Merge branch 'akpm' (patches from Andrew Morton)
[deliverable/linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * The full GNU General Public License is included in this distribution in
20 * the file called "COPYING".
21 *
22 * Contact Information:
23 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 *
26 ******************************************************************************/
27
28 #include "i40e.h"
29
30 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
31 u32 td_tag)
32 {
33 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
34 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
35 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
36 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
37 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
38 }
39
40 /**
41 * i40e_program_fdir_filter - Program a Flow Director filter
42 * @fdir_input: Packet data that will be filter parameters
43 * @pf: The pf pointer
44 * @add: True for add/update, False for remove
45 **/
46 int i40e_program_fdir_filter(struct i40e_fdir_data *fdir_data,
47 struct i40e_pf *pf, bool add)
48 {
49 struct i40e_filter_program_desc *fdir_desc;
50 struct i40e_tx_buffer *tx_buf;
51 struct i40e_tx_desc *tx_desc;
52 struct i40e_ring *tx_ring;
53 struct i40e_vsi *vsi;
54 struct device *dev;
55 dma_addr_t dma;
56 u32 td_cmd = 0;
57 u16 i;
58
59 /* find existing FDIR VSI */
60 vsi = NULL;
61 for (i = 0; i < pf->hw.func_caps.num_vsis; i++)
62 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
63 vsi = pf->vsi[i];
64 if (!vsi)
65 return -ENOENT;
66
67 tx_ring = &vsi->tx_rings[0];
68 dev = tx_ring->dev;
69
70 dma = dma_map_single(dev, fdir_data->raw_packet,
71 I40E_FDIR_MAX_RAW_PACKET_LOOKUP, DMA_TO_DEVICE);
72 if (dma_mapping_error(dev, dma))
73 goto dma_fail;
74
75 /* grab the next descriptor */
76 fdir_desc = I40E_TX_FDIRDESC(tx_ring, tx_ring->next_to_use);
77 tx_buf = &tx_ring->tx_bi[tx_ring->next_to_use];
78 tx_ring->next_to_use++;
79 if (tx_ring->next_to_use == tx_ring->count)
80 tx_ring->next_to_use = 0;
81
82 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32((fdir_data->q_index
83 << I40E_TXD_FLTR_QW0_QINDEX_SHIFT)
84 & I40E_TXD_FLTR_QW0_QINDEX_MASK);
85
86 fdir_desc->qindex_flex_ptype_vsi |= cpu_to_le32((fdir_data->flex_off
87 << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT)
88 & I40E_TXD_FLTR_QW0_FLEXOFF_MASK);
89
90 fdir_desc->qindex_flex_ptype_vsi |= cpu_to_le32((fdir_data->pctype
91 << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT)
92 & I40E_TXD_FLTR_QW0_PCTYPE_MASK);
93
94 /* Use LAN VSI Id if not programmed by user */
95 if (fdir_data->dest_vsi == 0)
96 fdir_desc->qindex_flex_ptype_vsi |=
97 cpu_to_le32((pf->vsi[pf->lan_vsi]->id)
98 << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
99 else
100 fdir_desc->qindex_flex_ptype_vsi |=
101 cpu_to_le32((fdir_data->dest_vsi
102 << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT)
103 & I40E_TXD_FLTR_QW0_DEST_VSI_MASK);
104
105 fdir_desc->dtype_cmd_cntindex =
106 cpu_to_le32(I40E_TX_DESC_DTYPE_FILTER_PROG);
107
108 if (add)
109 fdir_desc->dtype_cmd_cntindex |= cpu_to_le32(
110 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE
111 << I40E_TXD_FLTR_QW1_PCMD_SHIFT);
112 else
113 fdir_desc->dtype_cmd_cntindex |= cpu_to_le32(
114 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE
115 << I40E_TXD_FLTR_QW1_PCMD_SHIFT);
116
117 fdir_desc->dtype_cmd_cntindex |= cpu_to_le32((fdir_data->dest_ctl
118 << I40E_TXD_FLTR_QW1_DEST_SHIFT)
119 & I40E_TXD_FLTR_QW1_DEST_MASK);
120
121 fdir_desc->dtype_cmd_cntindex |= cpu_to_le32(
122 (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT)
123 & I40E_TXD_FLTR_QW1_FD_STATUS_MASK);
124
125 if (fdir_data->cnt_index != 0) {
126 fdir_desc->dtype_cmd_cntindex |=
127 cpu_to_le32(I40E_TXD_FLTR_QW1_CNT_ENA_MASK);
128 fdir_desc->dtype_cmd_cntindex |=
129 cpu_to_le32((fdir_data->cnt_index
130 << I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT)
131 & I40E_TXD_FLTR_QW1_CNTINDEX_MASK);
132 }
133
134 fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
135
136 /* Now program a dummy descriptor */
137 tx_desc = I40E_TX_DESC(tx_ring, tx_ring->next_to_use);
138 tx_buf = &tx_ring->tx_bi[tx_ring->next_to_use];
139 tx_ring->next_to_use++;
140 if (tx_ring->next_to_use == tx_ring->count)
141 tx_ring->next_to_use = 0;
142
143 tx_desc->buffer_addr = cpu_to_le64(dma);
144 td_cmd = I40E_TX_DESC_CMD_EOP |
145 I40E_TX_DESC_CMD_RS |
146 I40E_TX_DESC_CMD_DUMMY;
147
148 tx_desc->cmd_type_offset_bsz =
149 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_LOOKUP, 0);
150
151 /* Mark the data descriptor to be watched */
152 tx_buf->next_to_watch = tx_desc;
153
154 /* Force memory writes to complete before letting h/w
155 * know there are new descriptors to fetch. (Only
156 * applicable for weak-ordered memory model archs,
157 * such as IA-64).
158 */
159 wmb();
160
161 writel(tx_ring->next_to_use, tx_ring->tail);
162 return 0;
163
164 dma_fail:
165 return -1;
166 }
167
168 /**
169 * i40e_fd_handle_status - check the Programming Status for FD
170 * @rx_ring: the Rx ring for this descriptor
171 * @qw: the descriptor data
172 * @prog_id: the id originally used for programming
173 *
174 * This is used to verify if the FD programming or invalidation
175 * requested by SW to the HW is successful or not and take actions accordingly.
