i40e/i40evf: Move stack var deeper
[deliverable/linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4 * Copyright(c) 2013 - 2016 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29
30 #include "i40evf.h"
31 #include "i40e_prototype.h"
32
33 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 u32 td_tag)
35 {
36 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
38 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41 }
42
43 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45 /**
46 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47 * @ring: the ring that owns the buffer
48 * @tx_buffer: the buffer to free
49 **/
50 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51 struct i40e_tx_buffer *tx_buffer)
52 {
53 if (tx_buffer->skb) {
54 dev_kfree_skb_any(tx_buffer->skb);
55 if (dma_unmap_len(tx_buffer, len))
56 dma_unmap_single(ring->dev,
57 dma_unmap_addr(tx_buffer, dma),
58 dma_unmap_len(tx_buffer, len),
59 DMA_TO_DEVICE);
60 } else if (dma_unmap_len(tx_buffer, len)) {
61 dma_unmap_page(ring->dev,
62 dma_unmap_addr(tx_buffer, dma),
63 dma_unmap_len(tx_buffer, len),
64 DMA_TO_DEVICE);
65 }
66
67 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
68 kfree(tx_buffer->raw_buf);
69
70 tx_buffer->next_to_watch = NULL;
71 tx_buffer->skb = NULL;
72 dma_unmap_len_set(tx_buffer, len, 0);
73 /* tx_buffer must be completely set up in the transmit path */
74 }
75
76 /**
77 * i40evf_clean_tx_ring - Free any empty Tx buffers
78 * @tx_ring: ring to be cleaned
79 **/
80 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81 {
82 unsigned long bi_size;
83 u16 i;
84
85 /* ring already cleared, nothing to do */
86 if (!tx_ring->tx_bi)
87 return;
88
89 /* Free all the Tx ring sk_buffs */
90 for (i = 0; i < tx_ring->count; i++)
91 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94 memset(tx_ring->tx_bi, 0, bi_size);
95
96 /* Zero out the descriptor ring */
97 memset(tx_ring->desc, 0, tx_ring->size);
98
99 tx_ring->next_to_use = 0;
100 tx_ring->next_to_clean = 0;
101
102 if (!tx_ring->netdev)
103 return;
104
105 /* cleanup Tx queue statistics */
106 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107 tx_ring->queue_index));
108 }
109
110 /**
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
113 *
114 * Free all transmit software resources
115 **/
116 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117 {
118 i40evf_clean_tx_ring(tx_ring);
119 kfree(tx_ring->tx_bi);
120 tx_ring->tx_bi = NULL;
121
122 if (tx_ring->desc) {
123 dma_free_coherent(tx_ring->dev, tx_ring->size,
124 tx_ring->desc, tx_ring->dma);
125 tx_ring->desc = NULL;
126 }
127 }
128
129 /**
130 * i40evf_get_tx_pending - how many Tx descriptors not processed
131 * @tx_ring: the ring of descriptors
132 * @in_sw: is tx_pending being checked in SW or HW
133 *
134 * Since there is no access to the ring head register
135 * in XL710, we need to use our local copies
136 **/
137 u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
138 {
139 u32 head, tail;
140
141 if (!in_sw)
142 head = i40e_get_head(ring);
143 else
144 head = ring->next_to_clean;
145 tail = readl(ring->tail);
146
147 if (head != tail)
148 return (head < tail) ?
149 tail - head : (tail + ring->count - head);
150
151 return 0;
152 }
153
154 #define WB_STRIDE 0x3
155
156 /**
157 * i40e_clean_tx_irq - Reclaim resources after transmit completes
158 * @vsi: the VSI we care about
159 * @tx_ring: Tx ring to clean
160 * @napi_budget: Used to determine if we are in netpoll
161 *
162 * Returns true if there's any budget left (e.g. the clean is finished)
163 **/
164 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
165 struct i40e_ring *tx_ring, int napi_budget)
166 {
167 u16 i = tx_ring->next_to_clean;
168 struct i40e_tx_buffer *tx_buf;
169 struct i40e_tx_desc *tx_head;
170 struct i40e_tx_desc *tx_desc;
171 unsigned int total_bytes = 0, total_packets = 0;
172 unsigned int budget = vsi->work_limit;
173
174 tx_buf = &tx_ring->tx_bi[i];
175 tx_desc = I40E_TX_DESC(tx_ring, i);
176 i -= tx_ring->count;
177
178 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
179
180 do {
181 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
182
183 /* if next_to_watch is not set then there is no work pending */
184 if (!eop_desc)
185 break;
186
187 /* prevent any other reads prior to eop_desc */
188 read_barrier_depends();
189
190 /* we have caught up to head, no work left to do */
191 if (tx_head == tx_desc)
192 break;
193
194 /* clear next_to_watch to prevent false hangs */
195 tx_buf->next_to_watch = NULL;
196
197 /* update the statistics for this packet */
198 total_bytes += tx_buf->bytecount;
199 total_packets += tx_buf->gso_segs;
200
201 /* free the skb */
202 napi_consume_skb(tx_buf->skb, napi_budget);
203
204 /* unmap skb header data */
205 dma_unmap_single(tx_ring->dev,
206 dma_unmap_addr(tx_buf, dma),
207 dma_unmap_len(tx_buf, len),
208 DMA_TO_DEVICE);
209
210 /* clear tx_buffer data */
211 tx_buf->skb = NULL;
212 dma_unmap_len_set(tx_buf, len, 0);
213
214 /* unmap remaining buffers */
215 while (tx_desc != eop_desc) {
216
217 tx_buf++;
218 tx_desc++;
219 i++;
220 if (unlikely(!i)) {
221 i -= tx_ring->count;
222 tx_buf = tx_ring->tx_bi;
223 tx_desc = I40E_TX_DESC(tx_ring, 0);
224 }
225
226 /* unmap any remaining paged data */
227 if (dma_unmap_len(tx_buf, len)) {
228 dma_unmap_page(tx_ring->dev,
229 dma_unmap_addr(tx_buf, dma),
230 dma_unmap_len(tx_buf, len),
231 DMA_TO_DEVICE);
232 dma_unmap_len_set(tx_buf, len, 0);
233 }
234 }
235
236 /* move us one more past the eop_desc for start of next pkt */
237 tx_buf++;
238 tx_desc++;
239 i++;
240 if (unlikely(!i)) {
241 i -= tx_ring->count;
242 tx_buf = tx_ring->tx_bi;
243 tx_desc = I40E_TX_DESC(tx_ring, 0);
244 }
245
246 prefetch(tx_desc);
247
248 /* update budget accounting */
249 budget--;
250 } while (likely(budget));
251
252 i += tx_ring->count;
253 tx_ring->next_to_clean = i;
254 u64_stats_update_begin(&tx_ring->syncp);
255 tx_ring->stats.bytes += total_bytes;
256 tx_ring->stats.packets += total_packets;
257 u64_stats_update_end(&tx_ring->syncp);
258 tx_ring->q_vector->tx.total_bytes += total_bytes;
259 tx_ring->q_vector->tx.total_packets += total_packets;
260
261 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
262 unsigned int j = 0;
263 /* check to see if there are < 4 descriptors
264 * waiting to be written back, then kick the hardware to force
265 * them to be written back in case we stay in NAPI.
266 * In this mode on X722 we do not enable Interrupt.
267 */
268 j = i40evf_get_tx_pending(tx_ring, false);
269
270 if (budget &&
271 ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
272 !test_bit(__I40E_DOWN, &vsi->state) &&
273 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
274 tx_ring->arm_wb = true;
275 }
276
277 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
278 tx_ring->queue_index),
279 total_packets, total_bytes);
280
281 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
282 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
283 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
284 /* Make sure that anybody stopping the queue after this
285 * sees the new next_to_clean.
