = &vsi->eth_stats_offsets;
698
699 /* Gather up the netdev and vsi stats that the driver collects
700 * on the fly during packet processing
701 */
702 rx_b = rx_p = 0;
703 tx_b = tx_p = 0;
704 tx_restart = tx_busy = 0;
705 rx_page = 0;
706 rx_buf = 0;
707 for (q = 0; q < vsi->num_queue_pairs; q++) {
708 struct i40e_ring *p;
709
710 p = &vsi->rx_rings[q];
711 rx_b += p->rx_stats.bytes;
712 rx_p += p->rx_stats.packets;
713 rx_buf += p->rx_stats.alloc_rx_buff_failed;
714 rx_page += p->rx_stats.alloc_rx_page_failed;
715
716 p = &vsi->tx_rings[q];
717 tx_b += p->tx_stats.bytes;
718 tx_p += p->tx_stats.packets;
719 tx_restart += p->tx_stats.restart_queue;
720 tx_busy += p->tx_stats.tx_busy;
721 }
722 vsi->tx_restart = tx_restart;
723 vsi->tx_busy = tx_busy;
724 vsi->rx_page_failed = rx_page;
725 vsi->rx_buf_failed = rx_buf;
726
727 ns->rx_packets = rx_p;
728 ns->rx_bytes = rx_b;
729 ns->tx_packets = tx_p;
730 ns->tx_bytes = tx_b;
731
732 i40e_update_eth_stats(vsi);
733 /* update netdev stats from eth stats */
734 ons->rx_errors = oes->rx_errors;
735 ns->rx_errors = es->rx_errors;
736 ons->tx_errors = oes->tx_errors;
737 ns->tx_errors = es->tx_errors;
738 ons->multicast = oes->rx_multicast;
739 ns->multicast = es->rx_multicast;
740 ons->tx_dropped = oes->tx_discards;
741 ns->tx_dropped = es->tx_discards;
742
743 /* Get the port data only if this is the main PF VSI */
744 if (vsi == pf->vsi[pf->lan_vsi]) {
745 struct i40e_hw_port_stats *nsd = &pf->stats;
746 struct i40e_hw_port_stats *osd = &pf->stats_offsets;
747
748 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port),
749 I40E_GLPRT_GORCL(hw->port),
750 pf->stat_offsets_loaded,
751 &osd->eth.rx_bytes, &nsd->eth.rx_bytes);
752 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port),
753 I40E_GLPRT_GOTCL(hw->port),
754 pf->stat_offsets_loaded,
755 &osd->eth.tx_bytes, &nsd->eth.tx_bytes);
756 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port),
757 pf->stat_offsets_loaded,
758 &osd->eth.rx_discards,
759 &nsd->eth.rx_discards);
760 i40e_stat_update32(hw, I40E_GLPRT_TDPC(hw->port),
761 pf->stat_offsets_loaded,
762 &osd->eth.tx_discards,
763 &nsd->eth.tx_discards);
764 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port),
765 I40E_GLPRT_MPRCL(hw->port),
766 pf->stat_offsets_loaded,
767 &osd->eth.rx_multicast,
768 &nsd->eth.rx_multicast);
769
770 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port),
771 pf->stat_offsets_loaded,
772 &osd->tx_dropped_link_down,
773 &nsd->tx_dropped_link_down);
774
775 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port),
776 pf->stat_offsets_loaded,
777 &osd->crc_errors, &nsd->crc_errors);
778 ns->rx_crc_errors = nsd->crc_errors;
779
780 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port),
781 pf->stat_offsets_loaded,
782 &osd->illegal_bytes, &nsd->illegal_bytes);
783 ns->rx_errors = nsd->crc_errors
784 + nsd->illegal_bytes;
785
786 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port),
787 pf->stat_offsets_loaded,
788 &osd->mac_local_faults,
789 &nsd->mac_local_faults);
790 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port),
791 pf->stat_offsets_loaded,
792 &osd->mac_remote_faults,
793 &nsd->mac_remote_faults);
794
795 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port),
796 pf->stat_offsets_loaded,
797 &osd->rx_length_errors,
798 &nsd->rx_length_errors);
799 ns->rx_length_errors = nsd->rx_length_errors;
800
801 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port),
802 pf->stat_offsets_loaded,
803 &osd->link_xon_rx, &nsd->link_xon_rx);
804 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port),
805 pf->stat_offsets_loaded,
806 &osd->link_xon_tx, &nsd->link_xon_tx);
807 i40e_update_prio_xoff_rx(pf); /* handles I40E_GLPRT_LXOFFRXC */
808 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port),
809 pf->stat_offsets_loaded,
810 &osd->link_xoff_tx, &nsd->link_xoff_tx);
811
812 for (i = 0; i < 8; i++) {
813 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i),
814 pf->stat_offsets_loaded,
815 &osd->priority_xon_rx[i],
816 &nsd->priority_xon_rx[i]);
817 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i),
818 pf->stat_offsets_loaded,
819 &osd->priority_xon_tx[i],
820 &nsd->priority_xon_tx[i]);
821 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i),
822 pf->stat_offsets_loaded,
823 &osd->priority_xoff_tx[i],
824 &nsd->priority_xoff_tx[i]);
825 i40e_stat_update32(hw,
826 I40E_GLPRT_RXON2OFFCNT(hw->port, i),
827 pf->stat_offsets_loaded,
828 &osd->priority_xon_2_xoff[i],
829 &nsd->priority_xon_2_xoff[i]);
830 }
831
832 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port),
833 I40E_GLPRT_PRC64L(hw->port),
834 pf->stat_offsets_loaded,
835 &osd->rx_size_64, &nsd->rx_size_64);
836 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port),
837 I40E_GLPRT_PRC127L(hw->port),
838 pf->stat_offsets_loaded,
839 &osd->rx_size_127, &nsd->rx_size_127);
840 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port),
841 I40E_GLPRT_PRC255L(hw->port),
842 pf->stat_offsets_loaded,
843 &osd->rx_size_255, &nsd->rx_size_255);
844 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port),
845 I40E_GLPRT_PRC511L(hw->port),
846 pf->stat_offsets_loaded,
847 &osd->rx_size_511, &nsd->rx_size_511);
848 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port),
849 I40E_GLPRT_PRC1023L(hw->port),
850 pf->stat_offsets_loaded,
851 &osd->rx_size_1023, &nsd->rx_size_1023);
852 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port),
853 I40E_GLPRT_PRC1522L(hw->port),
854 pf->stat_offsets_loaded,
855 &osd->rx_size_1522, &nsd->rx_size_1522);
856 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port),
857 I40E_GLPRT_PRC9522L(hw->port),
858 pf->stat_offsets_loaded,
859 &osd->rx_size_big, &nsd->rx_size_big);
860
861 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port),
862 I40E_GLPRT_PTC64L(hw->port),
863 pf->stat_offsets_loaded,
864 &osd->tx_size_64, &nsd->tx_size_64);
865 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port),
866 I40E_GLPRT_PTC127L(hw->port),
867 pf->stat_offsets_loaded,
868 &osd->tx_size_127, &nsd->tx_size_127);
869 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port),
870 I40E_GLPRT_PTC255L(hw->port),
871 pf->stat_offsets_loaded,
872 &osd->tx_size_255, &nsd->tx_size_255);
873 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port),
874 I40E_GLPRT_PTC511L(hw->port),
875 pf->stat_offsets_loaded,
876 &osd->tx_size_511, &nsd->tx_size_511);
877 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port),
878 I40E_GLPRT_PTC1023L(hw->port),
879 pf->stat_offsets_loaded,
880 &osd->tx_size_1023, &nsd->tx_size_1023);
881 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port),
882 I40E_GLPRT_PTC1522L(hw->port),
883 pf->stat_offsets_loaded,
884 &osd->tx_size_1522, &nsd->tx_size_1522);
885 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port),
886 I40E_GLPRT_PTC9522L(hw->port),
887 pf->stat_offsets_loaded,
888 &osd->tx_size_big, &nsd->tx_size_big);
889
890 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port),
891 pf->stat_offsets_loaded,
892 &osd->rx_undersize, &nsd->rx_undersize);
893 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port),
894 pf->stat_offsets_loaded,
895 &osd->rx_fragments, &nsd->rx_fragments);
896 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port),
897 pf->stat_offsets_loaded,
898 &osd->rx_oversize, &nsd->rx_oversize);
899 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port),
900 pf->stat_offsets_loaded,
901 &osd->rx_jabber, &nsd->rx_jabber);
902 }
903
904 pf->stat_offsets_loaded = true;
905 }
906
907 /**
908 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter
909 * @vsi: the VSI to be searched
910 * @macaddr: the MAC address
911 * @vlan: the vlan
912 * @is_vf: make sure its a vf filter, else doesn't matter
913 * @is_netdev: make sure its a netdev filter, else doesn't matter
914 *
915 * Returns ptr to the filter object or NULL
916 **/
917 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi,
918 u8 *macaddr, s16 vlan,
919 bool is_vf, bool is_netdev)
920 {
921 struct i40e_mac_filter *f;
922
923 if (!vsi || !macaddr)
924 return NULL;
925
926 list_for_each_entry(f, &vsi->mac_filter_list, list) {
927 if ((ether_addr_equal(macaddr, f->macaddr)) &&
928 (vlan == f->vlan) &&
929 (!is_vf || f->is_vf) &&
930 (!is_netdev || f->is_netdev))
931 return f;
932 }
933 return NULL;
934 }
935
936 /**
937 * i40e_find_mac - Find a mac addr in the macvlan filters list
938 * @vsi: the VSI to be searched
939 * @macaddr: the MAC address we are searching for
940 * @is_vf: make sure its a vf filter, else doesn't matter
941 * @is_netdev: make sure its a netdev filter, else doesn't matter
942 *
943 * Returns the first filter with the provided MAC address or NULL if
944 * MAC address was not found
945 **/
946 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, u8 *macaddr,
947 bool is_vf, bool is_netdev)
948 {
949 struct i40e_mac_filter *f;
950
951 if (!vsi || !macaddr)
952 return NULL;
953
954 list_for_each_entry(f, &vsi->mac_filter_list, list) {
955 if ((ether_addr_equal(macaddr, f->macaddr)) &&
956 (!is_vf || f->is_vf) &&
957 (!is_netdev || f->is_netdev))
958 return f;
959 }
960 return NULL;
961 }
962
963 /**
964 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode
965 * @vsi: the VSI to be searched
966 *
967 * Returns true if VSI is in vlan mode or false otherwise
968 **/
969 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi)
970 {
971 struct i40e_mac_filter *f;
972
973 /* Only -1 for all the filters denotes not in vlan mode
974 * so we have to go through all the list in order to make sure
975 */
976 list_for_each_entry(f, &vsi->mac_filter_list, list) {
977 if (f->vlan >= 0)
978 return true;
979 }
980
981 return false;
982 }
983
984 /**
985 * i40e_put_mac_in_vlan - Make macvlan filters from macaddrs and vlans
986 * @vsi: the VSI to be searched
987 * @macaddr: the mac address to be filtered
988 * @is_vf: true if it is a vf
989 * @is_netdev: true if it is a netdev
990 *
991 * Goes through all the macvlan filters and adds a
992 * macvlan filter for each unique vlan that already exists
993 *
994 * Returns first filter found on success, else NULL
995 **/
996 struct i40e_mac_filter *i40e_put_mac_in_vlan(struct i40e_vsi *vsi, u8 *macaddr,
997 bool is_vf, bool is_netdev)
998 {
999 struct i40e_mac_filter *f;
1000
1001 list_for_each_entry(f, &vsi->mac_filter_list, list) {
1002 if (!i40e_find_filter(vsi, macaddr, f->vlan,
1003 is_vf, is_netdev)) {
1004 if (!i40e_add_filter(vsi, macaddr, f->vlan,
1005 is_vf, is_netdev))
1006 return NULL;
1007 }
1008 }
1009
1010 return list_first_entry_or_null(&vsi->mac_filter_list,
1011 struct i40e_mac_filter, list);
1012 }
1013
1014 /**
1015 * i40e_add_filter - Add a mac/vlan filter to the VSI
1016 * @vsi: the VSI to be searched
1017 * @macaddr: the MAC address
1018 * @vlan: the vlan
1019 * @is_vf: make sure its a vf filter, else doesn't matter
1020 * @is_netdev: make sure its a netdev filter, else doesn't matter
1021 *
1022 * Returns ptr to the filter object or NULL when no memory available.
1023 **/
1024 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi,
1025 u8 *macaddr, s16 vlan,
1026 bool is_vf, bool is_netdev)
1027 {
1028 struct i40e_mac_filter *f;
1029
1030 if (!vsi || !macaddr)
1031 return NULL;
1032
1033 f = i40e_find_filter(vsi, macaddr, vlan, is_vf, is_netdev);
1034 if (!f) {
1035 f = kzalloc(sizeof(*f), GFP_ATOMIC);
1036 if (!f)
1037 goto add_filter_out;
1038
1039 memcpy(f->macaddr, macaddr, ETH_ALEN);
1040 f->vlan = vlan;
1041 f->changed = true;
1042
1043 INIT_LIST_HEAD(&f->list);
1044 list_add(&f->list, &vsi->mac_filter_list);
1045 }
1046
1047 /* increment counter and add a new flag if needed */
1048 if (is_vf) {
1049 if (!f->is_vf) {
1050 f->is_vf = true;
1051 f->counter++;
1052 }
1053 } else if (is_netdev) {
1054 if (!f->is_netdev) {
1055 f->is_netdev = true;
1056 f->counter++;
1057 }
1058 } else {
1059 f->counter++;
1060 }
1061
1062 /* changed tells sync_filters_subtask to
1063 * push the filter down to the firmware
1064 */
1065 if (f->changed) {
1066 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
1067 vsi->back->flags |= I40E_FLAG_FILTER_SYNC;
1068 }
1069
1070 add_filter_out:
1071 return f;
1072 }
1073
1074 /**
1075 * i40e_del_filter - Remove a mac/vlan filter from the VSI
1076 * @vsi: the VSI to be searched
1077 * @macaddr: the MAC address
1078 * @vlan: the vlan
1079 * @is_vf: make sure it's a vf filter, else doesn't matter
1080 * @is_netdev: make sure it's a netdev filter, else doesn't matter
1081 **/
1082 void i40e_del_filter(struct i40e_vsi *vsi,
1083 u8 *macaddr, s16 vlan,
1084 bool is_vf, bool is_netdev)
1085 {
1086 struct i40e_mac_filter *f;
1087
1088 if (!vsi || !macaddr)
1089 return;
1090
1091 f = i40e_find_filter(vsi, macaddr, vlan, is_vf, is_netdev);
1092 if (!f || f->counter == 0)
1093 return;
1094
1095 if (is_vf) {
1096 if (f->is_vf) {
1097 f->is_vf = false;
1098 f->counter--;
1099 }
1100 } else if (is_netdev) {
1101 if (f->is_netdev) {
1102 f->is_netdev = false;
1103 f->counter--;
1104 }
1105 } else {
1106 /* make sure we don't remove a filter in use by vf or netdev */
1107 int min_f = 0;
1108 min_f += (f->is_vf ? 1 : 0);
1109 min_f += (f->is_netdev ? 1 : 0);
1110
1111 if (f->counter > min_f)
1112 f->counter--;
1113 }
1114
1115 /* counter == 0 tells sync_filters_subtask to
1116 * remove the filter from the firmware's list
1117 */
1118 if (f->counter == 0) {
1119 f->changed = true;
1120 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
1121 vsi->back->flags |= I40E_FLAG_FILTER_SYNC;
1122 }
1123 }
1124
1125 /**
1126 * i40e_set_mac - NDO callback to set mac address
1127 * @netdev: network interface device structure
1128 * @p: pointer to an address structure
1129 *
1130 * Returns 0 on success, negative on failure
1131 **/
1132 static int i40e_set_mac(struct net_device *netdev, void *p)
1133 {
1134 struct i40e_netdev_priv *np = netdev_priv(netdev);
1135 struct i40e_vsi *vsi = np->vsi;
1136 struct sockaddr *addr = p;
1137 struct i40e_mac_filter *f;
1138
1139 if (!is_valid_ether_addr(addr->sa_data))
1140 return -EADDRNOTAVAIL;
1141
1142 netdev_info(netdev, "set mac address=%pM\n", addr->sa_data);
1143
1144 if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
1145 return 0;
1146
1147 if (vsi->type == I40E_VSI_MAIN) {
1148 i40e_status ret;
1149 ret = i40e_aq_mac_address_write(&vsi->back->hw,
1150 I40E_AQC_WRITE_TYPE_LAA_ONLY,
1151 addr->sa_data, NULL);
1152 if (ret) {
1153 netdev_info(netdev,
1154 "Addr change for Main VSI failed: %d\n",
1155 ret);
1156 return -EADDRNOTAVAIL;
1157 }
1158
1159 memcpy(vsi->back->hw.mac.addr, addr->sa_data, netdev->addr_len);
1160 }
1161
1162 /* In order to be sure to not drop any packets, add the new address
1163 * then delete the old one.
1164 */
1165 f = i40e_add_filter(vsi, addr->sa_data, I40E_VLAN_ANY, false, false);
1166 if (!f)
1167 return -ENOMEM;
1168
1169 i40e_sync_vsi_filters(vsi);
1170 i40e_del_filter(vsi, netdev->dev_addr, I40E_VLAN_ANY, false, false);
1171 i40e_sync_vsi_filters(vsi);
1172
1173 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1174
1175 return 0;
1176 }
1177
1178 /**
1179 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc
1180 * @vsi: the VSI being setup
1181 * @ctxt: VSI context structure
1182 * @enabled_tc: Enabled TCs bitmap
1183 * @is_add: True if called before Add VSI
1184 *
1185 * Setup VSI queue mapping for enabled traffic classes.
1186 **/
1187 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi,
1188 struct i40e_vsi_context *ctxt,
1189 u8 enabled_tc,
1190 bool is_add)
1191 {
1192 struct i40e_pf *pf = vsi->back;
1193 u16 sections = 0;
1194 u8 netdev_tc = 0;
1195 u16 numtc = 0;
1196 u16 qcount;
1197 u8 offset;
1198 u16 qmap;
1199 int i;
1200
1201 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
1202 offset = 0;
1203
1204 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) {
1205 /* Find numtc from enabled TC bitmap */
1206 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1207 if (enabled_tc & (1 << i)) /* TC is enabled */
1208 numtc++;
1209 }
1210 if (!numtc) {
1211 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n");
1212 numtc = 1;
1213 }
1214 } else {
1215 /* At least TC0 is enabled in case of non-DCB case */
1216 numtc = 1;
1217 }
1218
1219 vsi->tc_config.numtc = numtc;
1220 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1;
1221
1222 /* Setup queue offset/count for all TCs for given VSI */
1223 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1224 /* See if the given TC is enabled for the given VSI */
1225 if (vsi->tc_config.enabled_tc & (1 << i)) { /* TC is enabled */
1226 int pow, num_qps;
1227
1228 vsi->tc_config.tc_info[i].qoffset = offset;
1229 switch (vsi->type) {
1230 case I40E_VSI_MAIN:
1231 if (i == 0)
1232 qcount = pf->rss_size;
1233 else
1234 qcount = pf->num_tc_qps;
1235 vsi->tc_config.tc_info[i].qcount = qcount;
1236 break;
1237 case I40E_VSI_FDIR:
1238 case I40E_VSI_SRIOV:
1239 case I40E_VSI_VMDQ2:
1240 default:
1241 qcount = vsi->alloc_queue_pairs;
1242 vsi->tc_config.tc_info[i].qcount = qcount;
1243 WARN_ON(i != 0);
1244 break;
1245 }
1246
1247 /* find the power-of-2 of the number of queue pairs */
1248 num_qps = vsi->tc_config.tc_info[i].qcount;
1249 pow = 0;
1250 while (num_qps &&
1251 ((1 << pow) < vsi->tc_config.tc_info[i].qcount)) {
1252 pow++;
1253 num_qps >>= 1;
1254 }
1255
1256 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++;
1257 qmap =
1258 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
1259 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
1260
1261 offset += vsi->tc_config.tc_info[i].qcount;
1262 } else {
1263 /* TC is not enabled so set the offset to
1264 * default queue and allocate one queue
1265 * for the given TC.
1266 */
1267 vsi->tc_config.tc_info[i].qoffset = 0;
1268 vsi->tc_config.tc_info[i].qcount = 1;
1269 vsi->tc_config.tc_info[i].netdev_tc = 0;
1270
1271 qmap = 0;
1272 }
1273 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1274 }
1275
1276 /* Set actual Tx/Rx queue pairs */
1277 vsi->num_queue_pairs = offset;
1278
1279 /* Scheduler section valid can only be set for ADD VSI */
1280 if (is_add) {
1281 sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
1282
1283 ctxt->info.up_enable_bits = enabled_tc;
1284 }
1285 if (vsi->type == I40E_VSI_SRIOV) {
1286 ctxt->info.mapping_flags |=
1287 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG);
1288 for (i = 0; i < vsi->num_queue_pairs; i++)
1289 ctxt->info.queue_mapping[i] =
1290 cpu_to_le16(vsi->base_queue + i);
1291 } else {
1292 ctxt->info.mapping_flags |=
1293 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
1294 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue);
1295 }
1296 ctxt->info.valid_sections |= cpu_to_le16(sections);
1297 }
1298
1299 /**
1300 * i40e_set_rx_mode - NDO callback to set the netdev filters
1301 * @netdev: network interface device structure
1302 **/
1303 static void i40e_set_rx_mode(struct net_device *netdev)
1304 {
1305 struct i40e_netdev_priv *np = netdev_priv(netdev);
1306 struct i40e_mac_filter *f, *ftmp;
1307 struct i40e_vsi *vsi = np->vsi;
1308 struct netdev_hw_addr *uca;
1309 struct netdev_hw_addr *mca;
1310 struct netdev_hw_addr *ha;
1311
1312 /* add addr if not already in the filter list */
1313 netdev_for_each_uc_addr(uca, netdev) {
1314 if (!i40e_find_mac(vsi, uca->addr, false, true)) {
1315 if (i40e_is_vsi_in_vlan(vsi))
1316 i40e_put_mac_in_vlan(vsi, uca->addr,
1317 false, true);
1318 else
1319 i40e_add_filter(vsi, uca->addr, I40E_VLAN_ANY,
1320 false, true);
1321 }
1322 }
1323
1324 netdev_for_each_mc_addr(mca, netdev) {
1325 if (!i40e_find_mac(vsi, mca->addr, false, true)) {
1326 if (i40e_is_vsi_in_vlan(vsi))
1327 i40e_put_mac_in_vlan(vsi, mca->addr,
1328 false, true);
1329 else
1330 i40e_add_filter(vsi, mca->addr, I40E_VLAN_ANY,
1331 false, true);
1332 }
1333 }
1334
1335 /* remove filter if not in netdev list */
1336 list_for_each_entry_safe(f, ftmp, &vsi->mac_filter_list, list) {
1337 bool found = false;
1338
1339 if (!f->is_netdev)
1340 continue;
1341
1342 if (is_multicast_ether_addr(f->macaddr)) {
1343 netdev_for_each_mc_addr(mca, netdev) {
1344 if (ether_addr_equal(mca->addr, f->macaddr)) {
1345 found = true;
1346 break;
1347 }
1348 }
1349 } else {
1350 netdev_for_each_uc_addr(uca, netdev) {
1351 if (ether_addr_equal(uca->addr, f->macaddr)) {
1352 found = true;
1353 break;
1354 }
1355 }
1356
1357 for_each_dev_addr(netdev, ha) {
1358 if (ether_addr_equal(ha->addr, f->macaddr)) {
1359 found = true;
1360 break;
1361 }
1362 }
1363 }
1364 if (!found)
1365 i40e_del_filter(
1366 vsi, f->macaddr, I40E_VLAN_ANY, false, true);
1367 }
1368
1369 /* check for other flag changes */
1370 if (vsi->current_netdev_flags != vsi->netdev->flags) {
1371 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
1372 vsi->back->flags |= I40E_FLAG_FILTER_SYNC;
1373 }
1374 }
1375
1376 /**
1377 * i40e_sync_vsi_filters - Update the VSI filter list to the HW
1378 * @vsi: ptr to the VSI
1379 *
1380 * Push any outstanding VSI filter changes through the AdminQ.
