Merge tag 'for-v3.6' of git://git.infradead.org/battery-2.6
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / e1000_82575.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* e1000_82575
29 * e1000_82576
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
36
37 #include "e1000_mac.h"
38 #include "e1000_82575.h"
39 #include "e1000_i210.h"
40
41 static s32 igb_get_invariants_82575(struct e1000_hw *);
42 static s32 igb_acquire_phy_82575(struct e1000_hw *);
43 static void igb_release_phy_82575(struct e1000_hw *);
44 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
45 static void igb_release_nvm_82575(struct e1000_hw *);
46 static s32 igb_check_for_link_82575(struct e1000_hw *);
47 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
48 static s32 igb_init_hw_82575(struct e1000_hw *);
49 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
50 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
51 static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
52 static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
53 static s32 igb_reset_hw_82575(struct e1000_hw *);
54 static s32 igb_reset_hw_82580(struct e1000_hw *);
55 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
56 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
57 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
58 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
59 static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
60 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
61 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
62 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
63 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
64 u16 *);
65 static s32 igb_get_phy_id_82575(struct e1000_hw *);
66 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
67 static bool igb_sgmii_active_82575(struct e1000_hw *);
68 static s32 igb_reset_init_script_82575(struct e1000_hw *);
69 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
70 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
71 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
72 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
73 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
75 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
76 static const u16 e1000_82580_rxpbs_table[] =
77 { 36, 72, 144, 1, 2, 4, 8, 16,
78 35, 70, 140 };
79 #define E1000_82580_RXPBS_TABLE_SIZE \
80 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
81
82 /**
83 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
84 * @hw: pointer to the HW structure
85 *
86 * Called to determine if the I2C pins are being used for I2C or as an
87 * external MDIO interface since the two options are mutually exclusive.
88 **/
89 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
90 {
91 u32 reg = 0;
92 bool ext_mdio = false;
93
94 switch (hw->mac.type) {
95 case e1000_82575:
96 case e1000_82576:
97 reg = rd32(E1000_MDIC);
98 ext_mdio = !!(reg & E1000_MDIC_DEST);
99 break;
100 case e1000_82580:
101 case e1000_i350:
102 case e1000_i210:
103 case e1000_i211:
104 reg = rd32(E1000_MDICNFG);
105 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
106 break;
107 default:
108 break;
109 }
110 return ext_mdio;
111 }
112
113 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
114 {
115 struct e1000_phy_info *phy = &hw->phy;
116 struct e1000_nvm_info *nvm = &hw->nvm;
117 struct e1000_mac_info *mac = &hw->mac;
118 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
119 u32 eecd;
120 s32 ret_val;
121 u16 size;
122 u32 ctrl_ext = 0;
123
124 switch (hw->device_id) {
125 case E1000_DEV_ID_82575EB_COPPER:
126 case E1000_DEV_ID_82575EB_FIBER_SERDES:
127 case E1000_DEV_ID_82575GB_QUAD_COPPER:
128 mac->type = e1000_82575;
129 break;
130 case E1000_DEV_ID_82576:
131 case E1000_DEV_ID_82576_NS:
132 case E1000_DEV_ID_82576_NS_SERDES:
133 case E1000_DEV_ID_82576_FIBER:
134 case E1000_DEV_ID_82576_SERDES:
135 case E1000_DEV_ID_82576_QUAD_COPPER:
136 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
137 case E1000_DEV_ID_82576_SERDES_QUAD:
138 mac->type = e1000_82576;
139 break;
140 case E1000_DEV_ID_82580_COPPER:
141 case E1000_DEV_ID_82580_FIBER:
142 case E1000_DEV_ID_82580_QUAD_FIBER:
143 case E1000_DEV_ID_82580_SERDES:
144 case E1000_DEV_ID_82580_SGMII:
145 case E1000_DEV_ID_82580_COPPER_DUAL:
146 case E1000_DEV_ID_DH89XXCC_SGMII:
147 case E1000_DEV_ID_DH89XXCC_SERDES:
148 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
149 case E1000_DEV_ID_DH89XXCC_SFP:
150 mac->type = e1000_82580;
151 break;
152 case E1000_DEV_ID_I350_COPPER:
153 case E1000_DEV_ID_I350_FIBER:
154 case E1000_DEV_ID_I350_SERDES:
155 case E1000_DEV_ID_I350_SGMII:
156 mac->type = e1000_i350;
157 break;
158 case E1000_DEV_ID_I210_COPPER:
159 case E1000_DEV_ID_I210_COPPER_OEM1:
160 case E1000_DEV_ID_I210_COPPER_IT:
161 case E1000_DEV_ID_I210_FIBER:
162 case E1000_DEV_ID_I210_SERDES:
163 case E1000_DEV_ID_I210_SGMII:
164 mac->type = e1000_i210;
165 break;
166 case E1000_DEV_ID_I211_COPPER:
167 mac->type = e1000_i211;
168 break;
169 default:
170 return -E1000_ERR_MAC_INIT;
171 break;
172 }
173
174 /* Set media type */
175 /*
176 * The 82575 uses bits 22:23 for link mode. The mode can be changed
177 * based on the EEPROM. We cannot rely upon device ID. There
178 * is no distinguishable difference between fiber and internal
179 * SerDes mode on the 82575. There can be an external PHY attached
180 * on the SGMII interface. For this, we'll set sgmii_active to true.
181 */
182 phy->media_type = e1000_media_type_copper;
183 dev_spec->sgmii_active = false;
184
185 ctrl_ext = rd32(E1000_CTRL_EXT);
186 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
187 case E1000_CTRL_EXT_LINK_MODE_SGMII:
188 dev_spec->sgmii_active = true;
189 break;
190 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
191 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
192 hw->phy.media_type = e1000_media_type_internal_serdes;
193 break;
194 default:
195 break;
196 }
197
198 /* Set mta register count */
199 mac->mta_reg_count = 128;
200 /* Set rar entry count */
201 switch (mac->type) {
202 case e1000_82576:
203 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
204 break;
205 case e1000_82580:
206 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
207 break;
208 case e1000_i350:
209 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
210 break;
211 default:
212 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
213 break;
214 }
215 /* reset */
216 if (mac->type >= e1000_82580)
217 mac->ops.reset_hw = igb_reset_hw_82580;
218 else
219 mac->ops.reset_hw = igb_reset_hw_82575;
220
221 if (mac->type >= e1000_i210) {
222 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
223 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
224 } else {
225 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
226 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
227 }
228
229 /* Set if part includes ASF firmware */
230 mac->asf_firmware_present = true;
231 /* Set if manageability features are enabled. */
232 mac->arc_subsystem_valid =
233 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
234 ? true : false;
235 /* enable EEE on i350 parts and later parts */
236 if (mac->type >= e1000_i350)
237 dev_spec->eee_disable = false;
238 else
239 dev_spec->eee_disable = true;
240 /* physical interface link setup */
241 mac->ops.setup_physical_interface =
242 (hw->phy.media_type == e1000_media_type_copper)
243 ? igb_setup_copper_link_82575
244 : igb_setup_serdes_link_82575;
245
246 /* NVM initialization */
247 eecd = rd32(E1000_EECD);
248 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
249 E1000_EECD_SIZE_EX_SHIFT);
250
251 /*
252 * Added to a constant, "size" becomes the left-shift value
253 * for setting word_size.
