006f0fb4720cf9afde5eff917a62ed56c239f670
[deliverable/linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2014 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33 u32 td_tag)
34 {
35 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
37 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45 * i40e_program_fdir_filter - Program a Flow Director filter
46 * @fdir_data: Packet data that will be filter parameters
47 * @raw_packet: the pre-allocated packet buffer for FDir
48 * @pf: The PF pointer
49 * @add: True for add/update, False for remove
50 **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52 struct i40e_pf *pf, bool add)
53 {
54 struct i40e_filter_program_desc *fdir_desc;
55 struct i40e_tx_buffer *tx_buf, *first;
56 struct i40e_tx_desc *tx_desc;
57 struct i40e_ring *tx_ring;
58 unsigned int fpt, dcc;
59 struct i40e_vsi *vsi;
60 struct device *dev;
61 dma_addr_t dma;
62 u32 td_cmd = 0;
63 u16 delay = 0;
64 u16 i;
65
66 /* find existing FDIR VSI */
67 vsi = NULL;
68 for (i = 0; i < pf->num_alloc_vsi; i++)
69 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70 vsi = pf->vsi[i];
71 if (!vsi)
72 return -ENOENT;
73
74 tx_ring = vsi->tx_rings[0];
75 dev = tx_ring->dev;
76
77 /* we need two descriptors to add/del a filter and we can wait */
78 do {
79 if (I40E_DESC_UNUSED(tx_ring) > 1)
80 break;
81 msleep_interruptible(1);
82 delay++;
83 } while (delay < I40E_FD_CLEAN_DELAY);
84
85 if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86 return -EAGAIN;
87
88 dma = dma_map_single(dev, raw_packet,
89 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90 if (dma_mapping_error(dev, dma))
91 goto dma_fail;
92
93 /* grab the next descriptor */
94 i = tx_ring->next_to_use;
95 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96 first = &tx_ring->tx_bi[i];
97 memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101 fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102 I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104 fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105 I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107 fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108 I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110 /* Use LAN VSI Id if not programmed by user */
111 if (fdir_data->dest_vsi == 0)
112 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114 else
115 fpt |= ((u32)fdir_data->dest_vsi <<
116 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117 I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119 dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121 if (add)
122 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124 else
125 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128 dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129 I40E_TXD_FLTR_QW1_DEST_MASK;
130
131 dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132 I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134 if (fdir_data->cnt_index != 0) {
135 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136 dcc |= ((u32)fdir_data->cnt_index <<
137 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139 }
140
141 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142 fdir_desc->rsvd = cpu_to_le32(0);
143 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144 fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146 /* Now program a dummy descriptor */
147 i = tx_ring->next_to_use;
148 tx_desc = I40E_TX_DESC(tx_ring, i);
149 tx_buf = &tx_ring->tx_bi[i];
150
151 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155 /* record length, and DMA address */
156 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157 dma_unmap_addr_set(tx_buf, dma, dma);
158
159 tx_desc->buffer_addr = cpu_to_le64(dma);
160 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163 tx_buf->raw_buf = (void *)raw_packet;
164
165 tx_desc->cmd_type_offset_bsz =
166 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168 /* Force memory writes to complete before letting h/w
169 * know there are new descriptors to fetch.
170 */
171 wmb();
172
173 /* Mark the data descriptor to be watched */
174 first->next_to_watch = tx_desc;
175
176 writel(tx_ring->next_to_use, tx_ring->tail);
177 return 0;
178
179 dma_fail:
180 return -1;
181 }
182
183 #define IP_HEADER_OFFSET 14
184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
185 /**
186 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
187 * @vsi: pointer to the targeted VSI
188 * @fd_data: the flow director data required for the FDir descriptor
189 * @add: true adds a filter, false removes it
190 *
191 * Returns 0 if the filters were successfully added or removed
192 **/
193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
194 struct i40e_fdir_filter *fd_data,
195 bool add)
196 {
197 struct i40e_pf *pf = vsi->back;
198 struct udphdr *udp;
199 struct iphdr *ip;
200 bool err = false;
201 u8 *raw_packet;
202 int ret;
203 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
204 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
205 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
206
207 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
208 if (!raw_packet)
209 return -ENOMEM;
210 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
211
212 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
213 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
214 + sizeof(struct iphdr));
215
216 ip->daddr = fd_data->dst_ip[0];
217 udp->dest = fd_data->dst_port;
218 ip->saddr = fd_data->src_ip[0];
219 udp->source = fd_data->src_port;
220
221 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
222 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
223 if (ret) {
224 dev_info(&pf->pdev->dev,
225 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
226 fd_data->pctype, fd_data->fd_id, ret);
227 err = true;
228 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
229 if (add)
230 dev_info(&pf->pdev->dev,
231 "Filter OK for PCTYPE %d loc = %d\n",
232 fd_data->pctype, fd_data->fd_id);
233 else
234 dev_info(&pf->pdev->dev,
235 "Filter deleted for PCTYPE %d loc = %d\n",
236 fd_data->pctype, fd_data->fd_id);
237 }
238 return err ? -EOPNOTSUPP : 0;
239 }
240
241 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
242 /**
243 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
244 * @vsi: pointer to the targeted VSI
245 * @fd_data: the flow director data required for the FDir descriptor
246 * @add: true adds a filter, false removes it
247 *
248 * Returns 0 if the filters were successfully added or removed
249 **/
250 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
251 struct i40e_fdir_filter *fd_data,
252 bool add)
253 {
254 struct i40e_pf *pf = vsi->back;
255 struct tcphdr *tcp;
256 struct iphdr *ip;
257 bool err = false;
258 u8 *raw_packet;
259 int ret;
260 /* Dummy packet */
261 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
262 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
263 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
264 0x0, 0x72, 0, 0, 0, 0};
265
266 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
267 if (!raw_packet)
268 return -ENOMEM;
269 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
270
271 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
272 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
273 + sizeof(struct iphdr));
274
275 ip->daddr = fd_data->dst_ip[0];
276 tcp->dest = fd_data->dst_port;
277 ip->saddr = fd_data->src_ip[0];
278 tcp->source = fd_data->src_port;
279
280 if (add) {
281 pf->fd_tcp_rule++;
282 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
283 if (I40E_DEBUG_FD & pf->hw.debug_mask)
284 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
285 pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
286 }
287 } else {
288 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
289 (pf->fd_tcp_rule - 1) : 0;
290 if (pf->fd_tcp_rule == 0) {
291 pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
292 if (I40E_DEBUG_FD & pf->hw.debug_mask)
293 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
294 }
295 }
296
297 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
298 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
299
300 if (ret) {
301 dev_info(&pf->pdev->dev,
302 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
303 fd_data->pctype, fd_data->fd_id, ret);
304 err = true;
305 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
306 if (add)
307 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
308 fd_data->pctype, fd_data->fd_id);
309 else
310 dev_info(&pf->pdev->dev,
311 "Filter deleted for PCTYPE %d loc = %d\n",
312 fd_data->pctype, fd_data->fd_id);
313 }
314
315 return err ? -EOPNOTSUPP : 0;
316 }
317
318 /**
319 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
320 * a specific flow spec
321 * @vsi: pointer to the targeted VSI
322 * @fd_data: the flow director data required for the FDir descriptor
323 * @add: true adds a filter, false removes it
324 *
325 * Always returns -EOPNOTSUPP
326 **/
327 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
328 struct i40e_fdir_filter *fd_data,
329 bool add)
330 {
331 return -EOPNOTSUPP;
332 }
333
334 #define I40E_IP_DUMMY_PACKET_LEN 34
335 /**
336 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
337 * a specific flow spec
338 * @vsi: pointer to the targeted VSI
339 * @fd_data: the flow director data required for the FDir descriptor
340 * @add: true adds a filter, false removes it
341 *
342 * Returns 0 if the filters were successfully added or removed
343 **/
344 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
345 struct i40e_fdir_filter *fd_data,
346 bool add)
347 {
348 struct i40e_pf *pf = vsi->back;
349 struct iphdr *ip;
350 bool err = false;
351 u8 *raw_packet;
352 int ret;
353 int i;
354 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
355 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
356 0, 0, 0, 0};
357
358 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
359 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
360 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
361 if (!raw_packet)
362 return -ENOMEM;
363 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
364 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
365
366 ip->saddr = fd_data->src_ip[0];
367 ip->daddr = fd_data->dst_ip[0];
368 ip->protocol = 0;
369
370 fd_data->pctype = i;
371 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
372
373 if (ret) {
374 dev_info(&pf->pdev->dev,
375 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
376 fd_data->pctype, fd_data->fd_id, ret);
377 err = true;
378 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
379 if (add)
380 dev_info(&pf->pdev->dev,
381 "Filter OK for PCTYPE %d loc = %d\n",
382 fd_data->pctype, fd_data->fd_id);
383 else
384 dev_info(&pf->pdev->dev,
385 "Filter deleted for PCTYPE %d loc = %d\n",
386 fd_data->pctype, fd_data->fd_id);
387 }
388 }
389
390 return err ? -EOPNOTSUPP : 0;
391 }
392
393 /**
394 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
395 * @vsi: pointer to the targeted VSI
396 * @cmd: command to get or set RX flow classification rules
397 * @add: true adds a filter, false removes it
398 *
399 **/
400 int i40e_add_del_fdir(struct i40e_vsi *vsi,
401 struct i40e_fdir_filter *input, bool add)
402 {
403 struct i40e_pf *pf = vsi->back;
404 int ret;
405
406 switch (input->flow_type & ~FLOW_EXT) {
407 case TCP_V4_FLOW:
408 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
409 break;
410 case UDP_V4_FLOW:
411 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
412 break;
413 case SCTP_V4_FLOW:
414 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
415 break;
416 case IPV4_FLOW:
417 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
418 break;
419 case IP_USER_FLOW:
420 switch (input->ip4_proto) {
421 case IPPROTO_TCP:
422 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
423 break;
424 case IPPROTO_UDP:
425 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
426 break;
427 case IPPROTO_SCTP:
428 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
429 break;
430 default:
431 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
432 break;
433 }
434 break;
435 default:
436 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
437 input->flow_type);
438 ret = -EINVAL;
439 }
440
441 /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
442 return ret;
443 }
444
445 /**
446 * i40e_fd_handle_status - check the Programming Status for FD
447 * @rx_ring: the Rx ring for this descriptor
448 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
449 * @prog_id: the id originally used for programming
450 *
451 * This is used to verify if the FD programming or invalidation
452 * requested by SW to the HW is successful or not and take actions accordingly.
