i40e/i40evf: Refactor i40e_debug_aq and make some functions static
[deliverable/linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2014 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33 u32 td_tag)
34 {
35 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
37 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45 * i40e_program_fdir_filter - Program a Flow Director filter
46 * @fdir_data: Packet data that will be filter parameters
47 * @raw_packet: the pre-allocated packet buffer for FDir
48 * @pf: The pf pointer
49 * @add: True for add/update, False for remove
50 **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52 struct i40e_pf *pf, bool add)
53 {
54 struct i40e_filter_program_desc *fdir_desc;
55 struct i40e_tx_buffer *tx_buf, *first;
56 struct i40e_tx_desc *tx_desc;
57 struct i40e_ring *tx_ring;
58 unsigned int fpt, dcc;
59 struct i40e_vsi *vsi;
60 struct device *dev;
61 dma_addr_t dma;
62 u32 td_cmd = 0;
63 u16 delay = 0;
64 u16 i;
65
66 /* find existing FDIR VSI */
67 vsi = NULL;
68 for (i = 0; i < pf->num_alloc_vsi; i++)
69 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70 vsi = pf->vsi[i];
71 if (!vsi)
72 return -ENOENT;
73
74 tx_ring = vsi->tx_rings[0];
75 dev = tx_ring->dev;
76
77 /* we need two descriptors to add/del a filter and we can wait */
78 do {
79 if (I40E_DESC_UNUSED(tx_ring) > 1)
80 break;
81 msleep_interruptible(1);
82 delay++;
83 } while (delay < I40E_FD_CLEAN_DELAY);
84
85 if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86 return -EAGAIN;
87
88 dma = dma_map_single(dev, raw_packet,
89 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90 if (dma_mapping_error(dev, dma))
91 goto dma_fail;
92
93 /* grab the next descriptor */
94 i = tx_ring->next_to_use;
95 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96 first = &tx_ring->tx_bi[i];
97 memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101 fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102 I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104 fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105 I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107 fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108 I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110 /* Use LAN VSI Id if not programmed by user */
111 if (fdir_data->dest_vsi == 0)
112 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114 else
115 fpt |= ((u32)fdir_data->dest_vsi <<
116 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117 I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119 dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121 if (add)
122 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124 else
125 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128 dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129 I40E_TXD_FLTR_QW1_DEST_MASK;
130
131 dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132 I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134 if (fdir_data->cnt_index != 0) {
135 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136 dcc |= ((u32)fdir_data->cnt_index <<
137 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139 }
140
141 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142 fdir_desc->rsvd = cpu_to_le32(0);
143 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144 fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146 /* Now program a dummy descriptor */
147 i = tx_ring->next_to_use;
148 tx_desc = I40E_TX_DESC(tx_ring, i);
149 tx_buf = &tx_ring->tx_bi[i];
150
151 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155 /* record length, and DMA address */
156 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157 dma_unmap_addr_set(tx_buf, dma, dma);
158
159 tx_desc->buffer_addr = cpu_to_le64(dma);
160 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163 tx_buf->raw_buf = (void *)raw_packet;
164
165 tx_desc->cmd_type_offset_bsz =
166 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168 /* set the timestamp */
169 tx_buf->time_stamp = jiffies;
170
171 /* Force memory writes to complete before letting h/w
172 * know there are new descriptors to fetch.
173 */
174 wmb();
175
176 /* Mark the data descriptor to be watched */
177 first->next_to_watch = tx_desc;
178
179 writel(tx_ring->next_to_use, tx_ring->tail);
180 return 0;
181
182 dma_fail:
183 return -1;
184 }
185
186 #define IP_HEADER_OFFSET 14
187 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
188 /**
189 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
190 * @vsi: pointer to the targeted VSI
191 * @fd_data: the flow director data required for the FDir descriptor
192 * @add: true adds a filter, false removes it
193 *
194 * Returns 0 if the filters were successfully added or removed
195 **/
196 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
197 struct i40e_fdir_filter *fd_data,
198 bool add)
199 {
200 struct i40e_pf *pf = vsi->back;
201 struct udphdr *udp;
202 struct iphdr *ip;
203 bool err = false;
204 u8 *raw_packet;
205 int ret;
206 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
207 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
208 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
209
210 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
211 if (!raw_packet)
212 return -ENOMEM;
213 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
214
215 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
216 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
217 + sizeof(struct iphdr));
218
219 ip->daddr = fd_data->dst_ip[0];
220 udp->dest = fd_data->dst_port;
221 ip->saddr = fd_data->src_ip[0];
222 udp->source = fd_data->src_port;
223
224 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
225 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
226 if (ret) {
227 dev_info(&pf->pdev->dev,
228 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
229 fd_data->pctype, fd_data->fd_id, ret);
230 err = true;
231 } else {
232 if (add)
233 dev_info(&pf->pdev->dev,
234 "Filter OK for PCTYPE %d loc = %d\n",
235 fd_data->pctype, fd_data->fd_id);
236 else
237 dev_info(&pf->pdev->dev,
238 "Filter deleted for PCTYPE %d loc = %d\n",
239 fd_data->pctype, fd_data->fd_id);
240 }
241 return err ? -EOPNOTSUPP : 0;
242 }
243
244 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
245 /**
246 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
247 * @vsi: pointer to the targeted VSI
248 * @fd_data: the flow director data required for the FDir descriptor
249 * @add: true adds a filter, false removes it
250 *
251 * Returns 0 if the filters were successfully added or removed
252 **/
253 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
254 struct i40e_fdir_filter *fd_data,
255 bool add)
256 {
257 struct i40e_pf *pf = vsi->back;
258 struct tcphdr *tcp;
259 struct iphdr *ip;
260 bool err = false;
261 u8 *raw_packet;
262 int ret;
263 /* Dummy packet */
264 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
265 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
266 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
267 0x0, 0x72, 0, 0, 0, 0};
268
269 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
270 if (!raw_packet)
271 return -ENOMEM;
272 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
273
274 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
275 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
276 + sizeof(struct iphdr));
277
278 ip->daddr = fd_data->dst_ip[0];
279 tcp->dest = fd_data->dst_port;
280 ip->saddr = fd_data->src_ip[0];
281 tcp->source = fd_data->src_port;
282
283 if (add) {
284 pf->fd_tcp_rule++;
285 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
286 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
287 pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
288 }
289 } else {
290 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
291 (pf->fd_tcp_rule - 1) : 0;
292 if (pf->fd_tcp_rule == 0) {
293 pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
294 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
295 }
296 }
297
298 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
299 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
300
301 if (ret) {
302 dev_info(&pf->pdev->dev,
303 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
304 fd_data->pctype, fd_data->fd_id, ret);
305 err = true;
306 } else {
307 if (add)
308 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
309 fd_data->pctype, fd_data->fd_id);
310 else
311 dev_info(&pf->pdev->dev,
312 "Filter deleted for PCTYPE %d loc = %d\n",
313 fd_data->pctype, fd_data->fd_id);
314 }
315
316 return err ? -EOPNOTSUPP : 0;
317 }
318
319 /**
320 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
321 * a specific flow spec
322 * @vsi: pointer to the targeted VSI
323 * @fd_data: the flow director data required for the FDir descriptor
324 * @add: true adds a filter, false removes it
325 *
326 * Always returns -EOPNOTSUPP
327 **/
328 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
329 struct i40e_fdir_filter *fd_data,
330 bool add)
331 {
332 return -EOPNOTSUPP;
333 }
334
335 #define I40E_IP_DUMMY_PACKET_LEN 34
336 /**
337 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
338 * a specific flow spec
339 * @vsi: pointer to the targeted VSI
340 * @fd_data: the flow director data required for the FDir descriptor
341 * @add: true adds a filter, false removes it
342 *
343 * Returns 0 if the filters were successfully added or removed
344 **/
345 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
346 struct i40e_fdir_filter *fd_data,
347 bool add)
348 {
349 struct i40e_pf *pf = vsi->back;
350 struct iphdr *ip;
351 bool err = false;
352 u8 *raw_packet;
353 int ret;
354 int i;
355 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
356 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
357 0, 0, 0, 0};
358
359 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
360 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
361 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
362 if (!raw_packet)
363 return -ENOMEM;
364 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
365 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
366
367 ip->saddr = fd_data->src_ip[0];
368 ip->daddr = fd_data->dst_ip[0];
369 ip->protocol = 0;
370
371 fd_data->pctype = i;
372 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
373
374 if (ret) {
375 dev_info(&pf->pdev->dev,
376 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
377 fd_data->pctype, fd_data->fd_id, ret);
378 err = true;
379 } else {
380 if (add)
381 dev_info(&pf->pdev->dev,
382 "Filter OK for PCTYPE %d loc = %d\n",
383 fd_data->pctype, fd_data->fd_id);
384 else
385 dev_info(&pf->pdev->dev,
386 "Filter deleted for PCTYPE %d loc = %d\n",
387 fd_data->pctype, fd_data->fd_id);
388 }
389 }
390
391 return err ? -EOPNOTSUPP : 0;
392 }
393
394 /**
395 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
396 * @vsi: pointer to the targeted VSI
397 * @cmd: command to get or set RX flow classification rules
398 * @add: true adds a filter, false removes it
399 *
400 **/
401 int i40e_add_del_fdir(struct i40e_vsi *vsi,
402 struct i40e_fdir_filter *input, bool add)
403 {
404 struct i40e_pf *pf = vsi->back;
405 int ret;
406
407 switch (input->flow_type & ~FLOW_EXT) {
408 case TCP_V4_FLOW:
409 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
410 break;
411 case UDP_V4_FLOW:
412 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
413 break;
414 case SCTP_V4_FLOW:
415 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
416 break;
417 case IPV4_FLOW:
418 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
419 break;
420 case IP_USER_FLOW:
421 switch (input->ip4_proto) {
422 case IPPROTO_TCP:
423 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
424 break;
425 case IPPROTO_UDP:
426 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
427 break;
428 case IPPROTO_SCTP:
429 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
430 break;
431 default:
432 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
433 break;
434 }
435 break;
436 default:
437 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
438 input->flow_type);
439 ret = -EINVAL;
440 }
441
442 /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
443 return ret;
444 }
445
446 /**
447 * i40e_fd_handle_status - check the Programming Status for FD
448 * @rx_ring: the Rx ring for this descriptor
449 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
450 * @prog_id: the id originally used for programming
451 *
452 * This is used to verify if the FD programming or invalidation
453 * requested by SW to the HW is successful or not and take actions accordingly.