254 */
255 size += NVM_WORD_SIZE_BASE_SHIFT;
256
257 nvm->word_size = 1 << size;
258 if (hw->mac.type < e1000_i210) {
259 nvm->opcode_bits = 8;
260 nvm->delay_usec = 1;
261 switch (nvm->override) {
262 case e1000_nvm_override_spi_large:
263 nvm->page_size = 32;
264 nvm->address_bits = 16;
265 break;
266 case e1000_nvm_override_spi_small:
267 nvm->page_size = 8;
268 nvm->address_bits = 8;
269 break;
270 default:
271 nvm->page_size = eecd
272 & E1000_EECD_ADDR_BITS ? 32 : 8;
273 nvm->address_bits = eecd
274 & E1000_EECD_ADDR_BITS ? 16 : 8;
275 break;
276 }
277 if (nvm->word_size == (1 << 15))
278 nvm->page_size = 128;
279
280 nvm->type = e1000_nvm_eeprom_spi;
281 } else
282 nvm->type = e1000_nvm_flash_hw;
283
284 /*
285 * Check for invalid size
286 */
287 if ((hw->mac.type == e1000_82576) && (size > 15)) {
288 pr_notice("The NVM size is not valid, defaulting to 32K\n");
289 size = 15;
290 }
291
292 /* NVM Function Pointers */
293 switch (hw->mac.type) {
294 case e1000_82580:
295 nvm->ops.validate = igb_validate_nvm_checksum_82580;
296 nvm->ops.update = igb_update_nvm_checksum_82580;
297 nvm->ops.acquire = igb_acquire_nvm_82575;
298 nvm->ops.release = igb_release_nvm_82575;
299 if (nvm->word_size < (1 << 15))
300 nvm->ops.read = igb_read_nvm_eerd;
301 else
302 nvm->ops.read = igb_read_nvm_spi;
303 nvm->ops.write = igb_write_nvm_spi;
304 break;
305 case e1000_i350:
306 nvm->ops.validate = igb_validate_nvm_checksum_i350;
307 nvm->ops.update = igb_update_nvm_checksum_i350;
308 nvm->ops.acquire = igb_acquire_nvm_82575;
309 nvm->ops.release = igb_release_nvm_82575;
310 if (nvm->word_size < (1 << 15))
311 nvm->ops.read = igb_read_nvm_eerd;
312 else
313 nvm->ops.read = igb_read_nvm_spi;
314 nvm->ops.write = igb_write_nvm_spi;
315 break;
316 case e1000_i210:
317 nvm->ops.validate = igb_validate_nvm_checksum_i210;
318 nvm->ops.update = igb_update_nvm_checksum_i210;
319 nvm->ops.acquire = igb_acquire_nvm_i210;
320 nvm->ops.release = igb_release_nvm_i210;
321 nvm->ops.read = igb_read_nvm_srrd_i210;
322 nvm->ops.valid_led_default = igb_valid_led_default_i210;
323 break;
324 case e1000_i211:
325 nvm->ops.acquire = igb_acquire_nvm_i210;
326 nvm->ops.release = igb_release_nvm_i210;
327 nvm->ops.read = igb_read_nvm_i211;
328 nvm->ops.valid_led_default = igb_valid_led_default_i210;
329 nvm->ops.validate = NULL;
330 nvm->ops.update = NULL;
331 nvm->ops.write = NULL;
332 break;
333 default:
334 nvm->ops.validate = igb_validate_nvm_checksum;
335 nvm->ops.update = igb_update_nvm_checksum;
336 nvm->ops.acquire = igb_acquire_nvm_82575;
337 nvm->ops.release = igb_release_nvm_82575;
338 if (nvm->word_size < (1 << 15))
339 nvm->ops.read = igb_read_nvm_eerd;
340 else
341 nvm->ops.read = igb_read_nvm_spi;
342 nvm->ops.write = igb_write_nvm_spi;
343 break;
344 }
345
346 /* if part supports SR-IOV then initialize mailbox parameters */
347 switch (mac->type) {
348 case e1000_82576:
349 case e1000_i350:
350 igb_init_mbx_params_pf(hw);
351 break;
352 default:
353 break;
354 }
355
356 /* setup PHY parameters */
357 if (phy->media_type != e1000_media_type_copper) {
358 phy->type = e1000_phy_none;
359 return 0;
360 }
361
362 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
363 phy->reset_delay_us = 100;
364
365 ctrl_ext = rd32(E1000_CTRL_EXT);
366
367 /* PHY function pointers */
368 if (igb_sgmii_active_82575(hw)) {
369 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
370 ctrl_ext |= E1000_CTRL_I2C_ENA;
371 } else {
372 phy->ops.reset = igb_phy_hw_reset;
373 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
374 }
375
376 wr32(E1000_CTRL_EXT, ctrl_ext);
377 igb_reset_mdicnfg_82580(hw);
378
379 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
380 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
381 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
382 } else if ((hw->mac.type == e1000_82580)
383 || (hw->mac.type == e1000_i350)) {
384 phy->ops.read_reg = igb_read_phy_reg_82580;
385 phy->ops.write_reg = igb_write_phy_reg_82580;
386 } else if (hw->phy.type >= e1000_phy_i210) {
387 phy->ops.read_reg = igb_read_phy_reg_gs40g;
388 phy->ops.write_reg = igb_write_phy_reg_gs40g;
389 } else {
390 phy->ops.read_reg = igb_read_phy_reg_igp;
391 phy->ops.write_reg = igb_write_phy_reg_igp;
392 }
393
394 /* set lan id */
395 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
396 E1000_STATUS_FUNC_SHIFT;
397
398 /* Set phy->phy_addr and phy->id. */
399 ret_val = igb_get_phy_id_82575(hw);
400 if (ret_val)
401 return ret_val;
402
403 /* Verify phy id and set remaining function pointers */
404 switch (phy->id) {
405 case I347AT4_E_PHY_ID:
406 case M88E1112_E_PHY_ID:
407 case M88E1111_I_PHY_ID:
408 phy->type = e1000_phy_m88;
409 phy->ops.get_phy_info = igb_get_phy_info_m88;
410
411 if (phy->id == I347AT4_E_PHY_ID ||
412 phy->id == M88E1112_E_PHY_ID)
413 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
414 else
415 phy->ops.get_cable_length = igb_get_cable_length_m88;
416
417 if (phy->id == I210_I_PHY_ID) {
418 phy->ops.get_cable_length =
419 igb_get_cable_length_m88_gen2;
420 phy->ops.set_d0_lplu_state =
421 igb_set_d0_lplu_state_82580;
422 phy->ops.set_d3_lplu_state =
423 igb_set_d3_lplu_state_82580;
424 }
425 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
426 break;
427 case IGP03E1000_E_PHY_ID:
428 phy->type = e1000_phy_igp_3;
429 phy->ops.get_phy_info = igb_get_phy_info_igp;
430 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
431 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
432 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
433 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
434 break;
435 case I82580_I_PHY_ID:
436 case I350_I_PHY_ID:
437 phy->type = e1000_phy_82580;
438 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
439 phy->ops.get_cable_length = igb_get_cable_length_82580;
440 phy->ops.get_phy_info = igb_get_phy_info_82580;
441 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
442 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
443 break;
444 case I210_I_PHY_ID:
445 phy->type = e1000_phy_i210;
446 phy->ops.get_phy_info = igb_get_phy_info_m88;
447 phy->ops.check_polarity = igb_check_polarity_m88;
448 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
449 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
450 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
451 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
452 break;
453 default:
454 return -E1000_ERR_PHY;
455 }
456
457 return 0;
458 }
459
460 /**
461 * igb_acquire_phy_82575 - Acquire rights to access PHY
462 * @hw: pointer to the HW structure
463 *
464 * Acquire access rights to the correct PHY. This is a
465 * function pointer entry point called by the api module.