453 **/
454 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
455 union i40e_rx_desc *rx_desc, u8 prog_id)
456 {
457 struct i40e_pf *pf = rx_ring->vsi->back;
458 struct pci_dev *pdev = pf->pdev;
459 u32 fcnt_prog, fcnt_avail;
460 u32 error;
461 u64 qw;
462
463 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
464 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
465 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
466
467 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
468 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
469 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
470 (I40E_DEBUG_FD & pf->hw.debug_mask))
471 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
472 pf->fd_inv);
473
474 /* Check if the programming error is for ATR.
475 * If so, auto disable ATR and set a state for
476 * flush in progress. Next time we come here if flush is in
477 * progress do nothing, once flush is complete the state will
478 * be cleared.
479 */
480 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
481 return;
482
483 pf->fd_add_err++;
484 /* store the current atr filter count */
485 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
486
487 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
488 (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
489 pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
490 set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
491 }
492
493 /* filter programming failed most likely due to table full */
494 fcnt_prog = i40e_get_global_fd_count(pf);
495 fcnt_avail = pf->fdir_pf_filter_count;
496 /* If ATR is running fcnt_prog can quickly change,
497 * if we are very close to full, it makes sense to disable
498 * FD ATR/SB and then re-enable it when there is room.
499 */
500 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
501 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
502 !(pf->auto_disable_flags &
503 I40E_FLAG_FD_SB_ENABLED)) {
504 if (I40E_DEBUG_FD & pf->hw.debug_mask)
505 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
506 pf->auto_disable_flags |=
507 I40E_FLAG_FD_SB_ENABLED;
508 }
509 } else {
510 dev_info(&pdev->dev,
511 "FD filter programming failed due to incorrect filter parameters\n");
512 }
513 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
514 if (I40E_DEBUG_FD & pf->hw.debug_mask)
515 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
516 rx_desc->wb.qword0.hi_dword.fd_id);
517 }
518 }
519
520 /**
521 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
522 * @ring: the ring that owns the buffer
523 * @tx_buffer: the buffer to free
524 **/
525 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
526 struct i40e_tx_buffer *tx_buffer)
527 {
528 if (tx_buffer->skb) {
529 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
530 kfree(tx_buffer->raw_buf);
531 else
532 dev_kfree_skb_any(tx_buffer->skb);
533
534 if (dma_unmap_len(tx_buffer, len))
535 dma_unmap_single(ring->dev,
536 dma_unmap_addr(tx_buffer, dma),
537 dma_unmap_len(tx_buffer, len),
538 DMA_TO_DEVICE);
539 } else if (dma_unmap_len(tx_buffer, len)) {
540 dma_unmap_page(ring->dev,
541 dma_unmap_addr(tx_buffer, dma),
542 dma_unmap_len(tx_buffer, len),
543 DMA_TO_DEVICE);
544 }
545 tx_buffer->next_to_watch = NULL;
546 tx_buffer->skb = NULL;
547 dma_unmap_len_set(tx_buffer, len, 0);
548 /* tx_buffer must be completely set up in the transmit path */
549 }
550
551 /**
552 * i40e_clean_tx_ring - Free any empty Tx buffers
553 * @tx_ring: ring to be cleaned
554 **/
555 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
556 {
557 unsigned long bi_size;
558 u16 i;
559
560 /* ring already cleared, nothing to do */
561 if (!tx_ring->tx_bi)
562 return;
563
564 /* Free all the Tx ring sk_buffs */
565 for (i = 0; i < tx_ring->count; i++)
566 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
567
568 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
569 memset(tx_ring->tx_bi, 0, bi_size);
570
571 /* Zero out the descriptor ring */
572 memset(tx_ring->desc, 0, tx_ring->size);
573
574 tx_ring->next_to_use = 0;
575 tx_ring->next_to_clean = 0;
576
577 if (!tx_ring->netdev)
578 return;
579
580 /* cleanup Tx queue statistics */
581 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
582 tx_ring->queue_index));
583 }
584
585 /**
586 * i40e_free_tx_resources - Free Tx resources per queue
587 * @tx_ring: Tx descriptor ring for a specific queue
588 *
589 * Free all transmit software resources
590 **/
591 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
592 {
593 i40e_clean_tx_ring(tx_ring);
594 kfree(tx_ring->tx_bi);
595 tx_ring->tx_bi = NULL;
596
597 if (tx_ring->desc) {
598 dma_free_coherent(tx_ring->dev, tx_ring->size,
599 tx_ring->desc, tx_ring->dma);
600 tx_ring->desc = NULL;
601 }
602 }
603
604 /**
605 * i40e_get_tx_pending - how many tx descriptors not processed
606 * @tx_ring: the ring of descriptors
607 *
608 * Since there is no access to the ring head register
609 * in XL710, we need to use our local copies
610 **/
611 u32 i40e_get_tx_pending(struct i40e_ring *ring)
612 {
613 u32 head, tail;
614
615 head = i40e_get_head(ring);
616 tail = readl(ring->tail);
617
618 if (head != tail)
619 return (head < tail) ?
620 tail - head : (tail + ring->count - head);
621
622 return 0;
623 }
624
625 #define WB_STRIDE 0x3
626
627 /**
628 * i40e_clean_tx_irq - Reclaim resources after transmit completes
629 * @tx_ring: tx ring to clean
630 * @budget: how many cleans we're allowed
631 *
632 * Returns true if there's any budget left (e.g. the clean is finished)
633 **/
634 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
635 {
636 u16 i = tx_ring->next_to_clean;
637 struct i40e_tx_buffer *tx_buf;
638 struct i40e_tx_desc *tx_head;
639 struct i40e_tx_desc *tx_desc;
640 unsigned int total_packets = 0;
641 unsigned int total_bytes = 0;
642
643 tx_buf = &tx_ring->tx_bi[i];
644 tx_desc = I40E_TX_DESC(tx_ring, i);
645 i -= tx_ring->count;
646
647 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
648
649 do {
650 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
651
652 /* if next_to_watch is not set then there is no work pending */
653 if (!eop_desc)
654 break;
655
656 /* prevent any other reads prior to eop_desc */
657 read_barrier_depends();
658
659 /* we have caught up to head, no work left to do */
660 if (tx_head == tx_desc)
661 break;
662
663 /* clear next_to_watch to prevent false hangs */
664 tx_buf->next_to_watch = NULL;
665
666 /* update the statistics for this packet */
667 total_bytes += tx_buf->bytecount;
668 total_packets += tx_buf->gso_segs;
669
670 /* free the skb */
671 dev_consume_skb_any(tx_buf->skb);
672
673 /* unmap skb header data */
674 dma_unmap_single(tx_ring->dev,
675 dma_unmap_addr(tx_buf, dma),
676 dma_unmap_len(tx_buf, len),
677 DMA_TO_DEVICE);
678
679 /* clear tx_buffer data */
680 tx_buf->skb = NULL;
681 dma_unmap_len_set(tx_buf, len, 0);
682
683 /* unmap remaining buffers */
684 while (tx_desc != eop_desc) {
685
686 tx_buf++;
687 tx_desc++;
688 i++;
689 if (unlikely(!i)) {
690 i -= tx_ring->count;
691 tx_buf = tx_ring->tx_bi;
692 tx_desc = I40E_TX_DESC(tx_ring, 0);
693 }
694
695 /* unmap any remaining paged data */
696 if (dma_unmap_len(tx_buf, len)) {
697 dma_unmap_page(tx_ring->dev,
698 dma_unmap_addr(tx_buf, dma),
699 dma_unmap_len(tx_buf, len),
700 DMA_TO_DEVICE);
701 dma_unmap_len_set(tx_buf, len, 0);
702 }
703 }
704
705 /* move us one more past the eop_desc for start of next pkt */
706 tx_buf++;
707 tx_desc++;
708 i++;
709 if (unlikely(!i)) {
710 i -= tx_ring->count;
711 tx_buf = tx_ring->tx_bi;
712 tx_desc = I40E_TX_DESC(tx_ring, 0);
713 }
714
715 prefetch(tx_desc);
716
717 /* update budget accounting */
718 budget--;
719 } while (likely(budget));
720
721 i += tx_ring->count;
722 tx_ring->next_to_clean = i;
723 u64_stats_update_begin(&tx_ring->syncp);
724 tx_ring->stats.bytes += total_bytes;
725 tx_ring->stats.packets += total_packets;
726 u64_stats_update_end(&tx_ring->syncp);
727 tx_ring->q_vector->tx.total_bytes += total_bytes;
728 tx_ring->q_vector->tx.total_packets += total_packets;
729
730 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
731 unsigned int j = 0;
732
733 /* check to see if there are < 4 descriptors
734 * waiting to be written back, then kick the hardware to force
735 * them to be written back in case we stay in NAPI.
736 * In this mode on X722 we do not enable Interrupt.
737 */
738 j = i40e_get_tx_pending(tx_ring);
739
740 if (budget &&
741 ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
742 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
743 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
744 tx_ring->arm_wb = true;
745 }
746
747 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
748 tx_ring->queue_index),
749 total_packets, total_bytes);
750
751 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
752 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
753 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
754 /* Make sure that anybody stopping the queue after this
755 * sees the new next_to_clean.
756 */
757 smp_mb();
758 if (__netif_subqueue_stopped(tx_ring->netdev,
759 tx_ring->queue_index) &&
760 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
761 netif_wake_subqueue(tx_ring->netdev,
762 tx_ring->queue_index);
763 ++tx_ring->tx_stats.restart_queue;
764 }
765 }
766
767 return !!budget;
768 }
769
770 /**
771 * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
772 * @vsi: the VSI we care about
773 * @q_vector: the vector on which to force writeback
774 *
775 **/
776 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
777 {
778 u16 flags = q_vector->tx.ring[0].flags;
779
780 if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
781 u32 val;
782
783 if (q_vector->arm_wb_state)
784 return;
785
786 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK;
787
788 wr32(&vsi->back->hw,
789 I40E_PFINT_DYN_CTLN(q_vector->v_idx +
790 vsi->base_vector - 1),
791 val);
792 q_vector->arm_wb_state = true;
793 } else if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
794 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
795 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
796 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
797 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
798 /* allow 00 to be written to the index */
799
800 wr32(&vsi->back->hw,
801 I40E_PFINT_DYN_CTLN(q_vector->v_idx +
802 vsi->base_vector - 1), val);
803 } else {
804 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
805 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
806 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
807 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
808 /* allow 00 to be written to the index */
809
810 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
811 }
812 }
813
814 /**
815 * i40e_set_new_dynamic_itr - Find new ITR level
816 * @rc: structure containing ring performance data
817 *
818 * Returns true if ITR changed, false if not
819 *
820 * Stores a new ITR value based on packets and byte counts during
821 * the last interrupt. The advantage of per interrupt computation
822 * is faster updates and more accurate ITR for the current traffic
823 * pattern. Constants in this function were computed based on
824 * theoretical maximum wire speed and thresholds were set based on
825 * testing data as well as attempting to minimize response time
826 * while increasing bulk throughput.