454 **/
455 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
456 union i40e_rx_desc *rx_desc, u8 prog_id)
457 {
458 struct i40e_pf *pf = rx_ring->vsi->back;
459 struct pci_dev *pdev = pf->pdev;
460 u32 fcnt_prog, fcnt_avail;
461 u32 error;
462 u64 qw;
463
464 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
465 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
466 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
467
468 if (error == (0x1 << I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
469 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
470 (I40E_DEBUG_FD & pf->hw.debug_mask))
471 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
472 rx_desc->wb.qword0.hi_dword.fd_id);
473
474 pf->fd_add_err++;
475 /* store the current atr filter count */
476 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
477
478 /* filter programming failed most likely due to table full */
479 fcnt_prog = i40e_get_cur_guaranteed_fd_count(pf);
480 fcnt_avail = pf->fdir_pf_filter_count;
481 /* If ATR is running fcnt_prog can quickly change,
482 * if we are very close to full, it makes sense to disable
483 * FD ATR/SB and then re-enable it when there is room.
484 */
485 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
486 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
487 !(pf->auto_disable_flags &
488 I40E_FLAG_FD_SB_ENABLED)) {
489 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
490 pf->auto_disable_flags |=
491 I40E_FLAG_FD_SB_ENABLED;
492 }
493 } else {
494 dev_info(&pdev->dev,
495 "FD filter programming failed due to incorrect filter parameters\n");
496 }
497 } else if (error ==
498 (0x1 << I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
499 if (I40E_DEBUG_FD & pf->hw.debug_mask)
500 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
501 rx_desc->wb.qword0.hi_dword.fd_id);
502 }
503 }
504
505 /**
506 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
507 * @ring: the ring that owns the buffer
508 * @tx_buffer: the buffer to free
509 **/
510 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
511 struct i40e_tx_buffer *tx_buffer)
512 {
513 if (tx_buffer->skb) {
514 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
515 kfree(tx_buffer->raw_buf);
516 else
517 dev_kfree_skb_any(tx_buffer->skb);
518
519 if (dma_unmap_len(tx_buffer, len))
520 dma_unmap_single(ring->dev,
521 dma_unmap_addr(tx_buffer, dma),
522 dma_unmap_len(tx_buffer, len),
523 DMA_TO_DEVICE);
524 } else if (dma_unmap_len(tx_buffer, len)) {
525 dma_unmap_page(ring->dev,
526 dma_unmap_addr(tx_buffer, dma),
527 dma_unmap_len(tx_buffer, len),
528 DMA_TO_DEVICE);
529 }
530 tx_buffer->next_to_watch = NULL;
531 tx_buffer->skb = NULL;
532 dma_unmap_len_set(tx_buffer, len, 0);
533 /* tx_buffer must be completely set up in the transmit path */
534 }
535
536 /**
537 * i40e_clean_tx_ring - Free any empty Tx buffers
538 * @tx_ring: ring to be cleaned
539 **/
540 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
541 {
542 unsigned long bi_size;
543 u16 i;
544
545 /* ring already cleared, nothing to do */
546 if (!tx_ring->tx_bi)
547 return;
548
549 /* Free all the Tx ring sk_buffs */
550 for (i = 0; i < tx_ring->count; i++)
551 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
552
553 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
554 memset(tx_ring->tx_bi, 0, bi_size);
555
556 /* Zero out the descriptor ring */
557 memset(tx_ring->desc, 0, tx_ring->size);
558
559 tx_ring->next_to_use = 0;
560 tx_ring->next_to_clean = 0;
561
562 if (!tx_ring->netdev)
563 return;
564
565 /* cleanup Tx queue statistics */
566 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
567 tx_ring->queue_index));
568 }
569
570 /**
571 * i40e_free_tx_resources - Free Tx resources per queue
572 * @tx_ring: Tx descriptor ring for a specific queue
573 *
574 * Free all transmit software resources
575 **/
576 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
577 {
578 i40e_clean_tx_ring(tx_ring);
579 kfree(tx_ring->tx_bi);
580 tx_ring->tx_bi = NULL;
581
582 if (tx_ring->desc) {
583 dma_free_coherent(tx_ring->dev, tx_ring->size,
584 tx_ring->desc, tx_ring->dma);
585 tx_ring->desc = NULL;
586 }
587 }
588
589 /**
590 * i40e_get_head - Retrieve head from head writeback
591 * @tx_ring: tx ring to fetch head of
592 *
593 * Returns value of Tx ring head based on value stored
594 * in head write-back location
595 **/
596 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
597 {
598 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
599
600 return le32_to_cpu(*(volatile __le32 *)head);
601 }
602
603 /**
604 * i40e_get_tx_pending - how many tx descriptors not processed
605 * @tx_ring: the ring of descriptors
606 *
607 * Since there is no access to the ring head register
608 * in XL710, we need to use our local copies
609 **/
610 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
611 {
612 u32 head, tail;
613
614 head = i40e_get_head(ring);
615 tail = readl(ring->tail);
616
617 if (head != tail)
618 return (head < tail) ?
619 tail - head : (tail + ring->count - head);
620
621 return 0;
622 }
623
624 /**
625 * i40e_check_tx_hang - Is there a hang in the Tx queue
626 * @tx_ring: the ring of descriptors
627 **/
628 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
629 {
630 u32 tx_done = tx_ring->stats.packets;
631 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
632 u32 tx_pending = i40e_get_tx_pending(tx_ring);
633 struct i40e_pf *pf = tx_ring->vsi->back;
634 bool ret = false;
635
636 clear_check_for_tx_hang(tx_ring);
637
638 /* Check for a hung queue, but be thorough. This verifies
639 * that a transmit has been completed since the previous
640 * check AND there is at least one packet pending. The
641 * ARMED bit is set to indicate a potential hang. The
642 * bit is cleared if a pause frame is received to remove
643 * false hang detection due to PFC or 802.3x frames. By
644 * requiring this to fail twice we avoid races with
645 * PFC clearing the ARMED bit and conditions where we
646 * run the check_tx_hang logic with a transmit completion
647 * pending but without time to complete it yet.
648 */
649 if ((tx_done_old == tx_done) && tx_pending) {
650 /* make sure it is true for two checks in a row */
651 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
652 &tx_ring->state);
653 } else if (tx_done_old == tx_done &&
654 (tx_pending < I40E_MIN_DESC_PENDING) && (tx_pending > 0)) {
655 if (I40E_DEBUG_FLOW & pf->hw.debug_mask)
656 dev_info(tx_ring->dev, "HW needs some more descs to do a cacheline flush. tx_pending %d, queue %d",
657 tx_pending, tx_ring->queue_index);
658 pf->tx_sluggish_count++;
659 } else {
660 /* update completed stats and disarm the hang check */
661 tx_ring->tx_stats.tx_done_old = tx_done;
662 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
663 }
664
665 return ret;
666 }
667
668 #define WB_STRIDE 0x3
669
670 /**
671 * i40e_clean_tx_irq - Reclaim resources after transmit completes
672 * @tx_ring: tx ring to clean
673 * @budget: how many cleans we're allowed
674 *
675 * Returns true if there's any budget left (e.g. the clean is finished)
676 **/
677 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
678 {
679 u16 i = tx_ring->next_to_clean;
680 struct i40e_tx_buffer *tx_buf;
681 struct i40e_tx_desc *tx_head;
682 struct i40e_tx_desc *tx_desc;
683 unsigned int total_packets = 0;
684 unsigned int total_bytes = 0;
685
686 tx_buf = &tx_ring->tx_bi[i];
687 tx_desc = I40E_TX_DESC(tx_ring, i);
688 i -= tx_ring->count;
689
690 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
691
692 do {
693 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
694
695 /* if next_to_watch is not set then there is no work pending */
696 if (!eop_desc)
697 break;
698
699 /* prevent any other reads prior to eop_desc */
700 read_barrier_depends();
701
702 /* we have caught up to head, no work left to do */
703 if (tx_head == tx_desc)
704 break;
705
706 /* clear next_to_watch to prevent false hangs */
707 tx_buf->next_to_watch = NULL;
708
709 /* update the statistics for this packet */
710 total_bytes += tx_buf->bytecount;
711 total_packets += tx_buf->gso_segs;
712
713 /* free the skb */
714 dev_consume_skb_any(tx_buf->skb);
715
716 /* unmap skb header data */
717 dma_unmap_single(tx_ring->dev,
718 dma_unmap_addr(tx_buf, dma),
719 dma_unmap_len(tx_buf, len),
720 DMA_TO_DEVICE);
721
722 /* clear tx_buffer data */
723 tx_buf->skb = NULL;
724 dma_unmap_len_set(tx_buf, len, 0);
725
726 /* unmap remaining buffers */
727 while (tx_desc != eop_desc) {
728
729 tx_buf++;
730 tx_desc++;
731 i++;
732 if (unlikely(!i)) {
733 i -= tx_ring->count;
734 tx_buf = tx_ring->tx_bi;
735 tx_desc = I40E_TX_DESC(tx_ring, 0);
736 }
737
738 /* unmap any remaining paged data */
739 if (dma_unmap_len(tx_buf, len)) {
740 dma_unmap_page(tx_ring->dev,
741 dma_unmap_addr(tx_buf, dma),
742 dma_unmap_len(tx_buf, len),
743 DMA_TO_DEVICE);
744 dma_unmap_len_set(tx_buf, len, 0);
745 }
746 }
747
748 /* move us one more past the eop_desc for start of next pkt */
749 tx_buf++;
750 tx_desc++;
751 i++;
752 if (unlikely(!i)) {
753 i -= tx_ring->count;
754 tx_buf = tx_ring->tx_bi;
755 tx_desc = I40E_TX_DESC(tx_ring, 0);
756 }
757
758 /* update budget accounting */
759 budget--;
760 } while (likely(budget));
761
762 i += tx_ring->count;
763 tx_ring->next_to_clean = i;
764 u64_stats_update_begin(&tx_ring->syncp);
765 tx_ring->stats.bytes += total_bytes;
766 tx_ring->stats.packets += total_packets;
767 u64_stats_update_end(&tx_ring->syncp);
768 tx_ring->q_vector->tx.total_bytes += total_bytes;
769 tx_ring->q_vector->tx.total_packets += total_packets;
770
771 /* check to see if there are any non-cache aligned descriptors
772 * waiting to be written back, and kick the hardware to force
773 * them to be written back in case of napi polling
774 */
775 if (budget &&
776 !((i & WB_STRIDE) == WB_STRIDE) &&
777 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
778 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
779 tx_ring->arm_wb = true;
780 else
781 tx_ring->arm_wb = false;
782
783 if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
784 /* schedule immediate reset if we believe we hung */
785 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
786 " VSI <%d>\n"
787 " Tx Queue <%d>\n"
788 " next_to_use <%x>\n"
789 " next_to_clean <%x>\n",
790 tx_ring->vsi->seid,
791 tx_ring->queue_index,
792 tx_ring->next_to_use, i);
793 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
794 " time_stamp <%lx>\n"
795 " jiffies <%lx>\n",
796 tx_ring->tx_bi[i].time_stamp, jiffies);
797
798 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
799
800 dev_info(tx_ring->dev,
801 "tx hang detected on queue %d, reset requested\n",
802 tx_ring->queue_index);
803
804 /* do not fire the reset immediately, wait for the stack to
805 * decide we are truly stuck, also prevents every queue from
806 * simultaneously requesting a reset
807 */
808
809 /* the adapter is about to reset, no point in enabling polling */
810 budget = 1;
811 }
812
813 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
814 tx_ring->queue_index),
815 total_packets, total_bytes);
816
817 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
818 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
819 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
820 /* Make sure that anybody stopping the queue after this
821 * sees the new next_to_clean.