466 **/
467 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
468 {
469 u16 mask = E1000_SWFW_PHY0_SM;
470
471 if (hw->bus.func == E1000_FUNC_1)
472 mask = E1000_SWFW_PHY1_SM;
473 else if (hw->bus.func == E1000_FUNC_2)
474 mask = E1000_SWFW_PHY2_SM;
475 else if (hw->bus.func == E1000_FUNC_3)
476 mask = E1000_SWFW_PHY3_SM;
477
478 return hw->mac.ops.acquire_swfw_sync(hw, mask);
479 }
480
481 /**
482 * igb_release_phy_82575 - Release rights to access PHY
483 * @hw: pointer to the HW structure
484 *
485 * A wrapper to release access rights to the correct PHY. This is a
486 * function pointer entry point called by the api module.
487 **/
488 static void igb_release_phy_82575(struct e1000_hw *hw)
489 {
490 u16 mask = E1000_SWFW_PHY0_SM;
491
492 if (hw->bus.func == E1000_FUNC_1)
493 mask = E1000_SWFW_PHY1_SM;
494 else if (hw->bus.func == E1000_FUNC_2)
495 mask = E1000_SWFW_PHY2_SM;
496 else if (hw->bus.func == E1000_FUNC_3)
497 mask = E1000_SWFW_PHY3_SM;
498
499 hw->mac.ops.release_swfw_sync(hw, mask);
500 }
501
502 /**
503 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
504 * @hw: pointer to the HW structure
505 * @offset: register offset to be read
506 * @data: pointer to the read data
507 *
508 * Reads the PHY register at offset using the serial gigabit media independent
509 * interface and stores the retrieved information in data.
510 **/
511 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
512 u16 *data)
513 {
514 s32 ret_val = -E1000_ERR_PARAM;
515
516 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
517 hw_dbg("PHY Address %u is out of range\n", offset);
518 goto out;
519 }
520
521 ret_val = hw->phy.ops.acquire(hw);
522 if (ret_val)
523 goto out;
524
525 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
526
527 hw->phy.ops.release(hw);
528
529 out:
530 return ret_val;
531 }
532
533 /**
534 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
535 * @hw: pointer to the HW structure
536 * @offset: register offset to write to
537 * @data: data to write at register offset
538 *
539 * Writes the data to PHY register at the offset using the serial gigabit
540 * media independent interface.
541 **/
542 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
543 u16 data)
544 {
545 s32 ret_val = -E1000_ERR_PARAM;
546
547
548 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
549 hw_dbg("PHY Address %d is out of range\n", offset);
550 goto out;
551 }
552
553 ret_val = hw->phy.ops.acquire(hw);
554 if (ret_val)
555 goto out;
556
557 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
558
559 hw->phy.ops.release(hw);
560
561 out:
562 return ret_val;
563 }
564
565 /**
566 * igb_get_phy_id_82575 - Retrieve PHY addr and id
567 * @hw: pointer to the HW structure
568 *
569 * Retrieves the PHY address and ID for both PHY's which do and do not use
570 * sgmi interface.
571 **/
572 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
573 {
574 struct e1000_phy_info *phy = &hw->phy;
575 s32 ret_val = 0;
576 u16 phy_id;
577 u32 ctrl_ext;
578 u32 mdic;
579
580 /*
581 * For SGMII PHYs, we try the list of possible addresses until
582 * we find one that works. For non-SGMII PHYs
583 * (e.g. integrated copper PHYs), an address of 1 should
584 * work. The result of this function should mean phy->phy_addr
585 * and phy->id are set correctly.
586 */
587 if (!(igb_sgmii_active_82575(hw))) {
588 phy->addr = 1;
589 ret_val = igb_get_phy_id(hw);
590 goto out;
591 }
592
593 if (igb_sgmii_uses_mdio_82575(hw)) {
594 switch (hw->mac.type) {
595 case e1000_82575:
596 case e1000_82576:
597 mdic = rd32(E1000_MDIC);
598 mdic &= E1000_MDIC_PHY_MASK;
599 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
600 break;
601 case e1000_82580:
602 case e1000_i350:
603 case e1000_i210:
604 case e1000_i211:
605 mdic = rd32(E1000_MDICNFG);
606 mdic &= E1000_MDICNFG_PHY_MASK;
607 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
608 break;
609 default:
610 ret_val = -E1000_ERR_PHY;
611 goto out;
612 break;
613 }
614 ret_val = igb_get_phy_id(hw);
615 goto out;
616 }
617
618 /* Power on sgmii phy if it is disabled */
619 ctrl_ext = rd32(E1000_CTRL_EXT);
620 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
621 wrfl();
622 msleep(300);
623
624 /*
625 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
626 * Therefore, we need to test 1-7
627 */
628 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
629 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
630 if (ret_val == 0) {
631 hw_dbg("Vendor ID 0x%08X read at address %u\n",
632 phy_id, phy->addr);
633 /*
634 * At the time of this writing, The M88 part is
635 * the only supported SGMII PHY product.
636 */
637 if (phy_id == M88_VENDOR)
638 break;
639 } else {
640 hw_dbg("PHY address %u was unreadable\n", phy->addr);
641 }
642 }
643
644 /* A valid PHY type couldn't be found. */
645 if (phy->addr == 8) {
646 phy->addr = 0;
647 ret_val = -E1000_ERR_PHY;
648 goto out;
649 } else {
650 ret_val = igb_get_phy_id(hw);
651 }
652
653 /* restore previous sfp cage power state */
654 wr32(E1000_CTRL_EXT, ctrl_ext);
655
656 out:
657 return ret_val;
658 }
659
660 /**
661 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
662 * @hw: pointer to the HW structure
663 *
664 * Resets the PHY using the serial gigabit media independent interface.
665 **/
666 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
667 {
668 s32 ret_val;
669
670 /*
671 * This isn't a true "hard" reset, but is the only reset
672 * available to us at this time.
673 */
674
675 hw_dbg("Soft resetting SGMII attached PHY...\n");
676
677 /*
678 * SFP documentation requires the following to configure the SPF module
679 * to work on SGMII. No further documentation is given.
680 */
681 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
682 if (ret_val)
683 goto out;
684
685 ret_val = igb_phy_sw_reset(hw);
686
687 out:
688 return ret_val;
689 }
690
691 /**
692 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
693 * @hw: pointer to the HW structure
694 * @active: true to enable LPLU, false to disable
695 *
696 * Sets the LPLU D0 state according to the active flag. When
697 * activating LPLU this function also disables smart speed
698 * and vice versa. LPLU will not be activated unless the
699 * device autonegotiation advertisement meets standards of
700 * either 10 or 10/100 or 10/100/1000 at all duplexes.
701 * This is a function pointer entry point only called by
702 * PHY setup routines.
703 **/
704 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
705 {
706 struct e1000_phy_info *phy = &hw->phy;
707 s32 ret_val;
708 u16 data;
709
710 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
711 if (ret_val)
712 goto out;
713
714 if (active) {
715 data |= IGP02E1000_PM_D0_LPLU;
716 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
717 data);
718 if (ret_val)
719 goto out;
720
721 /* When LPLU is enabled, we should disable SmartSpeed */
722 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
723 &data);
724 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
725 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
726 data);
727 if (ret_val)
728 goto out;
729 } else {
730 data &= ~IGP02E1000_PM_D0_LPLU;
731 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
732 data);
733 /*
734 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
735 * during Dx states where the power conservation is most
736 * important. During driver activity we should enable
737 * SmartSpeed, so performance is maintained.