1381 *
1382 * Returns 0 or error value
1383 **/
1384 int i40e_sync_vsi_filters(struct i40e_vsi *vsi)
1385 {
1386 struct i40e_mac_filter *f, *ftmp;
1387 bool promisc_forced_on = false;
1388 bool add_happened = false;
1389 int filter_list_len = 0;
1390 u32 changed_flags = 0;
1391 i40e_status ret = 0;
1392 struct i40e_pf *pf;
1393 int num_add = 0;
1394 int num_del = 0;
1395 u16 cmd_flags;
1396
1397 /* empty array typed pointers, kcalloc later */
1398 struct i40e_aqc_add_macvlan_element_data *add_list;
1399 struct i40e_aqc_remove_macvlan_element_data *del_list;
1400
1401 while (test_and_set_bit(__I40E_CONFIG_BUSY, &vsi->state))
1402 usleep_range(1000, 2000);
1403 pf = vsi->back;
1404
1405 if (vsi->netdev) {
1406 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
1407 vsi->current_netdev_flags = vsi->netdev->flags;
1408 }
1409
1410 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) {
1411 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED;
1412
1413 filter_list_len = pf->hw.aq.asq_buf_size /
1414 sizeof(struct i40e_aqc_remove_macvlan_element_data);
1415 del_list = kcalloc(filter_list_len,
1416 sizeof(struct i40e_aqc_remove_macvlan_element_data),
1417 GFP_KERNEL);
1418 if (!del_list)
1419 return -ENOMEM;
1420
1421 list_for_each_entry_safe(f, ftmp, &vsi->mac_filter_list, list) {
1422 if (!f->changed)
1423 continue;
1424
1425 if (f->counter != 0)
1426 continue;
1427 f->changed = false;
1428 cmd_flags = 0;
1429
1430 /* add to delete list */
1431 memcpy(del_list[num_del].mac_addr,
1432 f->macaddr, ETH_ALEN);
1433 del_list[num_del].vlan_tag =
1434 cpu_to_le16((u16)(f->vlan ==
1435 I40E_VLAN_ANY ? 0 : f->vlan));
1436
1437 /* vlan0 as wild card to allow packets from all vlans */
1438 if (f->vlan == I40E_VLAN_ANY ||
1439 (vsi->netdev && !(vsi->netdev->features &
1440 NETIF_F_HW_VLAN_CTAG_FILTER)))
1441 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
1442 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
1443 del_list[num_del].flags = cmd_flags;
1444 num_del++;
1445
1446 /* unlink from filter list */
1447 list_del(&f->list);
1448 kfree(f);
1449
1450 /* flush a full buffer */
1451 if (num_del == filter_list_len) {
1452 ret = i40e_aq_remove_macvlan(&pf->hw,
1453 vsi->seid, del_list, num_del,
1454 NULL);
1455 num_del = 0;
1456 memset(del_list, 0, sizeof(*del_list));
1457
1458 if (ret)
1459 dev_info(&pf->pdev->dev,
1460 "ignoring delete macvlan error, err %d, aq_err %d while flushing a full buffer\n",
1461 ret,
1462 pf->hw.aq.asq_last_status);
1463 }
1464 }
1465 if (num_del) {
1466 ret = i40e_aq_remove_macvlan(&pf->hw, vsi->seid,
1467 del_list, num_del, NULL);
1468 num_del = 0;
1469
1470 if (ret)
1471 dev_info(&pf->pdev->dev,
1472 "ignoring delete macvlan error, err %d, aq_err %d\n",
1473 ret, pf->hw.aq.asq_last_status);
1474 }
1475
1476 kfree(del_list);
1477 del_list = NULL;
1478
1479 /* do all the adds now */
1480 filter_list_len = pf->hw.aq.asq_buf_size /
1481 sizeof(struct i40e_aqc_add_macvlan_element_data),
1482 add_list = kcalloc(filter_list_len,
1483 sizeof(struct i40e_aqc_add_macvlan_element_data),
1484 GFP_KERNEL);
1485 if (!add_list)
1486 return -ENOMEM;
1487
1488 list_for_each_entry_safe(f, ftmp, &vsi->mac_filter_list, list) {
1489 if (!f->changed)
1490 continue;
1491
1492 if (f->counter == 0)
1493 continue;
1494 f->changed = false;
1495 add_happened = true;
1496 cmd_flags = 0;
1497
1498 /* add to add array */
1499 memcpy(add_list[num_add].mac_addr,
1500 f->macaddr, ETH_ALEN);
1501 add_list[num_add].vlan_tag =
1502 cpu_to_le16(
1503 (u16)(f->vlan == I40E_VLAN_ANY ? 0 : f->vlan));
1504 add_list[num_add].queue_number = 0;
1505
1506 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH;
1507
1508 /* vlan0 as wild card to allow packets from all vlans */
1509 if (f->vlan == I40E_VLAN_ANY || (vsi->netdev &&
1510 !(vsi->netdev->features &
1511 NETIF_F_HW_VLAN_CTAG_FILTER)))
1512 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN;
1513 add_list[num_add].flags = cpu_to_le16(cmd_flags);
1514 num_add++;
1515
1516 /* flush a full buffer */
1517 if (num_add == filter_list_len) {
1518 ret = i40e_aq_add_macvlan(&pf->hw,
1519 vsi->seid,
1520 add_list,
1521 num_add,
1522 NULL);
1523 num_add = 0;
1524
1525 if (ret)
1526 break;
1527 memset(add_list, 0, sizeof(*add_list));
1528 }
1529 }
1530 if (num_add) {
1531 ret = i40e_aq_add_macvlan(&pf->hw, vsi->seid,
1532 add_list, num_add, NULL);
1533 num_add = 0;
1534 }
1535 kfree(add_list);
1536 add_list = NULL;
1537
1538 if (add_happened && (!ret)) {
1539 /* do nothing */;
1540 } else if (add_happened && (ret)) {
1541 dev_info(&pf->pdev->dev,
1542 "add filter failed, err %d, aq_err %d\n",
1543 ret, pf->hw.aq.asq_last_status);
1544 if ((pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOSPC) &&
1545 !test_bit(__I40E_FILTER_OVERFLOW_PROMISC,
1546 &vsi->state)) {
1547 promisc_forced_on = true;
1548 set_bit(__I40E_FILTER_OVERFLOW_PROMISC,
1549 &vsi->state);
1550 dev_info(&pf->pdev->dev, "promiscuous mode forced on\n");
1551 }
1552 }
1553 }
1554
1555 /* check for changes in promiscuous modes */
1556 if (changed_flags & IFF_ALLMULTI) {
1557 bool cur_multipromisc;
1558 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI);
1559 ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw,
1560 vsi->seid,
1561 cur_multipromisc,
1562 NULL);
1563 if (ret)
1564 dev_info(&pf->pdev->dev,
1565 "set multi promisc failed, err %d, aq_err %d\n",
1566 ret, pf->hw.aq.asq_last_status);
1567 }
1568 if ((changed_flags & IFF_PROMISC) || promisc_forced_on) {
1569 bool cur_promisc;
1570 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) ||
1571 test_bit(__I40E_FILTER_OVERFLOW_PROMISC,
1572 &vsi->state));
1573 ret = i40e_aq_set_vsi_unicast_promiscuous(&vsi->back->hw,
1574 vsi->seid,
1575 cur_promisc,
1576 NULL);
1577 if (ret)
1578 dev_info(&pf->pdev->dev,
1579 "set uni promisc failed, err %d, aq_err %d\n",
1580 ret, pf->hw.aq.asq_last_status);
1581 }
1582
1583 clear_bit(__I40E_CONFIG_BUSY, &vsi->state);
1584 return 0;
1585 }
1586
1587 /**
1588 * i40e_sync_filters_subtask - Sync the VSI filter list with HW
1589 * @pf: board private structure
1590 **/
1591 static void i40e_sync_filters_subtask(struct i40e_pf *pf)
1592 {
1593 int v;
1594
1595 if (!pf || !(pf->flags & I40E_FLAG_FILTER_SYNC))
1596 return;
1597 pf->flags &= ~I40E_FLAG_FILTER_SYNC;
1598
1599 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) {
1600 if (pf->vsi[v] &&
1601 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED))
1602 i40e_sync_vsi_filters(pf->vsi[v]);
1603 }
1604 }
1605
1606 /**
1607 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit
1608 * @netdev: network interface device structure
1609 * @new_mtu: new value for maximum frame size
1610 *
1611 * Returns 0 on success, negative on failure
1612 **/
1613 static int i40e_change_mtu(struct net_device *netdev, int new_mtu)
1614 {
1615 struct i40e_netdev_priv *np = netdev_priv(netdev);
1616 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
1617 struct i40e_vsi *vsi = np->vsi;
1618
1619 /* MTU < 68 is an error and causes problems on some kernels */
1620 if ((new_mtu < 68) || (max_frame > I40E_MAX_RXBUFFER))
1621 return -EINVAL;
1622
1623 netdev_info(netdev, "changing MTU from %d to %d\n",
1624 netdev->mtu, new_mtu);
1625 netdev->mtu = new_mtu;
1626 if (netif_running(netdev))
1627 i40e_vsi_reinit_locked(vsi);
1628
1629 return 0;
1630 }
1631
1632 /**
1633 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI
1634 * @vsi: the vsi being adjusted
1635 **/
1636 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi)
1637 {
1638 struct i40e_vsi_context ctxt;
1639 i40e_status ret;
1640
1641 if ((vsi->info.valid_sections &
1642 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) &&
1643 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0))
1644 return; /* already enabled */
1645
1646 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
1647 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
1648 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH;
1649
1650 ctxt.seid = vsi->seid;
1651 memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
1652 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
1653 if (ret) {
1654 dev_info(&vsi->back->pdev->dev,
1655 "%s: update vsi failed, aq_err=%d\n",
1656 __func__, vsi->back->hw.aq.asq_last_status);
1657 }
1658 }
1659
1660 /**
1661 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI
1662 * @vsi: the vsi being adjusted
1663 **/
1664 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi)
1665 {
1666 struct i40e_vsi_context ctxt;
1667 i40e_status ret;
1668
1669 if ((vsi->info.valid_sections &
1670 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) &&
1671 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) ==
1672 I40E_AQ_VSI_PVLAN_EMOD_MASK))
1673 return; /* already disabled */
1674
1675 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
1676 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
1677 I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
1678
1679 ctxt.seid = vsi->seid;
1680 memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
1681 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
1682 if (ret) {
1683 dev_info(&vsi->back->pdev->dev,
1684 "%s: update vsi failed, aq_err=%d\n",
1685 __func__, vsi->back->hw.aq.asq_last_status);
1686 }
1687 }
1688
1689 /**
1690 * i40e_vlan_rx_register - Setup or shutdown vlan offload
1691 * @netdev: network interface to be adjusted
1692 * @features: netdev features to test if VLAN offload is enabled or not
1693 **/
1694 static void i40e_vlan_rx_register(struct net_device *netdev, u32 features)
1695 {
1696 struct i40e_netdev_priv *np = netdev_priv(netdev);
1697 struct i40e_vsi *vsi = np->vsi;
1698
1699 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1700 i40e_vlan_stripping_enable(vsi);
1701 else
1702 i40e_vlan_stripping_disable(vsi);
1703 }
1704
1705 /**
1706 * i40e_vsi_add_vlan - Add vsi membership for given vlan
1707 * @vsi: the vsi being configured
1708 * @vid: vlan id to be added (0 = untagged only , -1 = any)
1709 **/
1710 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, s16 vid)
1711 {
1712 struct i40e_mac_filter *f, *add_f;
1713 bool is_netdev, is_vf;
1714 int ret;
1715
1716 is_vf = (vsi->type == I40E_VSI_SRIOV);
1717 is_netdev = !!(vsi->netdev);
1718
1719 if (is_netdev) {
1720 add_f = i40e_add_filter(vsi, vsi->netdev->dev_addr, vid,
1721 is_vf, is_netdev);
1722 if (!add_f) {
1723 dev_info(&vsi->back->pdev->dev,
1724 "Could not add vlan filter %d for %pM\n",
1725 vid, vsi->netdev->dev_addr);
1726 return -ENOMEM;
1727 }
1728 }
1729
1730 list_for_each_entry(f, &vsi->mac_filter_list, list) {
1731 add_f = i40e_add_filter(vsi, f->macaddr, vid, is_vf, is_netdev);
1732 if (!add_f) {
1733 dev_info(&vsi->back->pdev->dev,
1734 "Could not add vlan filter %d for %pM\n",
1735 vid, f->macaddr);
1736 return -ENOMEM;
1737 }
1738 }
1739
1740 ret = i40e_sync_vsi_filters(vsi);
1741 if (ret) {
1742 dev_info(&vsi->back->pdev->dev,
1743 "Could not sync filters for vid %d\n", vid);
1744 return ret;
1745 }
1746
1747 /* Now if we add a vlan tag, make sure to check if it is the first
1748 * tag (i.e. a "tag" -1 does exist) and if so replace the -1 "tag"
1749 * with 0, so we now accept untagged and specified tagged traffic
1750 * (and not any taged and untagged)
1751 */
1752 if (vid > 0) {
1753 if (is_netdev && i40e_find_filter(vsi, vsi->netdev->dev_addr,
1754 I40E_VLAN_ANY,
1755 is_vf, is_netdev)) {
1756 i40e_del_filter(vsi, vsi->netdev->dev_addr,
1757 I40E_VLAN_ANY, is_vf, is_netdev);
1758 add_f = i40e_add_filter(vsi, vsi->netdev->dev_addr, 0,
1759 is_vf, is_netdev);
1760 if (!add_f) {
1761 dev_info(&vsi->back->pdev->dev,
1762 "Could not add filter 0 for %pM\n",
1763 vsi->netdev->dev_addr);
1764 return -ENOMEM;
1765 }
1766 }
1767
1768 list_for_each_entry(f, &vsi->mac_filter_list, list) {
1769 if (i40e_find_filter(vsi, f->macaddr, I40E_VLAN_ANY,
1770 is_vf, is_netdev)) {
1771 i40e_del_filter(vsi, f->macaddr, I40E_VLAN_ANY,
1772 is_vf, is_netdev);
1773 add_f = i40e_add_filter(vsi, f->macaddr,
1774 0, is_vf, is_netdev);
1775 if (!add_f) {
1776 dev_info(&vsi->back->pdev->dev,
1777 "Could not add filter 0 for %pM\n",
1778 f->macaddr);
1779 return -ENOMEM;
1780 }
1781 }
1782 }
1783 ret = i40e_sync_vsi_filters(vsi);
1784 }
1785
1786 return ret;
1787 }
1788
1789 /**
1790 * i40e_vsi_kill_vlan - Remove vsi membership for given vlan
1791 * @vsi: the vsi being configured
1792 * @vid: vlan id to be removed (0 = untagged only , -1 = any)
1793 **/
1794 int i40e_vsi_kill_vlan(struct i40e_vsi *vsi, s16 vid)
1795 {
1796 struct net_device *netdev = vsi->netdev;
1797 struct i40e_mac_filter *f, *add_f;
1798 bool is_vf, is_netdev;
1799 int filter_count = 0;
1800 int ret;
1801
1802 is_vf = (vsi->type == I40E_VSI_SRIOV);
1803 is_netdev = !!(netdev);
1804
1805 if (is_netdev)
1806 i40e_del_filter(vsi, netdev->dev_addr, vid, is_vf, is_netdev);
1807
1808 list_for_each_entry(f, &vsi->mac_filter_list, list)
1809 i40e_del_filter(vsi, f->macaddr, vid, is_vf, is_netdev);
1810
1811 ret = i40e_sync_vsi_filters(vsi);
1812 if (ret) {
1813 dev_info(&vsi->back->pdev->dev, "Could not sync filters\n");
1814 return ret;
1815 }
1816
1817 /* go through all the filters for this VSI and if there is only
1818 * vid == 0 it means there are no other filters, so vid 0 must
1819 * be replaced with -1. This signifies that we should from now
1820 * on accept any traffic (with any tag present, or untagged)
1821 */
1822 list_for_each_entry(f, &vsi->mac_filter_list, list) {
1823 if (is_netdev) {
1824 if (f->vlan &&
1825 ether_addr_equal(netdev->dev_addr, f->macaddr))
1826 filter_count++;
1827 }
1828
1829 if (f->vlan)
1830 filter_count++;
1831 }
1832
1833 if (!filter_count && is_netdev) {
1834 i40e_del_filter(vsi, netdev->dev_addr, 0, is_vf, is_netdev);
1835 f = i40e_add_filter(vsi, netdev->dev_addr, I40E_VLAN_ANY,
1836 is_vf, is_netdev);
1837 if (!f) {
1838 dev_info(&vsi->back->pdev->dev,
1839 "Could not add filter %d for %pM\n",
1840 I40E_VLAN_ANY, netdev->dev_addr);
1841 return -ENOMEM;
1842 }
1843 }
1844
1845 if (!filter_count) {
1846 list_for_each_entry(f, &vsi->mac_filter_list, list) {
1847 i40e_del_filter(vsi, f->macaddr, 0, is_vf, is_netdev);
1848 add_f = i40e_add_filter(vsi, f->macaddr, I40E_VLAN_ANY,
1849 is_vf, is_netdev);
1850 if (!add_f) {
1851 dev_info(&vsi->back->pdev->dev,
1852 "Could not add filter %d for %pM\n",
1853 I40E_VLAN_ANY, f->macaddr);
1854 return -ENOMEM;
1855 }
1856 }
1857 }
1858
1859 return i40e_sync_vsi_filters(vsi);
1860 }
1861
1862 /**
1863 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload
1864 * @netdev: network interface to be adjusted
1865 * @vid: vlan id to be added
1866 **/
1867 static int i40e_vlan_rx_add_vid(struct net_device *netdev,
1868 __always_unused __be16 proto, u16 vid)
1869 {
1870 struct i40e_netdev_priv *np = netdev_priv(netdev);
1871 struct i40e_vsi *vsi = np->vsi;
1872 int ret;
1873
1874 if (vid > 4095)
1875 return 0;
1876
1877 netdev_info(vsi->netdev, "adding %pM vid=%d\n",
1878 netdev->dev_addr, vid);
1879 /* If the network stack called us with vid = 0, we should
1880 * indicate to i40e_vsi_add_vlan() that we want to receive
1881 * any traffic (i.e. with any vlan tag, or untagged)
1882 */
1883 ret = i40e_vsi_add_vlan(vsi, vid ? vid : I40E_VLAN_ANY);
1884
1885 if (!ret) {
1886 if (vid < VLAN_N_VID)
1887 set_bit(vid, vsi->active_vlans);
1888 }
1889
1890 return 0;
1891 }
1892
1893 /**
1894 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload
1895 * @netdev: network interface to be adjusted
1896 * @vid: vlan id to be removed
1897 **/
1898 static int i40e_vlan_rx_kill_vid(struct net_device *netdev,
1899 __always_unused __be16 proto, u16 vid)
1900 {
1901 struct i40e_netdev_priv *np = netdev_priv(netdev);
1902 struct i40e_vsi *vsi = np->vsi;
1903
1904 netdev_info(vsi->netdev, "removing %pM vid=%d\n",
1905 netdev->dev_addr, vid);
1906 /* return code is ignored as there is nothing a user
1907 * can do about failure to remove and a log message was
1908 * already printed from another function
1909 */
1910 i40e_vsi_kill_vlan(vsi, vid);
1911
1912 clear_bit(vid, vsi->active_vlans);
1913 return 0;
1914 }
1915
1916 /**
1917 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up
1918 * @vsi: the vsi being brought back up
1919 **/
1920 static void i40e_restore_vlan(struct i40e_vsi *vsi)
1921 {
1922 u16 vid;
1923
1924 if (!vsi->netdev)
1925 return;
1926
1927 i40e_vlan_rx_register(vsi->netdev, vsi->netdev->features);
1928
1929 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID)
1930 i40e_vlan_rx_add_vid(vsi->netdev, htons(ETH_P_8021Q),
1931 vid);
1932 }
1933
1934 /**
1935 * i40e_vsi_add_pvid - Add pvid for the VSI
1936 * @vsi: the vsi being adjusted
1937 * @vid: the vlan id to set as a PVID
1938 **/
1939 i40e_status i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid)
1940 {
1941 struct i40e_vsi_context ctxt;
1942 i40e_status ret;
1943
1944 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
1945 vsi->info.pvid = cpu_to_le16(vid);
1946 vsi->info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_INSERT_PVID;
1947 vsi->info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_UNTAGGED;
1948
1949 ctxt.seid = vsi->seid;
1950 memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
1951 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
1952 if (ret) {
1953 dev_info(&vsi->back->pdev->dev,
1954 "%s: update vsi failed, aq_err=%d\n",
1955 __func__, vsi->back->hw.aq.asq_last_status);
1956 }
1957
1958 return ret;
1959 }
1960
1961 /**
1962 * i40e_vsi_remove_pvid - Remove the pvid from the VSI
1963 * @vsi: the vsi being adjusted
1964 *
1965 * Just use the vlan_rx_register() service to put it back to normal
1966 **/
1967 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi)
1968 {
1969 vsi->info.pvid = 0;
1970 i40e_vlan_rx_register(vsi->netdev, vsi->netdev->features);
1971 }
1972
1973 /**
1974 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources
1975 * @vsi: ptr to the VSI
1976 *
1977 * If this function returns with an error, then it's possible one or
1978 * more of the rings is populated (while the rest are not). It is the
1979 * callers duty to clean those orphaned rings.
1980 *
1981 * Return 0 on success, negative on failure
1982 **/
1983 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi)
1984 {
1985 int i, err = 0;
1986
1987 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
1988 err = i40e_setup_tx_descriptors(&vsi->tx_rings[i]);
1989
1990 return err;
1991 }
1992
1993 /**
1994 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues
1995 * @vsi: ptr to the VSI
1996 *
1997 * Free VSI's transmit software resources
1998 **/
1999 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi)
2000 {
2001 int i;
2002
2003 for (i = 0; i < vsi->num_queue_pairs; i++)
2004 if (vsi->tx_rings[i].desc)
2005 i40e_free_tx_resources(&vsi->tx_rings[i]);
2006 }
2007
2008 /**
2009 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources
2010 * @vsi: ptr to the VSI
2011 *
2012 * If this function returns with an error, then it's possible one or
2013 * more of the rings is populated (while the rest are not). It is the
2014 * callers duty to clean those orphaned rings.
2015 *
2016 * Return 0 on success, negative on failure
2017 **/
2018 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi)
2019 {
2020 int i, err = 0;
2021
2022 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
2023 err = i40e_setup_rx_descriptors(&vsi->rx_rings[i]);
2024 return err;
2025 }
2026
2027 /**
2028 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues
2029 * @vsi: ptr to the VSI
2030 *
2031 * Free all receive software resources
2032 **/
2033 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi)
2034 {
2035 int i;
2036
2037 for (i = 0; i < vsi->num_queue_pairs; i++)
2038 if (vsi->rx_rings[i].desc)
2039 i40e_free_rx_resources(&vsi->rx_rings[i]);
2040 }
2041
2042 /**
2043 * i40e_configure_tx_ring - Configure a transmit ring context and rest
2044 * @ring: The Tx ring to configure
2045 *
2046 * Configure the Tx descriptor ring in the HMC context.
2047 **/
2048 static int i40e_configure_tx_ring(struct i40e_ring *ring)
2049 {
2050 struct i40e_vsi *vsi = ring->vsi;
2051 u16 pf_q = vsi->base_queue + ring->queue_index;
2052 struct i40e_hw *hw = &vsi->back->hw;
2053 struct i40e_hmc_obj_txq tx_ctx;
2054 i40e_status err = 0;
2055 u32 qtx_ctl = 0;
2056
2057 /* some ATR related tx ring init */
2058 if (vsi->back->flags & I40E_FLAG_FDIR_ATR_ENABLED) {
2059 ring->atr_sample_rate = vsi->back->atr_sample_rate;
2060 ring->atr_count = 0;
2061 } else {
2062 ring->atr_sample_rate = 0;
2063 }
2064
2065 /* initialize XPS */
2066 if (ring->q_vector && ring->netdev &&
2067 !test_and_set_bit(__I40E_TX_XPS_INIT_DONE, &ring->state))
2068 netif_set_xps_queue(ring->netdev,
2069 &ring->q_vector->affinity_mask,
2070 ring->queue_index);
2071
2072 /* clear the context structure first */
2073 memset(&tx_ctx, 0, sizeof(tx_ctx));
2074
2075 tx_ctx.new_context = 1;
2076 tx_ctx.base = (ring->dma / 128);
2077 tx_ctx.qlen = ring->count;
2078 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FDIR_ENABLED |
2079 I40E_FLAG_FDIR_ATR_ENABLED));
2080
2081 /* As part of VSI creation/update, FW allocates certain
2082 * Tx arbitration queue sets for each TC enabled for
2083 * the VSI. The FW returns the handles to these queue
2084 * sets as part of the response buffer to Add VSI,
2085 * Update VSI, etc. AQ commands. It is expected that
2086 * these queue set handles be associated with the Tx
2087 * queues by the driver as part of the TX queue context
2088 * initialization. This has to be done regardless of
2089 * DCB as by default everything is mapped to TC0.
2090 */
2091 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]);
2092 tx_ctx.rdylist_act = 0;
2093
2094 /* clear the context in the HMC */
2095 err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2096 if (err) {
2097 dev_info(&vsi->back->pdev->dev,
2098 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n",
2099 ring->queue_index, pf_q, err);
2100 return -ENOMEM;
2101 }
2102
2103 /* set the context in the HMC */
2104 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2105 if (err) {
2106 dev_info(&vsi->back->pdev->dev,
2107 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n",
2108 ring->queue_index, pf_q, err);
2109 return -ENOMEM;
2110 }
2111
2112 /* Now associate this queue with this PCI function */
2113 qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2114 qtx_ctl |= ((hw->hmc.hmc_fn_id << I40E_QTX_CTL_PF_INDX_SHIFT)
2115 & I40E_QTX_CTL_PF_INDX_MASK);
2116 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2117 i40e_flush(hw);
2118
2119 clear_bit(__I40E_HANG_CHECK_ARMED, &ring->state);
2120
2121 /* cache tail off for easier writes later */
2122 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2123
2124 return 0;
2125 }
2126
2127 /**
2128 * i40e_configure_rx_ring - Configure a receive ring context
2129 * @ring: The Rx ring to configure
2130 *
2131 * Configure the Rx descriptor ring in the HMC context.
2132 **/
2133 static int i40e_configure_rx_ring(struct i40e_ring *ring)
2134 {
2135 struct i40e_vsi *vsi = ring->vsi;
2136 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len;
2137 u16 pf_q = vsi->base_queue + ring->queue_index;
2138 struct i40e_hw *hw = &vsi->back->hw;
2139 struct i40e_hmc_obj_rxq rx_ctx;
2140 i40e_status err = 0;
2141
2142 ring->state = 0;
2143
2144 /* clear the context structure first */
2145 memset(&rx_ctx, 0, sizeof(rx_ctx));
2146
2147 ring->rx_buf_len = vsi->rx_buf_len;
2148 ring->rx_hdr_len = vsi->rx_hdr_len;
2149
2150 rx_ctx.dbuff = ring->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
2151 rx_ctx.hbuff = ring->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
2152
2153 rx_ctx.base = (ring->dma / 128);
2154 rx_ctx.qlen = ring->count;
2155
2156 if (vsi->back->flags & I40E_FLAG_16BYTE_RX_DESC_ENABLED) {
2157 set_ring_16byte_desc_enabled(ring);
2158 rx_ctx.dsize = 0;
2159 } else {
2160 rx_ctx.dsize = 1;
2161 }
2162
2163 rx_ctx.dtype = vsi->dtype;
2164 if (vsi->dtype) {
2165 set_ring_ps_enabled(ring);
2166 rx_ctx.hsplit_0 = I40E_RX_SPLIT_L2 |
2167 I40E_RX_SPLIT_IP |
2168 I40E_RX_SPLIT_TCP_UDP |
2169 I40E_RX_SPLIT_SCTP;
2170 } else {
2171 rx_ctx.hsplit_0 = 0;
2172 }
2173
2174 rx_ctx.rxmax = min_t(u16, vsi->max_frame,
2175 (chain_len * ring->rx_buf_len));
2176 rx_ctx.tphrdesc_ena = 1;
2177 rx_ctx.tphwdesc_ena = 1;
2178 rx_ctx.tphdata_ena = 1;
2179 rx_ctx.tphhead_ena = 1;
2180 rx_ctx.lrxqthresh = 2;
2181 rx_ctx.crcstrip = 1;
2182 rx_ctx.l2tsel = 1;
2183 rx_ctx.showiv = 1;
2184
2185 /* clear the context in the HMC */
2186 err = i40e_clear_lan_rx_queue_context(hw, pf_q);
2187 if (err) {
2188 dev_info(&vsi->back->pdev->dev,
2189 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n",
2190 ring->queue_index, pf_q, err);
2191 return -ENOMEM;
2192 }
2193
2194 /* set the context in the HMC */
2195 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
2196 if (err) {
2197 dev_info(&vsi->back->pdev->dev,
2198 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n",
2199 ring->queue_index, pf_q, err);
2200 return -ENOMEM;
2201 }
2202
2203 /* cache tail for quicker writes, and clear the reg before use */
2204 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
2205 writel(0, ring->tail);
2206
2207 i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring));
2208
2209 return 0;
2210 }
2211
2212 /**
2213 * i40e_vsi_configure_tx - Configure the VSI for Tx
2214 * @vsi: VSI structure describing this set of rings and resources
2215 *
2216 * Configure the Tx VSI for operation.
2217 **/
2218 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi)
2219 {
2220 int err = 0;
2221 u16 i;
2222
2223 for (i = 0; (i < vsi->num_queue_pairs) && (!err); i++)
2224 err = i40e_configure_tx_ring(&vsi->tx_rings[i]);
2225
2226 return err;
2227 }
2228
2229 /**
2230 * i40e_vsi_configure_rx - Configure the VSI for Rx
2231 * @vsi: the VSI being configured
2232 *
2233 * Configure the Rx VSI for operation.
