Merge tag 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon/linux...
[deliverable/linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2014 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include "i40e.h"
29 #include "i40e_prototype.h"
30
31 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
32 u32 td_tag)
33 {
34 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
35 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
36 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
37 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
38 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
39 }
40
41 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
42 #define I40E_FD_CLEAN_DELAY 10
43 /**
44 * i40e_program_fdir_filter - Program a Flow Director filter
45 * @fdir_data: Packet data that will be filter parameters
46 * @raw_packet: the pre-allocated packet buffer for FDir
47 * @pf: The pf pointer
48 * @add: True for add/update, False for remove
49 **/
50 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
51 struct i40e_pf *pf, bool add)
52 {
53 struct i40e_filter_program_desc *fdir_desc;
54 struct i40e_tx_buffer *tx_buf, *first;
55 struct i40e_tx_desc *tx_desc;
56 struct i40e_ring *tx_ring;
57 unsigned int fpt, dcc;
58 struct i40e_vsi *vsi;
59 struct device *dev;
60 dma_addr_t dma;
61 u32 td_cmd = 0;
62 u16 delay = 0;
63 u16 i;
64
65 /* find existing FDIR VSI */
66 vsi = NULL;
67 for (i = 0; i < pf->num_alloc_vsi; i++)
68 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
69 vsi = pf->vsi[i];
70 if (!vsi)
71 return -ENOENT;
72
73 tx_ring = vsi->tx_rings[0];
74 dev = tx_ring->dev;
75
76 /* we need two descriptors to add/del a filter and we can wait */
77 do {
78 if (I40E_DESC_UNUSED(tx_ring) > 1)
79 break;
80 msleep_interruptible(1);
81 delay++;
82 } while (delay < I40E_FD_CLEAN_DELAY);
83
84 if (!(I40E_DESC_UNUSED(tx_ring) > 1))
85 return -EAGAIN;
86
87 dma = dma_map_single(dev, raw_packet,
88 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
89 if (dma_mapping_error(dev, dma))
90 goto dma_fail;
91
92 /* grab the next descriptor */
93 i = tx_ring->next_to_use;
94 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
95 first = &tx_ring->tx_bi[i];
96 memset(first, 0, sizeof(struct i40e_tx_buffer));
97
98 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
99
100 fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
101 I40E_TXD_FLTR_QW0_QINDEX_MASK;
102
103 fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
104 I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
105
106 fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
107 I40E_TXD_FLTR_QW0_PCTYPE_MASK;
108
109 /* Use LAN VSI Id if not programmed by user */
110 if (fdir_data->dest_vsi == 0)
111 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
112 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
113 else
114 fpt |= ((u32)fdir_data->dest_vsi <<
115 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
116 I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
117
118 dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
119
120 if (add)
121 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
122 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
123 else
124 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
125 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
126
127 dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
128 I40E_TXD_FLTR_QW1_DEST_MASK;
129
130 dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
131 I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
132
133 if (fdir_data->cnt_index != 0) {
134 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
135 dcc |= ((u32)fdir_data->cnt_index <<
136 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
137 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
138 }
139
140 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
141 fdir_desc->rsvd = cpu_to_le32(0);
142 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
143 fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
144
145 /* Now program a dummy descriptor */
146 i = tx_ring->next_to_use;
147 tx_desc = I40E_TX_DESC(tx_ring, i);
148 tx_buf = &tx_ring->tx_bi[i];
149
150 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
151
152 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
153
154 /* record length, and DMA address */
155 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
156 dma_unmap_addr_set(tx_buf, dma, dma);
157
158 tx_desc->buffer_addr = cpu_to_le64(dma);
159 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
160
161 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
162 tx_buf->raw_buf = (void *)raw_packet;
163
164 tx_desc->cmd_type_offset_bsz =
165 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
166
167 /* set the timestamp */
168 tx_buf->time_stamp = jiffies;
169
170 /* Force memory writes to complete before letting h/w
171 * know there are new descriptors to fetch.
172 */
173 wmb();
174
175 /* Mark the data descriptor to be watched */
176 first->next_to_watch = tx_desc;
177
178 writel(tx_ring->next_to_use, tx_ring->tail);
179 return 0;
180
181 dma_fail:
182 return -1;
183 }
184
185 #define IP_HEADER_OFFSET 14
186 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
187 /**
188 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
189 * @vsi: pointer to the targeted VSI
190 * @fd_data: the flow director data required for the FDir descriptor
191 * @add: true adds a filter, false removes it
192 *
193 * Returns 0 if the filters were successfully added or removed
194 **/
195 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
196 struct i40e_fdir_filter *fd_data,
197 bool add)
198 {
199 struct i40e_pf *pf = vsi->back;
200 struct udphdr *udp;
201 struct iphdr *ip;
202 bool err = false;
203 u8 *raw_packet;
204 int ret;
205 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
206 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
207 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
208
209 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
210 if (!raw_packet)
211 return -ENOMEM;
212 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
213
214 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
215 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
216 + sizeof(struct iphdr));
217
218 ip->daddr = fd_data->dst_ip[0];
219 udp->dest = fd_data->dst_port;
220 ip->saddr = fd_data->src_ip[0];
221 udp->source = fd_data->src_port;
222
223 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
224 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
225 if (ret) {
226 dev_info(&pf->pdev->dev,
227 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
228 fd_data->pctype, fd_data->fd_id, ret);
229 err = true;
230 } else {
231 if (add)
232 dev_info(&pf->pdev->dev,
233 "Filter OK for PCTYPE %d loc = %d\n",
234 fd_data->pctype, fd_data->fd_id);
235 else
236 dev_info(&pf->pdev->dev,
237 "Filter deleted for PCTYPE %d loc = %d\n",
238 fd_data->pctype, fd_data->fd_id);
239 }
240 return err ? -EOPNOTSUPP : 0;
241 }
242
243 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
244 /**
245 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
246 * @vsi: pointer to the targeted VSI
247 * @fd_data: the flow director data required for the FDir descriptor
248 * @add: true adds a filter, false removes it
249 *
250 * Returns 0 if the filters were successfully added or removed
251 **/
252 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
253 struct i40e_fdir_filter *fd_data,
254 bool add)
255 {
256 struct i40e_pf *pf = vsi->back;
257 struct tcphdr *tcp;
258 struct iphdr *ip;
259 bool err = false;
260 u8 *raw_packet;
261 int ret;
262 /* Dummy packet */
263 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
264 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
265 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
266 0x0, 0x72, 0, 0, 0, 0};
267
268 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
269 if (!raw_packet)
270 return -ENOMEM;
271 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
272
273 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
274 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
275 + sizeof(struct iphdr));
276
277 ip->daddr = fd_data->dst_ip[0];
278 tcp->dest = fd_data->dst_port;
279 ip->saddr = fd_data->src_ip[0];
280 tcp->source = fd_data->src_port;
281
282 if (add) {
283 pf->fd_tcp_rule++;
284 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
285 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
286 pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
287 }
288 } else {
289 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
290 (pf->fd_tcp_rule - 1) : 0;
291 if (pf->fd_tcp_rule == 0) {
292 pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
293 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
294 }
295 }
296
297 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
298 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
299
300 if (ret) {
301 dev_info(&pf->pdev->dev,
302 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
303 fd_data->pctype, fd_data->fd_id, ret);
304 err = true;
305 } else {
306 if (add)
307 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
308 fd_data->pctype, fd_data->fd_id);
309 else
310 dev_info(&pf->pdev->dev,
311 "Filter deleted for PCTYPE %d loc = %d\n",
312 fd_data->pctype, fd_data->fd_id);
313 }
314
315 return err ? -EOPNOTSUPP : 0;
316 }
317
318 /**
319 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
320 * a specific flow spec
321 * @vsi: pointer to the targeted VSI
322 * @fd_data: the flow director data required for the FDir descriptor
323 * @add: true adds a filter, false removes it
324 *
325 * Always returns -EOPNOTSUPP
326 **/
327 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
328 struct i40e_fdir_filter *fd_data,
329 bool add)
330 {
331 return -EOPNOTSUPP;
332 }
333
334 #define I40E_IP_DUMMY_PACKET_LEN 34
335 /**
336 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
337 * a specific flow spec
338 * @vsi: pointer to the targeted VSI
339 * @fd_data: the flow director data required for the FDir descriptor
340 * @add: true adds a filter, false removes it
341 *
342 * Returns 0 if the filters were successfully added or removed
343 **/
344 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
345 struct i40e_fdir_filter *fd_data,
346 bool add)
347 {
348 struct i40e_pf *pf = vsi->back;
349 struct iphdr *ip;
350 bool err = false;
351 u8 *raw_packet;
352 int ret;
353 int i;
354 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
355 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
356 0, 0, 0, 0};
357
358 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
359 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
360 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
361 if (!raw_packet)
362 return -ENOMEM;
363 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
364 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
365
366 ip->saddr = fd_data->src_ip[0];
367 ip->daddr = fd_data->dst_ip[0];
368 ip->protocol = 0;
369
370 fd_data->pctype = i;
371 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
372
373 if (ret) {
374 dev_info(&pf->pdev->dev,
375 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
376 fd_data->pctype, fd_data->fd_id, ret);
377 err = true;
378 } else {
379 if (add)
380 dev_info(&pf->pdev->dev,
381 "Filter OK for PCTYPE %d loc = %d\n",
382 fd_data->pctype, fd_data->fd_id);
383 else
384 dev_info(&pf->pdev->dev,
385 "Filter deleted for PCTYPE %d loc = %d\n",
386 fd_data->pctype, fd_data->fd_id);
387 }
388 }
389
390 return err ? -EOPNOTSUPP : 0;
391 }
392
393 /**
394 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
395 * @vsi: pointer to the targeted VSI
396 * @cmd: command to get or set RX flow classification rules
397 * @add: true adds a filter, false removes it
398 *
399 **/
400 int i40e_add_del_fdir(struct i40e_vsi *vsi,
401 struct i40e_fdir_filter *input, bool add)
402 {
403 struct i40e_pf *pf = vsi->back;
404 int ret;
405
406 switch (input->flow_type & ~FLOW_EXT) {
407 case TCP_V4_FLOW:
408 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
409 break;
410 case UDP_V4_FLOW:
411 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
412 break;
413 case SCTP_V4_FLOW:
414 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
415 break;
416 case IPV4_FLOW:
417 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
418 break;
419 case IP_USER_FLOW:
420 switch (input->ip4_proto) {
421 case IPPROTO_TCP:
422 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
423 break;
424 case IPPROTO_UDP:
425 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
426 break;
427 case IPPROTO_SCTP:
428 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
429 break;
430 default:
431 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
432 break;
433 }
434 break;
435 default:
436 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
437 input->flow_type);
438 ret = -EINVAL;
439 }
440
441 /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
442 return ret;
443 }
444
445 /**
446 * i40e_fd_handle_status - check the Programming Status for FD
447 * @rx_ring: the Rx ring for this descriptor
448 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
449 * @prog_id: the id originally used for programming
450 *
451 * This is used to verify if the FD programming or invalidation
452 * requested by SW to the HW is successful or not and take actions accordingly.