738 */
739 if (phy->smart_speed == e1000_smart_speed_on) {
740 ret_val = phy->ops.read_reg(hw,
741 IGP01E1000_PHY_PORT_CONFIG, &data);
742 if (ret_val)
743 goto out;
744
745 data |= IGP01E1000_PSCFR_SMART_SPEED;
746 ret_val = phy->ops.write_reg(hw,
747 IGP01E1000_PHY_PORT_CONFIG, data);
748 if (ret_val)
749 goto out;
750 } else if (phy->smart_speed == e1000_smart_speed_off) {
751 ret_val = phy->ops.read_reg(hw,
752 IGP01E1000_PHY_PORT_CONFIG, &data);
753 if (ret_val)
754 goto out;
755
756 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
757 ret_val = phy->ops.write_reg(hw,
758 IGP01E1000_PHY_PORT_CONFIG, data);
759 if (ret_val)
760 goto out;
761 }
762 }
763
764 out:
765 return ret_val;
766 }
767
768 /**
769 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
770 * @hw: pointer to the HW structure
771 * @active: true to enable LPLU, false to disable
772 *
773 * Sets the LPLU D0 state according to the active flag. When
774 * activating LPLU this function also disables smart speed
775 * and vice versa. LPLU will not be activated unless the
776 * device autonegotiation advertisement meets standards of
777 * either 10 or 10/100 or 10/100/1000 at all duplexes.
778 * This is a function pointer entry point only called by
779 * PHY setup routines.
780 **/
781 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
782 {
783 struct e1000_phy_info *phy = &hw->phy;
784 s32 ret_val = 0;
785 u16 data;
786
787 data = rd32(E1000_82580_PHY_POWER_MGMT);
788
789 if (active) {
790 data |= E1000_82580_PM_D0_LPLU;
791
792 /* When LPLU is enabled, we should disable SmartSpeed */
793 data &= ~E1000_82580_PM_SPD;
794 } else {
795 data &= ~E1000_82580_PM_D0_LPLU;
796
797 /*
798 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
799 * during Dx states where the power conservation is most
800 * important. During driver activity we should enable
801 * SmartSpeed, so performance is maintained.
802 */
803 if (phy->smart_speed == e1000_smart_speed_on)
804 data |= E1000_82580_PM_SPD;
805 else if (phy->smart_speed == e1000_smart_speed_off)
806 data &= ~E1000_82580_PM_SPD; }
807
808 wr32(E1000_82580_PHY_POWER_MGMT, data);
809 return ret_val;
810 }
811
812 /**
813 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
814 * @hw: pointer to the HW structure
815 * @active: boolean used to enable/disable lplu
816 *
817 * Success returns 0, Failure returns 1
818 *
819 * The low power link up (lplu) state is set to the power management level D3
820 * and SmartSpeed is disabled when active is true, else clear lplu for D3
821 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
822 * is used during Dx states where the power conservation is most important.
823 * During driver activity, SmartSpeed should be enabled so performance is
824 * maintained.
825 **/
826 s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
827 {
828 struct e1000_phy_info *phy = &hw->phy;
829 s32 ret_val = 0;
830 u16 data;
831
832 data = rd32(E1000_82580_PHY_POWER_MGMT);
833
834 if (!active) {
835 data &= ~E1000_82580_PM_D3_LPLU;
836 /*
837 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
838 * during Dx states where the power conservation is most
839 * important. During driver activity we should enable
840 * SmartSpeed, so performance is maintained.
841 */
842 if (phy->smart_speed == e1000_smart_speed_on)
843 data |= E1000_82580_PM_SPD;
844 else if (phy->smart_speed == e1000_smart_speed_off)
845 data &= ~E1000_82580_PM_SPD;
846 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
847 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
848 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
849 data |= E1000_82580_PM_D3_LPLU;
850 /* When LPLU is enabled, we should disable SmartSpeed */
851 data &= ~E1000_82580_PM_SPD;
852 }
853
854 wr32(E1000_82580_PHY_POWER_MGMT, data);
855 return ret_val;
856 }
857
858 /**
859 * igb_acquire_nvm_82575 - Request for access to EEPROM
860 * @hw: pointer to the HW structure
861 *
862 * Acquire the necessary semaphores for exclusive access to the EEPROM.
863 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
864 * Return successful if access grant bit set, else clear the request for
865 * EEPROM access and return -E1000_ERR_NVM (-1).
866 **/
867 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
868 {
869 s32 ret_val;
870
871 ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
872 if (ret_val)
873 goto out;
874
875 ret_val = igb_acquire_nvm(hw);
876
877 if (ret_val)
878 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
879
880 out:
881 return ret_val;
882 }
883
884 /**
885 * igb_release_nvm_82575 - Release exclusive access to EEPROM
886 * @hw: pointer to the HW structure
887 *
888 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
889 * then release the semaphores acquired.
890 **/
891 static void igb_release_nvm_82575(struct e1000_hw *hw)
892 {
893 igb_release_nvm(hw);
894 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
895 }
896
897 /**
898 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
899 * @hw: pointer to the HW structure
900 * @mask: specifies which semaphore to acquire
901 *
902 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
903 * will also specify which port we're acquiring the lock for.
904 **/
905 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
906 {
907 u32 swfw_sync;
908 u32 swmask = mask;
909 u32 fwmask = mask << 16;
910 s32 ret_val = 0;
911 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
912
913 while (i < timeout) {
914 if (igb_get_hw_semaphore(hw)) {
915 ret_val = -E1000_ERR_SWFW_SYNC;
916 goto out;
917 }
918
919 swfw_sync = rd32(E1000_SW_FW_SYNC);
920 if (!(swfw_sync & (fwmask | swmask)))
921 break;
922
923 /*
924 * Firmware currently using resource (fwmask)
925 * or other software thread using resource (swmask)
926 */
927 igb_put_hw_semaphore(hw);
928 mdelay(5);
929 i++;
930 }
931
932 if (i == timeout) {
933 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
934 ret_val = -E1000_ERR_SWFW_SYNC;
935 goto out;
936 }
937
938 swfw_sync |= swmask;
939 wr32(E1000_SW_FW_SYNC, swfw_sync);
940
941 igb_put_hw_semaphore(hw);
942
943 out:
944 return ret_val;
945 }
946
947 /**
948 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
949 * @hw: pointer to the HW structure
950 * @mask: specifies which semaphore to acquire
951 *
952 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
953 * will also specify which port we're releasing the lock for.
954 **/
955 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
956 {
957 u32 swfw_sync;
958
959 while (igb_get_hw_semaphore(hw) != 0);
960 /* Empty */
961
962 swfw_sync = rd32(E1000_SW_FW_SYNC);
963 swfw_sync &= ~mask;
964 wr32(E1000_SW_FW_SYNC, swfw_sync);
965
966 igb_put_hw_semaphore(hw);
967 }
968
969 /**
970 * igb_get_cfg_done_82575 - Read config done bit
971 * @hw: pointer to the HW structure
972 *
973 * Read the management control register for the config done bit for
974 * completion status. NOTE: silicon which is EEPROM-less will fail trying
975 * to read the config done bit, so an error is *ONLY* logged and returns
976 * 0. If we were to return with error, EEPROM-less silicon
977 * would not be able to be reset or change link.