2234 **/
2235 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi)
2236 {
2237 int err = 0;
2238 u16 i;
2239
2240 if (vsi->netdev && (vsi->netdev->mtu > ETH_DATA_LEN))
2241 vsi->max_frame = vsi->netdev->mtu + ETH_HLEN
2242 + ETH_FCS_LEN + VLAN_HLEN;
2243 else
2244 vsi->max_frame = I40E_RXBUFFER_2048;
2245
2246 /* figure out correct receive buffer length */
2247 switch (vsi->back->flags & (I40E_FLAG_RX_1BUF_ENABLED |
2248 I40E_FLAG_RX_PS_ENABLED)) {
2249 case I40E_FLAG_RX_1BUF_ENABLED:
2250 vsi->rx_hdr_len = 0;
2251 vsi->rx_buf_len = vsi->max_frame;
2252 vsi->dtype = I40E_RX_DTYPE_NO_SPLIT;
2253 break;
2254 case I40E_FLAG_RX_PS_ENABLED:
2255 vsi->rx_hdr_len = I40E_RX_HDR_SIZE;
2256 vsi->rx_buf_len = I40E_RXBUFFER_2048;
2257 vsi->dtype = I40E_RX_DTYPE_HEADER_SPLIT;
2258 break;
2259 default:
2260 vsi->rx_hdr_len = I40E_RX_HDR_SIZE;
2261 vsi->rx_buf_len = I40E_RXBUFFER_2048;
2262 vsi->dtype = I40E_RX_DTYPE_SPLIT_ALWAYS;
2263 break;
2264 }
2265
2266 /* round up for the chip's needs */
2267 vsi->rx_hdr_len = ALIGN(vsi->rx_hdr_len,
2268 (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
2269 vsi->rx_buf_len = ALIGN(vsi->rx_buf_len,
2270 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2271
2272 /* set up individual rings */
2273 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
2274 err = i40e_configure_rx_ring(&vsi->rx_rings[i]);
2275
2276 return err;
2277 }
2278
2279 /**
2280 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC
2281 * @vsi: ptr to the VSI
2282 **/
2283 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi)
2284 {
2285 u16 qoffset, qcount;
2286 int i, n;
2287
2288 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2289 return;
2290
2291 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) {
2292 if (!(vsi->tc_config.enabled_tc & (1 << n)))
2293 continue;
2294
2295 qoffset = vsi->tc_config.tc_info[n].qoffset;
2296 qcount = vsi->tc_config.tc_info[n].qcount;
2297 for (i = qoffset; i < (qoffset + qcount); i++) {
2298 struct i40e_ring *rx_ring = &vsi->rx_rings[i];
2299 struct i40e_ring *tx_ring = &vsi->tx_rings[i];
2300 rx_ring->dcb_tc = n;
2301 tx_ring->dcb_tc = n;
2302 }
2303 }
2304 }
2305
2306 /**
2307 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI
2308 * @vsi: ptr to the VSI
2309 **/
2310 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi)
2311 {
2312 if (vsi->netdev)
2313 i40e_set_rx_mode(vsi->netdev);
2314 }
2315
2316 /**
2317 * i40e_vsi_configure - Set up the VSI for action
2318 * @vsi: the VSI being configured
2319 **/
2320 static int i40e_vsi_configure(struct i40e_vsi *vsi)
2321 {
2322 int err;
2323
2324 i40e_set_vsi_rx_mode(vsi);
2325 i40e_restore_vlan(vsi);
2326 i40e_vsi_config_dcb_rings(vsi);
2327 err = i40e_vsi_configure_tx(vsi);
2328 if (!err)
2329 err = i40e_vsi_configure_rx(vsi);
2330
2331 return err;
2332 }
2333
2334 /**
2335 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW
2336 * @vsi: the VSI being configured
2337 **/
2338 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi)
2339 {
2340 struct i40e_pf *pf = vsi->back;
2341 struct i40e_q_vector *q_vector;
2342 struct i40e_hw *hw = &pf->hw;
2343 u16 vector;
2344 int i, q;
2345 u32 val;
2346 u32 qp;
2347
2348 /* The interrupt indexing is offset by 1 in the PFINT_ITRn
2349 * and PFINT_LNKLSTn registers, e.g.:
2350 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts)
2351 */
2352 qp = vsi->base_queue;
2353 vector = vsi->base_vector;
2354 q_vector = vsi->q_vectors;
2355 for (i = 0; i < vsi->num_q_vectors; i++, q_vector++, vector++) {
2356 q_vector->rx.itr = ITR_TO_REG(vsi->rx_itr_setting);
2357 q_vector->rx.latency_range = I40E_LOW_LATENCY;
2358 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1),
2359 q_vector->rx.itr);
2360 q_vector->tx.itr = ITR_TO_REG(vsi->tx_itr_setting);
2361 q_vector->tx.latency_range = I40E_LOW_LATENCY;
2362 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1),
2363 q_vector->tx.itr);
2364
2365 /* Linked list for the queuepairs assigned to this vector */
2366 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp);
2367 for (q = 0; q < q_vector->num_ringpairs; q++) {
2368 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK |
2369 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) |
2370 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) |
2371 (qp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)|
2372 (I40E_QUEUE_TYPE_TX
2373 << I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT);
2374
2375 wr32(hw, I40E_QINT_RQCTL(qp), val);
2376
2377 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
2378 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
2379 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
2380 ((qp+1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT)|
2381 (I40E_QUEUE_TYPE_RX
2382 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
2383
2384 /* Terminate the linked list */
2385 if (q == (q_vector->num_ringpairs - 1))
2386 val |= (I40E_QUEUE_END_OF_LIST
2387 << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT);
2388
2389 wr32(hw, I40E_QINT_TQCTL(qp), val);
2390 qp++;
2391 }
2392 }
2393
2394 i40e_flush(hw);
2395 }
2396
2397 /**
2398 * i40e_enable_misc_int_causes - enable the non-queue interrupts
2399 * @hw: ptr to the hardware info
2400 **/
2401 static void i40e_enable_misc_int_causes(struct i40e_hw *hw)
2402 {
2403 u32 val;
2404
2405 /* clear things first */
2406 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */
2407 rd32(hw, I40E_PFINT_ICR0); /* read to clear */
2408
2409 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK |
2410 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK |
2411 I40E_PFINT_ICR0_ENA_GRST_MASK |
2412 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK |
2413 I40E_PFINT_ICR0_ENA_GPIO_MASK |
2414 I40E_PFINT_ICR0_ENA_STORM_DETECT_MASK |
2415 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK |
2416 I40E_PFINT_ICR0_ENA_VFLR_MASK |
2417 I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
2418
2419 wr32(hw, I40E_PFINT_ICR0_ENA, val);
2420
2421 /* SW_ITR_IDX = 0, but don't change INTENA */
2422 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK |
2423 I40E_PFINT_DYN_CTLN_INTENA_MSK_MASK);
2424
2425 /* OTHER_ITR_IDX = 0 */
2426 wr32(hw, I40E_PFINT_STAT_CTL0, 0);
2427 }
2428
2429 /**
2430 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW
2431 * @vsi: the VSI being configured
2432 **/
2433 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi)
2434 {
2435 struct i40e_q_vector *q_vector = vsi->q_vectors;
2436 struct i40e_pf *pf = vsi->back;
2437 struct i40e_hw *hw = &pf->hw;
2438 u32 val;
2439
2440 /* set the ITR configuration */
2441 q_vector->rx.itr = ITR_TO_REG(vsi->rx_itr_setting);
2442 q_vector->rx.latency_range = I40E_LOW_LATENCY;
2443 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.itr);
2444 q_vector->tx.itr = ITR_TO_REG(vsi->tx_itr_setting);
2445 q_vector->tx.latency_range = I40E_LOW_LATENCY;
2446 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.itr);
2447
2448 i40e_enable_misc_int_causes(hw);
2449
2450 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */
2451 wr32(hw, I40E_PFINT_LNKLST0, 0);
2452
2453 /* Associate the queue pair to the vector and enable the q int */
2454 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK |
2455 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) |
2456 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
2457
2458 wr32(hw, I40E_QINT_RQCTL(0), val);
2459
2460 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
2461 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
2462 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT);
2463
2464 wr32(hw, I40E_QINT_TQCTL(0), val);
2465 i40e_flush(hw);
2466 }
2467
2468 /**
2469 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0
2470 * @pf: board private structure
2471 **/
2472 static void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf)
2473 {
2474 struct i40e_hw *hw = &pf->hw;
2475 u32 val;
2476
2477 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
2478 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK |
2479 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT);
2480
2481 wr32(hw, I40E_PFINT_DYN_CTL0, val);
2482 i40e_flush(hw);
2483 }
2484
2485 /**
2486 * i40e_irq_dynamic_enable - Enable default interrupt generation settings
2487 * @vsi: pointer to a vsi
2488 * @vector: enable a particular Hw Interrupt vector
2489 **/
2490 void i40e_irq_dynamic_enable(struct i40e_vsi *vsi, int vector)
2491 {
2492 struct i40e_pf *pf = vsi->back;
2493 struct i40e_hw *hw = &pf->hw;
2494 u32 val;
2495
2496 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2497 I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
2498 (I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT);
2499 wr32(hw, I40E_PFINT_DYN_CTLN(vector - 1), val);
2500 i40e_flush(hw);
2501 }
2502
2503 /**
2504 * i40e_msix_clean_rings - MSIX mode Interrupt Handler
2505 * @irq: interrupt number
2506 * @data: pointer to a q_vector
2507 **/
2508 static irqreturn_t i40e_msix_clean_rings(int irq, void *data)
2509 {
2510 struct i40e_q_vector *q_vector = data;
2511
2512 if (!q_vector->tx.ring[0] && !q_vector->rx.ring[0])
2513 return IRQ_HANDLED;
2514
2515 napi_schedule(&q_vector->napi);
2516
2517 return IRQ_HANDLED;
2518 }
2519
2520 /**
2521 * i40e_fdir_clean_rings - Interrupt Handler for FDIR rings
2522 * @irq: interrupt number
2523 * @data: pointer to a q_vector
2524 **/
2525 static irqreturn_t i40e_fdir_clean_rings(int irq, void *data)
2526 {
2527 struct i40e_q_vector *q_vector = data;
2528
2529 if (!q_vector->tx.ring[0] && !q_vector->rx.ring[0])
2530 return IRQ_HANDLED;
2531
2532 pr_info("fdir ring cleaning needed\n");
2533
2534 return IRQ_HANDLED;
2535 }
2536
2537 /**
2538 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts
2539 * @vsi: the VSI being configured
2540 * @basename: name for the vector
2541 *
2542 * Allocates MSI-X vectors and requests interrupts from the kernel.
2543 **/
2544 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename)
2545 {
2546 int q_vectors = vsi->num_q_vectors;
2547 struct i40e_pf *pf = vsi->back;
2548 int base = vsi->base_vector;
2549 int rx_int_idx = 0;
2550 int tx_int_idx = 0;
2551 int vector, err;
2552
2553 for (vector = 0; vector < q_vectors; vector++) {
2554 struct i40e_q_vector *q_vector = &(vsi->q_vectors[vector]);
2555
2556 if (q_vector->tx.ring[0] && q_vector->rx.ring[0]) {
2557 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2558 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2559 tx_int_idx++;
2560 } else if (q_vector->rx.ring[0]) {
2561 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2562 "%s-%s-%d", basename, "rx", rx_int_idx++);
2563 } else if (q_vector->tx.ring[0]) {
2564 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2565 "%s-%s-%d", basename, "tx", tx_int_idx++);
2566 } else {
2567 /* skip this unused q_vector */
2568 continue;
2569 }
2570 err = request_irq(pf->msix_entries[base + vector].vector,
2571 vsi->irq_handler,
2572 0,
2573 q_vector->name,
2574 q_vector);
2575 if (err) {
2576 dev_info(&pf->pdev->dev,
2577 "%s: request_irq failed, error: %d\n",
2578 __func__, err);
2579 goto free_queue_irqs;
2580 }
2581 /* assign the mask for this irq */
2582 irq_set_affinity_hint(pf->msix_entries[base + vector].vector,
2583 &q_vector->affinity_mask);
2584 }
2585
2586 return 0;
2587
2588 free_queue_irqs:
2589 while (vector) {
2590 vector--;
2591 irq_set_affinity_hint(pf->msix_entries[base + vector].vector,
2592 NULL);
2593 free_irq(pf->msix_entries[base + vector].vector,
2594 &(vsi->q_vectors[vector]));
2595 }
2596 return err;
2597 }
2598
2599 /**
2600 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI
2601 * @vsi: the VSI being un-configured
2602 **/
2603 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi)
2604 {
2605 struct i40e_pf *pf = vsi->back;
2606 struct i40e_hw *hw = &pf->hw;
2607 int base = vsi->base_vector;
2608 int i;
2609
2610 for (i = 0; i < vsi->num_queue_pairs; i++) {
2611 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i].reg_idx), 0);
2612 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i].reg_idx), 0);
2613 }
2614
2615 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
2616 for (i = vsi->base_vector;
2617 i < (vsi->num_q_vectors + vsi->base_vector); i++)
2618 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0);
2619
2620 i40e_flush(hw);
2621 for (i = 0; i < vsi->num_q_vectors; i++)
2622 synchronize_irq(pf->msix_entries[i + base].vector);
2623 } else {
2624 /* Legacy and MSI mode - this stops all interrupt handling */
2625 wr32(hw, I40E_PFINT_ICR0_ENA, 0);
2626 wr32(hw, I40E_PFINT_DYN_CTL0, 0);
2627 i40e_flush(hw);
2628 synchronize_irq(pf->pdev->irq);
2629 }
2630 }
2631
2632 /**
2633 * i40e_vsi_enable_irq - Enable IRQ for the given VSI
2634 * @vsi: the VSI being configured
2635 **/
2636 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi)
2637 {
2638 struct i40e_pf *pf = vsi->back;
2639 int i;
2640
2641 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
2642 for (i = vsi->base_vector;
2643 i < (vsi->num_q_vectors + vsi->base_vector); i++)
2644 i40e_irq_dynamic_enable(vsi, i);
2645 } else {
2646 i40e_irq_dynamic_enable_icr0(pf);
2647 }
2648
2649 return 0;
2650 }
2651
2652 /**
2653 * i40e_stop_misc_vector - Stop the vector that handles non-queue events
2654 * @pf: board private structure
2655 **/
2656 static void i40e_stop_misc_vector(struct i40e_pf *pf)
2657 {
2658 /* Disable ICR 0 */
2659 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0);
2660 i40e_flush(&pf->hw);
2661 }
2662
2663 /**
2664 * i40e_intr - MSI/Legacy and non-queue interrupt handler
2665 * @irq: interrupt number
2666 * @data: pointer to a q_vector
2667 *
2668 * This is the handler used for all MSI/Legacy interrupts, and deals
2669 * with both queue and non-queue interrupts. This is also used in
2670 * MSIX mode to handle the non-queue interrupts.
2671 **/
2672 static irqreturn_t i40e_intr(int irq, void *data)
2673 {
2674 struct i40e_pf *pf = (struct i40e_pf *)data;
2675 struct i40e_hw *hw = &pf->hw;
2676 u32 icr0, icr0_remaining;
2677 u32 val, ena_mask;
2678
2679 icr0 = rd32(hw, I40E_PFINT_ICR0);
2680
2681 /* if sharing a legacy IRQ, we might get called w/o an intr pending */
2682 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0)
2683 return IRQ_NONE;
2684
2685 val = rd32(hw, I40E_PFINT_DYN_CTL0);
2686 val = val | I40E_PFINT_DYN_CTL0_CLEARPBA_MASK;
2687 wr32(hw, I40E_PFINT_DYN_CTL0, val);
2688
2689 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA);
2690
2691 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */
2692 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) {
2693
2694 /* temporarily disable queue cause for NAPI processing */
2695 u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
2696 qval &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK;
2697 wr32(hw, I40E_QINT_RQCTL(0), qval);
2698
2699 qval = rd32(hw, I40E_QINT_TQCTL(0));
2700 qval &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK;
2701 wr32(hw, I40E_QINT_TQCTL(0), qval);
2702 i40e_flush(hw);
2703
2704 if (!test_bit(__I40E_DOWN, &pf->state))
2705 napi_schedule(&pf->vsi[pf->lan_vsi]->q_vectors[0].napi);
2706 }
2707
2708 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) {
2709 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
2710 set_bit(__I40E_ADMINQ_EVENT_PENDING, &pf->state);
2711 }
2712
2713 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) {
2714 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK;
2715 set_bit(__I40E_MDD_EVENT_PENDING, &pf->state);
2716 }
2717
2718 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) {
2719 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK;
2720 set_bit(__I40E_VFLR_EVENT_PENDING, &pf->state);
2721 }
2722
2723 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) {
2724 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, &pf->state))
2725 set_bit(__I40E_RESET_INTR_RECEIVED, &pf->state);
2726 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK;
2727 val = rd32(hw, I40E_GLGEN_RSTAT);
2728 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK)
2729 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT;
2730 if (val & I40E_RESET_CORER)
2731 pf->corer_count++;
2732 else if (val & I40E_RESET_GLOBR)
2733 pf->globr_count++;
2734 else if (val & I40E_RESET_EMPR)
2735 pf->empr_count++;
2736 }
2737
2738 /* If a critical error is pending we have no choice but to reset the
2739 * device.
2740 * Report and mask out any remaining unexpected interrupts.
2741 */
2742 icr0_remaining = icr0 & ena_mask;
2743 if (icr0_remaining) {
2744 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n",
2745 icr0_remaining);
2746 if ((icr0_remaining & I40E_PFINT_ICR0_HMC_ERR_MASK) ||
2747 (icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) ||
2748 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) ||
2749 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK) ||
2750 (icr0_remaining & I40E_PFINT_ICR0_MAL_DETECT_MASK)) {
2751 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) {
2752 dev_info(&pf->pdev->dev, "HMC error interrupt\n");
2753 } else {
2754 dev_info(&pf->pdev->dev, "device will be reset\n");
2755 set_bit(__I40E_PF_RESET_REQUESTED, &pf->state);
2756 i40e_service_event_schedule(pf);
2757 }
2758 }
2759 ena_mask &= ~icr0_remaining;
2760 }
2761
2762 /* re-enable interrupt causes */
2763 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask);
2764 i40e_flush(hw);
2765 if (!test_bit(__I40E_DOWN, &pf->state)) {
2766 i40e_service_event_schedule(pf);
2767 i40e_irq_dynamic_enable_icr0(pf);
2768 }
2769
2770 return IRQ_HANDLED;
2771 }
2772
2773 /**
2774 * i40e_map_vector_to_rxq - Assigns the Rx queue to the vector
2775 * @vsi: the VSI being configured
2776 * @v_idx: vector index
2777 * @r_idx: rx queue index
2778 **/
2779 static void map_vector_to_rxq(struct i40e_vsi *vsi, int v_idx, int r_idx)
2780 {
2781 struct i40e_q_vector *q_vector = &(vsi->q_vectors[v_idx]);
2782 struct i40e_ring *rx_ring = &(vsi->rx_rings[r_idx]);
2783
2784 rx_ring->q_vector = q_vector;
2785 q_vector->rx.ring[q_vector->rx.count] = rx_ring;
2786 q_vector->rx.count++;
2787 q_vector->rx.latency_range = I40E_LOW_LATENCY;
2788 q_vector->vsi = vsi;
2789 }
2790
2791 /**
2792 * i40e_map_vector_to_txq - Assigns the Tx queue to the vector
2793 * @vsi: the VSI being configured
2794 * @v_idx: vector index
2795 * @t_idx: tx queue index
2796 **/
2797 static void map_vector_to_txq(struct i40e_vsi *vsi, int v_idx, int t_idx)
2798 {
2799 struct i40e_q_vector *q_vector = &(vsi->q_vectors[v_idx]);
2800 struct i40e_ring *tx_ring = &(vsi->tx_rings[t_idx]);
2801
2802 tx_ring->q_vector = q_vector;
2803 q_vector->tx.ring[q_vector->tx.count] = tx_ring;
2804 q_vector->tx.count++;
2805 q_vector->tx.latency_range = I40E_LOW_LATENCY;
2806 q_vector->num_ringpairs++;
2807 q_vector->vsi = vsi;
2808 }
2809
2810 /**
2811 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors
2812 * @vsi: the VSI being configured
2813 *
2814 * This function maps descriptor rings to the queue-specific vectors
2815 * we were allotted through the MSI-X enabling code. Ideally, we'd have
2816 * one vector per queue pair, but on a constrained vector budget, we
2817 * group the queue pairs as "efficiently" as possible.
2818 **/
2819 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi)
2820 {
2821 int qp_remaining = vsi->num_queue_pairs;
2822 int q_vectors = vsi->num_q_vectors;
2823 int qp_per_vector;
2824 int v_start = 0;
2825 int qp_idx = 0;
2826
2827 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to
2828 * group them so there are multiple queues per vector.
2829 */
2830 for (; v_start < q_vectors && qp_remaining; v_start++) {
2831 qp_per_vector = DIV_ROUND_UP(qp_remaining, q_vectors - v_start);
2832 for (; qp_per_vector;
2833 qp_per_vector--, qp_idx++, qp_remaining--) {
2834 map_vector_to_rxq(vsi, v_start, qp_idx);
2835 map_vector_to_txq(vsi, v_start, qp_idx);
2836 }
2837 }
2838 }
2839
2840 /**
2841 * i40e_vsi_request_irq - Request IRQ from the OS
2842 * @vsi: the VSI being configured
2843 * @basename: name for the vector
2844 **/
2845 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename)
2846 {
2847 struct i40e_pf *pf = vsi->back;
2848 int err;
2849
2850 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
2851 err = i40e_vsi_request_irq_msix(vsi, basename);
2852 else if (pf->flags & I40E_FLAG_MSI_ENABLED)
2853 err = request_irq(pf->pdev->irq, i40e_intr, 0,
2854 pf->misc_int_name, pf);
2855 else
2856 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED,
2857 pf->misc_int_name, pf);
2858
2859 if (err)
2860 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err);
2861
2862 return err;
2863 }
2864
2865 #ifdef CONFIG_NET_POLL_CONTROLLER
2866 /**
2867 * i40e_netpoll - A Polling 'interrupt'handler
2868 * @netdev: network interface device structure
2869 *
2870 * This is used by netconsole to send skbs without having to re-enable
2871 * interrupts. It's not called while the normal interrupt routine is executing.
2872 **/
2873 static void i40e_netpoll(struct net_device *netdev)
2874 {
2875 struct i40e_netdev_priv *np = netdev_priv(netdev);
2876 struct i40e_vsi *vsi = np->vsi;
2877 struct i40e_pf *pf = vsi->back;
2878 int i;
2879
2880 /* if interface is down do nothing */
2881 if (test_bit(__I40E_DOWN, &vsi->state))
2882 return;
2883
2884 pf->flags |= I40E_FLAG_IN_NETPOLL;
2885 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
2886 for (i = 0; i < vsi->num_q_vectors; i++)
2887 i40e_msix_clean_rings(0, &vsi->q_vectors[i]);
2888 } else {
2889 i40e_intr(pf->pdev->irq, netdev);
2890 }
2891 pf->flags &= ~I40E_FLAG_IN_NETPOLL;
2892 }
2893 #endif
2894
2895 /**
2896 * i40e_vsi_control_tx - Start or stop a VSI's rings
2897 * @vsi: the VSI being configured
2898 * @enable: start or stop the rings
2899 **/
2900 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable)
2901 {
2902 struct i40e_pf *pf = vsi->back;
2903 struct i40e_hw *hw = &pf->hw;
2904 int i, j, pf_q;
2905 u32 tx_reg;
2906
2907 pf_q = vsi->base_queue;
2908 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
2909 j = 1000;
2910 do {
2911 usleep_range(1000, 2000);
2912 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q));
2913 } while (j-- && ((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT)
2914 ^ (tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT)) & 1);
2915
2916 if (enable) {
2917 /* is STAT set ? */
2918 if ((tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) {
2919 dev_info(&pf->pdev->dev,
2920 "Tx %d already enabled\n", i);
2921 continue;
2922 }
2923 } else {
2924 /* is !STAT set ? */
2925 if (!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) {
2926 dev_info(&pf->pdev->dev,
2927 "Tx %d already disabled\n", i);
2928 continue;
2929 }
2930 }
2931
2932 /* turn on/off the queue */
2933 if (enable)
2934 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK |
2935 I40E_QTX_ENA_QENA_STAT_MASK;
2936 else
2937 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
2938
2939 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg);
2940
2941 /* wait for the change to finish */
2942 for (j = 0; j < 10; j++) {
2943 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q));
2944 if (enable) {
2945 if ((tx_reg & I40E_QTX_ENA_QENA_STAT_MASK))
2946 break;
2947 } else {
2948 if (!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK))
2949 break;
2950 }
2951
2952 udelay(10);
2953 }
2954 if (j >= 10) {
2955 dev_info(&pf->pdev->dev, "Tx ring %d %sable timeout\n",
2956 pf_q, (enable ? "en" : "dis"));
2957 return -ETIMEDOUT;
2958 }
2959 }
2960
2961 return 0;
2962 }
2963
2964 /**
2965 * i40e_vsi_control_rx - Start or stop a VSI's rings
2966 * @vsi: the VSI being configured
2967 * @enable: start or stop the rings
2968 **/
2969 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable)
2970 {
2971 struct i40e_pf *pf = vsi->back;
2972 struct i40e_hw *hw = &pf->hw;
2973 int i, j, pf_q;
2974 u32 rx_reg;
2975
2976 pf_q = vsi->base_queue;
2977 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
2978 j = 1000;
2979 do {
2980 usleep_range(1000, 2000);
2981 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q));
2982 } while (j-- && ((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT)
2983 ^ (rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT)) & 1);
2984
2985 if (enable) {
2986 /* is STAT set ? */
2987 if ((rx_reg & I40E_QRX_ENA_QENA_STAT_MASK))
2988 continue;
2989 } else {
2990 /* is !STAT set ? */
2991 if (!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK))
2992 continue;
2993 }
2994
2995 /* turn on/off the queue */
2996 if (enable)
2997 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK |
2998 I40E_QRX_ENA_QENA_STAT_MASK;
2999 else
3000 rx_reg &= ~(I40E_QRX_ENA_QENA_REQ_MASK |
3001 I40E_QRX_ENA_QENA_STAT_MASK);
3002 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg);
3003
3004 /* wait for the change to finish */
3005 for (j = 0; j < 10; j++) {
3006 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q));
3007
3008 if (enable) {
3009 if ((rx_reg & I40E_QRX_ENA_QENA_STAT_MASK))
3010 break;
3011 } else {
3012 if (!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK))
3013 break;
3014 }
3015
3016 udelay(10);
3017 }
3018 if (j >= 10) {
3019 dev_info(&pf->pdev->dev, "Rx ring %d %sable timeout\n",
3020 pf_q, (enable ? "en" : "dis"));
3021 return -ETIMEDOUT;
3022 }
3023 }
3024
3025 return 0;
3026 }
3027
3028 /**
3029 * i40e_vsi_control_rings - Start or stop a VSI's rings
3030 * @vsi: the VSI being configured
3031 * @enable: start or stop the rings
3032 **/
3033 static int i40e_vsi_control_rings(struct i40e_vsi *vsi, bool request)
3034 {
3035 int ret;
3036
3037 /* do rx first for enable and last for disable */
3038 if (request) {
3039 ret = i40e_vsi_control_rx(vsi, request);
3040 if (ret)
3041 return ret;
3042 ret = i40e_vsi_control_tx(vsi, request);
3043 } else {
3044 ret = i40e_vsi_control_tx(vsi, request);
3045 if (ret)
3046 return ret;
3047 ret = i40e_vsi_control_rx(vsi, request);
3048 }
3049
3050 return ret;
3051 }
3052
3053 /**
3054 * i40e_vsi_free_irq - Free the irq association with the OS
3055 * @vsi: the VSI being configured
3056 **/
3057 static void i40e_vsi_free_irq(struct i40e_vsi *vsi)
3058 {
3059 struct i40e_pf *pf = vsi->back;
3060 struct i40e_hw *hw = &pf->hw;
3061 int base = vsi->base_vector;
3062 u32 val, qp;
3063 int i;
3064
3065 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
3066 if (!vsi->q_vectors)
3067 return;
3068
3069 for (i = 0; i < vsi->num_q_vectors; i++) {
3070 u16 vector = i + base;
3071
3072 /* free only the irqs that were actually requested */
3073 if (vsi->q_vectors[i].num_ringpairs == 0)
3074 continue;
3075
3076 /* clear the affinity_mask in the IRQ descriptor */
3077 irq_set_affinity_hint(pf->msix_entries[vector].vector,
3078 NULL);
3079 free_irq(pf->msix_entries[vector].vector,
3080 &vsi->q_vectors[i]);
3081
3082 /* Tear down the interrupt queue link list
3083 *
3084 * We know that they come in pairs and always
3085 * the Rx first, then the Tx. To clear the
3086 * link list, stick the EOL value into the
3087 * next_q field of the registers.
3088 */
3089 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1));
3090 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK)
3091 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT;
3092 val |= I40E_QUEUE_END_OF_LIST
3093 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT;
3094 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val);
3095
3096 while (qp != I40E_QUEUE_END_OF_LIST) {
3097 u32 next;
3098
3099 val = rd32(hw, I40E_QINT_RQCTL(qp));
3100
3101 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK |
3102 I40E_QINT_RQCTL_MSIX0_INDX_MASK |
3103 I40E_QINT_RQCTL_CAUSE_ENA_MASK |
3104 I40E_QINT_RQCTL_INTEVENT_MASK);
3105
3106 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK |
3107 I40E_QINT_RQCTL_NEXTQ_INDX_MASK);
3108
3109 wr32(hw, I40E_QINT_RQCTL(qp), val);
3110
3111 val = rd32(hw, I40E_QINT_TQCTL(qp));
3112
3113 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK)
3114 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT;
3115
3116 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK |
3117 I40E_QINT_TQCTL_MSIX0_INDX_MASK |
3118 I40E_QINT_TQCTL_CAUSE_ENA_MASK |
3119 I40E_QINT_TQCTL_INTEVENT_MASK);
3120
3121 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK |
3122 I40E_QINT_TQCTL_NEXTQ_INDX_MASK);
3123
3124 wr32(hw, I40E_QINT_TQCTL(qp), val);
3125 qp = next;
3126 }
3127 }
3128 } else {
3129 free_irq(pf->pdev->irq, pf);
3130
3131 val = rd32(hw, I40E_PFINT_LNKLST0);
3132 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK)
3133 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT;
3134 val |= I40E_QUEUE_END_OF_LIST
3135 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT;
3136 wr32(hw, I40E_PFINT_LNKLST0, val);
3137
3138 val = rd32(hw, I40E_QINT_RQCTL(qp));
3139 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK |
3140 I40E_QINT_RQCTL_MSIX0_INDX_MASK |
3141 I40E_QINT_RQCTL_CAUSE_ENA_MASK |
3142 I40E_QINT_RQCTL_INTEVENT_MASK);
3143
3144 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK |
3145 I40E_QINT_RQCTL_NEXTQ_INDX_MASK);
3146
3147 wr32(hw, I40E_QINT_RQCTL(qp), val);
3148
3149 val = rd32(hw, I40E_QINT_TQCTL(qp));
3150
3151 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK |
3152 I40E_QINT_TQCTL_MSIX0_INDX_MASK |
3153 I40E_QINT_TQCTL_CAUSE_ENA_MASK |
3154 I40E_QINT_TQCTL_INTEVENT_MASK);
3155
3156 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK |
3157 I40E_QINT_TQCTL_NEXTQ_INDX_MASK);
3158
3159 wr32(hw, I40E_QINT_TQCTL(qp), val);
3160 }
3161 }
3162
3163 /**
3164 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors
3165 * @vsi: the VSI being un-configured
3166 *
3167 * This frees the memory allocated to the q_vectors and
3168 * deletes references to the NAPI struct.