453 **/
454 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
455 union i40e_rx_desc *rx_desc, u8 prog_id)
456 {
457 struct i40e_pf *pf = rx_ring->vsi->back;
458 struct pci_dev *pdev = pf->pdev;
459 u32 fcnt_prog, fcnt_avail;
460 u32 error;
461 u64 qw;
462
463 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
464 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
465 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
466
467 if (error == (0x1 << I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
468 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
469 (I40E_DEBUG_FD & pf->hw.debug_mask))
470 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
471 rx_desc->wb.qword0.hi_dword.fd_id);
472
473 pf->fd_add_err++;
474 /* store the current atr filter count */
475 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
476
477 /* filter programming failed most likely due to table full */
478 fcnt_prog = i40e_get_cur_guaranteed_fd_count(pf);
479 fcnt_avail = pf->fdir_pf_filter_count;
480 /* If ATR is running fcnt_prog can quickly change,
481 * if we are very close to full, it makes sense to disable
482 * FD ATR/SB and then re-enable it when there is room.
483 */
484 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
485 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
486 !(pf->auto_disable_flags &
487 I40E_FLAG_FD_SB_ENABLED)) {
488 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
489 pf->auto_disable_flags |=
490 I40E_FLAG_FD_SB_ENABLED;
491 }
492 } else {
493 dev_info(&pdev->dev,
494 "FD filter programming failed due to incorrect filter parameters\n");
495 }
496 } else if (error ==
497 (0x1 << I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
498 if (I40E_DEBUG_FD & pf->hw.debug_mask)
499 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
500 rx_desc->wb.qword0.hi_dword.fd_id);
501 }
502 }
503
504 /**
505 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
506 * @ring: the ring that owns the buffer
507 * @tx_buffer: the buffer to free
508 **/
509 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
510 struct i40e_tx_buffer *tx_buffer)
511 {
512 if (tx_buffer->skb) {
513 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
514 kfree(tx_buffer->raw_buf);
515 else
516 dev_kfree_skb_any(tx_buffer->skb);
517
518 if (dma_unmap_len(tx_buffer, len))
519 dma_unmap_single(ring->dev,
520 dma_unmap_addr(tx_buffer, dma),
521 dma_unmap_len(tx_buffer, len),
522 DMA_TO_DEVICE);
523 } else if (dma_unmap_len(tx_buffer, len)) {
524 dma_unmap_page(ring->dev,
525 dma_unmap_addr(tx_buffer, dma),
526 dma_unmap_len(tx_buffer, len),
527 DMA_TO_DEVICE);
528 }
529 tx_buffer->next_to_watch = NULL;
530 tx_buffer->skb = NULL;
531 dma_unmap_len_set(tx_buffer, len, 0);
532 /* tx_buffer must be completely set up in the transmit path */
533 }
534
535 /**
536 * i40e_clean_tx_ring - Free any empty Tx buffers
537 * @tx_ring: ring to be cleaned
538 **/
539 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
540 {
541 unsigned long bi_size;
542 u16 i;
543
544 /* ring already cleared, nothing to do */
545 if (!tx_ring->tx_bi)
546 return;
547
548 /* Free all the Tx ring sk_buffs */
549 for (i = 0; i < tx_ring->count; i++)
550 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
551
552 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
553 memset(tx_ring->tx_bi, 0, bi_size);
554
555 /* Zero out the descriptor ring */
556 memset(tx_ring->desc, 0, tx_ring->size);
557
558 tx_ring->next_to_use = 0;
559 tx_ring->next_to_clean = 0;
560
561 if (!tx_ring->netdev)
562 return;
563
564 /* cleanup Tx queue statistics */
565 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
566 tx_ring->queue_index));
567 }
568
569 /**
570 * i40e_free_tx_resources - Free Tx resources per queue
571 * @tx_ring: Tx descriptor ring for a specific queue
572 *
573 * Free all transmit software resources
574 **/
575 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
576 {
577 i40e_clean_tx_ring(tx_ring);
578 kfree(tx_ring->tx_bi);
579 tx_ring->tx_bi = NULL;
580
581 if (tx_ring->desc) {
582 dma_free_coherent(tx_ring->dev, tx_ring->size,
583 tx_ring->desc, tx_ring->dma);
584 tx_ring->desc = NULL;
585 }
586 }
587
588 /**
589 * i40e_get_head - Retrieve head from head writeback
590 * @tx_ring: tx ring to fetch head of
591 *
592 * Returns value of Tx ring head based on value stored
593 * in head write-back location
594 **/
595 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
596 {
597 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
598
599 return le32_to_cpu(*(volatile __le32 *)head);
600 }
601
602 /**
603 * i40e_get_tx_pending - how many tx descriptors not processed
604 * @tx_ring: the ring of descriptors
605 *
606 * Since there is no access to the ring head register
607 * in XL710, we need to use our local copies
608 **/
609 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
610 {
611 u32 head, tail;
612
613 head = i40e_get_head(ring);
614 tail = readl(ring->tail);
615
616 if (head != tail)
617 return (head < tail) ?
618 tail - head : (tail + ring->count - head);
619
620 return 0;
621 }
622
623 /**
624 * i40e_check_tx_hang - Is there a hang in the Tx queue
625 * @tx_ring: the ring of descriptors
626 **/
627 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
628 {
629 u32 tx_done = tx_ring->stats.packets;
630 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
631 u32 tx_pending = i40e_get_tx_pending(tx_ring);
632 struct i40e_pf *pf = tx_ring->vsi->back;
633 bool ret = false;
634
635 clear_check_for_tx_hang(tx_ring);
636
637 /* Check for a hung queue, but be thorough. This verifies
638 * that a transmit has been completed since the previous
639 * check AND there is at least one packet pending. The
640 * ARMED bit is set to indicate a potential hang. The
641 * bit is cleared if a pause frame is received to remove
642 * false hang detection due to PFC or 802.3x frames. By
643 * requiring this to fail twice we avoid races with
644 * PFC clearing the ARMED bit and conditions where we
645 * run the check_tx_hang logic with a transmit completion
646 * pending but without time to complete it yet.