286 */
287 smp_mb();
288 if (__netif_subqueue_stopped(tx_ring->netdev,
289 tx_ring->queue_index) &&
290 !test_bit(__I40E_DOWN, &vsi->state)) {
291 netif_wake_subqueue(tx_ring->netdev,
292 tx_ring->queue_index);
293 ++tx_ring->tx_stats.restart_queue;
294 }
295 }
296
297 return !!budget;
298 }
299
300 /**
301 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
302 * @vsi: the VSI we care about
303 * @q_vector: the vector on which to enable writeback
304 *
305 **/
306 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
307 struct i40e_q_vector *q_vector)
308 {
309 u16 flags = q_vector->tx.ring[0].flags;
310 u32 val;
311
312 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
313 return;
314
315 if (q_vector->arm_wb_state)
316 return;
317
318 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
319 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
320
321 wr32(&vsi->back->hw,
322 I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
323 vsi->base_vector - 1), val);
324 q_vector->arm_wb_state = true;
325 }
326
327 /**
328 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
329 * @vsi: the VSI we care about
330 * @q_vector: the vector on which to force writeback
331 *
332 **/
333 void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
334 {
335 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
336 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
337 I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
338 I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
339 /* allow 00 to be written to the index */;
340
341 wr32(&vsi->back->hw,
342 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
343 val);
344 }
345
346 /**
347 * i40e_set_new_dynamic_itr - Find new ITR level
348 * @rc: structure containing ring performance data
349 *
350 * Returns true if ITR changed, false if not
351 *
352 * Stores a new ITR value based on packets and byte counts during
353 * the last interrupt. The advantage of per interrupt computation
354 * is faster updates and more accurate ITR for the current traffic
355 * pattern. Constants in this function were computed based on
356 * theoretical maximum wire speed and thresholds were set based on
357 * testing data as well as attempting to minimize response time
358 * while increasing bulk throughput.
359 **/
360 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
361 {
362 enum i40e_latency_range new_latency_range = rc->latency_range;
363 struct i40e_q_vector *qv = rc->ring->q_vector;
364 u32 new_itr = rc->itr;
365 int bytes_per_int;
366 int usecs;
367
368 if (rc->total_packets == 0 || !rc->itr)
369 return false;
370
371 /* simple throttlerate management
372 * 0-10MB/s lowest (50000 ints/s)
373 * 10-20MB/s low (20000 ints/s)
374 * 20-1249MB/s bulk (18000 ints/s)
375 * > 40000 Rx packets per second (8000 ints/s)
376 *
377 * The math works out because the divisor is in 10^(-6) which
378 * turns the bytes/us input value into MB/s values, but
379 * make sure to use usecs, as the register values written
380 * are in 2 usec increments in the ITR registers, and make sure
381 * to use the smoothed values that the countdown timer gives us.
382 */
383 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
384 bytes_per_int = rc->total_bytes / usecs;
385
386 switch (new_latency_range) {
387 case I40E_LOWEST_LATENCY:
388 if (bytes_per_int > 10)
389 new_latency_range = I40E_LOW_LATENCY;
390 break;
391 case I40E_LOW_LATENCY:
392 if (bytes_per_int > 20)
393 new_latency_range = I40E_BULK_LATENCY;
394 else if (bytes_per_int <= 10)
395 new_latency_range = I40E_LOWEST_LATENCY;
396 break;
397 case I40E_BULK_LATENCY:
398 case I40E_ULTRA_LATENCY:
399 default:
400 if (bytes_per_int <= 20)
401 new_latency_range = I40E_LOW_LATENCY;
402 break;
403 }
404
405 /* this is to adjust RX more aggressively when streaming small
406 * packets. The value of 40000 was picked as it is just beyond
407 * what the hardware can receive per second if in low latency
408 * mode.
409 */
410 #define RX_ULTRA_PACKET_RATE 40000
411
412 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
413 (&qv->rx == rc))
414 new_latency_range = I40E_ULTRA_LATENCY;
415
416 rc->latency_range = new_latency_range;
417
418 switch (new_latency_range) {
419 case I40E_LOWEST_LATENCY:
420 new_itr = I40E_ITR_50K;
421 break;
422 case I40E_LOW_LATENCY:
423 new_itr = I40E_ITR_20K;
424 break;
425 case I40E_BULK_LATENCY:
426 new_itr = I40E_ITR_18K;
427 break;
428 case I40E_ULTRA_LATENCY:
429 new_itr = I40E_ITR_8K;
430 break;
431 default:
432 break;
433 }
434
435 rc->total_bytes = 0;
436 rc->total_packets = 0;
437
438 if (new_itr != rc->itr) {
439 rc->itr = new_itr;
440 return true;
441 }
442
443 return false;
444 }
445
446 /**
447 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
448 * @tx_ring: the tx ring to set up
449 *
450 * Return 0 on success, negative on error
451 **/
452 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
453 {
454 struct device *dev = tx_ring->dev;
455 int bi_size;
456
457 if (!dev)
458 return -ENOMEM;
459
460 /* warn if we are about to overwrite the pointer */
461 WARN_ON(tx_ring->tx_bi);
462 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
463 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
464 if (!tx_ring->tx_bi)
465 goto err;
466
467 /* round up to nearest 4K */
468 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
469 /* add u32 for head writeback, align after this takes care of
470 * guaranteeing this is at least one cache line in size
471 */
472 tx_ring->size += sizeof(u32);
473 tx_ring->size = ALIGN(tx_ring->size, 4096);
474 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
475 &tx_ring->dma, GFP_KERNEL);
476 if (!tx_ring->desc) {
477 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
478 tx_ring->size);
479 goto err;
480 }
481
482 tx_ring->next_to_use = 0;
483 tx_ring->next_to_clean = 0;
484 return 0;
485
486 err:
487 kfree(tx_ring->tx_bi);
488 tx_ring->tx_bi = NULL;
489 return -ENOMEM;
490 }
491
492 /**
493 * i40evf_clean_rx_ring - Free Rx buffers
494 * @rx_ring: ring to be cleaned
495 **/
496 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
497 {
498 struct device *dev = rx_ring->dev;
499 struct i40e_rx_buffer *rx_bi;
500 unsigned long bi_size;
501 u16 i;
502
503 /* ring already cleared, nothing to do */
504 if (!rx_ring->rx_bi)
505 return;
506
507 if (ring_is_ps_enabled(rx_ring)) {
508 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
509
510 rx_bi = &rx_ring->rx_bi[0];
511 if (rx_bi->hdr_buf) {
512 dma_free_coherent(dev,
513 bufsz,
514 rx_bi->hdr_buf,
515 rx_bi->dma);
516 for (i = 0; i < rx_ring->count; i++) {
517 rx_bi = &rx_ring->rx_bi[i];
518 rx_bi->dma = 0;
519 rx_bi->hdr_buf = NULL;
520 }
521 }
522 }
523 /* Free all the Rx ring sk_buffs */
524 for (i = 0; i < rx_ring->count; i++) {
525 rx_bi = &rx_ring->rx_bi[i];
526 if (rx_bi->dma) {
527 dma_unmap_single(dev,
528 rx_bi->dma,
529 rx_ring->rx_buf_len,
530 DMA_FROM_DEVICE);
531 rx_bi->dma = 0;
532 }
533 if (rx_bi->skb) {
534 dev_kfree_skb(rx_bi->skb);
535 rx_bi->skb = NULL;
536 }
537 if (rx_bi->page) {
538 if (rx_bi->page_dma) {
539 dma_unmap_page(dev,
540 rx_bi->page_dma,
541 PAGE_SIZE,
542 DMA_FROM_DEVICE);
543 rx_bi->page_dma = 0;
544 }
545 __free_page(rx_bi->page);
546 rx_bi->page = NULL;
547 rx_bi->page_offset = 0;
548 }
549 }
550
551 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
552 memset(rx_ring->rx_bi, 0, bi_size);
553
554 /* Zero out the descriptor ring */
555 memset(rx_ring->desc, 0, rx_ring->size);
556
557 rx_ring->next_to_clean = 0;
558 rx_ring->next_to_use = 0;
559 }
560
561 /**
562 * i40evf_free_rx_resources - Free Rx resources
563 * @rx_ring: ring to clean the resources from
564 *
565 * Free all receive software resources
566 **/
567 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
568 {
569 i40evf_clean_rx_ring(rx_ring);
570 kfree(rx_ring->rx_bi);
571 rx_ring->rx_bi = NULL;
572
573 if (rx_ring->desc) {
574 dma_free_coherent(rx_ring->dev, rx_ring->size,
575 rx_ring->desc, rx_ring->dma);
576 rx_ring->desc = NULL;
577 }
578 }
579
580 /**
581 * i40evf_alloc_rx_headers - allocate rx header buffers
582 * @rx_ring: ring to alloc buffers
583 *
584 * Allocate rx header buffers for the entire ring. As these are static,
585 * this is only called when setting up a new ring.
