i40e: For VF reset (VFR and VFLR) add some more delay
[deliverable/linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2014 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33 u32 td_tag)
34 {
35 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
37 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45 * i40e_program_fdir_filter - Program a Flow Director filter
46 * @fdir_data: Packet data that will be filter parameters
47 * @raw_packet: the pre-allocated packet buffer for FDir
48 * @pf: The PF pointer
49 * @add: True for add/update, False for remove
50 **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52 struct i40e_pf *pf, bool add)
53 {
54 struct i40e_filter_program_desc *fdir_desc;
55 struct i40e_tx_buffer *tx_buf, *first;
56 struct i40e_tx_desc *tx_desc;
57 struct i40e_ring *tx_ring;
58 unsigned int fpt, dcc;
59 struct i40e_vsi *vsi;
60 struct device *dev;
61 dma_addr_t dma;
62 u32 td_cmd = 0;
63 u16 delay = 0;
64 u16 i;
65
66 /* find existing FDIR VSI */
67 vsi = NULL;
68 for (i = 0; i < pf->num_alloc_vsi; i++)
69 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70 vsi = pf->vsi[i];
71 if (!vsi)
72 return -ENOENT;
73
74 tx_ring = vsi->tx_rings[0];
75 dev = tx_ring->dev;
76
77 /* we need two descriptors to add/del a filter and we can wait */
78 do {
79 if (I40E_DESC_UNUSED(tx_ring) > 1)
80 break;
81 msleep_interruptible(1);
82 delay++;
83 } while (delay < I40E_FD_CLEAN_DELAY);
84
85 if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86 return -EAGAIN;
87
88 dma = dma_map_single(dev, raw_packet,
89 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90 if (dma_mapping_error(dev, dma))
91 goto dma_fail;
92
93 /* grab the next descriptor */
94 i = tx_ring->next_to_use;
95 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96 first = &tx_ring->tx_bi[i];
97 memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101 fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102 I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104 fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105 I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107 fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108 I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110 /* Use LAN VSI Id if not programmed by user */
111 if (fdir_data->dest_vsi == 0)
112 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114 else
115 fpt |= ((u32)fdir_data->dest_vsi <<
116 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117 I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119 dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121 if (add)
122 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124 else
125 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128 dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129 I40E_TXD_FLTR_QW1_DEST_MASK;
130
131 dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132 I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134 if (fdir_data->cnt_index != 0) {
135 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136 dcc |= ((u32)fdir_data->cnt_index <<
137 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139 }
140
141 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142 fdir_desc->rsvd = cpu_to_le32(0);
143 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144 fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146 /* Now program a dummy descriptor */
147 i = tx_ring->next_to_use;
148 tx_desc = I40E_TX_DESC(tx_ring, i);
149 tx_buf = &tx_ring->tx_bi[i];
150
151 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155 /* record length, and DMA address */
156 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157 dma_unmap_addr_set(tx_buf, dma, dma);
158
159 tx_desc->buffer_addr = cpu_to_le64(dma);
160 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163 tx_buf->raw_buf = (void *)raw_packet;
164
165 tx_desc->cmd_type_offset_bsz =
166 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168 /* set the timestamp */
169 tx_buf->time_stamp = jiffies;
170
171 /* Force memory writes to complete before letting h/w
172 * know there are new descriptors to fetch.
173 */
174 wmb();
175
176 /* Mark the data descriptor to be watched */
177 first->next_to_watch = tx_desc;
178
179 writel(tx_ring->next_to_use, tx_ring->tail);
180 return 0;
181
182 dma_fail:
183 return -1;
184 }
185
186 #define IP_HEADER_OFFSET 14
187 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
188 /**
189 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
190 * @vsi: pointer to the targeted VSI
191 * @fd_data: the flow director data required for the FDir descriptor
192 * @add: true adds a filter, false removes it
193 *
194 * Returns 0 if the filters were successfully added or removed
195 **/
196 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
197 struct i40e_fdir_filter *fd_data,
198 bool add)
199 {
200 struct i40e_pf *pf = vsi->back;
201 struct udphdr *udp;
202 struct iphdr *ip;
203 bool err = false;
204 u8 *raw_packet;
205 int ret;
206 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
207 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
208 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
209
210 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
211 if (!raw_packet)
212 return -ENOMEM;
213 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
214
215 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
216 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
217 + sizeof(struct iphdr));
218
219 ip->daddr = fd_data->dst_ip[0];
220 udp->dest = fd_data->dst_port;
221 ip->saddr = fd_data->src_ip[0];
222 udp->source = fd_data->src_port;
223
224 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
225 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
226 if (ret) {
227 dev_info(&pf->pdev->dev,
228 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
229 fd_data->pctype, fd_data->fd_id, ret);
230 err = true;
231 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
232 if (add)
233 dev_info(&pf->pdev->dev,
234 "Filter OK for PCTYPE %d loc = %d\n",
235 fd_data->pctype, fd_data->fd_id);
236 else
237 dev_info(&pf->pdev->dev,
238 "Filter deleted for PCTYPE %d loc = %d\n",
239 fd_data->pctype, fd_data->fd_id);
240 }
241 return err ? -EOPNOTSUPP : 0;
242 }
243
244 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
245 /**
246 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
247 * @vsi: pointer to the targeted VSI
248 * @fd_data: the flow director data required for the FDir descriptor
249 * @add: true adds a filter, false removes it
250 *
251 * Returns 0 if the filters were successfully added or removed
252 **/
253 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
254 struct i40e_fdir_filter *fd_data,
255 bool add)
256 {
257 struct i40e_pf *pf = vsi->back;
258 struct tcphdr *tcp;
259 struct iphdr *ip;
260 bool err = false;
261 u8 *raw_packet;
262 int ret;
263 /* Dummy packet */
264 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
265 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
266 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
267 0x0, 0x72, 0, 0, 0, 0};
268
269 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
270 if (!raw_packet)
271 return -ENOMEM;
272 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
273
274 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
275 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
276 + sizeof(struct iphdr));
277
278 ip->daddr = fd_data->dst_ip[0];
279 tcp->dest = fd_data->dst_port;
280 ip->saddr = fd_data->src_ip[0];
281 tcp->source = fd_data->src_port;
282
283 if (add) {
284 pf->fd_tcp_rule++;
285 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
286 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
287 pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
288 }
289 } else {
290 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
291 (pf->fd_tcp_rule - 1) : 0;
292 if (pf->fd_tcp_rule == 0) {
293 pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
294 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
295 }
296 }
297
298 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
299 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
300
301 if (ret) {
302 dev_info(&pf->pdev->dev,
303 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
304 fd_data->pctype, fd_data->fd_id, ret);
305 err = true;
306 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
307 if (add)
308 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
309 fd_data->pctype, fd_data->fd_id);
310 else
311 dev_info(&pf->pdev->dev,
312 "Filter deleted for PCTYPE %d loc = %d\n",
313 fd_data->pctype, fd_data->fd_id);
314 }
315
316 return err ? -EOPNOTSUPP : 0;
317 }
318
319 /**
320 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
321 * a specific flow spec
322 * @vsi: pointer to the targeted VSI
323 * @fd_data: the flow director data required for the FDir descriptor
324 * @add: true adds a filter, false removes it
325 *
326 * Always returns -EOPNOTSUPP
327 **/
328 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
329 struct i40e_fdir_filter *fd_data,
330 bool add)
331 {
332 return -EOPNOTSUPP;
333 }
334
335 #define I40E_IP_DUMMY_PACKET_LEN 34
336 /**
337 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
338 * a specific flow spec
339 * @vsi: pointer to the targeted VSI
340 * @fd_data: the flow director data required for the FDir descriptor
341 * @add: true adds a filter, false removes it
342 *
343 * Returns 0 if the filters were successfully added or removed
344 **/
345 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
346 struct i40e_fdir_filter *fd_data,
347 bool add)
348 {
349 struct i40e_pf *pf = vsi->back;
350 struct iphdr *ip;
351 bool err = false;
352 u8 *raw_packet;
353 int ret;
354 int i;
355 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
356 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
357 0, 0, 0, 0};
358
359 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
360 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
361 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
362 if (!raw_packet)
363 return -ENOMEM;
364 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
365 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
366
367 ip->saddr = fd_data->src_ip[0];
368 ip->daddr = fd_data->dst_ip[0];
369 ip->protocol = 0;
370
371 fd_data->pctype = i;
372 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
373
374 if (ret) {
375 dev_info(&pf->pdev->dev,
376 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
377 fd_data->pctype, fd_data->fd_id, ret);
378 err = true;
379 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
380 if (add)
381 dev_info(&pf->pdev->dev,
382 "Filter OK for PCTYPE %d loc = %d\n",
383 fd_data->pctype, fd_data->fd_id);
384 else
385 dev_info(&pf->pdev->dev,
386 "Filter deleted for PCTYPE %d loc = %d\n",
387 fd_data->pctype, fd_data->fd_id);
388 }
389 }
390
391 return err ? -EOPNOTSUPP : 0;
392 }
393
394 /**
395 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
396 * @vsi: pointer to the targeted VSI
397 * @cmd: command to get or set RX flow classification rules
398 * @add: true adds a filter, false removes it
399 *
400 **/
401 int i40e_add_del_fdir(struct i40e_vsi *vsi,
402 struct i40e_fdir_filter *input, bool add)
403 {
404 struct i40e_pf *pf = vsi->back;
405 int ret;
406
407 switch (input->flow_type & ~FLOW_EXT) {
408 case TCP_V4_FLOW:
409 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
410 break;
411 case UDP_V4_FLOW:
412 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
413 break;
414 case SCTP_V4_FLOW:
415 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
416 break;
417 case IPV4_FLOW:
418 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
419 break;
420 case IP_USER_FLOW:
421 switch (input->ip4_proto) {
422 case IPPROTO_TCP:
423 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
424 break;
425 case IPPROTO_UDP:
426 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
427 break;
428 case IPPROTO_SCTP:
429 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
430 break;
431 default:
432 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
433 break;
434 }
435 break;
436 default:
437 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
438 input->flow_type);
439 ret = -EINVAL;
440 }
441
442 /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
443 return ret;
444 }
445
446 /**
447 * i40e_fd_handle_status - check the Programming Status for FD
448 * @rx_ring: the Rx ring for this descriptor
449 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
450 * @prog_id: the id originally used for programming
451 *
452 * This is used to verify if the FD programming or invalidation
453 * requested by SW to the HW is successful or not and take actions accordingly.