647 */
648 if ((tx_done_old == tx_done) && tx_pending) {
649 /* make sure it is true for two checks in a row */
650 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
651 &tx_ring->state);
652 } else if (tx_done_old == tx_done &&
653 (tx_pending < I40E_MIN_DESC_PENDING) && (tx_pending > 0)) {
654 if (I40E_DEBUG_FLOW & pf->hw.debug_mask)
655 dev_info(tx_ring->dev, "HW needs some more descs to do a cacheline flush. tx_pending %d, queue %d",
656 tx_pending, tx_ring->queue_index);
657 pf->tx_sluggish_count++;
658 } else {
659 /* update completed stats and disarm the hang check */
660 tx_ring->tx_stats.tx_done_old = tx_done;
661 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
662 }
663
664 return ret;
665 }
666
667 #define WB_STRIDE 0x3
668
669 /**
670 * i40e_clean_tx_irq - Reclaim resources after transmit completes
671 * @tx_ring: tx ring to clean
672 * @budget: how many cleans we're allowed
673 *
674 * Returns true if there's any budget left (e.g. the clean is finished)
675 **/
676 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
677 {
678 u16 i = tx_ring->next_to_clean;
679 struct i40e_tx_buffer *tx_buf;
680 struct i40e_tx_desc *tx_head;
681 struct i40e_tx_desc *tx_desc;
682 unsigned int total_packets = 0;
683 unsigned int total_bytes = 0;
684
685 tx_buf = &tx_ring->tx_bi[i];
686 tx_desc = I40E_TX_DESC(tx_ring, i);
687 i -= tx_ring->count;
688
689 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
690
691 do {
692 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
693
694 /* if next_to_watch is not set then there is no work pending */
695 if (!eop_desc)
696 break;
697
698 /* prevent any other reads prior to eop_desc */
699 read_barrier_depends();
700
701 /* we have caught up to head, no work left to do */
702 if (tx_head == tx_desc)
703 break;
704
705 /* clear next_to_watch to prevent false hangs */
706 tx_buf->next_to_watch = NULL;
707
708 /* update the statistics for this packet */
709 total_bytes += tx_buf->bytecount;
710 total_packets += tx_buf->gso_segs;
711
712 /* free the skb */
713 dev_consume_skb_any(tx_buf->skb);
714
715 /* unmap skb header data */
716 dma_unmap_single(tx_ring->dev,
717 dma_unmap_addr(tx_buf, dma),
718 dma_unmap_len(tx_buf, len),
719 DMA_TO_DEVICE);
720
721 /* clear tx_buffer data */
722 tx_buf->skb = NULL;
723 dma_unmap_len_set(tx_buf, len, 0);
724
725 /* unmap remaining buffers */
726 while (tx_desc != eop_desc) {
727
728 tx_buf++;
729 tx_desc++;
730 i++;
731 if (unlikely(!i)) {
732 i -= tx_ring->count;
733 tx_buf = tx_ring->tx_bi;
734 tx_desc = I40E_TX_DESC(tx_ring, 0);
735 }
736
737 /* unmap any remaining paged data */
738 if (dma_unmap_len(tx_buf, len)) {
739 dma_unmap_page(tx_ring->dev,
740 dma_unmap_addr(tx_buf, dma),
741 dma_unmap_len(tx_buf, len),
742 DMA_TO_DEVICE);
743 dma_unmap_len_set(tx_buf, len, 0);
744 }
745 }
746
747 /* move us one more past the eop_desc for start of next pkt */
748 tx_buf++;
749 tx_desc++;
750 i++;
751 if (unlikely(!i)) {
752 i -= tx_ring->count;
753 tx_buf = tx_ring->tx_bi;
754 tx_desc = I40E_TX_DESC(tx_ring, 0);
755 }
756
757 /* update budget accounting */
758 budget--;
759 } while (likely(budget));
760
761 i += tx_ring->count;
762 tx_ring->next_to_clean = i;
763 u64_stats_update_begin(&tx_ring->syncp);
764 tx_ring->stats.bytes += total_bytes;
765 tx_ring->stats.packets += total_packets;
766 u64_stats_update_end(&tx_ring->syncp);
767 tx_ring->q_vector->tx.total_bytes += total_bytes;
768 tx_ring->q_vector->tx.total_packets += total_packets;
769
770 /* check to see if there are any non-cache aligned descriptors
771 * waiting to be written back, and kick the hardware to force
772 * them to be written back in case of napi polling
773 */
774 if (budget &&
775 !((i & WB_STRIDE) == WB_STRIDE) &&
776 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
777 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
778 tx_ring->arm_wb = true;
779 else
780 tx_ring->arm_wb = false;
781
782 if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
783 /* schedule immediate reset if we believe we hung */
784 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
785 " VSI <%d>\n"
786 " Tx Queue <%d>\n"
787 " next_to_use <%x>\n"
788 " next_to_clean <%x>\n",
789 tx_ring->vsi->seid,
790 tx_ring->queue_index,
791 tx_ring->next_to_use, i);
792 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
793 " time_stamp <%lx>\n"
794 " jiffies <%lx>\n",
795 tx_ring->tx_bi[i].time_stamp, jiffies);
796
797 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
798
799 dev_info(tx_ring->dev,
800 "tx hang detected on queue %d, reset requested\n",
801 tx_ring->queue_index);
802
803 /* do not fire the reset immediately, wait for the stack to
804 * decide we are truly stuck, also prevents every queue from
805 * simultaneously requesting a reset
806 */
807
808 /* the adapter is about to reset, no point in enabling polling */
809 budget = 1;
810 }
811
812 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
813 tx_ring->queue_index),
814 total_packets, total_bytes);
815
816 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
817 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
818 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
819 /* Make sure that anybody stopping the queue after this
820 * sees the new next_to_clean.
821 */
822 smp_mb();
823 if (__netif_subqueue_stopped(tx_ring->netdev,
824 tx_ring->queue_index) &&
825 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
826 netif_wake_subqueue(tx_ring->netdev,
827 tx_ring->queue_index);
828 ++tx_ring->tx_stats.restart_queue;
829 }
830 }
831
832 return !!budget;
833 }
834
835 /**
836 * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
837 * @vsi: the VSI we care about
838 * @q_vector: the vector on which to force writeback
839 *
840 **/
841 static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
842 {
843 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
844 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
845 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
846 /* allow 00 to be written to the index */
847
848 wr32(&vsi->back->hw,
849 I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
850 val);
851 }
852
853 /**
854 * i40e_set_new_dynamic_itr - Find new ITR level
855 * @rc: structure containing ring performance data
856 *
857 * Stores a new ITR value based on packets and byte counts during
858 * the last interrupt. The advantage of per interrupt computation
859 * is faster updates and more accurate ITR for the current traffic
860 * pattern. Constants in this function were computed based on
861 * theoretical maximum wire speed and thresholds were set based on
862 * testing data as well as attempting to minimize response time
863 * while increasing bulk throughput.
864 **/
865 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
866 {
867 enum i40e_latency_range new_latency_range = rc->latency_range;
868 u32 new_itr = rc->itr;
869 int bytes_per_int;
870
871 if (rc->total_packets == 0 || !rc->itr)
872 return;
873
874 /* simple throttlerate management
875 * 0-10MB/s lowest (100000 ints/s)
876 * 10-20MB/s low (20000 ints/s)
877 * 20-1249MB/s bulk (8000 ints/s)
878 */
879 bytes_per_int = rc->total_bytes / rc->itr;
880 switch (rc->itr) {
881 case I40E_LOWEST_LATENCY:
882 if (bytes_per_int > 10)
883 new_latency_range = I40E_LOW_LATENCY;
884 break;
885 case I40E_LOW_LATENCY:
886 if (bytes_per_int > 20)
887 new_latency_range = I40E_BULK_LATENCY;
888 else if (bytes_per_int <= 10)
889 new_latency_range = I40E_LOWEST_LATENCY;
890 break;
891 case I40E_BULK_LATENCY:
892 if (bytes_per_int <= 20)
893 rc->latency_range = I40E_LOW_LATENCY;
894 break;
895 }
896
897 switch (new_latency_range) {
898 case I40E_LOWEST_LATENCY:
899 new_itr = I40E_ITR_100K;
900 break;
901 case I40E_LOW_LATENCY:
902 new_itr = I40E_ITR_20K;
903 break;
904 case I40E_BULK_LATENCY:
905 new_itr = I40E_ITR_8K;
906 break;
907 default:
908 break;
909 }
910
911 if (new_itr != rc->itr) {
912 /* do an exponential smoothing */
913 new_itr = (10 * new_itr * rc->itr) /
914 ((9 * new_itr) + rc->itr);
915 rc->itr = new_itr & I40E_MAX_ITR;
916 }
917
918 rc->total_bytes = 0;
919 rc->total_packets = 0;
920 }
921
922 /**
923 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
924 * @q_vector: the vector to adjust
925 **/
926 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
927 {
928 u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
929 struct i40e_hw *hw = &q_vector->vsi->back->hw;
930 u32 reg_addr;
931 u16 old_itr;
932
933 reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
934 old_itr = q_vector->rx.itr;
935 i40e_set_new_dynamic_itr(&q_vector->rx);
936 if (old_itr != q_vector->rx.itr)
937 wr32(hw, reg_addr, q_vector->rx.itr);
938
939 reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
940 old_itr = q_vector->tx.itr;
941 i40e_set_new_dynamic_itr(&q_vector->tx);
942 if (old_itr != q_vector->tx.itr)
943 wr32(hw, reg_addr, q_vector->tx.itr);
944 }
945
946 /**
947 * i40e_clean_programming_status - clean the programming status descriptor
948 * @rx_ring: the rx ring that has this descriptor
949 * @rx_desc: the rx descriptor written back by HW
950 *
951 * Flow director should handle FD_FILTER_STATUS to check its filter programming
952 * status being successful or not and take actions accordingly. FCoE should
953 * handle its context/filter programming/invalidation status and take actions.