176 **/
177 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u32 qw, u8 prog_id)
178 {
179 struct pci_dev *pdev = rx_ring->vsi->back->pdev;
180 u32 error;
181
182 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
183 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
184
185 /* for now just print the Status */
186 dev_info(&pdev->dev, "FD programming id %02x, Status %08x\n",
187 prog_id, error);
188 }
189
190 /**
191 * i40e_unmap_tx_resource - Release a Tx buffer
192 * @ring: the ring that owns the buffer
193 * @tx_buffer: the buffer to free
194 **/
195 static inline void i40e_unmap_tx_resource(struct i40e_ring *ring,
196 struct i40e_tx_buffer *tx_buffer)
197 {
198 if (tx_buffer->dma) {
199 if (tx_buffer->tx_flags & I40E_TX_FLAGS_MAPPED_AS_PAGE)
200 dma_unmap_page(ring->dev,
201 tx_buffer->dma,
202 tx_buffer->length,
203 DMA_TO_DEVICE);
204 else
205 dma_unmap_single(ring->dev,
206 tx_buffer->dma,
207 tx_buffer->length,
208 DMA_TO_DEVICE);
209 }
210 tx_buffer->dma = 0;
211 tx_buffer->time_stamp = 0;
212 }
213
214 /**
215 * i40e_clean_tx_ring - Free any empty Tx buffers
216 * @tx_ring: ring to be cleaned
217 **/
218 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
219 {
220 struct i40e_tx_buffer *tx_buffer;
221 unsigned long bi_size;
222 u16 i;
223
224 /* ring already cleared, nothing to do */
225 if (!tx_ring->tx_bi)
226 return;
227
228 /* Free all the Tx ring sk_buffs */
229 for (i = 0; i < tx_ring->count; i++) {
230 tx_buffer = &tx_ring->tx_bi[i];
231 i40e_unmap_tx_resource(tx_ring, tx_buffer);
232 if (tx_buffer->skb)
233 dev_kfree_skb_any(tx_buffer->skb);
234 tx_buffer->skb = NULL;
235 }
236
237 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
238 memset(tx_ring->tx_bi, 0, bi_size);
239
240 /* Zero out the descriptor ring */
241 memset(tx_ring->desc, 0, tx_ring->size);
242
243 tx_ring->next_to_use = 0;
244 tx_ring->next_to_clean = 0;
245 }
246
247 /**
248 * i40e_free_tx_resources - Free Tx resources per queue
249 * @tx_ring: Tx descriptor ring for a specific queue
250 *
251 * Free all transmit software resources
252 **/
253 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
254 {
255 i40e_clean_tx_ring(tx_ring);
256 kfree(tx_ring->tx_bi);
257 tx_ring->tx_bi = NULL;
258
259 if (tx_ring->desc) {
260 dma_free_coherent(tx_ring->dev, tx_ring->size,
261 tx_ring->desc, tx_ring->dma);
262 tx_ring->desc = NULL;
263 }
264 }
265
266 /**
267 * i40e_get_tx_pending - how many tx descriptors not processed
268 * @tx_ring: the ring of descriptors
269 *
270 * Since there is no access to the ring head register
271 * in XL710, we need to use our local copies
272 **/
273 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
274 {
275 u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
276 ? ring->next_to_use
277 : ring->next_to_use + ring->count);
278 return ntu - ring->next_to_clean;
279 }
280
281 /**
282 * i40e_check_tx_hang - Is there a hang in the Tx queue
283 * @tx_ring: the ring of descriptors
284 **/
285 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
286 {
287 u32 tx_pending = i40e_get_tx_pending(tx_ring);
288 bool ret = false;
289
290 clear_check_for_tx_hang(tx_ring);
291
292 /* Check for a hung queue, but be thorough. This verifies
293 * that a transmit has been completed since the previous
294 * check AND there is at least one packet pending. The
295 * ARMED bit is set to indicate a potential hang. The
296 * bit is cleared if a pause frame is received to remove
297 * false hang detection due to PFC or 802.3x frames. By
298 * requiring this to fail twice we avoid races with
299 * PFC clearing the ARMED bit and conditions where we
300 * run the check_tx_hang logic with a transmit completion
301 * pending but without time to complete it yet.
302 */
303 if ((tx_ring->tx_stats.tx_done_old == tx_ring->tx_stats.packets) &&
304 tx_pending) {
305 /* make sure it is true for two checks in a row */
306 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
307 &tx_ring->state);
308 } else {
309 /* update completed stats and disarm the hang check */
310 tx_ring->tx_stats.tx_done_old = tx_ring->tx_stats.packets;
311 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
312 }
313
314 return ret;
315 }
316
317 /**
318 * i40e_clean_tx_irq - Reclaim resources after transmit completes
319 * @tx_ring: tx ring to clean
320 * @budget: how many cleans we're allowed
321 *
322 * Returns true if there's any budget left (e.g. the clean is finished)
323 **/
324 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
325 {
326 u16 i = tx_ring->next_to_clean;
327 struct i40e_tx_buffer *tx_buf;
328 struct i40e_tx_desc *tx_desc;
329 unsigned int total_packets = 0;
330 unsigned int total_bytes = 0;
331
332 tx_buf = &tx_ring->tx_bi[i];
333 tx_desc = I40E_TX_DESC(tx_ring, i);
334
335 for (; budget; budget--) {
336 struct i40e_tx_desc *eop_desc;
337
338 eop_desc = tx_buf->next_to_watch;
339
340 /* if next_to_watch is not set then there is no work pending */
341 if (!eop_desc)
342 break;
343
344 /* if the descriptor isn't done, no work yet to do */
345 if (!(eop_desc->cmd_type_offset_bsz &
346 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
347 break;
348
349 /* count the packet as being completed */
350 tx_ring->tx_stats.completed++;
351 tx_buf->next_to_watch = NULL;
352 tx_buf->time_stamp = 0;
353
354 /* set memory barrier before eop_desc is verified */
355 rmb();
356
357 do {
358 i40e_unmap_tx_resource(tx_ring, tx_buf);
359
360 /* clear dtype status */
361 tx_desc->cmd_type_offset_bsz &=
362 ~cpu_to_le64(I40E_TXD_QW1_DTYPE_MASK);
363
364 if (likely(tx_desc == eop_desc)) {
365 eop_desc = NULL;
366
367 dev_kfree_skb_any(tx_buf->skb);
368 tx_buf->skb = NULL;
369
370 total_bytes += tx_buf->bytecount;
371 total_packets += tx_buf->gso_segs;
372 }
373
374 tx_buf++;
375 tx_desc++;
376 i++;
377 if (unlikely(i == tx_ring->count)) {
378 i = 0;
379 tx_buf = tx_ring->tx_bi;
380 tx_desc = I40E_TX_DESC(tx_ring, 0);
381 }
382 } while (eop_desc);
383 }
384
385 tx_ring->next_to_clean = i;
386 tx_ring->tx_stats.bytes += total_bytes;
387 tx_ring->tx_stats.packets += total_packets;
388 tx_ring->q_vector->tx.total_bytes += total_bytes;
389 tx_ring->q_vector->tx.total_packets += total_packets;
390 if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
391 /* schedule immediate reset if we believe we hung */
392 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
393 " VSI <%d>\n"
394 " Tx Queue <%d>\n"
395 " next_to_use <%x>\n"
396 " next_to_clean <%x>\n",
397 tx_ring->vsi->seid,
398 tx_ring->queue_index,
399 tx_ring->next_to_use, i);
400 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
401 " time_stamp <%lx>\n"
402 " jiffies <%lx>\n",
403 tx_ring->tx_bi[i].time_stamp, jiffies);
404
405 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
406
407 dev_info(tx_ring->dev,
408 "tx hang detected on queue %d, resetting adapter\n",
409 tx_ring->queue_index);
410
411 tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
412
413 /* the adapter is about to reset, no point in enabling stuff */
414 return true;
415 }
416
417 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
418 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
419 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
420 /* Make sure that anybody stopping the queue after this
421 * sees the new next_to_clean.