978 **/
979 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
980 {
981 s32 timeout = PHY_CFG_TIMEOUT;
982 s32 ret_val = 0;
983 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
984
985 if (hw->bus.func == 1)
986 mask = E1000_NVM_CFG_DONE_PORT_1;
987 else if (hw->bus.func == E1000_FUNC_2)
988 mask = E1000_NVM_CFG_DONE_PORT_2;
989 else if (hw->bus.func == E1000_FUNC_3)
990 mask = E1000_NVM_CFG_DONE_PORT_3;
991
992 while (timeout) {
993 if (rd32(E1000_EEMNGCTL) & mask)
994 break;
995 msleep(1);
996 timeout--;
997 }
998 if (!timeout)
999 hw_dbg("MNG configuration cycle has not completed.\n");
1000
1001 /* If EEPROM is not marked present, init the PHY manually */
1002 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1003 (hw->phy.type == e1000_phy_igp_3))
1004 igb_phy_init_script_igp3(hw);
1005
1006 return ret_val;
1007 }
1008
1009 /**
1010 * igb_check_for_link_82575 - Check for link
1011 * @hw: pointer to the HW structure
1012 *
1013 * If sgmii is enabled, then use the pcs register to determine link, otherwise
1014 * use the generic interface for determining link.
1015 **/
1016 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1017 {
1018 s32 ret_val;
1019 u16 speed, duplex;
1020
1021 if (hw->phy.media_type != e1000_media_type_copper) {
1022 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1023 &duplex);
1024 /*
1025 * Use this flag to determine if link needs to be checked or
1026 * not. If we have link clear the flag so that we do not
1027 * continue to check for link.
1028 */
1029 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1030 } else {
1031 ret_val = igb_check_for_copper_link(hw);
1032 }
1033
1034 return ret_val;
1035 }
1036
1037 /**
1038 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1039 * @hw: pointer to the HW structure
1040 **/
1041 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1042 {
1043 u32 reg;
1044
1045
1046 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1047 !igb_sgmii_active_82575(hw))
1048 return;
1049
1050 /* Enable PCS to turn on link */
1051 reg = rd32(E1000_PCS_CFG0);
1052 reg |= E1000_PCS_CFG_PCS_EN;
1053 wr32(E1000_PCS_CFG0, reg);
1054
1055 /* Power up the laser */
1056 reg = rd32(E1000_CTRL_EXT);
1057 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1058 wr32(E1000_CTRL_EXT, reg);
1059
1060 /* flush the write to verify completion */
1061 wrfl();
1062 msleep(1);
1063 }
1064
1065 /**
1066 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1067 * @hw: pointer to the HW structure
1068 * @speed: stores the current speed
1069 * @duplex: stores the current duplex
1070 *
1071 * Using the physical coding sub-layer (PCS), retrieve the current speed and
1072 * duplex, then store the values in the pointers provided.
1073 **/
1074 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1075 u16 *duplex)
1076 {
1077 struct e1000_mac_info *mac = &hw->mac;
1078 u32 pcs;
1079
1080 /* Set up defaults for the return values of this function */
1081 mac->serdes_has_link = false;
1082 *speed = 0;
1083 *duplex = 0;
1084
1085 /*
1086 * Read the PCS Status register for link state. For non-copper mode,
1087 * the status register is not accurate. The PCS status register is
1088 * used instead.
1089 */
1090 pcs = rd32(E1000_PCS_LSTAT);
1091
1092 /*
1093 * The link up bit determines when link is up on autoneg. The sync ok
1094 * gets set once both sides sync up and agree upon link. Stable link
1095 * can be determined by checking for both link up and link sync ok
1096 */
1097 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1098 mac->serdes_has_link = true;
1099
1100 /* Detect and store PCS speed */
1101 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1102 *speed = SPEED_1000;
1103 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1104 *speed = SPEED_100;
1105 } else {
1106 *speed = SPEED_10;
1107 }
1108
1109 /* Detect and store PCS duplex */
1110 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1111 *duplex = FULL_DUPLEX;
1112 } else {
1113 *duplex = HALF_DUPLEX;
1114 }
1115 }
1116
1117 return 0;
1118 }
1119
1120 /**
1121 * igb_shutdown_serdes_link_82575 - Remove link during power down
1122 * @hw: pointer to the HW structure
1123 *
1124 * In the case of fiber serdes, shut down optics and PCS on driver unload
1125 * when management pass thru is not enabled.
1126 **/
1127 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1128 {
1129 u32 reg;
1130
1131 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1132 igb_sgmii_active_82575(hw))
1133 return;
1134
1135 if (!igb_enable_mng_pass_thru(hw)) {
1136 /* Disable PCS to turn off link */
1137 reg = rd32(E1000_PCS_CFG0);
1138 reg &= ~E1000_PCS_CFG_PCS_EN;
1139 wr32(E1000_PCS_CFG0, reg);
1140
1141 /* shutdown the laser */
1142 reg = rd32(E1000_CTRL_EXT);
1143 reg |= E1000_CTRL_EXT_SDP3_DATA;
1144 wr32(E1000_CTRL_EXT, reg);
1145
1146 /* flush the write to verify completion */
1147 wrfl();
1148 msleep(1);
1149 }
1150 }
1151
1152 /**
1153 * igb_reset_hw_82575 - Reset hardware
1154 * @hw: pointer to the HW structure
1155 *
1156 * This resets the hardware into a known state. This is a
1157 * function pointer entry point called by the api module.
1158 **/
1159 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1160 {
1161 u32 ctrl, icr;
1162 s32 ret_val;
1163
1164 /*
1165 * Prevent the PCI-E bus from sticking if there is no TLP connection
1166 * on the last TLP read/write transaction when MAC is reset.
1167 */
1168 ret_val = igb_disable_pcie_master(hw);
1169 if (ret_val)
1170 hw_dbg("PCI-E Master disable polling has failed.\n");
1171
1172 /* set the completion timeout for interface */
1173 ret_val = igb_set_pcie_completion_timeout(hw);
1174 if (ret_val) {
1175 hw_dbg("PCI-E Set completion timeout has failed.\n");
1176 }
1177
1178 hw_dbg("Masking off all interrupts\n");
1179 wr32(E1000_IMC, 0xffffffff);
1180
1181 wr32(E1000_RCTL, 0);
1182 wr32(E1000_TCTL, E1000_TCTL_PSP);
1183 wrfl();
1184
1185 msleep(10);
1186
1187 ctrl = rd32(E1000_CTRL);
1188
1189 hw_dbg("Issuing a global reset to MAC\n");
1190 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1191
1192 ret_val = igb_get_auto_rd_done(hw);
1193 if (ret_val) {
1194 /*
1195 * When auto config read does not complete, do not
1196 * return with an error. This can happen in situations
1197 * where there is no eeprom and prevents getting link.
1198 */
1199 hw_dbg("Auto Read Done did not complete\n");
1200 }
1201
1202 /* If EEPROM is not present, run manual init scripts */
1203 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1204 igb_reset_init_script_82575(hw);
1205
1206 /* Clear any pending interrupt events. */
1207 wr32(E1000_IMC, 0xffffffff);
1208 icr = rd32(E1000_ICR);
1209
1210 /* Install any alternate MAC address into RAR0 */
1211 ret_val = igb_check_alt_mac_addr(hw);
1212
1213 return ret_val;
1214 }
1215
1216 /**
1217 * igb_init_hw_82575 - Initialize hardware
1218 * @hw: pointer to the HW structure
1219 *
1220 * This inits the hardware readying it for operation.