454 **/
455 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
456 union i40e_rx_desc *rx_desc, u8 prog_id)
457 {
458 struct i40e_pf *pf = rx_ring->vsi->back;
459 struct pci_dev *pdev = pf->pdev;
460 u32 fcnt_prog, fcnt_avail;
461 u32 error;
462 u64 qw;
463
464 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
465 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
466 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
467
468 if (error == (0x1 << I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
469 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
470 (I40E_DEBUG_FD & pf->hw.debug_mask))
471 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
472 rx_desc->wb.qword0.hi_dword.fd_id);
473
474 /* Check if the programming error is for ATR.
475 * If so, auto disable ATR and set a state for
476 * flush in progress. Next time we come here if flush is in
477 * progress do nothing, once flush is complete the state will
478 * be cleared.
479 */
480 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
481 return;
482
483 pf->fd_add_err++;
484 /* store the current atr filter count */
485 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
486
487 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
488 (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
489 pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
490 set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
491 }
492
493 /* filter programming failed most likely due to table full */
494 fcnt_prog = i40e_get_global_fd_count(pf);
495 fcnt_avail = pf->fdir_pf_filter_count;
496 /* If ATR is running fcnt_prog can quickly change,
497 * if we are very close to full, it makes sense to disable
498 * FD ATR/SB and then re-enable it when there is room.
499 */
500 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
501 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
502 !(pf->auto_disable_flags &
503 I40E_FLAG_FD_SB_ENABLED)) {
504 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
505 pf->auto_disable_flags |=
506 I40E_FLAG_FD_SB_ENABLED;
507 }
508 } else {
509 dev_info(&pdev->dev,
510 "FD filter programming failed due to incorrect filter parameters\n");
511 }
512 } else if (error ==
513 (0x1 << I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
514 if (I40E_DEBUG_FD & pf->hw.debug_mask)
515 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
516 rx_desc->wb.qword0.hi_dword.fd_id);
517 }
518 }
519
520 /**
521 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
522 * @ring: the ring that owns the buffer
523 * @tx_buffer: the buffer to free
524 **/
525 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
526 struct i40e_tx_buffer *tx_buffer)
527 {
528 if (tx_buffer->skb) {
529 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
530 kfree(tx_buffer->raw_buf);
531 else
532 dev_kfree_skb_any(tx_buffer->skb);
533
534 if (dma_unmap_len(tx_buffer, len))
535 dma_unmap_single(ring->dev,
536 dma_unmap_addr(tx_buffer, dma),
537 dma_unmap_len(tx_buffer, len),
538 DMA_TO_DEVICE);
539 } else if (dma_unmap_len(tx_buffer, len)) {
540 dma_unmap_page(ring->dev,
541 dma_unmap_addr(tx_buffer, dma),
542 dma_unmap_len(tx_buffer, len),
543 DMA_TO_DEVICE);
544 }
545 tx_buffer->next_to_watch = NULL;
546 tx_buffer->skb = NULL;
547 dma_unmap_len_set(tx_buffer, len, 0);
548 /* tx_buffer must be completely set up in the transmit path */
549 }
550
551 /**
552 * i40e_clean_tx_ring - Free any empty Tx buffers
553 * @tx_ring: ring to be cleaned
554 **/
555 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
556 {
557 unsigned long bi_size;
558 u16 i;
559
560 /* ring already cleared, nothing to do */
561 if (!tx_ring->tx_bi)
562 return;
563
564 /* Free all the Tx ring sk_buffs */
565 for (i = 0; i < tx_ring->count; i++)
566 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
567
568 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
569 memset(tx_ring->tx_bi, 0, bi_size);
570
571 /* Zero out the descriptor ring */
572 memset(tx_ring->desc, 0, tx_ring->size);
573
574 tx_ring->next_to_use = 0;
575 tx_ring->next_to_clean = 0;
576
577 if (!tx_ring->netdev)
578 return;
579
580 /* cleanup Tx queue statistics */
581 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
582 tx_ring->queue_index));
583 }
584
585 /**
586 * i40e_free_tx_resources - Free Tx resources per queue
587 * @tx_ring: Tx descriptor ring for a specific queue
588 *
589 * Free all transmit software resources
590 **/
591 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
592 {
593 i40e_clean_tx_ring(tx_ring);
594 kfree(tx_ring->tx_bi);
595 tx_ring->tx_bi = NULL;
596
597 if (tx_ring->desc) {
598 dma_free_coherent(tx_ring->dev, tx_ring->size,
599 tx_ring->desc, tx_ring->dma);
600 tx_ring->desc = NULL;
601 }
602 }
603
604 /**
605 * i40e_get_head - Retrieve head from head writeback
606 * @tx_ring: tx ring to fetch head of
607 *
608 * Returns value of Tx ring head based on value stored
609 * in head write-back location
610 **/
611 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
612 {
613 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
614
615 return le32_to_cpu(*(volatile __le32 *)head);
616 }
617
618 /**
619 * i40e_get_tx_pending - how many tx descriptors not processed
620 * @tx_ring: the ring of descriptors
621 *
622 * Since there is no access to the ring head register
623 * in XL710, we need to use our local copies
624 **/
625 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
626 {
627 u32 head, tail;
628
629 head = i40e_get_head(ring);
630 tail = readl(ring->tail);
631
632 if (head != tail)
633 return (head < tail) ?
634 tail - head : (tail + ring->count - head);
635
636 return 0;
637 }
638
639 /**
640 * i40e_check_tx_hang - Is there a hang in the Tx queue
641 * @tx_ring: the ring of descriptors
642 **/
643 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
644 {
645 u32 tx_done = tx_ring->stats.packets;
646 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
647 u32 tx_pending = i40e_get_tx_pending(tx_ring);
648 struct i40e_pf *pf = tx_ring->vsi->back;
649 bool ret = false;
650
651 clear_check_for_tx_hang(tx_ring);
652
653 /* Check for a hung queue, but be thorough. This verifies
654 * that a transmit has been completed since the previous
655 * check AND there is at least one packet pending. The
656 * ARMED bit is set to indicate a potential hang. The
657 * bit is cleared if a pause frame is received to remove
658 * false hang detection due to PFC or 802.3x frames. By
659 * requiring this to fail twice we avoid races with
660 * PFC clearing the ARMED bit and conditions where we
661 * run the check_tx_hang logic with a transmit completion
662 * pending but without time to complete it yet.
663 */
664 if ((tx_done_old == tx_done) && tx_pending) {
665 /* make sure it is true for two checks in a row */
666 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
667 &tx_ring->state);
668 } else if (tx_done_old == tx_done &&
669 (tx_pending < I40E_MIN_DESC_PENDING) && (tx_pending > 0)) {
670 if (I40E_DEBUG_FLOW & pf->hw.debug_mask)
671 dev_info(tx_ring->dev, "HW needs some more descs to do a cacheline flush. tx_pending %d, queue %d",
672 tx_pending, tx_ring->queue_index);
673 pf->tx_sluggish_count++;
674 } else {
675 /* update completed stats and disarm the hang check */
676 tx_ring->tx_stats.tx_done_old = tx_done;
677 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
678 }
679
680 return ret;
681 }
682
683 #define WB_STRIDE 0x3
684
685 /**
686 * i40e_clean_tx_irq - Reclaim resources after transmit completes
687 * @tx_ring: tx ring to clean
688 * @budget: how many cleans we're allowed
689 *
690 * Returns true if there's any budget left (e.g. the clean is finished)
691 **/
692 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
693 {
694 u16 i = tx_ring->next_to_clean;
695 struct i40e_tx_buffer *tx_buf;
696 struct i40e_tx_desc *tx_head;
697 struct i40e_tx_desc *tx_desc;
698 unsigned int total_packets = 0;
699 unsigned int total_bytes = 0;
700
701 tx_buf = &tx_ring->tx_bi[i];
702 tx_desc = I40E_TX_DESC(tx_ring, i);
703 i -= tx_ring->count;
704
705 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
706
707 do {
708 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
709
710 /* if next_to_watch is not set then there is no work pending */
711 if (!eop_desc)
712 break;
713
714 /* prevent any other reads prior to eop_desc */
715 read_barrier_depends();
716
717 /* we have caught up to head, no work left to do */
718 if (tx_head == tx_desc)
719 break;
720
721 /* clear next_to_watch to prevent false hangs */
722 tx_buf->next_to_watch = NULL;
723
724 /* update the statistics for this packet */
725 total_bytes += tx_buf->bytecount;
726 total_packets += tx_buf->gso_segs;
727
728 /* free the skb */
729 dev_consume_skb_any(tx_buf->skb);
730
731 /* unmap skb header data */
732 dma_unmap_single(tx_ring->dev,
733 dma_unmap_addr(tx_buf, dma),
734 dma_unmap_len(tx_buf, len),
735 DMA_TO_DEVICE);
736
737 /* clear tx_buffer data */
738 tx_buf->skb = NULL;
739 dma_unmap_len_set(tx_buf, len, 0);
740
741 /* unmap remaining buffers */
742 while (tx_desc != eop_desc) {
743
744 tx_buf++;
745 tx_desc++;
746 i++;
747 if (unlikely(!i)) {
748 i -= tx_ring->count;
749 tx_buf = tx_ring->tx_bi;
750 tx_desc = I40E_TX_DESC(tx_ring, 0);
751 }
752
753 /* unmap any remaining paged data */
754 if (dma_unmap_len(tx_buf, len)) {
755 dma_unmap_page(tx_ring->dev,
756 dma_unmap_addr(tx_buf, dma),
757 dma_unmap_len(tx_buf, len),
758 DMA_TO_DEVICE);
759 dma_unmap_len_set(tx_buf, len, 0);
760 }
761 }
762
763 /* move us one more past the eop_desc for start of next pkt */
764 tx_buf++;
765 tx_desc++;
766 i++;
767 if (unlikely(!i)) {
768 i -= tx_ring->count;
769 tx_buf = tx_ring->tx_bi;
770 tx_desc = I40E_TX_DESC(tx_ring, 0);
771 }
772
773 prefetch(tx_desc);
774
775 /* update budget accounting */
776 budget--;
777 } while (likely(budget));
778
779 i += tx_ring->count;
780 tx_ring->next_to_clean = i;
781 u64_stats_update_begin(&tx_ring->syncp);
782 tx_ring->stats.bytes += total_bytes;
783 tx_ring->stats.packets += total_packets;
784 u64_stats_update_end(&tx_ring->syncp);
785 tx_ring->q_vector->tx.total_bytes += total_bytes;
786 tx_ring->q_vector->tx.total_packets += total_packets;
787
788 /* check to see if there are any non-cache aligned descriptors
789 * waiting to be written back, and kick the hardware to force
790 * them to be written back in case of napi polling
791 */
792 if (budget &&
793 !((i & WB_STRIDE) == WB_STRIDE) &&
794 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
795 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
796 tx_ring->arm_wb = true;
797 else
798 tx_ring->arm_wb = false;
799
800 if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
801 /* schedule immediate reset if we believe we hung */
802 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
803 " VSI <%d>\n"
804 " Tx Queue <%d>\n"
805 " next_to_use <%x>\n"
806 " next_to_clean <%x>\n",
807 tx_ring->vsi->seid,
808 tx_ring->queue_index,
809 tx_ring->next_to_use, i);
810 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
811 " time_stamp <%lx>\n"
812 " jiffies <%lx>\n",
813 tx_ring->tx_bi[i].time_stamp, jiffies);
814
815 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
816
817 dev_info(tx_ring->dev,
818 "tx hang detected on queue %d, reset requested\n",
819 tx_ring->queue_index);
820
821 /* do not fire the reset immediately, wait for the stack to
822 * decide we are truly stuck, also prevents every queue from
823 * simultaneously requesting a reset
824 */
825
826 /* the adapter is about to reset, no point in enabling polling */
827 budget = 1;
828 }
829
830 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
831 tx_ring->queue_index),
832 total_packets, total_bytes);
833
834 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
835 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
836 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
837 /* Make sure that anybody stopping the queue after this
838 * sees the new next_to_clean.