954 *
955 **/
956 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
957 union i40e_rx_desc *rx_desc)
958 {
959 u64 qw;
960 u8 id;
961
962 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
963 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
964 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
965
966 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
967 i40e_fd_handle_status(rx_ring, rx_desc, id);
968 #ifdef I40E_FCOE
969 else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
970 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
971 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
972 #endif
973 }
974
975 /**
976 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
977 * @tx_ring: the tx ring to set up
978 *
979 * Return 0 on success, negative on error
980 **/
981 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
982 {
983 struct device *dev = tx_ring->dev;
984 int bi_size;
985
986 if (!dev)
987 return -ENOMEM;
988
989 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
990 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
991 if (!tx_ring->tx_bi)
992 goto err;
993
994 /* round up to nearest 4K */
995 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
996 /* add u32 for head writeback, align after this takes care of
997 * guaranteeing this is at least one cache line in size
998 */
999 tx_ring->size += sizeof(u32);
1000 tx_ring->size = ALIGN(tx_ring->size, 4096);
1001 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1002 &tx_ring->dma, GFP_KERNEL);
1003 if (!tx_ring->desc) {
1004 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1005 tx_ring->size);
1006 goto err;
1007 }
1008
1009 tx_ring->next_to_use = 0;
1010 tx_ring->next_to_clean = 0;
1011 return 0;
1012
1013 err:
1014 kfree(tx_ring->tx_bi);
1015 tx_ring->tx_bi = NULL;
1016 return -ENOMEM;
1017 }
1018
1019 /**
1020 * i40e_clean_rx_ring - Free Rx buffers
1021 * @rx_ring: ring to be cleaned
1022 **/
1023 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1024 {
1025 struct device *dev = rx_ring->dev;
1026 struct i40e_rx_buffer *rx_bi;
1027 unsigned long bi_size;
1028 u16 i;
1029
1030 /* ring already cleared, nothing to do */
1031 if (!rx_ring->rx_bi)
1032 return;
1033
1034 /* Free all the Rx ring sk_buffs */
1035 for (i = 0; i < rx_ring->count; i++) {
1036 rx_bi = &rx_ring->rx_bi[i];
1037 if (rx_bi->dma) {
1038 dma_unmap_single(dev,
1039 rx_bi->dma,
1040 rx_ring->rx_buf_len,
1041 DMA_FROM_DEVICE);
1042 rx_bi->dma = 0;
1043 }
1044 if (rx_bi->skb) {
1045 dev_kfree_skb(rx_bi->skb);
1046 rx_bi->skb = NULL;
1047 }
1048 if (rx_bi->page) {
1049 if (rx_bi->page_dma) {
1050 dma_unmap_page(dev,
1051 rx_bi->page_dma,
1052 PAGE_SIZE / 2,
1053 DMA_FROM_DEVICE);
1054 rx_bi->page_dma = 0;
1055 }
1056 __free_page(rx_bi->page);
1057 rx_bi->page = NULL;
1058 rx_bi->page_offset = 0;
1059 }
1060 }
1061
1062 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1063 memset(rx_ring->rx_bi, 0, bi_size);
1064
1065 /* Zero out the descriptor ring */
1066 memset(rx_ring->desc, 0, rx_ring->size);
1067
1068 rx_ring->next_to_clean = 0;
1069 rx_ring->next_to_use = 0;
1070 }
1071
1072 /**
1073 * i40e_free_rx_resources - Free Rx resources
1074 * @rx_ring: ring to clean the resources from
1075 *
1076 * Free all receive software resources
1077 **/
1078 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1079 {
1080 i40e_clean_rx_ring(rx_ring);
1081 kfree(rx_ring->rx_bi);
1082 rx_ring->rx_bi = NULL;
1083
1084 if (rx_ring->desc) {
1085 dma_free_coherent(rx_ring->dev, rx_ring->size,
1086 rx_ring->desc, rx_ring->dma);
1087 rx_ring->desc = NULL;
1088 }
1089 }
1090
1091 /**
1092 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1093 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1094 *
1095 * Returns 0 on success, negative on failure
1096 **/
1097 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1098 {
1099 struct device *dev = rx_ring->dev;
1100 int bi_size;
1101
1102 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1103 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1104 if (!rx_ring->rx_bi)
1105 goto err;
1106
1107 u64_stats_init(&rx_ring->syncp);
1108
1109 /* Round up to nearest 4K */
1110 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1111 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1112 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1113 rx_ring->size = ALIGN(rx_ring->size, 4096);
1114 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1115 &rx_ring->dma, GFP_KERNEL);
1116
1117 if (!rx_ring->desc) {
1118 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1119 rx_ring->size);
1120 goto err;
1121 }
1122
1123 rx_ring->next_to_clean = 0;
1124 rx_ring->next_to_use = 0;
1125
1126 return 0;
1127 err:
1128 kfree(rx_ring->rx_bi);
1129 rx_ring->rx_bi = NULL;
1130 return -ENOMEM;
1131 }
1132
1133 /**
1134 * i40e_release_rx_desc - Store the new tail and head values
1135 * @rx_ring: ring to bump
1136 * @val: new head index
1137 **/
1138 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1139 {
1140 rx_ring->next_to_use = val;
1141 /* Force memory writes to complete before letting h/w
1142 * know there are new descriptors to fetch. (Only
1143 * applicable for weak-ordered memory model archs,
1144 * such as IA-64).
1145 */
1146 wmb();
1147 writel(val, rx_ring->tail);
1148 }
1149
1150 /**
1151 * i40e_alloc_rx_buffers - Replace used receive buffers; packet split
1152 * @rx_ring: ring to place buffers on
1153 * @cleaned_count: number of buffers to replace
1154 **/
1155 void i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1156 {
1157 u16 i = rx_ring->next_to_use;
1158 union i40e_rx_desc *rx_desc;
1159 struct i40e_rx_buffer *bi;
1160 struct sk_buff *skb;
1161
1162 /* do nothing if no valid netdev defined */
1163 if (!rx_ring->netdev || !cleaned_count)
1164 return;
1165
1166 while (cleaned_count--) {
1167 rx_desc = I40E_RX_DESC(rx_ring, i);
1168 bi = &rx_ring->rx_bi[i];
1169 skb = bi->skb;
1170
1171 if (!skb) {
1172 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1173 rx_ring->rx_buf_len);
1174 if (!skb) {
1175 rx_ring->rx_stats.alloc_buff_failed++;
1176 goto no_buffers;
1177 }
1178 /* initialize queue mapping */
1179 skb_record_rx_queue(skb, rx_ring->queue_index);
1180 bi->skb = skb;
1181 }
1182
1183 if (!bi->dma) {
1184 bi->dma = dma_map_single(rx_ring->dev,
1185 skb->data,
1186 rx_ring->rx_buf_len,
1187 DMA_FROM_DEVICE);
1188 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1189 rx_ring->rx_stats.alloc_buff_failed++;
1190 bi->dma = 0;
1191 goto no_buffers;
1192 }
1193 }
1194
1195 if (ring_is_ps_enabled(rx_ring)) {
1196 if (!bi->page) {
1197 bi->page = alloc_page(GFP_ATOMIC);
1198 if (!bi->page) {
1199 rx_ring->rx_stats.alloc_page_failed++;
1200 goto no_buffers;
1201 }
1202 }
1203
1204 if (!bi->page_dma) {
1205 /* use a half page if we're re-using */
1206 bi->page_offset ^= PAGE_SIZE / 2;
1207 bi->page_dma = dma_map_page(rx_ring->dev,
1208 bi->page,
1209 bi->page_offset,
1210 PAGE_SIZE / 2,
1211 DMA_FROM_DEVICE);
1212 if (dma_mapping_error(rx_ring->dev,
1213 bi->page_dma)) {
1214 rx_ring->rx_stats.alloc_page_failed++;
1215 bi->page_dma = 0;
1216 goto no_buffers;
1217 }
1218 }
1219
1220 /* Refresh the desc even if buffer_addrs didn't change
1221 * because each write-back erases this info.
1222 */
1223 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1224 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1225 } else {
1226 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1227 rx_desc->read.hdr_addr = 0;
1228 }
1229 i++;
1230 if (i == rx_ring->count)
1231 i = 0;
1232 }
1233
1234 no_buffers:
1235 if (rx_ring->next_to_use != i)
1236 i40e_release_rx_desc(rx_ring, i);
1237 }
1238
1239 /**
1240 * i40e_receive_skb - Send a completed packet up the stack
1241 * @rx_ring: rx ring in play
1242 * @skb: packet to send up
1243 * @vlan_tag: vlan tag for packet
1244 **/
1245 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1246 struct sk_buff *skb, u16 vlan_tag)
1247 {
1248 struct i40e_q_vector *q_vector = rx_ring->q_vector;
1249 struct i40e_vsi *vsi = rx_ring->vsi;
1250 u64 flags = vsi->back->flags;
1251
1252 if (vlan_tag & VLAN_VID_MASK)
1253 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1254
1255 if (flags & I40E_FLAG_IN_NETPOLL)
1256 netif_rx(skb);
1257 else
1258 napi_gro_receive(&q_vector->napi, skb);
1259 }
1260
1261 /**
1262 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1263 * @vsi: the VSI we care about
1264 * @skb: skb currently being received and modified
1265 * @rx_status: status value of last descriptor in packet
1266 * @rx_error: error value of last descriptor in packet
1267 * @rx_ptype: ptype value of last descriptor in packet
1268 **/
1269 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1270 struct sk_buff *skb,
1271 u32 rx_status,
1272 u32 rx_error,
1273 u16 rx_ptype)
1274 {
1275 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1276 bool ipv4 = false, ipv6 = false;
1277 bool ipv4_tunnel, ipv6_tunnel;
1278 __wsum rx_udp_csum;
1279 struct iphdr *iph;
1280 __sum16 csum;
1281
1282 ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1283 (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1284 ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1285 (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1286
1287 skb->ip_summed = CHECKSUM_NONE;
1288
1289 /* Rx csum enabled and ip headers found? */
1290 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1291 return;
1292
1293 /* did the hardware decode the packet and checksum? */
1294 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1295 return;
1296
1297 /* both known and outer_ip must be set for the below code to work */
1298 if (!(decoded.known && decoded.outer_ip))
1299 return;
1300
1301 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1302 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1303 ipv4 = true;
1304 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1305 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1306 ipv6 = true;
1307
1308 if (ipv4 &&
1309 (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
1310 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1311 goto checksum_fail;
1312
1313 /* likely incorrect csum if alternate IP extension headers found */
1314 if (ipv6 &&
1315 rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1316 /* don't increment checksum err here, non-fatal err */
1317 return;
1318
1319 /* there was some L4 error, count error and punt packet to the stack */
1320 if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
1321 goto checksum_fail;
1322
1323 /* handle packets that were not able to be checksummed due
1324 * to arrival speed, in this case the stack can compute
1325 * the csum.