1221 **/
1222 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1223 {
1224 struct e1000_mac_info *mac = &hw->mac;
1225 s32 ret_val;
1226 u16 i, rar_count = mac->rar_entry_count;
1227
1228 /* Initialize identification LED */
1229 ret_val = igb_id_led_init(hw);
1230 if (ret_val) {
1231 hw_dbg("Error initializing identification LED\n");
1232 /* This is not fatal and we should not stop init due to this */
1233 }
1234
1235 /* Disabling VLAN filtering */
1236 hw_dbg("Initializing the IEEE VLAN\n");
1237 if (hw->mac.type == e1000_i350)
1238 igb_clear_vfta_i350(hw);
1239 else
1240 igb_clear_vfta(hw);
1241
1242 /* Setup the receive address */
1243 igb_init_rx_addrs(hw, rar_count);
1244
1245 /* Zero out the Multicast HASH table */
1246 hw_dbg("Zeroing the MTA\n");
1247 for (i = 0; i < mac->mta_reg_count; i++)
1248 array_wr32(E1000_MTA, i, 0);
1249
1250 /* Zero out the Unicast HASH table */
1251 hw_dbg("Zeroing the UTA\n");
1252 for (i = 0; i < mac->uta_reg_count; i++)
1253 array_wr32(E1000_UTA, i, 0);
1254
1255 /* Setup link and flow control */
1256 ret_val = igb_setup_link(hw);
1257
1258 /*
1259 * Clear all of the statistics registers (clear on read). It is
1260 * important that we do this after we have tried to establish link
1261 * because the symbol error count will increment wildly if there
1262 * is no link.
1263 */
1264 igb_clear_hw_cntrs_82575(hw);
1265 return ret_val;
1266 }
1267
1268 /**
1269 * igb_setup_copper_link_82575 - Configure copper link settings
1270 * @hw: pointer to the HW structure
1271 *
1272 * Configures the link for auto-neg or forced speed and duplex. Then we check
1273 * for link, once link is established calls to configure collision distance
1274 * and flow control are called.
1275 **/
1276 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1277 {
1278 u32 ctrl;
1279 s32 ret_val;
1280
1281 ctrl = rd32(E1000_CTRL);
1282 ctrl |= E1000_CTRL_SLU;
1283 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1284 wr32(E1000_CTRL, ctrl);
1285
1286 ret_val = igb_setup_serdes_link_82575(hw);
1287 if (ret_val)
1288 goto out;
1289
1290 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1291 /* allow time for SFP cage time to power up phy */
1292 msleep(300);
1293
1294 ret_val = hw->phy.ops.reset(hw);
1295 if (ret_val) {
1296 hw_dbg("Error resetting the PHY.\n");
1297 goto out;
1298 }
1299 }
1300 switch (hw->phy.type) {
1301 case e1000_phy_i210:
1302 case e1000_phy_m88:
1303 if (hw->phy.id == I347AT4_E_PHY_ID ||
1304 hw->phy.id == M88E1112_E_PHY_ID)
1305 ret_val = igb_copper_link_setup_m88_gen2(hw);
1306 else
1307 ret_val = igb_copper_link_setup_m88(hw);
1308 break;
1309 case e1000_phy_igp_3:
1310 ret_val = igb_copper_link_setup_igp(hw);
1311 break;
1312 case e1000_phy_82580:
1313 ret_val = igb_copper_link_setup_82580(hw);
1314 break;
1315 default:
1316 ret_val = -E1000_ERR_PHY;
1317 break;
1318 }
1319
1320 if (ret_val)
1321 goto out;
1322
1323 ret_val = igb_setup_copper_link(hw);
1324 out:
1325 return ret_val;
1326 }
1327
1328 /**
1329 * igb_setup_serdes_link_82575 - Setup link for serdes
1330 * @hw: pointer to the HW structure
1331 *
1332 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1333 * used on copper connections where the serialized gigabit media independent
1334 * interface (sgmii), or serdes fiber is being used. Configures the link
1335 * for auto-negotiation or forces speed/duplex.
1336 **/
1337 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1338 {
1339 u32 ctrl_ext, ctrl_reg, reg;
1340 bool pcs_autoneg;
1341 s32 ret_val = E1000_SUCCESS;
1342 u16 data;
1343
1344 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1345 !igb_sgmii_active_82575(hw))
1346 return ret_val;
1347
1348
1349 /*
1350 * On the 82575, SerDes loopback mode persists until it is
1351 * explicitly turned off or a power cycle is performed. A read to
1352 * the register does not indicate its status. Therefore, we ensure
1353 * loopback mode is disabled during initialization.
1354 */
1355 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1356
1357 /* power on the sfp cage if present */
1358 ctrl_ext = rd32(E1000_CTRL_EXT);
1359 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1360 wr32(E1000_CTRL_EXT, ctrl_ext);
1361
1362 ctrl_reg = rd32(E1000_CTRL);
1363 ctrl_reg |= E1000_CTRL_SLU;
1364
1365 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1366 /* set both sw defined pins */
1367 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1368
1369 /* Set switch control to serdes energy detect */
1370 reg = rd32(E1000_CONNSW);
1371 reg |= E1000_CONNSW_ENRGSRC;
1372 wr32(E1000_CONNSW, reg);
1373 }
1374
1375 reg = rd32(E1000_PCS_LCTL);
1376
1377 /* default pcs_autoneg to the same setting as mac autoneg */
1378 pcs_autoneg = hw->mac.autoneg;
1379
1380 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1381 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1382 /* sgmii mode lets the phy handle forcing speed/duplex */
1383 pcs_autoneg = true;
1384 /* autoneg time out should be disabled for SGMII mode */
1385 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1386 break;
1387 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1388 /* disable PCS autoneg and support parallel detect only */
1389 pcs_autoneg = false;
1390 default:
1391 if (hw->mac.type == e1000_82575 ||
1392 hw->mac.type == e1000_82576) {
1393 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1394 if (ret_val) {
1395 printk(KERN_DEBUG "NVM Read Error\n\n");
1396 return ret_val;
1397 }
1398
1399 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1400 pcs_autoneg = false;
1401 }
1402
1403 /*
1404 * non-SGMII modes only supports a speed of 1000/Full for the
1405 * link so it is best to just force the MAC and let the pcs
1406 * link either autoneg or be forced to 1000/Full
1407 */
1408 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1409 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1410
1411 /* set speed of 1000/Full if speed/duplex is forced */
1412 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1413 break;
1414 }
1415
1416 wr32(E1000_CTRL, ctrl_reg);
1417
1418 /*
1419 * New SerDes mode allows for forcing speed or autonegotiating speed
1420 * at 1gb. Autoneg should be default set by most drivers. This is the
1421 * mode that will be compatible with older link partners and switches.
1422 * However, both are supported by the hardware and some drivers/tools.
1423 */
1424 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1425 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1426
1427 /*
1428 * We force flow control to prevent the CTRL register values from being
1429 * overwritten by the autonegotiated flow control values
1430 */
1431 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1432
1433 if (pcs_autoneg) {
1434 /* Set PCS register for autoneg */
1435 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1436 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1437 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1438 } else {
1439 /* Set PCS register for forced link */
1440 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
1441
1442 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1443 }
1444
1445 wr32(E1000_PCS_LCTL, reg);
1446
1447 if (!igb_sgmii_active_82575(hw))
1448 igb_force_mac_fc(hw);
1449
1450 return ret_val;
1451 }
1452
1453 /**
1454 * igb_sgmii_active_82575 - Return sgmii state
1455 * @hw: pointer to the HW structure
1456 *
1457 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1458 * which can be enabled for use in the embedded applications. Simply
1459 * return the current state of the sgmii interface.