422 */
423 smp_mb();
424 if (__netif_subqueue_stopped(tx_ring->netdev,
425 tx_ring->queue_index) &&
426 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
427 netif_wake_subqueue(tx_ring->netdev,
428 tx_ring->queue_index);
429 ++tx_ring->tx_stats.restart_queue;
430 }
431 }
432
433 return budget > 0;
434 }
435
436 /**
437 * i40e_set_new_dynamic_itr - Find new ITR level
438 * @rc: structure containing ring performance data
439 *
440 * Stores a new ITR value based on packets and byte counts during
441 * the last interrupt. The advantage of per interrupt computation
442 * is faster updates and more accurate ITR for the current traffic
443 * pattern. Constants in this function were computed based on
444 * theoretical maximum wire speed and thresholds were set based on
445 * testing data as well as attempting to minimize response time
446 * while increasing bulk throughput.
447 **/
448 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
449 {
450 enum i40e_latency_range new_latency_range = rc->latency_range;
451 u32 new_itr = rc->itr;
452 int bytes_per_int;
453
454 if (rc->total_packets == 0 || !rc->itr)
455 return;
456
457 /* simple throttlerate management
458 * 0-10MB/s lowest (100000 ints/s)
459 * 10-20MB/s low (20000 ints/s)
460 * 20-1249MB/s bulk (8000 ints/s)
461 */
462 bytes_per_int = rc->total_bytes / rc->itr;
463 switch (rc->itr) {
464 case I40E_LOWEST_LATENCY:
465 if (bytes_per_int > 10)
466 new_latency_range = I40E_LOW_LATENCY;
467 break;
468 case I40E_LOW_LATENCY:
469 if (bytes_per_int > 20)
470 new_latency_range = I40E_BULK_LATENCY;
471 else if (bytes_per_int <= 10)
472 new_latency_range = I40E_LOWEST_LATENCY;
473 break;
474 case I40E_BULK_LATENCY:
475 if (bytes_per_int <= 20)
476 rc->latency_range = I40E_LOW_LATENCY;
477 break;
478 }
479
480 switch (new_latency_range) {
481 case I40E_LOWEST_LATENCY:
482 new_itr = I40E_ITR_100K;
483 break;
484 case I40E_LOW_LATENCY:
485 new_itr = I40E_ITR_20K;
486 break;
487 case I40E_BULK_LATENCY:
488 new_itr = I40E_ITR_8K;
489 break;
490 default:
491 break;
492 }
493
494 if (new_itr != rc->itr) {
495 /* do an exponential smoothing */
496 new_itr = (10 * new_itr * rc->itr) /
497 ((9 * new_itr) + rc->itr);
498 rc->itr = new_itr & I40E_MAX_ITR;
499 }
500
501 rc->total_bytes = 0;
502 rc->total_packets = 0;
503 }
504
505 /**
506 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
507 * @q_vector: the vector to adjust
508 **/
509 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
510 {
511 u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
512 struct i40e_hw *hw = &q_vector->vsi->back->hw;
513 u32 reg_addr;
514 u16 old_itr;
515
516 reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
517 old_itr = q_vector->rx.itr;
518 i40e_set_new_dynamic_itr(&q_vector->rx);
519 if (old_itr != q_vector->rx.itr)
520 wr32(hw, reg_addr, q_vector->rx.itr);
521
522 reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
523 old_itr = q_vector->tx.itr;
524 i40e_set_new_dynamic_itr(&q_vector->tx);
525 if (old_itr != q_vector->tx.itr)
526 wr32(hw, reg_addr, q_vector->tx.itr);
527
528 i40e_flush(hw);
529 }
530
531 /**
532 * i40e_clean_programming_status - clean the programming status descriptor
533 * @rx_ring: the rx ring that has this descriptor
534 * @rx_desc: the rx descriptor written back by HW
535 *
536 * Flow director should handle FD_FILTER_STATUS to check its filter programming
537 * status being successful or not and take actions accordingly. FCoE should
538 * handle its context/filter programming/invalidation status and take actions.
539 *
540 **/
541 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
542 union i40e_rx_desc *rx_desc)
543 {
544 u64 qw;
545 u8 id;
546
547 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
548 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
549 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
550
551 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
552 i40e_fd_handle_status(rx_ring, qw, id);
553 }
554
555 /**
556 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
557 * @tx_ring: the tx ring to set up
558 *
559 * Return 0 on success, negative on error
560 **/
561 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
562 {
563 struct device *dev = tx_ring->dev;
564 int bi_size;
565
566 if (!dev)
567 return -ENOMEM;
568
569 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
570 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
571 if (!tx_ring->tx_bi)
572 goto err;
573
574 /* round up to nearest 4K */
575 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
576 tx_ring->size = ALIGN(tx_ring->size, 4096);
577 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
578 &tx_ring->dma, GFP_KERNEL);
579 if (!tx_ring->desc) {
580 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
581 tx_ring->size);
582 goto err;
583 }
584
585 tx_ring->next_to_use = 0;
586 tx_ring->next_to_clean = 0;
587 return 0;
588
589 err:
590 kfree(tx_ring->tx_bi);
591 tx_ring->tx_bi = NULL;
592 return -ENOMEM;
593 }
594
595 /**
596 * i40e_clean_rx_ring - Free Rx buffers
597 * @rx_ring: ring to be cleaned
598 **/
599 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
600 {
601 struct device *dev = rx_ring->dev;
602 struct i40e_rx_buffer *rx_bi;
603 unsigned long bi_size;
604 u16 i;
605
606 /* ring already cleared, nothing to do */
607 if (!rx_ring->rx_bi)
608 return;
609
610 /* Free all the Rx ring sk_buffs */
611 for (i = 0; i < rx_ring->count; i++) {
612 rx_bi = &rx_ring->rx_bi[i];
613 if (rx_bi->dma) {
614 dma_unmap_single(dev,
615 rx_bi->dma,
616 rx_ring->rx_buf_len,
617 DMA_FROM_DEVICE);
618 rx_bi->dma = 0;
619 }
620 if (rx_bi->skb) {
621 dev_kfree_skb(rx_bi->skb);
622 rx_bi->skb = NULL;
623 }
624 if (rx_bi->page) {
625 if (rx_bi->page_dma) {
626 dma_unmap_page(dev,
627 rx_bi->page_dma,
628 PAGE_SIZE / 2,
629 DMA_FROM_DEVICE);
630 rx_bi->page_dma = 0;
631 }
632 __free_page(rx_bi->page);
633 rx_bi->page = NULL;
634 rx_bi->page_offset = 0;
635 }
636 }
637
638 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
639 memset(rx_ring->rx_bi, 0, bi_size);
640
641 /* Zero out the descriptor ring */
642 memset(rx_ring->desc, 0, rx_ring->size);
643
644 rx_ring->next_to_clean = 0;
645 rx_ring->next_to_use = 0;
646 }
647
648 /**
649 * i40e_free_rx_resources - Free Rx resources
650 * @rx_ring: ring to clean the resources from
651 *
652 * Free all receive software resources
653 **/
654 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
655 {
656 i40e_clean_rx_ring(rx_ring);
657 kfree(rx_ring->rx_bi);
658 rx_ring->rx_bi = NULL;
659
660 if (rx_ring->desc) {
661 dma_free_coherent(rx_ring->dev, rx_ring->size,
662 rx_ring->desc, rx_ring->dma);
663 rx_ring->desc = NULL;
664 }
665 }
666
667 /**
668 * i40e_setup_rx_descriptors - Allocate Rx descriptors
669 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
670 *
671 * Returns 0 on success, negative on failure
672 **/
673 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
674 {
675 struct device *dev = rx_ring->dev;
676 int bi_size;
677
678 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
679 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
680 if (!rx_ring->rx_bi)
681 goto err;
682
683 /* Round up to nearest 4K */
684 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
685 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
686 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
687 rx_ring->size = ALIGN(rx_ring->size, 4096);
688 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
689 &rx_ring->dma, GFP_KERNEL);
690
691 if (!rx_ring->desc) {
692 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
693 rx_ring->size);
694 goto err;
695 }
696
697 rx_ring->next_to_clean = 0;
698 rx_ring->next_to_use = 0;
699
700 return 0;
701 err:
702 kfree(rx_ring->rx_bi);
703 rx_ring->rx_bi = NULL;
704 return -ENOMEM;
705 }
706
707 /**
708 * i40e_release_rx_desc - Store the new tail and head values
709 * @rx_ring: ring to bump
710 * @val: new head index
711 **/
712 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
713 {
714 rx_ring->next_to_use = val;
715 /* Force memory writes to complete before letting h/w
716 * know there are new descriptors to fetch. (Only
717 * applicable for weak-ordered memory model archs,
718 * such as IA-64).