1326 */
1327 if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
1328 return;
1329
1330 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1331 * it in the driver, hardware does not do it for us.
1332 * Since L3L4P bit was set we assume a valid IHL value (>=5)
1333 * so the total length of IPv4 header is IHL*4 bytes
1334 * The UDP_0 bit *may* bet set if the *inner* header is UDP
1335 */
1336 if (ipv4_tunnel) {
1337 skb->transport_header = skb->mac_header +
1338 sizeof(struct ethhdr) +
1339 (ip_hdr(skb)->ihl * 4);
1340
1341 /* Add 4 bytes for VLAN tagged packets */
1342 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1343 skb->protocol == htons(ETH_P_8021AD))
1344 ? VLAN_HLEN : 0;
1345
1346 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1347 (udp_hdr(skb)->check != 0)) {
1348 rx_udp_csum = udp_csum(skb);
1349 iph = ip_hdr(skb);
1350 csum = csum_tcpudp_magic(
1351 iph->saddr, iph->daddr,
1352 (skb->len - skb_transport_offset(skb)),
1353 IPPROTO_UDP, rx_udp_csum);
1354
1355 if (udp_hdr(skb)->check != csum)
1356 goto checksum_fail;
1357
1358 } /* else its GRE and so no outer UDP header */
1359 }
1360
1361 skb->ip_summed = CHECKSUM_UNNECESSARY;
1362 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1363
1364 return;
1365
1366 checksum_fail:
1367 vsi->back->hw_csum_rx_error++;
1368 }
1369
1370 /**
1371 * i40e_rx_hash - returns the hash value from the Rx descriptor
1372 * @ring: descriptor ring
1373 * @rx_desc: specific descriptor
1374 **/
1375 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1376 union i40e_rx_desc *rx_desc)
1377 {
1378 const __le64 rss_mask =
1379 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1380 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1381
1382 if ((ring->netdev->features & NETIF_F_RXHASH) &&
1383 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1384 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1385 else
1386 return 0;
1387 }
1388
1389 /**
1390 * i40e_ptype_to_hash - get a hash type
1391 * @ptype: the ptype value from the descriptor
1392 *
1393 * Returns a hash type to be used by skb_set_hash
1394 **/
1395 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1396 {
1397 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1398
1399 if (!decoded.known)
1400 return PKT_HASH_TYPE_NONE;
1401
1402 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1403 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1404 return PKT_HASH_TYPE_L4;
1405 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1406 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1407 return PKT_HASH_TYPE_L3;
1408 else
1409 return PKT_HASH_TYPE_L2;
1410 }
1411
1412 /**
1413 * i40e_clean_rx_irq - Reclaim resources after receive completes
1414 * @rx_ring: rx ring to clean
1415 * @budget: how many cleans we're allowed
1416 *
1417 * Returns true if there's any budget left (e.g. the clean is finished)
1418 **/
1419 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1420 {
1421 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1422 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1423 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1424 const int current_node = numa_node_id();
1425 struct i40e_vsi *vsi = rx_ring->vsi;
1426 u16 i = rx_ring->next_to_clean;
1427 union i40e_rx_desc *rx_desc;
1428 u32 rx_error, rx_status;
1429 u8 rx_ptype;
1430 u64 qword;
1431
1432 if (budget <= 0)
1433 return 0;
1434
1435 rx_desc = I40E_RX_DESC(rx_ring, i);
1436 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1437 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1438 I40E_RXD_QW1_STATUS_SHIFT;
1439
1440 while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1441 union i40e_rx_desc *next_rxd;
1442 struct i40e_rx_buffer *rx_bi;
1443 struct sk_buff *skb;
1444 u16 vlan_tag;
1445 if (i40e_rx_is_programming_status(qword)) {
1446 i40e_clean_programming_status(rx_ring, rx_desc);
1447 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1448 goto next_desc;
1449 }
1450 rx_bi = &rx_ring->rx_bi[i];
1451 skb = rx_bi->skb;
1452 prefetch(skb->data);
1453
1454 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1455 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1456 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1457 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1458 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1459 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1460
1461 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1462 I40E_RXD_QW1_ERROR_SHIFT;
1463 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1464 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1465
1466 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1467 I40E_RXD_QW1_PTYPE_SHIFT;
1468 rx_bi->skb = NULL;
1469
1470 /* This memory barrier is needed to keep us from reading
1471 * any other fields out of the rx_desc until we know the
1472 * STATUS_DD bit is set
1473 */
1474 rmb();
1475
1476 /* Get the header and possibly the whole packet
1477 * If this is an skb from previous receive dma will be 0
1478 */
1479 if (rx_bi->dma) {
1480 u16 len;
1481
1482 if (rx_hbo)
1483 len = I40E_RX_HDR_SIZE;
1484 else if (rx_sph)
1485 len = rx_header_len;
1486 else if (rx_packet_len)
1487 len = rx_packet_len; /* 1buf/no split found */
1488 else
1489 len = rx_header_len; /* split always mode */
1490
1491 skb_put(skb, len);
1492 dma_unmap_single(rx_ring->dev,
1493 rx_bi->dma,
1494 rx_ring->rx_buf_len,
1495 DMA_FROM_DEVICE);
1496 rx_bi->dma = 0;
1497 }
1498
1499 /* Get the rest of the data if this was a header split */
1500 if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
1501
1502 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1503 rx_bi->page,
1504 rx_bi->page_offset,
1505 rx_packet_len);
1506
1507 skb->len += rx_packet_len;
1508 skb->data_len += rx_packet_len;
1509 skb->truesize += rx_packet_len;
1510
1511 if ((page_count(rx_bi->page) == 1) &&
1512 (page_to_nid(rx_bi->page) == current_node))
1513 get_page(rx_bi->page);
1514 else
1515 rx_bi->page = NULL;
1516
1517 dma_unmap_page(rx_ring->dev,
1518 rx_bi->page_dma,
1519 PAGE_SIZE / 2,
1520 DMA_FROM_DEVICE);
1521 rx_bi->page_dma = 0;
1522 }
1523 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1524
1525 if (unlikely(
1526 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1527 struct i40e_rx_buffer *next_buffer;
1528
1529 next_buffer = &rx_ring->rx_bi[i];
1530
1531 if (ring_is_ps_enabled(rx_ring)) {
1532 rx_bi->skb = next_buffer->skb;
1533 rx_bi->dma = next_buffer->dma;
1534 next_buffer->skb = skb;
1535 next_buffer->dma = 0;
1536 }
1537 rx_ring->rx_stats.non_eop_descs++;
1538 goto next_desc;
1539 }
1540
1541 /* ERR_MASK will only have valid bits if EOP set */
1542 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1543 dev_kfree_skb_any(skb);
1544 /* TODO: shouldn't we increment a counter indicating the
1545 * drop?
1546 */
1547 goto next_desc;
1548 }
1549
1550 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1551 i40e_ptype_to_hash(rx_ptype));
1552 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1553 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1554 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1555 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1556 rx_ring->last_rx_timestamp = jiffies;
1557 }
1558
1559 /* probably a little skewed due to removing CRC */
1560 total_rx_bytes += skb->len;
1561 total_rx_packets++;
1562
1563 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1564
1565 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1566
1567 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1568 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1569 : 0;
1570 #ifdef I40E_FCOE
1571 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1572 dev_kfree_skb_any(skb);
1573 goto next_desc;
1574 }
1575 #endif
1576 i40e_receive_skb(rx_ring, skb, vlan_tag);
1577
1578 rx_ring->netdev->last_rx = jiffies;
1579 budget--;
1580 next_desc:
1581 rx_desc->wb.qword1.status_error_len = 0;
1582 if (!budget)
1583 break;
1584
1585 cleaned_count++;
1586 /* return some buffers to hardware, one at a time is too slow */
1587 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1588 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1589 cleaned_count = 0;
1590 }
1591
1592 /* use prefetched values */
1593 rx_desc = next_rxd;
1594 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1595 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1596 I40E_RXD_QW1_STATUS_SHIFT;
1597 }
1598
1599 rx_ring->next_to_clean = i;
1600 u64_stats_update_begin(&rx_ring->syncp);
1601 rx_ring->stats.packets += total_rx_packets;
1602 rx_ring->stats.bytes += total_rx_bytes;
1603 u64_stats_update_end(&rx_ring->syncp);
1604 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1605 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1606
1607 if (cleaned_count)
1608 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1609
1610 return budget > 0;
1611 }
1612
1613 /**
1614 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1615 * @napi: napi struct with our devices info in it
1616 * @budget: amount of work driver is allowed to do this pass, in packets
1617 *
1618 * This function will clean all queues associated with a q_vector.