1460 **/
1461 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1462 {
1463 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1464 return dev_spec->sgmii_active;
1465 }
1466
1467 /**
1468 * igb_reset_init_script_82575 - Inits HW defaults after reset
1469 * @hw: pointer to the HW structure
1470 *
1471 * Inits recommended HW defaults after a reset when there is no EEPROM
1472 * detected. This is only for the 82575.
1473 **/
1474 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1475 {
1476 if (hw->mac.type == e1000_82575) {
1477 hw_dbg("Running reset init script for 82575\n");
1478 /* SerDes configuration via SERDESCTRL */
1479 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1480 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1481 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1482 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1483
1484 /* CCM configuration via CCMCTL register */
1485 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1486 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1487
1488 /* PCIe lanes configuration */
1489 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1490 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1491 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1492 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1493
1494 /* PCIe PLL Configuration */
1495 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1496 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1497 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1498 }
1499
1500 return 0;
1501 }
1502
1503 /**
1504 * igb_read_mac_addr_82575 - Read device MAC address
1505 * @hw: pointer to the HW structure
1506 **/
1507 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1508 {
1509 s32 ret_val = 0;
1510
1511 /*
1512 * If there's an alternate MAC address place it in RAR0
1513 * so that it will override the Si installed default perm
1514 * address.
1515 */
1516 ret_val = igb_check_alt_mac_addr(hw);
1517 if (ret_val)
1518 goto out;
1519
1520 ret_val = igb_read_mac_addr(hw);
1521
1522 out:
1523 return ret_val;
1524 }
1525
1526 /**
1527 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1528 * @hw: pointer to the HW structure
1529 *
1530 * In the case of a PHY power down to save power, or to turn off link during a
1531 * driver unload, or wake on lan is not enabled, remove the link.
1532 **/
1533 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1534 {
1535 /* If the management interface is not enabled, then power down */
1536 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1537 igb_power_down_phy_copper(hw);
1538 }
1539
1540 /**
1541 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1542 * @hw: pointer to the HW structure
1543 *
1544 * Clears the hardware counters by reading the counter registers.
1545 **/
1546 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1547 {
1548 igb_clear_hw_cntrs_base(hw);
1549
1550 rd32(E1000_PRC64);
1551 rd32(E1000_PRC127);
1552 rd32(E1000_PRC255);
1553 rd32(E1000_PRC511);
1554 rd32(E1000_PRC1023);
1555 rd32(E1000_PRC1522);
1556 rd32(E1000_PTC64);
1557 rd32(E1000_PTC127);
1558 rd32(E1000_PTC255);
1559 rd32(E1000_PTC511);
1560 rd32(E1000_PTC1023);
1561 rd32(E1000_PTC1522);
1562
1563 rd32(E1000_ALGNERRC);
1564 rd32(E1000_RXERRC);
1565 rd32(E1000_TNCRS);
1566 rd32(E1000_CEXTERR);
1567 rd32(E1000_TSCTC);
1568 rd32(E1000_TSCTFC);
1569
1570 rd32(E1000_MGTPRC);
1571 rd32(E1000_MGTPDC);
1572 rd32(E1000_MGTPTC);
1573
1574 rd32(E1000_IAC);
1575 rd32(E1000_ICRXOC);
1576
1577 rd32(E1000_ICRXPTC);
1578 rd32(E1000_ICRXATC);
1579 rd32(E1000_ICTXPTC);
1580 rd32(E1000_ICTXATC);
1581 rd32(E1000_ICTXQEC);
1582 rd32(E1000_ICTXQMTC);
1583 rd32(E1000_ICRXDMTC);
1584
1585 rd32(E1000_CBTMPC);
1586 rd32(E1000_HTDPMC);
1587 rd32(E1000_CBRMPC);
1588 rd32(E1000_RPTHC);
1589 rd32(E1000_HGPTC);
1590 rd32(E1000_HTCBDPC);
1591 rd32(E1000_HGORCL);
1592 rd32(E1000_HGORCH);
1593 rd32(E1000_HGOTCL);
1594 rd32(E1000_HGOTCH);
1595 rd32(E1000_LENERRS);
1596
1597 /* This register should not be read in copper configurations */
1598 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1599 igb_sgmii_active_82575(hw))
1600 rd32(E1000_SCVPC);
1601 }
1602
1603 /**
1604 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1605 * @hw: pointer to the HW structure
1606 *
1607 * After rx enable if managability is enabled then there is likely some
1608 * bad data at the start of the fifo and possibly in the DMA fifo. This
1609 * function clears the fifos and flushes any packets that came in as rx was
1610 * being enabled.
1611 **/
1612 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1613 {
1614 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1615 int i, ms_wait;
1616
1617 if (hw->mac.type != e1000_82575 ||
1618 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1619 return;
1620
1621 /* Disable all RX queues */
1622 for (i = 0; i < 4; i++) {
1623 rxdctl[i] = rd32(E1000_RXDCTL(i));
1624 wr32(E1000_RXDCTL(i),
1625 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1626 }
1627 /* Poll all queues to verify they have shut down */
1628 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1629 msleep(1);
1630 rx_enabled = 0;
1631 for (i = 0; i < 4; i++)
1632 rx_enabled |= rd32(E1000_RXDCTL(i));
1633 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1634 break;
1635 }
1636
1637 if (ms_wait == 10)
1638 hw_dbg("Queue disable timed out after 10ms\n");
1639
1640 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1641 * incoming packets are rejected. Set enable and wait 2ms so that
1642 * any packet that was coming in as RCTL.EN was set is flushed
1643 */
1644 rfctl = rd32(E1000_RFCTL);
1645 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1646
1647 rlpml = rd32(E1000_RLPML);
1648 wr32(E1000_RLPML, 0);
1649
1650 rctl = rd32(E1000_RCTL);
1651 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1652 temp_rctl |= E1000_RCTL_LPE;
1653
1654 wr32(E1000_RCTL, temp_rctl);
1655 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1656 wrfl();
1657 msleep(2);
1658
1659 /* Enable RX queues that were previously enabled and restore our
1660 * previous state
1661 */
1662 for (i = 0; i < 4; i++)
1663 wr32(E1000_RXDCTL(i), rxdctl[i]);
1664 wr32(E1000_RCTL, rctl);
1665 wrfl();
1666
1667 wr32(E1000_RLPML, rlpml);
1668 wr32(E1000_RFCTL, rfctl);
1669
1670 /* Flush receive errors generated by workaround */
1671 rd32(E1000_ROC);
1672 rd32(E1000_RNBC);
1673 rd32(E1000_MPC);
1674 }
1675
1676 /**
1677 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1678 * @hw: pointer to the HW structure
1679 *
1680 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1681 * however the hardware default for these parts is 500us to 1ms which is less
1682 * than the 10ms recommended by the pci-e spec. To address this we need to
1683 * increase the value to either 10ms to 200ms for capability version 1 config,
1684 * or 16ms to 55ms for version 2.