719 */
720 wmb();
721 writel(val, rx_ring->tail);
722 }
723
724 /**
725 * i40e_alloc_rx_buffers - Replace used receive buffers; packet split
726 * @rx_ring: ring to place buffers on
727 * @cleaned_count: number of buffers to replace
728 **/
729 void i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
730 {
731 u16 i = rx_ring->next_to_use;
732 union i40e_rx_desc *rx_desc;
733 struct i40e_rx_buffer *bi;
734 struct sk_buff *skb;
735
736 /* do nothing if no valid netdev defined */
737 if (!rx_ring->netdev || !cleaned_count)
738 return;
739
740 while (cleaned_count--) {
741 rx_desc = I40E_RX_DESC(rx_ring, i);
742 bi = &rx_ring->rx_bi[i];
743 skb = bi->skb;
744
745 if (!skb) {
746 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
747 rx_ring->rx_buf_len);
748 if (!skb) {
749 rx_ring->rx_stats.alloc_rx_buff_failed++;
750 goto no_buffers;
751 }
752 /* initialize queue mapping */
753 skb_record_rx_queue(skb, rx_ring->queue_index);
754 bi->skb = skb;
755 }
756
757 if (!bi->dma) {
758 bi->dma = dma_map_single(rx_ring->dev,
759 skb->data,
760 rx_ring->rx_buf_len,
761 DMA_FROM_DEVICE);
762 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
763 rx_ring->rx_stats.alloc_rx_buff_failed++;
764 bi->dma = 0;
765 goto no_buffers;
766 }
767 }
768
769 if (ring_is_ps_enabled(rx_ring)) {
770 if (!bi->page) {
771 bi->page = alloc_page(GFP_ATOMIC);
772 if (!bi->page) {
773 rx_ring->rx_stats.alloc_rx_page_failed++;
774 goto no_buffers;
775 }
776 }
777
778 if (!bi->page_dma) {
779 /* use a half page if we're re-using */
780 bi->page_offset ^= PAGE_SIZE / 2;
781 bi->page_dma = dma_map_page(rx_ring->dev,
782 bi->page,
783 bi->page_offset,
784 PAGE_SIZE / 2,
785 DMA_FROM_DEVICE);
786 if (dma_mapping_error(rx_ring->dev,
787 bi->page_dma)) {
788 rx_ring->rx_stats.alloc_rx_page_failed++;
789 bi->page_dma = 0;
790 goto no_buffers;
791 }
792 }
793
794 /* Refresh the desc even if buffer_addrs didn't change
795 * because each write-back erases this info.
796 */
797 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
798 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
799 } else {
800 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
801 rx_desc->read.hdr_addr = 0;
802 }
803 i++;
804 if (i == rx_ring->count)
805 i = 0;
806 }
807
808 no_buffers:
809 if (rx_ring->next_to_use != i)
810 i40e_release_rx_desc(rx_ring, i);
811 }
812
813 /**
814 * i40e_receive_skb - Send a completed packet up the stack
815 * @rx_ring: rx ring in play
816 * @skb: packet to send up
817 * @vlan_tag: vlan tag for packet
818 **/
819 static void i40e_receive_skb(struct i40e_ring *rx_ring,
820 struct sk_buff *skb, u16 vlan_tag)
821 {
822 struct i40e_q_vector *q_vector = rx_ring->q_vector;
823 struct i40e_vsi *vsi = rx_ring->vsi;
824 u64 flags = vsi->back->flags;
825
826 if (vlan_tag & VLAN_VID_MASK)
827 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
828
829 if (flags & I40E_FLAG_IN_NETPOLL)
830 netif_rx(skb);
831 else
832 napi_gro_receive(&q_vector->napi, skb);
833 }
834
835 /**
836 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
837 * @vsi: the VSI we care about
838 * @skb: skb currently being received and modified
839 * @rx_status: status value of last descriptor in packet
840 * @rx_error: error value of last descriptor in packet
841 **/
842 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
843 struct sk_buff *skb,
844 u32 rx_status,
845 u32 rx_error)
846 {
847 skb->ip_summed = CHECKSUM_NONE;
848
849 /* Rx csum enabled and ip headers found? */
850 if (!(vsi->netdev->features & NETIF_F_RXCSUM &&
851 rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
852 return;
853
854 /* IP or L4 checksum error */
855 if (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
856 (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))) {
857 vsi->back->hw_csum_rx_error++;
858 return;
859 }
860
861 skb->ip_summed = CHECKSUM_UNNECESSARY;
862 }
863
864 /**
865 * i40e_rx_hash - returns the hash value from the Rx descriptor
866 * @ring: descriptor ring
867 * @rx_desc: specific descriptor
868 **/
869 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
870 union i40e_rx_desc *rx_desc)
871 {
872 if (ring->netdev->features & NETIF_F_RXHASH) {
873 if ((le64_to_cpu(rx_desc->wb.qword1.status_error_len) >>
874 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
875 I40E_RX_DESC_FLTSTAT_RSS_HASH)
876 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
877 }
878 return 0;
879 }
880
881 /**
882 * i40e_clean_rx_irq - Reclaim resources after receive completes
883 * @rx_ring: rx ring to clean
884 * @budget: how many cleans we're allowed
885 *
886 * Returns true if there's any budget left (e.g. the clean is finished)
887 **/
888 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
889 {
890 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
891 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
892 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
893 const int current_node = numa_node_id();
894 struct i40e_vsi *vsi = rx_ring->vsi;
895 u16 i = rx_ring->next_to_clean;
896 union i40e_rx_desc *rx_desc;
897 u32 rx_error, rx_status;
898 u64 qword;
899
900 rx_desc = I40E_RX_DESC(rx_ring, i);
901 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
902 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK)
903 >> I40E_RXD_QW1_STATUS_SHIFT;
904
905 while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
906 union i40e_rx_desc *next_rxd;
907 struct i40e_rx_buffer *rx_bi;
908 struct sk_buff *skb;
909 u16 vlan_tag;
910 if (i40e_rx_is_programming_status(qword)) {
911 i40e_clean_programming_status(rx_ring, rx_desc);
912 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
913 goto next_desc;
914 }
915 rx_bi = &rx_ring->rx_bi[i];
916 skb = rx_bi->skb;
917 prefetch(skb->data);
918
919 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK)
920 >> I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
921 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK)
922 >> I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
923 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK)
924 >> I40E_RXD_QW1_LENGTH_SPH_SHIFT;
925
926 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK)
927 >> I40E_RXD_QW1_ERROR_SHIFT;
928 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
929 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
930
931 rx_bi->skb = NULL;
932
933 /* This memory barrier is needed to keep us from reading
934 * any other fields out of the rx_desc until we know the
935 * STATUS_DD bit is set
936 */
937 rmb();
938
939 /* Get the header and possibly the whole packet
940 * If this is an skb from previous receive dma will be 0
941 */
942 if (rx_bi->dma) {
943 u16 len;
944
945 if (rx_hbo)
946 len = I40E_RX_HDR_SIZE;
947 else if (rx_sph)
948 len = rx_header_len;
949 else if (rx_packet_len)
950 len = rx_packet_len; /* 1buf/no split found */
951 else
952 len = rx_header_len; /* split always mode */
953
954 skb_put(skb, len);
955 dma_unmap_single(rx_ring->dev,
956 rx_bi->dma,
957 rx_ring->rx_buf_len,
958 DMA_FROM_DEVICE);
959 rx_bi->dma = 0;
960 }
961
962 /* Get the rest of the data if this was a header split */
963 if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