839 */
840 smp_mb();
841 if (__netif_subqueue_stopped(tx_ring->netdev,
842 tx_ring->queue_index) &&
843 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
844 netif_wake_subqueue(tx_ring->netdev,
845 tx_ring->queue_index);
846 ++tx_ring->tx_stats.restart_queue;
847 }
848 }
849
850 return !!budget;
851 }
852
853 /**
854 * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
855 * @vsi: the VSI we care about
856 * @q_vector: the vector on which to force writeback
857 *
858 **/
859 static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
860 {
861 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
862 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
863 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
864 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
865 /* allow 00 to be written to the index */
866
867 wr32(&vsi->back->hw,
868 I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
869 val);
870 }
871
872 /**
873 * i40e_set_new_dynamic_itr - Find new ITR level
874 * @rc: structure containing ring performance data
875 *
876 * Stores a new ITR value based on packets and byte counts during
877 * the last interrupt. The advantage of per interrupt computation
878 * is faster updates and more accurate ITR for the current traffic
879 * pattern. Constants in this function were computed based on
880 * theoretical maximum wire speed and thresholds were set based on
881 * testing data as well as attempting to minimize response time
882 * while increasing bulk throughput.
883 **/
884 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
885 {
886 enum i40e_latency_range new_latency_range = rc->latency_range;
887 u32 new_itr = rc->itr;
888 int bytes_per_int;
889
890 if (rc->total_packets == 0 || !rc->itr)
891 return;
892
893 /* simple throttlerate management
894 * 0-10MB/s lowest (100000 ints/s)
895 * 10-20MB/s low (20000 ints/s)
896 * 20-1249MB/s bulk (8000 ints/s)
897 */
898 bytes_per_int = rc->total_bytes / rc->itr;
899 switch (rc->itr) {
900 case I40E_LOWEST_LATENCY:
901 if (bytes_per_int > 10)
902 new_latency_range = I40E_LOW_LATENCY;
903 break;
904 case I40E_LOW_LATENCY:
905 if (bytes_per_int > 20)
906 new_latency_range = I40E_BULK_LATENCY;
907 else if (bytes_per_int <= 10)
908 new_latency_range = I40E_LOWEST_LATENCY;
909 break;
910 case I40E_BULK_LATENCY:
911 if (bytes_per_int <= 20)
912 rc->latency_range = I40E_LOW_LATENCY;
913 break;
914 }
915
916 switch (new_latency_range) {
917 case I40E_LOWEST_LATENCY:
918 new_itr = I40E_ITR_100K;
919 break;
920 case I40E_LOW_LATENCY:
921 new_itr = I40E_ITR_20K;
922 break;
923 case I40E_BULK_LATENCY:
924 new_itr = I40E_ITR_8K;
925 break;
926 default:
927 break;
928 }
929
930 if (new_itr != rc->itr) {
931 /* do an exponential smoothing */
932 new_itr = (10 * new_itr * rc->itr) /
933 ((9 * new_itr) + rc->itr);
934 rc->itr = new_itr & I40E_MAX_ITR;
935 }
936
937 rc->total_bytes = 0;
938 rc->total_packets = 0;
939 }
940
941 /**
942 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
943 * @q_vector: the vector to adjust
944 **/
945 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
946 {
947 u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
948 struct i40e_hw *hw = &q_vector->vsi->back->hw;
949 u32 reg_addr;
950 u16 old_itr;
951
952 reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
953 old_itr = q_vector->rx.itr;
954 i40e_set_new_dynamic_itr(&q_vector->rx);
955 if (old_itr != q_vector->rx.itr)
956 wr32(hw, reg_addr, q_vector->rx.itr);
957
958 reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
959 old_itr = q_vector->tx.itr;
960 i40e_set_new_dynamic_itr(&q_vector->tx);
961 if (old_itr != q_vector->tx.itr)
962 wr32(hw, reg_addr, q_vector->tx.itr);
963 }
964
965 /**
966 * i40e_clean_programming_status - clean the programming status descriptor
967 * @rx_ring: the rx ring that has this descriptor
968 * @rx_desc: the rx descriptor written back by HW
969 *
970 * Flow director should handle FD_FILTER_STATUS to check its filter programming
971 * status being successful or not and take actions accordingly. FCoE should
972 * handle its context/filter programming/invalidation status and take actions.
973 *
974 **/
975 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
976 union i40e_rx_desc *rx_desc)
977 {
978 u64 qw;
979 u8 id;
980
981 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
982 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
983 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
984
985 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
986 i40e_fd_handle_status(rx_ring, rx_desc, id);
987 #ifdef I40E_FCOE
988 else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
989 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
990 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
991 #endif
992 }
993
994 /**
995 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
996 * @tx_ring: the tx ring to set up
997 *
998 * Return 0 on success, negative on error
999 **/
1000 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1001 {
1002 struct device *dev = tx_ring->dev;
1003 int bi_size;
1004
1005 if (!dev)
1006 return -ENOMEM;
1007
1008 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1009 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1010 if (!tx_ring->tx_bi)
1011 goto err;
1012
1013 /* round up to nearest 4K */
1014 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1015 /* add u32 for head writeback, align after this takes care of
1016 * guaranteeing this is at least one cache line in size
1017 */
1018 tx_ring->size += sizeof(u32);
1019 tx_ring->size = ALIGN(tx_ring->size, 4096);
1020 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1021 &tx_ring->dma, GFP_KERNEL);
1022 if (!tx_ring->desc) {
1023 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1024 tx_ring->size);
1025 goto err;
1026 }
1027
1028 tx_ring->next_to_use = 0;
1029 tx_ring->next_to_clean = 0;
1030 return 0;
1031
1032 err:
1033 kfree(tx_ring->tx_bi);
1034 tx_ring->tx_bi = NULL;
1035 return -ENOMEM;
1036 }
1037
1038 /**
1039 * i40e_clean_rx_ring - Free Rx buffers
1040 * @rx_ring: ring to be cleaned
1041 **/
1042 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1043 {
1044 struct device *dev = rx_ring->dev;
1045 struct i40e_rx_buffer *rx_bi;
1046 unsigned long bi_size;
1047 u16 i;
1048
1049 /* ring already cleared, nothing to do */
1050 if (!rx_ring->rx_bi)
1051 return;
1052
1053 if (ring_is_ps_enabled(rx_ring)) {
1054 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
1055
1056 rx_bi = &rx_ring->rx_bi[0];
1057 if (rx_bi->hdr_buf) {
1058 dma_free_coherent(dev,
1059 bufsz,
1060 rx_bi->hdr_buf,
1061 rx_bi->dma);
1062 for (i = 0; i < rx_ring->count; i++) {
1063 rx_bi = &rx_ring->rx_bi[i];
1064 rx_bi->dma = 0;
1065 rx_bi->hdr_buf = NULL;
1066 }
1067 }
1068 }
1069 /* Free all the Rx ring sk_buffs */
1070 for (i = 0; i < rx_ring->count; i++) {
1071 rx_bi = &rx_ring->rx_bi[i];
1072 if (rx_bi->dma) {
1073 dma_unmap_single(dev,
1074 rx_bi->dma,
1075 rx_ring->rx_buf_len,
1076 DMA_FROM_DEVICE);
1077 rx_bi->dma = 0;
1078 }
1079 if (rx_bi->skb) {
1080 dev_kfree_skb(rx_bi->skb);
1081 rx_bi->skb = NULL;
1082 }
1083 if (rx_bi->page) {
1084 if (rx_bi->page_dma) {
1085 dma_unmap_page(dev,
1086 rx_bi->page_dma,
1087 PAGE_SIZE / 2,
1088 DMA_FROM_DEVICE);
1089 rx_bi->page_dma = 0;
1090 }
1091 __free_page(rx_bi->page);
1092 rx_bi->page = NULL;
1093 rx_bi->page_offset = 0;
1094 }
1095 }
1096
1097 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1098 memset(rx_ring->rx_bi, 0, bi_size);
1099
1100 /* Zero out the descriptor ring */
1101 memset(rx_ring->desc, 0, rx_ring->size);
1102
1103 rx_ring->next_to_clean = 0;
1104 rx_ring->next_to_use = 0;
1105 }
1106
1107 /**
1108 * i40e_free_rx_resources - Free Rx resources
1109 * @rx_ring: ring to clean the resources from
1110 *
1111 * Free all receive software resources
1112 **/
1113 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1114 {
1115 i40e_clean_rx_ring(rx_ring);
1116 kfree(rx_ring->rx_bi);
1117 rx_ring->rx_bi = NULL;
1118
1119 if (rx_ring->desc) {
1120 dma_free_coherent(rx_ring->dev, rx_ring->size,
1121 rx_ring->desc, rx_ring->dma);
1122 rx_ring->desc = NULL;
1123 }
1124 }
1125
1126 /**
1127 * i40e_alloc_rx_headers - allocate rx header buffers
1128 * @rx_ring: ring to alloc buffers
1129 *
1130 * Allocate rx header buffers for the entire ring. As these are static,
1131 * this is only called when setting up a new ring.