822 */
823 smp_mb();
824 if (__netif_subqueue_stopped(tx_ring->netdev,
825 tx_ring->queue_index) &&
826 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
827 netif_wake_subqueue(tx_ring->netdev,
828 tx_ring->queue_index);
829 ++tx_ring->tx_stats.restart_queue;
830 }
831 }
832
833 return !!budget;
834 }
835
836 /**
837 * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
838 * @vsi: the VSI we care about
839 * @q_vector: the vector on which to force writeback
840 *
841 **/
842 static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
843 {
844 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
845 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
846 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
847 /* allow 00 to be written to the index */
848
849 wr32(&vsi->back->hw,
850 I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
851 val);
852 }
853
854 /**
855 * i40e_set_new_dynamic_itr - Find new ITR level
856 * @rc: structure containing ring performance data
857 *
858 * Stores a new ITR value based on packets and byte counts during
859 * the last interrupt. The advantage of per interrupt computation
860 * is faster updates and more accurate ITR for the current traffic
861 * pattern. Constants in this function were computed based on
862 * theoretical maximum wire speed and thresholds were set based on
863 * testing data as well as attempting to minimize response time
864 * while increasing bulk throughput.
865 **/
866 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
867 {
868 enum i40e_latency_range new_latency_range = rc->latency_range;
869 u32 new_itr = rc->itr;
870 int bytes_per_int;
871
872 if (rc->total_packets == 0 || !rc->itr)
873 return;
874
875 /* simple throttlerate management
876 * 0-10MB/s lowest (100000 ints/s)
877 * 10-20MB/s low (20000 ints/s)
878 * 20-1249MB/s bulk (8000 ints/s)
879 */
880 bytes_per_int = rc->total_bytes / rc->itr;
881 switch (rc->itr) {
882 case I40E_LOWEST_LATENCY:
883 if (bytes_per_int > 10)
884 new_latency_range = I40E_LOW_LATENCY;
885 break;
886 case I40E_LOW_LATENCY:
887 if (bytes_per_int > 20)
888 new_latency_range = I40E_BULK_LATENCY;
889 else if (bytes_per_int <= 10)
890 new_latency_range = I40E_LOWEST_LATENCY;
891 break;
892 case I40E_BULK_LATENCY:
893 if (bytes_per_int <= 20)
894 rc->latency_range = I40E_LOW_LATENCY;
895 break;
896 }
897
898 switch (new_latency_range) {
899 case I40E_LOWEST_LATENCY:
900 new_itr = I40E_ITR_100K;
901 break;
902 case I40E_LOW_LATENCY:
903 new_itr = I40E_ITR_20K;
904 break;
905 case I40E_BULK_LATENCY:
906 new_itr = I40E_ITR_8K;
907 break;
908 default:
909 break;
910 }
911
912 if (new_itr != rc->itr) {
913 /* do an exponential smoothing */
914 new_itr = (10 * new_itr * rc->itr) /
915 ((9 * new_itr) + rc->itr);
916 rc->itr = new_itr & I40E_MAX_ITR;
917 }
918
919 rc->total_bytes = 0;
920 rc->total_packets = 0;
921 }
922
923 /**
924 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
925 * @q_vector: the vector to adjust
926 **/
927 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
928 {
929 u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
930 struct i40e_hw *hw = &q_vector->vsi->back->hw;
931 u32 reg_addr;
932 u16 old_itr;
933
934 reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
935 old_itr = q_vector->rx.itr;
936 i40e_set_new_dynamic_itr(&q_vector->rx);
937 if (old_itr != q_vector->rx.itr)
938 wr32(hw, reg_addr, q_vector->rx.itr);
939
940 reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
941 old_itr = q_vector->tx.itr;
942 i40e_set_new_dynamic_itr(&q_vector->tx);
943 if (old_itr != q_vector->tx.itr)
944 wr32(hw, reg_addr, q_vector->tx.itr);
945 }
946
947 /**
948 * i40e_clean_programming_status - clean the programming status descriptor
949 * @rx_ring: the rx ring that has this descriptor
950 * @rx_desc: the rx descriptor written back by HW
951 *
952 * Flow director should handle FD_FILTER_STATUS to check its filter programming
953 * status being successful or not and take actions accordingly. FCoE should
954 * handle its context/filter programming/invalidation status and take actions.
955 *
956 **/
957 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
958 union i40e_rx_desc *rx_desc)
959 {
960 u64 qw;
961 u8 id;
962
963 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
964 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
965 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
966
967 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
968 i40e_fd_handle_status(rx_ring, rx_desc, id);
969 #ifdef I40E_FCOE
970 else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
971 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
972 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
973 #endif
974 }
975
976 /**
977 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
978 * @tx_ring: the tx ring to set up
979 *
980 * Return 0 on success, negative on error
981 **/
982 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
983 {
984 struct device *dev = tx_ring->dev;
985 int bi_size;
986
987 if (!dev)
988 return -ENOMEM;
989
990 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
991 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
992 if (!tx_ring->tx_bi)
993 goto err;
994
995 /* round up to nearest 4K */
996 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
997 /* add u32 for head writeback, align after this takes care of
998 * guaranteeing this is at least one cache line in size
999 */
1000 tx_ring->size += sizeof(u32);
1001 tx_ring->size = ALIGN(tx_ring->size, 4096);
1002 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1003 &tx_ring->dma, GFP_KERNEL);
1004 if (!tx_ring->desc) {
1005 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1006 tx_ring->size);
1007 goto err;
1008 }
1009
1010 tx_ring->next_to_use = 0;
1011 tx_ring->next_to_clean = 0;
1012 return 0;
1013
1014 err:
1015 kfree(tx_ring->tx_bi);
1016 tx_ring->tx_bi = NULL;
1017 return -ENOMEM;
1018 }
1019
1020 /**
1021 * i40e_clean_rx_ring - Free Rx buffers
1022 * @rx_ring: ring to be cleaned
1023 **/
1024 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1025 {
1026 struct device *dev = rx_ring->dev;
1027 struct i40e_rx_buffer *rx_bi;
1028 unsigned long bi_size;
1029 u16 i;
1030
1031 /* ring already cleared, nothing to do */
1032 if (!rx_ring->rx_bi)
1033 return;
1034
1035 if (ring_is_ps_enabled(rx_ring)) {
1036 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
1037
1038 rx_bi = &rx_ring->rx_bi[0];
1039 if (rx_bi->hdr_buf) {
1040 dma_free_coherent(dev,
1041 bufsz,
1042 rx_bi->hdr_buf,
1043 rx_bi->dma);
1044 for (i = 0; i < rx_ring->count; i++) {
1045 rx_bi = &rx_ring->rx_bi[i];
1046 rx_bi->dma = 0;
1047 rx_bi->hdr_buf = NULL;
1048 }
1049 }
1050 }
1051 /* Free all the Rx ring sk_buffs */
1052 for (i = 0; i < rx_ring->count; i++) {
1053 rx_bi = &rx_ring->rx_bi[i];
1054 if (rx_bi->dma) {
1055 dma_unmap_single(dev,
1056 rx_bi->dma,
1057 rx_ring->rx_buf_len,
1058 DMA_FROM_DEVICE);
1059 rx_bi->dma = 0;
1060 }
1061 if (rx_bi->skb) {
1062 dev_kfree_skb(rx_bi->skb);
1063 rx_bi->skb = NULL;
1064 }
1065 if (rx_bi->page) {
1066 if (rx_bi->page_dma) {
1067 dma_unmap_page(dev,
1068 rx_bi->page_dma,
1069 PAGE_SIZE / 2,
1070 DMA_FROM_DEVICE);
1071 rx_bi->page_dma = 0;
1072 }
1073 __free_page(rx_bi->page);
1074 rx_bi->page = NULL;
1075 rx_bi->page_offset = 0;
1076 }
1077 }
1078
1079 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1080 memset(rx_ring->rx_bi, 0, bi_size);
1081
1082 /* Zero out the descriptor ring */
1083 memset(rx_ring->desc, 0, rx_ring->size);
1084
1085 rx_ring->next_to_clean = 0;
1086 rx_ring->next_to_use = 0;
1087 }
1088
1089 /**
1090 * i40e_free_rx_resources - Free Rx resources
1091 * @rx_ring: ring to clean the resources from
1092 *
1093 * Free all receive software resources
1094 **/
1095 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1096 {
1097 i40e_clean_rx_ring(rx_ring);
1098 kfree(rx_ring->rx_bi);
1099 rx_ring->rx_bi = NULL;
1100
1101 if (rx_ring->desc) {
1102 dma_free_coherent(rx_ring->dev, rx_ring->size,
1103 rx_ring->desc, rx_ring->dma);
1104 rx_ring->desc = NULL;
1105 }
1106 }
1107
1108 /**
1109 * i40e_alloc_rx_headers - allocate rx header buffers
1110 * @rx_ring: ring to alloc buffers
1111 *
1112 * Allocate rx header buffers for the entire ring. As these are static,
1113 * this is only called when setting up a new ring.