964
965 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
966 rx_bi->page,
967 rx_bi->page_offset,
968 rx_packet_len);
969
970 skb->len += rx_packet_len;
971 skb->data_len += rx_packet_len;
972 skb->truesize += rx_packet_len;
973
974 if ((page_count(rx_bi->page) == 1) &&
975 (page_to_nid(rx_bi->page) == current_node))
976 get_page(rx_bi->page);
977 else
978 rx_bi->page = NULL;
979
980 dma_unmap_page(rx_ring->dev,
981 rx_bi->page_dma,
982 PAGE_SIZE / 2,
983 DMA_FROM_DEVICE);
984 rx_bi->page_dma = 0;
985 }
986 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
987
988 if (unlikely(
989 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
990 struct i40e_rx_buffer *next_buffer;
991
992 next_buffer = &rx_ring->rx_bi[i];
993
994 if (ring_is_ps_enabled(rx_ring)) {
995 rx_bi->skb = next_buffer->skb;
996 rx_bi->dma = next_buffer->dma;
997 next_buffer->skb = skb;
998 next_buffer->dma = 0;
999 }
1000 rx_ring->rx_stats.non_eop_descs++;
1001 goto next_desc;
1002 }
1003
1004 /* ERR_MASK will only have valid bits if EOP set */
1005 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1006 dev_kfree_skb_any(skb);
1007 goto next_desc;
1008 }
1009
1010 skb->rxhash = i40e_rx_hash(rx_ring, rx_desc);
1011 i40e_rx_checksum(vsi, skb, rx_status, rx_error);
1012
1013 /* probably a little skewed due to removing CRC */
1014 total_rx_bytes += skb->len;
1015 total_rx_packets++;
1016
1017 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1018 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1019 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1020 : 0;
1021 i40e_receive_skb(rx_ring, skb, vlan_tag);
1022
1023 rx_ring->netdev->last_rx = jiffies;
1024 budget--;
1025 next_desc:
1026 rx_desc->wb.qword1.status_error_len = 0;
1027 if (!budget)
1028 break;
1029
1030 cleaned_count++;
1031 /* return some buffers to hardware, one at a time is too slow */
1032 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1033 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1034 cleaned_count = 0;
1035 }
1036
1037 /* use prefetched values */
1038 rx_desc = next_rxd;
1039 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1040 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK)
1041 >> I40E_RXD_QW1_STATUS_SHIFT;
1042 }
1043
1044 rx_ring->next_to_clean = i;
1045 rx_ring->rx_stats.packets += total_rx_packets;
1046 rx_ring->rx_stats.bytes += total_rx_bytes;
1047 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1048 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1049
1050 if (cleaned_count)
1051 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1052
1053 return budget > 0;
1054 }
1055
1056 /**
1057 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1058 * @napi: napi struct with our devices info in it
1059 * @budget: amount of work driver is allowed to do this pass, in packets
1060 *
1061 * This function will clean all queues associated with a q_vector.
1062 *
1063 * Returns the amount of work done
1064 **/
1065 int i40e_napi_poll(struct napi_struct *napi, int budget)
1066 {
1067 struct i40e_q_vector *q_vector =
1068 container_of(napi, struct i40e_q_vector, napi);
1069 struct i40e_vsi *vsi = q_vector->vsi;
1070 bool clean_complete = true;
1071 int budget_per_ring;
1072 int i;
1073
1074 if (test_bit(__I40E_DOWN, &vsi->state)) {
1075 napi_complete(napi);
1076 return 0;
1077 }
1078
1079 /* We attempt to distribute budget to each Rx queue fairly, but don't
1080 * allow the budget to go below 1 because that would exit polling early.
1081 * Since the actual Tx work is minimal, we can give the Tx a larger
1082 * budget and be more aggressive about cleaning up the Tx descriptors.
1083 */
1084 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1085 for (i = 0; i < q_vector->num_ringpairs; i++) {
1086 clean_complete &= i40e_clean_tx_irq(q_vector->tx.ring[i],
1087 vsi->work_limit);
1088 clean_complete &= i40e_clean_rx_irq(q_vector->rx.ring[i],
1089 budget_per_ring);
1090 }
1091
1092 /* If work not completed, return budget and polling will return */
1093 if (!clean_complete)
1094 return budget;
1095
1096 /* Work is done so exit the polling mode and re-enable the interrupt */
1097 napi_complete(napi);
1098 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1099 ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1100 i40e_update_dynamic_itr(q_vector);
1101
1102 if (!test_bit(__I40E_DOWN, &vsi->state)) {
1103 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1104 i40e_irq_dynamic_enable(vsi,
1105 q_vector->v_idx + vsi->base_vector);
1106 } else {
1107 struct i40e_hw *hw = &vsi->back->hw;
1108 /* We re-enable the queue 0 cause, but
1109 * don't worry about dynamic_enable
1110 * because we left it on for the other
1111 * possible interrupts during napi
1112 */
1113 u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1114 qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1115 wr32(hw, I40E_QINT_RQCTL(0), qval);
1116
1117 qval = rd32(hw, I40E_QINT_TQCTL(0));
1118 qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1119 wr32(hw, I40E_QINT_TQCTL(0), qval);
1120 i40e_flush(hw);
1121 }
1122 }
1123
1124 return 0;
1125 }
1126
1127 /**
1128 * i40e_atr - Add a Flow Director ATR filter
1129 * @tx_ring: ring to add programming descriptor to
1130 * @skb: send buffer
1131 * @flags: send flags
1132 * @protocol: wire protocol
1133 **/
1134 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1135 u32 flags, __be16 protocol)
1136 {
1137 struct i40e_filter_program_desc *fdir_desc;
1138 struct i40e_pf *pf = tx_ring->vsi->back;
1139 union {
1140 unsigned char *network;
1141 struct iphdr *ipv4;
1142 struct ipv6hdr *ipv6;
1143 } hdr;
1144 struct tcphdr *th;
1145 unsigned int hlen;
1146 u32 flex_ptype, dtype_cmd;
1147
1148 /* make sure ATR is enabled */
1149 if (!(pf->flags & I40E_FLAG_FDIR_ATR_ENABLED))
1150 return;
1151
1152 /* if sampling is disabled do nothing */
1153 if (!tx_ring->atr_sample_rate)
1154 return;
1155
1156 tx_ring->atr_count++;
1157
1158 /* snag network header to get L4 type and address */
1159 hdr.network = skb_network_header(skb);
1160
1161 /* Currently only IPv4/IPv6 with TCP is supported */
1162 if (protocol == htons(ETH_P_IP)) {
1163 if (hdr.ipv4->protocol != IPPROTO_TCP)
1164 return;
1165
1166 /* access ihl as a u8 to avoid unaligned access on ia64 */
1167 hlen = (hdr.network[0] & 0x0F) << 2;
1168 } else if (protocol == htons(ETH_P_IPV6)) {
1169 if (hdr.ipv6->nexthdr != IPPROTO_TCP)
1170 return;
1171
1172 hlen = sizeof(struct ipv6hdr);
1173 } else {
1174 return;
1175 }
1176
1177 th = (struct tcphdr *)(hdr.network + hlen);
1178
1179 /* sample on all syn/fin packets or once every atr sample rate */
1180 if (!th->fin && !th->syn && (tx_ring->atr_count < tx_ring->atr_sample_rate))
1181 return;
1182
1183 tx_ring->atr_count = 0;
1184
1185 /* grab the next descriptor */
1186 fdir_desc = I40E_TX_FDIRDESC(tx_ring, tx_ring->next_to_use);
1187 tx_ring->next_to_use++;
1188 if (tx_ring->next_to_use == tx_ring->count)
1189 tx_ring->next_to_use = 0;
1190
1191 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
1192 I40E_TXD_FLTR_QW0_QINDEX_MASK;
1193 flex_ptype |= (protocol == htons(ETH_P_IP)) ?