586 **/
587 void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
588 {
589 struct device *dev = rx_ring->dev;
590 struct i40e_rx_buffer *rx_bi;
591 dma_addr_t dma;
592 void *buffer;
593 int buf_size;
594 int i;
595
596 if (rx_ring->rx_bi[0].hdr_buf)
597 return;
598 /* Make sure the buffers don't cross cache line boundaries. */
599 buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
600 buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
601 &dma, GFP_KERNEL);
602 if (!buffer)
603 return;
604 for (i = 0; i < rx_ring->count; i++) {
605 rx_bi = &rx_ring->rx_bi[i];
606 rx_bi->dma = dma + (i * buf_size);
607 rx_bi->hdr_buf = buffer + (i * buf_size);
608 }
609 }
610
611 /**
612 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
613 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
614 *
615 * Returns 0 on success, negative on failure
616 **/
617 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
618 {
619 struct device *dev = rx_ring->dev;
620 int bi_size;
621
622 /* warn if we are about to overwrite the pointer */
623 WARN_ON(rx_ring->rx_bi);
624 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
625 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
626 if (!rx_ring->rx_bi)
627 goto err;
628
629 u64_stats_init(&rx_ring->syncp);
630
631 /* Round up to nearest 4K */
632 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
633 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
634 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
635 rx_ring->size = ALIGN(rx_ring->size, 4096);
636 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
637 &rx_ring->dma, GFP_KERNEL);
638
639 if (!rx_ring->desc) {
640 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
641 rx_ring->size);
642 goto err;
643 }
644
645 rx_ring->next_to_clean = 0;
646 rx_ring->next_to_use = 0;
647
648 return 0;
649 err:
650 kfree(rx_ring->rx_bi);
651 rx_ring->rx_bi = NULL;
652 return -ENOMEM;
653 }
654
655 /**
656 * i40e_release_rx_desc - Store the new tail and head values
657 * @rx_ring: ring to bump
658 * @val: new head index
659 **/
660 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
661 {
662 rx_ring->next_to_use = val;
663 /* Force memory writes to complete before letting h/w
664 * know there are new descriptors to fetch. (Only
665 * applicable for weak-ordered memory model archs,
666 * such as IA-64).
667 */
668 wmb();
669 writel(val, rx_ring->tail);
670 }
671
672 /**
673 * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
674 * @rx_ring: ring to place buffers on
675 * @cleaned_count: number of buffers to replace
676 *
677 * Returns true if any errors on allocation
678 **/
679 bool i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
680 {
681 u16 i = rx_ring->next_to_use;
682 union i40e_rx_desc *rx_desc;
683 struct i40e_rx_buffer *bi;
684 const int current_node = numa_node_id();
685
686 /* do nothing if no valid netdev defined */
687 if (!rx_ring->netdev || !cleaned_count)
688 return false;
689
690 while (cleaned_count--) {
691 rx_desc = I40E_RX_DESC(rx_ring, i);
692 bi = &rx_ring->rx_bi[i];
693
694 if (bi->skb) /* desc is in use */
695 goto no_buffers;
696
697 /* If we've been moved to a different NUMA node, release the
698 * page so we can get a new one on the current node.
699 */
700 if (bi->page && page_to_nid(bi->page) != current_node) {
701 dma_unmap_page(rx_ring->dev,
702 bi->page_dma,
703 PAGE_SIZE,
704 DMA_FROM_DEVICE);
705 __free_page(bi->page);
706 bi->page = NULL;
707 bi->page_dma = 0;
708 rx_ring->rx_stats.realloc_count++;
709 } else if (bi->page) {
710 rx_ring->rx_stats.page_reuse_count++;
711 }
712
713 if (!bi->page) {
714 bi->page = alloc_page(GFP_ATOMIC);
715 if (!bi->page) {
716 rx_ring->rx_stats.alloc_page_failed++;
717 goto no_buffers;
718 }
719 bi->page_dma = dma_map_page(rx_ring->dev,
720 bi->page,
721 0,
722 PAGE_SIZE,
723 DMA_FROM_DEVICE);
724 if (dma_mapping_error(rx_ring->dev, bi->page_dma)) {
725 rx_ring->rx_stats.alloc_page_failed++;
726 __free_page(bi->page);
727 bi->page = NULL;
728 bi->page_dma = 0;
729 bi->page_offset = 0;
730 goto no_buffers;
731 }
732 bi->page_offset = 0;
733 }
734
735 /* Refresh the desc even if buffer_addrs didn't change
736 * because each write-back erases this info.
737 */
738 rx_desc->read.pkt_addr =
739 cpu_to_le64(bi->page_dma + bi->page_offset);
740 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
741 i++;
742 if (i == rx_ring->count)
743 i = 0;
744 }
745
746 if (rx_ring->next_to_use != i)
747 i40e_release_rx_desc(rx_ring, i);
748
749 return false;
750
751 no_buffers:
752 if (rx_ring->next_to_use != i)
753 i40e_release_rx_desc(rx_ring, i);
754
755 /* make sure to come back via polling to try again after
756 * allocation failure
757 */
758 return true;
759 }
760
761 /**
762 * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
763 * @rx_ring: ring to place buffers on
764 * @cleaned_count: number of buffers to replace
765 *
766 * Returns true if any errors on allocation
767 **/
768 bool i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
769 {
770 u16 i = rx_ring->next_to_use;
771 union i40e_rx_desc *rx_desc;
772 struct i40e_rx_buffer *bi;
773 struct sk_buff *skb;
774
775 /* do nothing if no valid netdev defined */
776 if (!rx_ring->netdev || !cleaned_count)
777 return false;
778
779 while (cleaned_count--) {
780 rx_desc = I40E_RX_DESC(rx_ring, i);
781 bi = &rx_ring->rx_bi[i];
782 skb = bi->skb;
783
784 if (!skb) {
785 skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
786 rx_ring->rx_buf_len,
787 GFP_ATOMIC |
788 __GFP_NOWARN);
789 if (!skb) {
790 rx_ring->rx_stats.alloc_buff_failed++;
791 goto no_buffers;
792 }
793 /* initialize queue mapping */
794 skb_record_rx_queue(skb, rx_ring->queue_index);
795 bi->skb = skb;
796 }
797
798 if (!bi->dma) {
799 bi->dma = dma_map_single(rx_ring->dev,
800 skb->data,
801 rx_ring->rx_buf_len,
802 DMA_FROM_DEVICE);
803 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
804 rx_ring->rx_stats.alloc_buff_failed++;
805 bi->dma = 0;
806 dev_kfree_skb(bi->skb);
807 bi->skb = NULL;
808 goto no_buffers;
809 }
810 }
811
812 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
813 rx_desc->read.hdr_addr = 0;
814 i++;
815 if (i == rx_ring->count)
816 i = 0;
817 }
818
819 if (rx_ring->next_to_use != i)
820 i40e_release_rx_desc(rx_ring, i);
821
822 return false;
823
824 no_buffers:
825 if (rx_ring->next_to_use != i)
826 i40e_release_rx_desc(rx_ring, i);
827
828 /* make sure to come back via polling to try again after
829 * allocation failure
830 */
831 return true;
832 }
833
834 /**
835 * i40e_receive_skb - Send a completed packet up the stack
836 * @rx_ring: rx ring in play
837 * @skb: packet to send up
838 * @vlan_tag: vlan tag for packet
839 **/
840 static void i40e_receive_skb(struct i40e_ring *rx_ring,
841 struct sk_buff *skb, u16 vlan_tag)
842 {
843 struct i40e_q_vector *q_vector = rx_ring->q_vector;
844
845 if (vlan_tag & VLAN_VID_MASK)
846 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
847
848 napi_gro_receive(&q_vector->napi, skb);
849 }
850
851 /**
852 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
853 * @vsi: the VSI we care about
854 * @skb: skb currently being received and modified
855 * @rx_status: status value of last descriptor in packet
856 * @rx_error: error value of last descriptor in packet
857 * @rx_ptype: ptype value of last descriptor in packet
858 **/
859 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
860 struct sk_buff *skb,
861 u32 rx_status,
862 u32 rx_error,
863 u16 rx_ptype)
864 {
865 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
866 bool ipv4, ipv6, ipv4_tunnel, ipv6_tunnel;
867
868 skb->ip_summed = CHECKSUM_NONE;
869
870 /* Rx csum enabled and ip headers found? */
871 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
872 return;
873
874 /* did the hardware decode the packet and checksum? */
875 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
876 return;
877
878 /* both known and outer_ip must be set for the below code to work */
879 if (!(decoded.known && decoded.outer_ip))
880 return;
881
882 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
883 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
884 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
885 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
886
887 if (ipv4 &&
888 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
889 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
890 goto checksum_fail;
891
892 /* likely incorrect csum if alternate IP extension headers found */
893 if (ipv6 &&
894 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
895 /* don't increment checksum err here, non-fatal err */
896 return;
897
898 /* there was some L4 error, count error and punt packet to the stack */
899 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
900 goto checksum_fail;
901
902 /* handle packets that were not able to be checksummed due
903 * to arrival speed, in this case the stack can compute
904 * the csum.