1114 **/
1115 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1116 {
1117 struct device *dev = rx_ring->dev;
1118 struct i40e_rx_buffer *rx_bi;
1119 dma_addr_t dma;
1120 void *buffer;
1121 int buf_size;
1122 int i;
1123
1124 if (rx_ring->rx_bi[0].hdr_buf)
1125 return;
1126 /* Make sure the buffers don't cross cache line boundaries. */
1127 buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1128 buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1129 &dma, GFP_KERNEL);
1130 if (!buffer)
1131 return;
1132 for (i = 0; i < rx_ring->count; i++) {
1133 rx_bi = &rx_ring->rx_bi[i];
1134 rx_bi->dma = dma + (i * buf_size);
1135 rx_bi->hdr_buf = buffer + (i * buf_size);
1136 }
1137 }
1138
1139 /**
1140 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1141 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1142 *
1143 * Returns 0 on success, negative on failure
1144 **/
1145 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1146 {
1147 struct device *dev = rx_ring->dev;
1148 int bi_size;
1149
1150 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1151 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1152 if (!rx_ring->rx_bi)
1153 goto err;
1154
1155 u64_stats_init(&rx_ring->syncp);
1156
1157 /* Round up to nearest 4K */
1158 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1159 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1160 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1161 rx_ring->size = ALIGN(rx_ring->size, 4096);
1162 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1163 &rx_ring->dma, GFP_KERNEL);
1164
1165 if (!rx_ring->desc) {
1166 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1167 rx_ring->size);
1168 goto err;
1169 }
1170
1171 rx_ring->next_to_clean = 0;
1172 rx_ring->next_to_use = 0;
1173
1174 return 0;
1175 err:
1176 kfree(rx_ring->rx_bi);
1177 rx_ring->rx_bi = NULL;
1178 return -ENOMEM;
1179 }
1180
1181 /**
1182 * i40e_release_rx_desc - Store the new tail and head values
1183 * @rx_ring: ring to bump
1184 * @val: new head index
1185 **/
1186 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1187 {
1188 rx_ring->next_to_use = val;
1189 /* Force memory writes to complete before letting h/w
1190 * know there are new descriptors to fetch. (Only
1191 * applicable for weak-ordered memory model archs,
1192 * such as IA-64).
1193 */
1194 wmb();
1195 writel(val, rx_ring->tail);
1196 }
1197
1198 /**
1199 * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1200 * @rx_ring: ring to place buffers on
1201 * @cleaned_count: number of buffers to replace
1202 **/
1203 void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1204 {
1205 u16 i = rx_ring->next_to_use;
1206 union i40e_rx_desc *rx_desc;
1207 struct i40e_rx_buffer *bi;
1208
1209 /* do nothing if no valid netdev defined */
1210 if (!rx_ring->netdev || !cleaned_count)
1211 return;
1212
1213 while (cleaned_count--) {
1214 rx_desc = I40E_RX_DESC(rx_ring, i);
1215 bi = &rx_ring->rx_bi[i];
1216
1217 if (bi->skb) /* desc is in use */
1218 goto no_buffers;
1219 if (!bi->page) {
1220 bi->page = alloc_page(GFP_ATOMIC);
1221 if (!bi->page) {
1222 rx_ring->rx_stats.alloc_page_failed++;
1223 goto no_buffers;
1224 }
1225 }
1226
1227 if (!bi->page_dma) {
1228 /* use a half page if we're re-using */
1229 bi->page_offset ^= PAGE_SIZE / 2;
1230 bi->page_dma = dma_map_page(rx_ring->dev,
1231 bi->page,
1232 bi->page_offset,
1233 PAGE_SIZE / 2,
1234 DMA_FROM_DEVICE);
1235 if (dma_mapping_error(rx_ring->dev,
1236 bi->page_dma)) {
1237 rx_ring->rx_stats.alloc_page_failed++;
1238 bi->page_dma = 0;
1239 goto no_buffers;
1240 }
1241 }
1242
1243 dma_sync_single_range_for_device(rx_ring->dev,
1244 bi->dma,
1245 0,
1246 rx_ring->rx_hdr_len,
1247 DMA_FROM_DEVICE);
1248 /* Refresh the desc even if buffer_addrs didn't change
1249 * because each write-back erases this info.
1250 */
1251 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1252 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1253 i++;
1254 if (i == rx_ring->count)
1255 i = 0;
1256 }
1257
1258 no_buffers:
1259 if (rx_ring->next_to_use != i)
1260 i40e_release_rx_desc(rx_ring, i);
1261 }
1262
1263 /**
1264 * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1265 * @rx_ring: ring to place buffers on
1266 * @cleaned_count: number of buffers to replace
1267 **/
1268 void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1269 {
1270 u16 i = rx_ring->next_to_use;
1271 union i40e_rx_desc *rx_desc;
1272 struct i40e_rx_buffer *bi;
1273 struct sk_buff *skb;
1274
1275 /* do nothing if no valid netdev defined */
1276 if (!rx_ring->netdev || !cleaned_count)
1277 return;
1278
1279 while (cleaned_count--) {
1280 rx_desc = I40E_RX_DESC(rx_ring, i);
1281 bi = &rx_ring->rx_bi[i];
1282 skb = bi->skb;
1283
1284 if (!skb) {
1285 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1286 rx_ring->rx_buf_len);
1287 if (!skb) {
1288 rx_ring->rx_stats.alloc_buff_failed++;
1289 goto no_buffers;
1290 }
1291 /* initialize queue mapping */
1292 skb_record_rx_queue(skb, rx_ring->queue_index);
1293 bi->skb = skb;
1294 }
1295
1296 if (!bi->dma) {
1297 bi->dma = dma_map_single(rx_ring->dev,
1298 skb->data,
1299 rx_ring->rx_buf_len,
1300 DMA_FROM_DEVICE);
1301 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1302 rx_ring->rx_stats.alloc_buff_failed++;
1303 bi->dma = 0;
1304 goto no_buffers;
1305 }
1306 }
1307
1308 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1309 rx_desc->read.hdr_addr = 0;
1310 i++;
1311 if (i == rx_ring->count)
1312 i = 0;
1313 }
1314
1315 no_buffers:
1316 if (rx_ring->next_to_use != i)
1317 i40e_release_rx_desc(rx_ring, i);
1318 }
1319
1320 /**
1321 * i40e_receive_skb - Send a completed packet up the stack
1322 * @rx_ring: rx ring in play
1323 * @skb: packet to send up
1324 * @vlan_tag: vlan tag for packet
1325 **/
1326 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1327 struct sk_buff *skb, u16 vlan_tag)
1328 {
1329 struct i40e_q_vector *q_vector = rx_ring->q_vector;
1330 struct i40e_vsi *vsi = rx_ring->vsi;
1331 u64 flags = vsi->back->flags;
1332
1333 if (vlan_tag & VLAN_VID_MASK)
1334 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1335
1336 if (flags & I40E_FLAG_IN_NETPOLL)
1337 netif_rx(skb);
1338 else
1339 napi_gro_receive(&q_vector->napi, skb);
1340 }
1341
1342 /**
1343 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1344 * @vsi: the VSI we care about
1345 * @skb: skb currently being received and modified
1346 * @rx_status: status value of last descriptor in packet
1347 * @rx_error: error value of last descriptor in packet
1348 * @rx_ptype: ptype value of last descriptor in packet
1349 **/
1350 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1351 struct sk_buff *skb,
1352 u32 rx_status,
1353 u32 rx_error,
1354 u16 rx_ptype)
1355 {
1356 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1357 bool ipv4 = false, ipv6 = false;
1358 bool ipv4_tunnel, ipv6_tunnel;
1359 __wsum rx_udp_csum;
1360 struct iphdr *iph;
1361 __sum16 csum;
1362
1363 ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1364 (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1365 ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1366 (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1367
1368 skb->ip_summed = CHECKSUM_NONE;
1369
1370 /* Rx csum enabled and ip headers found? */
1371 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1372 return;
1373
1374 /* did the hardware decode the packet and checksum? */
1375 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1376 return;
1377
1378 /* both known and outer_ip must be set for the below code to work */
1379 if (!(decoded.known && decoded.outer_ip))
1380 return;
1381
1382 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1383 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1384 ipv4 = true;
1385 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1386 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1387 ipv6 = true;
1388
1389 if (ipv4 &&
1390 (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
1391 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1392 goto checksum_fail;
1393
1394 /* likely incorrect csum if alternate IP extension headers found */
1395 if (ipv6 &&
1396 rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1397 /* don't increment checksum err here, non-fatal err */
1398 return;
1399
1400 /* there was some L4 error, count error and punt packet to the stack */
1401 if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
1402 goto checksum_fail;
1403
1404 /* handle packets that were not able to be checksummed due
1405 * to arrival speed, in this case the stack can compute
1406 * the csum.
1407 */
1408 if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
1409 return;
1410
1411 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1412 * it in the driver, hardware does not do it for us.