1619 *
1620 * Returns the amount of work done
1621 **/
1622 int i40e_napi_poll(struct napi_struct *napi, int budget)
1623 {
1624 struct i40e_q_vector *q_vector =
1625 container_of(napi, struct i40e_q_vector, napi);
1626 struct i40e_vsi *vsi = q_vector->vsi;
1627 struct i40e_ring *ring;
1628 bool clean_complete = true;
1629 bool arm_wb = false;
1630 int budget_per_ring;
1631
1632 if (test_bit(__I40E_DOWN, &vsi->state)) {
1633 napi_complete(napi);
1634 return 0;
1635 }
1636
1637 /* Since the actual Tx work is minimal, we can give the Tx a larger
1638 * budget and be more aggressive about cleaning up the Tx descriptors.
1639 */
1640 i40e_for_each_ring(ring, q_vector->tx) {
1641 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1642 arm_wb |= ring->arm_wb;
1643 }
1644
1645 /* We attempt to distribute budget to each Rx queue fairly, but don't
1646 * allow the budget to go below 1 because that would exit polling early.
1647 */
1648 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1649
1650 i40e_for_each_ring(ring, q_vector->rx)
1651 clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1652
1653 /* If work not completed, return budget and polling will return */
1654 if (!clean_complete) {
1655 if (arm_wb)
1656 i40e_force_wb(vsi, q_vector);
1657 return budget;
1658 }
1659
1660 /* Work is done so exit the polling mode and re-enable the interrupt */
1661 napi_complete(napi);
1662 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1663 ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1664 i40e_update_dynamic_itr(q_vector);
1665
1666 if (!test_bit(__I40E_DOWN, &vsi->state)) {
1667 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1668 i40e_irq_dynamic_enable(vsi,
1669 q_vector->v_idx + vsi->base_vector);
1670 } else {
1671 struct i40e_hw *hw = &vsi->back->hw;
1672 /* We re-enable the queue 0 cause, but
1673 * don't worry about dynamic_enable
1674 * because we left it on for the other
1675 * possible interrupts during napi
1676 */
1677 u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1678 qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1679 wr32(hw, I40E_QINT_RQCTL(0), qval);
1680
1681 qval = rd32(hw, I40E_QINT_TQCTL(0));
1682 qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1683 wr32(hw, I40E_QINT_TQCTL(0), qval);
1684
1685 i40e_irq_dynamic_enable_icr0(vsi->back);
1686 }
1687 }
1688
1689 return 0;
1690 }
1691
1692 /**
1693 * i40e_atr - Add a Flow Director ATR filter
1694 * @tx_ring: ring to add programming descriptor to
1695 * @skb: send buffer
1696 * @flags: send flags
1697 * @protocol: wire protocol
1698 **/
1699 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1700 u32 flags, __be16 protocol)
1701 {
1702 struct i40e_filter_program_desc *fdir_desc;
1703 struct i40e_pf *pf = tx_ring->vsi->back;
1704 union {
1705 unsigned char *network;
1706 struct iphdr *ipv4;
1707 struct ipv6hdr *ipv6;
1708 } hdr;
1709 struct tcphdr *th;
1710 unsigned int hlen;
1711 u32 flex_ptype, dtype_cmd;
1712 u16 i;
1713
1714 /* make sure ATR is enabled */
1715 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1716 return;
1717
1718 /* if sampling is disabled do nothing */
1719 if (!tx_ring->atr_sample_rate)
1720 return;
1721
1722 /* snag network header to get L4 type and address */
1723 hdr.network = skb_network_header(skb);
1724
1725 /* Currently only IPv4/IPv6 with TCP is supported */
1726 if (protocol == htons(ETH_P_IP)) {
1727 if (hdr.ipv4->protocol != IPPROTO_TCP)
1728 return;
1729
1730 /* access ihl as a u8 to avoid unaligned access on ia64 */
1731 hlen = (hdr.network[0] & 0x0F) << 2;
1732 } else if (protocol == htons(ETH_P_IPV6)) {
1733 if (hdr.ipv6->nexthdr != IPPROTO_TCP)
1734 return;
1735
1736 hlen = sizeof(struct ipv6hdr);
1737 } else {
1738 return;
1739 }
1740
1741 th = (struct tcphdr *)(hdr.network + hlen);
1742
1743 /* Due to lack of space, no more new filters can be programmed */
1744 if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1745 return;
1746
1747 tx_ring->atr_count++;
1748
1749 /* sample on all syn/fin/rst packets or once every atr sample rate */
1750 if (!th->fin &&
1751 !th->syn &&
1752 !th->rst &&
1753 (tx_ring->atr_count < tx_ring->atr_sample_rate))
1754 return;
1755
1756 tx_ring->atr_count = 0;
1757
1758 /* grab the next descriptor */
1759 i = tx_ring->next_to_use;
1760 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
1761
1762 i++;
1763 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1764
1765 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
1766 I40E_TXD_FLTR_QW0_QINDEX_MASK;
1767 flex_ptype |= (protocol == htons(ETH_P_IP)) ?
1768 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
1769 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
1770 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
1771 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
1772
1773 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
1774
1775 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
1776
1777 dtype_cmd |= (th->fin || th->rst) ?
1778 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
1779 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
1780 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
1781 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
1782
1783 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
1784 I40E_TXD_FLTR_QW1_DEST_SHIFT;
1785
1786 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
1787 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
1788
1789 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
1790 dtype_cmd |=
1791 ((u32)pf->fd_atr_cnt_idx << I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
1792 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
1793
1794 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
1795 fdir_desc->rsvd = cpu_to_le32(0);
1796 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
1797 fdir_desc->fd_id = cpu_to_le32(0);
1798 }
1799
1800 /**
1801 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1802 * @skb: send buffer
1803 * @tx_ring: ring to send buffer on
1804 * @flags: the tx flags to be set
1805 *
1806 * Checks the skb and set up correspondingly several generic transmit flags
1807 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1808 *
1809 * Returns error code indicate the frame should be dropped upon error and the
1810 * otherwise returns 0 to indicate the flags has been set properly.
1811 **/
1812 #ifdef I40E_FCOE
1813 int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1814 struct i40e_ring *tx_ring,
1815 u32 *flags)
1816 #else
1817 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1818 struct i40e_ring *tx_ring,
1819 u32 *flags)
1820 #endif
1821 {
1822 __be16 protocol = skb->protocol;
1823 u32 tx_flags = 0;
1824
1825 /* if we have a HW VLAN tag being added, default to the HW one */
1826 if (skb_vlan_tag_present(skb)) {
1827 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1828 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1829 /* else if it is a SW VLAN, check the next protocol and store the tag */
1830 } else if (protocol == htons(ETH_P_8021Q)) {
1831 struct vlan_hdr *vhdr, _vhdr;
1832 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1833 if (!vhdr)
1834 return -EINVAL;
1835
1836 protocol = vhdr->h_vlan_encapsulated_proto;
1837 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1838 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1839 }
1840
1841 /* Insert 802.1p priority into VLAN header */
1842 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
1843 (skb->priority != TC_PRIO_CONTROL)) {
1844 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
1845 tx_flags |= (skb->priority & 0x7) <<
1846 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
1847 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
1848 struct vlan_ethhdr *vhdr;
1849 int rc;
1850
1851 rc = skb_cow_head(skb, 0);
1852 if (rc < 0)
1853 return rc;
1854 vhdr = (struct vlan_ethhdr *)skb->data;
1855 vhdr->h_vlan_TCI = htons(tx_flags >>
1856 I40E_TX_FLAGS_VLAN_SHIFT);
1857 } else {
1858 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1859 }
1860 }
1861 *flags = tx_flags;
1862 return 0;
1863 }
1864
1865 /**
1866 * i40e_tso - set up the tso context descriptor
1867 * @tx_ring: ptr to the ring to send
1868 * @skb: ptr to the skb we're sending
1869 * @tx_flags: the collected send information
1870 * @protocol: the send protocol
1871 * @hdr_len: ptr to the size of the packet header
1872 * @cd_tunneling: ptr to context descriptor bits
1873 *
1874 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1875 **/
1876 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1877 u32 tx_flags, __be16 protocol, u8 *hdr_len,
1878 u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1879 {
1880 u32 cd_cmd, cd_tso_len, cd_mss;
1881 struct ipv6hdr *ipv6h;
1882 struct tcphdr *tcph;
1883 struct iphdr *iph;
1884 u32 l4len;
1885 int err;
1886
1887 if (!skb_is_gso(skb))
1888 return 0;
1889
1890 err = skb_cow_head(skb, 0);
1891 if (err < 0)
1892 return err;
1893