3169 **/
3170 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi)
3171 {
3172 int v_idx;
3173
3174 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
3175 struct i40e_q_vector *q_vector = &vsi->q_vectors[v_idx];
3176 int r_idx;
3177
3178 if (!q_vector)
3179 continue;
3180
3181 /* disassociate q_vector from rings */
3182 for (r_idx = 0; r_idx < q_vector->tx.count; r_idx++)
3183 q_vector->tx.ring[r_idx]->q_vector = NULL;
3184 for (r_idx = 0; r_idx < q_vector->rx.count; r_idx++)
3185 q_vector->rx.ring[r_idx]->q_vector = NULL;
3186
3187 /* only VSI w/ an associated netdev is set up w/ NAPI */
3188 if (vsi->netdev)
3189 netif_napi_del(&q_vector->napi);
3190 }
3191 kfree(vsi->q_vectors);
3192 }
3193
3194 /**
3195 * i40e_reset_interrupt_capability - Disable interrupt setup in OS
3196 * @pf: board private structure
3197 **/
3198 static void i40e_reset_interrupt_capability(struct i40e_pf *pf)
3199 {
3200 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */
3201 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
3202 pci_disable_msix(pf->pdev);
3203 kfree(pf->msix_entries);
3204 pf->msix_entries = NULL;
3205 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) {
3206 pci_disable_msi(pf->pdev);
3207 }
3208 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED);
3209 }
3210
3211 /**
3212 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings
3213 * @pf: board private structure
3214 *
3215 * We go through and clear interrupt specific resources and reset the structure
3216 * to pre-load conditions
3217 **/
3218 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf)
3219 {
3220 int i;
3221
3222 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1);
3223 for (i = 0; i < pf->hw.func_caps.num_vsis; i++)
3224 if (pf->vsi[i])
3225 i40e_vsi_free_q_vectors(pf->vsi[i]);
3226 i40e_reset_interrupt_capability(pf);
3227 }
3228
3229 /**
3230 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI
3231 * @vsi: the VSI being configured
3232 **/
3233 static void i40e_napi_enable_all(struct i40e_vsi *vsi)
3234 {
3235 int q_idx;
3236
3237 if (!vsi->netdev)
3238 return;
3239
3240 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++)
3241 napi_enable(&vsi->q_vectors[q_idx].napi);
3242 }
3243
3244 /**
3245 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI
3246 * @vsi: the VSI being configured
3247 **/
3248 static void i40e_napi_disable_all(struct i40e_vsi *vsi)
3249 {
3250 int q_idx;
3251
3252 if (!vsi->netdev)
3253 return;
3254
3255 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++)
3256 napi_disable(&vsi->q_vectors[q_idx].napi);
3257 }
3258
3259 /**
3260 * i40e_quiesce_vsi - Pause a given VSI
3261 * @vsi: the VSI being paused
3262 **/
3263 static void i40e_quiesce_vsi(struct i40e_vsi *vsi)
3264 {
3265 if (test_bit(__I40E_DOWN, &vsi->state))
3266 return;
3267
3268 set_bit(__I40E_NEEDS_RESTART, &vsi->state);
3269 if (vsi->netdev && netif_running(vsi->netdev)) {
3270 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
3271 } else {
3272 set_bit(__I40E_DOWN, &vsi->state);
3273 i40e_down(vsi);
3274 }
3275 }
3276
3277 /**
3278 * i40e_unquiesce_vsi - Resume a given VSI
3279 * @vsi: the VSI being resumed
3280 **/
3281 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi)
3282 {
3283 if (!test_bit(__I40E_NEEDS_RESTART, &vsi->state))
3284 return;
3285
3286 clear_bit(__I40E_NEEDS_RESTART, &vsi->state);
3287 if (vsi->netdev && netif_running(vsi->netdev))
3288 vsi->netdev->netdev_ops->ndo_open(vsi->netdev);
3289 else
3290 i40e_up(vsi); /* this clears the DOWN bit */
3291 }
3292
3293 /**
3294 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF
3295 * @pf: the PF
3296 **/
3297 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf)
3298 {
3299 int v;
3300
3301 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) {
3302 if (pf->vsi[v])
3303 i40e_quiesce_vsi(pf->vsi[v]);
3304 }
3305 }
3306
3307 /**
3308 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF
3309 * @pf: the PF
3310 **/
3311 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf)
3312 {
3313 int v;
3314
3315 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) {
3316 if (pf->vsi[v])
3317 i40e_unquiesce_vsi(pf->vsi[v]);
3318 }
3319 }
3320
3321 /**
3322 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config
3323 * @dcbcfg: the corresponding DCBx configuration structure
3324 *
3325 * Return the number of TCs from given DCBx configuration
3326 **/
3327 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg)
3328 {
3329 int num_tc = 0, i;
3330
3331 /* Scan the ETS Config Priority Table to find
3332 * traffic class enabled for a given priority
3333 * and use the traffic class index to get the
3334 * number of traffic classes enabled
3335 */
3336 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) {
3337 if (dcbcfg->etscfg.prioritytable[i] > num_tc)
3338 num_tc = dcbcfg->etscfg.prioritytable[i];
3339 }
3340
3341 /* Traffic class index starts from zero so
3342 * increment to return the actual count
3343 */
3344 num_tc++;
3345
3346 return num_tc;
3347 }
3348
3349 /**
3350 * i40e_dcb_get_enabled_tc - Get enabled traffic classes
3351 * @dcbcfg: the corresponding DCBx configuration structure
3352 *
3353 * Query the current DCB configuration and return the number of
3354 * traffic classes enabled from the given DCBX config
3355 **/
3356 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg)
3357 {
3358 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg);
3359 u8 enabled_tc = 1;
3360 u8 i;
3361
3362 for (i = 0; i < num_tc; i++)
3363 enabled_tc |= 1 << i;
3364
3365 return enabled_tc;
3366 }
3367
3368 /**
3369 * i40e_pf_get_num_tc - Get enabled traffic classes for PF
3370 * @pf: PF being queried
3371 *
3372 * Return number of traffic classes enabled for the given PF
3373 **/
3374 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf)
3375 {
3376 struct i40e_hw *hw = &pf->hw;
3377 u8 i, enabled_tc;
3378 u8 num_tc = 0;
3379 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
3380
3381 /* If DCB is not enabled then always in single TC */
3382 if (!(pf->flags & I40E_FLAG_DCB_ENABLED))
3383 return 1;
3384
3385 /* MFP mode return count of enabled TCs for this PF */
3386 if (pf->flags & I40E_FLAG_MFP_ENABLED) {
3387 enabled_tc = pf->hw.func_caps.enabled_tcmap;
3388 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
3389 if (enabled_tc & (1 << i))
3390 num_tc++;
3391 }
3392 return num_tc;
3393 }
3394
3395 /* SFP mode will be enabled for all TCs on port */
3396 return i40e_dcb_get_num_tc(dcbcfg);
3397 }
3398
3399 /**
3400 * i40e_pf_get_default_tc - Get bitmap for first enabled TC
3401 * @pf: PF being queried
3402 *
3403 * Return a bitmap for first enabled traffic class for this PF.
3404 **/
3405 static u8 i40e_pf_get_default_tc(struct i40e_pf *pf)
3406 {
3407 u8 enabled_tc = pf->hw.func_caps.enabled_tcmap;
3408 u8 i = 0;
3409
3410 if (!enabled_tc)
3411 return 0x1; /* TC0 */
3412
3413 /* Find the first enabled TC */
3414 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
3415 if (enabled_tc & (1 << i))
3416 break;
3417 }
3418
3419 return 1 << i;
3420 }
3421
3422 /**
3423 * i40e_pf_get_pf_tc_map - Get bitmap for enabled traffic classes
3424 * @pf: PF being queried
3425 *
3426 * Return a bitmap for enabled traffic classes for this PF.
3427 **/
3428 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf)
3429 {
3430 /* If DCB is not enabled for this PF then just return default TC */
3431 if (!(pf->flags & I40E_FLAG_DCB_ENABLED))
3432 return i40e_pf_get_default_tc(pf);
3433
3434 /* MFP mode will have enabled TCs set by FW */
3435 if (pf->flags & I40E_FLAG_MFP_ENABLED)
3436 return pf->hw.func_caps.enabled_tcmap;
3437
3438 /* SFP mode we want PF to be enabled for all TCs */
3439 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config);
3440 }
3441
3442 /**
3443 * i40e_vsi_get_bw_info - Query VSI BW Information
3444 * @vsi: the VSI being queried
3445 *
3446 * Returns 0 on success, negative value on failure
3447 **/
3448 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi)
3449 {
3450 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0};
3451 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0};
3452 struct i40e_pf *pf = vsi->back;
3453 struct i40e_hw *hw = &pf->hw;
3454 u32 tc_bw_max;
3455 int ret;
3456 int i;
3457
3458 /* Get the VSI level BW configuration */
3459 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL);
3460 if (ret) {
3461 dev_info(&pf->pdev->dev,
3462 "couldn't get pf vsi bw config, err %d, aq_err %d\n",
3463 ret, pf->hw.aq.asq_last_status);
3464 return ret;
3465 }
3466
3467 /* Get the VSI level BW configuration per TC */
3468 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid,
3469 &bw_ets_config,
3470 NULL);
3471 if (ret) {
3472 dev_info(&pf->pdev->dev,
3473 "couldn't get pf vsi ets bw config, err %d, aq_err %d\n",
3474 ret, pf->hw.aq.asq_last_status);
3475 return ret;
3476 }
3477
3478 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) {
3479 dev_info(&pf->pdev->dev,
3480 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n",
3481 bw_config.tc_valid_bits,
3482 bw_ets_config.tc_valid_bits);
3483 /* Still continuing */
3484 }
3485
3486 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit);
3487 vsi->bw_max_quanta = bw_config.max_bw;
3488 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) |
3489 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16);
3490 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
3491 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i];
3492 vsi->bw_ets_limit_credits[i] =
3493 le16_to_cpu(bw_ets_config.credits[i]);
3494 /* 3 bits out of 4 for each TC */
3495 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7);
3496 }
3497 return ret;
3498 }
3499
3500 /**
3501 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC
3502 * @vsi: the VSI being configured
3503 * @enabled_tc: TC bitmap
3504 * @bw_credits: BW shared credits per TC
3505 *
3506 * Returns 0 on success, negative value on failure
3507 **/
3508 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi,
3509 u8 enabled_tc,
3510 u8 *bw_share)
3511 {
3512 struct i40e_aqc_configure_vsi_tc_bw_data bw_data;
3513 int i, ret = 0;
3514
3515 bw_data.tc_valid_bits = enabled_tc;
3516 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
3517 bw_data.tc_bw_credits[i] = bw_share[i];
3518
3519 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, vsi->seid,
3520 &bw_data, NULL);
3521 if (ret) {
3522 dev_info(&vsi->back->pdev->dev,
3523 "%s: AQ command Config VSI BW allocation per TC failed = %d\n",
3524 __func__, vsi->back->hw.aq.asq_last_status);
3525 return ret;
3526 }
3527
3528 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
3529 vsi->info.qs_handle[i] = bw_data.qs_handles[i];
3530
3531 return ret;
3532 }
3533
3534 /**
3535 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration
3536 * @vsi: the VSI being configured
3537 * @enabled_tc: TC map to be enabled
3538 *
3539 **/
3540 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc)
3541 {
3542 struct net_device *netdev = vsi->netdev;
3543 struct i40e_pf *pf = vsi->back;
3544 struct i40e_hw *hw = &pf->hw;
3545 u8 netdev_tc = 0;
3546 int i;
3547 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
3548
3549 if (!netdev)
3550 return;
3551
3552 if (!enabled_tc) {
3553 netdev_reset_tc(netdev);
3554 return;
3555 }
3556
3557 /* Set up actual enabled TCs on the VSI */
3558 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc))
3559 return;
3560
3561 /* set per TC queues for the VSI */
3562 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
3563 /* Only set TC queues for enabled tcs
3564 *
3565 * e.g. For a VSI that has TC0 and TC3 enabled the
3566 * enabled_tc bitmap would be 0x00001001; the driver
3567 * will set the numtc for netdev as 2 that will be
3568 * referenced by the netdev layer as TC 0 and 1.
3569 */
3570 if (vsi->tc_config.enabled_tc & (1 << i))
3571 netdev_set_tc_queue(netdev,
3572 vsi->tc_config.tc_info[i].netdev_tc,
3573 vsi->tc_config.tc_info[i].qcount,
3574 vsi->tc_config.tc_info[i].qoffset);
3575 }
3576
3577 /* Assign UP2TC map for the VSI */
3578 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) {
3579 /* Get the actual TC# for the UP */
3580 u8 ets_tc = dcbcfg->etscfg.prioritytable[i];
3581 /* Get the mapped netdev TC# for the UP */
3582 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc;
3583 netdev_set_prio_tc_map(netdev, i, netdev_tc);
3584 }
3585 }
3586
3587 /**
3588 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map
3589 * @vsi: the VSI being configured
3590 * @ctxt: the ctxt buffer returned from AQ VSI update param command
3591 **/
3592 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi,
3593 struct i40e_vsi_context *ctxt)
3594 {
3595 /* copy just the sections touched not the entire info
3596 * since not all sections are valid as returned by
3597 * update vsi params
3598 */
3599 vsi->info.mapping_flags = ctxt->info.mapping_flags;
3600 memcpy(&vsi->info.queue_mapping,
3601 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping));
3602 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping,
3603 sizeof(vsi->info.tc_mapping));
3604 }
3605
3606 /**
3607 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map
3608 * @vsi: VSI to be configured
3609 * @enabled_tc: TC bitmap
3610 *
3611 * This configures a particular VSI for TCs that are mapped to the
3612 * given TC bitmap. It uses default bandwidth share for TCs across
3613 * VSIs to configure TC for a particular VSI.
3614 *
3615 * NOTE:
3616 * It is expected that the VSI queues have been quisced before calling
3617 * this function.
3618 **/
3619 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc)
3620 {
3621 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0};
3622 struct i40e_vsi_context ctxt;
3623 int ret = 0;
3624 int i;
3625
3626 /* Check if enabled_tc is same as existing or new TCs */
3627 if (vsi->tc_config.enabled_tc == enabled_tc)
3628 return ret;
3629
3630 /* Enable ETS TCs with equal BW Share for now across all VSIs */
3631 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
3632 if (enabled_tc & (1 << i))
3633 bw_share[i] = 1;
3634 }
3635
3636 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share);
3637 if (ret) {
3638 dev_info(&vsi->back->pdev->dev,
3639 "Failed configuring TC map %d for VSI %d\n",
3640 enabled_tc, vsi->seid);
3641 goto out;
3642 }
3643
3644 /* Update Queue Pairs Mapping for currently enabled UPs */
3645 ctxt.seid = vsi->seid;
3646 ctxt.pf_num = vsi->back->hw.pf_id;
3647 ctxt.vf_num = 0;
3648 ctxt.uplink_seid = vsi->uplink_seid;
3649 memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
3650 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false);
3651
3652 /* Update the VSI after updating the VSI queue-mapping information */
3653 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
3654 if (ret) {
3655 dev_info(&vsi->back->pdev->dev,
3656 "update vsi failed, aq_err=%d\n",
3657 vsi->back->hw.aq.asq_last_status);
3658 goto out;
3659 }
3660 /* update the local VSI info with updated queue map */
3661 i40e_vsi_update_queue_map(vsi, &ctxt);
3662 vsi->info.valid_sections = 0;
3663
3664 /* Update current VSI BW information */
3665 ret = i40e_vsi_get_bw_info(vsi);
3666 if (ret) {
3667 dev_info(&vsi->back->pdev->dev,
3668 "Failed updating vsi bw info, aq_err=%d\n",
3669 vsi->back->hw.aq.asq_last_status);
3670 goto out;
3671 }
3672
3673 /* Update the netdev TC setup */
3674 i40e_vsi_config_netdev_tc(vsi, enabled_tc);
3675 out:
3676 return ret;
3677 }
3678
3679 /**
3680 * i40e_up_complete - Finish the last steps of bringing up a connection
3681 * @vsi: the VSI being configured
3682 **/
3683 static int i40e_up_complete(struct i40e_vsi *vsi)
3684 {
3685 struct i40e_pf *pf = vsi->back;
3686 int err;
3687
3688 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
3689 i40e_vsi_configure_msix(vsi);
3690 else
3691 i40e_configure_msi_and_legacy(vsi);
3692
3693 /* start rings */
3694 err = i40e_vsi_control_rings(vsi, true);
3695 if (err)
3696 return err;
3697
3698 clear_bit(__I40E_DOWN, &vsi->state);
3699 i40e_napi_enable_all(vsi);
3700 i40e_vsi_enable_irq(vsi);
3701
3702 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) &&
3703 (vsi->netdev)) {
3704 netif_tx_start_all_queues(vsi->netdev);
3705 netif_carrier_on(vsi->netdev);
3706 }
3707 i40e_service_event_schedule(pf);
3708
3709 return 0;
3710 }
3711
3712 /**
3713 * i40e_vsi_reinit_locked - Reset the VSI
3714 * @vsi: the VSI being configured
3715 *
3716 * Rebuild the ring structs after some configuration
3717 * has changed, e.g. MTU size.
3718 **/
3719 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi)
3720 {
3721 struct i40e_pf *pf = vsi->back;
3722
3723 WARN_ON(in_interrupt());
3724 while (test_and_set_bit(__I40E_CONFIG_BUSY, &pf->state))
3725 usleep_range(1000, 2000);
3726 i40e_down(vsi);
3727
3728 /* Give a VF some time to respond to the reset. The
3729 * two second wait is based upon the watchdog cycle in
3730 * the VF driver.
3731 */
3732 if (vsi->type == I40E_VSI_SRIOV)
3733 msleep(2000);
3734 i40e_up(vsi);
3735 clear_bit(__I40E_CONFIG_BUSY, &pf->state);
3736 }
3737
3738 /**
3739 * i40e_up - Bring the connection back up after being down
3740 * @vsi: the VSI being configured
3741 **/
3742 int i40e_up(struct i40e_vsi *vsi)
3743 {
3744 int err;
3745
3746 err = i40e_vsi_configure(vsi);
3747 if (!err)
3748 err = i40e_up_complete(vsi);
3749
3750 return err;
3751 }
3752
3753 /**
3754 * i40e_down - Shutdown the connection processing
3755 * @vsi: the VSI being stopped
3756 **/
3757 void i40e_down(struct i40e_vsi *vsi)
3758 {
3759 int i;
3760
3761 /* It is assumed that the caller of this function
3762 * sets the vsi->state __I40E_DOWN bit.
3763 */
3764 if (vsi->netdev) {
3765 netif_carrier_off(vsi->netdev);
3766 netif_tx_disable(vsi->netdev);
3767 }
3768 i40e_vsi_disable_irq(vsi);
3769 i40e_vsi_control_rings(vsi, false);
3770 i40e_napi_disable_all(vsi);
3771
3772 for (i = 0; i < vsi->num_queue_pairs; i++) {
3773 i40e_clean_tx_ring(&vsi->tx_rings[i]);
3774 i40e_clean_rx_ring(&vsi->rx_rings[i]);
3775 }
3776 }
3777
3778 /**
3779 * i40e_setup_tc - configure multiple traffic classes
3780 * @netdev: net device to configure
3781 * @tc: number of traffic classes to enable
3782 **/
3783 static int i40e_setup_tc(struct net_device *netdev, u8 tc)
3784 {
3785 struct i40e_netdev_priv *np = netdev_priv(netdev);
3786 struct i40e_vsi *vsi = np->vsi;
3787 struct i40e_pf *pf = vsi->back;
3788 u8 enabled_tc = 0;
3789 int ret = -EINVAL;
3790 int i;
3791
3792 /* Check if DCB enabled to continue */
3793 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) {
3794 netdev_info(netdev, "DCB is not enabled for adapter\n");
3795 goto exit;
3796 }
3797
3798 /* Check if MFP enabled */
3799 if (pf->flags & I40E_FLAG_MFP_ENABLED) {
3800 netdev_info(netdev, "Configuring TC not supported in MFP mode\n");
3801 goto exit;
3802 }
3803
3804 /* Check whether tc count is within enabled limit */
3805 if (tc > i40e_pf_get_num_tc(pf)) {
3806 netdev_info(netdev, "TC count greater than enabled on link for adapter\n");
3807 goto exit;
3808 }
3809
3810 /* Generate TC map for number of tc requested */
3811 for (i = 0; i < tc; i++)
3812 enabled_tc |= (1 << i);
3813
3814 /* Requesting same TC configuration as already enabled */
3815 if (enabled_tc == vsi->tc_config.enabled_tc)
3816 return 0;
3817
3818 /* Quiesce VSI queues */
3819 i40e_quiesce_vsi(vsi);
3820
3821 /* Configure VSI for enabled TCs */
3822 ret = i40e_vsi_config_tc(vsi, enabled_tc);
3823 if (ret) {
3824 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n",
3825 vsi->seid);
3826 goto exit;
3827 }
3828
3829 /* Unquiesce VSI */
3830 i40e_unquiesce_vsi(vsi);
3831
3832 exit:
3833 return ret;
3834 }
3835
3836 /**
3837 * i40e_open - Called when a network interface is made active
3838 * @netdev: network interface device structure
3839 *
3840 * The open entry point is called when a network interface is made
3841 * active by the system (IFF_UP). At this point all resources needed
3842 * for transmit and receive operations are allocated, the interrupt
3843 * handler is registered with the OS, the netdev watchdog subtask is
3844 * enabled, and the stack is notified that the interface is ready.
3845 *
3846 * Returns 0 on success, negative value on failure
3847 **/
3848 static int i40e_open(struct net_device *netdev)
3849 {
3850 struct i40e_netdev_priv *np = netdev_priv(netdev);
3851 struct i40e_vsi *vsi = np->vsi;
3852 struct i40e_pf *pf = vsi->back;
3853 char int_name[IFNAMSIZ];
3854 int err;
3855
3856 /* disallow open during test */
3857 if (test_bit(__I40E_TESTING, &pf->state))
3858 return -EBUSY;
3859
3860 netif_carrier_off(netdev);
3861
3862 /* allocate descriptors */
3863 err = i40e_vsi_setup_tx_resources(vsi);
3864 if (err)
3865 goto err_setup_tx;
3866 err = i40e_vsi_setup_rx_resources(vsi);
3867 if (err)
3868 goto err_setup_rx;
3869
3870 err = i40e_vsi_configure(vsi);
3871 if (err)
3872 goto err_setup_rx;
3873
3874 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
3875 dev_driver_string(&pf->pdev->dev), netdev->name);
3876 err = i40e_vsi_request_irq(vsi, int_name);
3877 if (err)
3878 goto err_setup_rx;
3879
3880 err = i40e_up_complete(vsi);
3881 if (err)
3882 goto err_up_complete;
3883
3884 if ((vsi->type == I40E_VSI_MAIN) || (vsi->type == I40E_VSI_VMDQ2)) {
3885 err = i40e_aq_set_vsi_broadcast(&pf->hw, vsi->seid, true, NULL);
3886 if (err)
3887 netdev_info(netdev,
3888 "couldn't set broadcast err %d aq_err %d\n",
3889 err, pf->hw.aq.asq_last_status);
3890 }
3891
3892 return 0;
3893
3894 err_up_complete:
3895 i40e_down(vsi);
3896 i40e_vsi_free_irq(vsi);
3897 err_setup_rx:
3898 i40e_vsi_free_rx_resources(vsi);
3899 err_setup_tx:
3900 i40e_vsi_free_tx_resources(vsi);
3901 if (vsi == pf->vsi[pf->lan_vsi])
3902 i40e_do_reset(pf, (1 << __I40E_PF_RESET_REQUESTED));
3903
3904 return err;
3905 }
3906
3907 /**
3908 * i40e_close - Disables a network interface
3909 * @netdev: network interface device structure
3910 *
3911 * The close entry point is called when an interface is de-activated
3912 * by the OS. The hardware is still under the driver's control, but
3913 * this netdev interface is disabled.
3914 *
3915 * Returns 0, this is not allowed to fail
3916 **/
3917 static int i40e_close(struct net_device *netdev)
3918 {
3919 struct i40e_netdev_priv *np = netdev_priv(netdev);
3920 struct i40e_vsi *vsi = np->vsi;
3921
3922 if (test_and_set_bit(__I40E_DOWN, &vsi->state))
3923 return 0;
3924
3925 i40e_down(vsi);
3926 i40e_vsi_free_irq(vsi);
3927
3928 i40e_vsi_free_tx_resources(vsi);
3929 i40e_vsi_free_rx_resources(vsi);
3930
3931 return 0;
3932 }
3933
3934 /**
3935 * i40e_do_reset - Start a PF or Core Reset sequence
3936 * @pf: board private structure
3937 * @reset_flags: which reset is requested
3938 *
3939 * The essential difference in resets is that the PF Reset
3940 * doesn't clear the packet buffers, doesn't reset the PE
3941 * firmware, and doesn't bother the other PFs on the chip.
3942 **/
3943 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags)
3944 {
3945 u32 val;
3946
3947 WARN_ON(in_interrupt());
3948
3949 /* do the biggest reset indicated */
3950 if (reset_flags & (1 << __I40E_GLOBAL_RESET_REQUESTED)) {
3951
3952 /* Request a Global Reset
3953 *
3954 * This will start the chip's countdown to the actual full
3955 * chip reset event, and a warning interrupt to be sent
3956 * to all PFs, including the requestor. Our handler
3957 * for the warning interrupt will deal with the shutdown
3958 * and recovery of the switch setup.
3959 */
3960 dev_info(&pf->pdev->dev, "GlobalR requested\n");
3961 val = rd32(&pf->hw, I40E_GLGEN_RTRIG);
3962 val |= I40E_GLGEN_RTRIG_GLOBR_MASK;
3963 wr32(&pf->hw, I40E_GLGEN_RTRIG, val);
3964
3965 } else if (reset_flags & (1 << __I40E_CORE_RESET_REQUESTED)) {
3966
3967 /* Request a Core Reset
3968 *
3969 * Same as Global Reset, except does *not* include the MAC/PHY
3970 */
3971 dev_info(&pf->pdev->dev, "CoreR requested\n");
3972 val = rd32(&pf->hw, I40E_GLGEN_RTRIG);
3973 val |= I40E_GLGEN_RTRIG_CORER_MASK;
3974 wr32(&pf->hw, I40E_GLGEN_RTRIG, val);
3975 i40e_flush(&pf->hw);
3976
3977 } else if (reset_flags & (1 << __I40E_PF_RESET_REQUESTED)) {
3978
3979 /* Request a PF Reset
3980 *
3981 * Resets only the PF-specific registers
3982 *
3983 * This goes directly to the tear-down and rebuild of
3984 * the switch, since we need to do all the recovery as
3985 * for the Core Reset.
3986 */
3987 dev_info(&pf->pdev->dev, "PFR requested\n");
3988 i40e_handle_reset_warning(pf);
3989
3990 } else if (reset_flags & (1 << __I40E_REINIT_REQUESTED)) {
3991 int v;
3992
3993 /* Find the VSI(s) that requested a re-init */
3994 dev_info(&pf->pdev->dev,
3995 "VSI reinit requested\n");
3996 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) {
3997 struct i40e_vsi *vsi = pf->vsi[v];
3998 if (vsi != NULL &&
3999 test_bit(__I40E_REINIT_REQUESTED, &vsi->state)) {
4000 i40e_vsi_reinit_locked(pf->vsi[v]);
4001 clear_bit(__I40E_REINIT_REQUESTED, &vsi->state);
4002 }
4003 }
4004
4005 /* no further action needed, so return now */
4006 return;
4007 } else {
4008 dev_info(&pf->pdev->dev,
4009 "bad reset request 0x%08x\n", reset_flags);
4010 return;
4011 }
4012 }
4013
4014 /**
4015 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event
4016 * @pf: board private structure
4017 * @e: event info posted on ARQ
4018 *
4019 * Handler for LAN Queue Overflow Event generated by the firmware for PF
4020 * and VF queues
4021 **/
4022 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf,
4023 struct i40e_arq_event_info *e)
4024 {
4025 struct i40e_aqc_lan_overflow *data =
4026 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw;
4027 u32 queue = le32_to_cpu(data->prtdcb_rupto);
4028 u32 qtx_ctl = le32_to_cpu(data->otx_ctl);
4029 struct i40e_hw *hw = &pf->hw;
4030 struct i40e_vf *vf;
4031 u16 vf_id;
4032
4033 dev_info(&pf->pdev->dev, "%s: Rx Queue Number = %d QTX_CTL=0x%08x\n",
4034 __func__, queue, qtx_ctl);
4035
4036 /* Queue belongs to VF, find the VF and issue VF reset */
4037 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK)
4038 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) {
4039 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK)
4040 >> I40E_QTX_CTL_VFVM_INDX_SHIFT);
4041 vf_id -= hw->func_caps.vf_base_id;
4042 vf = &pf->vf[vf_id];
4043 i40e_vc_notify_vf_reset(vf);
4044 /* Allow VF to process pending reset notification */
4045 msleep(20);
4046 i40e_reset_vf(vf, false);
4047 }
4048 }
4049
4050 /**
4051 * i40e_service_event_complete - Finish up the service event
4052 * @pf: board private structure
4053 **/
4054 static void i40e_service_event_complete(struct i40e_pf *pf)
4055 {
4056 BUG_ON(!test_bit(__I40E_SERVICE_SCHED, &pf->state));
4057
4058 /* flush memory to make sure state is correct before next watchog */
4059 smp_mb__before_clear_bit();
4060 clear_bit(__I40E_SERVICE_SCHED, &pf->state);
4061 }
4062
4063 /**
4064 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table
4065 * @pf: board private structure
4066 **/
4067 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf)
4068 {
4069 if (!(pf->flags & I40E_FLAG_FDIR_REQUIRES_REINIT))
4070 return;
4071
4072 pf->flags &= ~I40E_FLAG_FDIR_REQUIRES_REINIT;
4073
4074 /* if interface is down do nothing */
4075 if (test_bit(__I40E_DOWN, &pf->state))
4076 return;
4077 }
4078
4079 /**
4080 * i40e_vsi_link_event - notify VSI of a link event
4081 * @vsi: vsi to be notified
4082 * @link_up: link up or down
4083 **/
4084 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up)
4085 {
4086 if (!vsi)
4087 return;
4088
4089 switch (vsi->type) {
4090 case I40E_VSI_MAIN:
4091 if (!vsi->netdev || !vsi->netdev_registered)
4092 break;
4093
4094 if (link_up) {
4095 netif_carrier_on(vsi->netdev);
4096 netif_tx_wake_all_queues(vsi->netdev);
4097 } else {
4098 netif_carrier_off(vsi->netdev);
4099 netif_tx_stop_all_queues(vsi->netdev);
4100 }
4101 break;
4102
4103 case I40E_VSI_SRIOV:
4104 break;
4105
4106 case I40E_VSI_VMDQ2:
4107 case I40E_VSI_CTRL:
4108 case I40E_VSI_MIRROR:
4109 default:
4110 /* there is no notification for other VSIs */
4111 break;
4112 }
4113 }
4114
4115 /**
4116 * i40e_veb_link_event - notify elements on the veb of a link event
4117 * @veb: veb to be notified
4118 * @link_up: link up or down
4119 **/
4120 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up)
4121 {
4122 struct i40e_pf *pf;
4123 int i;
4124
4125 if (!veb || !veb->pf)
4126 return;
4127 pf = veb->pf;
4128
4129 /* depth first... */
4130 for (i = 0; i < I40E_MAX_VEB; i++)
4131 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid))
4132 i40e_veb_link_event(pf->veb[i], link_up);
4133
4134 /* ... now the local VSIs */
4135 for (i = 0; i < pf->hw.func_caps.num_vsis; i++)
4136 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid))
4137 i40e_vsi_link_event(pf->vsi[i], link_up);
4138 }
4139
4140 /**
4141 * i40e_link_event - Update netif_carrier status
4142 * @pf: board private structure
4143 **/
4144 static void i40e_link_event(struct i40e_pf *pf)
4145 {
4146 bool new_link, old_link;
4147
4148 new_link = (pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP);
4149 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP);
4150
4151 if (new_link == old_link)
4152 return;
4153
4154 netdev_info(pf->vsi[pf->lan_vsi]->netdev,
4155 "NIC Link is %s\n", (new_link ? "Up" : "Down"));
4156
4157 /* Notify the base of the switch tree connected to
4158 * the link. Floating VEBs are not notified.
4159 */
4160 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb])
4161 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link);
4162 else
4163 i40e_vsi_link_event(pf->vsi[pf->lan_vsi], new_link);
4164
4165 if (pf->vf)
4166 i40e_vc_notify_link_state(pf);
4167 }
4168
4169 /**
4170 * i40e_check_hang_subtask - Check for hung queues and dropped interrupts
4171 * @pf: board private structure
4172 *
4173 * Set the per-queue flags to request a check for stuck queues in the irq
4174 * clean functions, then force interrupts to be sure the irq clean is called.