1194 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
1195 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
1196 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
1197 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
1198
1199 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
1200
1201 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
1202
1203 dtype_cmd |= th->fin ?
1204 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
1205 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
1206 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
1207 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
1208
1209 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
1210 I40E_TXD_FLTR_QW1_DEST_SHIFT;
1211
1212 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
1213 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
1214
1215 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
1216 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
1217 }
1218
1219 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
1220 /**
1221 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1222 * @skb: send buffer
1223 * @tx_ring: ring to send buffer on
1224 * @flags: the tx flags to be set
1225 *
1226 * Checks the skb and set up correspondingly several generic transmit flags
1227 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1228 *
1229 * Returns error code indicate the frame should be dropped upon error and the
1230 * otherwise returns 0 to indicate the flags has been set properly.
1231 **/
1232 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1233 struct i40e_ring *tx_ring,
1234 u32 *flags)
1235 {
1236 __be16 protocol = skb->protocol;
1237 u32 tx_flags = 0;
1238
1239 /* if we have a HW VLAN tag being added, default to the HW one */
1240 if (vlan_tx_tag_present(skb)) {
1241 tx_flags |= vlan_tx_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1242 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1243 /* else if it is a SW VLAN, check the next protocol and store the tag */
1244 } else if (protocol == __constant_htons(ETH_P_8021Q)) {
1245 struct vlan_hdr *vhdr, _vhdr;
1246 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1247 if (!vhdr)
1248 return -EINVAL;
1249
1250 protocol = vhdr->h_vlan_encapsulated_proto;
1251 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1252 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1253 }
1254
1255 /* Insert 802.1p priority into VLAN header */
1256 if ((tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED) &&
1257 ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
1258 (skb->priority != TC_PRIO_CONTROL))) {
1259 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
1260 tx_flags |= (skb->priority & 0x7) <<
1261 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
1262 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
1263 struct vlan_ethhdr *vhdr;
1264 if (skb_header_cloned(skb) &&
1265 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1266 return -ENOMEM;
1267 vhdr = (struct vlan_ethhdr *)skb->data;
1268 vhdr->h_vlan_TCI = htons(tx_flags >>
1269 I40E_TX_FLAGS_VLAN_SHIFT);
1270 } else {
1271 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1272 }
1273 }
1274 *flags = tx_flags;
1275 return 0;
1276 }
1277
1278 /**
1279 * i40e_tx_csum - is checksum offload requested
1280 * @tx_ring: ptr to the ring to send
1281 * @skb: ptr to the skb we're sending
1282 * @tx_flags: the collected send information
1283 * @protocol: the send protocol
1284 *
1285 * Returns true if checksum offload is requested
1286 **/
1287 static bool i40e_tx_csum(struct i40e_ring *tx_ring, struct sk_buff *skb,
1288 u32 tx_flags, __be16 protocol)
1289 {
1290 if ((skb->ip_summed != CHECKSUM_PARTIAL) &&
1291 !(tx_flags & I40E_TX_FLAGS_TXSW)) {
1292 if (!(tx_flags & I40E_TX_FLAGS_HW_VLAN))
1293 return false;
1294 }
1295
1296 return skb->ip_summed == CHECKSUM_PARTIAL;
1297 }
1298
1299 /**
1300 * i40e_tso - set up the tso context descriptor
1301 * @tx_ring: ptr to the ring to send
1302 * @skb: ptr to the skb we're sending
1303 * @tx_flags: the collected send information
1304 * @protocol: the send protocol
1305 * @hdr_len: ptr to the size of the packet header
1306 * @cd_tunneling: ptr to context descriptor bits
1307 *
1308 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1309 **/
1310 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1311 u32 tx_flags, __be16 protocol, u8 *hdr_len,
1312 u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1313 {
1314 u32 cd_cmd, cd_tso_len, cd_mss;
1315 struct tcphdr *tcph;
1316 struct iphdr *iph;
1317 u32 l4len;
1318 int err;
1319 struct ipv6hdr *ipv6h;
1320
1321 if (!skb_is_gso(skb))
1322 return 0;
1323
1324 if (skb_header_cloned(skb)) {
1325 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1326 if (err)
1327 return err;
1328 }
1329
1330 if (protocol == __constant_htons(ETH_P_IP)) {
1331 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1332 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1333 iph->tot_len = 0;
1334 iph->check = 0;
1335 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1336 0, IPPROTO_TCP, 0);
1337 } else if (skb_is_gso_v6(skb)) {
1338
1339 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
1340 : ipv6_hdr(skb);
1341 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1342 ipv6h->payload_len = 0;
1343 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1344 0, IPPROTO_TCP, 0);
1345 }
1346
1347 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1348 *hdr_len = (skb->encapsulation
1349 ? (skb_inner_transport_header(skb) - skb->data)
1350 : skb_transport_offset(skb)) + l4len;
1351
1352 /* find the field values */
1353 cd_cmd = I40E_TX_CTX_DESC_TSO;
1354 cd_tso_len = skb->len - *hdr_len;
1355 cd_mss = skb_shinfo(skb)->gso_size;
1356 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT)
1357 | ((u64)cd_tso_len
1358 << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT)
1359 | ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1360 return 1;
1361 }
1362
1363 /**
1364 * i40e_tx_enable_csum - Enable Tx checksum offloads
1365 * @skb: send buffer
1366 * @tx_flags: Tx flags currently set
1367 * @td_cmd: Tx descriptor command bits to set
1368 * @td_offset: Tx descriptor header offsets to set
1369 * @cd_tunneling: ptr to context desc bits
1370 **/
1371 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1372 u32 *td_cmd, u32 *td_offset,
1373 struct i40e_ring *tx_ring,
1374 u32 *cd_tunneling)
1375 {
1376 struct ipv6hdr *this_ipv6_hdr;
1377 unsigned int this_tcp_hdrlen;
1378 struct iphdr *this_ip_hdr;
1379 u32 network_hdr_len;
1380 u8 l4_hdr = 0;
1381
1382 if (skb->encapsulation) {
1383 network_hdr_len = skb_inner_network_header_len(skb);
1384 this_ip_hdr = inner_ip_hdr(skb);
1385 this_ipv6_hdr = inner_ipv6_hdr(skb);
1386 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1387
1388 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1389
1390 if (tx_flags & I40E_TX_FLAGS_TSO) {
1391 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1392 ip_hdr(skb)->check = 0;
1393 } else {
1394 *cd_tunneling |=
1395 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1396 }