905 */
906 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
907 return;
908
909 /* The hardware supported by this driver does not validate outer
910 * checksums for tunneled VXLAN or GENEVE frames. I don't agree
911 * with it but the specification states that you "MAY validate", it
912 * doesn't make it a hard requirement so if we have validated the
913 * inner checksum report CHECKSUM_UNNECESSARY.
914 */
915
916 ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
917 (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
918 ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
919 (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
920
921 skb->ip_summed = CHECKSUM_UNNECESSARY;
922 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
923
924 return;
925
926 checksum_fail:
927 vsi->back->hw_csum_rx_error++;
928 }
929
930 /**
931 * i40e_ptype_to_htype - get a hash type
932 * @ptype: the ptype value from the descriptor
933 *
934 * Returns a hash type to be used by skb_set_hash
935 **/
936 static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
937 {
938 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
939
940 if (!decoded.known)
941 return PKT_HASH_TYPE_NONE;
942
943 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
944 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
945 return PKT_HASH_TYPE_L4;
946 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
947 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
948 return PKT_HASH_TYPE_L3;
949 else
950 return PKT_HASH_TYPE_L2;
951 }
952
953 /**
954 * i40e_rx_hash - set the hash value in the skb
955 * @ring: descriptor ring
956 * @rx_desc: specific descriptor
957 **/
958 static inline void i40e_rx_hash(struct i40e_ring *ring,
959 union i40e_rx_desc *rx_desc,
960 struct sk_buff *skb,
961 u8 rx_ptype)
962 {
963 u32 hash;
964 const __le64 rss_mask =
965 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
966 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
967
968 if (ring->netdev->features & NETIF_F_RXHASH)
969 return;
970
971 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
972 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
973 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
974 }
975 }
976
977 /**
978 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
979 * @rx_ring: rx ring to clean
980 * @budget: how many cleans we're allowed
981 *
982 * Returns true if there's any budget left (e.g. the clean is finished)
983 **/
984 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
985 {
986 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
987 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
988 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
989 struct i40e_vsi *vsi = rx_ring->vsi;
990 u16 i = rx_ring->next_to_clean;
991 union i40e_rx_desc *rx_desc;
992 u32 rx_error, rx_status;
993 bool failure = false;
994 u8 rx_ptype;
995 u64 qword;
996 u32 copysize;
997
998 do {
999 struct i40e_rx_buffer *rx_bi;
1000 struct sk_buff *skb;
1001 u16 vlan_tag;
1002 /* return some buffers to hardware, one at a time is too slow */
1003 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1004 failure = failure ||
1005 i40evf_alloc_rx_buffers_ps(rx_ring,
1006 cleaned_count);
1007 cleaned_count = 0;
1008 }
1009
1010 i = rx_ring->next_to_clean;
1011 rx_desc = I40E_RX_DESC(rx_ring, i);
1012 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1013 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1014 I40E_RXD_QW1_STATUS_SHIFT;
1015
1016 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1017 break;
1018
1019 /* This memory barrier is needed to keep us from reading
1020 * any other fields out of the rx_desc until we know the
1021 * DD bit is set.
1022 */
1023 dma_rmb();
1024 /* sync header buffer for reading */
1025 dma_sync_single_range_for_cpu(rx_ring->dev,
1026 rx_ring->rx_bi[0].dma,
1027 i * rx_ring->rx_hdr_len,
1028 rx_ring->rx_hdr_len,
1029 DMA_FROM_DEVICE);
1030 rx_bi = &rx_ring->rx_bi[i];
1031 skb = rx_bi->skb;
1032 if (likely(!skb)) {
1033 skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
1034 rx_ring->rx_hdr_len,
1035 GFP_ATOMIC |
1036 __GFP_NOWARN);
1037 if (!skb) {
1038 rx_ring->rx_stats.alloc_buff_failed++;
1039 failure = true;
1040 break;
1041 }
1042
1043 /* initialize queue mapping */
1044 skb_record_rx_queue(skb, rx_ring->queue_index);
1045 /* we are reusing so sync this buffer for CPU use */
1046 dma_sync_single_range_for_cpu(rx_ring->dev,
1047 rx_ring->rx_bi[0].dma,
1048 i * rx_ring->rx_hdr_len,
1049 rx_ring->rx_hdr_len,
1050 DMA_FROM_DEVICE);
1051 }
1052 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1053 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1054 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1055 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1056 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1057 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1058
1059 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1060 I40E_RXD_QW1_ERROR_SHIFT;
1061 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1062 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1063
1064 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1065 I40E_RXD_QW1_PTYPE_SHIFT;
1066 /* sync half-page for reading */
1067 dma_sync_single_range_for_cpu(rx_ring->dev,
1068 rx_bi->page_dma,
1069 rx_bi->page_offset,
1070 PAGE_SIZE / 2,
1071 DMA_FROM_DEVICE);
1072 prefetch(page_address(rx_bi->page) + rx_bi->page_offset);
1073 rx_bi->skb = NULL;
1074 cleaned_count++;
1075 copysize = 0;
1076 if (rx_hbo || rx_sph) {
1077 int len;
1078
1079 if (rx_hbo)
1080 len = I40E_RX_HDR_SIZE;
1081 else
1082 len = rx_header_len;
1083 memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1084 } else if (skb->len == 0) {
1085 int len;
1086 unsigned char *va = page_address(rx_bi->page) +
1087 rx_bi->page_offset;
1088
1089 len = min(rx_packet_len, rx_ring->rx_hdr_len);
1090 memcpy(__skb_put(skb, len), va, len);
1091 copysize = len;
1092 rx_packet_len -= len;
1093 }
1094 /* Get the rest of the data if this was a header split */
1095 if (rx_packet_len) {
1096 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1097 rx_bi->page,
1098 rx_bi->page_offset + copysize,
1099 rx_packet_len, I40E_RXBUFFER_2048);
1100
1101 /* If the page count is more than 2, then both halves
1102 * of the page are used and we need to free it. Do it
1103 * here instead of in the alloc code. Otherwise one
1104 * of the half-pages might be released between now and
1105 * then, and we wouldn't know which one to use.
1106 * Don't call get_page and free_page since those are
1107 * both expensive atomic operations that just change
1108 * the refcount in opposite directions. Just give the
1109 * page to the stack; he can have our refcount.
1110 */
1111 if (page_count(rx_bi->page) > 2) {
1112 dma_unmap_page(rx_ring->dev,
1113 rx_bi->page_dma,
1114 PAGE_SIZE,
1115 DMA_FROM_DEVICE);
1116 rx_bi->page = NULL;
1117 rx_bi->page_dma = 0;
1118 rx_ring->rx_stats.realloc_count++;
1119 } else {
1120 get_page(rx_bi->page);
1121 /* switch to the other half-page here; the
1122 * allocation code programs the right addr
1123 * into HW. If we haven't used this half-page,
1124 * the address won't be changed, and HW can
1125 * just use it next time through.