827 **/
828 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
829 {
830 enum i40e_latency_range new_latency_range = rc->latency_range;
831 struct i40e_q_vector *qv = rc->ring->q_vector;
832 u32 new_itr = rc->itr;
833 int bytes_per_int;
834 int usecs;
835
836 if (rc->total_packets == 0 || !rc->itr)
837 return false;
838
839 /* simple throttlerate management
840 * 0-10MB/s lowest (50000 ints/s)
841 * 10-20MB/s low (20000 ints/s)
842 * 20-1249MB/s bulk (18000 ints/s)
843 * > 40000 Rx packets per second (8000 ints/s)
844 *
845 * The math works out because the divisor is in 10^(-6) which
846 * turns the bytes/us input value into MB/s values, but
847 * make sure to use usecs, as the register values written
848 * are in 2 usec increments in the ITR registers, and make sure
849 * to use the smoothed values that the countdown timer gives us.
850 */
851 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
852 bytes_per_int = rc->total_bytes / usecs;
853
854 switch (new_latency_range) {
855 case I40E_LOWEST_LATENCY:
856 if (bytes_per_int > 10)
857 new_latency_range = I40E_LOW_LATENCY;
858 break;
859 case I40E_LOW_LATENCY:
860 if (bytes_per_int > 20)
861 new_latency_range = I40E_BULK_LATENCY;
862 else if (bytes_per_int <= 10)
863 new_latency_range = I40E_LOWEST_LATENCY;
864 break;
865 case I40E_BULK_LATENCY:
866 case I40E_ULTRA_LATENCY:
867 default:
868 if (bytes_per_int <= 20)
869 new_latency_range = I40E_LOW_LATENCY;
870 break;
871 }
872
873 /* this is to adjust RX more aggressively when streaming small
874 * packets. The value of 40000 was picked as it is just beyond
875 * what the hardware can receive per second if in low latency
876 * mode.
877 */
878 #define RX_ULTRA_PACKET_RATE 40000
879
880 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
881 (&qv->rx == rc))
882 new_latency_range = I40E_ULTRA_LATENCY;
883
884 rc->latency_range = new_latency_range;
885
886 switch (new_latency_range) {
887 case I40E_LOWEST_LATENCY:
888 new_itr = I40E_ITR_50K;
889 break;
890 case I40E_LOW_LATENCY:
891 new_itr = I40E_ITR_20K;
892 break;
893 case I40E_BULK_LATENCY:
894 new_itr = I40E_ITR_18K;
895 break;
896 case I40E_ULTRA_LATENCY:
897 new_itr = I40E_ITR_8K;
898 break;
899 default:
900 break;
901 }
902
903 rc->total_bytes = 0;
904 rc->total_packets = 0;
905
906 if (new_itr != rc->itr) {
907 rc->itr = new_itr;
908 return true;
909 }
910
911 return false;
912 }
913
914 /**
915 * i40e_clean_programming_status - clean the programming status descriptor
916 * @rx_ring: the rx ring that has this descriptor
917 * @rx_desc: the rx descriptor written back by HW
918 *
919 * Flow director should handle FD_FILTER_STATUS to check its filter programming
920 * status being successful or not and take actions accordingly. FCoE should
921 * handle its context/filter programming/invalidation status and take actions.
922 *
923 **/
924 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
925 union i40e_rx_desc *rx_desc)
926 {
927 u64 qw;
928 u8 id;
929
930 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
931 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
932 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
933
934 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
935 i40e_fd_handle_status(rx_ring, rx_desc, id);
936 #ifdef I40E_FCOE
937 else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
938 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
939 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
940 #endif
941 }
942
943 /**
944 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
945 * @tx_ring: the tx ring to set up
946 *
947 * Return 0 on success, negative on error
948 **/
949 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
950 {
951 struct device *dev = tx_ring->dev;
952 int bi_size;
953
954 if (!dev)
955 return -ENOMEM;
956
957 /* warn if we are about to overwrite the pointer */
958 WARN_ON(tx_ring->tx_bi);
959 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
960 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
961 if (!tx_ring->tx_bi)
962 goto err;
963
964 /* round up to nearest 4K */
965 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
966 /* add u32 for head writeback, align after this takes care of
967 * guaranteeing this is at least one cache line in size
968 */
969 tx_ring->size += sizeof(u32);
970 tx_ring->size = ALIGN(tx_ring->size, 4096);
971 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
972 &tx_ring->dma, GFP_KERNEL);
973 if (!tx_ring->desc) {
974 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
975 tx_ring->size);
976 goto err;
977 }
978
979 tx_ring->next_to_use = 0;
980 tx_ring->next_to_clean = 0;
981 return 0;
982
983 err:
984 kfree(tx_ring->tx_bi);
985 tx_ring->tx_bi = NULL;
986 return -ENOMEM;
987 }
988
989 /**
990 * i40e_clean_rx_ring - Free Rx buffers
991 * @rx_ring: ring to be cleaned
992 **/
993 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
994 {
995 struct device *dev = rx_ring->dev;
996 struct i40e_rx_buffer *rx_bi;
997 unsigned long bi_size;
998 u16 i;
999
1000 /* ring already cleared, nothing to do */
1001 if (!rx_ring->rx_bi)
1002 return;
1003
1004 if (ring_is_ps_enabled(rx_ring)) {
1005 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
1006
1007 rx_bi = &rx_ring->rx_bi[0];
1008 if (rx_bi->hdr_buf) {
1009 dma_free_coherent(dev,
1010 bufsz,
1011 rx_bi->hdr_buf,
1012 rx_bi->dma);
1013 for (i = 0; i < rx_ring->count; i++) {
1014 rx_bi = &rx_ring->rx_bi[i];
1015 rx_bi->dma = 0;
1016 rx_bi->hdr_buf = NULL;
1017 }
1018 }
1019 }
1020 /* Free all the Rx ring sk_buffs */
1021 for (i = 0; i < rx_ring->count; i++) {
1022 rx_bi = &rx_ring->rx_bi[i];
1023 if (rx_bi->dma) {
1024 dma_unmap_single(dev,
1025 rx_bi->dma,
1026 rx_ring->rx_buf_len,
1027 DMA_FROM_DEVICE);
1028 rx_bi->dma = 0;
1029 }
1030 if (rx_bi->skb) {
1031 dev_kfree_skb(rx_bi->skb);
1032 rx_bi->skb = NULL;
1033 }
1034 if (rx_bi->page) {
1035 if (rx_bi->page_dma) {
1036 dma_unmap_page(dev,
1037 rx_bi->page_dma,
1038 PAGE_SIZE / 2,
1039 DMA_FROM_DEVICE);
1040 rx_bi->page_dma = 0;
1041 }
1042 __free_page(rx_bi->page);
1043 rx_bi->page = NULL;
1044 rx_bi->page_offset = 0;
1045 }
1046 }
1047
1048 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1049 memset(rx_ring->rx_bi, 0, bi_size);
1050
1051 /* Zero out the descriptor ring */
1052 memset(rx_ring->desc, 0, rx_ring->size);
1053
1054 rx_ring->next_to_clean = 0;
1055 rx_ring->next_to_use = 0;
1056 }
1057
1058 /**
1059 * i40e_free_rx_resources - Free Rx resources
1060 * @rx_ring: ring to clean the resources from
1061 *
1062 * Free all receive software resources
1063 **/
1064 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1065 {
1066 i40e_clean_rx_ring(rx_ring);
1067 kfree(rx_ring->rx_bi);
1068 rx_ring->rx_bi = NULL;
1069
1070 if (rx_ring->desc) {
1071 dma_free_coherent(rx_ring->dev, rx_ring->size,
1072 rx_ring->desc, rx_ring->dma);
1073 rx_ring->desc = NULL;
1074 }
1075 }
1076
1077 /**
1078 * i40e_alloc_rx_headers - allocate rx header buffers
1079 * @rx_ring: ring to alloc buffers
1080 *
1081 * Allocate rx header buffers for the entire ring. As these are static,
1082 * this is only called when setting up a new ring.
1083 **/
1084 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1085 {
1086 struct device *dev = rx_ring->dev;
1087 struct i40e_rx_buffer *rx_bi;
1088 dma_addr_t dma;
1089 void *buffer;
1090 int buf_size;
1091 int i;
1092
1093 if (rx_ring->rx_bi[0].hdr_buf)
1094 return;
1095 /* Make sure the buffers don't cross cache line boundaries. */
1096 buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1097 buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1098 &dma, GFP_KERNEL);
1099 if (!buffer)
1100 return;
1101 for (i = 0; i < rx_ring->count; i++) {
1102 rx_bi = &rx_ring->rx_bi[i];
1103 rx_bi->dma = dma + (i * buf_size);
1104 rx_bi->hdr_buf = buffer + (i * buf_size);
1105 }
1106 }
1107
1108 /**
1109 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1110 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1111 *
1112 * Returns 0 on success, negative on failure
1113 **/
1114 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1115 {
1116 struct device *dev = rx_ring->dev;
1117 int bi_size;
1118
1119 /* warn if we are about to overwrite the pointer */
1120 WARN_ON(rx_ring->rx_bi);
1121 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1122 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1123 if (!rx_ring->rx_bi)
1124 goto err;
1125
1126 u64_stats_init(&rx_ring->syncp);
1127
1128 /* Round up to nearest 4K */
1129 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1130 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1131 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1132 rx_ring->size = ALIGN(rx_ring->size, 4096);
1133 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1134 &rx_ring->dma, GFP_KERNEL);
1135
1136 if (!rx_ring->desc) {
1137 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1138 rx_ring->size);
1139 goto err;
1140 }
1141
1142 rx_ring->next_to_clean = 0;
1143 rx_ring->next_to_use = 0;
1144
1145 return 0;
1146 err:
1147 kfree(rx_ring->rx_bi);
1148 rx_ring->rx_bi = NULL;
1149 return -ENOMEM;
1150 }
1151
1152 /**
1153 * i40e_release_rx_desc - Store the new tail and head values
1154 * @rx_ring: ring to bump
1155 * @val: new head index
1156 **/
1157 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1158 {
1159 rx_ring->next_to_use = val;
1160 /* Force memory writes to complete before letting h/w
1161 * know there are new descriptors to fetch. (Only
1162 * applicable for weak-ordered memory model archs,
1163 * such as IA-64).