1894 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1895 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1896
1897 if (iph->version == 4) {
1898 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1899 iph->tot_len = 0;
1900 iph->check = 0;
1901 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1902 0, IPPROTO_TCP, 0);
1903 } else if (ipv6h->version == 6) {
1904 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1905 ipv6h->payload_len = 0;
1906 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1907 0, IPPROTO_TCP, 0);
1908 }
1909
1910 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1911 *hdr_len = (skb->encapsulation
1912 ? (skb_inner_transport_header(skb) - skb->data)
1913 : skb_transport_offset(skb)) + l4len;
1914
1915 /* find the field values */
1916 cd_cmd = I40E_TX_CTX_DESC_TSO;
1917 cd_tso_len = skb->len - *hdr_len;
1918 cd_mss = skb_shinfo(skb)->gso_size;
1919 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1920 ((u64)cd_tso_len <<
1921 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1922 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1923 return 1;
1924 }
1925
1926 /**
1927 * i40e_tsyn - set up the tsyn context descriptor
1928 * @tx_ring: ptr to the ring to send
1929 * @skb: ptr to the skb we're sending
1930 * @tx_flags: the collected send information
1931 *
1932 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
1933 **/
1934 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
1935 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
1936 {
1937 struct i40e_pf *pf;
1938
1939 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1940 return 0;
1941
1942 /* Tx timestamps cannot be sampled when doing TSO */
1943 if (tx_flags & I40E_TX_FLAGS_TSO)
1944 return 0;
1945
1946 /* only timestamp the outbound packet if the user has requested it and
1947 * we are not already transmitting a packet to be timestamped
1948 */
1949 pf = i40e_netdev_to_pf(tx_ring->netdev);
1950 if (!(pf->flags & I40E_FLAG_PTP))
1951 return 0;
1952
1953 if (pf->ptp_tx &&
1954 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
1955 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1956 pf->ptp_tx_skb = skb_get(skb);
1957 } else {
1958 return 0;
1959 }
1960
1961 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
1962 I40E_TXD_CTX_QW1_CMD_SHIFT;
1963
1964 return 1;
1965 }
1966
1967 /**
1968 * i40e_tx_enable_csum - Enable Tx checksum offloads
1969 * @skb: send buffer
1970 * @tx_flags: Tx flags currently set
1971 * @td_cmd: Tx descriptor command bits to set
1972 * @td_offset: Tx descriptor header offsets to set
1973 * @cd_tunneling: ptr to context desc bits
1974 **/
1975 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1976 u32 *td_cmd, u32 *td_offset,
1977 struct i40e_ring *tx_ring,
1978 u32 *cd_tunneling)
1979 {
1980 struct ipv6hdr *this_ipv6_hdr;
1981 unsigned int this_tcp_hdrlen;
1982 struct iphdr *this_ip_hdr;
1983 u32 network_hdr_len;
1984 u8 l4_hdr = 0;
1985
1986 if (skb->encapsulation) {
1987 network_hdr_len = skb_inner_network_header_len(skb);
1988 this_ip_hdr = inner_ip_hdr(skb);
1989 this_ipv6_hdr = inner_ipv6_hdr(skb);
1990 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1991
1992 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1993
1994 if (tx_flags & I40E_TX_FLAGS_TSO) {
1995 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1996 ip_hdr(skb)->check = 0;
1997 } else {
1998 *cd_tunneling |=
1999 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2000 }
2001 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
2002 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2003 if (tx_flags & I40E_TX_FLAGS_TSO)
2004 ip_hdr(skb)->check = 0;
2005 }
2006
2007 /* Now set the ctx descriptor fields */
2008 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2009 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
2010 I40E_TXD_CTX_UDP_TUNNELING |
2011 ((skb_inner_network_offset(skb) -
2012 skb_transport_offset(skb)) >> 1) <<
2013 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2014 if (this_ip_hdr->version == 6) {
2015 tx_flags &= ~I40E_TX_FLAGS_IPV4;
2016 tx_flags |= I40E_TX_FLAGS_IPV6;
2017 }
2018 } else {
2019 network_hdr_len = skb_network_header_len(skb);
2020 this_ip_hdr = ip_hdr(skb);
2021 this_ipv6_hdr = ipv6_hdr(skb);
2022 this_tcp_hdrlen = tcp_hdrlen(skb);
2023 }
2024
2025 /* Enable IP checksum offloads */
2026 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2027 l4_hdr = this_ip_hdr->protocol;
2028 /* the stack computes the IP header already, the only time we
2029 * need the hardware to recompute it is in the case of TSO.
2030 */
2031 if (tx_flags & I40E_TX_FLAGS_TSO) {
2032 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2033 this_ip_hdr->check = 0;
2034 } else {
2035 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2036 }
2037 /* Now set the td_offset for IP header length */
2038 *td_offset = (network_hdr_len >> 2) <<
2039 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2040 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
2041 l4_hdr = this_ipv6_hdr->nexthdr;
2042 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2043 /* Now set the td_offset for IP header length */
2044 *td_offset = (network_hdr_len >> 2) <<
2045 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2046 }
2047 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2048 *td_offset |= (skb_network_offset(skb) >> 1) <<
2049 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2050
2051 /* Enable L4 checksum offloads */
2052 switch (l4_hdr) {
2053 case IPPROTO_TCP:
2054 /* enable checksum offloads */
2055 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2056 *td_offset |= (this_tcp_hdrlen >> 2) <<
2057 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2058 break;
2059 case IPPROTO_SCTP:
2060 /* enable SCTP checksum offload */
2061 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2062 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2063 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2064 break;
2065 case IPPROTO_UDP:
2066 /* enable UDP checksum offload */
2067 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2068 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2069 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2070 break;
2071 default:
2072 break;
2073 }
2074 }
2075
2076 /**
2077 * i40e_create_tx_ctx Build the Tx context descriptor
2078 * @tx_ring: ring to create the descriptor on
2079 * @cd_type_cmd_tso_mss: Quad Word 1
2080 * @cd_tunneling: Quad Word 0 - bits 0-31
2081 * @cd_l2tag2: Quad Word 0 - bits 32-63
2082 **/
2083 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2084 const u64 cd_type_cmd_tso_mss,
2085 const u32 cd_tunneling, const u32 cd_l2tag2)
2086 {
2087 struct i40e_tx_context_desc *context_desc;
2088 int i = tx_ring->next_to_use;
2089
2090 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2091 !cd_tunneling && !cd_l2tag2)
2092 return;
2093
2094 /* grab the next descriptor */
2095 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2096
2097 i++;
2098 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2099
2100 /* cpu_to_le32 and assign to struct fields */
2101 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2102 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2103 context_desc->rsvd = cpu_to_le16(0);
2104 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2105 }
2106
2107 /**
2108 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2109 * @tx_ring: the ring to be checked
2110 * @size: the size buffer we want to assure is available
2111 *
2112 * Returns -EBUSY if a stop is needed, else 0
2113 **/
2114 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2115 {
2116 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2117 /* Memory barrier before checking head and tail */
2118 smp_mb();
2119
2120 /* Check again in a case another CPU has just made room available. */
2121 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2122 return -EBUSY;
2123
2124 /* A reprieve! - use start_queue because it doesn't call schedule */
2125 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2126 ++tx_ring->tx_stats.restart_queue;
2127 return 0;
2128 }
2129
2130 /**
2131 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2132 * @tx_ring: the ring to be checked
2133 * @size: the size buffer we want to assure is available
2134 *
2135 * Returns 0 if stop is not needed
2136 **/
2137 #ifdef I40E_FCOE
2138 int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2139 #else
2140 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2141 #endif
2142 {
2143 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2144 return 0;
2145 return __i40e_maybe_stop_tx(tx_ring, size);
2146 }
2147
2148 /**
2149 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2150 * @skb: send buffer
2151 * @tx_flags: collected send information
2152 * @hdr_len: size of the packet header
2153 *
2154 * Note: Our HW can't scatter-gather more than 8 fragments to build
2155 * a packet on the wire and so we need to figure out the cases where we
2156 * need to linearize the skb.