1126 */
1127 rx_bi->page_offset ^= PAGE_SIZE / 2;
1128 }
1129
1130 }
1131 I40E_RX_INCREMENT(rx_ring, i);
1132
1133 if (unlikely(
1134 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1135 struct i40e_rx_buffer *next_buffer;
1136
1137 next_buffer = &rx_ring->rx_bi[i];
1138 next_buffer->skb = skb;
1139 rx_ring->rx_stats.non_eop_descs++;
1140 continue;
1141 }
1142
1143 /* ERR_MASK will only have valid bits if EOP set */
1144 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1145 dev_kfree_skb_any(skb);
1146 continue;
1147 }
1148
1149 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1150
1151 /* probably a little skewed due to removing CRC */
1152 total_rx_bytes += skb->len;
1153 total_rx_packets++;
1154
1155 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1156
1157 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1158
1159 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1160 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1161 : 0;
1162 #ifdef I40E_FCOE
1163 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1164 dev_kfree_skb_any(skb);
1165 continue;
1166 }
1167 #endif
1168 i40e_receive_skb(rx_ring, skb, vlan_tag);
1169
1170 rx_desc->wb.qword1.status_error_len = 0;
1171
1172 } while (likely(total_rx_packets < budget));
1173
1174 u64_stats_update_begin(&rx_ring->syncp);
1175 rx_ring->stats.packets += total_rx_packets;
1176 rx_ring->stats.bytes += total_rx_bytes;
1177 u64_stats_update_end(&rx_ring->syncp);
1178 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1179 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1180
1181 return failure ? budget : total_rx_packets;
1182 }
1183
1184 /**
1185 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1186 * @rx_ring: rx ring to clean
1187 * @budget: how many cleans we're allowed
1188 *
1189 * Returns number of packets cleaned
1190 **/
1191 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1192 {
1193 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1194 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1195 struct i40e_vsi *vsi = rx_ring->vsi;
1196 union i40e_rx_desc *rx_desc;
1197 u32 rx_error, rx_status;
1198 u16 rx_packet_len;
1199 bool failure = false;
1200 u8 rx_ptype;
1201 u64 qword;
1202 u16 i;
1203
1204 do {
1205 struct i40e_rx_buffer *rx_bi;
1206 struct sk_buff *skb;
1207 u16 vlan_tag;
1208 /* return some buffers to hardware, one at a time is too slow */
1209 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1210 failure = failure ||
1211 i40evf_alloc_rx_buffers_1buf(rx_ring,
1212 cleaned_count);
1213 cleaned_count = 0;
1214 }
1215
1216 i = rx_ring->next_to_clean;
1217 rx_desc = I40E_RX_DESC(rx_ring, i);
1218 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1219 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1220 I40E_RXD_QW1_STATUS_SHIFT;
1221
1222 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1223 break;
1224
1225 /* This memory barrier is needed to keep us from reading
1226 * any other fields out of the rx_desc until we know the
1227 * DD bit is set.
1228 */
1229 dma_rmb();
1230
1231 rx_bi = &rx_ring->rx_bi[i];
1232 skb = rx_bi->skb;
1233 prefetch(skb->data);
1234
1235 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1236 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1237
1238 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1239 I40E_RXD_QW1_ERROR_SHIFT;
1240 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1241
1242 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1243 I40E_RXD_QW1_PTYPE_SHIFT;
1244 rx_bi->skb = NULL;
1245 cleaned_count++;
1246
1247 /* Get the header and possibly the whole packet
1248 * If this is an skb from previous receive dma will be 0
1249 */
1250 skb_put(skb, rx_packet_len);
1251 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1252 DMA_FROM_DEVICE);
1253 rx_bi->dma = 0;
1254
1255 I40E_RX_INCREMENT(rx_ring, i);
1256
1257 if (unlikely(
1258 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1259 rx_ring->rx_stats.non_eop_descs++;
1260 continue;
1261 }
1262
1263 /* ERR_MASK will only have valid bits if EOP set */
1264 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1265 dev_kfree_skb_any(skb);
1266 continue;
1267 }
1268
1269 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1270 /* probably a little skewed due to removing CRC */
1271 total_rx_bytes += skb->len;
1272 total_rx_packets++;
1273
1274 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1275
1276 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1277
1278 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1279 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1280 : 0;
1281 i40e_receive_skb(rx_ring, skb, vlan_tag);
1282
1283 rx_desc->wb.qword1.status_error_len = 0;
1284 } while (likely(total_rx_packets < budget));
1285
1286 u64_stats_update_begin(&rx_ring->syncp);
1287 rx_ring->stats.packets += total_rx_packets;
1288 rx_ring->stats.bytes += total_rx_bytes;
1289 u64_stats_update_end(&rx_ring->syncp);
1290 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1291 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1292
1293 return failure ? budget : total_rx_packets;
1294 }
1295
1296 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1297 {
1298 u32 val;
1299
1300 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1301 /* Don't clear PBA because that can cause lost interrupts that
1302 * came in while we were cleaning/polling
1303 */
1304 (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1305 (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1306
1307 return val;
1308 }
1309
1310 /* a small macro to shorten up some long lines */
1311 #define INTREG I40E_VFINT_DYN_CTLN1
1312
1313 /**
1314 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1315 * @vsi: the VSI we care about
1316 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1317 *
1318 **/
1319 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1320 struct i40e_q_vector *q_vector)
1321 {
1322 struct i40e_hw *hw = &vsi->back->hw;
1323 bool rx = false, tx = false;
1324 u32 rxval, txval;
1325 int vector;
1326
1327 vector = (q_vector->v_idx + vsi->base_vector);
1328
1329 /* avoid dynamic calculation if in countdown mode OR if
1330 * all dynamic is disabled
1331 */
1332 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1333
1334 if (q_vector->itr_countdown > 0 ||
1335 (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1336 !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1337 goto enable_int;
1338 }
1339
1340 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1341 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1342 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1343 }
1344
1345 if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1346 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1347 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1348 }
1349
1350 if (rx || tx) {
1351 /* get the higher of the two ITR adjustments and
1352 * use the same value for both ITR registers
1353 * when in adaptive mode (Rx and/or Tx)
1354 */
1355 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1356
1357 q_vector->tx.itr = q_vector->rx.itr = itr;
1358 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1359 tx = true;
1360 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1361 rx = true;
1362 }
1363
1364 /* only need to enable the interrupt once, but need
1365 * to possibly update both ITR values
1366 */
1367 if (rx) {
1368 /* set the INTENA_MSK_MASK so that this first write
1369 * won't actually enable the interrupt, instead just
1370 * updating the ITR (it's bit 31 PF and VF)
1371 */
1372 rxval |= BIT(31);
1373 /* don't check _DOWN because interrupt isn't being enabled */
1374 wr32(hw, INTREG(vector - 1), rxval);
1375 }
1376
1377 enable_int:
1378 if (!test_bit(__I40E_DOWN, &vsi->state))
1379 wr32(hw, INTREG(vector - 1), txval);
1380
1381 if (q_vector->itr_countdown)
1382 q_vector->itr_countdown--;
1383 else
1384 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1385 }
1386
1387 /**
1388 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1389 * @napi: napi struct with our devices info in it
1390 * @budget: amount of work driver is allowed to do this pass, in packets
1391 *
1392 * This function will clean all queues associated with a q_vector.
1393 *
1394 * Returns the amount of work done
1395 **/
1396 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1397 {
1398 struct i40e_q_vector *q_vector =
1399 container_of(napi, struct i40e_q_vector, napi);
1400 struct i40e_vsi *vsi = q_vector->vsi;
1401 struct i40e_ring *ring;
1402 bool clean_complete = true;
1403 bool arm_wb = false;
1404 int budget_per_ring;
1405 int work_done = 0;
1406
1407 if (test_bit(__I40E_DOWN, &vsi->state)) {
1408 napi_complete(napi);
1409 return 0;
1410 }
1411
1412 /* Since the actual Tx work is minimal, we can give the Tx a larger
1413 * budget and be more aggressive about cleaning up the Tx descriptors.