1132 **/
1133 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1134 {
1135 struct device *dev = rx_ring->dev;
1136 struct i40e_rx_buffer *rx_bi;
1137 dma_addr_t dma;
1138 void *buffer;
1139 int buf_size;
1140 int i;
1141
1142 if (rx_ring->rx_bi[0].hdr_buf)
1143 return;
1144 /* Make sure the buffers don't cross cache line boundaries. */
1145 buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1146 buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1147 &dma, GFP_KERNEL);
1148 if (!buffer)
1149 return;
1150 for (i = 0; i < rx_ring->count; i++) {
1151 rx_bi = &rx_ring->rx_bi[i];
1152 rx_bi->dma = dma + (i * buf_size);
1153 rx_bi->hdr_buf = buffer + (i * buf_size);
1154 }
1155 }
1156
1157 /**
1158 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1159 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1160 *
1161 * Returns 0 on success, negative on failure
1162 **/
1163 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1164 {
1165 struct device *dev = rx_ring->dev;
1166 int bi_size;
1167
1168 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1169 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1170 if (!rx_ring->rx_bi)
1171 goto err;
1172
1173 u64_stats_init(&rx_ring->syncp);
1174
1175 /* Round up to nearest 4K */
1176 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1177 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1178 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1179 rx_ring->size = ALIGN(rx_ring->size, 4096);
1180 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1181 &rx_ring->dma, GFP_KERNEL);
1182
1183 if (!rx_ring->desc) {
1184 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1185 rx_ring->size);
1186 goto err;
1187 }
1188
1189 rx_ring->next_to_clean = 0;
1190 rx_ring->next_to_use = 0;
1191
1192 return 0;
1193 err:
1194 kfree(rx_ring->rx_bi);
1195 rx_ring->rx_bi = NULL;
1196 return -ENOMEM;
1197 }
1198
1199 /**
1200 * i40e_release_rx_desc - Store the new tail and head values
1201 * @rx_ring: ring to bump
1202 * @val: new head index
1203 **/
1204 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1205 {
1206 rx_ring->next_to_use = val;
1207 /* Force memory writes to complete before letting h/w
1208 * know there are new descriptors to fetch. (Only
1209 * applicable for weak-ordered memory model archs,
1210 * such as IA-64).
1211 */
1212 wmb();
1213 writel(val, rx_ring->tail);
1214 }
1215
1216 /**
1217 * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1218 * @rx_ring: ring to place buffers on
1219 * @cleaned_count: number of buffers to replace
1220 **/
1221 void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1222 {
1223 u16 i = rx_ring->next_to_use;
1224 union i40e_rx_desc *rx_desc;
1225 struct i40e_rx_buffer *bi;
1226
1227 /* do nothing if no valid netdev defined */
1228 if (!rx_ring->netdev || !cleaned_count)
1229 return;
1230
1231 while (cleaned_count--) {
1232 rx_desc = I40E_RX_DESC(rx_ring, i);
1233 bi = &rx_ring->rx_bi[i];
1234
1235 if (bi->skb) /* desc is in use */
1236 goto no_buffers;
1237 if (!bi->page) {
1238 bi->page = alloc_page(GFP_ATOMIC);
1239 if (!bi->page) {
1240 rx_ring->rx_stats.alloc_page_failed++;
1241 goto no_buffers;
1242 }
1243 }
1244
1245 if (!bi->page_dma) {
1246 /* use a half page if we're re-using */
1247 bi->page_offset ^= PAGE_SIZE / 2;
1248 bi->page_dma = dma_map_page(rx_ring->dev,
1249 bi->page,
1250 bi->page_offset,
1251 PAGE_SIZE / 2,
1252 DMA_FROM_DEVICE);
1253 if (dma_mapping_error(rx_ring->dev,
1254 bi->page_dma)) {
1255 rx_ring->rx_stats.alloc_page_failed++;
1256 bi->page_dma = 0;
1257 goto no_buffers;
1258 }
1259 }
1260
1261 dma_sync_single_range_for_device(rx_ring->dev,
1262 bi->dma,
1263 0,
1264 rx_ring->rx_hdr_len,
1265 DMA_FROM_DEVICE);
1266 /* Refresh the desc even if buffer_addrs didn't change
1267 * because each write-back erases this info.
1268 */
1269 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1270 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1271 i++;
1272 if (i == rx_ring->count)
1273 i = 0;
1274 }
1275
1276 no_buffers:
1277 if (rx_ring->next_to_use != i)
1278 i40e_release_rx_desc(rx_ring, i);
1279 }
1280
1281 /**
1282 * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1283 * @rx_ring: ring to place buffers on
1284 * @cleaned_count: number of buffers to replace
1285 **/
1286 void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1287 {
1288 u16 i = rx_ring->next_to_use;
1289 union i40e_rx_desc *rx_desc;
1290 struct i40e_rx_buffer *bi;
1291 struct sk_buff *skb;
1292
1293 /* do nothing if no valid netdev defined */
1294 if (!rx_ring->netdev || !cleaned_count)
1295 return;
1296
1297 while (cleaned_count--) {
1298 rx_desc = I40E_RX_DESC(rx_ring, i);
1299 bi = &rx_ring->rx_bi[i];
1300 skb = bi->skb;
1301
1302 if (!skb) {
1303 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1304 rx_ring->rx_buf_len);
1305 if (!skb) {
1306 rx_ring->rx_stats.alloc_buff_failed++;
1307 goto no_buffers;
1308 }
1309 /* initialize queue mapping */
1310 skb_record_rx_queue(skb, rx_ring->queue_index);
1311 bi->skb = skb;
1312 }
1313
1314 if (!bi->dma) {
1315 bi->dma = dma_map_single(rx_ring->dev,
1316 skb->data,
1317 rx_ring->rx_buf_len,
1318 DMA_FROM_DEVICE);
1319 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1320 rx_ring->rx_stats.alloc_buff_failed++;
1321 bi->dma = 0;
1322 goto no_buffers;
1323 }
1324 }
1325
1326 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1327 rx_desc->read.hdr_addr = 0;
1328 i++;
1329 if (i == rx_ring->count)
1330 i = 0;
1331 }
1332
1333 no_buffers:
1334 if (rx_ring->next_to_use != i)
1335 i40e_release_rx_desc(rx_ring, i);
1336 }
1337
1338 /**
1339 * i40e_receive_skb - Send a completed packet up the stack
1340 * @rx_ring: rx ring in play
1341 * @skb: packet to send up
1342 * @vlan_tag: vlan tag for packet
1343 **/
1344 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1345 struct sk_buff *skb, u16 vlan_tag)
1346 {
1347 struct i40e_q_vector *q_vector = rx_ring->q_vector;
1348 struct i40e_vsi *vsi = rx_ring->vsi;
1349 u64 flags = vsi->back->flags;
1350
1351 if (vlan_tag & VLAN_VID_MASK)
1352 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1353
1354 if (flags & I40E_FLAG_IN_NETPOLL)
1355 netif_rx(skb);
1356 else
1357 napi_gro_receive(&q_vector->napi, skb);
1358 }
1359
1360 /**
1361 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1362 * @vsi: the VSI we care about
1363 * @skb: skb currently being received and modified
1364 * @rx_status: status value of last descriptor in packet
1365 * @rx_error: error value of last descriptor in packet
1366 * @rx_ptype: ptype value of last descriptor in packet
1367 **/
1368 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1369 struct sk_buff *skb,
1370 u32 rx_status,
1371 u32 rx_error,
1372 u16 rx_ptype)
1373 {
1374 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1375 bool ipv4 = false, ipv6 = false;
1376 bool ipv4_tunnel, ipv6_tunnel;
1377 __wsum rx_udp_csum;
1378 struct iphdr *iph;
1379 __sum16 csum;
1380
1381 ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1382 (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1383 ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1384 (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1385
1386 skb->ip_summed = CHECKSUM_NONE;
1387
1388 /* Rx csum enabled and ip headers found? */
1389 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1390 return;
1391
1392 /* did the hardware decode the packet and checksum? */
1393 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1394 return;
1395
1396 /* both known and outer_ip must be set for the below code to work */
1397 if (!(decoded.known && decoded.outer_ip))
1398 return;
1399
1400 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1401 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1402 ipv4 = true;
1403 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1404 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1405 ipv6 = true;
1406
1407 if (ipv4 &&
1408 (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
1409 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1410 goto checksum_fail;
1411
1412 /* likely incorrect csum if alternate IP extension headers found */
1413 if (ipv6 &&
1414 rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1415 /* don't increment checksum err here, non-fatal err */
1416 return;
1417
1418 /* there was some L4 error, count error and punt packet to the stack */
1419 if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
1420 goto checksum_fail;
1421
1422 /* handle packets that were not able to be checksummed due
1423 * to arrival speed, in this case the stack can compute
1424 * the csum.
1425 */
1426 if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
1427 return;
1428
1429 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1430 * it in the driver, hardware does not do it for us.