4175 **/
4176 static void i40e_check_hang_subtask(struct i40e_pf *pf)
4177 {
4178 int i, v;
4179
4180 /* If we're down or resetting, just bail */
4181 if (test_bit(__I40E_CONFIG_BUSY, &pf->state))
4182 return;
4183
4184 /* for each VSI/netdev
4185 * for each Tx queue
4186 * set the check flag
4187 * for each q_vector
4188 * force an interrupt
4189 */
4190 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) {
4191 struct i40e_vsi *vsi = pf->vsi[v];
4192 int armed = 0;
4193
4194 if (!pf->vsi[v] ||
4195 test_bit(__I40E_DOWN, &vsi->state) ||
4196 (vsi->netdev && !netif_carrier_ok(vsi->netdev)))
4197 continue;
4198
4199 for (i = 0; i < vsi->num_queue_pairs; i++) {
4200 set_check_for_tx_hang(&vsi->tx_rings[i]);
4201 if (test_bit(__I40E_HANG_CHECK_ARMED,
4202 &vsi->tx_rings[i].state))
4203 armed++;
4204 }
4205
4206 if (armed) {
4207 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) {
4208 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0,
4209 (I40E_PFINT_DYN_CTL0_INTENA_MASK |
4210 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK));
4211 } else {
4212 u16 vec = vsi->base_vector - 1;
4213 u32 val = (I40E_PFINT_DYN_CTLN_INTENA_MASK |
4214 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK);
4215 for (i = 0; i < vsi->num_q_vectors; i++, vec++)
4216 wr32(&vsi->back->hw,
4217 I40E_PFINT_DYN_CTLN(vec), val);
4218 }
4219 i40e_flush(&vsi->back->hw);
4220 }
4221 }
4222 }
4223
4224 /**
4225 * i40e_watchdog_subtask - Check and bring link up
4226 * @pf: board private structure
4227 **/
4228 static void i40e_watchdog_subtask(struct i40e_pf *pf)
4229 {
4230 int i;
4231
4232 /* if interface is down do nothing */
4233 if (test_bit(__I40E_DOWN, &pf->state) ||
4234 test_bit(__I40E_CONFIG_BUSY, &pf->state))
4235 return;
4236
4237 /* Update the stats for active netdevs so the network stack
4238 * can look at updated numbers whenever it cares to
4239 */
4240 for (i = 0; i < pf->hw.func_caps.num_vsis; i++)
4241 if (pf->vsi[i] && pf->vsi[i]->netdev)
4242 i40e_update_stats(pf->vsi[i]);
4243
4244 /* Update the stats for the active switching components */
4245 for (i = 0; i < I40E_MAX_VEB; i++)
4246 if (pf->veb[i])
4247 i40e_update_veb_stats(pf->veb[i]);
4248 }
4249
4250 /**
4251 * i40e_reset_subtask - Set up for resetting the device and driver
4252 * @pf: board private structure
4253 **/
4254 static void i40e_reset_subtask(struct i40e_pf *pf)
4255 {
4256 u32 reset_flags = 0;
4257
4258 if (test_bit(__I40E_REINIT_REQUESTED, &pf->state)) {
4259 reset_flags |= (1 << __I40E_REINIT_REQUESTED);
4260 clear_bit(__I40E_REINIT_REQUESTED, &pf->state);
4261 }
4262 if (test_bit(__I40E_PF_RESET_REQUESTED, &pf->state)) {
4263 reset_flags |= (1 << __I40E_PF_RESET_REQUESTED);
4264 clear_bit(__I40E_PF_RESET_REQUESTED, &pf->state);
4265 }
4266 if (test_bit(__I40E_CORE_RESET_REQUESTED, &pf->state)) {
4267 reset_flags |= (1 << __I40E_CORE_RESET_REQUESTED);
4268 clear_bit(__I40E_CORE_RESET_REQUESTED, &pf->state);
4269 }
4270 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, &pf->state)) {
4271 reset_flags |= (1 << __I40E_GLOBAL_RESET_REQUESTED);
4272 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, &pf->state);
4273 }
4274
4275 /* If there's a recovery already waiting, it takes
4276 * precedence before starting a new reset sequence.
4277 */
4278 if (test_bit(__I40E_RESET_INTR_RECEIVED, &pf->state)) {
4279 i40e_handle_reset_warning(pf);
4280 return;
4281 }
4282
4283 /* If we're already down or resetting, just bail */
4284 if (reset_flags &&
4285 !test_bit(__I40E_DOWN, &pf->state) &&
4286 !test_bit(__I40E_CONFIG_BUSY, &pf->state))
4287 i40e_do_reset(pf, reset_flags);
4288 }
4289
4290 /**
4291 * i40e_handle_link_event - Handle link event
4292 * @pf: board private structure
4293 * @e: event info posted on ARQ
4294 **/
4295 static void i40e_handle_link_event(struct i40e_pf *pf,
4296 struct i40e_arq_event_info *e)
4297 {
4298 struct i40e_hw *hw = &pf->hw;
4299 struct i40e_aqc_get_link_status *status =
4300 (struct i40e_aqc_get_link_status *)&e->desc.params.raw;
4301 struct i40e_link_status *hw_link_info = &hw->phy.link_info;
4302
4303 /* save off old link status information */
4304 memcpy(&pf->hw.phy.link_info_old, hw_link_info,
4305 sizeof(pf->hw.phy.link_info_old));
4306
4307 /* update link status */
4308 hw_link_info->phy_type = (enum i40e_aq_phy_type)status->phy_type;
4309 hw_link_info->link_speed = (enum i40e_aq_link_speed)status->link_speed;
4310 hw_link_info->link_info = status->link_info;
4311 hw_link_info->an_info = status->an_info;
4312 hw_link_info->ext_info = status->ext_info;
4313 hw_link_info->lse_enable =
4314 le16_to_cpu(status->command_flags) &
4315 I40E_AQ_LSE_ENABLE;
4316
4317 /* process the event */
4318 i40e_link_event(pf);
4319
4320 /* Do a new status request to re-enable LSE reporting
4321 * and load new status information into the hw struct,
4322 * then see if the status changed while processing the
4323 * initial event.
4324 */
4325 i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
4326 i40e_link_event(pf);
4327 }
4328
4329 /**
4330 * i40e_clean_adminq_subtask - Clean the AdminQ rings
4331 * @pf: board private structure
4332 **/
4333 static void i40e_clean_adminq_subtask(struct i40e_pf *pf)
4334 {
4335 struct i40e_arq_event_info event;
4336 struct i40e_hw *hw = &pf->hw;
4337 u16 pending, i = 0;
4338 i40e_status ret;
4339 u16 opcode;
4340 u32 val;
4341
4342 if (!test_bit(__I40E_ADMINQ_EVENT_PENDING, &pf->state))
4343 return;
4344
4345 event.msg_size = I40E_MAX_AQ_BUF_SIZE;
4346 event.msg_buf = kzalloc(event.msg_size, GFP_KERNEL);
4347 if (!event.msg_buf)
4348 return;
4349
4350 do {
4351 ret = i40e_clean_arq_element(hw, &event, &pending);
4352 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) {
4353 dev_info(&pf->pdev->dev, "No ARQ event found\n");
4354 break;
4355 } else if (ret) {
4356 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret);
4357 break;
4358 }
4359
4360 opcode = le16_to_cpu(event.desc.opcode);
4361 switch (opcode) {
4362
4363 case i40e_aqc_opc_get_link_status:
4364 i40e_handle_link_event(pf, &event);
4365 break;
4366 case i40e_aqc_opc_send_msg_to_pf:
4367 ret = i40e_vc_process_vf_msg(pf,
4368 le16_to_cpu(event.desc.retval),
4369 le32_to_cpu(event.desc.cookie_high),
4370 le32_to_cpu(event.desc.cookie_low),
4371 event.msg_buf,
4372 event.msg_size);
4373 break;
4374 case i40e_aqc_opc_lldp_update_mib:
4375 dev_info(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n");
4376 break;
4377 case i40e_aqc_opc_event_lan_overflow:
4378 dev_info(&pf->pdev->dev, "ARQ LAN queue overflow event received\n");
4379 i40e_handle_lan_overflow_event(pf, &event);
4380 break;
4381 default:
4382 dev_info(&pf->pdev->dev,
4383 "ARQ Error: Unknown event %d received\n",
4384 event.desc.opcode);
4385 break;
4386 }
4387 } while (pending && (i++ < pf->adminq_work_limit));
4388
4389 clear_bit(__I40E_ADMINQ_EVENT_PENDING, &pf->state);
4390 /* re-enable Admin queue interrupt cause */
4391 val = rd32(hw, I40E_PFINT_ICR0_ENA);
4392 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
4393 wr32(hw, I40E_PFINT_ICR0_ENA, val);
4394 i40e_flush(hw);
4395
4396 kfree(event.msg_buf);
4397 }
4398
4399 /**
4400 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it
4401 * @veb: pointer to the VEB instance
4402 *
4403 * This is a recursive function that first builds the attached VSIs then
4404 * recurses in to build the next layer of VEB. We track the connections
4405 * through our own index numbers because the seid's from the HW could
4406 * change across the reset.
4407 **/
4408 static int i40e_reconstitute_veb(struct i40e_veb *veb)
4409 {
4410 struct i40e_vsi *ctl_vsi = NULL;
4411 struct i40e_pf *pf = veb->pf;
4412 int v, veb_idx;
4413 int ret;
4414
4415 /* build VSI that owns this VEB, temporarily attached to base VEB */
4416 for (v = 0; v < pf->hw.func_caps.num_vsis && !ctl_vsi; v++) {
4417 if (pf->vsi[v] &&
4418 pf->vsi[v]->veb_idx == veb->idx &&
4419 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) {
4420 ctl_vsi = pf->vsi[v];
4421 break;
4422 }
4423 }
4424 if (!ctl_vsi) {
4425 dev_info(&pf->pdev->dev,
4426 "missing owner VSI for veb_idx %d\n", veb->idx);
4427 ret = -ENOENT;
4428 goto end_reconstitute;
4429 }
4430 if (ctl_vsi != pf->vsi[pf->lan_vsi])
4431 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid;
4432 ret = i40e_add_vsi(ctl_vsi);
4433 if (ret) {
4434 dev_info(&pf->pdev->dev,
4435 "rebuild of owner VSI failed: %d\n", ret);
4436 goto end_reconstitute;
4437 }
4438 i40e_vsi_reset_stats(ctl_vsi);
4439
4440 /* create the VEB in the switch and move the VSI onto the VEB */
4441 ret = i40e_add_veb(veb, ctl_vsi);
4442 if (ret)
4443 goto end_reconstitute;
4444
4445 /* create the remaining VSIs attached to this VEB */
4446 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) {
4447 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi)
4448 continue;
4449
4450 if (pf->vsi[v]->veb_idx == veb->idx) {
4451 struct i40e_vsi *vsi = pf->vsi[v];
4452 vsi->uplink_seid = veb->seid;
4453 ret = i40e_add_vsi(vsi);
4454 if (ret) {
4455 dev_info(&pf->pdev->dev,
4456 "rebuild of vsi_idx %d failed: %d\n",
4457 v, ret);
4458 goto end_reconstitute;
4459 }
4460 i40e_vsi_reset_stats(vsi);
4461 }
4462 }
4463
4464 /* create any VEBs attached to this VEB - RECURSION */
4465 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) {
4466 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) {
4467 pf->veb[veb_idx]->uplink_seid = veb->seid;
4468 ret = i40e_reconstitute_veb(pf->veb[veb_idx]);
4469 if (ret)
4470 break;
4471 }
4472 }
4473
4474 end_reconstitute:
4475 return ret;
4476 }
4477
4478 /**
4479 * i40e_get_capabilities - get info about the HW
4480 * @pf: the PF struct
4481 **/
4482 static int i40e_get_capabilities(struct i40e_pf *pf)
4483 {
4484 struct i40e_aqc_list_capabilities_element_resp *cap_buf;
4485 u16 data_size;
4486 int buf_len;
4487 int err;
4488
4489 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp);
4490 do {
4491 cap_buf = kzalloc(buf_len, GFP_KERNEL);
4492 if (!cap_buf)
4493 return -ENOMEM;
4494
4495 /* this loads the data into the hw struct for us */
4496 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len,
4497 &data_size,
4498 i40e_aqc_opc_list_func_capabilities,
4499 NULL);
4500 /* data loaded, buffer no longer needed */
4501 kfree(cap_buf);
4502
4503 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) {
4504 /* retry with a larger buffer */
4505 buf_len = data_size;
4506 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) {
4507 dev_info(&pf->pdev->dev,
4508 "capability discovery failed: aq=%d\n",
4509 pf->hw.aq.asq_last_status);
4510 return -ENODEV;
4511 }
4512 } while (err);
4513
4514 if (pf->hw.debug_mask & I40E_DEBUG_USER)
4515 dev_info(&pf->pdev->dev,
4516 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n",
4517 pf->hw.pf_id, pf->hw.func_caps.num_vfs,
4518 pf->hw.func_caps.num_msix_vectors,
4519 pf->hw.func_caps.num_msix_vectors_vf,
4520 pf->hw.func_caps.fd_filters_guaranteed,
4521 pf->hw.func_caps.fd_filters_best_effort,
4522 pf->hw.func_caps.num_tx_qp,
4523 pf->hw.func_caps.num_vsis);
4524
4525 return 0;
4526 }
4527
4528 /**
4529 * i40e_fdir_setup - initialize the Flow Director resources
4530 * @pf: board private structure
4531 **/
4532 static void i40e_fdir_setup(struct i40e_pf *pf)
4533 {
4534 struct i40e_vsi *vsi;
4535 bool new_vsi = false;
4536 int err, i;
4537
4538 if (!(pf->flags & (I40E_FLAG_FDIR_ENABLED|I40E_FLAG_FDIR_ATR_ENABLED)))
4539 return;
4540
4541 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE;
4542
4543 /* find existing or make new FDIR VSI */
4544 vsi = NULL;
4545 for (i = 0; i < pf->hw.func_caps.num_vsis; i++)
4546 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
4547 vsi = pf->vsi[i];
4548 if (!vsi) {
4549 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, pf->mac_seid, 0);
4550 if (!vsi) {
4551 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n");
4552 pf->flags &= ~I40E_FLAG_FDIR_ENABLED;
4553 return;
4554 }
4555 new_vsi = true;
4556 }
4557 WARN_ON(vsi->base_queue != I40E_FDIR_RING);
4558 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_rings);
4559
4560 err = i40e_vsi_setup_tx_resources(vsi);
4561 if (!err)
4562 err = i40e_vsi_setup_rx_resources(vsi);
4563 if (!err)
4564 err = i40e_vsi_configure(vsi);
4565 if (!err && new_vsi) {
4566 char int_name[IFNAMSIZ + 9];
4567 snprintf(int_name, sizeof(int_name) - 1, "%s-fdir",
4568 dev_driver_string(&pf->pdev->dev));
4569 err = i40e_vsi_request_irq(vsi, int_name);
4570 }
4571 if (!err)
4572 err = i40e_up_complete(vsi);
4573
4574 clear_bit(__I40E_NEEDS_RESTART, &vsi->state);
4575 }
4576
4577 /**
4578 * i40e_fdir_teardown - release the Flow Director resources
4579 * @pf: board private structure
4580 **/
4581 static void i40e_fdir_teardown(struct i40e_pf *pf)
4582 {
4583 int i;
4584
4585 for (i = 0; i < pf->hw.func_caps.num_vsis; i++) {
4586 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) {
4587 i40e_vsi_release(pf->vsi[i]);
4588 break;
4589 }
4590 }
4591 }
4592
4593 /**
4594 * i40e_handle_reset_warning - prep for the core to reset
4595 * @pf: board private structure
4596 *
4597 * Close up the VFs and other things in prep for a Core Reset,
4598 * then get ready to rebuild the world.
4599 **/
4600 static void i40e_handle_reset_warning(struct i40e_pf *pf)
4601 {
4602 struct i40e_driver_version dv;
4603 struct i40e_hw *hw = &pf->hw;
4604 i40e_status ret;
4605 u32 v;
4606
4607 clear_bit(__I40E_RESET_INTR_RECEIVED, &pf->state);
4608 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, &pf->state))
4609 return;
4610
4611 dev_info(&pf->pdev->dev, "Tearing down internal switch for reset\n");
4612
4613 i40e_vc_notify_reset(pf);
4614
4615 /* quiesce the VSIs and their queues that are not already DOWN */
4616 i40e_pf_quiesce_all_vsi(pf);
4617
4618 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) {
4619 if (pf->vsi[v])
4620 pf->vsi[v]->seid = 0;
4621 }
4622
4623 i40e_shutdown_adminq(&pf->hw);
4624
4625 /* Now we wait for GRST to settle out.
4626 * We don't have to delete the VEBs or VSIs from the hw switch
4627 * because the reset will make them disappear.
4628 */
4629 ret = i40e_pf_reset(hw);
4630 if (ret)
4631 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret);
4632 pf->pfr_count++;
4633
4634 if (test_bit(__I40E_DOWN, &pf->state))
4635 goto end_core_reset;
4636 dev_info(&pf->pdev->dev, "Rebuilding internal switch\n");
4637
4638 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */
4639 ret = i40e_init_adminq(&pf->hw);
4640 if (ret) {
4641 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, %d\n", ret);
4642 goto end_core_reset;
4643 }
4644
4645 ret = i40e_get_capabilities(pf);
4646 if (ret) {
4647 dev_info(&pf->pdev->dev, "i40e_get_capabilities failed, %d\n",
4648 ret);
4649 goto end_core_reset;
4650 }
4651
4652 /* call shutdown HMC */
4653 ret = i40e_shutdown_lan_hmc(hw);
4654 if (ret) {
4655 dev_info(&pf->pdev->dev, "shutdown_lan_hmc failed: %d\n", ret);
4656 goto end_core_reset;
4657 }
4658
4659 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
4660 hw->func_caps.num_rx_qp,
4661 pf->fcoe_hmc_cntx_num, pf->fcoe_hmc_filt_num);
4662 if (ret) {
4663 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret);
4664 goto end_core_reset;
4665 }
4666 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
4667 if (ret) {
4668 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret);
4669 goto end_core_reset;
4670 }
4671
4672 /* do basic switch setup */
4673 ret = i40e_setup_pf_switch(pf);
4674 if (ret)
4675 goto end_core_reset;
4676
4677 /* Rebuild the VSIs and VEBs that existed before reset.
4678 * They are still in our local switch element arrays, so only
4679 * need to rebuild the switch model in the HW.
4680 *
4681 * If there were VEBs but the reconstitution failed, we'll try
4682 * try to recover minimal use by getting the basic PF VSI working.
4683 */
4684 if (pf->vsi[pf->lan_vsi]->uplink_seid != pf->mac_seid) {
4685 dev_info(&pf->pdev->dev, "attempting to rebuild switch\n");
4686 /* find the one VEB connected to the MAC, and find orphans */
4687 for (v = 0; v < I40E_MAX_VEB; v++) {
4688 if (!pf->veb[v])
4689 continue;
4690
4691 if (pf->veb[v]->uplink_seid == pf->mac_seid ||
4692 pf->veb[v]->uplink_seid == 0) {
4693 ret = i40e_reconstitute_veb(pf->veb[v]);
4694
4695 if (!ret)
4696 continue;
4697
4698 /* If Main VEB failed, we're in deep doodoo,
4699 * so give up rebuilding the switch and set up
4700 * for minimal rebuild of PF VSI.
4701 * If orphan failed, we'll report the error
4702 * but try to keep going.
4703 */
4704 if (pf->veb[v]->uplink_seid == pf->mac_seid) {
4705 dev_info(&pf->pdev->dev,
4706 "rebuild of switch failed: %d, will try to set up simple PF connection\n",
4707 ret);
4708 pf->vsi[pf->lan_vsi]->uplink_seid
4709 = pf->mac_seid;
4710 break;
4711 } else if (pf->veb[v]->uplink_seid == 0) {
4712 dev_info(&pf->pdev->dev,
4713 "rebuild of orphan VEB failed: %d\n",
4714 ret);
4715 }
4716 }
4717 }
4718 }
4719
4720 if (pf->vsi[pf->lan_vsi]->uplink_seid == pf->mac_seid) {
4721 dev_info(&pf->pdev->dev, "attempting to rebuild PF VSI\n");
4722 /* no VEB, so rebuild only the Main VSI */
4723 ret = i40e_add_vsi(pf->vsi[pf->lan_vsi]);
4724 if (ret) {
4725 dev_info(&pf->pdev->dev,
4726 "rebuild of Main VSI failed: %d\n", ret);
4727 goto end_core_reset;
4728 }
4729 }
4730
4731 /* reinit the misc interrupt */
4732 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
4733 ret = i40e_setup_misc_vector(pf);
4734
4735 /* restart the VSIs that were rebuilt and running before the reset */
4736 i40e_pf_unquiesce_all_vsi(pf);
4737
4738 /* tell the firmware that we're starting */
4739 dv.major_version = DRV_VERSION_MAJOR;
4740 dv.minor_version = DRV_VERSION_MINOR;
4741 dv.build_version = DRV_VERSION_BUILD;
4742 dv.subbuild_version = 0;
4743 i40e_aq_send_driver_version(&pf->hw, &dv, NULL);
4744
4745 dev_info(&pf->pdev->dev, "PF reset done\n");
4746
4747 end_core_reset:
4748 clear_bit(__I40E_RESET_RECOVERY_PENDING, &pf->state);
4749 }
4750
4751 /**
4752 * i40e_handle_mdd_event
4753 * @pf: pointer to the pf structure
4754 *
4755 * Called from the MDD irq handler to identify possibly malicious vfs
4756 **/
4757 static void i40e_handle_mdd_event(struct i40e_pf *pf)
4758 {
4759 struct i40e_hw *hw = &pf->hw;
4760 bool mdd_detected = false;
4761 struct i40e_vf *vf;
4762 u32 reg;
4763 int i;
4764
4765 if (!test_bit(__I40E_MDD_EVENT_PENDING, &pf->state))
4766 return;
4767
4768 /* find what triggered the MDD event */
4769 reg = rd32(hw, I40E_GL_MDET_TX);
4770 if (reg & I40E_GL_MDET_TX_VALID_MASK) {
4771 u8 func = (reg & I40E_GL_MDET_TX_FUNCTION_MASK)
4772 >> I40E_GL_MDET_TX_FUNCTION_SHIFT;
4773 u8 event = (reg & I40E_GL_MDET_TX_EVENT_SHIFT)
4774 >> I40E_GL_MDET_TX_EVENT_SHIFT;
4775 u8 queue = (reg & I40E_GL_MDET_TX_QUEUE_MASK)
4776 >> I40E_GL_MDET_TX_QUEUE_SHIFT;
4777 dev_info(&pf->pdev->dev,
4778 "Malicious Driver Detection TX event 0x%02x on q %d of function 0x%02x\n",
4779 event, queue, func);
4780 wr32(hw, I40E_GL_MDET_TX, 0xffffffff);
4781 mdd_detected = true;
4782 }
4783 reg = rd32(hw, I40E_GL_MDET_RX);
4784 if (reg & I40E_GL_MDET_RX_VALID_MASK) {
4785 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK)
4786 >> I40E_GL_MDET_RX_FUNCTION_SHIFT;
4787 u8 event = (reg & I40E_GL_MDET_RX_EVENT_SHIFT)
4788 >> I40E_GL_MDET_RX_EVENT_SHIFT;
4789 u8 queue = (reg & I40E_GL_MDET_RX_QUEUE_MASK)
4790 >> I40E_GL_MDET_RX_QUEUE_SHIFT;
4791 dev_info(&pf->pdev->dev,
4792 "Malicious Driver Detection RX event 0x%02x on q %d of function 0x%02x\n",
4793 event, queue, func);
4794 wr32(hw, I40E_GL_MDET_RX, 0xffffffff);
4795 mdd_detected = true;
4796 }
4797
4798 /* see if one of the VFs needs its hand slapped */
4799 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) {
4800 vf = &(pf->vf[i]);
4801 reg = rd32(hw, I40E_VP_MDET_TX(i));
4802 if (reg & I40E_VP_MDET_TX_VALID_MASK) {
4803 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF);
4804 vf->num_mdd_events++;
4805 dev_info(&pf->pdev->dev, "MDD TX event on VF %d\n", i);
4806 }
4807
4808 reg = rd32(hw, I40E_VP_MDET_RX(i));
4809 if (reg & I40E_VP_MDET_RX_VALID_MASK) {
4810 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF);
4811 vf->num_mdd_events++;
4812 dev_info(&pf->pdev->dev, "MDD RX event on VF %d\n", i);
4813 }
4814
4815 if (vf->num_mdd_events > I40E_DEFAULT_NUM_MDD_EVENTS_ALLOWED) {
4816 dev_info(&pf->pdev->dev,
4817 "Too many MDD events on VF %d, disabled\n", i);
4818 dev_info(&pf->pdev->dev,
4819 "Use PF Control I/F to re-enable the VF\n");
4820 set_bit(I40E_VF_STAT_DISABLED, &vf->vf_states);
4821 }
4822 }
4823
4824 /* re-enable mdd interrupt cause */
4825 clear_bit(__I40E_MDD_EVENT_PENDING, &pf->state);
4826 reg = rd32(hw, I40E_PFINT_ICR0_ENA);
4827 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK;
4828 wr32(hw, I40E_PFINT_ICR0_ENA, reg);
4829 i40e_flush(hw);
4830 }
4831
4832 /**
4833 * i40e_service_task - Run the driver's async subtasks
4834 * @work: pointer to work_struct containing our data
4835 **/
4836 static void i40e_service_task(struct work_struct *work)
4837 {
4838 struct i40e_pf *pf = container_of(work,
4839 struct i40e_pf,
4840 service_task);
4841 unsigned long start_time = jiffies;
4842
4843 i40e_reset_subtask(pf);
4844 i40e_handle_mdd_event(pf);
4845 i40e_vc_process_vflr_event(pf);
4846 i40e_watchdog_subtask(pf);
4847 i40e_fdir_reinit_subtask(pf);
4848 i40e_check_hang_subtask(pf);
4849 i40e_sync_filters_subtask(pf);
4850 i40e_clean_adminq_subtask(pf);
4851
4852 i40e_service_event_complete(pf);
4853
4854 /* If the tasks have taken longer than one timer cycle or there
4855 * is more work to be done, reschedule the service task now
4856 * rather than wait for the timer to tick again.
4857 */
4858 if (time_after(jiffies, (start_time + pf->service_timer_period)) ||
4859 test_bit(__I40E_ADMINQ_EVENT_PENDING, &pf->state) ||
4860 test_bit(__I40E_MDD_EVENT_PENDING, &pf->state) ||
4861 test_bit(__I40E_VFLR_EVENT_PENDING, &pf->state))
4862 i40e_service_event_schedule(pf);
4863 }
4864
4865 /**
4866 * i40e_service_timer - timer callback
4867 * @data: pointer to PF struct
4868 **/
4869 static void i40e_service_timer(unsigned long data)
4870 {
4871 struct i40e_pf *pf = (struct i40e_pf *)data;
4872
4873 mod_timer(&pf->service_timer,
4874 round_jiffies(jiffies + pf->service_timer_period));
4875 i40e_service_event_schedule(pf);
4876 }
4877
4878 /**
4879 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI
4880 * @vsi: the VSI being configured
4881 **/
4882 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi)
4883 {
4884 struct i40e_pf *pf = vsi->back;
4885
4886 switch (vsi->type) {
4887 case I40E_VSI_MAIN:
4888 vsi->alloc_queue_pairs = pf->num_lan_qps;
4889 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
4890 I40E_REQ_DESCRIPTOR_MULTIPLE);
4891 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
4892 vsi->num_q_vectors = pf->num_lan_msix;
4893 else
4894 vsi->num_q_vectors = 1;
4895
4896 break;
4897
4898 case I40E_VSI_FDIR:
4899 vsi->alloc_queue_pairs = 1;
4900 vsi->num_desc = ALIGN(I40E_FDIR_RING_COUNT,
4901 I40E_REQ_DESCRIPTOR_MULTIPLE);
4902 vsi->num_q_vectors = 1;
4903 break;
4904
4905 case I40E_VSI_VMDQ2:
4906 vsi->alloc_queue_pairs = pf->num_vmdq_qps;
4907 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
4908 I40E_REQ_DESCRIPTOR_MULTIPLE);
4909 vsi->num_q_vectors = pf->num_vmdq_msix;
4910 break;
4911
4912 case I40E_VSI_SRIOV:
4913 vsi->alloc_queue_pairs = pf->num_vf_qps;
4914 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
4915 I40E_REQ_DESCRIPTOR_MULTIPLE);
4916 break;
4917
4918 default:
4919 WARN_ON(1);
4920 return -ENODATA;
4921 }
4922
4923 return 0;
4924 }
4925
4926 /**
4927 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF
4928 * @pf: board private structure
4929 * @type: type of VSI
4930 *
4931 * On error: returns error code (negative)
4932 * On success: returns vsi index in PF (positive)
4933 **/
4934 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type)
4935 {
4936 int ret = -ENODEV;
4937 struct i40e_vsi *vsi;
4938 int vsi_idx;
4939 int i;
4940
4941 /* Need to protect the allocation of the VSIs at the PF level */
4942 mutex_lock(&pf->switch_mutex);
4943
4944 /* VSI list may be fragmented if VSI creation/destruction has
4945 * been happening. We can afford to do a quick scan to look
4946 * for any free VSIs in the list.