1413 * Since L3L4P bit was set we assume a valid IHL value (>=5)
1414 * so the total length of IPv4 header is IHL*4 bytes
1415 * The UDP_0 bit *may* bet set if the *inner* header is UDP
1416 */
1417 if (ipv4_tunnel) {
1418 skb->transport_header = skb->mac_header +
1419 sizeof(struct ethhdr) +
1420 (ip_hdr(skb)->ihl * 4);
1421
1422 /* Add 4 bytes for VLAN tagged packets */
1423 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1424 skb->protocol == htons(ETH_P_8021AD))
1425 ? VLAN_HLEN : 0;
1426
1427 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1428 (udp_hdr(skb)->check != 0)) {
1429 rx_udp_csum = udp_csum(skb);
1430 iph = ip_hdr(skb);
1431 csum = csum_tcpudp_magic(
1432 iph->saddr, iph->daddr,
1433 (skb->len - skb_transport_offset(skb)),
1434 IPPROTO_UDP, rx_udp_csum);
1435
1436 if (udp_hdr(skb)->check != csum)
1437 goto checksum_fail;
1438
1439 } /* else its GRE and so no outer UDP header */
1440 }
1441
1442 skb->ip_summed = CHECKSUM_UNNECESSARY;
1443 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1444
1445 return;
1446
1447 checksum_fail:
1448 vsi->back->hw_csum_rx_error++;
1449 }
1450
1451 /**
1452 * i40e_rx_hash - returns the hash value from the Rx descriptor
1453 * @ring: descriptor ring
1454 * @rx_desc: specific descriptor
1455 **/
1456 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1457 union i40e_rx_desc *rx_desc)
1458 {
1459 const __le64 rss_mask =
1460 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1461 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1462
1463 if ((ring->netdev->features & NETIF_F_RXHASH) &&
1464 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1465 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1466 else
1467 return 0;
1468 }
1469
1470 /**
1471 * i40e_ptype_to_hash - get a hash type
1472 * @ptype: the ptype value from the descriptor
1473 *
1474 * Returns a hash type to be used by skb_set_hash
1475 **/
1476 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1477 {
1478 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1479
1480 if (!decoded.known)
1481 return PKT_HASH_TYPE_NONE;
1482
1483 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1484 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1485 return PKT_HASH_TYPE_L4;
1486 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1487 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1488 return PKT_HASH_TYPE_L3;
1489 else
1490 return PKT_HASH_TYPE_L2;
1491 }
1492
1493 /**
1494 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1495 * @rx_ring: rx ring to clean
1496 * @budget: how many cleans we're allowed
1497 *
1498 * Returns true if there's any budget left (e.g. the clean is finished)
1499 **/
1500 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1501 {
1502 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1503 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1504 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1505 const int current_node = numa_node_id();
1506 struct i40e_vsi *vsi = rx_ring->vsi;
1507 u16 i = rx_ring->next_to_clean;
1508 union i40e_rx_desc *rx_desc;
1509 u32 rx_error, rx_status;
1510 u8 rx_ptype;
1511 u64 qword;
1512
1513 if (budget <= 0)
1514 return 0;
1515
1516 do {
1517 struct i40e_rx_buffer *rx_bi;
1518 struct sk_buff *skb;
1519 u16 vlan_tag;
1520 /* return some buffers to hardware, one at a time is too slow */
1521 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1522 i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1523 cleaned_count = 0;
1524 }
1525
1526 i = rx_ring->next_to_clean;
1527 rx_desc = I40E_RX_DESC(rx_ring, i);
1528 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1529 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1530 I40E_RXD_QW1_STATUS_SHIFT;
1531
1532 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1533 break;
1534
1535 /* This memory barrier is needed to keep us from reading
1536 * any other fields out of the rx_desc until we know the
1537 * DD bit is set.
1538 */
1539 rmb();
1540 if (i40e_rx_is_programming_status(qword)) {
1541 i40e_clean_programming_status(rx_ring, rx_desc);
1542 I40E_RX_INCREMENT(rx_ring, i);
1543 continue;
1544 }
1545 rx_bi = &rx_ring->rx_bi[i];
1546 skb = rx_bi->skb;
1547 if (likely(!skb)) {
1548 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1549 rx_ring->rx_hdr_len);
1550 if (!skb)
1551 rx_ring->rx_stats.alloc_buff_failed++;
1552 /* initialize queue mapping */
1553 skb_record_rx_queue(skb, rx_ring->queue_index);
1554 /* we are reusing so sync this buffer for CPU use */
1555 dma_sync_single_range_for_cpu(rx_ring->dev,
1556 rx_bi->dma,
1557 0,
1558 rx_ring->rx_hdr_len,
1559 DMA_FROM_DEVICE);
1560 }
1561 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1562 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1563 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1564 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1565 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1566 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1567
1568 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1569 I40E_RXD_QW1_ERROR_SHIFT;
1570 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1571 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1572
1573 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1574 I40E_RXD_QW1_PTYPE_SHIFT;
1575 prefetch(rx_bi->page);
1576 rx_bi->skb = NULL;
1577 cleaned_count++;
1578 if (rx_hbo || rx_sph) {
1579 int len;
1580 if (rx_hbo)
1581 len = I40E_RX_HDR_SIZE;
1582 else
1583 len = rx_header_len;
1584 memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1585 } else if (skb->len == 0) {
1586 int len;
1587
1588 len = (rx_packet_len > skb_headlen(skb) ?
1589 skb_headlen(skb) : rx_packet_len);
1590 memcpy(__skb_put(skb, len),
1591 rx_bi->page + rx_bi->page_offset,
1592 len);
1593 rx_bi->page_offset += len;
1594 rx_packet_len -= len;
1595 }
1596
1597 /* Get the rest of the data if this was a header split */
1598 if (rx_packet_len) {
1599 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1600 rx_bi->page,
1601 rx_bi->page_offset,
1602 rx_packet_len);
1603
1604 skb->len += rx_packet_len;
1605 skb->data_len += rx_packet_len;
1606 skb->truesize += rx_packet_len;
1607
1608 if ((page_count(rx_bi->page) == 1) &&
1609 (page_to_nid(rx_bi->page) == current_node))
1610 get_page(rx_bi->page);
1611 else
1612 rx_bi->page = NULL;
1613
1614 dma_unmap_page(rx_ring->dev,
1615 rx_bi->page_dma,
1616 PAGE_SIZE / 2,
1617 DMA_FROM_DEVICE);
1618 rx_bi->page_dma = 0;
1619 }
1620 I40E_RX_INCREMENT(rx_ring, i);
1621
1622 if (unlikely(
1623 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1624 struct i40e_rx_buffer *next_buffer;
1625
1626 next_buffer = &rx_ring->rx_bi[i];
1627 next_buffer->skb = skb;
1628 rx_ring->rx_stats.non_eop_descs++;
1629 continue;
1630 }
1631
1632 /* ERR_MASK will only have valid bits if EOP set */
1633 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1634 dev_kfree_skb_any(skb);
1635 /* TODO: shouldn't we increment a counter indicating the
1636 * drop?
1637 */
1638 continue;
1639 }
1640
1641 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1642 i40e_ptype_to_hash(rx_ptype));
1643 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1644 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1645 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1646 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1647 rx_ring->last_rx_timestamp = jiffies;
1648 }
1649
1650 /* probably a little skewed due to removing CRC */
1651 total_rx_bytes += skb->len;
1652 total_rx_packets++;
1653
1654 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1655
1656 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1657
1658 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1659 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1660 : 0;
1661 #ifdef I40E_FCOE
1662 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1663 dev_kfree_skb_any(skb);
1664 continue;
1665 }
1666 #endif
1667 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1668 i40e_receive_skb(rx_ring, skb, vlan_tag);
1669
1670 rx_ring->netdev->last_rx = jiffies;
1671 rx_desc->wb.qword1.status_error_len = 0;
1672
1673 } while (likely(total_rx_packets < budget));
1674
1675 u64_stats_update_begin(&rx_ring->syncp);
1676 rx_ring->stats.packets += total_rx_packets;
1677 rx_ring->stats.bytes += total_rx_bytes;
1678 u64_stats_update_end(&rx_ring->syncp);
1679 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1680 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1681
1682 return total_rx_packets;
1683 }
1684
1685 /**
1686 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1687 * @rx_ring: rx ring to clean
1688 * @budget: how many cleans we're allowed
1689 *
1690 * Returns number of packets cleaned
1691 **/
1692 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1693 {
1694 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1695 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1696 struct i40e_vsi *vsi = rx_ring->vsi;
1697 union i40e_rx_desc *rx_desc;
1698 u32 rx_error, rx_status;
1699 u16 rx_packet_len;
1700 u8 rx_ptype;
1701 u64 qword;
1702 u16 i;
1703
1704 do {
1705 struct i40e_rx_buffer *rx_bi;
1706 struct sk_buff *skb;
1707 u16 vlan_tag;
1708 /* return some buffers to hardware, one at a time is too slow */
1709 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1710 i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1711 cleaned_count = 0;
1712 }
1713
1714 i = rx_ring->next_to_clean;
1715 rx_desc = I40E_RX_DESC(rx_ring, i);
1716 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1717 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1718 I40E_RXD_QW1_STATUS_SHIFT;
1719
1720 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1721 break;
1722
1723 /* This memory barrier is needed to keep us from reading
1724 * any other fields out of the rx_desc until we know the
1725 * DD bit is set.