1431 * Since L3L4P bit was set we assume a valid IHL value (>=5)
1432 * so the total length of IPv4 header is IHL*4 bytes
1433 * The UDP_0 bit *may* bet set if the *inner* header is UDP
1434 */
1435 if (ipv4_tunnel) {
1436 skb->transport_header = skb->mac_header +
1437 sizeof(struct ethhdr) +
1438 (ip_hdr(skb)->ihl * 4);
1439
1440 /* Add 4 bytes for VLAN tagged packets */
1441 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1442 skb->protocol == htons(ETH_P_8021AD))
1443 ? VLAN_HLEN : 0;
1444
1445 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1446 (udp_hdr(skb)->check != 0)) {
1447 rx_udp_csum = udp_csum(skb);
1448 iph = ip_hdr(skb);
1449 csum = csum_tcpudp_magic(
1450 iph->saddr, iph->daddr,
1451 (skb->len - skb_transport_offset(skb)),
1452 IPPROTO_UDP, rx_udp_csum);
1453
1454 if (udp_hdr(skb)->check != csum)
1455 goto checksum_fail;
1456
1457 } /* else its GRE and so no outer UDP header */
1458 }
1459
1460 skb->ip_summed = CHECKSUM_UNNECESSARY;
1461 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1462
1463 return;
1464
1465 checksum_fail:
1466 vsi->back->hw_csum_rx_error++;
1467 }
1468
1469 /**
1470 * i40e_rx_hash - returns the hash value from the Rx descriptor
1471 * @ring: descriptor ring
1472 * @rx_desc: specific descriptor
1473 **/
1474 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1475 union i40e_rx_desc *rx_desc)
1476 {
1477 const __le64 rss_mask =
1478 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1479 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1480
1481 if ((ring->netdev->features & NETIF_F_RXHASH) &&
1482 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1483 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1484 else
1485 return 0;
1486 }
1487
1488 /**
1489 * i40e_ptype_to_hash - get a hash type
1490 * @ptype: the ptype value from the descriptor
1491 *
1492 * Returns a hash type to be used by skb_set_hash
1493 **/
1494 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1495 {
1496 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1497
1498 if (!decoded.known)
1499 return PKT_HASH_TYPE_NONE;
1500
1501 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1502 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1503 return PKT_HASH_TYPE_L4;
1504 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1505 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1506 return PKT_HASH_TYPE_L3;
1507 else
1508 return PKT_HASH_TYPE_L2;
1509 }
1510
1511 /**
1512 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1513 * @rx_ring: rx ring to clean
1514 * @budget: how many cleans we're allowed
1515 *
1516 * Returns true if there's any budget left (e.g. the clean is finished)
1517 **/
1518 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1519 {
1520 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1521 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1522 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1523 const int current_node = numa_node_id();
1524 struct i40e_vsi *vsi = rx_ring->vsi;
1525 u16 i = rx_ring->next_to_clean;
1526 union i40e_rx_desc *rx_desc;
1527 u32 rx_error, rx_status;
1528 u8 rx_ptype;
1529 u64 qword;
1530
1531 if (budget <= 0)
1532 return 0;
1533
1534 do {
1535 struct i40e_rx_buffer *rx_bi;
1536 struct sk_buff *skb;
1537 u16 vlan_tag;
1538 /* return some buffers to hardware, one at a time is too slow */
1539 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1540 i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1541 cleaned_count = 0;
1542 }
1543
1544 i = rx_ring->next_to_clean;
1545 rx_desc = I40E_RX_DESC(rx_ring, i);
1546 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1547 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1548 I40E_RXD_QW1_STATUS_SHIFT;
1549
1550 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1551 break;
1552
1553 /* This memory barrier is needed to keep us from reading
1554 * any other fields out of the rx_desc until we know the
1555 * DD bit is set.
1556 */
1557 dma_rmb();
1558 if (i40e_rx_is_programming_status(qword)) {
1559 i40e_clean_programming_status(rx_ring, rx_desc);
1560 I40E_RX_INCREMENT(rx_ring, i);
1561 continue;
1562 }
1563 rx_bi = &rx_ring->rx_bi[i];
1564 skb = rx_bi->skb;
1565 if (likely(!skb)) {
1566 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1567 rx_ring->rx_hdr_len);
1568 if (!skb) {
1569 rx_ring->rx_stats.alloc_buff_failed++;
1570 break;
1571 }
1572
1573 /* initialize queue mapping */
1574 skb_record_rx_queue(skb, rx_ring->queue_index);
1575 /* we are reusing so sync this buffer for CPU use */
1576 dma_sync_single_range_for_cpu(rx_ring->dev,
1577 rx_bi->dma,
1578 0,
1579 rx_ring->rx_hdr_len,
1580 DMA_FROM_DEVICE);
1581 }
1582 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1583 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1584 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1585 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1586 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1587 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1588
1589 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1590 I40E_RXD_QW1_ERROR_SHIFT;
1591 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1592 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1593
1594 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1595 I40E_RXD_QW1_PTYPE_SHIFT;
1596 prefetch(rx_bi->page);
1597 rx_bi->skb = NULL;
1598 cleaned_count++;
1599 if (rx_hbo || rx_sph) {
1600 int len;
1601 if (rx_hbo)
1602 len = I40E_RX_HDR_SIZE;
1603 else
1604 len = rx_header_len;
1605 memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1606 } else if (skb->len == 0) {
1607 int len;
1608
1609 len = (rx_packet_len > skb_headlen(skb) ?
1610 skb_headlen(skb) : rx_packet_len);
1611 memcpy(__skb_put(skb, len),
1612 rx_bi->page + rx_bi->page_offset,
1613 len);
1614 rx_bi->page_offset += len;
1615 rx_packet_len -= len;
1616 }
1617
1618 /* Get the rest of the data if this was a header split */
1619 if (rx_packet_len) {
1620 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1621 rx_bi->page,
1622 rx_bi->page_offset,
1623 rx_packet_len);
1624
1625 skb->len += rx_packet_len;
1626 skb->data_len += rx_packet_len;
1627 skb->truesize += rx_packet_len;
1628
1629 if ((page_count(rx_bi->page) == 1) &&
1630 (page_to_nid(rx_bi->page) == current_node))
1631 get_page(rx_bi->page);
1632 else
1633 rx_bi->page = NULL;
1634
1635 dma_unmap_page(rx_ring->dev,
1636 rx_bi->page_dma,
1637 PAGE_SIZE / 2,
1638 DMA_FROM_DEVICE);
1639 rx_bi->page_dma = 0;
1640 }
1641 I40E_RX_INCREMENT(rx_ring, i);
1642
1643 if (unlikely(
1644 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1645 struct i40e_rx_buffer *next_buffer;
1646
1647 next_buffer = &rx_ring->rx_bi[i];
1648 next_buffer->skb = skb;
1649 rx_ring->rx_stats.non_eop_descs++;
1650 continue;
1651 }
1652
1653 /* ERR_MASK will only have valid bits if EOP set */
1654 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1655 dev_kfree_skb_any(skb);
1656 /* TODO: shouldn't we increment a counter indicating the
1657 * drop?
1658 */
1659 continue;
1660 }
1661
1662 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1663 i40e_ptype_to_hash(rx_ptype));
1664 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1665 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1666 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1667 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1668 rx_ring->last_rx_timestamp = jiffies;
1669 }
1670
1671 /* probably a little skewed due to removing CRC */
1672 total_rx_bytes += skb->len;
1673 total_rx_packets++;
1674
1675 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1676
1677 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1678
1679 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1680 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1681 : 0;
1682 #ifdef I40E_FCOE
1683 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1684 dev_kfree_skb_any(skb);
1685 continue;
1686 }
1687 #endif
1688 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1689 i40e_receive_skb(rx_ring, skb, vlan_tag);
1690
1691 rx_ring->netdev->last_rx = jiffies;
1692 rx_desc->wb.qword1.status_error_len = 0;
1693
1694 } while (likely(total_rx_packets < budget));
1695
1696 u64_stats_update_begin(&rx_ring->syncp);
1697 rx_ring->stats.packets += total_rx_packets;
1698 rx_ring->stats.bytes += total_rx_bytes;
1699 u64_stats_update_end(&rx_ring->syncp);
1700 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1701 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1702
1703 return total_rx_packets;
1704 }
1705
1706 /**
1707 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1708 * @rx_ring: rx ring to clean
1709 * @budget: how many cleans we're allowed
1710 *
1711 * Returns number of packets cleaned
1712 **/
1713 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1714 {
1715 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1716 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1717 struct i40e_vsi *vsi = rx_ring->vsi;
1718 union i40e_rx_desc *rx_desc;
1719 u32 rx_error, rx_status;
1720 u16 rx_packet_len;
1721 u8 rx_ptype;
1722 u64 qword;
1723 u16 i;
1724
1725 do {
1726 struct i40e_rx_buffer *rx_bi;
1727 struct sk_buff *skb;
1728 u16 vlan_tag;
1729 /* return some buffers to hardware, one at a time is too slow */
1730 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1731 i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1732 cleaned_count = 0;
1733 }
1734
1735 i = rx_ring->next_to_clean;
1736 rx_desc = I40E_RX_DESC(rx_ring, i);
1737 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1738 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1739 I40E_RXD_QW1_STATUS_SHIFT;
1740
1741 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1742 break;
1743
1744 /* This memory barrier is needed to keep us from reading
1745 * any other fields out of the rx_desc until we know the
1746 * DD bit is set.
1747 */
1748 dma_rmb();
1749
1750 if (i40e_rx_is_programming_status(qword)) {
1751 i40e_clean_programming_status(rx_ring, rx_desc);
1752 I40E_RX_INCREMENT(rx_ring, i);
1753 continue;
1754 }
1755 rx_bi = &rx_ring->rx_bi[i];
1756 skb = rx_bi->skb;
1757 prefetch(skb->data);
1758
1759 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1760 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1761
1762 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1763 I40E_RXD_QW1_ERROR_SHIFT;
1764 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1765
1766 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1767 I40E_RXD_QW1_PTYPE_SHIFT;
1768 rx_bi->skb = NULL;
1769 cleaned_count++;
1770
1771 /* Get the header and possibly the whole packet
1772 * If this is an skb from previous receive dma will be 0
1773 */
1774 skb_put(skb, rx_packet_len);
1775 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1776 DMA_FROM_DEVICE);
1777 rx_bi->dma = 0;
1778
1779 I40E_RX_INCREMENT(rx_ring, i);
1780
1781 if (unlikely(
1782 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1783 rx_ring->rx_stats.non_eop_descs++;
1784 continue;
1785 }
1786
1787 /* ERR_MASK will only have valid bits if EOP set */
1788 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1789 dev_kfree_skb_any(skb);
1790 /* TODO: shouldn't we increment a counter indicating the
1791 * drop?