2157 **/
2158 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags,
2159 const u8 hdr_len)
2160 {
2161 struct skb_frag_struct *frag;
2162 bool linearize = false;
2163 unsigned int size = 0;
2164 u16 num_frags;
2165 u16 gso_segs;
2166
2167 num_frags = skb_shinfo(skb)->nr_frags;
2168 gso_segs = skb_shinfo(skb)->gso_segs;
2169
2170 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2171 u16 j = 1;
2172
2173 if (num_frags < (I40E_MAX_BUFFER_TXD))
2174 goto linearize_chk_done;
2175 /* try the simple math, if we have too many frags per segment */
2176 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2177 I40E_MAX_BUFFER_TXD) {
2178 linearize = true;
2179 goto linearize_chk_done;
2180 }
2181 frag = &skb_shinfo(skb)->frags[0];
2182 size = hdr_len;
2183 /* we might still have more fragments per segment */
2184 do {
2185 size += skb_frag_size(frag);
2186 frag++; j++;
2187 if (j == I40E_MAX_BUFFER_TXD) {
2188 if (size < skb_shinfo(skb)->gso_size) {
2189 linearize = true;
2190 break;
2191 }
2192 j = 1;
2193 size -= skb_shinfo(skb)->gso_size;
2194 if (size)
2195 j++;
2196 size += hdr_len;
2197 }
2198 num_frags--;
2199 } while (num_frags);
2200 } else {
2201 if (num_frags >= I40E_MAX_BUFFER_TXD)
2202 linearize = true;
2203 }
2204
2205 linearize_chk_done:
2206 return linearize;
2207 }
2208
2209 /**
2210 * i40e_tx_map - Build the Tx descriptor
2211 * @tx_ring: ring to send buffer on
2212 * @skb: send buffer
2213 * @first: first buffer info buffer to use
2214 * @tx_flags: collected send information
2215 * @hdr_len: size of the packet header
2216 * @td_cmd: the command field in the descriptor
2217 * @td_offset: offset for checksum or crc
2218 **/
2219 #ifdef I40E_FCOE
2220 void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2221 struct i40e_tx_buffer *first, u32 tx_flags,
2222 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2223 #else
2224 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2225 struct i40e_tx_buffer *first, u32 tx_flags,
2226 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2227 #endif
2228 {
2229 unsigned int data_len = skb->data_len;
2230 unsigned int size = skb_headlen(skb);
2231 struct skb_frag_struct *frag;
2232 struct i40e_tx_buffer *tx_bi;
2233 struct i40e_tx_desc *tx_desc;
2234 u16 i = tx_ring->next_to_use;
2235 u32 td_tag = 0;
2236 dma_addr_t dma;
2237 u16 gso_segs;
2238
2239 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2240 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2241 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2242 I40E_TX_FLAGS_VLAN_SHIFT;
2243 }
2244
2245 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2246 gso_segs = skb_shinfo(skb)->gso_segs;
2247 else
2248 gso_segs = 1;
2249
2250 /* multiply data chunks by size of headers */
2251 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2252 first->gso_segs = gso_segs;
2253 first->skb = skb;
2254 first->tx_flags = tx_flags;
2255
2256 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2257
2258 tx_desc = I40E_TX_DESC(tx_ring, i);
2259 tx_bi = first;
2260
2261 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2262 if (dma_mapping_error(tx_ring->dev, dma))
2263 goto dma_error;
2264
2265 /* record length, and DMA address */
2266 dma_unmap_len_set(tx_bi, len, size);
2267 dma_unmap_addr_set(tx_bi, dma, dma);
2268
2269 tx_desc->buffer_addr = cpu_to_le64(dma);
2270
2271 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2272 tx_desc->cmd_type_offset_bsz =
2273 build_ctob(td_cmd, td_offset,
2274 I40E_MAX_DATA_PER_TXD, td_tag);
2275
2276 tx_desc++;
2277 i++;
2278 if (i == tx_ring->count) {
2279 tx_desc = I40E_TX_DESC(tx_ring, 0);
2280 i = 0;
2281 }
2282
2283 dma += I40E_MAX_DATA_PER_TXD;
2284 size -= I40E_MAX_DATA_PER_TXD;
2285
2286 tx_desc->buffer_addr = cpu_to_le64(dma);
2287 }
2288
2289 if (likely(!data_len))
2290 break;
2291
2292 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2293 size, td_tag);
2294
2295 tx_desc++;
2296 i++;
2297 if (i == tx_ring->count) {
2298 tx_desc = I40E_TX_DESC(tx_ring, 0);
2299 i = 0;
2300 }
2301
2302 size = skb_frag_size(frag);
2303 data_len -= size;
2304
2305 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2306 DMA_TO_DEVICE);
2307
2308 tx_bi = &tx_ring->tx_bi[i];
2309 }
2310
2311 /* Place RS bit on last descriptor of any packet that spans across the
2312 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
2313 */
2314 if (((i & WB_STRIDE) != WB_STRIDE) &&
2315 (first <= &tx_ring->tx_bi[i]) &&
2316 (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
2317 tx_desc->cmd_type_offset_bsz =
2318 build_ctob(td_cmd, td_offset, size, td_tag) |
2319 cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
2320 I40E_TXD_QW1_CMD_SHIFT);
2321 } else {
2322 tx_desc->cmd_type_offset_bsz =
2323 build_ctob(td_cmd, td_offset, size, td_tag) |
2324 cpu_to_le64((u64)I40E_TXD_CMD <<
2325 I40E_TXD_QW1_CMD_SHIFT);
2326 }
2327
2328 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2329 tx_ring->queue_index),
2330 first->bytecount);
2331
2332 /* set the timestamp */
2333 first->time_stamp = jiffies;
2334
2335 /* Force memory writes to complete before letting h/w
2336 * know there are new descriptors to fetch. (Only
2337 * applicable for weak-ordered memory model archs,
2338 * such as IA-64).
2339 */
2340 wmb();
2341
2342 /* set next_to_watch value indicating a packet is present */
2343 first->next_to_watch = tx_desc;
2344
2345 i++;
2346 if (i == tx_ring->count)
2347 i = 0;
2348
2349 tx_ring->next_to_use = i;
2350
2351 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2352 /* notify HW of packet */
2353 if (!skb->xmit_more ||
2354 netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2355 tx_ring->queue_index)))
2356 writel(i, tx_ring->tail);
2357
2358 return;
2359
2360 dma_error:
2361 dev_info(tx_ring->dev, "TX DMA map failed\n");
2362
2363 /* clear dma mappings for failed tx_bi map */
2364 for (;;) {
2365 tx_bi = &tx_ring->tx_bi[i];
2366 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2367 if (tx_bi == first)
2368 break;
2369 if (i == 0)
2370 i = tx_ring->count;
2371 i--;
2372 }
2373
2374 tx_ring->next_to_use = i;
2375 }
2376
2377 /**
2378 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2379 * @skb: send buffer
2380 * @tx_ring: ring to send buffer on
2381 *
2382 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2383 * there is not enough descriptors available in this ring since we need at least
2384 * one descriptor.
2385 **/
2386 #ifdef I40E_FCOE
2387 int i40e_xmit_descriptor_count(struct sk_buff *skb,
2388 struct i40e_ring *tx_ring)
2389 #else
2390 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
2391 struct i40e_ring *tx_ring)
2392 #endif
2393 {
2394 unsigned int f;
2395 int count = 0;
2396
2397 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2398 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2399 * + 4 desc gap to avoid the cache line where head is,
2400 * + 1 desc for context descriptor,
2401 * otherwise try next time
2402 */
2403 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2404 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2405
2406 count += TXD_USE_COUNT(skb_headlen(skb));
2407 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2408 tx_ring->tx_stats.tx_busy++;
2409 return 0;
2410 }
2411 return count;
2412 }
2413
2414 /**
2415 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2416 * @skb: send buffer
2417 * @tx_ring: ring to send buffer on
2418 *
2419 * Returns NETDEV_TX_OK if sent, else an error code
2420 **/
2421 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2422 struct i40e_ring *tx_ring)
2423 {
2424 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2425 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2426 struct i40e_tx_buffer *first;
2427 u32 td_offset = 0;
2428 u32 tx_flags = 0;
2429 __be16 protocol;
2430 u32 td_cmd = 0;
2431 u8 hdr_len = 0;
2432 int tsyn;
2433 int tso;
2434 if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2435 return NETDEV_TX_BUSY;
2436
2437 /* prepare the xmit flags */
2438 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2439 goto out_drop;
2440
2441 /* obtain protocol of skb */
2442 protocol = vlan_get_protocol(skb);
2443
2444 /* record the location of the first descriptor for this packet */
2445 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2446
2447 /* setup IPv4/IPv6 offloads */
2448 if (protocol == htons(ETH_P_IP))
2449 tx_flags |= I40E_TX_FLAGS_IPV4;
2450 else if (protocol == htons(ETH_P_IPV6))
2451 tx_flags |= I40E_TX_FLAGS_IPV6;
2452
2453 tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
2454 &cd_type_cmd_tso_mss, &cd_tunneling);
2455
2456 if (tso < 0)
2457 goto out_drop;
2458 else if (tso)
2459 tx_flags |= I40E_TX_FLAGS_TSO;
2460
2461 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2462
2463 if (tsyn)
2464 tx_flags |= I40E_TX_FLAGS_TSYN;
2465
2466 if (i40e_chk_linearize(skb, tx_flags, hdr_len))
2467 if (skb_linearize(skb))
2468 goto out_drop;
2469
2470 skb_tx_timestamp(skb);
2471
2472 /* always enable CRC insertion offload */
2473 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2474
2475 /* Always offload the checksum, since it's in the data descriptor */
2476 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2477 tx_flags |= I40E_TX_FLAGS_CSUM;
2478
2479 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
2480 tx_ring, &cd_tunneling);
2481 }
2482
2483 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2484 cd_tunneling, cd_l2tag2);
2485
2486 /* Add Flow Director ATR if it's enabled.
2487 *
2488 * NOTE: this must always be directly before the data descriptor.
2489 */
2490 i40e_atr(tx_ring, skb, tx_flags, protocol);
2491
2492 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2493 td_cmd, td_offset);
2494
2495 return NETDEV_TX_OK;
2496
2497 out_drop:
2498 dev_kfree_skb_any(skb);
2499 return NETDEV_TX_OK;
2500 }
2501
2502 /**
2503 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2504 * @skb: send buffer
2505 * @netdev: network interface device structure
2506 *
2507 * Returns NETDEV_TX_OK if sent, else an error code
2508 **/
2509 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2510 {
2511 struct i40e_netdev_priv *np = netdev_priv(netdev);
2512 struct i40e_vsi *vsi = np->vsi;
2513 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2514
2515 /* hardware can't handle really short frames, hardware padding works
2516 * beyond this point
2517 */
2518 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2519 return NETDEV_TX_OK;
2520
2521 return i40e_xmit_frame_ring(skb, tx_ring);
2522 }
This page took 0.095046 seconds and 5 git commands to generate.