1726 */
1727 rmb();
1728
1729 if (i40e_rx_is_programming_status(qword)) {
1730 i40e_clean_programming_status(rx_ring, rx_desc);
1731 I40E_RX_INCREMENT(rx_ring, i);
1732 continue;
1733 }
1734 rx_bi = &rx_ring->rx_bi[i];
1735 skb = rx_bi->skb;
1736 prefetch(skb->data);
1737
1738 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1739 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1740
1741 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1742 I40E_RXD_QW1_ERROR_SHIFT;
1743 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1744
1745 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1746 I40E_RXD_QW1_PTYPE_SHIFT;
1747 rx_bi->skb = NULL;
1748 cleaned_count++;
1749
1750 /* Get the header and possibly the whole packet
1751 * If this is an skb from previous receive dma will be 0
1752 */
1753 skb_put(skb, rx_packet_len);
1754 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1755 DMA_FROM_DEVICE);
1756 rx_bi->dma = 0;
1757
1758 I40E_RX_INCREMENT(rx_ring, i);
1759
1760 if (unlikely(
1761 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1762 rx_ring->rx_stats.non_eop_descs++;
1763 continue;
1764 }
1765
1766 /* ERR_MASK will only have valid bits if EOP set */
1767 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1768 dev_kfree_skb_any(skb);
1769 /* TODO: shouldn't we increment a counter indicating the
1770 * drop?
1771 */
1772 continue;
1773 }
1774
1775 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1776 i40e_ptype_to_hash(rx_ptype));
1777 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1778 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1779 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1780 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1781 rx_ring->last_rx_timestamp = jiffies;
1782 }
1783
1784 /* probably a little skewed due to removing CRC */
1785 total_rx_bytes += skb->len;
1786 total_rx_packets++;
1787
1788 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1789
1790 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1791
1792 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1793 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1794 : 0;
1795 #ifdef I40E_FCOE
1796 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1797 dev_kfree_skb_any(skb);
1798 continue;
1799 }
1800 #endif
1801 i40e_receive_skb(rx_ring, skb, vlan_tag);
1802
1803 rx_ring->netdev->last_rx = jiffies;
1804 rx_desc->wb.qword1.status_error_len = 0;
1805 } while (likely(total_rx_packets < budget));
1806
1807 u64_stats_update_begin(&rx_ring->syncp);
1808 rx_ring->stats.packets += total_rx_packets;
1809 rx_ring->stats.bytes += total_rx_bytes;
1810 u64_stats_update_end(&rx_ring->syncp);
1811 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1812 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1813
1814 return total_rx_packets;
1815 }
1816
1817 /**
1818 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1819 * @napi: napi struct with our devices info in it
1820 * @budget: amount of work driver is allowed to do this pass, in packets
1821 *
1822 * This function will clean all queues associated with a q_vector.
1823 *
1824 * Returns the amount of work done
1825 **/
1826 int i40e_napi_poll(struct napi_struct *napi, int budget)
1827 {
1828 struct i40e_q_vector *q_vector =
1829 container_of(napi, struct i40e_q_vector, napi);
1830 struct i40e_vsi *vsi = q_vector->vsi;
1831 struct i40e_ring *ring;
1832 bool clean_complete = true;
1833 bool arm_wb = false;
1834 int budget_per_ring;
1835 int cleaned;
1836
1837 if (test_bit(__I40E_DOWN, &vsi->state)) {
1838 napi_complete(napi);
1839 return 0;
1840 }
1841
1842 /* Since the actual Tx work is minimal, we can give the Tx a larger
1843 * budget and be more aggressive about cleaning up the Tx descriptors.
1844 */
1845 i40e_for_each_ring(ring, q_vector->tx) {
1846 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1847 arm_wb |= ring->arm_wb;
1848 }
1849
1850 /* We attempt to distribute budget to each Rx queue fairly, but don't
1851 * allow the budget to go below 1 because that would exit polling early.
1852 */
1853 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1854
1855 i40e_for_each_ring(ring, q_vector->rx) {
1856 if (ring_is_ps_enabled(ring))
1857 cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1858 else
1859 cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1860 /* if we didn't clean as many as budgeted, we must be done */
1861 clean_complete &= (budget_per_ring != cleaned);
1862 }
1863
1864 /* If work not completed, return budget and polling will return */
1865 if (!clean_complete) {
1866 if (arm_wb)
1867 i40e_force_wb(vsi, q_vector);
1868 return budget;
1869 }
1870
1871 /* Work is done so exit the polling mode and re-enable the interrupt */
1872 napi_complete(napi);
1873 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1874 ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1875 i40e_update_dynamic_itr(q_vector);
1876
1877 if (!test_bit(__I40E_DOWN, &vsi->state)) {
1878 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1879 i40e_irq_dynamic_enable(vsi,
1880 q_vector->v_idx + vsi->base_vector);
1881 } else {
1882 struct i40e_hw *hw = &vsi->back->hw;
1883 /* We re-enable the queue 0 cause, but
1884 * don't worry about dynamic_enable
1885 * because we left it on for the other
1886 * possible interrupts during napi
1887 */
1888 u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1889 qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1890 wr32(hw, I40E_QINT_RQCTL(0), qval);
1891
1892 qval = rd32(hw, I40E_QINT_TQCTL(0));
1893 qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1894 wr32(hw, I40E_QINT_TQCTL(0), qval);
1895
1896 i40e_irq_dynamic_enable_icr0(vsi->back);
1897 }
1898 }
1899
1900 return 0;
1901 }
1902
1903 /**
1904 * i40e_atr - Add a Flow Director ATR filter
1905 * @tx_ring: ring to add programming descriptor to
1906 * @skb: send buffer
1907 * @flags: send flags
1908 * @protocol: wire protocol
1909 **/
1910 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1911 u32 flags, __be16 protocol)
1912 {
1913 struct i40e_filter_program_desc *fdir_desc;
1914 struct i40e_pf *pf = tx_ring->vsi->back;
1915 union {
1916 unsigned char *network;
1917 struct iphdr *ipv4;
1918 struct ipv6hdr *ipv6;
1919 } hdr;
1920 struct tcphdr *th;
1921 unsigned int hlen;
1922 u32 flex_ptype, dtype_cmd;
1923 u16 i;
1924
1925 /* make sure ATR is enabled */
1926 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1927 return;
1928
1929 /* if sampling is disabled do nothing */
1930 if (!tx_ring->atr_sample_rate)
1931 return;
1932
1933 /* snag network header to get L4 type and address */
1934 hdr.network = skb_network_header(skb);
1935
1936 /* Currently only IPv4/IPv6 with TCP is supported */
1937 if (protocol == htons(ETH_P_IP)) {
1938 if (hdr.ipv4->protocol != IPPROTO_TCP)
1939 return;
1940
1941 /* access ihl as a u8 to avoid unaligned access on ia64 */
1942 hlen = (hdr.network[0] & 0x0F) << 2;
1943 } else if (protocol == htons(ETH_P_IPV6)) {
1944 if (hdr.ipv6->nexthdr != IPPROTO_TCP)
1945 return;
1946
1947 hlen = sizeof(struct ipv6hdr);
1948 } else {
1949 return;
1950 }
1951
1952 th = (struct tcphdr *)(hdr.network + hlen);
1953
1954 /* Due to lack of space, no more new filters can be programmed */
1955 if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1956 return;
1957
1958 tx_ring->atr_count++;
1959
1960 /* sample on all syn/fin/rst packets or once every atr sample rate */
1961 if (!th->fin &&
1962 !th->syn &&
1963 !th->rst &&
1964 (tx_ring->atr_count < tx_ring->atr_sample_rate))
1965 return;
1966
1967 tx_ring->atr_count = 0;
1968
1969 /* grab the next descriptor */
1970 i = tx_ring->next_to_use;
1971 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
1972
1973 i++;
1974 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1975
1976 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
1977 I40E_TXD_FLTR_QW0_QINDEX_MASK;
1978 flex_ptype |= (protocol == htons(ETH_P_IP)) ?
1979 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
1980 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
1981 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
1982 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
1983
1984 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
1985
1986 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
1987
1988 dtype_cmd |= (th->fin || th->rst) ?
1989 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
1990 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
1991 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
1992 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
1993
1994 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
1995 I40E_TXD_FLTR_QW1_DEST_SHIFT;
1996
1997 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
1998 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
1999
2000 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2001 dtype_cmd |=
2002 ((u32)pf->fd_atr_cnt_idx << I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2003 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2004
2005 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2006 fdir_desc->rsvd = cpu_to_le32(0);
2007 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2008 fdir_desc->fd_id = cpu_to_le32(0);
2009 }
2010
2011 /**
2012 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2013 * @skb: send buffer
2014 * @tx_ring: ring to send buffer on
2015 * @flags: the tx flags to be set
2016 *
2017 * Checks the skb and set up correspondingly several generic transmit flags
2018 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2019 *
2020 * Returns error code indicate the frame should be dropped upon error and the
2021 * otherwise returns 0 to indicate the flags has been set properly.