1792 */
1793 continue;
1794 }
1795
1796 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1797 i40e_ptype_to_hash(rx_ptype));
1798 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1799 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1800 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1801 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1802 rx_ring->last_rx_timestamp = jiffies;
1803 }
1804
1805 /* probably a little skewed due to removing CRC */
1806 total_rx_bytes += skb->len;
1807 total_rx_packets++;
1808
1809 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1810
1811 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1812
1813 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1814 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1815 : 0;
1816 #ifdef I40E_FCOE
1817 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1818 dev_kfree_skb_any(skb);
1819 continue;
1820 }
1821 #endif
1822 i40e_receive_skb(rx_ring, skb, vlan_tag);
1823
1824 rx_ring->netdev->last_rx = jiffies;
1825 rx_desc->wb.qword1.status_error_len = 0;
1826 } while (likely(total_rx_packets < budget));
1827
1828 u64_stats_update_begin(&rx_ring->syncp);
1829 rx_ring->stats.packets += total_rx_packets;
1830 rx_ring->stats.bytes += total_rx_bytes;
1831 u64_stats_update_end(&rx_ring->syncp);
1832 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1833 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1834
1835 return total_rx_packets;
1836 }
1837
1838 /**
1839 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1840 * @napi: napi struct with our devices info in it
1841 * @budget: amount of work driver is allowed to do this pass, in packets
1842 *
1843 * This function will clean all queues associated with a q_vector.
1844 *
1845 * Returns the amount of work done
1846 **/
1847 int i40e_napi_poll(struct napi_struct *napi, int budget)
1848 {
1849 struct i40e_q_vector *q_vector =
1850 container_of(napi, struct i40e_q_vector, napi);
1851 struct i40e_vsi *vsi = q_vector->vsi;
1852 struct i40e_ring *ring;
1853 bool clean_complete = true;
1854 bool arm_wb = false;
1855 int budget_per_ring;
1856 int cleaned;
1857
1858 if (test_bit(__I40E_DOWN, &vsi->state)) {
1859 napi_complete(napi);
1860 return 0;
1861 }
1862
1863 /* Since the actual Tx work is minimal, we can give the Tx a larger
1864 * budget and be more aggressive about cleaning up the Tx descriptors.
1865 */
1866 i40e_for_each_ring(ring, q_vector->tx) {
1867 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1868 arm_wb |= ring->arm_wb;
1869 }
1870
1871 /* We attempt to distribute budget to each Rx queue fairly, but don't
1872 * allow the budget to go below 1 because that would exit polling early.
1873 */
1874 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1875
1876 i40e_for_each_ring(ring, q_vector->rx) {
1877 if (ring_is_ps_enabled(ring))
1878 cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1879 else
1880 cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1881 /* if we didn't clean as many as budgeted, we must be done */
1882 clean_complete &= (budget_per_ring != cleaned);
1883 }
1884
1885 /* If work not completed, return budget and polling will return */
1886 if (!clean_complete) {
1887 if (arm_wb)
1888 i40e_force_wb(vsi, q_vector);
1889 return budget;
1890 }
1891
1892 /* Work is done so exit the polling mode and re-enable the interrupt */
1893 napi_complete(napi);
1894 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1895 ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1896 i40e_update_dynamic_itr(q_vector);
1897
1898 if (!test_bit(__I40E_DOWN, &vsi->state)) {
1899 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1900 i40e_irq_dynamic_enable(vsi,
1901 q_vector->v_idx + vsi->base_vector);
1902 } else {
1903 struct i40e_hw *hw = &vsi->back->hw;
1904 /* We re-enable the queue 0 cause, but
1905 * don't worry about dynamic_enable
1906 * because we left it on for the other
1907 * possible interrupts during napi
1908 */
1909 u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1910 qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1911 wr32(hw, I40E_QINT_RQCTL(0), qval);
1912
1913 qval = rd32(hw, I40E_QINT_TQCTL(0));
1914 qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1915 wr32(hw, I40E_QINT_TQCTL(0), qval);
1916
1917 i40e_irq_dynamic_enable_icr0(vsi->back);
1918 }
1919 }
1920
1921 return 0;
1922 }
1923
1924 /**
1925 * i40e_atr - Add a Flow Director ATR filter
1926 * @tx_ring: ring to add programming descriptor to
1927 * @skb: send buffer
1928 * @flags: send flags
1929 * @protocol: wire protocol
1930 **/
1931 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1932 u32 flags, __be16 protocol)
1933 {
1934 struct i40e_filter_program_desc *fdir_desc;
1935 struct i40e_pf *pf = tx_ring->vsi->back;
1936 union {
1937 unsigned char *network;
1938 struct iphdr *ipv4;
1939 struct ipv6hdr *ipv6;
1940 } hdr;
1941 struct tcphdr *th;
1942 unsigned int hlen;
1943 u32 flex_ptype, dtype_cmd;
1944 u16 i;
1945
1946 /* make sure ATR is enabled */
1947 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1948 return;
1949
1950 if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1951 return;
1952
1953 /* if sampling is disabled do nothing */
1954 if (!tx_ring->atr_sample_rate)
1955 return;
1956
1957 /* snag network header to get L4 type and address */
1958 hdr.network = skb_network_header(skb);
1959
1960 /* Currently only IPv4/IPv6 with TCP is supported */
1961 if (protocol == htons(ETH_P_IP)) {
1962 if (hdr.ipv4->protocol != IPPROTO_TCP)
1963 return;
1964
1965 /* access ihl as a u8 to avoid unaligned access on ia64 */
1966 hlen = (hdr.network[0] & 0x0F) << 2;
1967 } else if (protocol == htons(ETH_P_IPV6)) {
1968 if (hdr.ipv6->nexthdr != IPPROTO_TCP)
1969 return;
1970
1971 hlen = sizeof(struct ipv6hdr);
1972 } else {
1973 return;
1974 }
1975
1976 th = (struct tcphdr *)(hdr.network + hlen);
1977
1978 /* Due to lack of space, no more new filters can be programmed */
1979 if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1980 return;
1981
1982 tx_ring->atr_count++;
1983
1984 /* sample on all syn/fin/rst packets or once every atr sample rate */
1985 if (!th->fin &&
1986 !th->syn &&
1987 !th->rst &&
1988 (tx_ring->atr_count < tx_ring->atr_sample_rate))
1989 return;
1990
1991 tx_ring->atr_count = 0;
1992
1993 /* grab the next descriptor */
1994 i = tx_ring->next_to_use;
1995 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
1996
1997 i++;
1998 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1999
2000 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2001 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2002 flex_ptype |= (protocol == htons(ETH_P_IP)) ?
2003 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2004 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2005 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2006 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2007
2008 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2009
2010 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2011
2012 dtype_cmd |= (th->fin || th->rst) ?
2013 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2014 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2015 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2016 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2017
2018 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2019 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2020
2021 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2022 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2023
2024 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2025 dtype_cmd |=
2026 ((u32)pf->fd_atr_cnt_idx << I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2027 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2028
2029 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2030 fdir_desc->rsvd = cpu_to_le32(0);
2031 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2032 fdir_desc->fd_id = cpu_to_le32(0);
2033 }
2034
2035 /**
2036 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2037 * @skb: send buffer
2038 * @tx_ring: ring to send buffer on
2039 * @flags: the tx flags to be set
2040 *
2041 * Checks the skb and set up correspondingly several generic transmit flags
2042 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2043 *
2044 * Returns error code indicate the frame should be dropped upon error and the
2045 * otherwise returns 0 to indicate the flags has been set properly.
2046 **/
2047 #ifdef I40E_FCOE
2048 int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2049 struct i40e_ring *tx_ring,
2050 u32 *flags)
2051 #else
2052 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2053 struct i40e_ring *tx_ring,
2054 u32 *flags)
2055 #endif
2056 {
2057 __be16 protocol = skb->protocol;
2058 u32 tx_flags = 0;
2059
2060 if (protocol == htons(ETH_P_8021Q) &&
2061 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2062 /* When HW VLAN acceleration is turned off by the user the
2063 * stack sets the protocol to 8021q so that the driver
2064 * can take any steps required to support the SW only
2065 * VLAN handling. In our case the driver doesn't need
2066 * to take any further steps so just set the protocol
2067 * to the encapsulated ethertype.