1164 */
1165 wmb();
1166 writel(val, rx_ring->tail);
1167 }
1168
1169 /**
1170 * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1171 * @rx_ring: ring to place buffers on
1172 * @cleaned_count: number of buffers to replace
1173 **/
1174 void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1175 {
1176 u16 i = rx_ring->next_to_use;
1177 union i40e_rx_desc *rx_desc;
1178 struct i40e_rx_buffer *bi;
1179
1180 /* do nothing if no valid netdev defined */
1181 if (!rx_ring->netdev || !cleaned_count)
1182 return;
1183
1184 while (cleaned_count--) {
1185 rx_desc = I40E_RX_DESC(rx_ring, i);
1186 bi = &rx_ring->rx_bi[i];
1187
1188 if (bi->skb) /* desc is in use */
1189 goto no_buffers;
1190 if (!bi->page) {
1191 bi->page = alloc_page(GFP_ATOMIC);
1192 if (!bi->page) {
1193 rx_ring->rx_stats.alloc_page_failed++;
1194 goto no_buffers;
1195 }
1196 }
1197
1198 if (!bi->page_dma) {
1199 /* use a half page if we're re-using */
1200 bi->page_offset ^= PAGE_SIZE / 2;
1201 bi->page_dma = dma_map_page(rx_ring->dev,
1202 bi->page,
1203 bi->page_offset,
1204 PAGE_SIZE / 2,
1205 DMA_FROM_DEVICE);
1206 if (dma_mapping_error(rx_ring->dev,
1207 bi->page_dma)) {
1208 rx_ring->rx_stats.alloc_page_failed++;
1209 bi->page_dma = 0;
1210 goto no_buffers;
1211 }
1212 }
1213
1214 dma_sync_single_range_for_device(rx_ring->dev,
1215 bi->dma,
1216 0,
1217 rx_ring->rx_hdr_len,
1218 DMA_FROM_DEVICE);
1219 /* Refresh the desc even if buffer_addrs didn't change
1220 * because each write-back erases this info.
1221 */
1222 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1223 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1224 i++;
1225 if (i == rx_ring->count)
1226 i = 0;
1227 }
1228
1229 no_buffers:
1230 if (rx_ring->next_to_use != i)
1231 i40e_release_rx_desc(rx_ring, i);
1232 }
1233
1234 /**
1235 * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1236 * @rx_ring: ring to place buffers on
1237 * @cleaned_count: number of buffers to replace
1238 **/
1239 void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1240 {
1241 u16 i = rx_ring->next_to_use;
1242 union i40e_rx_desc *rx_desc;
1243 struct i40e_rx_buffer *bi;
1244 struct sk_buff *skb;
1245
1246 /* do nothing if no valid netdev defined */
1247 if (!rx_ring->netdev || !cleaned_count)
1248 return;
1249
1250 while (cleaned_count--) {
1251 rx_desc = I40E_RX_DESC(rx_ring, i);
1252 bi = &rx_ring->rx_bi[i];
1253 skb = bi->skb;
1254
1255 if (!skb) {
1256 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1257 rx_ring->rx_buf_len);
1258 if (!skb) {
1259 rx_ring->rx_stats.alloc_buff_failed++;
1260 goto no_buffers;
1261 }
1262 /* initialize queue mapping */
1263 skb_record_rx_queue(skb, rx_ring->queue_index);
1264 bi->skb = skb;
1265 }
1266
1267 if (!bi->dma) {
1268 bi->dma = dma_map_single(rx_ring->dev,
1269 skb->data,
1270 rx_ring->rx_buf_len,
1271 DMA_FROM_DEVICE);
1272 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1273 rx_ring->rx_stats.alloc_buff_failed++;
1274 bi->dma = 0;
1275 goto no_buffers;
1276 }
1277 }
1278
1279 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1280 rx_desc->read.hdr_addr = 0;
1281 i++;
1282 if (i == rx_ring->count)
1283 i = 0;
1284 }
1285
1286 no_buffers:
1287 if (rx_ring->next_to_use != i)
1288 i40e_release_rx_desc(rx_ring, i);
1289 }
1290
1291 /**
1292 * i40e_receive_skb - Send a completed packet up the stack
1293 * @rx_ring: rx ring in play
1294 * @skb: packet to send up
1295 * @vlan_tag: vlan tag for packet
1296 **/
1297 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1298 struct sk_buff *skb, u16 vlan_tag)
1299 {
1300 struct i40e_q_vector *q_vector = rx_ring->q_vector;
1301
1302 if (vlan_tag & VLAN_VID_MASK)
1303 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1304
1305 napi_gro_receive(&q_vector->napi, skb);
1306 }
1307
1308 /**
1309 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1310 * @vsi: the VSI we care about
1311 * @skb: skb currently being received and modified
1312 * @rx_status: status value of last descriptor in packet
1313 * @rx_error: error value of last descriptor in packet
1314 * @rx_ptype: ptype value of last descriptor in packet
1315 **/
1316 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1317 struct sk_buff *skb,
1318 u32 rx_status,
1319 u32 rx_error,
1320 u16 rx_ptype)
1321 {
1322 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1323 bool ipv4 = false, ipv6 = false;
1324 bool ipv4_tunnel, ipv6_tunnel;
1325 __wsum rx_udp_csum;
1326 struct iphdr *iph;
1327 __sum16 csum;
1328
1329 ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1330 (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1331 ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1332 (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1333
1334 skb->ip_summed = CHECKSUM_NONE;
1335
1336 /* Rx csum enabled and ip headers found? */
1337 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1338 return;
1339
1340 /* did the hardware decode the packet and checksum? */
1341 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1342 return;
1343
1344 /* both known and outer_ip must be set for the below code to work */
1345 if (!(decoded.known && decoded.outer_ip))
1346 return;
1347
1348 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1349 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1350 ipv4 = true;
1351 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1352 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1353 ipv6 = true;
1354
1355 if (ipv4 &&
1356 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1357 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1358 goto checksum_fail;
1359
1360 /* likely incorrect csum if alternate IP extension headers found */
1361 if (ipv6 &&
1362 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1363 /* don't increment checksum err here, non-fatal err */
1364 return;
1365
1366 /* there was some L4 error, count error and punt packet to the stack */
1367 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1368 goto checksum_fail;
1369
1370 /* handle packets that were not able to be checksummed due
1371 * to arrival speed, in this case the stack can compute
1372 * the csum.
1373 */
1374 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1375 return;
1376
1377 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1378 * it in the driver, hardware does not do it for us.
1379 * Since L3L4P bit was set we assume a valid IHL value (>=5)
1380 * so the total length of IPv4 header is IHL*4 bytes
1381 * The UDP_0 bit *may* bet set if the *inner* header is UDP
1382 */
1383 if (!(vsi->back->flags & I40E_FLAG_OUTER_UDP_CSUM_CAPABLE) &&
1384 (ipv4_tunnel)) {
1385 skb->transport_header = skb->mac_header +
1386 sizeof(struct ethhdr) +
1387 (ip_hdr(skb)->ihl * 4);
1388
1389 /* Add 4 bytes for VLAN tagged packets */
1390 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1391 skb->protocol == htons(ETH_P_8021AD))
1392 ? VLAN_HLEN : 0;
1393
1394 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1395 (udp_hdr(skb)->check != 0)) {
1396 rx_udp_csum = udp_csum(skb);
1397 iph = ip_hdr(skb);
1398 csum = csum_tcpudp_magic(
1399 iph->saddr, iph->daddr,
1400 (skb->len - skb_transport_offset(skb)),
1401 IPPROTO_UDP, rx_udp_csum);
1402
1403 if (udp_hdr(skb)->check != csum)
1404 goto checksum_fail;
1405
1406 } /* else its GRE and so no outer UDP header */
1407 }
1408
1409 skb->ip_summed = CHECKSUM_UNNECESSARY;
1410 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1411
1412 return;
1413
1414 checksum_fail:
1415 vsi->back->hw_csum_rx_error++;
1416 }
1417
1418 /**
1419 * i40e_rx_hash - returns the hash value from the Rx descriptor
1420 * @ring: descriptor ring
1421 * @rx_desc: specific descriptor
1422 **/
1423 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1424 union i40e_rx_desc *rx_desc)
1425 {
1426 const __le64 rss_mask =
1427 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1428 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1429
1430 if ((ring->netdev->features & NETIF_F_RXHASH) &&
1431 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1432 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1433 else
1434 return 0;
1435 }
1436
1437 /**
1438 * i40e_ptype_to_hash - get a hash type
1439 * @ptype: the ptype value from the descriptor
1440 *
1441 * Returns a hash type to be used by skb_set_hash
1442 **/
1443 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1444 {
1445 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1446
1447 if (!decoded.known)
1448 return PKT_HASH_TYPE_NONE;
1449
1450 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1451 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1452 return PKT_HASH_TYPE_L4;
1453 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1454 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1455 return PKT_HASH_TYPE_L3;
1456 else
1457 return PKT_HASH_TYPE_L2;
1458 }
1459
1460 /**
1461 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1462 * @rx_ring: rx ring to clean
1463 * @budget: how many cleans we're allowed
1464 *
1465 * Returns true if there's any budget left (e.g. the clean is finished)
1466 **/
1467 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1468 {
1469 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1470 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1471 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1472 const int current_node = numa_mem_id();
1473 struct i40e_vsi *vsi = rx_ring->vsi;
1474 u16 i = rx_ring->next_to_clean;
1475 union i40e_rx_desc *rx_desc;
1476 u32 rx_error, rx_status;
1477 u8 rx_ptype;
1478 u64 qword;
1479
1480 if (budget <= 0)
1481 return 0;
1482
1483 do {
1484 struct i40e_rx_buffer *rx_bi;
1485 struct sk_buff *skb;
1486 u16 vlan_tag;
1487 /* return some buffers to hardware, one at a time is too slow */
1488 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1489 i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1490 cleaned_count = 0;
1491 }
1492
1493 i = rx_ring->next_to_clean;
1494 rx_desc = I40E_RX_DESC(rx_ring, i);
1495 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1496 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1497 I40E_RXD_QW1_STATUS_SHIFT;
1498
1499 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1500 break;
1501
1502 /* This memory barrier is needed to keep us from reading
1503 * any other fields out of the rx_desc until we know the
1504 * DD bit is set.