2022 **/
2023 #ifdef I40E_FCOE
2024 int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2025 struct i40e_ring *tx_ring,
2026 u32 *flags)
2027 #else
2028 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2029 struct i40e_ring *tx_ring,
2030 u32 *flags)
2031 #endif
2032 {
2033 __be16 protocol = skb->protocol;
2034 u32 tx_flags = 0;
2035
2036 /* if we have a HW VLAN tag being added, default to the HW one */
2037 if (skb_vlan_tag_present(skb)) {
2038 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2039 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2040 /* else if it is a SW VLAN, check the next protocol and store the tag */
2041 } else if (protocol == htons(ETH_P_8021Q)) {
2042 struct vlan_hdr *vhdr, _vhdr;
2043 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2044 if (!vhdr)
2045 return -EINVAL;
2046
2047 protocol = vhdr->h_vlan_encapsulated_proto;
2048 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2049 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2050 }
2051
2052 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2053 goto out;
2054
2055 /* Insert 802.1p priority into VLAN header */
2056 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2057 (skb->priority != TC_PRIO_CONTROL)) {
2058 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2059 tx_flags |= (skb->priority & 0x7) <<
2060 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2061 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2062 struct vlan_ethhdr *vhdr;
2063 int rc;
2064
2065 rc = skb_cow_head(skb, 0);
2066 if (rc < 0)
2067 return rc;
2068 vhdr = (struct vlan_ethhdr *)skb->data;
2069 vhdr->h_vlan_TCI = htons(tx_flags >>
2070 I40E_TX_FLAGS_VLAN_SHIFT);
2071 } else {
2072 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2073 }
2074 }
2075
2076 out:
2077 *flags = tx_flags;
2078 return 0;
2079 }
2080
2081 /**
2082 * i40e_tso - set up the tso context descriptor
2083 * @tx_ring: ptr to the ring to send
2084 * @skb: ptr to the skb we're sending
2085 * @tx_flags: the collected send information
2086 * @protocol: the send protocol
2087 * @hdr_len: ptr to the size of the packet header
2088 * @cd_tunneling: ptr to context descriptor bits
2089 *
2090 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2091 **/
2092 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2093 u32 tx_flags, __be16 protocol, u8 *hdr_len,
2094 u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
2095 {
2096 u32 cd_cmd, cd_tso_len, cd_mss;
2097 struct ipv6hdr *ipv6h;
2098 struct tcphdr *tcph;
2099 struct iphdr *iph;
2100 u32 l4len;
2101 int err;
2102
2103 if (!skb_is_gso(skb))
2104 return 0;
2105
2106 err = skb_cow_head(skb, 0);
2107 if (err < 0)
2108 return err;
2109
2110 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
2111 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
2112
2113 if (iph->version == 4) {
2114 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2115 iph->tot_len = 0;
2116 iph->check = 0;
2117 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2118 0, IPPROTO_TCP, 0);
2119 } else if (ipv6h->version == 6) {
2120 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2121 ipv6h->payload_len = 0;
2122 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2123 0, IPPROTO_TCP, 0);
2124 }
2125
2126 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
2127 *hdr_len = (skb->encapsulation
2128 ? (skb_inner_transport_header(skb) - skb->data)
2129 : skb_transport_offset(skb)) + l4len;
2130
2131 /* find the field values */
2132 cd_cmd = I40E_TX_CTX_DESC_TSO;
2133 cd_tso_len = skb->len - *hdr_len;
2134 cd_mss = skb_shinfo(skb)->gso_size;
2135 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2136 ((u64)cd_tso_len <<
2137 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2138 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2139 return 1;
2140 }
2141
2142 /**
2143 * i40e_tsyn - set up the tsyn context descriptor
2144 * @tx_ring: ptr to the ring to send
2145 * @skb: ptr to the skb we're sending
2146 * @tx_flags: the collected send information
2147 *
2148 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2149 **/
2150 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2151 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2152 {
2153 struct i40e_pf *pf;
2154
2155 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2156 return 0;
2157
2158 /* Tx timestamps cannot be sampled when doing TSO */
2159 if (tx_flags & I40E_TX_FLAGS_TSO)
2160 return 0;
2161
2162 /* only timestamp the outbound packet if the user has requested it and
2163 * we are not already transmitting a packet to be timestamped
2164 */
2165 pf = i40e_netdev_to_pf(tx_ring->netdev);
2166 if (!(pf->flags & I40E_FLAG_PTP))
2167 return 0;
2168
2169 if (pf->ptp_tx &&
2170 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2171 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2172 pf->ptp_tx_skb = skb_get(skb);
2173 } else {
2174 return 0;
2175 }
2176
2177 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2178 I40E_TXD_CTX_QW1_CMD_SHIFT;
2179
2180 return 1;
2181 }
2182
2183 /**
2184 * i40e_tx_enable_csum - Enable Tx checksum offloads
2185 * @skb: send buffer
2186 * @tx_flags: Tx flags currently set
2187 * @td_cmd: Tx descriptor command bits to set
2188 * @td_offset: Tx descriptor header offsets to set
2189 * @cd_tunneling: ptr to context desc bits
2190 **/
2191 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
2192 u32 *td_cmd, u32 *td_offset,
2193 struct i40e_ring *tx_ring,
2194 u32 *cd_tunneling)
2195 {
2196 struct ipv6hdr *this_ipv6_hdr;
2197 unsigned int this_tcp_hdrlen;
2198 struct iphdr *this_ip_hdr;
2199 u32 network_hdr_len;
2200 u8 l4_hdr = 0;
2201
2202 if (skb->encapsulation) {
2203 network_hdr_len = skb_inner_network_header_len(skb);
2204 this_ip_hdr = inner_ip_hdr(skb);
2205 this_ipv6_hdr = inner_ipv6_hdr(skb);
2206 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
2207
2208 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2209
2210 if (tx_flags & I40E_TX_FLAGS_TSO) {
2211 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
2212 ip_hdr(skb)->check = 0;
2213 } else {
2214 *cd_tunneling |=
2215 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2216 }
2217 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
2218 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2219 if (tx_flags & I40E_TX_FLAGS_TSO)
2220 ip_hdr(skb)->check = 0;
2221 }
2222
2223 /* Now set the ctx descriptor fields */
2224 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2225 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
2226 I40E_TXD_CTX_UDP_TUNNELING |
2227 ((skb_inner_network_offset(skb) -
2228 skb_transport_offset(skb)) >> 1) <<
2229 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2230 if (this_ip_hdr->version == 6) {
2231 tx_flags &= ~I40E_TX_FLAGS_IPV4;
2232 tx_flags |= I40E_TX_FLAGS_IPV6;
2233 }
2234 } else {
2235 network_hdr_len = skb_network_header_len(skb);
2236 this_ip_hdr = ip_hdr(skb);
2237 this_ipv6_hdr = ipv6_hdr(skb);
2238 this_tcp_hdrlen = tcp_hdrlen(skb);
2239 }
2240
2241 /* Enable IP checksum offloads */
2242 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2243 l4_hdr = this_ip_hdr->protocol;
2244 /* the stack computes the IP header already, the only time we
2245 * need the hardware to recompute it is in the case of TSO.
2246 */
2247 if (tx_flags & I40E_TX_FLAGS_TSO) {
2248 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2249 this_ip_hdr->check = 0;
2250 } else {
2251 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2252 }
2253 /* Now set the td_offset for IP header length */
2254 *td_offset = (network_hdr_len >> 2) <<
2255 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2256 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
2257 l4_hdr = this_ipv6_hdr->nexthdr;
2258 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2259 /* Now set the td_offset for IP header length */
2260 *td_offset = (network_hdr_len >> 2) <<
2261 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2262 }
2263 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2264 *td_offset |= (skb_network_offset(skb) >> 1) <<
2265 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2266
2267 /* Enable L4 checksum offloads */
2268 switch (l4_hdr) {
2269 case IPPROTO_TCP:
2270 /* enable checksum offloads */
2271 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2272 *td_offset |= (this_tcp_hdrlen >> 2) <<
2273 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2274 break;
2275 case IPPROTO_SCTP:
2276 /* enable SCTP checksum offload */
2277 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2278 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2279 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2280 break;
2281 case IPPROTO_UDP:
2282 /* enable UDP checksum offload */
2283 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2284 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2285 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2286 break;
2287 default:
2288 break;
2289 }
2290 }
2291
2292 /**
2293 * i40e_create_tx_ctx Build the Tx context descriptor
2294 * @tx_ring: ring to create the descriptor on
2295 * @cd_type_cmd_tso_mss: Quad Word 1
2296 * @cd_tunneling: Quad Word 0 - bits 0-31
2297 * @cd_l2tag2: Quad Word 0 - bits 32-63
2298 **/
2299 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2300 const u64 cd_type_cmd_tso_mss,
2301 const u32 cd_tunneling, const u32 cd_l2tag2)
2302 {
2303 struct i40e_tx_context_desc *context_desc;
2304 int i = tx_ring->next_to_use;
2305
2306 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2307 !cd_tunneling && !cd_l2tag2)
2308 return;
2309
2310 /* grab the next descriptor */
2311 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2312
2313 i++;
2314 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2315
2316 /* cpu_to_le32 and assign to struct fields */
2317 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2318 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2319 context_desc->rsvd = cpu_to_le16(0);
2320 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2321 }
2322
2323 /**
2324 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2325 * @tx_ring: the ring to be checked
2326 * @size: the size buffer we want to assure is available
2327 *
2328 * Returns -EBUSY if a stop is needed, else 0
2329 **/
2330 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2331 {
2332 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2333 /* Memory barrier before checking head and tail */
2334 smp_mb();
2335
2336 /* Check again in a case another CPU has just made room available. */
2337 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2338 return -EBUSY;
2339
2340 /* A reprieve! - use start_queue because it doesn't call schedule */
2341 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2342 ++tx_ring->tx_stats.restart_queue;
2343 return 0;
2344 }
2345
2346 /**
2347 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2348 * @tx_ring: the ring to be checked
2349 * @size: the size buffer we want to assure is available
2350 *
2351 * Returns 0 if stop is not needed
2352 **/
2353 #ifdef I40E_FCOE
2354 int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2355 #else
2356 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2357 #endif
2358 {
2359 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2360 return 0;
2361 return __i40e_maybe_stop_tx(tx_ring, size);
2362 }
2363
2364 /**
2365 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2366 * @skb: send buffer
2367 * @tx_flags: collected send information
2368 * @hdr_len: size of the packet header
2369 *
2370 * Note: Our HW can't scatter-gather more than 8 fragments to build
2371 * a packet on the wire and so we need to figure out the cases where we
2372 * need to linearize the skb.