2068 */
2069 skb->protocol = vlan_get_protocol(skb);
2070 goto out;
2071 }
2072
2073 /* if we have a HW VLAN tag being added, default to the HW one */
2074 if (skb_vlan_tag_present(skb)) {
2075 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2076 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2077 /* else if it is a SW VLAN, check the next protocol and store the tag */
2078 } else if (protocol == htons(ETH_P_8021Q)) {
2079 struct vlan_hdr *vhdr, _vhdr;
2080 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2081 if (!vhdr)
2082 return -EINVAL;
2083
2084 protocol = vhdr->h_vlan_encapsulated_proto;
2085 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2086 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2087 }
2088
2089 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2090 goto out;
2091
2092 /* Insert 802.1p priority into VLAN header */
2093 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2094 (skb->priority != TC_PRIO_CONTROL)) {
2095 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2096 tx_flags |= (skb->priority & 0x7) <<
2097 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2098 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2099 struct vlan_ethhdr *vhdr;
2100 int rc;
2101
2102 rc = skb_cow_head(skb, 0);
2103 if (rc < 0)
2104 return rc;
2105 vhdr = (struct vlan_ethhdr *)skb->data;
2106 vhdr->h_vlan_TCI = htons(tx_flags >>
2107 I40E_TX_FLAGS_VLAN_SHIFT);
2108 } else {
2109 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2110 }
2111 }
2112
2113 out:
2114 *flags = tx_flags;
2115 return 0;
2116 }
2117
2118 /**
2119 * i40e_tso - set up the tso context descriptor
2120 * @tx_ring: ptr to the ring to send
2121 * @skb: ptr to the skb we're sending
2122 * @tx_flags: the collected send information
2123 * @protocol: the send protocol
2124 * @hdr_len: ptr to the size of the packet header
2125 * @cd_tunneling: ptr to context descriptor bits
2126 *
2127 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2128 **/
2129 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2130 u32 tx_flags, __be16 protocol, u8 *hdr_len,
2131 u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
2132 {
2133 u32 cd_cmd, cd_tso_len, cd_mss;
2134 struct ipv6hdr *ipv6h;
2135 struct tcphdr *tcph;
2136 struct iphdr *iph;
2137 u32 l4len;
2138 int err;
2139
2140 if (!skb_is_gso(skb))
2141 return 0;
2142
2143 err = skb_cow_head(skb, 0);
2144 if (err < 0)
2145 return err;
2146
2147 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
2148 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
2149
2150 if (iph->version == 4) {
2151 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2152 iph->tot_len = 0;
2153 iph->check = 0;
2154 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2155 0, IPPROTO_TCP, 0);
2156 } else if (ipv6h->version == 6) {
2157 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2158 ipv6h->payload_len = 0;
2159 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2160 0, IPPROTO_TCP, 0);
2161 }
2162
2163 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
2164 *hdr_len = (skb->encapsulation
2165 ? (skb_inner_transport_header(skb) - skb->data)
2166 : skb_transport_offset(skb)) + l4len;
2167
2168 /* find the field values */
2169 cd_cmd = I40E_TX_CTX_DESC_TSO;
2170 cd_tso_len = skb->len - *hdr_len;
2171 cd_mss = skb_shinfo(skb)->gso_size;
2172 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2173 ((u64)cd_tso_len <<
2174 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2175 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2176 return 1;
2177 }
2178
2179 /**
2180 * i40e_tsyn - set up the tsyn context descriptor
2181 * @tx_ring: ptr to the ring to send
2182 * @skb: ptr to the skb we're sending
2183 * @tx_flags: the collected send information
2184 *
2185 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2186 **/
2187 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2188 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2189 {
2190 struct i40e_pf *pf;
2191
2192 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2193 return 0;
2194
2195 /* Tx timestamps cannot be sampled when doing TSO */
2196 if (tx_flags & I40E_TX_FLAGS_TSO)
2197 return 0;
2198
2199 /* only timestamp the outbound packet if the user has requested it and
2200 * we are not already transmitting a packet to be timestamped
2201 */
2202 pf = i40e_netdev_to_pf(tx_ring->netdev);
2203 if (!(pf->flags & I40E_FLAG_PTP))
2204 return 0;
2205
2206 if (pf->ptp_tx &&
2207 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2208 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2209 pf->ptp_tx_skb = skb_get(skb);
2210 } else {
2211 return 0;
2212 }
2213
2214 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2215 I40E_TXD_CTX_QW1_CMD_SHIFT;
2216
2217 return 1;
2218 }
2219
2220 /**
2221 * i40e_tx_enable_csum - Enable Tx checksum offloads
2222 * @skb: send buffer
2223 * @tx_flags: Tx flags currently set
2224 * @td_cmd: Tx descriptor command bits to set
2225 * @td_offset: Tx descriptor header offsets to set
2226 * @cd_tunneling: ptr to context desc bits
2227 **/
2228 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
2229 u32 *td_cmd, u32 *td_offset,
2230 struct i40e_ring *tx_ring,
2231 u32 *cd_tunneling)
2232 {
2233 struct ipv6hdr *this_ipv6_hdr;
2234 unsigned int this_tcp_hdrlen;
2235 struct iphdr *this_ip_hdr;
2236 u32 network_hdr_len;
2237 u8 l4_hdr = 0;
2238 u32 l4_tunnel = 0;
2239
2240 if (skb->encapsulation) {
2241 switch (ip_hdr(skb)->protocol) {
2242 case IPPROTO_UDP:
2243 l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
2244 break;
2245 default:
2246 return;
2247 }
2248 network_hdr_len = skb_inner_network_header_len(skb);
2249 this_ip_hdr = inner_ip_hdr(skb);
2250 this_ipv6_hdr = inner_ipv6_hdr(skb);
2251 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
2252
2253 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2254
2255 if (tx_flags & I40E_TX_FLAGS_TSO) {
2256 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
2257 ip_hdr(skb)->check = 0;
2258 } else {
2259 *cd_tunneling |=
2260 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2261 }
2262 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
2263 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2264 if (tx_flags & I40E_TX_FLAGS_TSO)
2265 ip_hdr(skb)->check = 0;
2266 }
2267
2268 /* Now set the ctx descriptor fields */
2269 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2270 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
2271 l4_tunnel |
2272 ((skb_inner_network_offset(skb) -
2273 skb_transport_offset(skb)) >> 1) <<
2274 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2275 if (this_ip_hdr->version == 6) {
2276 tx_flags &= ~I40E_TX_FLAGS_IPV4;
2277 tx_flags |= I40E_TX_FLAGS_IPV6;
2278 }
2279 } else {
2280 network_hdr_len = skb_network_header_len(skb);
2281 this_ip_hdr = ip_hdr(skb);
2282 this_ipv6_hdr = ipv6_hdr(skb);
2283 this_tcp_hdrlen = tcp_hdrlen(skb);
2284 }
2285
2286 /* Enable IP checksum offloads */
2287 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2288 l4_hdr = this_ip_hdr->protocol;
2289 /* the stack computes the IP header already, the only time we
2290 * need the hardware to recompute it is in the case of TSO.
2291 */
2292 if (tx_flags & I40E_TX_FLAGS_TSO) {
2293 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2294 this_ip_hdr->check = 0;
2295 } else {
2296 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2297 }
2298 /* Now set the td_offset for IP header length */
2299 *td_offset = (network_hdr_len >> 2) <<
2300 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2301 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
2302 l4_hdr = this_ipv6_hdr->nexthdr;
2303 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2304 /* Now set the td_offset for IP header length */
2305 *td_offset = (network_hdr_len >> 2) <<
2306 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2307 }
2308 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2309 *td_offset |= (skb_network_offset(skb) >> 1) <<
2310 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2311
2312 /* Enable L4 checksum offloads */
2313 switch (l4_hdr) {
2314 case IPPROTO_TCP:
2315 /* enable checksum offloads */
2316 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2317 *td_offset |= (this_tcp_hdrlen >> 2) <<
2318 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2319 break;
2320 case IPPROTO_SCTP:
2321 /* enable SCTP checksum offload */
2322 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2323 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2324 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2325 break;
2326 case IPPROTO_UDP:
2327 /* enable UDP checksum offload */
2328 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2329 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2330 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2331 break;
2332 default:
2333 break;
2334 }
2335 }
2336
2337 /**
2338 * i40e_create_tx_ctx Build the Tx context descriptor
2339 * @tx_ring: ring to create the descriptor on
2340 * @cd_type_cmd_tso_mss: Quad Word 1
2341 * @cd_tunneling: Quad Word 0 - bits 0-31
2342 * @cd_l2tag2: Quad Word 0 - bits 32-63
2343 **/
2344 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2345 const u64 cd_type_cmd_tso_mss,
2346 const u32 cd_tunneling, const u32 cd_l2tag2)
2347 {
2348 struct i40e_tx_context_desc *context_desc;
2349 int i = tx_ring->next_to_use;
2350
2351 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2352 !cd_tunneling && !cd_l2tag2)
2353 return;
2354
2355 /* grab the next descriptor */
2356 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2357
2358 i++;
2359 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2360
2361 /* cpu_to_le32 and assign to struct fields */
2362 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2363 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2364 context_desc->rsvd = cpu_to_le16(0);
2365 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2366 }
2367
2368 /**
2369 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2370 * @tx_ring: the ring to be checked
2371 * @size: the size buffer we want to assure is available
2372 *
2373 * Returns -EBUSY if a stop is needed, else 0
2374 **/
2375 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2376 {
2377 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2378 /* Memory barrier before checking head and tail */
2379 smp_mb();
2380
2381 /* Check again in a case another CPU has just made room available. */
2382 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2383 return -EBUSY;
2384
2385 /* A reprieve! - use start_queue because it doesn't call schedule */
2386 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2387 ++tx_ring->tx_stats.restart_queue;
2388 return 0;
2389 }
2390
2391 /**
2392 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2393 * @tx_ring: the ring to be checked
2394 * @size: the size buffer we want to assure is available
2395 *
2396 * Returns 0 if stop is not needed
2397 **/
2398 #ifdef I40E_FCOE
2399 int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2400 #else
2401 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2402 #endif
2403 {
2404 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2405 return 0;
2406 return __i40e_maybe_stop_tx(tx_ring, size);
2407 }
2408
2409 /**
2410 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2411 * @skb: send buffer
2412 * @tx_flags: collected send information
2413 * @hdr_len: size of the packet header
2414 *
2415 * Note: Our HW can't scatter-gather more than 8 fragments to build
2416 * a packet on the wire and so we need to figure out the cases where we
2417 * need to linearize the skb.