4947 *
4948 * find next empty vsi slot, looping back around if necessary
4949 */
4950 i = pf->next_vsi;
4951 while (i < pf->hw.func_caps.num_vsis && pf->vsi[i])
4952 i++;
4953 if (i >= pf->hw.func_caps.num_vsis) {
4954 i = 0;
4955 while (i < pf->next_vsi && pf->vsi[i])
4956 i++;
4957 }
4958
4959 if (i < pf->hw.func_caps.num_vsis && !pf->vsi[i]) {
4960 vsi_idx = i; /* Found one! */
4961 } else {
4962 ret = -ENODEV;
4963 goto err_alloc_vsi; /* out of VSI slots! */
4964 }
4965 pf->next_vsi = ++i;
4966
4967 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL);
4968 if (!vsi) {
4969 ret = -ENOMEM;
4970 goto err_alloc_vsi;
4971 }
4972 vsi->type = type;
4973 vsi->back = pf;
4974 set_bit(__I40E_DOWN, &vsi->state);
4975 vsi->flags = 0;
4976 vsi->idx = vsi_idx;
4977 vsi->rx_itr_setting = pf->rx_itr_default;
4978 vsi->tx_itr_setting = pf->tx_itr_default;
4979 vsi->netdev_registered = false;
4980 vsi->work_limit = I40E_DEFAULT_IRQ_WORK;
4981 INIT_LIST_HEAD(&vsi->mac_filter_list);
4982
4983 i40e_set_num_rings_in_vsi(vsi);
4984
4985 /* Setup default MSIX irq handler for VSI */
4986 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings);
4987
4988 pf->vsi[vsi_idx] = vsi;
4989 ret = vsi_idx;
4990 err_alloc_vsi:
4991 mutex_unlock(&pf->switch_mutex);
4992 return ret;
4993 }
4994
4995 /**
4996 * i40e_vsi_clear - Deallocate the VSI provided
4997 * @vsi: the VSI being un-configured
4998 **/
4999 static int i40e_vsi_clear(struct i40e_vsi *vsi)
5000 {
5001 struct i40e_pf *pf;
5002
5003 if (!vsi)
5004 return 0;
5005
5006 if (!vsi->back)
5007 goto free_vsi;
5008 pf = vsi->back;
5009
5010 mutex_lock(&pf->switch_mutex);
5011 if (!pf->vsi[vsi->idx]) {
5012 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](%p,type %d)\n",
5013 vsi->idx, vsi->idx, vsi, vsi->type);
5014 goto unlock_vsi;
5015 }
5016
5017 if (pf->vsi[vsi->idx] != vsi) {
5018 dev_err(&pf->pdev->dev,
5019 "pf->vsi[%d](%p, type %d) != vsi[%d](%p,type %d): no free!\n",
5020 pf->vsi[vsi->idx]->idx,
5021 pf->vsi[vsi->idx],
5022 pf->vsi[vsi->idx]->type,
5023 vsi->idx, vsi, vsi->type);
5024 goto unlock_vsi;
5025 }
5026
5027 /* updates the pf for this cleared vsi */
5028 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx);
5029 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx);
5030
5031 pf->vsi[vsi->idx] = NULL;
5032 if (vsi->idx < pf->next_vsi)
5033 pf->next_vsi = vsi->idx;
5034
5035 unlock_vsi:
5036 mutex_unlock(&pf->switch_mutex);
5037 free_vsi:
5038 kfree(vsi);
5039
5040 return 0;
5041 }
5042
5043 /**
5044 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI
5045 * @vsi: the VSI being configured
5046 **/
5047 static int i40e_alloc_rings(struct i40e_vsi *vsi)
5048 {
5049 struct i40e_pf *pf = vsi->back;
5050 int ret = 0;
5051 int i;
5052
5053 vsi->rx_rings = kcalloc(vsi->alloc_queue_pairs,
5054 sizeof(struct i40e_ring), GFP_KERNEL);
5055 if (!vsi->rx_rings) {
5056 ret = -ENOMEM;
5057 goto err_alloc_rings;
5058 }
5059
5060 vsi->tx_rings = kcalloc(vsi->alloc_queue_pairs,
5061 sizeof(struct i40e_ring), GFP_KERNEL);
5062 if (!vsi->tx_rings) {
5063 ret = -ENOMEM;
5064 kfree(vsi->rx_rings);
5065 goto err_alloc_rings;
5066 }
5067
5068 /* Set basic values in the rings to be used later during open() */
5069 for (i = 0; i < vsi->alloc_queue_pairs; i++) {
5070 struct i40e_ring *rx_ring = &vsi->rx_rings[i];
5071 struct i40e_ring *tx_ring = &vsi->tx_rings[i];
5072
5073 tx_ring->queue_index = i;
5074 tx_ring->reg_idx = vsi->base_queue + i;
5075 tx_ring->ring_active = false;
5076 tx_ring->vsi = vsi;
5077 tx_ring->netdev = vsi->netdev;
5078 tx_ring->dev = &pf->pdev->dev;
5079 tx_ring->count = vsi->num_desc;
5080 tx_ring->size = 0;
5081 tx_ring->dcb_tc = 0;
5082
5083 rx_ring->queue_index = i;
5084 rx_ring->reg_idx = vsi->base_queue + i;
5085 rx_ring->ring_active = false;
5086 rx_ring->vsi = vsi;
5087 rx_ring->netdev = vsi->netdev;
5088 rx_ring->dev = &pf->pdev->dev;
5089 rx_ring->count = vsi->num_desc;
5090 rx_ring->size = 0;
5091 rx_ring->dcb_tc = 0;
5092 if (pf->flags & I40E_FLAG_16BYTE_RX_DESC_ENABLED)
5093 set_ring_16byte_desc_enabled(rx_ring);
5094 else
5095 clear_ring_16byte_desc_enabled(rx_ring);
5096 }
5097
5098 err_alloc_rings:
5099 return ret;
5100 }
5101
5102 /**
5103 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI
5104 * @vsi: the VSI being cleaned
5105 **/
5106 static int i40e_vsi_clear_rings(struct i40e_vsi *vsi)
5107 {
5108 if (vsi) {
5109 kfree(vsi->rx_rings);
5110 kfree(vsi->tx_rings);
5111 }
5112
5113 return 0;
5114 }
5115
5116 /**
5117 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel
5118 * @pf: board private structure
5119 * @vectors: the number of MSI-X vectors to request
5120 *
5121 * Returns the number of vectors reserved, or error
5122 **/
5123 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors)
5124 {
5125 int err = 0;
5126
5127 pf->num_msix_entries = 0;
5128 while (vectors >= I40E_MIN_MSIX) {
5129 err = pci_enable_msix(pf->pdev, pf->msix_entries, vectors);
5130 if (err == 0) {
5131 /* good to go */
5132 pf->num_msix_entries = vectors;
5133 break;
5134 } else if (err < 0) {
5135 /* total failure */
5136 dev_info(&pf->pdev->dev,
5137 "MSI-X vector reservation failed: %d\n", err);
5138 vectors = 0;
5139 break;
5140 } else {
5141 /* err > 0 is the hint for retry */
5142 dev_info(&pf->pdev->dev,
5143 "MSI-X vectors wanted %d, retrying with %d\n",
5144 vectors, err);
5145 vectors = err;
5146 }
5147 }
5148
5149 if (vectors > 0 && vectors < I40E_MIN_MSIX) {
5150 dev_info(&pf->pdev->dev,
5151 "Couldn't get enough vectors, only %d available\n",
5152 vectors);
5153 vectors = 0;
5154 }
5155
5156 return vectors;
5157 }
5158
5159 /**
5160 * i40e_init_msix - Setup the MSIX capability
5161 * @pf: board private structure
5162 *
5163 * Work with the OS to set up the MSIX vectors needed.
5164 *
5165 * Returns 0 on success, negative on failure
5166 **/
5167 static int i40e_init_msix(struct i40e_pf *pf)
5168 {
5169 i40e_status err = 0;
5170 struct i40e_hw *hw = &pf->hw;
5171 int v_budget, i;
5172 int vec;
5173
5174 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED))
5175 return -ENODEV;
5176
5177 /* The number of vectors we'll request will be comprised of:
5178 * - Add 1 for "other" cause for Admin Queue events, etc.
5179 * - The number of LAN queue pairs
5180 * already adjusted for the NUMA node
5181 * assumes symmetric Tx/Rx pairing
5182 * - The number of VMDq pairs
5183 * Once we count this up, try the request.
5184 *
5185 * If we can't get what we want, we'll simplify to nearly nothing
5186 * and try again. If that still fails, we punt.
5187 */
5188 pf->num_lan_msix = pf->num_lan_qps;
5189 pf->num_vmdq_msix = pf->num_vmdq_qps;
5190 v_budget = 1 + pf->num_lan_msix;
5191 v_budget += (pf->num_vmdq_vsis * pf->num_vmdq_msix);
5192 if (pf->flags & I40E_FLAG_FDIR_ENABLED)
5193 v_budget++;
5194
5195 /* Scale down if necessary, and the rings will share vectors */
5196 v_budget = min_t(int, v_budget, hw->func_caps.num_msix_vectors);
5197
5198 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
5199 GFP_KERNEL);
5200 if (!pf->msix_entries)
5201 return -ENOMEM;
5202
5203 for (i = 0; i < v_budget; i++)
5204 pf->msix_entries[i].entry = i;
5205 vec = i40e_reserve_msix_vectors(pf, v_budget);
5206 if (vec < I40E_MIN_MSIX) {
5207 pf->flags &= ~I40E_FLAG_MSIX_ENABLED;
5208 kfree(pf->msix_entries);
5209 pf->msix_entries = NULL;
5210 return -ENODEV;
5211
5212 } else if (vec == I40E_MIN_MSIX) {
5213 /* Adjust for minimal MSIX use */
5214 dev_info(&pf->pdev->dev, "Features disabled, not enough MSIX vectors\n");
5215 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED;
5216 pf->num_vmdq_vsis = 0;
5217 pf->num_vmdq_qps = 0;
5218 pf->num_vmdq_msix = 0;
5219 pf->num_lan_qps = 1;
5220 pf->num_lan_msix = 1;
5221
5222 } else if (vec != v_budget) {
5223 /* Scale vector usage down */
5224 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */
5225 vec--; /* reserve the misc vector */
5226
5227 /* partition out the remaining vectors */
5228 switch (vec) {
5229 case 2:
5230 pf->num_vmdq_vsis = 1;
5231 pf->num_lan_msix = 1;
5232 break;
5233 case 3:
5234 pf->num_vmdq_vsis = 1;
5235 pf->num_lan_msix = 2;
5236 break;
5237 default:
5238 pf->num_lan_msix = min_t(int, (vec / 2),
5239 pf->num_lan_qps);
5240 pf->num_vmdq_vsis = min_t(int, (vec - pf->num_lan_msix),
5241 I40E_DEFAULT_NUM_VMDQ_VSI);
5242 break;
5243 }
5244 }
5245
5246 return err;
5247 }
5248
5249 /**
5250 * i40e_alloc_q_vectors - Allocate memory for interrupt vectors
5251 * @vsi: the VSI being configured
5252 *
5253 * We allocate one q_vector per queue interrupt. If allocation fails we
5254 * return -ENOMEM.
5255 **/
5256 static int i40e_alloc_q_vectors(struct i40e_vsi *vsi)
5257 {
5258 struct i40e_pf *pf = vsi->back;
5259 int v_idx, num_q_vectors;
5260
5261 /* if not MSIX, give the one vector only to the LAN VSI */
5262 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
5263 num_q_vectors = vsi->num_q_vectors;
5264 else if (vsi == pf->vsi[pf->lan_vsi])
5265 num_q_vectors = 1;
5266 else
5267 return -EINVAL;
5268
5269 vsi->q_vectors = kcalloc(num_q_vectors,
5270 sizeof(struct i40e_q_vector),
5271 GFP_KERNEL);
5272 if (!vsi->q_vectors)
5273 return -ENOMEM;
5274
5275 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
5276 vsi->q_vectors[v_idx].vsi = vsi;
5277 vsi->q_vectors[v_idx].v_idx = v_idx;
5278 cpumask_set_cpu(v_idx, &vsi->q_vectors[v_idx].affinity_mask);
5279 if (vsi->netdev)
5280 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx].napi,
5281 i40e_napi_poll, vsi->work_limit);
5282 }
5283
5284 return 0;
5285 }
5286
5287 /**
5288 * i40e_init_interrupt_scheme - Determine proper interrupt scheme
5289 * @pf: board private structure to initialize
5290 **/
5291 static void i40e_init_interrupt_scheme(struct i40e_pf *pf)
5292 {
5293 int err = 0;
5294
5295 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
5296 err = i40e_init_msix(pf);
5297 if (err) {
5298 pf->flags &= ~(I40E_FLAG_RSS_ENABLED |
5299 I40E_FLAG_MQ_ENABLED |
5300 I40E_FLAG_DCB_ENABLED |
5301 I40E_FLAG_SRIOV_ENABLED |
5302 I40E_FLAG_FDIR_ENABLED |
5303 I40E_FLAG_FDIR_ATR_ENABLED |
5304 I40E_FLAG_VMDQ_ENABLED);
5305
5306 /* rework the queue expectations without MSIX */
5307 i40e_determine_queue_usage(pf);
5308 }
5309 }
5310
5311 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) &&
5312 (pf->flags & I40E_FLAG_MSI_ENABLED)) {
5313 err = pci_enable_msi(pf->pdev);
5314 if (err) {
5315 dev_info(&pf->pdev->dev,
5316 "MSI init failed (%d), trying legacy.\n", err);
5317 pf->flags &= ~I40E_FLAG_MSI_ENABLED;
5318 }
5319 }
5320
5321 /* track first vector for misc interrupts */
5322 err = i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT-1);
5323 }
5324
5325 /**
5326 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events
5327 * @pf: board private structure
5328 *
5329 * This sets up the handler for MSIX 0, which is used to manage the
5330 * non-queue interrupts, e.g. AdminQ and errors. This is not used
5331 * when in MSI or Legacy interrupt mode.
5332 **/
5333 static int i40e_setup_misc_vector(struct i40e_pf *pf)
5334 {
5335 struct i40e_hw *hw = &pf->hw;
5336 int err = 0;
5337
5338 /* Only request the irq if this is the first time through, and
5339 * not when we're rebuilding after a Reset
5340 */
5341 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, &pf->state)) {
5342 err = request_irq(pf->msix_entries[0].vector,
5343 i40e_intr, 0, pf->misc_int_name, pf);
5344 if (err) {
5345 dev_info(&pf->pdev->dev,
5346 "request_irq for msix_misc failed: %d\n", err);
5347 return -EFAULT;
5348 }
5349 }
5350
5351 i40e_enable_misc_int_causes(hw);
5352
5353 /* associate no queues to the misc vector */
5354 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST);
5355 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K);
5356
5357 i40e_flush(hw);
5358
5359 i40e_irq_dynamic_enable_icr0(pf);
5360
5361 return err;
5362 }
5363
5364 /**
5365 * i40e_config_rss - Prepare for RSS if used
5366 * @pf: board private structure
5367 **/
5368 static int i40e_config_rss(struct i40e_pf *pf)
5369 {
5370 struct i40e_hw *hw = &pf->hw;
5371 u32 lut = 0;
5372 int i, j;
5373 u64 hena;
5374 /* Set of random keys generated using kernel random number generator */
5375 static const u32 seed[I40E_PFQF_HKEY_MAX_INDEX + 1] = {0x41b01687,
5376 0x183cfd8c, 0xce880440, 0x580cbc3c, 0x35897377,
5377 0x328b25e1, 0x4fa98922, 0xb7d90c14, 0xd5bad70d,
5378 0xcd15a2c1, 0xe8580225, 0x4a1e9d11, 0xfe5731be};
5379
5380 /* Fill out hash function seed */
5381 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
5382 wr32(hw, I40E_PFQF_HKEY(i), seed[i]);
5383
5384 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */
5385 hena = (u64)rd32(hw, I40E_PFQF_HENA(0)) |
5386 ((u64)rd32(hw, I40E_PFQF_HENA(1)) << 32);
5387 hena |= ((u64)1 << I40E_FILTER_PCTYPE_NONF_IPV4_UDP) |
5388 ((u64)1 << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) |
5389 ((u64)1 << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) |
5390 ((u64)1 << I40E_FILTER_PCTYPE_NONF_IPV4_TCP) |
5391 ((u64)1 << I40E_FILTER_PCTYPE_NONF_IPV6_TCP) |
5392 ((u64)1 << I40E_FILTER_PCTYPE_NONF_IPV6_UDP) |
5393 ((u64)1 << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) |
5394 ((u64)1 << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP) |
5395 ((u64)1 << I40E_FILTER_PCTYPE_FRAG_IPV4)|
5396 ((u64)1 << I40E_FILTER_PCTYPE_FRAG_IPV6);
5397 wr32(hw, I40E_PFQF_HENA(0), (u32)hena);
5398 wr32(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32));
5399
5400 /* Populate the LUT with max no. of queues in round robin fashion */
5401 for (i = 0, j = 0; i < pf->hw.func_caps.rss_table_size; i++, j++) {
5402
5403 /* The assumption is that lan qp count will be the highest
5404 * qp count for any PF VSI that needs RSS.
5405 * If multiple VSIs need RSS support, all the qp counts
5406 * for those VSIs should be a power of 2 for RSS to work.
5407 * If LAN VSI is the only consumer for RSS then this requirement
5408 * is not necessary.
5409 */
5410 if (j == pf->rss_size)
5411 j = 0;
5412 /* lut = 4-byte sliding window of 4 lut entries */
5413 lut = (lut << 8) | (j &
5414 ((0x1 << pf->hw.func_caps.rss_table_entry_width) - 1));
5415 /* On i = 3, we have 4 entries in lut; write to the register */
5416 if ((i & 3) == 3)
5417 wr32(hw, I40E_PFQF_HLUT(i >> 2), lut);
5418 }
5419 i40e_flush(hw);
5420
5421 return 0;
5422 }
5423
5424 /**
5425 * i40e_sw_init - Initialize general software structures (struct i40e_pf)
5426 * @pf: board private structure to initialize
5427 *
5428 * i40e_sw_init initializes the Adapter private data structure.
5429 * Fields are initialized based on PCI device information and
5430 * OS network device settings (MTU size).
5431 **/
5432 static int i40e_sw_init(struct i40e_pf *pf)
5433 {
5434 int err = 0;
5435 int size;
5436
5437 pf->msg_enable = netif_msg_init(I40E_DEFAULT_MSG_ENABLE,
5438 (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK));
5439 if (debug != -1 && debug != I40E_DEFAULT_MSG_ENABLE) {
5440 if (I40E_DEBUG_USER & debug)
5441 pf->hw.debug_mask = debug;
5442 pf->msg_enable = netif_msg_init((debug & ~I40E_DEBUG_USER),
5443 I40E_DEFAULT_MSG_ENABLE);
5444 }
5445
5446 /* Set default capability flags */
5447 pf->flags = I40E_FLAG_RX_CSUM_ENABLED |
5448 I40E_FLAG_MSI_ENABLED |
5449 I40E_FLAG_MSIX_ENABLED |
5450 I40E_FLAG_RX_PS_ENABLED |
5451 I40E_FLAG_MQ_ENABLED |
5452 I40E_FLAG_RX_1BUF_ENABLED;
5453
5454 pf->rss_size_max = 0x1 << pf->hw.func_caps.rss_table_entry_width;
5455 if (pf->hw.func_caps.rss) {
5456 pf->flags |= I40E_FLAG_RSS_ENABLED;
5457 pf->rss_size = min_t(int, pf->rss_size_max,
5458 nr_cpus_node(numa_node_id()));
5459 } else {
5460 pf->rss_size = 1;
5461 }
5462
5463 if (pf->hw.func_caps.dcb)
5464 pf->num_tc_qps = I40E_DEFAULT_QUEUES_PER_TC;
5465 else
5466 pf->num_tc_qps = 0;
5467
5468 if (pf->hw.func_caps.fd) {
5469 /* FW/NVM is not yet fixed in this regard */
5470 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) ||
5471 (pf->hw.func_caps.fd_filters_best_effort > 0)) {
5472 pf->flags |= I40E_FLAG_FDIR_ATR_ENABLED;
5473 dev_info(&pf->pdev->dev,
5474 "Flow Director ATR mode Enabled\n");
5475 pf->flags |= I40E_FLAG_FDIR_ENABLED;
5476 dev_info(&pf->pdev->dev,
5477 "Flow Director Side Band mode Enabled\n");
5478 pf->fdir_pf_filter_count =
5479 pf->hw.func_caps.fd_filters_guaranteed;
5480 }
5481 } else {
5482 pf->fdir_pf_filter_count = 0;
5483 }
5484
5485 if (pf->hw.func_caps.vmdq) {
5486 pf->flags |= I40E_FLAG_VMDQ_ENABLED;
5487 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI;
5488 pf->num_vmdq_qps = I40E_DEFAULT_QUEUES_PER_VMDQ;
5489 }
5490
5491 /* MFP mode enabled */
5492 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.mfp_mode_1) {
5493 pf->flags |= I40E_FLAG_MFP_ENABLED;
5494 dev_info(&pf->pdev->dev, "MFP mode Enabled\n");
5495 }
5496
5497 #ifdef CONFIG_PCI_IOV
5498 if (pf->hw.func_caps.num_vfs) {
5499 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF;
5500 pf->flags |= I40E_FLAG_SRIOV_ENABLED;
5501 pf->num_req_vfs = min_t(int,
5502 pf->hw.func_caps.num_vfs,
5503 I40E_MAX_VF_COUNT);
5504 }
5505 #endif /* CONFIG_PCI_IOV */
5506 pf->eeprom_version = 0xDEAD;
5507 pf->lan_veb = I40E_NO_VEB;
5508 pf->lan_vsi = I40E_NO_VSI;
5509
5510 /* set up queue assignment tracking */
5511 size = sizeof(struct i40e_lump_tracking)
5512 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp);
5513 pf->qp_pile = kzalloc(size, GFP_KERNEL);
5514 if (!pf->qp_pile) {
5515 err = -ENOMEM;
5516 goto sw_init_done;
5517 }
5518 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp;
5519 pf->qp_pile->search_hint = 0;
5520
5521 /* set up vector assignment tracking */
5522 size = sizeof(struct i40e_lump_tracking)
5523 + (sizeof(u16) * pf->hw.func_caps.num_msix_vectors);
5524 pf->irq_pile = kzalloc(size, GFP_KERNEL);
5525 if (!pf->irq_pile) {
5526 kfree(pf->qp_pile);
5527 err = -ENOMEM;
5528 goto sw_init_done;
5529 }
5530 pf->irq_pile->num_entries = pf->hw.func_caps.num_msix_vectors;
5531 pf->irq_pile->search_hint = 0;
5532
5533 mutex_init(&pf->switch_mutex);
5534
5535 sw_init_done:
5536 return err;
5537 }
5538
5539 /**
5540 * i40e_set_features - set the netdev feature flags
5541 * @netdev: ptr to the netdev being adjusted
5542 * @features: the feature set that the stack is suggesting
5543 **/
5544 static int i40e_set_features(struct net_device *netdev,
5545 netdev_features_t features)
5546 {
5547 struct i40e_netdev_priv *np = netdev_priv(netdev);
5548 struct i40e_vsi *vsi = np->vsi;
5549
5550 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5551 i40e_vlan_stripping_enable(vsi);
5552 else
5553 i40e_vlan_stripping_disable(vsi);
5554
5555 return 0;
5556 }
5557
5558 static const struct net_device_ops i40e_netdev_ops = {
5559 .ndo_open = i40e_open,
5560 .ndo_stop = i40e_close,
5561 .ndo_start_xmit = i40e_lan_xmit_frame,
5562 .ndo_get_stats64 = i40e_get_netdev_stats_struct,
5563 .ndo_set_rx_mode = i40e_set_rx_mode,
5564 .ndo_validate_addr = eth_validate_addr,
5565 .ndo_set_mac_address = i40e_set_mac,
5566 .ndo_change_mtu = i40e_change_mtu,
5567 .ndo_tx_timeout = i40e_tx_timeout,
5568 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid,
5569 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid,
5570 #ifdef CONFIG_NET_POLL_CONTROLLER
5571 .ndo_poll_controller = i40e_netpoll,
5572 #endif
5573 .ndo_setup_tc = i40e_setup_tc,
5574 .ndo_set_features = i40e_set_features,
5575 .ndo_set_vf_mac = i40e_ndo_set_vf_mac,
5576 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan,
5577 .ndo_set_vf_tx_rate = i40e_ndo_set_vf_bw,
5578 .ndo_get_vf_config = i40e_ndo_get_vf_config,
5579 };
5580
5581 /**
5582 * i40e_config_netdev - Setup the netdev flags
5583 * @vsi: the VSI being configured
5584 *
5585 * Returns 0 on success, negative value on failure
5586 **/
5587 static int i40e_config_netdev(struct i40e_vsi *vsi)
5588 {
5589 struct i40e_pf *pf = vsi->back;
5590 struct i40e_hw *hw = &pf->hw;
5591 struct i40e_netdev_priv *np;
5592 struct net_device *netdev;
5593 u8 mac_addr[ETH_ALEN];
5594 int etherdev_size;
5595
5596 etherdev_size = sizeof(struct i40e_netdev_priv);
5597 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs);
5598 if (!netdev)
5599 return -ENOMEM;
5600
5601 vsi->netdev = netdev;
5602 np = netdev_priv(netdev);
5603 np->vsi = vsi;
5604
5605 netdev->hw_enc_features = NETIF_F_IP_CSUM |
5606 NETIF_F_GSO_UDP_TUNNEL |
5607 NETIF_F_TSO |
5608 NETIF_F_SG;
5609
5610 netdev->features = NETIF_F_SG |
5611 NETIF_F_IP_CSUM |
5612 NETIF_F_SCTP_CSUM |
5613 NETIF_F_HIGHDMA |
5614 NETIF_F_GSO_UDP_TUNNEL |
5615 NETIF_F_HW_VLAN_CTAG_TX |
5616 NETIF_F_HW_VLAN_CTAG_RX |
5617 NETIF_F_HW_VLAN_CTAG_FILTER |
5618 NETIF_F_IPV6_CSUM |
5619 NETIF_F_TSO |
5620 NETIF_F_TSO6 |
5621 NETIF_F_RXCSUM |
5622 NETIF_F_RXHASH |
5623 0;
5624
5625 /* copy netdev features into list of user selectable features */
5626 netdev->hw_features |= netdev->features;
5627
5628 if (vsi->type == I40E_VSI_MAIN) {
5629 SET_NETDEV_DEV(netdev, &pf->pdev->dev);
5630 memcpy(mac_addr, hw->mac.perm_addr, ETH_ALEN);
5631 } else {
5632 /* relate the VSI_VMDQ name to the VSI_MAIN name */
5633 snprintf(netdev->name, IFNAMSIZ, "%sv%%d",
5634 pf->vsi[pf->lan_vsi]->netdev->name);
5635 random_ether_addr(mac_addr);
5636 i40e_add_filter(vsi, mac_addr, I40E_VLAN_ANY, false, false);
5637 }
5638
5639 memcpy(netdev->dev_addr, mac_addr, ETH_ALEN);
5640 memcpy(netdev->perm_addr, mac_addr, ETH_ALEN);
5641 /* vlan gets same features (except vlan offload)
5642 * after any tweaks for specific VSI types
5643 */
5644 netdev->vlan_features = netdev->features & ~(NETIF_F_HW_VLAN_CTAG_TX |
5645 NETIF_F_HW_VLAN_CTAG_RX |
5646 NETIF_F_HW_VLAN_CTAG_FILTER);
5647 netdev->priv_flags |= IFF_UNICAST_FLT;
5648 netdev->priv_flags |= IFF_SUPP_NOFCS;
5649 /* Setup netdev TC information */
5650 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc);
5651
5652 netdev->netdev_ops = &i40e_netdev_ops;
5653 netdev->watchdog_timeo = 5 * HZ;
5654 i40e_set_ethtool_ops(netdev);
5655
5656 return 0;
5657 }
5658
5659 /**
5660 * i40e_vsi_delete - Delete a VSI from the switch
5661 * @vsi: the VSI being removed
5662 *
5663 * Returns 0 on success, negative value on failure
5664 **/
5665 static void i40e_vsi_delete(struct i40e_vsi *vsi)
5666 {
5667 /* remove default VSI is not allowed */
5668 if (vsi == vsi->back->vsi[vsi->back->lan_vsi])
5669 return;
5670
5671 /* there is no HW VSI for FDIR */
5672 if (vsi->type == I40E_VSI_FDIR)
5673 return;
5674
5675 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL);
5676 return;
5677 }
5678
5679 /**
5680 * i40e_add_vsi - Add a VSI to the switch
5681 * @vsi: the VSI being configured
5682 *
5683 * This initializes a VSI context depending on the VSI type to be added and
5684 * passes it down to the add_vsi aq command.
5685 **/
5686 static int i40e_add_vsi(struct i40e_vsi *vsi)
5687 {
5688 int ret = -ENODEV;
5689 struct i40e_mac_filter *f, *ftmp;
5690 struct i40e_pf *pf = vsi->back;
5691 struct i40e_hw *hw = &pf->hw;
5692 struct i40e_vsi_context ctxt;
5693 u8 enabled_tc = 0x1; /* TC0 enabled */
5694 int f_count = 0;
5695
5696 memset(&ctxt, 0, sizeof(ctxt));
5697 switch (vsi->type) {
5698 case I40E_VSI_MAIN:
5699 /* The PF's main VSI is already setup as part of the
5700 * device initialization, so we'll not bother with
5701 * the add_vsi call, but we will retrieve the current
5702 * VSI context.