1414 */
1415 i40e_for_each_ring(ring, q_vector->tx) {
1416 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1417 clean_complete = false;
1418 continue;
1419 }
1420 arm_wb |= ring->arm_wb;
1421 ring->arm_wb = false;
1422 }
1423
1424 /* Handle case where we are called by netpoll with a budget of 0 */
1425 if (budget <= 0)
1426 goto tx_only;
1427
1428 /* We attempt to distribute budget to each Rx queue fairly, but don't
1429 * allow the budget to go below 1 because that would exit polling early.
1430 */
1431 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1432
1433 i40e_for_each_ring(ring, q_vector->rx) {
1434 int cleaned;
1435
1436 if (ring_is_ps_enabled(ring))
1437 cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1438 else
1439 cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1440
1441 work_done += cleaned;
1442 /* if we clean as many as budgeted, we must not be done */
1443 if (cleaned >= budget_per_ring)
1444 clean_complete = false;
1445 }
1446
1447 /* If work not completed, return budget and polling will return */
1448 if (!clean_complete) {
1449 tx_only:
1450 if (arm_wb) {
1451 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1452 i40e_enable_wb_on_itr(vsi, q_vector);
1453 }
1454 return budget;
1455 }
1456
1457 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1458 q_vector->arm_wb_state = false;
1459
1460 /* Work is done so exit the polling mode and re-enable the interrupt */
1461 napi_complete_done(napi, work_done);
1462 i40e_update_enable_itr(vsi, q_vector);
1463 return 0;
1464 }
1465
1466 /**
1467 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1468 * @skb: send buffer
1469 * @tx_ring: ring to send buffer on
1470 * @flags: the tx flags to be set
1471 *
1472 * Checks the skb and set up correspondingly several generic transmit flags
1473 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1474 *
1475 * Returns error code indicate the frame should be dropped upon error and the
1476 * otherwise returns 0 to indicate the flags has been set properly.
1477 **/
1478 static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1479 struct i40e_ring *tx_ring,
1480 u32 *flags)
1481 {
1482 __be16 protocol = skb->protocol;
1483 u32 tx_flags = 0;
1484
1485 if (protocol == htons(ETH_P_8021Q) &&
1486 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1487 /* When HW VLAN acceleration is turned off by the user the
1488 * stack sets the protocol to 8021q so that the driver
1489 * can take any steps required to support the SW only
1490 * VLAN handling. In our case the driver doesn't need
1491 * to take any further steps so just set the protocol
1492 * to the encapsulated ethertype.
1493 */
1494 skb->protocol = vlan_get_protocol(skb);
1495 goto out;
1496 }
1497
1498 /* if we have a HW VLAN tag being added, default to the HW one */
1499 if (skb_vlan_tag_present(skb)) {
1500 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1501 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1502 /* else if it is a SW VLAN, check the next protocol and store the tag */
1503 } else if (protocol == htons(ETH_P_8021Q)) {
1504 struct vlan_hdr *vhdr, _vhdr;
1505
1506 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1507 if (!vhdr)
1508 return -EINVAL;
1509
1510 protocol = vhdr->h_vlan_encapsulated_proto;
1511 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1512 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1513 }
1514
1515 out:
1516 *flags = tx_flags;
1517 return 0;
1518 }
1519
1520 /**
1521 * i40e_tso - set up the tso context descriptor
1522 * @tx_ring: ptr to the ring to send
1523 * @skb: ptr to the skb we're sending
1524 * @hdr_len: ptr to the size of the packet header
1525 * @cd_type_cmd_tso_mss: Quad Word 1
1526 *
1527 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1528 **/
1529 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1530 u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
1531 {
1532 u64 cd_cmd, cd_tso_len, cd_mss;
1533 union {
1534 struct iphdr *v4;
1535 struct ipv6hdr *v6;
1536 unsigned char *hdr;
1537 } ip;
1538 union {
1539 struct tcphdr *tcp;
1540 struct udphdr *udp;
1541 unsigned char *hdr;
1542 } l4;
1543 u32 paylen, l4_offset;
1544 int err;
1545
1546 if (skb->ip_summed != CHECKSUM_PARTIAL)
1547 return 0;
1548
1549 if (!skb_is_gso(skb))
1550 return 0;
1551
1552 err = skb_cow_head(skb, 0);
1553 if (err < 0)
1554 return err;
1555
1556 ip.hdr = skb_network_header(skb);
1557 l4.hdr = skb_transport_header(skb);
1558
1559 /* initialize outer IP header fields */
1560 if (ip.v4->version == 4) {
1561 ip.v4->tot_len = 0;
1562 ip.v4->check = 0;
1563 } else {
1564 ip.v6->payload_len = 0;
1565 }
1566
1567 if (skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL | SKB_GSO_GRE |
1568 SKB_GSO_UDP_TUNNEL_CSUM)) {
1569 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) {
1570 /* determine offset of outer transport header */
1571 l4_offset = l4.hdr - skb->data;
1572
1573 /* remove payload length from outer checksum */
1574 paylen = skb->len - l4_offset;
1575 csum_replace_by_diff(&l4.udp->check, htonl(paylen));
1576 }
1577
1578 /* reset pointers to inner headers */
1579 ip.hdr = skb_inner_network_header(skb);
1580 l4.hdr = skb_inner_transport_header(skb);
1581
1582 /* initialize inner IP header fields */
1583 if (ip.v4->version == 4) {
1584 ip.v4->tot_len = 0;
1585 ip.v4->check = 0;
1586 } else {
1587 ip.v6->payload_len = 0;
1588 }
1589 }
1590
1591 /* determine offset of inner transport header */
1592 l4_offset = l4.hdr - skb->data;
1593
1594 /* remove payload length from inner checksum */
1595 paylen = skb->len - l4_offset;
1596 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
1597
1598 /* compute length of segmentation header */
1599 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1600
1601 /* find the field values */
1602 cd_cmd = I40E_TX_CTX_DESC_TSO;
1603 cd_tso_len = skb->len - *hdr_len;
1604 cd_mss = skb_shinfo(skb)->gso_size;
1605 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1606 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1607 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1608 return 1;
1609 }
1610
1611 /**
1612 * i40e_tx_enable_csum - Enable Tx checksum offloads
1613 * @skb: send buffer
1614 * @tx_flags: pointer to Tx flags currently set
1615 * @td_cmd: Tx descriptor command bits to set
1616 * @td_offset: Tx descriptor header offsets to set
1617 * @tx_ring: Tx descriptor ring
1618 * @cd_tunneling: ptr to context desc bits
1619 **/
1620 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1621 u32 *td_cmd, u32 *td_offset,
1622 struct i40e_ring *tx_ring,
1623 u32 *cd_tunneling)
1624 {
1625 union {
1626 struct iphdr *v4;
1627 struct ipv6hdr *v6;
1628 unsigned char *hdr;
1629 } ip;
1630 union {
1631 struct tcphdr *tcp;
1632 struct udphdr *udp;
1633 unsigned char *hdr;
1634 } l4;
1635 unsigned char *exthdr;
1636 u32 offset, cmd = 0;
1637 __be16 frag_off;
1638 u8 l4_proto = 0;
1639
1640 if (skb->ip_summed != CHECKSUM_PARTIAL)
1641 return 0;
1642
1643 ip.hdr = skb_network_header(skb);
1644 l4.hdr = skb_transport_header(skb);
1645
1646 /* compute outer L2 header size */
1647 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1648
1649 if (skb->encapsulation) {
1650 u32 tunnel = 0;
1651 /* define outer network header type */
1652 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1653 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1654 I40E_TX_CTX_EXT_IP_IPV4 :
1655 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1656
1657 l4_proto = ip.v4->protocol;
1658 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1659 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1660
1661 exthdr = ip.hdr + sizeof(*ip.v6);
1662 l4_proto = ip.v6->nexthdr;
1663 if (l4.hdr != exthdr)
1664 ipv6_skip_exthdr(skb, exthdr - skb->data,
1665 &l4_proto, &frag_off);
1666 }
1667
1668 /* compute outer L3 header size */
1669 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1670 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1671
1672 /* switch IP header pointer from outer to inner header */
1673 ip.hdr = skb_inner_network_header(skb);
1674
1675 /* define outer transport */
1676 switch (l4_proto) {
1677 case IPPROTO_UDP:
1678 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1679 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1680 break;
1681 case IPPROTO_GRE:
1682 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1683 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1684 break;
1685 default:
1686 if (*tx_flags & I40E_TX_FLAGS_TSO)
1687 return -1;
1688
1689 skb_checksum_help(skb);
1690 return 0;
1691 }
1692
1693 /* compute tunnel header size */
1694 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1695 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1696
1697 /* indicate if we need to offload outer UDP header */
1698 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1699 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1700 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1701
1702 /* record tunnel offload values */
1703 *cd_tunneling |= tunnel;
1704
1705 /* switch L4 header pointer from outer to inner */
1706 l4.hdr = skb_inner_transport_header(skb);
1707 l4_proto = 0;
1708
1709 /* reset type as we transition from outer to inner headers */
1710 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
1711 if (ip.v4->version == 4)
1712 *tx_flags |= I40E_TX_FLAGS_IPV4;
1713 if (ip.v6->version == 6)
1714 *tx_flags |= I40E_TX_FLAGS_IPV6;
1715 }
1716
1717 /* Enable IP checksum offloads */
1718 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1719 l4_proto = ip.v4->protocol;
1720 /* the stack computes the IP header already, the only time we
1721 * need the hardware to recompute it is in the case of TSO.