2418 **/
2419 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags,
2420 const u8 hdr_len)
2421 {
2422 struct skb_frag_struct *frag;
2423 bool linearize = false;
2424 unsigned int size = 0;
2425 u16 num_frags;
2426 u16 gso_segs;
2427
2428 num_frags = skb_shinfo(skb)->nr_frags;
2429 gso_segs = skb_shinfo(skb)->gso_segs;
2430
2431 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2432 u16 j = 1;
2433
2434 if (num_frags < (I40E_MAX_BUFFER_TXD))
2435 goto linearize_chk_done;
2436 /* try the simple math, if we have too many frags per segment */
2437 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2438 I40E_MAX_BUFFER_TXD) {
2439 linearize = true;
2440 goto linearize_chk_done;
2441 }
2442 frag = &skb_shinfo(skb)->frags[0];
2443 size = hdr_len;
2444 /* we might still have more fragments per segment */
2445 do {
2446 size += skb_frag_size(frag);
2447 frag++; j++;
2448 if (j == I40E_MAX_BUFFER_TXD) {
2449 if (size < skb_shinfo(skb)->gso_size) {
2450 linearize = true;
2451 break;
2452 }
2453 j = 1;
2454 size -= skb_shinfo(skb)->gso_size;
2455 if (size)
2456 j++;
2457 size += hdr_len;
2458 }
2459 num_frags--;
2460 } while (num_frags);
2461 } else {
2462 if (num_frags >= I40E_MAX_BUFFER_TXD)
2463 linearize = true;
2464 }
2465
2466 linearize_chk_done:
2467 return linearize;
2468 }
2469
2470 /**
2471 * i40e_tx_map - Build the Tx descriptor
2472 * @tx_ring: ring to send buffer on
2473 * @skb: send buffer
2474 * @first: first buffer info buffer to use
2475 * @tx_flags: collected send information
2476 * @hdr_len: size of the packet header
2477 * @td_cmd: the command field in the descriptor
2478 * @td_offset: offset for checksum or crc
2479 **/
2480 #ifdef I40E_FCOE
2481 void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2482 struct i40e_tx_buffer *first, u32 tx_flags,
2483 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2484 #else
2485 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2486 struct i40e_tx_buffer *first, u32 tx_flags,
2487 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2488 #endif
2489 {
2490 unsigned int data_len = skb->data_len;
2491 unsigned int size = skb_headlen(skb);
2492 struct skb_frag_struct *frag;
2493 struct i40e_tx_buffer *tx_bi;
2494 struct i40e_tx_desc *tx_desc;
2495 u16 i = tx_ring->next_to_use;
2496 u32 td_tag = 0;
2497 dma_addr_t dma;
2498 u16 gso_segs;
2499
2500 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2501 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2502 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2503 I40E_TX_FLAGS_VLAN_SHIFT;
2504 }
2505
2506 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2507 gso_segs = skb_shinfo(skb)->gso_segs;
2508 else
2509 gso_segs = 1;
2510
2511 /* multiply data chunks by size of headers */
2512 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2513 first->gso_segs = gso_segs;
2514 first->skb = skb;
2515 first->tx_flags = tx_flags;
2516
2517 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2518
2519 tx_desc = I40E_TX_DESC(tx_ring, i);
2520 tx_bi = first;
2521
2522 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2523 if (dma_mapping_error(tx_ring->dev, dma))
2524 goto dma_error;
2525
2526 /* record length, and DMA address */
2527 dma_unmap_len_set(tx_bi, len, size);
2528 dma_unmap_addr_set(tx_bi, dma, dma);
2529
2530 tx_desc->buffer_addr = cpu_to_le64(dma);
2531
2532 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2533 tx_desc->cmd_type_offset_bsz =
2534 build_ctob(td_cmd, td_offset,
2535 I40E_MAX_DATA_PER_TXD, td_tag);
2536
2537 tx_desc++;
2538 i++;
2539 if (i == tx_ring->count) {
2540 tx_desc = I40E_TX_DESC(tx_ring, 0);
2541 i = 0;
2542 }
2543
2544 dma += I40E_MAX_DATA_PER_TXD;
2545 size -= I40E_MAX_DATA_PER_TXD;
2546
2547 tx_desc->buffer_addr = cpu_to_le64(dma);
2548 }
2549
2550 if (likely(!data_len))
2551 break;
2552
2553 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2554 size, td_tag);
2555
2556 tx_desc++;
2557 i++;
2558 if (i == tx_ring->count) {
2559 tx_desc = I40E_TX_DESC(tx_ring, 0);
2560 i = 0;
2561 }
2562
2563 size = skb_frag_size(frag);
2564 data_len -= size;
2565
2566 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2567 DMA_TO_DEVICE);
2568
2569 tx_bi = &tx_ring->tx_bi[i];
2570 }
2571
2572 /* Place RS bit on last descriptor of any packet that spans across the
2573 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
2574 */
2575 if (((i & WB_STRIDE) != WB_STRIDE) &&
2576 (first <= &tx_ring->tx_bi[i]) &&
2577 (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
2578 tx_desc->cmd_type_offset_bsz =
2579 build_ctob(td_cmd, td_offset, size, td_tag) |
2580 cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
2581 I40E_TXD_QW1_CMD_SHIFT);
2582 } else {
2583 tx_desc->cmd_type_offset_bsz =
2584 build_ctob(td_cmd, td_offset, size, td_tag) |
2585 cpu_to_le64((u64)I40E_TXD_CMD <<
2586 I40E_TXD_QW1_CMD_SHIFT);
2587 }
2588
2589 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2590 tx_ring->queue_index),
2591 first->bytecount);
2592
2593 /* set the timestamp */
2594 first->time_stamp = jiffies;
2595
2596 /* Force memory writes to complete before letting h/w
2597 * know there are new descriptors to fetch. (Only
2598 * applicable for weak-ordered memory model archs,
2599 * such as IA-64).
2600 */
2601 wmb();
2602
2603 /* set next_to_watch value indicating a packet is present */
2604 first->next_to_watch = tx_desc;
2605
2606 i++;
2607 if (i == tx_ring->count)
2608 i = 0;
2609
2610 tx_ring->next_to_use = i;
2611
2612 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2613 /* notify HW of packet */
2614 if (!skb->xmit_more ||
2615 netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2616 tx_ring->queue_index)))
2617 writel(i, tx_ring->tail);
2618
2619 return;
2620
2621 dma_error:
2622 dev_info(tx_ring->dev, "TX DMA map failed\n");
2623
2624 /* clear dma mappings for failed tx_bi map */
2625 for (;;) {
2626 tx_bi = &tx_ring->tx_bi[i];
2627 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2628 if (tx_bi == first)
2629 break;
2630 if (i == 0)
2631 i = tx_ring->count;
2632 i--;
2633 }
2634
2635 tx_ring->next_to_use = i;
2636 }
2637
2638 /**
2639 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2640 * @skb: send buffer
2641 * @tx_ring: ring to send buffer on
2642 *
2643 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2644 * there is not enough descriptors available in this ring since we need at least
2645 * one descriptor.
2646 **/
2647 #ifdef I40E_FCOE
2648 int i40e_xmit_descriptor_count(struct sk_buff *skb,
2649 struct i40e_ring *tx_ring)
2650 #else
2651 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
2652 struct i40e_ring *tx_ring)
2653 #endif
2654 {
2655 unsigned int f;
2656 int count = 0;
2657
2658 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2659 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2660 * + 4 desc gap to avoid the cache line where head is,
2661 * + 1 desc for context descriptor,
2662 * otherwise try next time
2663 */
2664 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2665 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2666
2667 count += TXD_USE_COUNT(skb_headlen(skb));
2668 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2669 tx_ring->tx_stats.tx_busy++;
2670 return 0;
2671 }
2672 return count;
2673 }
2674
2675 /**
2676 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2677 * @skb: send buffer
2678 * @tx_ring: ring to send buffer on
2679 *
2680 * Returns NETDEV_TX_OK if sent, else an error code
2681 **/
2682 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2683 struct i40e_ring *tx_ring)
2684 {
2685 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2686 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2687 struct i40e_tx_buffer *first;
2688 u32 td_offset = 0;
2689 u32 tx_flags = 0;
2690 __be16 protocol;
2691 u32 td_cmd = 0;
2692 u8 hdr_len = 0;
2693 int tsyn;
2694 int tso;
2695 if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2696 return NETDEV_TX_BUSY;
2697
2698 /* prepare the xmit flags */
2699 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2700 goto out_drop;
2701
2702 /* obtain protocol of skb */
2703 protocol = vlan_get_protocol(skb);
2704
2705 /* record the location of the first descriptor for this packet */
2706 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2707
2708 /* setup IPv4/IPv6 offloads */
2709 if (protocol == htons(ETH_P_IP))
2710 tx_flags |= I40E_TX_FLAGS_IPV4;
2711 else if (protocol == htons(ETH_P_IPV6))
2712 tx_flags |= I40E_TX_FLAGS_IPV6;
2713
2714 tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
2715 &cd_type_cmd_tso_mss, &cd_tunneling);
2716
2717 if (tso < 0)
2718 goto out_drop;
2719 else if (tso)
2720 tx_flags |= I40E_TX_FLAGS_TSO;
2721
2722 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2723
2724 if (tsyn)
2725 tx_flags |= I40E_TX_FLAGS_TSYN;
2726
2727 if (i40e_chk_linearize(skb, tx_flags, hdr_len))
2728 if (skb_linearize(skb))
2729 goto out_drop;
2730
2731 skb_tx_timestamp(skb);
2732
2733 /* always enable CRC insertion offload */
2734 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2735
2736 /* Always offload the checksum, since it's in the data descriptor */
2737 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2738 tx_flags |= I40E_TX_FLAGS_CSUM;
2739
2740 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
2741 tx_ring, &cd_tunneling);
2742 }
2743
2744 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2745 cd_tunneling, cd_l2tag2);
2746
2747 /* Add Flow Director ATR if it's enabled.
2748 *
2749 * NOTE: this must always be directly before the data descriptor.
2750 */
2751 i40e_atr(tx_ring, skb, tx_flags, protocol);
2752
2753 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2754 td_cmd, td_offset);
2755
2756 return NETDEV_TX_OK;
2757
2758 out_drop:
2759 dev_kfree_skb_any(skb);
2760 return NETDEV_TX_OK;
2761 }
2762
2763 /**
2764 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2765 * @skb: send buffer
2766 * @netdev: network interface device structure
2767 *
2768 * Returns NETDEV_TX_OK if sent, else an error code
2769 **/
2770 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2771 {
2772 struct i40e_netdev_priv *np = netdev_priv(netdev);
2773 struct i40e_vsi *vsi = np->vsi;
2774 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2775
2776 /* hardware can't handle really short frames, hardware padding works
2777 * beyond this point
2778 */
2779 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2780 return NETDEV_TX_OK;
2781
2782 return i40e_xmit_frame_ring(skb, tx_ring);
2783 }
This page took 0.098882 seconds and 5 git commands to generate.