5703 */
5704 ctxt.seid = pf->main_vsi_seid;
5705 ctxt.pf_num = pf->hw.pf_id;
5706 ctxt.vf_num = 0;
5707 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
5708 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
5709 if (ret) {
5710 dev_info(&pf->pdev->dev,
5711 "couldn't get pf vsi config, err %d, aq_err %d\n",
5712 ret, pf->hw.aq.asq_last_status);
5713 return -ENOENT;
5714 }
5715 memcpy(&vsi->info, &ctxt.info, sizeof(ctxt.info));
5716 vsi->info.valid_sections = 0;
5717
5718 vsi->seid = ctxt.seid;
5719 vsi->id = ctxt.vsi_number;
5720
5721 enabled_tc = i40e_pf_get_tc_map(pf);
5722
5723 /* MFP mode setup queue map and update VSI */
5724 if (pf->flags & I40E_FLAG_MFP_ENABLED) {
5725 memset(&ctxt, 0, sizeof(ctxt));
5726 ctxt.seid = pf->main_vsi_seid;
5727 ctxt.pf_num = pf->hw.pf_id;
5728 ctxt.vf_num = 0;
5729 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false);
5730 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
5731 if (ret) {
5732 dev_info(&pf->pdev->dev,
5733 "update vsi failed, aq_err=%d\n",
5734 pf->hw.aq.asq_last_status);
5735 ret = -ENOENT;
5736 goto err;
5737 }
5738 /* update the local VSI info queue map */
5739 i40e_vsi_update_queue_map(vsi, &ctxt);
5740 vsi->info.valid_sections = 0;
5741 } else {
5742 /* Default/Main VSI is only enabled for TC0
5743 * reconfigure it to enable all TCs that are
5744 * available on the port in SFP mode.
5745 */
5746 ret = i40e_vsi_config_tc(vsi, enabled_tc);
5747 if (ret) {
5748 dev_info(&pf->pdev->dev,
5749 "failed to configure TCs for main VSI tc_map 0x%08x, err %d, aq_err %d\n",
5750 enabled_tc, ret,
5751 pf->hw.aq.asq_last_status);
5752 ret = -ENOENT;
5753 }
5754 }
5755 break;
5756
5757 case I40E_VSI_FDIR:
5758 /* no queue mapping or actual HW VSI needed */
5759 vsi->info.valid_sections = 0;
5760 vsi->seid = 0;
5761 vsi->id = 0;
5762 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
5763 return 0;
5764 break;
5765
5766 case I40E_VSI_VMDQ2:
5767 ctxt.pf_num = hw->pf_id;
5768 ctxt.vf_num = 0;
5769 ctxt.uplink_seid = vsi->uplink_seid;
5770 ctxt.connection_type = 0x1; /* regular data port */
5771 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2;
5772
5773 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
5774
5775 /* This VSI is connected to VEB so the switch_id
5776 * should be set to zero by default.
5777 */
5778 ctxt.info.switch_id = 0;
5779 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB);
5780 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
5781
5782 /* Setup the VSI tx/rx queue map for TC0 only for now */
5783 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
5784 break;
5785
5786 case I40E_VSI_SRIOV:
5787 ctxt.pf_num = hw->pf_id;
5788 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
5789 ctxt.uplink_seid = vsi->uplink_seid;
5790 ctxt.connection_type = 0x1; /* regular data port */
5791 ctxt.flags = I40E_AQ_VSI_TYPE_VF;
5792
5793 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
5794
5795 /* This VSI is connected to VEB so the switch_id
5796 * should be set to zero by default.
5797 */
5798 ctxt.info.switch_id = cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
5799
5800 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
5801 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL;
5802 /* Setup the VSI tx/rx queue map for TC0 only for now */
5803 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
5804 break;
5805
5806 default:
5807 return -ENODEV;
5808 }
5809
5810 if (vsi->type != I40E_VSI_MAIN) {
5811 ret = i40e_aq_add_vsi(hw, &ctxt, NULL);
5812 if (ret) {
5813 dev_info(&vsi->back->pdev->dev,
5814 "add vsi failed, aq_err=%d\n",
5815 vsi->back->hw.aq.asq_last_status);
5816 ret = -ENOENT;
5817 goto err;
5818 }
5819 memcpy(&vsi->info, &ctxt.info, sizeof(ctxt.info));
5820 vsi->info.valid_sections = 0;
5821 vsi->seid = ctxt.seid;
5822 vsi->id = ctxt.vsi_number;
5823 }
5824
5825 /* If macvlan filters already exist, force them to get loaded */
5826 list_for_each_entry_safe(f, ftmp, &vsi->mac_filter_list, list) {
5827 f->changed = true;
5828 f_count++;
5829 }
5830 if (f_count) {
5831 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
5832 pf->flags |= I40E_FLAG_FILTER_SYNC;
5833 }
5834
5835 /* Update VSI BW information */
5836 ret = i40e_vsi_get_bw_info(vsi);
5837 if (ret) {
5838 dev_info(&pf->pdev->dev,
5839 "couldn't get vsi bw info, err %d, aq_err %d\n",
5840 ret, pf->hw.aq.asq_last_status);
5841 /* VSI is already added so not tearing that up */
5842 ret = 0;
5843 }
5844
5845 err:
5846 return ret;
5847 }
5848
5849 /**
5850 * i40e_vsi_release - Delete a VSI and free its resources
5851 * @vsi: the VSI being removed
5852 *
5853 * Returns 0 on success or < 0 on error
5854 **/
5855 int i40e_vsi_release(struct i40e_vsi *vsi)
5856 {
5857 struct i40e_mac_filter *f, *ftmp;
5858 struct i40e_veb *veb = NULL;
5859 struct i40e_pf *pf;
5860 u16 uplink_seid;
5861 int i, n;
5862
5863 pf = vsi->back;
5864
5865 /* release of a VEB-owner or last VSI is not allowed */
5866 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) {
5867 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n",
5868 vsi->seid, vsi->uplink_seid);
5869 return -ENODEV;
5870 }
5871 if (vsi == pf->vsi[pf->lan_vsi] &&
5872 !test_bit(__I40E_DOWN, &pf->state)) {
5873 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n");
5874 return -ENODEV;
5875 }
5876
5877 uplink_seid = vsi->uplink_seid;
5878 if (vsi->type != I40E_VSI_SRIOV) {
5879 if (vsi->netdev_registered) {
5880 vsi->netdev_registered = false;
5881 if (vsi->netdev) {
5882 /* results in a call to i40e_close() */
5883 unregister_netdev(vsi->netdev);
5884 free_netdev(vsi->netdev);
5885 vsi->netdev = NULL;
5886 }
5887 } else {
5888 if (!test_and_set_bit(__I40E_DOWN, &vsi->state))
5889 i40e_down(vsi);
5890 i40e_vsi_free_irq(vsi);
5891 i40e_vsi_free_tx_resources(vsi);
5892 i40e_vsi_free_rx_resources(vsi);
5893 }
5894 i40e_vsi_disable_irq(vsi);
5895 }
5896
5897 list_for_each_entry_safe(f, ftmp, &vsi->mac_filter_list, list)
5898 i40e_del_filter(vsi, f->macaddr, f->vlan,
5899 f->is_vf, f->is_netdev);
5900 i40e_sync_vsi_filters(vsi);
5901
5902 i40e_vsi_delete(vsi);
5903 i40e_vsi_free_q_vectors(vsi);
5904 i40e_vsi_clear_rings(vsi);
5905 i40e_vsi_clear(vsi);
5906
5907 /* If this was the last thing on the VEB, except for the
5908 * controlling VSI, remove the VEB, which puts the controlling
5909 * VSI onto the next level down in the switch.
5910 *
5911 * Well, okay, there's one more exception here: don't remove
5912 * the orphan VEBs yet. We'll wait for an explicit remove request
5913 * from up the network stack.
5914 */
5915 for (n = 0, i = 0; i < pf->hw.func_caps.num_vsis; i++) {
5916 if (pf->vsi[i] &&
5917 pf->vsi[i]->uplink_seid == uplink_seid &&
5918 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) {
5919 n++; /* count the VSIs */
5920 }
5921 }
5922 for (i = 0; i < I40E_MAX_VEB; i++) {
5923 if (!pf->veb[i])
5924 continue;
5925 if (pf->veb[i]->uplink_seid == uplink_seid)
5926 n++; /* count the VEBs */
5927 if (pf->veb[i]->seid == uplink_seid)
5928 veb = pf->veb[i];
5929 }
5930 if (n == 0 && veb && veb->uplink_seid != 0)
5931 i40e_veb_release(veb);
5932
5933 return 0;
5934 }
5935
5936 /**
5937 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI
5938 * @vsi: ptr to the VSI
5939 *
5940 * This should only be called after i40e_vsi_mem_alloc() which allocates the
5941 * corresponding SW VSI structure and initializes num_queue_pairs for the
5942 * newly allocated VSI.
5943 *
5944 * Returns 0 on success or negative on failure
5945 **/
5946 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi)
5947 {
5948 int ret = -ENOENT;
5949 struct i40e_pf *pf = vsi->back;
5950
5951 if (vsi->q_vectors) {
5952 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
5953 vsi->seid);
5954 return -EEXIST;
5955 }
5956
5957 if (vsi->base_vector) {
5958 dev_info(&pf->pdev->dev,
5959 "VSI %d has non-zero base vector %d\n",
5960 vsi->seid, vsi->base_vector);
5961 return -EEXIST;
5962 }
5963
5964 ret = i40e_alloc_q_vectors(vsi);
5965 if (ret) {
5966 dev_info(&pf->pdev->dev,
5967 "failed to allocate %d q_vector for VSI %d, ret=%d\n",
5968 vsi->num_q_vectors, vsi->seid, ret);
5969 vsi->num_q_vectors = 0;
5970 goto vector_setup_out;
5971 }
5972
5973 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile,
5974 vsi->num_q_vectors, vsi->idx);
5975 if (vsi->base_vector < 0) {
5976 dev_info(&pf->pdev->dev,
5977 "failed to get q tracking for VSI %d, err=%d\n",
5978 vsi->seid, vsi->base_vector);
5979 i40e_vsi_free_q_vectors(vsi);
5980 ret = -ENOENT;
5981 goto vector_setup_out;
5982 }
5983
5984 vector_setup_out:
5985 return ret;
5986 }
5987
5988 /**
5989 * i40e_vsi_setup - Set up a VSI by a given type
5990 * @pf: board private structure
5991 * @type: VSI type
5992 * @uplink_seid: the switch element to link to
5993 * @param1: usage depends upon VSI type. For VF types, indicates VF id
5994 *
5995 * This allocates the sw VSI structure and its queue resources, then add a VSI
5996 * to the identified VEB.
5997 *
5998 * Returns pointer to the successfully allocated and configure VSI sw struct on
5999 * success, otherwise returns NULL on failure.
6000 **/
6001 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type,
6002 u16 uplink_seid, u32 param1)
6003 {
6004 struct i40e_vsi *vsi = NULL;
6005 struct i40e_veb *veb = NULL;
6006 int ret, i;
6007 int v_idx;
6008
6009 /* The requested uplink_seid must be either
6010 * - the PF's port seid
6011 * no VEB is needed because this is the PF
6012 * or this is a Flow Director special case VSI
6013 * - seid of an existing VEB
6014 * - seid of a VSI that owns an existing VEB
6015 * - seid of a VSI that doesn't own a VEB
6016 * a new VEB is created and the VSI becomes the owner
6017 * - seid of the PF VSI, which is what creates the first VEB
6018 * this is a special case of the previous
6019 *
6020 * Find which uplink_seid we were given and create a new VEB if needed
6021 */
6022 for (i = 0; i < I40E_MAX_VEB; i++) {
6023 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) {
6024 veb = pf->veb[i];
6025 break;
6026 }
6027 }
6028
6029 if (!veb && uplink_seid != pf->mac_seid) {
6030
6031 for (i = 0; i < pf->hw.func_caps.num_vsis; i++) {
6032 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) {
6033 vsi = pf->vsi[i];
6034 break;
6035 }
6036 }
6037 if (!vsi) {
6038 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n",
6039 uplink_seid);
6040 return NULL;
6041 }
6042
6043 if (vsi->uplink_seid == pf->mac_seid)
6044 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid,
6045 vsi->tc_config.enabled_tc);
6046 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0)
6047 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid,
6048 vsi->tc_config.enabled_tc);
6049
6050 for (i = 0; i < I40E_MAX_VEB && !veb; i++) {
6051 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid)
6052 veb = pf->veb[i];
6053 }
6054 if (!veb) {
6055 dev_info(&pf->pdev->dev, "couldn't add VEB\n");
6056 return NULL;
6057 }
6058
6059 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER;
6060 uplink_seid = veb->seid;
6061 }
6062
6063 /* get vsi sw struct */
6064 v_idx = i40e_vsi_mem_alloc(pf, type);
6065 if (v_idx < 0)
6066 goto err_alloc;
6067 vsi = pf->vsi[v_idx];
6068 vsi->type = type;
6069 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB);
6070
6071 if (type == I40E_VSI_MAIN)
6072 pf->lan_vsi = v_idx;
6073 else if (type == I40E_VSI_SRIOV)
6074 vsi->vf_id = param1;
6075 /* assign it some queues */
6076 ret = i40e_get_lump(pf, pf->qp_pile, vsi->alloc_queue_pairs, vsi->idx);
6077 if (ret < 0) {
6078 dev_info(&pf->pdev->dev, "VSI %d get_lump failed %d\n",
6079 vsi->seid, ret);
6080 goto err_vsi;
6081 }
6082 vsi->base_queue = ret;
6083
6084 /* get a VSI from the hardware */
6085 vsi->uplink_seid = uplink_seid;
6086 ret = i40e_add_vsi(vsi);
6087 if (ret)
6088 goto err_vsi;
6089
6090 switch (vsi->type) {
6091 /* setup the netdev if needed */
6092 case I40E_VSI_MAIN:
6093 case I40E_VSI_VMDQ2:
6094 ret = i40e_config_netdev(vsi);
6095 if (ret)
6096 goto err_netdev;
6097 ret = register_netdev(vsi->netdev);
6098 if (ret)
6099 goto err_netdev;
6100 vsi->netdev_registered = true;
6101 netif_carrier_off(vsi->netdev);
6102 /* fall through */
6103
6104 case I40E_VSI_FDIR:
6105 /* set up vectors and rings if needed */
6106 ret = i40e_vsi_setup_vectors(vsi);
6107 if (ret)
6108 goto err_msix;
6109
6110 ret = i40e_alloc_rings(vsi);
6111 if (ret)
6112 goto err_rings;
6113
6114 /* map all of the rings to the q_vectors */
6115 i40e_vsi_map_rings_to_vectors(vsi);
6116
6117 i40e_vsi_reset_stats(vsi);
6118 break;
6119
6120 default:
6121 /* no netdev or rings for the other VSI types */
6122 break;
6123 }
6124
6125 return vsi;
6126
6127 err_rings:
6128 i40e_vsi_free_q_vectors(vsi);
6129 err_msix:
6130 if (vsi->netdev_registered) {
6131 vsi->netdev_registered = false;
6132 unregister_netdev(vsi->netdev);
6133 free_netdev(vsi->netdev);
6134 vsi->netdev = NULL;
6135 }
6136 err_netdev:
6137 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL);
6138 err_vsi:
6139 i40e_vsi_clear(vsi);
6140 err_alloc:
6141 return NULL;
6142 }
6143
6144 /**
6145 * i40e_veb_get_bw_info - Query VEB BW information
6146 * @veb: the veb to query
6147 *
6148 * Query the Tx scheduler BW configuration data for given VEB
6149 **/
6150 static int i40e_veb_get_bw_info(struct i40e_veb *veb)
6151 {
6152 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data;
6153 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data;
6154 struct i40e_pf *pf = veb->pf;
6155 struct i40e_hw *hw = &pf->hw;
6156 u32 tc_bw_max;
6157 int ret = 0;
6158 int i;
6159
6160 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid,
6161 &bw_data, NULL);
6162 if (ret) {
6163 dev_info(&pf->pdev->dev,
6164 "query veb bw config failed, aq_err=%d\n",
6165 hw->aq.asq_last_status);
6166 goto out;
6167 }
6168
6169 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid,
6170 &ets_data, NULL);
6171 if (ret) {
6172 dev_info(&pf->pdev->dev,
6173 "query veb bw ets config failed, aq_err=%d\n",
6174 hw->aq.asq_last_status);
6175 goto out;
6176 }
6177
6178 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit);
6179 veb->bw_max_quanta = ets_data.tc_bw_max;
6180 veb->is_abs_credits = bw_data.absolute_credits_enable;
6181 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) |
6182 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16);
6183 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
6184 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i];
6185 veb->bw_tc_limit_credits[i] =
6186 le16_to_cpu(bw_data.tc_bw_limits[i]);
6187 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7);
6188 }
6189
6190 out:
6191 return ret;
6192 }
6193
6194 /**
6195 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF
6196 * @pf: board private structure
6197 *
6198 * On error: returns error code (negative)
6199 * On success: returns vsi index in PF (positive)
6200 **/
6201 static int i40e_veb_mem_alloc(struct i40e_pf *pf)
6202 {
6203 int ret = -ENOENT;
6204 struct i40e_veb *veb;
6205 int i;
6206
6207 /* Need to protect the allocation of switch elements at the PF level */
6208 mutex_lock(&pf->switch_mutex);
6209
6210 /* VEB list may be fragmented if VEB creation/destruction has
6211 * been happening. We can afford to do a quick scan to look
6212 * for any free slots in the list.
6213 *
6214 * find next empty veb slot, looping back around if necessary
6215 */
6216 i = 0;
6217 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL))
6218 i++;
6219 if (i >= I40E_MAX_VEB) {
6220 ret = -ENOMEM;
6221 goto err_alloc_veb; /* out of VEB slots! */
6222 }
6223
6224 veb = kzalloc(sizeof(*veb), GFP_KERNEL);
6225 if (!veb) {
6226 ret = -ENOMEM;
6227 goto err_alloc_veb;
6228 }
6229 veb->pf = pf;
6230 veb->idx = i;
6231 veb->enabled_tc = 1;
6232
6233 pf->veb[i] = veb;
6234 ret = i;
6235 err_alloc_veb:
6236 mutex_unlock(&pf->switch_mutex);
6237 return ret;
6238 }
6239
6240 /**
6241 * i40e_switch_branch_release - Delete a branch of the switch tree
6242 * @branch: where to start deleting
6243 *
6244 * This uses recursion to find the tips of the branch to be
6245 * removed, deleting until we get back to and can delete this VEB.
6246 **/
6247 static void i40e_switch_branch_release(struct i40e_veb *branch)
6248 {
6249 struct i40e_pf *pf = branch->pf;
6250 u16 branch_seid = branch->seid;
6251 u16 veb_idx = branch->idx;
6252 int i;
6253
6254 /* release any VEBs on this VEB - RECURSION */
6255 for (i = 0; i < I40E_MAX_VEB; i++) {
6256 if (!pf->veb[i])
6257 continue;
6258 if (pf->veb[i]->uplink_seid == branch->seid)
6259 i40e_switch_branch_release(pf->veb[i]);
6260 }
6261
6262 /* Release the VSIs on this VEB, but not the owner VSI.
6263 *
6264 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing
6265 * the VEB itself, so don't use (*branch) after this loop.
6266 */
6267 for (i = 0; i < pf->hw.func_caps.num_vsis; i++) {
6268 if (!pf->vsi[i])
6269 continue;
6270 if (pf->vsi[i]->uplink_seid == branch_seid &&
6271 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) {
6272 i40e_vsi_release(pf->vsi[i]);
6273 }
6274 }
6275
6276 /* There's one corner case where the VEB might not have been
6277 * removed, so double check it here and remove it if needed.
6278 * This case happens if the veb was created from the debugfs
6279 * commands and no VSIs were added to it.
6280 */
6281 if (pf->veb[veb_idx])
6282 i40e_veb_release(pf->veb[veb_idx]);
6283 }
6284
6285 /**
6286 * i40e_veb_clear - remove veb struct
6287 * @veb: the veb to remove
6288 **/
6289 static void i40e_veb_clear(struct i40e_veb *veb)
6290 {
6291 if (!veb)
6292 return;
6293
6294 if (veb->pf) {
6295 struct i40e_pf *pf = veb->pf;
6296
6297 mutex_lock(&pf->switch_mutex);
6298 if (pf->veb[veb->idx] == veb)
6299 pf->veb[veb->idx] = NULL;
6300 mutex_unlock(&pf->switch_mutex);
6301 }
6302
6303 kfree(veb);
6304 }
6305
6306 /**
6307 * i40e_veb_release - Delete a VEB and free its resources
6308 * @veb: the VEB being removed
6309 **/
6310 void i40e_veb_release(struct i40e_veb *veb)
6311 {
6312 struct i40e_vsi *vsi = NULL;
6313 struct i40e_pf *pf;
6314 int i, n = 0;
6315
6316 pf = veb->pf;
6317
6318 /* find the remaining VSI and check for extras */
6319 for (i = 0; i < pf->hw.func_caps.num_vsis; i++) {
6320 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) {
6321 n++;
6322 vsi = pf->vsi[i];
6323 }
6324 }
6325 if (n != 1) {
6326 dev_info(&pf->pdev->dev,
6327 "can't remove VEB %d with %d VSIs left\n",
6328 veb->seid, n);
6329 return;
6330 }
6331
6332 /* move the remaining VSI to uplink veb */
6333 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER;
6334 if (veb->uplink_seid) {
6335 vsi->uplink_seid = veb->uplink_seid;
6336 if (veb->uplink_seid == pf->mac_seid)
6337 vsi->veb_idx = I40E_NO_VEB;
6338 else
6339 vsi->veb_idx = veb->veb_idx;
6340 } else {
6341 /* floating VEB */
6342 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid;
6343 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx;
6344 }
6345
6346 i40e_aq_delete_element(&pf->hw, veb->seid, NULL);
6347 i40e_veb_clear(veb);
6348
6349 return;
6350 }
6351
6352 /**
6353 * i40e_add_veb - create the VEB in the switch
6354 * @veb: the VEB to be instantiated
6355 * @vsi: the controlling VSI
6356 **/
6357 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi)
6358 {
6359 bool is_default = (vsi->idx == vsi->back->lan_vsi);
6360 int ret;
6361
6362 /* get a VEB from the hardware */
6363 ret = i40e_aq_add_veb(&veb->pf->hw, veb->uplink_seid, vsi->seid,
6364 veb->enabled_tc, is_default, &veb->seid, NULL);
6365 if (ret) {
6366 dev_info(&veb->pf->pdev->dev,
6367 "couldn't add VEB, err %d, aq_err %d\n",
6368 ret, veb->pf->hw.aq.asq_last_status);
6369 return -EPERM;
6370 }
6371
6372 /* get statistics counter */
6373 ret = i40e_aq_get_veb_parameters(&veb->pf->hw, veb->seid, NULL, NULL,
6374 &veb->stats_idx, NULL, NULL, NULL);
6375 if (ret) {
6376 dev_info(&veb->pf->pdev->dev,
6377 "couldn't get VEB statistics idx, err %d, aq_err %d\n",
6378 ret, veb->pf->hw.aq.asq_last_status);
6379 return -EPERM;
6380 }
6381 ret = i40e_veb_get_bw_info(veb);
6382 if (ret) {
6383 dev_info(&veb->pf->pdev->dev,
6384 "couldn't get VEB bw info, err %d, aq_err %d\n",
6385 ret, veb->pf->hw.aq.asq_last_status);
6386 i40e_aq_delete_element(&veb->pf->hw, veb->seid, NULL);
6387 return -ENOENT;
6388 }
6389
6390 vsi->uplink_seid = veb->seid;
6391 vsi->veb_idx = veb->idx;
6392 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER;
6393
6394 return 0;
6395 }
6396
6397 /**
6398 * i40e_veb_setup - Set up a VEB
6399 * @pf: board private structure
6400 * @flags: VEB setup flags
6401 * @uplink_seid: the switch element to link to
6402 * @vsi_seid: the initial VSI seid
6403 * @enabled_tc: Enabled TC bit-map
6404 *
6405 * This allocates the sw VEB structure and links it into the switch
6406 * It is possible and legal for this to be a duplicate of an already
6407 * existing VEB. It is also possible for both uplink and vsi seids
6408 * to be zero, in order to create a floating VEB.
6409 *
6410 * Returns pointer to the successfully allocated VEB sw struct on
6411 * success, otherwise returns NULL on failure.
6412 **/
6413 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags,
6414 u16 uplink_seid, u16 vsi_seid,
6415 u8 enabled_tc)
6416 {
6417 struct i40e_veb *veb, *uplink_veb = NULL;
6418 int vsi_idx, veb_idx;
6419 int ret;
6420
6421 /* if one seid is 0, the other must be 0 to create a floating relay */
6422 if ((uplink_seid == 0 || vsi_seid == 0) &&
6423 (uplink_seid + vsi_seid != 0)) {
6424 dev_info(&pf->pdev->dev,
6425 "one, not both seid's are 0: uplink=%d vsi=%d\n",
6426 uplink_seid, vsi_seid);
6427 return NULL;
6428 }
6429
6430 /* make sure there is such a vsi and uplink */
6431 for (vsi_idx = 0; vsi_idx < pf->hw.func_caps.num_vsis; vsi_idx++)
6432 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid)
6433 break;
6434 if (vsi_idx >= pf->hw.func_caps.num_vsis && vsi_seid != 0) {
6435 dev_info(&pf->pdev->dev, "vsi seid %d not found\n",
6436 vsi_seid);
6437 return NULL;
6438 }
6439
6440 if (uplink_seid && uplink_seid != pf->mac_seid) {
6441 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) {
6442 if (pf->veb[veb_idx] &&
6443 pf->veb[veb_idx]->seid == uplink_seid) {
6444 uplink_veb = pf->veb[veb_idx];
6445 break;
6446 }
6447 }
6448 if (!uplink_veb) {
6449 dev_info(&pf->pdev->dev,
6450 "uplink seid %d not found\n", uplink_seid);
6451 return NULL;
6452 }
6453 }
6454
6455 /* get veb sw struct */
6456 veb_idx = i40e_veb_mem_alloc(pf);
6457 if (veb_idx < 0)
6458 goto err_alloc;
6459 veb = pf->veb[veb_idx];
6460 veb->flags = flags;
6461 veb->uplink_seid = uplink_seid;
6462 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB);
6463 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1);
6464
6465 /* create the VEB in the switch */
6466 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]);
6467 if (ret)
6468 goto err_veb;
6469
6470 return veb;
6471
6472 err_veb:
6473 i40e_veb_clear(veb);
6474 err_alloc:
6475 return NULL;
6476 }
6477
6478 /**
6479 * i40e_setup_pf_switch_element - set pf vars based on switch type
6480 * @pf: board private structure
6481 * @ele: element we are building info from
6482 * @num_reported: total number of elements
6483 * @printconfig: should we print the contents
6484 *
6485 * helper function to assist in extracting a few useful SEID values.
6486 **/
6487 static void i40e_setup_pf_switch_element(struct i40e_pf *pf,
6488 struct i40e_aqc_switch_config_element_resp *ele,
6489 u16 num_reported, bool printconfig)
6490 {
6491 u16 downlink_seid = le16_to_cpu(ele->downlink_seid);
6492 u16 uplink_seid = le16_to_cpu(ele->uplink_seid);
6493 u8 element_type = ele->element_type;
6494 u16 seid = le16_to_cpu(ele->seid);
6495
6496 if (printconfig)
6497 dev_info(&pf->pdev->dev,
6498 "type=%d seid=%d uplink=%d downlink=%d\n",
6499 element_type, seid, uplink_seid, downlink_seid);
6500
6501 switch (element_type) {
6502 case I40E_SWITCH_ELEMENT_TYPE_MAC:
6503 pf->mac_seid = seid;
6504 break;
6505 case I40E_SWITCH_ELEMENT_TYPE_VEB:
6506 /* Main VEB? */
6507 if (uplink_seid != pf->mac_seid)
6508 break;
6509 if (pf->lan_veb == I40E_NO_VEB) {
6510 int v;
6511
6512 /* find existing or else empty VEB */
6513 for (v = 0; v < I40E_MAX_VEB; v++) {
6514 if (pf->veb[v] && (pf->veb[v]->seid == seid)) {
6515 pf->lan_veb = v;
6516 break;
6517 }
6518 }
6519 if (pf->lan_veb == I40E_NO_VEB) {
6520 v = i40e_veb_mem_alloc(pf);
6521 if (v < 0)
6522 break;
6523 pf->lan_veb = v;
6524 }
6525 }
6526
6527 pf->veb[pf->lan_veb]->seid = seid;
6528 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid;
6529 pf->veb[pf->lan_veb]->pf = pf;
6530 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB;
6531 break;
6532 case I40E_SWITCH_ELEMENT_TYPE_VSI:
6533 if (num_reported != 1)
6534 break;
6535 /* This is immediately after a reset so we can assume this is
6536 * the PF's VSI
6537 */
6538 pf->mac_seid = uplink_seid;
6539 pf->pf_seid = downlink_seid;
6540 pf->main_vsi_seid = seid;
6541 if (printconfig)
6542 dev_info(&pf->pdev->dev,
6543 "pf_seid=%d main_vsi_seid=%d\n",
6544 pf->pf_seid, pf->main_vsi_seid);
6545 break;
6546 case I40E_SWITCH_ELEMENT_TYPE_PF:
6547 case I40E_SWITCH_ELEMENT_TYPE_VF:
6548 case I40E_SWITCH_ELEMENT_TYPE_EMP:
6549 case I40E_SWITCH_ELEMENT_TYPE_BMC:
6550 case I40E_SWITCH_ELEMENT_TYPE_PE:
6551 case I40E_SWITCH_ELEMENT_TYPE_PA:
6552 /* ignore these for now */
6553 break;
6554 default:
6555 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n",
6556 element_type, seid);
6557 break;
6558 }
6559 }
6560
6561 /**
6562 * i40e_fetch_switch_configuration - Get switch config from firmware
6563 * @pf: board private structure
6564 * @printconfig: should we print the contents
6565 *
6566 * Get the current switch configuration from the device and
6567 * extract a few useful SEID values.