1505 */
1506 dma_rmb();
1507 if (i40e_rx_is_programming_status(qword)) {
1508 i40e_clean_programming_status(rx_ring, rx_desc);
1509 I40E_RX_INCREMENT(rx_ring, i);
1510 continue;
1511 }
1512 rx_bi = &rx_ring->rx_bi[i];
1513 skb = rx_bi->skb;
1514 if (likely(!skb)) {
1515 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1516 rx_ring->rx_hdr_len);
1517 if (!skb) {
1518 rx_ring->rx_stats.alloc_buff_failed++;
1519 break;
1520 }
1521
1522 /* initialize queue mapping */
1523 skb_record_rx_queue(skb, rx_ring->queue_index);
1524 /* we are reusing so sync this buffer for CPU use */
1525 dma_sync_single_range_for_cpu(rx_ring->dev,
1526 rx_bi->dma,
1527 0,
1528 rx_ring->rx_hdr_len,
1529 DMA_FROM_DEVICE);
1530 }
1531 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1532 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1533 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1534 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1535 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1536 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1537
1538 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1539 I40E_RXD_QW1_ERROR_SHIFT;
1540 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1541 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1542
1543 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1544 I40E_RXD_QW1_PTYPE_SHIFT;
1545 prefetch(rx_bi->page);
1546 rx_bi->skb = NULL;
1547 cleaned_count++;
1548 if (rx_hbo || rx_sph) {
1549 int len;
1550
1551 if (rx_hbo)
1552 len = I40E_RX_HDR_SIZE;
1553 else
1554 len = rx_header_len;
1555 memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1556 } else if (skb->len == 0) {
1557 int len;
1558
1559 len = (rx_packet_len > skb_headlen(skb) ?
1560 skb_headlen(skb) : rx_packet_len);
1561 memcpy(__skb_put(skb, len),
1562 rx_bi->page + rx_bi->page_offset,
1563 len);
1564 rx_bi->page_offset += len;
1565 rx_packet_len -= len;
1566 }
1567
1568 /* Get the rest of the data if this was a header split */
1569 if (rx_packet_len) {
1570 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1571 rx_bi->page,
1572 rx_bi->page_offset,
1573 rx_packet_len);
1574
1575 skb->len += rx_packet_len;
1576 skb->data_len += rx_packet_len;
1577 skb->truesize += rx_packet_len;
1578
1579 if ((page_count(rx_bi->page) == 1) &&
1580 (page_to_nid(rx_bi->page) == current_node))
1581 get_page(rx_bi->page);
1582 else
1583 rx_bi->page = NULL;
1584
1585 dma_unmap_page(rx_ring->dev,
1586 rx_bi->page_dma,
1587 PAGE_SIZE / 2,
1588 DMA_FROM_DEVICE);
1589 rx_bi->page_dma = 0;
1590 }
1591 I40E_RX_INCREMENT(rx_ring, i);
1592
1593 if (unlikely(
1594 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1595 struct i40e_rx_buffer *next_buffer;
1596
1597 next_buffer = &rx_ring->rx_bi[i];
1598 next_buffer->skb = skb;
1599 rx_ring->rx_stats.non_eop_descs++;
1600 continue;
1601 }
1602
1603 /* ERR_MASK will only have valid bits if EOP set */
1604 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1605 dev_kfree_skb_any(skb);
1606 continue;
1607 }
1608
1609 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1610 i40e_ptype_to_hash(rx_ptype));
1611 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1612 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1613 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1614 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1615 rx_ring->last_rx_timestamp = jiffies;
1616 }
1617
1618 /* probably a little skewed due to removing CRC */
1619 total_rx_bytes += skb->len;
1620 total_rx_packets++;
1621
1622 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1623
1624 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1625
1626 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1627 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1628 : 0;
1629 #ifdef I40E_FCOE
1630 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1631 dev_kfree_skb_any(skb);
1632 continue;
1633 }
1634 #endif
1635 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1636 i40e_receive_skb(rx_ring, skb, vlan_tag);
1637
1638 rx_desc->wb.qword1.status_error_len = 0;
1639
1640 } while (likely(total_rx_packets < budget));
1641
1642 u64_stats_update_begin(&rx_ring->syncp);
1643 rx_ring->stats.packets += total_rx_packets;
1644 rx_ring->stats.bytes += total_rx_bytes;
1645 u64_stats_update_end(&rx_ring->syncp);
1646 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1647 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1648
1649 return total_rx_packets;
1650 }
1651
1652 /**
1653 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1654 * @rx_ring: rx ring to clean
1655 * @budget: how many cleans we're allowed
1656 *
1657 * Returns number of packets cleaned
1658 **/
1659 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1660 {
1661 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1662 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1663 struct i40e_vsi *vsi = rx_ring->vsi;
1664 union i40e_rx_desc *rx_desc;
1665 u32 rx_error, rx_status;
1666 u16 rx_packet_len;
1667 u8 rx_ptype;
1668 u64 qword;
1669 u16 i;
1670
1671 do {
1672 struct i40e_rx_buffer *rx_bi;
1673 struct sk_buff *skb;
1674 u16 vlan_tag;
1675 /* return some buffers to hardware, one at a time is too slow */
1676 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1677 i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1678 cleaned_count = 0;
1679 }
1680
1681 i = rx_ring->next_to_clean;
1682 rx_desc = I40E_RX_DESC(rx_ring, i);
1683 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1684 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1685 I40E_RXD_QW1_STATUS_SHIFT;
1686
1687 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1688 break;
1689
1690 /* This memory barrier is needed to keep us from reading
1691 * any other fields out of the rx_desc until we know the
1692 * DD bit is set.
1693 */
1694 dma_rmb();
1695
1696 if (i40e_rx_is_programming_status(qword)) {
1697 i40e_clean_programming_status(rx_ring, rx_desc);
1698 I40E_RX_INCREMENT(rx_ring, i);
1699 continue;
1700 }
1701 rx_bi = &rx_ring->rx_bi[i];
1702 skb = rx_bi->skb;
1703 prefetch(skb->data);
1704
1705 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1706 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1707
1708 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1709 I40E_RXD_QW1_ERROR_SHIFT;
1710 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1711
1712 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1713 I40E_RXD_QW1_PTYPE_SHIFT;
1714 rx_bi->skb = NULL;
1715 cleaned_count++;
1716
1717 /* Get the header and possibly the whole packet
1718 * If this is an skb from previous receive dma will be 0
1719 */
1720 skb_put(skb, rx_packet_len);
1721 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1722 DMA_FROM_DEVICE);
1723 rx_bi->dma = 0;
1724
1725 I40E_RX_INCREMENT(rx_ring, i);
1726
1727 if (unlikely(
1728 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1729 rx_ring->rx_stats.non_eop_descs++;
1730 continue;
1731 }
1732
1733 /* ERR_MASK will only have valid bits if EOP set */
1734 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1735 dev_kfree_skb_any(skb);
1736 continue;
1737 }
1738
1739 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1740 i40e_ptype_to_hash(rx_ptype));
1741 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1742 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1743 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1744 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1745 rx_ring->last_rx_timestamp = jiffies;
1746 }
1747
1748 /* probably a little skewed due to removing CRC */
1749 total_rx_bytes += skb->len;
1750 total_rx_packets++;
1751
1752 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1753
1754 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1755
1756 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1757 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1758 : 0;
1759 #ifdef I40E_FCOE
1760 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1761 dev_kfree_skb_any(skb);
1762 continue;
1763 }
1764 #endif
1765 i40e_receive_skb(rx_ring, skb, vlan_tag);
1766
1767 rx_desc->wb.qword1.status_error_len = 0;
1768 } while (likely(total_rx_packets < budget));
1769
1770 u64_stats_update_begin(&rx_ring->syncp);
1771 rx_ring->stats.packets += total_rx_packets;
1772 rx_ring->stats.bytes += total_rx_bytes;
1773 u64_stats_update_end(&rx_ring->syncp);
1774 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1775 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1776
1777 return total_rx_packets;
1778 }
1779
1780 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1781 {
1782 u32 val;
1783
1784 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1785 I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
1786 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1787 (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1788
1789 return val;
1790 }
1791
1792 /* a small macro to shorten up some long lines */
1793 #define INTREG I40E_PFINT_DYN_CTLN
1794
1795 /**
1796 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1797 * @vsi: the VSI we care about
1798 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1799 *
1800 **/
1801 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1802 struct i40e_q_vector *q_vector)
1803 {
1804 struct i40e_hw *hw = &vsi->back->hw;
1805 bool rx = false, tx = false;
1806 u32 rxval, txval;
1807 int vector;
1808
1809 vector = (q_vector->v_idx + vsi->base_vector);
1810
1811 /* avoid dynamic calculation if in countdown mode OR if
1812 * all dynamic is disabled
1813 */
1814 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1815
1816 if (q_vector->itr_countdown > 0 ||
1817 (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1818 !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1819 goto enable_int;
1820 }
1821
1822 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1823 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1824 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1825 }
1826
1827 if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1828 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1829 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1830 }
1831
1832 if (rx || tx) {
1833 /* get the higher of the two ITR adjustments and
1834 * use the same value for both ITR registers
1835 * when in adaptive mode (Rx and/or Tx)
1836 */
1837 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1838
1839 q_vector->tx.itr = q_vector->rx.itr = itr;
1840 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1841 tx = true;
1842 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1843 rx = true;
1844 }
1845
1846 /* only need to enable the interrupt once, but need
1847 * to possibly update both ITR values
1848 */
1849 if (rx) {
1850 /* set the INTENA_MSK_MASK so that this first write
1851 * won't actually enable the interrupt, instead just
1852 * updating the ITR (it's bit 31 PF and VF)
1853 */
1854 rxval |= BIT(31);
1855 /* don't check _DOWN because interrupt isn't being enabled */
1856 wr32(hw, INTREG(vector - 1), rxval);
1857 }
1858
1859 enable_int:
1860 if (!test_bit(__I40E_DOWN, &vsi->state))
1861 wr32(hw, INTREG(vector - 1), txval);
1862
1863 if (q_vector->itr_countdown)
1864 q_vector->itr_countdown--;
1865 else
1866 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1867
1868 }
1869
1870 /**
1871 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1872 * @napi: napi struct with our devices info in it
1873 * @budget: amount of work driver is allowed to do this pass, in packets
1874 *
1875 * This function will clean all queues associated with a q_vector.