1722 */
1723 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1724 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
1725 I40E_TX_DESC_CMD_IIPT_IPV4;
1726 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1727 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1728
1729 exthdr = ip.hdr + sizeof(*ip.v6);
1730 l4_proto = ip.v6->nexthdr;
1731 if (l4.hdr != exthdr)
1732 ipv6_skip_exthdr(skb, exthdr - skb->data,
1733 &l4_proto, &frag_off);
1734 }
1735
1736 /* compute inner L3 header size */
1737 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1738
1739 /* Enable L4 checksum offloads */
1740 switch (l4_proto) {
1741 case IPPROTO_TCP:
1742 /* enable checksum offloads */
1743 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1744 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1745 break;
1746 case IPPROTO_SCTP:
1747 /* enable SCTP checksum offload */
1748 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1749 offset |= (sizeof(struct sctphdr) >> 2) <<
1750 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1751 break;
1752 case IPPROTO_UDP:
1753 /* enable UDP checksum offload */
1754 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1755 offset |= (sizeof(struct udphdr) >> 2) <<
1756 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1757 break;
1758 default:
1759 if (*tx_flags & I40E_TX_FLAGS_TSO)
1760 return -1;
1761 skb_checksum_help(skb);
1762 return 0;
1763 }
1764
1765 *td_cmd |= cmd;
1766 *td_offset |= offset;
1767
1768 return 1;
1769 }
1770
1771 /**
1772 * i40e_create_tx_ctx Build the Tx context descriptor
1773 * @tx_ring: ring to create the descriptor on
1774 * @cd_type_cmd_tso_mss: Quad Word 1
1775 * @cd_tunneling: Quad Word 0 - bits 0-31
1776 * @cd_l2tag2: Quad Word 0 - bits 32-63
1777 **/
1778 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1779 const u64 cd_type_cmd_tso_mss,
1780 const u32 cd_tunneling, const u32 cd_l2tag2)
1781 {
1782 struct i40e_tx_context_desc *context_desc;
1783 int i = tx_ring->next_to_use;
1784
1785 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1786 !cd_tunneling && !cd_l2tag2)
1787 return;
1788
1789 /* grab the next descriptor */
1790 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1791
1792 i++;
1793 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1794
1795 /* cpu_to_le32 and assign to struct fields */
1796 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1797 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1798 context_desc->rsvd = cpu_to_le16(0);
1799 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1800 }
1801
1802 /**
1803 * __i40evf_chk_linearize - Check if there are more than 8 fragments per packet
1804 * @skb: send buffer
1805 *
1806 * Note: Our HW can't scatter-gather more than 8 fragments to build
1807 * a packet on the wire and so we need to figure out the cases where we
1808 * need to linearize the skb.
1809 **/
1810 bool __i40evf_chk_linearize(struct sk_buff *skb)
1811 {
1812 const struct skb_frag_struct *frag, *stale;
1813 int gso_size, nr_frags, sum;
1814
1815 /* check to see if TSO is enabled, if so we may get a repreive */
1816 gso_size = skb_shinfo(skb)->gso_size;
1817 if (unlikely(!gso_size))
1818 return true;
1819
1820 /* no need to check if number of frags is less than 8 */
1821 nr_frags = skb_shinfo(skb)->nr_frags;
1822 if (nr_frags < I40E_MAX_BUFFER_TXD)
1823 return false;
1824
1825 /* We need to walk through the list and validate that each group
1826 * of 6 fragments totals at least gso_size. However we don't need
1827 * to perform such validation on the first or last 6 since the first
1828 * 6 cannot inherit any data from a descriptor before them, and the
1829 * last 6 cannot inherit any data from a descriptor after them.
1830 */
1831 nr_frags -= I40E_MAX_BUFFER_TXD - 1;
1832 frag = &skb_shinfo(skb)->frags[0];
1833
1834 /* Initialize size to the negative value of gso_size minus 1. We
1835 * use this as the worst case scenerio in which the frag ahead
1836 * of us only provides one byte which is why we are limited to 6
1837 * descriptors for a single transmit as the header and previous
1838 * fragment are already consuming 2 descriptors.
1839 */
1840 sum = 1 - gso_size;
1841
1842 /* Add size of frags 1 through 5 to create our initial sum */
1843 sum += skb_frag_size(++frag);
1844 sum += skb_frag_size(++frag);
1845 sum += skb_frag_size(++frag);
1846 sum += skb_frag_size(++frag);
1847 sum += skb_frag_size(++frag);
1848
1849 /* Walk through fragments adding latest fragment, testing it, and
1850 * then removing stale fragments from the sum.