1397 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1398 if (tx_flags & I40E_TX_FLAGS_TSO) {
1399 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1400 ip_hdr(skb)->check = 0;
1401 } else {
1402 *cd_tunneling |=
1403 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1404 }
1405 }
1406
1407 /* Now set the ctx descriptor fields */
1408 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1409 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1410 I40E_TXD_CTX_UDP_TUNNELING |
1411 ((skb_inner_network_offset(skb) -
1412 skb_transport_offset(skb)) >> 1) <<
1413 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1414
1415 } else {
1416 network_hdr_len = skb_network_header_len(skb);
1417 this_ip_hdr = ip_hdr(skb);
1418 this_ipv6_hdr = ipv6_hdr(skb);
1419 this_tcp_hdrlen = tcp_hdrlen(skb);
1420 }
1421
1422 /* Enable IP checksum offloads */
1423 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1424 l4_hdr = this_ip_hdr->protocol;
1425 /* the stack computes the IP header already, the only time we
1426 * need the hardware to recompute it is in the case of TSO.
1427 */
1428 if (tx_flags & I40E_TX_FLAGS_TSO) {
1429 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1430 this_ip_hdr->check = 0;
1431 } else {
1432 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1433 }
1434 /* Now set the td_offset for IP header length */
1435 *td_offset = (network_hdr_len >> 2) <<
1436 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1437 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1438 l4_hdr = this_ipv6_hdr->nexthdr;
1439 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1440 /* Now set the td_offset for IP header length */
1441 *td_offset = (network_hdr_len >> 2) <<
1442 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1443 }
1444 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1445 *td_offset |= (skb_network_offset(skb) >> 1) <<
1446 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1447
1448 /* Enable L4 checksum offloads */
1449 switch (l4_hdr) {
1450 case IPPROTO_TCP:
1451 /* enable checksum offloads */
1452 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1453 *td_offset |= (this_tcp_hdrlen >> 2) <<
1454 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1455 break;
1456 case IPPROTO_SCTP:
1457 /* enable SCTP checksum offload */
1458 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1459 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1460 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1461 break;
1462 case IPPROTO_UDP:
1463 /* enable UDP checksum offload */
1464 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1465 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1466 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1467 break;
1468 default:
1469 break;
1470 }
1471 }
1472
1473 /**
1474 * i40e_create_tx_ctx Build the Tx context descriptor
1475 * @tx_ring: ring to create the descriptor on
1476 * @cd_type_cmd_tso_mss: Quad Word 1
1477 * @cd_tunneling: Quad Word 0 - bits 0-31
1478 * @cd_l2tag2: Quad Word 0 - bits 32-63
1479 **/
1480 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1481 const u64 cd_type_cmd_tso_mss,
1482 const u32 cd_tunneling, const u32 cd_l2tag2)
1483 {
1484 struct i40e_tx_context_desc *context_desc;
1485
1486 if (!cd_type_cmd_tso_mss && !cd_tunneling && !cd_l2tag2)
1487 return;
1488
1489 /* grab the next descriptor */
1490 context_desc = I40E_TX_CTXTDESC(tx_ring, tx_ring->next_to_use);
1491 tx_ring->next_to_use++;
1492 if (tx_ring->next_to_use == tx_ring->count)
1493 tx_ring->next_to_use = 0;
1494
1495 /* cpu_to_le32 and assign to struct fields */
1496 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1497 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1498 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1499 }
1500
1501 /**
1502 * i40e_tx_map - Build the Tx descriptor
1503 * @tx_ring: ring to send buffer on
1504 * @skb: send buffer
1505 * @first: first buffer info buffer to use
1506 * @tx_flags: collected send information
1507 * @hdr_len: size of the packet header
1508 * @td_cmd: the command field in the descriptor
1509 * @td_offset: offset for checksum or crc
1510 **/
1511 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1512 struct i40e_tx_buffer *first, u32 tx_flags,
1513 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1514 {
1515 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
1516 unsigned int data_len = skb->data_len;
1517 unsigned int size = skb_headlen(skb);
1518 struct device *dev = tx_ring->dev;
1519 u32 paylen = skb->len - hdr_len;
1520 u16 i = tx_ring->next_to_use;
1521 struct i40e_tx_buffer *tx_bi;
1522 struct i40e_tx_desc *tx_desc;
1523 u32 buf_offset = 0;
1524 u32 td_tag = 0;
1525 dma_addr_t dma;
1526 u16 gso_segs;
1527
1528 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1529 if (dma_mapping_error(dev, dma))
1530 goto dma_error;
1531
1532 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1533 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1534 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1535 I40E_TX_FLAGS_VLAN_SHIFT;
1536 }
1537
1538 tx_desc = I40E_TX_DESC(tx_ring, i);
1539 for (;;) {
1540 while (size > I40E_MAX_DATA_PER_TXD) {
1541 tx_desc->buffer_addr = cpu_to_le64(dma + buf_offset);
1542 tx_desc->cmd_type_offset_bsz =
1543 build_ctob(td_cmd, td_offset,
1544 I40E_MAX_DATA_PER_TXD, td_tag);
1545
1546 buf_offset += I40E_MAX_DATA_PER_TXD;
1547 size -= I40E_MAX_DATA_PER_TXD;
1548
1549 tx_desc++;
1550 i++;
1551 if (i == tx_ring->count) {
1552 tx_desc = I40E_TX_DESC(tx_ring, 0);
1553 i = 0;
1554 }
1555 }
1556
1557 tx_bi = &tx_ring->tx_bi[i];
1558 tx_bi->length = buf_offset + size;
1559 tx_bi->tx_flags = tx_flags;
1560 tx_bi->dma = dma;
1561
1562 tx_desc->buffer_addr = cpu_to_le64(dma + buf_offset);
1563 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1564 size, td_tag);
1565
1566 if (likely(!data_len))
1567 break;
1568
1569 size = skb_frag_size(frag);
1570 data_len -= size;
1571 buf_offset = 0;
1572 tx_flags |= I40E_TX_FLAGS_MAPPED_AS_PAGE;
1573
1574 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1575 if (dma_mapping_error(dev, dma))
1576 goto dma_error;
1577
1578 tx_desc++;
1579 i++;
1580 if (i == tx_ring->count) {
1581 tx_desc = I40E_TX_DESC(tx_ring, 0);
1582 i = 0;
1583 }
1584
1585 frag++;
1586 }
1587
1588 tx_desc->cmd_type_offset_bsz |=
1589 cpu_to_le64((u64)I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
1590
1591 i++;
1592 if (i == tx_ring->count)
1593 i = 0;
1594
1595 tx_ring->next_to_use = i;
1596
1597 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1598 gso_segs = skb_shinfo(skb)->gso_segs;
1599 else
1600 gso_segs = 1;
1601
1602 /* multiply data chunks by size of headers */
1603 tx_bi->bytecount = paylen + (gso_segs * hdr_len);
1604 tx_bi->gso_segs = gso_segs;
1605 tx_bi->skb = skb;
1606
1607 /* set the timestamp and next to watch values */
1608 first->time_stamp = jiffies;
1609 first->next_to_watch = tx_desc;
1610
1611 /* Force memory writes to complete before letting h/w
1612 * know there are new descriptors to fetch. (Only
1613 * applicable for weak-ordered memory model archs,
1614 * such as IA-64).