2373 **/
2374 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags,
2375 const u8 hdr_len)
2376 {
2377 struct skb_frag_struct *frag;
2378 bool linearize = false;
2379 unsigned int size = 0;
2380 u16 num_frags;
2381 u16 gso_segs;
2382
2383 num_frags = skb_shinfo(skb)->nr_frags;
2384 gso_segs = skb_shinfo(skb)->gso_segs;
2385
2386 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2387 u16 j = 1;
2388
2389 if (num_frags < (I40E_MAX_BUFFER_TXD))
2390 goto linearize_chk_done;
2391 /* try the simple math, if we have too many frags per segment */
2392 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2393 I40E_MAX_BUFFER_TXD) {
2394 linearize = true;
2395 goto linearize_chk_done;
2396 }
2397 frag = &skb_shinfo(skb)->frags[0];
2398 size = hdr_len;
2399 /* we might still have more fragments per segment */
2400 do {
2401 size += skb_frag_size(frag);
2402 frag++; j++;
2403 if (j == I40E_MAX_BUFFER_TXD) {
2404 if (size < skb_shinfo(skb)->gso_size) {
2405 linearize = true;
2406 break;
2407 }
2408 j = 1;
2409 size -= skb_shinfo(skb)->gso_size;
2410 if (size)
2411 j++;
2412 size += hdr_len;
2413 }
2414 num_frags--;
2415 } while (num_frags);
2416 } else {
2417 if (num_frags >= I40E_MAX_BUFFER_TXD)
2418 linearize = true;
2419 }
2420
2421 linearize_chk_done:
2422 return linearize;
2423 }
2424
2425 /**
2426 * i40e_tx_map - Build the Tx descriptor
2427 * @tx_ring: ring to send buffer on
2428 * @skb: send buffer
2429 * @first: first buffer info buffer to use
2430 * @tx_flags: collected send information
2431 * @hdr_len: size of the packet header
2432 * @td_cmd: the command field in the descriptor
2433 * @td_offset: offset for checksum or crc
2434 **/
2435 #ifdef I40E_FCOE
2436 void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2437 struct i40e_tx_buffer *first, u32 tx_flags,
2438 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2439 #else
2440 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2441 struct i40e_tx_buffer *first, u32 tx_flags,
2442 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2443 #endif
2444 {
2445 unsigned int data_len = skb->data_len;
2446 unsigned int size = skb_headlen(skb);
2447 struct skb_frag_struct *frag;
2448 struct i40e_tx_buffer *tx_bi;
2449 struct i40e_tx_desc *tx_desc;
2450 u16 i = tx_ring->next_to_use;
2451 u32 td_tag = 0;
2452 dma_addr_t dma;
2453 u16 gso_segs;
2454
2455 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2456 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2457 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2458 I40E_TX_FLAGS_VLAN_SHIFT;
2459 }
2460
2461 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2462 gso_segs = skb_shinfo(skb)->gso_segs;
2463 else
2464 gso_segs = 1;
2465
2466 /* multiply data chunks by size of headers */
2467 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2468 first->gso_segs = gso_segs;
2469 first->skb = skb;
2470 first->tx_flags = tx_flags;
2471
2472 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2473
2474 tx_desc = I40E_TX_DESC(tx_ring, i);
2475 tx_bi = first;
2476
2477 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2478 if (dma_mapping_error(tx_ring->dev, dma))
2479 goto dma_error;
2480
2481 /* record length, and DMA address */
2482 dma_unmap_len_set(tx_bi, len, size);
2483 dma_unmap_addr_set(tx_bi, dma, dma);
2484
2485 tx_desc->buffer_addr = cpu_to_le64(dma);
2486
2487 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2488 tx_desc->cmd_type_offset_bsz =
2489 build_ctob(td_cmd, td_offset,
2490 I40E_MAX_DATA_PER_TXD, td_tag);
2491
2492 tx_desc++;
2493 i++;
2494 if (i == tx_ring->count) {
2495 tx_desc = I40E_TX_DESC(tx_ring, 0);
2496 i = 0;
2497 }
2498
2499 dma += I40E_MAX_DATA_PER_TXD;
2500 size -= I40E_MAX_DATA_PER_TXD;
2501
2502 tx_desc->buffer_addr = cpu_to_le64(dma);
2503 }
2504
2505 if (likely(!data_len))
2506 break;
2507
2508 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2509 size, td_tag);
2510
2511 tx_desc++;
2512 i++;
2513 if (i == tx_ring->count) {
2514 tx_desc = I40E_TX_DESC(tx_ring, 0);
2515 i = 0;
2516 }
2517
2518 size = skb_frag_size(frag);
2519 data_len -= size;
2520
2521 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2522 DMA_TO_DEVICE);
2523
2524 tx_bi = &tx_ring->tx_bi[i];
2525 }
2526
2527 /* Place RS bit on last descriptor of any packet that spans across the
2528 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
2529 */
2530 if (((i & WB_STRIDE) != WB_STRIDE) &&
2531 (first <= &tx_ring->tx_bi[i]) &&
2532 (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
2533 tx_desc->cmd_type_offset_bsz =
2534 build_ctob(td_cmd, td_offset, size, td_tag) |
2535 cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
2536 I40E_TXD_QW1_CMD_SHIFT);
2537 } else {
2538 tx_desc->cmd_type_offset_bsz =
2539 build_ctob(td_cmd, td_offset, size, td_tag) |
2540 cpu_to_le64((u64)I40E_TXD_CMD <<
2541 I40E_TXD_QW1_CMD_SHIFT);
2542 }
2543
2544 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2545 tx_ring->queue_index),
2546 first->bytecount);
2547
2548 /* set the timestamp */
2549 first->time_stamp = jiffies;
2550
2551 /* Force memory writes to complete before letting h/w
2552 * know there are new descriptors to fetch. (Only
2553 * applicable for weak-ordered memory model archs,
2554 * such as IA-64).
2555 */
2556 wmb();
2557
2558 /* set next_to_watch value indicating a packet is present */
2559 first->next_to_watch = tx_desc;
2560
2561 i++;
2562 if (i == tx_ring->count)
2563 i = 0;
2564
2565 tx_ring->next_to_use = i;
2566
2567 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2568 /* notify HW of packet */
2569 if (!skb->xmit_more ||
2570 netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2571 tx_ring->queue_index)))
2572 writel(i, tx_ring->tail);
2573
2574 return;
2575
2576 dma_error:
2577 dev_info(tx_ring->dev, "TX DMA map failed\n");
2578
2579 /* clear dma mappings for failed tx_bi map */
2580 for (;;) {
2581 tx_bi = &tx_ring->tx_bi[i];
2582 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2583 if (tx_bi == first)
2584 break;
2585 if (i == 0)
2586 i = tx_ring->count;
2587 i--;
2588 }
2589
2590 tx_ring->next_to_use = i;
2591 }
2592
2593 /**
2594 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2595 * @skb: send buffer
2596 * @tx_ring: ring to send buffer on
2597 *
2598 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2599 * there is not enough descriptors available in this ring since we need at least
2600 * one descriptor.
2601 **/
2602 #ifdef I40E_FCOE
2603 int i40e_xmit_descriptor_count(struct sk_buff *skb,
2604 struct i40e_ring *tx_ring)
2605 #else
2606 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
2607 struct i40e_ring *tx_ring)
2608 #endif
2609 {
2610 unsigned int f;
2611 int count = 0;
2612
2613 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2614 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2615 * + 4 desc gap to avoid the cache line where head is,
2616 * + 1 desc for context descriptor,
2617 * otherwise try next time
2618 */
2619 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2620 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2621
2622 count += TXD_USE_COUNT(skb_headlen(skb));
2623 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2624 tx_ring->tx_stats.tx_busy++;
2625 return 0;
2626 }
2627 return count;
2628 }
2629
2630 /**
2631 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2632 * @skb: send buffer
2633 * @tx_ring: ring to send buffer on
2634 *
2635 * Returns NETDEV_TX_OK if sent, else an error code
2636 **/
2637 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2638 struct i40e_ring *tx_ring)
2639 {
2640 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2641 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2642 struct i40e_tx_buffer *first;
2643 u32 td_offset = 0;
2644 u32 tx_flags = 0;
2645 __be16 protocol;
2646 u32 td_cmd = 0;
2647 u8 hdr_len = 0;
2648 int tsyn;
2649 int tso;
2650 if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2651 return NETDEV_TX_BUSY;
2652
2653 /* prepare the xmit flags */
2654 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2655 goto out_drop;
2656
2657 /* obtain protocol of skb */
2658 protocol = vlan_get_protocol(skb);
2659
2660 /* record the location of the first descriptor for this packet */
2661 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2662
2663 /* setup IPv4/IPv6 offloads */
2664 if (protocol == htons(ETH_P_IP))
2665 tx_flags |= I40E_TX_FLAGS_IPV4;
2666 else if (protocol == htons(ETH_P_IPV6))
2667 tx_flags |= I40E_TX_FLAGS_IPV6;
2668
2669 tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
2670 &cd_type_cmd_tso_mss, &cd_tunneling);
2671
2672 if (tso < 0)
2673 goto out_drop;
2674 else if (tso)
2675 tx_flags |= I40E_TX_FLAGS_TSO;
2676
2677 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2678
2679 if (tsyn)
2680 tx_flags |= I40E_TX_FLAGS_TSYN;
2681
2682 if (i40e_chk_linearize(skb, tx_flags, hdr_len))
2683 if (skb_linearize(skb))
2684 goto out_drop;
2685
2686 skb_tx_timestamp(skb);
2687
2688 /* always enable CRC insertion offload */
2689 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2690
2691 /* Always offload the checksum, since it's in the data descriptor */
2692 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2693 tx_flags |= I40E_TX_FLAGS_CSUM;
2694
2695 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
2696 tx_ring, &cd_tunneling);
2697 }
2698
2699 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2700 cd_tunneling, cd_l2tag2);
2701
2702 /* Add Flow Director ATR if it's enabled.
2703 *
2704 * NOTE: this must always be directly before the data descriptor.
2705 */
2706 i40e_atr(tx_ring, skb, tx_flags, protocol);
2707
2708 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2709 td_cmd, td_offset);
2710
2711 return NETDEV_TX_OK;
2712
2713 out_drop:
2714 dev_kfree_skb_any(skb);
2715 return NETDEV_TX_OK;
2716 }
2717
2718 /**
2719 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2720 * @skb: send buffer
2721 * @netdev: network interface device structure
2722 *
2723 * Returns NETDEV_TX_OK if sent, else an error code
2724 **/
2725 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2726 {
2727 struct i40e_netdev_priv *np = netdev_priv(netdev);
2728 struct i40e_vsi *vsi = np->vsi;
2729 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2730
2731 /* hardware can't handle really short frames, hardware padding works
2732 * beyond this point
2733 */
2734 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2735 return NETDEV_TX_OK;
2736
2737 return i40e_xmit_frame_ring(skb, tx_ring);
2738 }
This page took 0.10533 seconds and 5 git commands to generate.