6568 **/
6569 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig)
6570 {
6571 struct i40e_aqc_get_switch_config_resp *sw_config;
6572 u16 next_seid = 0;
6573 int ret = 0;
6574 u8 *aq_buf;
6575 int i;
6576
6577 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL);
6578 if (!aq_buf)
6579 return -ENOMEM;
6580
6581 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
6582 do {
6583 u16 num_reported, num_total;
6584
6585 ret = i40e_aq_get_switch_config(&pf->hw, sw_config,
6586 I40E_AQ_LARGE_BUF,
6587 &next_seid, NULL);
6588 if (ret) {
6589 dev_info(&pf->pdev->dev,
6590 "get switch config failed %d aq_err=%x\n",
6591 ret, pf->hw.aq.asq_last_status);
6592 kfree(aq_buf);
6593 return -ENOENT;
6594 }
6595
6596 num_reported = le16_to_cpu(sw_config->header.num_reported);
6597 num_total = le16_to_cpu(sw_config->header.num_total);
6598
6599 if (printconfig)
6600 dev_info(&pf->pdev->dev,
6601 "header: %d reported %d total\n",
6602 num_reported, num_total);
6603
6604 if (num_reported) {
6605 int sz = sizeof(*sw_config) * num_reported;
6606
6607 kfree(pf->sw_config);
6608 pf->sw_config = kzalloc(sz, GFP_KERNEL);
6609 if (pf->sw_config)
6610 memcpy(pf->sw_config, sw_config, sz);
6611 }
6612
6613 for (i = 0; i < num_reported; i++) {
6614 struct i40e_aqc_switch_config_element_resp *ele =
6615 &sw_config->element[i];
6616
6617 i40e_setup_pf_switch_element(pf, ele, num_reported,
6618 printconfig);
6619 }
6620 } while (next_seid != 0);
6621
6622 kfree(aq_buf);
6623 return ret;
6624 }
6625
6626 /**
6627 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset
6628 * @pf: board private structure
6629 *
6630 * Returns 0 on success, negative value on failure
6631 **/
6632 static int i40e_setup_pf_switch(struct i40e_pf *pf)
6633 {
6634 int ret;
6635
6636 /* find out what's out there already */
6637 ret = i40e_fetch_switch_configuration(pf, false);
6638 if (ret) {
6639 dev_info(&pf->pdev->dev,
6640 "couldn't fetch switch config, err %d, aq_err %d\n",
6641 ret, pf->hw.aq.asq_last_status);
6642 return ret;
6643 }
6644 i40e_pf_reset_stats(pf);
6645
6646 /* fdir VSI must happen first to be sure it gets queue 0, but only
6647 * if there is enough room for the fdir VSI
6648 */
6649 if (pf->num_lan_qps > 1)
6650 i40e_fdir_setup(pf);
6651
6652 /* first time setup */
6653 if (pf->lan_vsi == I40E_NO_VSI) {
6654 struct i40e_vsi *vsi = NULL;
6655 u16 uplink_seid;
6656
6657 /* Set up the PF VSI associated with the PF's main VSI
6658 * that is already in the HW switch
6659 */
6660 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb])
6661 uplink_seid = pf->veb[pf->lan_veb]->seid;
6662 else
6663 uplink_seid = pf->mac_seid;
6664
6665 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0);
6666 if (!vsi) {
6667 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n");
6668 i40e_fdir_teardown(pf);
6669 return -EAGAIN;
6670 }
6671 /* accommodate kcompat by copying the main VSI queue count
6672 * into the pf, since this newer code pushes the pf queue
6673 * info down a level into a VSI
6674 */
6675 pf->num_rx_queues = vsi->alloc_queue_pairs;
6676 pf->num_tx_queues = vsi->alloc_queue_pairs;
6677 } else {
6678 /* force a reset of TC and queue layout configurations */
6679 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc;
6680 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0;
6681 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid;
6682 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc);
6683 }
6684 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]);
6685
6686 /* Setup static PF queue filter control settings */
6687 ret = i40e_setup_pf_filter_control(pf);
6688 if (ret) {
6689 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n",
6690 ret);
6691 /* Failure here should not stop continuing other steps */
6692 }
6693
6694 /* enable RSS in the HW, even for only one queue, as the stack can use
6695 * the hash
6696 */
6697 if ((pf->flags & I40E_FLAG_RSS_ENABLED))
6698 i40e_config_rss(pf);
6699
6700 /* fill in link information and enable LSE reporting */
6701 i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
6702 i40e_link_event(pf);
6703
6704 /* Initialize user-specifics link properties */
6705 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info &
6706 I40E_AQ_AN_COMPLETED) ? true : false);
6707 pf->hw.fc.requested_mode = I40E_FC_DEFAULT;
6708 if (pf->hw.phy.link_info.an_info &
6709 (I40E_AQ_LINK_PAUSE_TX | I40E_AQ_LINK_PAUSE_RX))
6710 pf->hw.fc.current_mode = I40E_FC_FULL;
6711 else if (pf->hw.phy.link_info.an_info & I40E_AQ_LINK_PAUSE_TX)
6712 pf->hw.fc.current_mode = I40E_FC_TX_PAUSE;
6713 else if (pf->hw.phy.link_info.an_info & I40E_AQ_LINK_PAUSE_RX)
6714 pf->hw.fc.current_mode = I40E_FC_RX_PAUSE;
6715 else
6716 pf->hw.fc.current_mode = I40E_FC_DEFAULT;
6717
6718 return ret;
6719 }
6720
6721 /**
6722 * i40e_set_rss_size - helper to set rss_size
6723 * @pf: board private structure
6724 * @queues_left: how many queues
6725 */
6726 static u16 i40e_set_rss_size(struct i40e_pf *pf, int queues_left)
6727 {
6728 int num_tc0;
6729
6730 num_tc0 = min_t(int, queues_left, pf->rss_size_max);
6731 num_tc0 = min_t(int, num_tc0, nr_cpus_node(numa_node_id()));
6732 num_tc0 = rounddown_pow_of_two(num_tc0);
6733
6734 return num_tc0;
6735 }
6736
6737 /**
6738 * i40e_determine_queue_usage - Work out queue distribution
6739 * @pf: board private structure
6740 **/
6741 static void i40e_determine_queue_usage(struct i40e_pf *pf)
6742 {
6743 int accum_tc_size;
6744 int queues_left;
6745
6746 pf->num_lan_qps = 0;
6747 pf->num_tc_qps = rounddown_pow_of_two(pf->num_tc_qps);
6748 accum_tc_size = (I40E_MAX_TRAFFIC_CLASS - 1) * pf->num_tc_qps;
6749
6750 /* Find the max queues to be put into basic use. We'll always be
6751 * using TC0, whether or not DCB is running, and TC0 will get the
6752 * big RSS set.
6753 */
6754 queues_left = pf->hw.func_caps.num_tx_qp;
6755
6756 if (!((pf->flags & I40E_FLAG_MSIX_ENABLED) &&
6757 (pf->flags & I40E_FLAG_MQ_ENABLED)) ||
6758 !(pf->flags & (I40E_FLAG_RSS_ENABLED |
6759 I40E_FLAG_FDIR_ENABLED | I40E_FLAG_DCB_ENABLED)) ||
6760 (queues_left == 1)) {
6761
6762 /* one qp for PF, no queues for anything else */
6763 queues_left = 0;
6764 pf->rss_size = pf->num_lan_qps = 1;
6765
6766 /* make sure all the fancies are disabled */
6767 pf->flags &= ~(I40E_FLAG_RSS_ENABLED |
6768 I40E_FLAG_MQ_ENABLED |
6769 I40E_FLAG_FDIR_ENABLED |
6770 I40E_FLAG_FDIR_ATR_ENABLED |
6771 I40E_FLAG_DCB_ENABLED |
6772 I40E_FLAG_SRIOV_ENABLED |
6773 I40E_FLAG_VMDQ_ENABLED);
6774
6775 } else if (pf->flags & I40E_FLAG_RSS_ENABLED &&
6776 !(pf->flags & I40E_FLAG_FDIR_ENABLED) &&
6777 !(pf->flags & I40E_FLAG_DCB_ENABLED)) {
6778
6779 pf->rss_size = i40e_set_rss_size(pf, queues_left);
6780
6781 queues_left -= pf->rss_size;
6782 pf->num_lan_qps = pf->rss_size;
6783
6784 } else if (pf->flags & I40E_FLAG_RSS_ENABLED &&
6785 !(pf->flags & I40E_FLAG_FDIR_ENABLED) &&
6786 (pf->flags & I40E_FLAG_DCB_ENABLED)) {
6787
6788 /* save num_tc_qps queues for TCs 1 thru 7 and the rest
6789 * are set up for RSS in TC0
6790 */
6791 queues_left -= accum_tc_size;
6792
6793 pf->rss_size = i40e_set_rss_size(pf, queues_left);
6794
6795 queues_left -= pf->rss_size;
6796 if (queues_left < 0) {
6797 dev_info(&pf->pdev->dev, "not enough queues for DCB\n");
6798 return;
6799 }
6800
6801 pf->num_lan_qps = pf->rss_size + accum_tc_size;
6802
6803 } else if (pf->flags & I40E_FLAG_RSS_ENABLED &&
6804 (pf->flags & I40E_FLAG_FDIR_ENABLED) &&
6805 !(pf->flags & I40E_FLAG_DCB_ENABLED)) {
6806
6807 queues_left -= 1; /* save 1 queue for FD */
6808
6809 pf->rss_size = i40e_set_rss_size(pf, queues_left);
6810
6811 queues_left -= pf->rss_size;
6812 if (queues_left < 0) {
6813 dev_info(&pf->pdev->dev, "not enough queues for Flow Director\n");
6814 return;
6815 }
6816
6817 pf->num_lan_qps = pf->rss_size;
6818
6819 } else if (pf->flags & I40E_FLAG_RSS_ENABLED &&
6820 (pf->flags & I40E_FLAG_FDIR_ENABLED) &&
6821 (pf->flags & I40E_FLAG_DCB_ENABLED)) {
6822
6823 /* save 1 queue for TCs 1 thru 7,
6824 * 1 queue for flow director,
6825 * and the rest are set up for RSS in TC0
6826 */
6827 queues_left -= 1;
6828 queues_left -= accum_tc_size;
6829
6830 pf->rss_size = i40e_set_rss_size(pf, queues_left);
6831 queues_left -= pf->rss_size;
6832 if (queues_left < 0) {
6833 dev_info(&pf->pdev->dev, "not enough queues for DCB and Flow Director\n");
6834 return;
6835 }
6836
6837 pf->num_lan_qps = pf->rss_size + accum_tc_size;
6838
6839 } else {
6840 dev_info(&pf->pdev->dev,
6841 "Invalid configuration, flags=0x%08llx\n", pf->flags);
6842 return;
6843 }
6844
6845 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) &&
6846 pf->num_vf_qps && pf->num_req_vfs && queues_left) {
6847 pf->num_req_vfs = min_t(int, pf->num_req_vfs, (queues_left /
6848 pf->num_vf_qps));
6849 queues_left -= (pf->num_req_vfs * pf->num_vf_qps);
6850 }
6851
6852 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) &&
6853 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) {
6854 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis,
6855 (queues_left / pf->num_vmdq_qps));
6856 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps);
6857 }
6858
6859 return;
6860 }
6861
6862 /**
6863 * i40e_setup_pf_filter_control - Setup PF static filter control
6864 * @pf: PF to be setup
6865 *
6866 * i40e_setup_pf_filter_control sets up a pf's initial filter control
6867 * settings. If PE/FCoE are enabled then it will also set the per PF
6868 * based filter sizes required for them. It also enables Flow director,
6869 * ethertype and macvlan type filter settings for the pf.
6870 *
6871 * Returns 0 on success, negative on failure
6872 **/
6873 static int i40e_setup_pf_filter_control(struct i40e_pf *pf)
6874 {
6875 struct i40e_filter_control_settings *settings = &pf->filter_settings;
6876
6877 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128;
6878
6879 /* Flow Director is enabled */
6880 if (pf->flags & (I40E_FLAG_FDIR_ENABLED | I40E_FLAG_FDIR_ATR_ENABLED))
6881 settings->enable_fdir = true;
6882
6883 /* Ethtype and MACVLAN filters enabled for PF */
6884 settings->enable_ethtype = true;
6885 settings->enable_macvlan = true;
6886
6887 if (i40e_set_filter_control(&pf->hw, settings))
6888 return -ENOENT;
6889
6890 return 0;
6891 }
6892
6893 /**
6894 * i40e_probe - Device initialization routine
6895 * @pdev: PCI device information struct
6896 * @ent: entry in i40e_pci_tbl
6897 *
6898 * i40e_probe initializes a pf identified by a pci_dev structure.
6899 * The OS initialization, configuring of the pf private structure,
6900 * and a hardware reset occur.
6901 *
6902 * Returns 0 on success, negative on failure
6903 **/
6904 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6905 {
6906 struct i40e_driver_version dv;
6907 struct i40e_pf *pf;
6908 struct i40e_hw *hw;
6909 int err = 0;
6910 u32 len;
6911
6912 err = pci_enable_device_mem(pdev);
6913 if (err)
6914 return err;
6915
6916 /* set up for high or low dma */
6917 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
6918 /* coherent mask for the same size will always succeed if
6919 * dma_set_mask does
6920 */
6921 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6922 } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
6923 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
6924 } else {
6925 dev_err(&pdev->dev, "DMA configuration failed: %d\n", err);
6926 err = -EIO;
6927 goto err_dma;
6928 }
6929
6930 /* set up pci connections */
6931 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
6932 IORESOURCE_MEM), i40e_driver_name);
6933 if (err) {
6934 dev_info(&pdev->dev,
6935 "pci_request_selected_regions failed %d\n", err);
6936 goto err_pci_reg;
6937 }
6938
6939 pci_enable_pcie_error_reporting(pdev);
6940 pci_set_master(pdev);
6941
6942 /* Now that we have a PCI connection, we need to do the
6943 * low level device setup. This is primarily setting up
6944 * the Admin Queue structures and then querying for the
6945 * device's current profile information.
6946 */
6947 pf = kzalloc(sizeof(*pf), GFP_KERNEL);
6948 if (!pf) {
6949 err = -ENOMEM;
6950 goto err_pf_alloc;
6951 }
6952 pf->next_vsi = 0;
6953 pf->pdev = pdev;
6954 set_bit(__I40E_DOWN, &pf->state);
6955
6956 hw = &pf->hw;
6957 hw->back = pf;
6958 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
6959 pci_resource_len(pdev, 0));
6960 if (!hw->hw_addr) {
6961 err = -EIO;
6962 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n",
6963 (unsigned int)pci_resource_start(pdev, 0),
6964 (unsigned int)pci_resource_len(pdev, 0), err);
6965 goto err_ioremap;
6966 }
6967 hw->vendor_id = pdev->vendor;
6968 hw->device_id = pdev->device;
6969 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
6970 hw->subsystem_vendor_id = pdev->subsystem_vendor;
6971 hw->subsystem_device_id = pdev->subsystem_device;
6972 hw->bus.device = PCI_SLOT(pdev->devfn);
6973 hw->bus.func = PCI_FUNC(pdev->devfn);
6974
6975 /* Reset here to make sure all is clean and to define PF 'n' */
6976 err = i40e_pf_reset(hw);
6977 if (err) {
6978 dev_info(&pdev->dev, "Initial pf_reset failed: %d\n", err);
6979 goto err_pf_reset;
6980 }
6981 pf->pfr_count++;
6982
6983 hw->aq.num_arq_entries = I40E_AQ_LEN;
6984 hw->aq.num_asq_entries = I40E_AQ_LEN;
6985 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE;
6986 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE;
6987 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT;
6988 snprintf(pf->misc_int_name, sizeof(pf->misc_int_name) - 1,
6989 "%s-pf%d:misc",
6990 dev_driver_string(&pf->pdev->dev), pf->hw.pf_id);
6991
6992 err = i40e_init_shared_code(hw);
6993 if (err) {
6994 dev_info(&pdev->dev, "init_shared_code failed: %d\n", err);
6995 goto err_pf_reset;
6996 }
6997
6998 err = i40e_init_adminq(hw);
6999 dev_info(&pdev->dev, "%s\n", i40e_fw_version_str(hw));
7000 if (err) {
7001 dev_info(&pdev->dev,
7002 "init_adminq failed: %d expecting API %02x.%02x\n",
7003 err,
7004 I40E_FW_API_VERSION_MAJOR, I40E_FW_API_VERSION_MINOR);
7005 goto err_pf_reset;
7006 }
7007
7008 err = i40e_get_capabilities(pf);
7009 if (err)
7010 goto err_adminq_setup;
7011
7012 err = i40e_sw_init(pf);
7013 if (err) {
7014 dev_info(&pdev->dev, "sw_init failed: %d\n", err);
7015 goto err_sw_init;
7016 }
7017
7018 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
7019 hw->func_caps.num_rx_qp,
7020 pf->fcoe_hmc_cntx_num, pf->fcoe_hmc_filt_num);
7021 if (err) {
7022 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err);
7023 goto err_init_lan_hmc;
7024 }
7025
7026 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
7027 if (err) {
7028 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err);
7029 err = -ENOENT;
7030 goto err_configure_lan_hmc;
7031 }
7032
7033 i40e_get_mac_addr(hw, hw->mac.addr);
7034 if (i40e_validate_mac_addr(hw->mac.addr)) {
7035 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr);
7036 err = -EIO;
7037 goto err_mac_addr;
7038 }
7039 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr);
7040 memcpy(hw->mac.perm_addr, hw->mac.addr, ETH_ALEN);
7041
7042 pci_set_drvdata(pdev, pf);
7043 pci_save_state(pdev);
7044
7045 /* set up periodic task facility */
7046 setup_timer(&pf->service_timer, i40e_service_timer, (unsigned long)pf);
7047 pf->service_timer_period = HZ;
7048
7049 INIT_WORK(&pf->service_task, i40e_service_task);
7050 clear_bit(__I40E_SERVICE_SCHED, &pf->state);
7051 pf->flags |= I40E_FLAG_NEED_LINK_UPDATE;
7052 pf->link_check_timeout = jiffies;
7053
7054 /* set up the main switch operations */
7055 i40e_determine_queue_usage(pf);
7056 i40e_init_interrupt_scheme(pf);
7057
7058 /* Set up the *vsi struct based on the number of VSIs in the HW,
7059 * and set up our local tracking of the MAIN PF vsi.
7060 */
7061 len = sizeof(struct i40e_vsi *) * pf->hw.func_caps.num_vsis;
7062 pf->vsi = kzalloc(len, GFP_KERNEL);
7063 if (!pf->vsi)
7064 goto err_switch_setup;
7065
7066 err = i40e_setup_pf_switch(pf);
7067 if (err) {
7068 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err);
7069 goto err_vsis;
7070 }
7071
7072 /* The main driver is (mostly) up and happy. We need to set this state
7073 * before setting up the misc vector or we get a race and the vector
7074 * ends up disabled forever.
7075 */
7076 clear_bit(__I40E_DOWN, &pf->state);
7077
7078 /* In case of MSIX we are going to setup the misc vector right here
7079 * to handle admin queue events etc. In case of legacy and MSI
7080 * the misc functionality and queue processing is combined in
7081 * the same vector and that gets setup at open.
7082 */
7083 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
7084 err = i40e_setup_misc_vector(pf);
7085 if (err) {
7086 dev_info(&pdev->dev,
7087 "setup of misc vector failed: %d\n", err);
7088 goto err_vsis;
7089 }
7090 }
7091
7092 /* prep for VF support */
7093 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) &&
7094 (pf->flags & I40E_FLAG_MSIX_ENABLED)) {
7095 u32 val;
7096
7097 /* disable link interrupts for VFs */
7098 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM);
7099 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK;
7100 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val);
7101 i40e_flush(hw);
7102 }
7103
7104 i40e_dbg_pf_init(pf);
7105
7106 /* tell the firmware that we're starting */
7107 dv.major_version = DRV_VERSION_MAJOR;
7108 dv.minor_version = DRV_VERSION_MINOR;
7109 dv.build_version = DRV_VERSION_BUILD;
7110 dv.subbuild_version = 0;
7111 i40e_aq_send_driver_version(&pf->hw, &dv, NULL);
7112
7113 /* since everything's happy, start the service_task timer */
7114 mod_timer(&pf->service_timer,
7115 round_jiffies(jiffies + pf->service_timer_period));
7116
7117 return 0;
7118
7119 /* Unwind what we've done if something failed in the setup */
7120 err_vsis:
7121 set_bit(__I40E_DOWN, &pf->state);
7122 err_switch_setup:
7123 i40e_clear_interrupt_scheme(pf);
7124 kfree(pf->vsi);
7125 del_timer_sync(&pf->service_timer);
7126 err_mac_addr:
7127 err_configure_lan_hmc:
7128 (void)i40e_shutdown_lan_hmc(hw);
7129 err_init_lan_hmc:
7130 kfree(pf->qp_pile);
7131 kfree(pf->irq_pile);
7132 err_sw_init:
7133 err_adminq_setup:
7134 (void)i40e_shutdown_adminq(hw);
7135 err_pf_reset:
7136 iounmap(hw->hw_addr);
7137 err_ioremap:
7138 kfree(pf);
7139 err_pf_alloc:
7140 pci_disable_pcie_error_reporting(pdev);
7141 pci_release_selected_regions(pdev,
7142 pci_select_bars(pdev, IORESOURCE_MEM));
7143 err_pci_reg:
7144 err_dma:
7145 pci_disable_device(pdev);
7146 return err;
7147 }
7148
7149 /**
7150 * i40e_remove - Device removal routine
7151 * @pdev: PCI device information struct
7152 *
7153 * i40e_remove is called by the PCI subsystem to alert the driver
7154 * that is should release a PCI device. This could be caused by a
7155 * Hot-Plug event, or because the driver is going to be removed from
7156 * memory.
7157 **/
7158 static void i40e_remove(struct pci_dev *pdev)
7159 {
7160 struct i40e_pf *pf = pci_get_drvdata(pdev);
7161 i40e_status ret_code;
7162 u32 reg;
7163 int i;
7164
7165 i40e_dbg_pf_exit(pf);
7166
7167 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) {
7168 i40e_free_vfs(pf);
7169 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED;
7170 }
7171
7172 /* no more scheduling of any task */
7173 set_bit(__I40E_DOWN, &pf->state);
7174 del_timer_sync(&pf->service_timer);
7175 cancel_work_sync(&pf->service_task);
7176
7177 i40e_fdir_teardown(pf);
7178
7179 /* If there is a switch structure or any orphans, remove them.
7180 * This will leave only the PF's VSI remaining.
7181 */
7182 for (i = 0; i < I40E_MAX_VEB; i++) {
7183 if (!pf->veb[i])
7184 continue;
7185
7186 if (pf->veb[i]->uplink_seid == pf->mac_seid ||
7187 pf->veb[i]->uplink_seid == 0)
7188 i40e_switch_branch_release(pf->veb[i]);
7189 }
7190
7191 /* Now we can shutdown the PF's VSI, just before we kill
7192 * adminq and hmc.
7193 */
7194 if (pf->vsi[pf->lan_vsi])
7195 i40e_vsi_release(pf->vsi[pf->lan_vsi]);
7196
7197 i40e_stop_misc_vector(pf);
7198 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
7199 synchronize_irq(pf->msix_entries[0].vector);
7200 free_irq(pf->msix_entries[0].vector, pf);
7201 }
7202
7203 /* shutdown and destroy the HMC */
7204 ret_code = i40e_shutdown_lan_hmc(&pf->hw);
7205 if (ret_code)
7206 dev_warn(&pdev->dev,
7207 "Failed to destroy the HMC resources: %d\n", ret_code);
7208
7209 /* shutdown the adminq */
7210 i40e_aq_queue_shutdown(&pf->hw, true);
7211 ret_code = i40e_shutdown_adminq(&pf->hw);
7212 if (ret_code)
7213 dev_warn(&pdev->dev,
7214 "Failed to destroy the Admin Queue resources: %d\n",
7215 ret_code);
7216
7217 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */
7218 i40e_clear_interrupt_scheme(pf);
7219 for (i = 0; i < pf->hw.func_caps.num_vsis; i++) {
7220 if (pf->vsi[i]) {
7221 i40e_vsi_clear_rings(pf->vsi[i]);
7222 i40e_vsi_clear(pf->vsi[i]);
7223 pf->vsi[i] = NULL;
7224 }
7225 }
7226
7227 for (i = 0; i < I40E_MAX_VEB; i++) {
7228 kfree(pf->veb[i]);
7229 pf->veb[i] = NULL;
7230 }
7231
7232 kfree(pf->qp_pile);
7233 kfree(pf->irq_pile);
7234 kfree(pf->sw_config);
7235 kfree(pf->vsi);
7236
7237 /* force a PF reset to clean anything leftover */
7238 reg = rd32(&pf->hw, I40E_PFGEN_CTRL);
7239 wr32(&pf->hw, I40E_PFGEN_CTRL, (reg | I40E_PFGEN_CTRL_PFSWR_MASK));
7240 i40e_flush(&pf->hw);
7241
7242 iounmap(pf->hw.hw_addr);
7243 kfree(pf);
7244 pci_release_selected_regions(pdev,
7245 pci_select_bars(pdev, IORESOURCE_MEM));
7246
7247 pci_disable_pcie_error_reporting(pdev);
7248 pci_disable_device(pdev);
7249 }
7250
7251 /**
7252 * i40e_pci_error_detected - warning that something funky happened in PCI land
7253 * @pdev: PCI device information struct
7254 *
7255 * Called to warn that something happened and the error handling steps
7256 * are in progress. Allows the driver to quiesce things, be ready for
7257 * remediation.
7258 **/
7259 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev,
7260 enum pci_channel_state error)
7261 {
7262 struct i40e_pf *pf = pci_get_drvdata(pdev);
7263
7264 dev_info(&pdev->dev, "%s: error %d\n", __func__, error);
7265
7266 /* shutdown all operations */
7267 i40e_pf_quiesce_all_vsi(pf);
7268
7269 /* Request a slot reset */
7270 return PCI_ERS_RESULT_NEED_RESET;
7271 }
7272
7273 /**
7274 * i40e_pci_error_slot_reset - a PCI slot reset just happened
7275 * @pdev: PCI device information struct
7276 *
7277 * Called to find if the driver can work with the device now that
7278 * the pci slot has been reset. If a basic connection seems good
7279 * (registers are readable and have sane content) then return a
7280 * happy little PCI_ERS_RESULT_xxx.
7281 **/
7282 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev)
7283 {
7284 struct i40e_pf *pf = pci_get_drvdata(pdev);
7285 pci_ers_result_t result;
7286 int err;
7287 u32 reg;
7288
7289 dev_info(&pdev->dev, "%s\n", __func__);
7290 if (pci_enable_device_mem(pdev)) {
7291 dev_info(&pdev->dev,
7292 "Cannot re-enable PCI device after reset.\n");
7293 result = PCI_ERS_RESULT_DISCONNECT;
7294 } else {
7295 pci_set_master(pdev);
7296 pci_restore_state(pdev);
7297 pci_save_state(pdev);
7298 pci_wake_from_d3(pdev, false);
7299
7300 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG);
7301 if (reg == 0)
7302 result = PCI_ERS_RESULT_RECOVERED;
7303 else
7304 result = PCI_ERS_RESULT_DISCONNECT;
7305 }
7306
7307 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7308 if (err) {
7309 dev_info(&pdev->dev,
7310 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7311 err);
7312 /* non-fatal, continue */
7313 }
7314
7315 return result;
7316 }
7317
7318 /**
7319 * i40e_pci_error_resume - restart operations after PCI error recovery
7320 * @pdev: PCI device information struct
7321 *
7322 * Called to allow the driver to bring things back up after PCI error
7323 * and/or reset recovery has finished.
7324 **/
7325 static void i40e_pci_error_resume(struct pci_dev *pdev)
7326 {
7327 struct i40e_pf *pf = pci_get_drvdata(pdev);
7328
7329 dev_info(&pdev->dev, "%s\n", __func__);
7330 i40e_handle_reset_warning(pf);
7331 }
7332
7333 static const struct pci_error_handlers i40e_err_handler = {
7334 .error_detected = i40e_pci_error_detected,
7335 .slot_reset = i40e_pci_error_slot_reset,
7336 .resume = i40e_pci_error_resume,
7337 };
7338
7339 static struct pci_driver i40e_driver = {
7340 .name = i40e_driver_name,
7341 .id_table = i40e_pci_tbl,
7342 .probe = i40e_probe,
7343 .remove = i40e_remove,
7344 .err_handler = &i40e_err_handler,
7345 .sriov_configure = i40e_pci_sriov_configure,
7346 };
7347
7348 /**
7349 * i40e_init_module - Driver registration routine
7350 *
7351 * i40e_init_module is the first routine called when the driver is
7352 * loaded. All it does is register with the PCI subsystem.
7353 **/
7354 static int __init i40e_init_module(void)
7355 {
7356 pr_info("%s: %s - version %s\n", i40e_driver_name,
7357 i40e_driver_string, i40e_driver_version_str);
7358 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright);
7359 i40e_dbg_init();
7360 return pci_register_driver(&i40e_driver);
7361 }
7362 module_init(i40e_init_module);
7363
7364 /**
7365 * i40e_exit_module - Driver exit cleanup routine
7366 *
7367 * i40e_exit_module is called just before the driver is removed
7368 * from memory.
7369 **/
7370 static void __exit i40e_exit_module(void)
7371 {
7372 pci_unregister_driver(&i40e_driver);
7373 i40e_dbg_exit();
7374 }
7375 module_exit(i40e_exit_module);
This page took 0.20515 seconds and 5 git commands to generate.