1615 */
1616 wmb();
1617
1618 writel(i, tx_ring->tail);
1619 return;
1620
1621 dma_error:
1622 dev_info(dev, "TX DMA map failed\n");
1623
1624 /* clear dma mappings for failed tx_bi map */
1625 for (;;) {
1626 tx_bi = &tx_ring->tx_bi[i];
1627 i40e_unmap_tx_resource(tx_ring, tx_bi);
1628 if (tx_bi == first)
1629 break;
1630 if (i == 0)
1631 i = tx_ring->count;
1632 i--;
1633 }
1634
1635 dev_kfree_skb_any(skb);
1636
1637 tx_ring->next_to_use = i;
1638 }
1639
1640 /**
1641 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
1642 * @tx_ring: the ring to be checked
1643 * @size: the size buffer we want to assure is available
1644 *
1645 * Returns -EBUSY if a stop is needed, else 0
1646 **/
1647 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1648 {
1649 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1650 smp_mb();
1651
1652 /* Check again in a case another CPU has just made room available. */
1653 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1654 return -EBUSY;
1655
1656 /* A reprieve! - use start_queue because it doesn't call schedule */
1657 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1658 ++tx_ring->tx_stats.restart_queue;
1659 return 0;
1660 }
1661
1662 /**
1663 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
1664 * @tx_ring: the ring to be checked
1665 * @size: the size buffer we want to assure is available
1666 *
1667 * Returns 0 if stop is not needed
1668 **/
1669 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1670 {
1671 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1672 return 0;
1673 return __i40e_maybe_stop_tx(tx_ring, size);
1674 }
1675
1676 /**
1677 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
1678 * @skb: send buffer
1679 * @tx_ring: ring to send buffer on
1680 *
1681 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1682 * there is not enough descriptors available in this ring since we need at least
1683 * one descriptor.
1684 **/
1685 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
1686 struct i40e_ring *tx_ring)
1687 {
1688 #if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
1689 unsigned int f;
1690 #endif
1691 int count = 0;
1692
1693 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1694 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1695 * + 2 desc gap to keep tail from touching head,
1696 * + 1 desc for context descriptor,
1697 * otherwise try next time
1698 */
1699 #if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
1700 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1701 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1702 #else
1703 count += skb_shinfo(skb)->nr_frags;
1704 #endif
1705 count += TXD_USE_COUNT(skb_headlen(skb));
1706 if (i40e_maybe_stop_tx(tx_ring, count + 3)) {
1707 tx_ring->tx_stats.tx_busy++;
1708 return 0;
1709 }
1710 return count;
1711 }
1712
1713 /**
1714 * i40e_xmit_frame_ring - Sends buffer on Tx ring
1715 * @skb: send buffer
1716 * @tx_ring: ring to send buffer on
1717 *
1718 * Returns NETDEV_TX_OK if sent, else an error code
1719 **/
1720 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1721 struct i40e_ring *tx_ring)
1722 {
1723 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1724 u32 cd_tunneling = 0, cd_l2tag2 = 0;
1725 struct i40e_tx_buffer *first;
1726 u32 td_offset = 0;
1727 u32 tx_flags = 0;
1728 __be16 protocol;
1729 u32 td_cmd = 0;
1730 u8 hdr_len = 0;
1731 int tso;
1732 if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
1733 return NETDEV_TX_BUSY;
1734
1735 /* prepare the xmit flags */
1736 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1737 goto out_drop;
1738
1739 /* obtain protocol of skb */
1740 protocol = skb->protocol;
1741
1742 /* record the location of the first descriptor for this packet */
1743 first = &tx_ring->tx_bi[tx_ring->next_to_use];
1744
1745 /* setup IPv4/IPv6 offloads */
1746 if (protocol == __constant_htons(ETH_P_IP))
1747 tx_flags |= I40E_TX_FLAGS_IPV4;
1748 else if (protocol == __constant_htons(ETH_P_IPV6))
1749 tx_flags |= I40E_TX_FLAGS_IPV6;
1750
1751 tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
1752 &cd_type_cmd_tso_mss, &cd_tunneling);
1753
1754 if (tso < 0)
1755 goto out_drop;
1756 else if (tso)
1757 tx_flags |= I40E_TX_FLAGS_TSO;
1758
1759 skb_tx_timestamp(skb);
1760
1761 /* Always offload the checksum, since it's in the data descriptor */
1762 if (i40e_tx_csum(tx_ring, skb, tx_flags, protocol))
1763 tx_flags |= I40E_TX_FLAGS_CSUM;
1764
1765 /* always enable offload insertion */
1766 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1767
1768 if (tx_flags & I40E_TX_FLAGS_CSUM)
1769 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
1770 tx_ring, &cd_tunneling);
1771
1772 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1773 cd_tunneling, cd_l2tag2);
1774
1775 /* Add Flow Director ATR if it's enabled.
1776 *
1777 * NOTE: this must always be directly before the data descriptor.
1778 */
1779 i40e_atr(tx_ring, skb, tx_flags, protocol);
1780
1781 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1782 td_cmd, td_offset);
1783
1784 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
1785
1786 return NETDEV_TX_OK;
1787
1788 out_drop:
1789 dev_kfree_skb_any(skb);
1790 return NETDEV_TX_OK;
1791 }
1792
1793 /**
1794 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1795 * @skb: send buffer
1796 * @netdev: network interface device structure
1797 *
1798 * Returns NETDEV_TX_OK if sent, else an error code
1799 **/
1800 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1801 {
1802 struct i40e_netdev_priv *np = netdev_priv(netdev);
1803 struct i40e_vsi *vsi = np->vsi;
1804 struct i40e_ring *tx_ring = &vsi->tx_rings[skb->queue_mapping];
1805
1806 /* hardware can't handle really short frames, hardware padding works
1807 * beyond this point
1808 */
1809 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1810 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1811 return NETDEV_TX_OK;
1812 skb->len = I40E_MIN_TX_LEN;
1813 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
1814 }
1815
1816 return i40e_xmit_frame_ring(skb, tx_ring);
1817 }
This page took 0.078238 seconds and 5 git commands to generate.