1876 *
1877 * Returns the amount of work done
1878 **/
1879 int i40e_napi_poll(struct napi_struct *napi, int budget)
1880 {
1881 struct i40e_q_vector *q_vector =
1882 container_of(napi, struct i40e_q_vector, napi);
1883 struct i40e_vsi *vsi = q_vector->vsi;
1884 struct i40e_ring *ring;
1885 bool clean_complete = true;
1886 bool arm_wb = false;
1887 int budget_per_ring;
1888 int work_done = 0;
1889
1890 if (test_bit(__I40E_DOWN, &vsi->state)) {
1891 napi_complete(napi);
1892 return 0;
1893 }
1894
1895 /* Since the actual Tx work is minimal, we can give the Tx a larger
1896 * budget and be more aggressive about cleaning up the Tx descriptors.
1897 */
1898 i40e_for_each_ring(ring, q_vector->tx) {
1899 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1900 arm_wb |= ring->arm_wb;
1901 ring->arm_wb = false;
1902 }
1903
1904 /* Handle case where we are called by netpoll with a budget of 0 */
1905 if (budget <= 0)
1906 goto tx_only;
1907
1908 /* We attempt to distribute budget to each Rx queue fairly, but don't
1909 * allow the budget to go below 1 because that would exit polling early.
1910 */
1911 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1912
1913 i40e_for_each_ring(ring, q_vector->rx) {
1914 int cleaned;
1915
1916 if (ring_is_ps_enabled(ring))
1917 cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1918 else
1919 cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1920
1921 work_done += cleaned;
1922 /* if we didn't clean as many as budgeted, we must be done */
1923 clean_complete &= (budget_per_ring != cleaned);
1924 }
1925
1926 /* If work not completed, return budget and polling will return */
1927 if (!clean_complete) {
1928 tx_only:
1929 if (arm_wb)
1930 i40e_force_wb(vsi, q_vector);
1931 return budget;
1932 }
1933
1934 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1935 q_vector->arm_wb_state = false;
1936
1937 /* Work is done so exit the polling mode and re-enable the interrupt */
1938 napi_complete_done(napi, work_done);
1939 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1940 i40e_update_enable_itr(vsi, q_vector);
1941 } else { /* Legacy mode */
1942 struct i40e_hw *hw = &vsi->back->hw;
1943 /* We re-enable the queue 0 cause, but
1944 * don't worry about dynamic_enable
1945 * because we left it on for the other
1946 * possible interrupts during napi
1947 */
1948 u32 qval = rd32(hw, I40E_QINT_RQCTL(0)) |
1949 I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1950
1951 wr32(hw, I40E_QINT_RQCTL(0), qval);
1952 qval = rd32(hw, I40E_QINT_TQCTL(0)) |
1953 I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1954 wr32(hw, I40E_QINT_TQCTL(0), qval);
1955 i40e_irq_dynamic_enable_icr0(vsi->back);
1956 }
1957 return 0;
1958 }
1959
1960 /**
1961 * i40e_atr - Add a Flow Director ATR filter
1962 * @tx_ring: ring to add programming descriptor to
1963 * @skb: send buffer
1964 * @tx_flags: send tx flags
1965 * @protocol: wire protocol
1966 **/
1967 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1968 u32 tx_flags, __be16 protocol)
1969 {
1970 struct i40e_filter_program_desc *fdir_desc;
1971 struct i40e_pf *pf = tx_ring->vsi->back;
1972 union {
1973 unsigned char *network;
1974 struct iphdr *ipv4;
1975 struct ipv6hdr *ipv6;
1976 } hdr;
1977 struct tcphdr *th;
1978 unsigned int hlen;
1979 u32 flex_ptype, dtype_cmd;
1980 u16 i;
1981
1982 /* make sure ATR is enabled */
1983 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1984 return;
1985
1986 if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1987 return;
1988
1989 /* if sampling is disabled do nothing */
1990 if (!tx_ring->atr_sample_rate)
1991 return;
1992
1993 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
1994 return;
1995
1996 if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL)) {
1997 /* snag network header to get L4 type and address */
1998 hdr.network = skb_network_header(skb);
1999
2000 /* Currently only IPv4/IPv6 with TCP is supported
2001 * access ihl as u8 to avoid unaligned access on ia64
2002 */
2003 if (tx_flags & I40E_TX_FLAGS_IPV4)
2004 hlen = (hdr.network[0] & 0x0F) << 2;
2005 else if (protocol == htons(ETH_P_IPV6))
2006 hlen = sizeof(struct ipv6hdr);
2007 else
2008 return;
2009 } else {
2010 hdr.network = skb_inner_network_header(skb);
2011 hlen = skb_inner_network_header_len(skb);
2012 }
2013
2014 /* Currently only IPv4/IPv6 with TCP is supported
2015 * Note: tx_flags gets modified to reflect inner protocols in
2016 * tx_enable_csum function if encap is enabled.
2017 */
2018 if ((tx_flags & I40E_TX_FLAGS_IPV4) &&
2019 (hdr.ipv4->protocol != IPPROTO_TCP))
2020 return;
2021 else if ((tx_flags & I40E_TX_FLAGS_IPV6) &&
2022 (hdr.ipv6->nexthdr != IPPROTO_TCP))
2023 return;
2024
2025 th = (struct tcphdr *)(hdr.network + hlen);
2026
2027 /* Due to lack of space, no more new filters can be programmed */
2028 if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2029 return;
2030 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) {
2031 /* HW ATR eviction will take care of removing filters on FIN
2032 * and RST packets.
2033 */
2034 if (th->fin || th->rst)
2035 return;
2036 }
2037
2038 tx_ring->atr_count++;
2039
2040 /* sample on all syn/fin/rst packets or once every atr sample rate */
2041 if (!th->fin &&
2042 !th->syn &&
2043 !th->rst &&
2044 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2045 return;
2046
2047 tx_ring->atr_count = 0;
2048
2049 /* grab the next descriptor */
2050 i = tx_ring->next_to_use;
2051 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2052
2053 i++;
2054 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2055
2056 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2057 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2058 flex_ptype |= (protocol == htons(ETH_P_IP)) ?
2059 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2060 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2061 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2062 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2063
2064 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2065
2066 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2067
2068 dtype_cmd |= (th->fin || th->rst) ?
2069 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2070 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2071 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2072 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2073
2074 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2075 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2076
2077 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2078 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2079
2080 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2081 if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL))
2082 dtype_cmd |=
2083 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2084 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2085 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2086 else
2087 dtype_cmd |=
2088 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2089 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2090 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2091
2092 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)
2093 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2094
2095 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2096 fdir_desc->rsvd = cpu_to_le32(0);
2097 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2098 fdir_desc->fd_id = cpu_to_le32(0);
2099 }
2100
2101 /**
2102 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2103 * @skb: send buffer
2104 * @tx_ring: ring to send buffer on
2105 * @flags: the tx flags to be set
2106 *
2107 * Checks the skb and set up correspondingly several generic transmit flags
2108 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2109 *
2110 * Returns error code indicate the frame should be dropped upon error and the
2111 * otherwise returns 0 to indicate the flags has been set properly.
2112 **/
2113 #ifdef I40E_FCOE
2114 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2115 struct i40e_ring *tx_ring,
2116 u32 *flags)
2117 #else
2118 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2119 struct i40e_ring *tx_ring,
2120 u32 *flags)
2121 #endif
2122 {
2123 __be16 protocol = skb->protocol;
2124 u32 tx_flags = 0;
2125
2126 if (protocol == htons(ETH_P_8021Q) &&
2127 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2128 /* When HW VLAN acceleration is turned off by the user the
2129 * stack sets the protocol to 8021q so that the driver
2130 * can take any steps required to support the SW only
2131 * VLAN handling. In our case the driver doesn't need
2132 * to take any further steps so just set the protocol
2133 * to the encapsulated ethertype.