1851 */
1852 stale = &skb_shinfo(skb)->frags[0];
1853 for (;;) {
1854 sum += skb_frag_size(++frag);
1855
1856 /* if sum is negative we failed to make sufficient progress */
1857 if (sum < 0)
1858 return true;
1859
1860 /* use pre-decrement to avoid processing last fragment */
1861 if (!--nr_frags)
1862 break;
1863
1864 sum -= skb_frag_size(++stale);
1865 }
1866
1867 return false;
1868 }
1869
1870 /**
1871 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1872 * @tx_ring: the ring to be checked
1873 * @size: the size buffer we want to assure is available
1874 *
1875 * Returns -EBUSY if a stop is needed, else 0
1876 **/
1877 int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1878 {
1879 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1880 /* Memory barrier before checking head and tail */
1881 smp_mb();
1882
1883 /* Check again in a case another CPU has just made room available. */
1884 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1885 return -EBUSY;
1886
1887 /* A reprieve! - use start_queue because it doesn't call schedule */
1888 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1889 ++tx_ring->tx_stats.restart_queue;
1890 return 0;
1891 }
1892
1893 /**
1894 * i40evf_tx_map - Build the Tx descriptor
1895 * @tx_ring: ring to send buffer on
1896 * @skb: send buffer
1897 * @first: first buffer info buffer to use
1898 * @tx_flags: collected send information
1899 * @hdr_len: size of the packet header
1900 * @td_cmd: the command field in the descriptor
1901 * @td_offset: offset for checksum or crc
1902 **/
1903 static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1904 struct i40e_tx_buffer *first, u32 tx_flags,
1905 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1906 {
1907 unsigned int data_len = skb->data_len;
1908 unsigned int size = skb_headlen(skb);
1909 struct skb_frag_struct *frag;
1910 struct i40e_tx_buffer *tx_bi;
1911 struct i40e_tx_desc *tx_desc;
1912 u16 i = tx_ring->next_to_use;
1913 u32 td_tag = 0;
1914 dma_addr_t dma;
1915 u16 gso_segs;
1916 u16 desc_count = 0;
1917 bool tail_bump = true;
1918 bool do_rs = false;
1919
1920 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1921 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1922 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1923 I40E_TX_FLAGS_VLAN_SHIFT;
1924 }
1925
1926 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1927 gso_segs = skb_shinfo(skb)->gso_segs;
1928 else
1929 gso_segs = 1;
1930
1931 /* multiply data chunks by size of headers */
1932 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1933 first->gso_segs = gso_segs;
1934 first->skb = skb;
1935 first->tx_flags = tx_flags;
1936
1937 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1938
1939 tx_desc = I40E_TX_DESC(tx_ring, i);
1940 tx_bi = first;
1941
1942 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1943 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
1944
1945 if (dma_mapping_error(tx_ring->dev, dma))
1946 goto dma_error;
1947
1948 /* record length, and DMA address */
1949 dma_unmap_len_set(tx_bi, len, size);
1950 dma_unmap_addr_set(tx_bi, dma, dma);
1951
1952 /* align size to end of page */
1953 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
1954 tx_desc->buffer_addr = cpu_to_le64(dma);
1955
1956 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1957 tx_desc->cmd_type_offset_bsz =
1958 build_ctob(td_cmd, td_offset,
1959 max_data, td_tag);
1960
1961 tx_desc++;
1962 i++;
1963 desc_count++;
1964
1965 if (i == tx_ring->count) {
1966 tx_desc = I40E_TX_DESC(tx_ring, 0);
1967 i = 0;
1968 }
1969
1970 dma += max_data;
1971 size -= max_data;
1972
1973 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
1974 tx_desc->buffer_addr = cpu_to_le64(dma);
1975 }
1976
1977 if (likely(!data_len))
1978 break;
1979
1980 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1981 size, td_tag);
1982
1983 tx_desc++;
1984 i++;
1985 desc_count++;
1986
1987 if (i == tx_ring->count) {
1988 tx_desc = I40E_TX_DESC(tx_ring, 0);
1989 i = 0;
1990 }
1991
1992 size = skb_frag_size(frag);
1993 data_len -= size;
1994
1995 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1996 DMA_TO_DEVICE);
1997
1998 tx_bi = &tx_ring->tx_bi[i];
1999 }
2000
2001 /* set next_to_watch value indicating a packet is present */
2002 first->next_to_watch = tx_desc;
2003
2004 i++;
2005 if (i == tx_ring->count)
2006 i = 0;
2007
2008 tx_ring->next_to_use = i;
2009
2010 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2011 tx_ring->queue_index),
2012 first->bytecount);
2013 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2014
2015 /* Algorithm to optimize tail and RS bit setting:
2016 * if xmit_more is supported
2017 * if xmit_more is true
2018 * do not update tail and do not mark RS bit.
2019 * if xmit_more is false and last xmit_more was false
2020 * if every packet spanned less than 4 desc
2021 * then set RS bit on 4th packet and update tail
2022 * on every packet
2023 * else
2024 * update tail and set RS bit on every packet.
2025 * if xmit_more is false and last_xmit_more was true
2026 * update tail and set RS bit.
2027 *
2028 * Optimization: wmb to be issued only in case of tail update.
2029 * Also optimize the Descriptor WB path for RS bit with the same
2030 * algorithm.
2031 *
2032 * Note: If there are less than 4 packets
2033 * pending and interrupts were disabled the service task will
2034 * trigger a force WB.
2035 */
2036 if (skb->xmit_more &&
2037 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2038 tx_ring->queue_index))) {
2039 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2040 tail_bump = false;
2041 } else if (!skb->xmit_more &&
2042 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2043 tx_ring->queue_index)) &&
2044 (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2045 (tx_ring->packet_stride < WB_STRIDE) &&
2046 (desc_count < WB_STRIDE)) {
2047 tx_ring->packet_stride++;
2048 } else {
2049 tx_ring->packet_stride = 0;
2050 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2051 do_rs = true;
2052 }
2053 if (do_rs)
2054 tx_ring->packet_stride = 0;
2055
2056 tx_desc->cmd_type_offset_bsz =
2057 build_ctob(td_cmd, td_offset, size, td_tag) |
2058 cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2059 I40E_TX_DESC_CMD_EOP) <<
2060 I40E_TXD_QW1_CMD_SHIFT);
2061
2062 /* notify HW of packet */
2063 if (!tail_bump)
2064 prefetchw(tx_desc + 1);
2065
2066 if (tail_bump) {
2067 /* Force memory writes to complete before letting h/w
2068 * know there are new descriptors to fetch. (Only
2069 * applicable for weak-ordered memory model archs,
2070 * such as IA-64).
2071 */
2072 wmb();
2073 writel(i, tx_ring->tail);
2074 }
2075
2076 return;
2077
2078 dma_error:
2079 dev_info(tx_ring->dev, "TX DMA map failed\n");
2080
2081 /* clear dma mappings for failed tx_bi map */
2082 for (;;) {
2083 tx_bi = &tx_ring->tx_bi[i];
2084 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2085 if (tx_bi == first)
2086 break;
2087 if (i == 0)
2088 i = tx_ring->count;
2089 i--;
2090 }
2091
2092 tx_ring->next_to_use = i;
2093 }
2094
2095 /**
2096 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2097 * @skb: send buffer
2098 * @tx_ring: ring to send buffer on
2099 *
2100 * Returns NETDEV_TX_OK if sent, else an error code
2101 **/
2102 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2103 struct i40e_ring *tx_ring)
2104 {
2105 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2106 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2107 struct i40e_tx_buffer *first;
2108 u32 td_offset = 0;
2109 u32 tx_flags = 0;
2110 __be16 protocol;
2111 u32 td_cmd = 0;
2112 u8 hdr_len = 0;
2113 int tso, count;
2114
2115 /* prefetch the data, we'll need it later */
2116 prefetch(skb->data);
2117
2118 count = i40e_xmit_descriptor_count(skb);
2119 if (i40e_chk_linearize(skb, count)) {
2120 if (__skb_linearize(skb))
2121 goto out_drop;
2122 count = i40e_txd_use_count(skb->len);
2123 tx_ring->tx_stats.tx_linearize++;
2124 }
2125
2126 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2127 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2128 * + 4 desc gap to avoid the cache line where head is,
2129 * + 1 desc for context descriptor,
2130 * otherwise try next time
2131 */
2132 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2133 tx_ring->tx_stats.tx_busy++;
2134 return NETDEV_TX_BUSY;
2135 }
2136
2137 /* prepare the xmit flags */
2138 if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2139 goto out_drop;
2140
2141 /* obtain protocol of skb */
2142 protocol = vlan_get_protocol(skb);
2143
2144 /* record the location of the first descriptor for this packet */
2145 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2146
2147 /* setup IPv4/IPv6 offloads */
2148 if (protocol == htons(ETH_P_IP))
2149 tx_flags |= I40E_TX_FLAGS_IPV4;
2150 else if (protocol == htons(ETH_P_IPV6))
2151 tx_flags |= I40E_TX_FLAGS_IPV6;
2152
2153 tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
2154
2155 if (tso < 0)
2156 goto out_drop;
2157 else if (tso)
2158 tx_flags |= I40E_TX_FLAGS_TSO;
2159
2160 /* Always offload the checksum, since it's in the data descriptor */
2161 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2162 tx_ring, &cd_tunneling);
2163 if (tso < 0)
2164 goto out_drop;
2165
2166 skb_tx_timestamp(skb);
2167
2168 /* always enable CRC insertion offload */
2169 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2170
2171 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2172 cd_tunneling, cd_l2tag2);
2173
2174 i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2175 td_cmd, td_offset);
2176
2177 return NETDEV_TX_OK;
2178
2179 out_drop:
2180 dev_kfree_skb_any(skb);
2181 return NETDEV_TX_OK;
2182 }
2183
2184 /**
2185 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2186 * @skb: send buffer
2187 * @netdev: network interface device structure
2188 *
2189 * Returns NETDEV_TX_OK if sent, else an error code
2190 **/
2191 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2192 {
2193 struct i40evf_adapter *adapter = netdev_priv(netdev);
2194 struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2195
2196 /* hardware can't handle really short frames, hardware padding works
2197 * beyond this point
2198 */
2199 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2200 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2201 return NETDEV_TX_OK;
2202 skb->len = I40E_MIN_TX_LEN;
2203 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2204 }
2205
2206 return i40e_xmit_frame_ring(skb, tx_ring);
2207 }
This page took 0.083633 seconds and 5 git commands to generate.