2134 */
2135 skb->protocol = vlan_get_protocol(skb);
2136 goto out;
2137 }
2138
2139 /* if we have a HW VLAN tag being added, default to the HW one */
2140 if (skb_vlan_tag_present(skb)) {
2141 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2142 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2143 /* else if it is a SW VLAN, check the next protocol and store the tag */
2144 } else if (protocol == htons(ETH_P_8021Q)) {
2145 struct vlan_hdr *vhdr, _vhdr;
2146
2147 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2148 if (!vhdr)
2149 return -EINVAL;
2150
2151 protocol = vhdr->h_vlan_encapsulated_proto;
2152 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2153 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2154 }
2155
2156 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2157 goto out;
2158
2159 /* Insert 802.1p priority into VLAN header */
2160 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2161 (skb->priority != TC_PRIO_CONTROL)) {
2162 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2163 tx_flags |= (skb->priority & 0x7) <<
2164 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2165 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2166 struct vlan_ethhdr *vhdr;
2167 int rc;
2168
2169 rc = skb_cow_head(skb, 0);
2170 if (rc < 0)
2171 return rc;
2172 vhdr = (struct vlan_ethhdr *)skb->data;
2173 vhdr->h_vlan_TCI = htons(tx_flags >>
2174 I40E_TX_FLAGS_VLAN_SHIFT);
2175 } else {
2176 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2177 }
2178 }
2179
2180 out:
2181 *flags = tx_flags;
2182 return 0;
2183 }
2184
2185 /**
2186 * i40e_tso - set up the tso context descriptor
2187 * @tx_ring: ptr to the ring to send
2188 * @skb: ptr to the skb we're sending
2189 * @hdr_len: ptr to the size of the packet header
2190 * @cd_tunneling: ptr to context descriptor bits
2191 *
2192 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2193 **/
2194 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2195 u8 *hdr_len, u64 *cd_type_cmd_tso_mss,
2196 u32 *cd_tunneling)
2197 {
2198 u32 cd_cmd, cd_tso_len, cd_mss;
2199 struct ipv6hdr *ipv6h;
2200 struct tcphdr *tcph;
2201 struct iphdr *iph;
2202 u32 l4len;
2203 int err;
2204
2205 if (!skb_is_gso(skb))
2206 return 0;
2207
2208 err = skb_cow_head(skb, 0);
2209 if (err < 0)
2210 return err;
2211
2212 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
2213 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
2214
2215 if (iph->version == 4) {
2216 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2217 iph->tot_len = 0;
2218 iph->check = 0;
2219 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2220 0, IPPROTO_TCP, 0);
2221 } else if (ipv6h->version == 6) {
2222 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2223 ipv6h->payload_len = 0;
2224 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2225 0, IPPROTO_TCP, 0);
2226 }
2227
2228 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
2229 *hdr_len = (skb->encapsulation
2230 ? (skb_inner_transport_header(skb) - skb->data)
2231 : skb_transport_offset(skb)) + l4len;
2232
2233 /* find the field values */
2234 cd_cmd = I40E_TX_CTX_DESC_TSO;
2235 cd_tso_len = skb->len - *hdr_len;
2236 cd_mss = skb_shinfo(skb)->gso_size;
2237 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2238 ((u64)cd_tso_len <<
2239 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2240 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2241 return 1;
2242 }
2243
2244 /**
2245 * i40e_tsyn - set up the tsyn context descriptor
2246 * @tx_ring: ptr to the ring to send
2247 * @skb: ptr to the skb we're sending
2248 * @tx_flags: the collected send information
2249 *
2250 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2251 **/
2252 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2253 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2254 {
2255 struct i40e_pf *pf;
2256
2257 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2258 return 0;
2259
2260 /* Tx timestamps cannot be sampled when doing TSO */
2261 if (tx_flags & I40E_TX_FLAGS_TSO)
2262 return 0;
2263
2264 /* only timestamp the outbound packet if the user has requested it and
2265 * we are not already transmitting a packet to be timestamped
2266 */
2267 pf = i40e_netdev_to_pf(tx_ring->netdev);
2268 if (!(pf->flags & I40E_FLAG_PTP))
2269 return 0;
2270
2271 if (pf->ptp_tx &&
2272 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2273 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2274 pf->ptp_tx_skb = skb_get(skb);
2275 } else {
2276 return 0;
2277 }
2278
2279 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2280 I40E_TXD_CTX_QW1_CMD_SHIFT;
2281
2282 return 1;
2283 }
2284
2285 /**
2286 * i40e_tx_enable_csum - Enable Tx checksum offloads
2287 * @skb: send buffer
2288 * @tx_flags: pointer to Tx flags currently set
2289 * @td_cmd: Tx descriptor command bits to set
2290 * @td_offset: Tx descriptor header offsets to set
2291 * @cd_tunneling: ptr to context desc bits
2292 **/
2293 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2294 u32 *td_cmd, u32 *td_offset,
2295 struct i40e_ring *tx_ring,
2296 u32 *cd_tunneling)
2297 {
2298 struct ipv6hdr *this_ipv6_hdr;
2299 unsigned int this_tcp_hdrlen;
2300 struct iphdr *this_ip_hdr;
2301 u32 network_hdr_len;
2302 u8 l4_hdr = 0;
2303 struct udphdr *oudph;
2304 struct iphdr *oiph;
2305 u32 l4_tunnel = 0;
2306
2307 if (skb->encapsulation) {
2308 switch (ip_hdr(skb)->protocol) {
2309 case IPPROTO_UDP:
2310 oudph = udp_hdr(skb);
2311 oiph = ip_hdr(skb);
2312 l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
2313 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
2314 break;
2315 case IPPROTO_GRE:
2316 l4_tunnel = I40E_TXD_CTX_GRE_TUNNELING;
2317 break;
2318 default:
2319 return;
2320 }
2321 network_hdr_len = skb_inner_network_header_len(skb);
2322 this_ip_hdr = inner_ip_hdr(skb);
2323 this_ipv6_hdr = inner_ipv6_hdr(skb);
2324 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
2325
2326 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2327 if (*tx_flags & I40E_TX_FLAGS_TSO) {
2328 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
2329 ip_hdr(skb)->check = 0;
2330 } else {
2331 *cd_tunneling |=
2332 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2333 }
2334 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2335 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2336 if (*tx_flags & I40E_TX_FLAGS_TSO)
2337 ip_hdr(skb)->check = 0;
2338 }
2339
2340 /* Now set the ctx descriptor fields */
2341 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2342 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
2343 l4_tunnel |
2344 ((skb_inner_network_offset(skb) -
2345 skb_transport_offset(skb)) >> 1) <<
2346 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2347 if (this_ip_hdr->version == 6) {
2348 *tx_flags &= ~I40E_TX_FLAGS_IPV4;
2349 *tx_flags |= I40E_TX_FLAGS_IPV6;
2350 }
2351 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
2352 (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING) &&
2353 (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
2354 oudph->check = ~csum_tcpudp_magic(oiph->saddr,
2355 oiph->daddr,
2356 (skb->len - skb_transport_offset(skb)),
2357 IPPROTO_UDP, 0);
2358 *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2359 }
2360 } else {
2361 network_hdr_len = skb_network_header_len(skb);
2362 this_ip_hdr = ip_hdr(skb);
2363 this_ipv6_hdr = ipv6_hdr(skb);
2364 this_tcp_hdrlen = tcp_hdrlen(skb);
2365 }
2366
2367 /* Enable IP checksum offloads */
2368 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2369 l4_hdr = this_ip_hdr->protocol;
2370 /* the stack computes the IP header already, the only time we
2371 * need the hardware to recompute it is in the case of TSO.
2372 */
2373 if (*tx_flags & I40E_TX_FLAGS_TSO) {
2374 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2375 this_ip_hdr->check = 0;
2376 } else {
2377 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2378 }
2379 /* Now set the td_offset for IP header length */
2380 *td_offset = (network_hdr_len >> 2) <<
2381 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2382 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2383 l4_hdr = this_ipv6_hdr->nexthdr;
2384 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2385 /* Now set the td_offset for IP header length */
2386 *td_offset = (network_hdr_len >> 2) <<
2387 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2388 }
2389 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2390 *td_offset |= (skb_network_offset(skb) >> 1) <<
2391 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2392
2393 /* Enable L4 checksum offloads */
2394 switch (l4_hdr) {
2395 case IPPROTO_TCP:
2396 /* enable checksum offloads */
2397 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2398 *td_offset |= (this_tcp_hdrlen >> 2) <<
2399 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2400 break;
2401 case IPPROTO_SCTP:
2402 /* enable SCTP checksum offload */
2403 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2404 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2405 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2406 break;
2407 case IPPROTO_UDP:
2408 /* enable UDP checksum offload */
2409 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2410 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2411 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2412 break;
2413 default:
2414 break;
2415 }
2416 }
2417
2418 /**
2419 * i40e_create_tx_ctx Build the Tx context descriptor
2420 * @tx_ring: ring to create the descriptor on
2421 * @cd_type_cmd_tso_mss: Quad Word 1
2422 * @cd_tunneling: Quad Word 0 - bits 0-31
2423 * @cd_l2tag2: Quad Word 0 - bits 32-63
2424 **/
2425 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2426 const u64 cd_type_cmd_tso_mss,
2427 const u32 cd_tunneling, const u32 cd_l2tag2)
2428 {
2429 struct i40e_tx_context_desc *context_desc;
2430 int i = tx_ring->next_to_use;
2431
2432 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2433 !cd_tunneling && !cd_l2tag2)
2434 return;
2435
2436 /* grab the next descriptor */
2437 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2438
2439 i++;
2440 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2441
2442 /* cpu_to_le32 and assign to struct fields */
2443 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2444 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2445 context_desc->rsvd = cpu_to_le16(0);
2446 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2447 }
2448
2449 /**
2450 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2451 * @tx_ring: the ring to be checked
2452 * @size: the size buffer we want to assure is available
2453 *
2454 * Returns -EBUSY if a stop is needed, else 0
2455 **/
2456 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2457 {
2458 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2459 /* Memory barrier before checking head and tail */
2460 smp_mb();
2461
2462 /* Check again in a case another CPU has just made room available. */
2463 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2464 return -EBUSY;
2465
2466 /* A reprieve! - use start_queue because it doesn't call schedule */
2467 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2468 ++tx_ring->tx_stats.restart_queue;
2469 return 0;
2470 }
2471
2472 /**
2473 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2474 * @tx_ring: the ring to be checked
2475 * @size: the size buffer we want to assure is available
2476 *
2477 * Returns 0 if stop is not needed
2478 **/
2479 #ifdef I40E_FCOE
2480 inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2481 #else
2482 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2483 #endif
2484 {
2485 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2486 return 0;
2487 return __i40e_maybe_stop_tx(tx_ring, size);
2488 }
2489
2490 /**
2491 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2492 * @skb: send buffer
2493 * @tx_flags: collected send information
2494 *
2495 * Note: Our HW can't scatter-gather more than 8 fragments to build
2496 * a packet on the wire and so we need to figure out the cases where we
2497 * need to linearize the skb.
2498 **/
2499 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
2500 {
2501 struct skb_frag_struct *frag;
2502 bool linearize = false;
2503 unsigned int size = 0;
2504 u16 num_frags;
2505 u16 gso_segs;
2506
2507 num_frags = skb_shinfo(skb)->nr_frags;
2508 gso_segs = skb_shinfo(skb)->gso_segs;
2509
2510 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2511 u16 j = 0;
2512
2513 if (num_frags < (I40E_MAX_BUFFER_TXD))
2514 goto linearize_chk_done;
2515 /* try the simple math, if we have too many frags per segment */
2516 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2517 I40E_MAX_BUFFER_TXD) {
2518 linearize = true;
2519 goto linearize_chk_done;
2520 }
2521 frag = &skb_shinfo(skb)->frags[0];
2522 /* we might still have more fragments per segment */
2523 do {
2524 size += skb_frag_size(frag);
2525 frag++; j++;
2526 if ((size >= skb_shinfo(skb)->gso_size) &&
2527 (j < I40E_MAX_BUFFER_TXD)) {
2528 size = (size % skb_shinfo(skb)->gso_size);
2529 j = (size) ? 1 : 0;
2530 }
2531 if (j == I40E_MAX_BUFFER_TXD) {
2532 linearize = true;
2533 break;
2534 }
2535 num_frags--;
2536 } while (num_frags);
2537 } else {
2538 if (num_frags >= I40E_MAX_BUFFER_TXD)
2539 linearize = true;
2540 }
2541
2542 linearize_chk_done:
2543 return linearize;
2544 }
2545
2546 /**
2547 * i40e_tx_map - Build the Tx descriptor
2548 * @tx_ring: ring to send buffer on
2549 * @skb: send buffer
2550 * @first: first buffer info buffer to use
2551 * @tx_flags: collected send information
2552 * @hdr_len: size of the packet header
2553 * @td_cmd: the command field in the descriptor
2554 * @td_offset: offset for checksum or crc
2555 **/
2556 #ifdef I40E_FCOE
2557 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2558 struct i40e_tx_buffer *first, u32 tx_flags,
2559 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2560 #else
2561 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2562 struct i40e_tx_buffer *first, u32 tx_flags,
2563 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2564 #endif
2565 {
2566 unsigned int data_len = skb->data_len;
2567 unsigned int size = skb_headlen(skb);
2568 struct skb_frag_struct *frag;
2569 struct i40e_tx_buffer *tx_bi;
2570 struct i40e_tx_desc *tx_desc;
2571 u16 i = tx_ring->next_to_use;
2572 u32 td_tag = 0;
2573 dma_addr_t dma;
2574 u16 gso_segs;
2575 u16 desc_count = 0;
2576 bool tail_bump = true;
2577 bool do_rs = false;
2578
2579 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2580 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2581 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2582 I40E_TX_FLAGS_VLAN_SHIFT;
2583 }
2584
2585 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2586 gso_segs = skb_shinfo(skb)->gso_segs;
2587 else
2588 gso_segs = 1;
2589
2590 /* multiply data chunks by size of headers */
2591 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2592 first->gso_segs = gso_segs;
2593 first->skb = skb;
2594 first->tx_flags = tx_flags;
2595
2596 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2597
2598 tx_desc = I40E_TX_DESC(tx_ring, i);
2599 tx_bi = first;
2600
2601 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2602 if (dma_mapping_error(tx_ring->dev, dma))
2603 goto dma_error;
2604
2605 /* record length, and DMA address */
2606 dma_unmap_len_set(tx_bi, len, size);
2607 dma_unmap_addr_set(tx_bi, dma, dma);
2608
2609 tx_desc->buffer_addr = cpu_to_le64(dma);
2610
2611 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2612 tx_desc->cmd_type_offset_bsz =
2613 build_ctob(td_cmd, td_offset,
2614 I40E_MAX_DATA_PER_TXD, td_tag);
2615
2616 tx_desc++;
2617 i++;
2618 desc_count++;
2619
2620 if (i == tx_ring->count) {
2621 tx_desc = I40E_TX_DESC(tx_ring, 0);
2622 i = 0;
2623 }
2624
2625 dma += I40E_MAX_DATA_PER_TXD;
2626 size -= I40E_MAX_DATA_PER_TXD;
2627
2628 tx_desc->buffer_addr = cpu_to_le64(dma);
2629 }
2630
2631 if (likely(!data_len))
2632 break;
2633
2634 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2635 size, td_tag);
2636
2637 tx_desc++;
2638 i++;
2639 desc_count++;
2640
2641 if (i == tx_ring->count) {
2642 tx_desc = I40E_TX_DESC(tx_ring, 0);
2643 i = 0;
2644 }
2645
2646 size = skb_frag_size(frag);
2647 data_len -= size;
2648
2649 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2650 DMA_TO_DEVICE);
2651
2652 tx_bi = &tx_ring->tx_bi[i];
2653 }
2654
2655 /* set next_to_watch value indicating a packet is present */
2656 first->next_to_watch = tx_desc;
2657
2658 i++;
2659 if (i == tx_ring->count)
2660 i = 0;
2661
2662 tx_ring->next_to_use = i;
2663
2664 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2665 tx_ring->queue_index),
2666 first->bytecount);
2667 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2668
2669 /* Algorithm to optimize tail and RS bit setting:
2670 * if xmit_more is supported
2671 * if xmit_more is true
2672 * do not update tail and do not mark RS bit.
2673 * if xmit_more is false and last xmit_more was false
2674 * if every packet spanned less than 4 desc
2675 * then set RS bit on 4th packet and update tail
2676 * on every packet
2677 * else
2678 * update tail and set RS bit on every packet.
2679 * if xmit_more is false and last_xmit_more was true
2680 * update tail and set RS bit.
2681 *
2682 * Optimization: wmb to be issued only in case of tail update.
2683 * Also optimize the Descriptor WB path for RS bit with the same
2684 * algorithm.
2685 *
2686 * Note: If there are less than 4 packets
2687 * pending and interrupts were disabled the service task will
2688 * trigger a force WB.
2689 */
2690 if (skb->xmit_more &&
2691 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2692 tx_ring->queue_index))) {
2693 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2694 tail_bump = false;
2695 } else if (!skb->xmit_more &&
2696 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2697 tx_ring->queue_index)) &&
2698 (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2699 (tx_ring->packet_stride < WB_STRIDE) &&
2700 (desc_count < WB_STRIDE)) {
2701 tx_ring->packet_stride++;
2702 } else {
2703 tx_ring->packet_stride = 0;
2704 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2705 do_rs = true;
2706 }
2707 if (do_rs)
2708 tx_ring->packet_stride = 0;
2709
2710 tx_desc->cmd_type_offset_bsz =
2711 build_ctob(td_cmd, td_offset, size, td_tag) |
2712 cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2713 I40E_TX_DESC_CMD_EOP) <<
2714 I40E_TXD_QW1_CMD_SHIFT);
2715
2716 /* notify HW of packet */
2717 if (!tail_bump)
2718 prefetchw(tx_desc + 1);
2719
2720 if (tail_bump) {
2721 /* Force memory writes to complete before letting h/w
2722 * know there are new descriptors to fetch. (Only
2723 * applicable for weak-ordered memory model archs,
2724 * such as IA-64).
2725 */
2726 wmb();
2727 writel(i, tx_ring->tail);
2728 }
2729
2730 return;
2731
2732 dma_error:
2733 dev_info(tx_ring->dev, "TX DMA map failed\n");
2734
2735 /* clear dma mappings for failed tx_bi map */
2736 for (;;) {
2737 tx_bi = &tx_ring->tx_bi[i];
2738 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2739 if (tx_bi == first)
2740 break;
2741 if (i == 0)
2742 i = tx_ring->count;
2743 i--;
2744 }
2745
2746 tx_ring->next_to_use = i;
2747 }
2748
2749 /**
2750 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2751 * @skb: send buffer
2752 * @tx_ring: ring to send buffer on
2753 *
2754 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2755 * there is not enough descriptors available in this ring since we need at least
2756 * one descriptor.
2757 **/
2758 #ifdef I40E_FCOE
2759 inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2760 struct i40e_ring *tx_ring)
2761 #else
2762 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2763 struct i40e_ring *tx_ring)
2764 #endif
2765 {
2766 unsigned int f;
2767 int count = 0;
2768
2769 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2770 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2771 * + 4 desc gap to avoid the cache line where head is,
2772 * + 1 desc for context descriptor,
2773 * otherwise try next time
2774 */
2775 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2776 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2777
2778 count += TXD_USE_COUNT(skb_headlen(skb));
2779 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2780 tx_ring->tx_stats.tx_busy++;
2781 return 0;
2782 }
2783 return count;
2784 }
2785
2786 /**
2787 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2788 * @skb: send buffer
2789 * @tx_ring: ring to send buffer on
2790 *
2791 * Returns NETDEV_TX_OK if sent, else an error code
2792 **/
2793 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2794 struct i40e_ring *tx_ring)
2795 {
2796 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2797 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2798 struct i40e_tx_buffer *first;
2799 u32 td_offset = 0;
2800 u32 tx_flags = 0;
2801 __be16 protocol;
2802 u32 td_cmd = 0;
2803 u8 hdr_len = 0;
2804 int tsyn;
2805 int tso;
2806
2807 if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2808 return NETDEV_TX_BUSY;
2809
2810 /* prepare the xmit flags */
2811 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2812 goto out_drop;
2813
2814 /* obtain protocol of skb */
2815 protocol = vlan_get_protocol(skb);
2816
2817 /* record the location of the first descriptor for this packet */
2818 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2819
2820 /* setup IPv4/IPv6 offloads */
2821 if (protocol == htons(ETH_P_IP))
2822 tx_flags |= I40E_TX_FLAGS_IPV4;
2823 else if (protocol == htons(ETH_P_IPV6))
2824 tx_flags |= I40E_TX_FLAGS_IPV6;
2825
2826 tso = i40e_tso(tx_ring, skb, &hdr_len,
2827 &cd_type_cmd_tso_mss, &cd_tunneling);
2828
2829 if (tso < 0)
2830 goto out_drop;
2831 else if (tso)
2832 tx_flags |= I40E_TX_FLAGS_TSO;
2833
2834 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2835
2836 if (tsyn)
2837 tx_flags |= I40E_TX_FLAGS_TSYN;
2838
2839 if (i40e_chk_linearize(skb, tx_flags)) {
2840 if (skb_linearize(skb))
2841 goto out_drop;
2842 tx_ring->tx_stats.tx_linearize++;
2843 }
2844 skb_tx_timestamp(skb);
2845
2846 /* always enable CRC insertion offload */
2847 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2848
2849 /* Always offload the checksum, since it's in the data descriptor */
2850 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2851 tx_flags |= I40E_TX_FLAGS_CSUM;
2852
2853 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2854 tx_ring, &cd_tunneling);
2855 }
2856
2857 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2858 cd_tunneling, cd_l2tag2);
2859
2860 /* Add Flow Director ATR if it's enabled.
2861 *
2862 * NOTE: this must always be directly before the data descriptor.
2863 */
2864 i40e_atr(tx_ring, skb, tx_flags, protocol);
2865
2866 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2867 td_cmd, td_offset);
2868
2869 return NETDEV_TX_OK;
2870
2871 out_drop:
2872 dev_kfree_skb_any(skb);
2873 return NETDEV_TX_OK;
2874 }
2875
2876 /**
2877 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2878 * @skb: send buffer
2879 * @netdev: network interface device structure
2880 *
2881 * Returns NETDEV_TX_OK if sent, else an error code
2882 **/
2883 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2884 {
2885 struct i40e_netdev_priv *np = netdev_priv(netdev);
2886 struct i40e_vsi *vsi = np->vsi;
2887 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2888
2889 /* hardware can't handle really short frames, hardware padding works
2890 * beyond this point
2891 */
2892 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2893 return NETDEV_TX_OK;
2894
2895 return i40e_xmit_frame_ring(skb, tx_ring);
2896 }
This page took 0.089453 seconds and 4 git commands to generate.