1685 **/
1686 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1687 {
1688 u32 gcr = rd32(E1000_GCR);
1689 s32 ret_val = 0;
1690 u16 pcie_devctl2;
1691
1692 /* only take action if timeout value is defaulted to 0 */
1693 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1694 goto out;
1695
1696 /*
1697 * if capababilities version is type 1 we can write the
1698 * timeout of 10ms to 200ms through the GCR register
1699 */
1700 if (!(gcr & E1000_GCR_CAP_VER2)) {
1701 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1702 goto out;
1703 }
1704
1705 /*
1706 * for version 2 capabilities we need to write the config space
1707 * directly in order to set the completion timeout value for
1708 * 16ms to 55ms
1709 */
1710 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1711 &pcie_devctl2);
1712 if (ret_val)
1713 goto out;
1714
1715 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1716
1717 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1718 &pcie_devctl2);
1719 out:
1720 /* disable completion timeout resend */
1721 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1722
1723 wr32(E1000_GCR, gcr);
1724 return ret_val;
1725 }
1726
1727 /**
1728 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1729 * @hw: pointer to the hardware struct
1730 * @enable: state to enter, either enabled or disabled
1731 * @pf: Physical Function pool - do not set anti-spoofing for the PF
1732 *
1733 * enables/disables L2 switch anti-spoofing functionality.
1734 **/
1735 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1736 {
1737 u32 dtxswc;
1738
1739 switch (hw->mac.type) {
1740 case e1000_82576:
1741 case e1000_i350:
1742 dtxswc = rd32(E1000_DTXSWC);
1743 if (enable) {
1744 dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1745 E1000_DTXSWC_VLAN_SPOOF_MASK);
1746 /* The PF can spoof - it has to in order to
1747 * support emulation mode NICs */
1748 dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1749 } else {
1750 dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1751 E1000_DTXSWC_VLAN_SPOOF_MASK);
1752 }
1753 wr32(E1000_DTXSWC, dtxswc);
1754 break;
1755 default:
1756 break;
1757 }
1758 }
1759
1760 /**
1761 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1762 * @hw: pointer to the hardware struct
1763 * @enable: state to enter, either enabled or disabled
1764 *
1765 * enables/disables L2 switch loopback functionality.
1766 **/
1767 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1768 {
1769 u32 dtxswc;
1770
1771 switch (hw->mac.type) {
1772 case e1000_82576:
1773 dtxswc = rd32(E1000_DTXSWC);
1774 if (enable)
1775 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1776 else
1777 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1778 wr32(E1000_DTXSWC, dtxswc);
1779 break;
1780 case e1000_i350:
1781 dtxswc = rd32(E1000_TXSWC);
1782 if (enable)
1783 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1784 else
1785 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1786 wr32(E1000_TXSWC, dtxswc);
1787 break;
1788 default:
1789 /* Currently no other hardware supports loopback */
1790 break;
1791 }
1792
1793
1794 }
1795
1796 /**
1797 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1798 * @hw: pointer to the hardware struct
1799 * @enable: state to enter, either enabled or disabled
1800 *
1801 * enables/disables replication of packets across multiple pools.
1802 **/
1803 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1804 {
1805 u32 vt_ctl = rd32(E1000_VT_CTL);
1806
1807 if (enable)
1808 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1809 else
1810 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1811
1812 wr32(E1000_VT_CTL, vt_ctl);
1813 }
1814
1815 /**
1816 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1817 * @hw: pointer to the HW structure
1818 * @offset: register offset to be read
1819 * @data: pointer to the read data
1820 *
1821 * Reads the MDI control register in the PHY at offset and stores the
1822 * information read to data.
1823 **/
1824 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1825 {
1826 s32 ret_val;
1827
1828
1829 ret_val = hw->phy.ops.acquire(hw);
1830 if (ret_val)
1831 goto out;
1832
1833 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1834
1835 hw->phy.ops.release(hw);
1836
1837 out:
1838 return ret_val;
1839 }
1840
1841 /**
1842 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1843 * @hw: pointer to the HW structure
1844 * @offset: register offset to write to
1845 * @data: data to write to register at offset
1846 *
1847 * Writes data to MDI control register in the PHY at offset.
1848 **/
1849 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1850 {
1851 s32 ret_val;
1852
1853
1854 ret_val = hw->phy.ops.acquire(hw);
1855 if (ret_val)
1856 goto out;
1857
1858 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1859
1860 hw->phy.ops.release(hw);
1861
1862 out:
1863 return ret_val;
1864 }
1865
1866 /**
1867 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1868 * @hw: pointer to the HW structure
1869 *
1870 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1871 * the values found in the EEPROM. This addresses an issue in which these
1872 * bits are not restored from EEPROM after reset.
1873 **/
1874 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1875 {
1876 s32 ret_val = 0;
1877 u32 mdicnfg;
1878 u16 nvm_data = 0;
1879
1880 if (hw->mac.type != e1000_82580)
1881 goto out;
1882 if (!igb_sgmii_active_82575(hw))
1883 goto out;
1884
1885 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1886 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1887 &nvm_data);
1888 if (ret_val) {
1889 hw_dbg("NVM Read Error\n");
1890 goto out;
1891 }
1892
1893 mdicnfg = rd32(E1000_MDICNFG);
1894 if (nvm_data & NVM_WORD24_EXT_MDIO)
1895 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1896 if (nvm_data & NVM_WORD24_COM_MDIO)
1897 mdicnfg |= E1000_MDICNFG_COM_MDIO;
1898 wr32(E1000_MDICNFG, mdicnfg);
1899 out:
1900 return ret_val;
1901 }
1902
1903 /**
1904 * igb_reset_hw_82580 - Reset hardware
1905 * @hw: pointer to the HW structure
1906 *
1907 * This resets function or entire device (all ports, etc.)
1908 * to a known state.
1909 **/
1910 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1911 {
1912 s32 ret_val = 0;
1913 /* BH SW mailbox bit in SW_FW_SYNC */
1914 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1915 u32 ctrl, icr;
1916 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1917
1918
1919 hw->dev_spec._82575.global_device_reset = false;
1920
1921 /* Get current control state. */
1922 ctrl = rd32(E1000_CTRL);
1923
1924 /*
1925 * Prevent the PCI-E bus from sticking if there is no TLP connection
1926 * on the last TLP read/write transaction when MAC is reset.
1927 */
1928 ret_val = igb_disable_pcie_master(hw);
1929 if (ret_val)
1930 hw_dbg("PCI-E Master disable polling has failed.\n");
1931
1932 hw_dbg("Masking off all interrupts\n");
1933 wr32(E1000_IMC, 0xffffffff);
1934 wr32(E1000_RCTL, 0);
1935 wr32(E1000_TCTL, E1000_TCTL_PSP);
1936 wrfl();
1937
1938 msleep(10);
1939
1940 /* Determine whether or not a global dev reset is requested */
1941 if (global_device_reset &&
1942 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
1943 global_device_reset = false;
1944
1945 if (global_device_reset &&
1946 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1947 ctrl |= E1000_CTRL_DEV_RST;
1948 else
1949 ctrl |= E1000_CTRL_RST;
1950
1951 wr32(E1000_CTRL, ctrl);
1952 wrfl();
1953
1954 /* Add delay to insure DEV_RST has time to complete */
1955 if (global_device_reset)
1956 msleep(5);
1957
1958 ret_val = igb_get_auto_rd_done(hw);
1959 if (ret_val) {
1960 /*
1961 * When auto config read does not complete, do not
1962 * return with an error. This can happen in situations
1963 * where there is no eeprom and prevents getting link.
1964 */
1965 hw_dbg("Auto Read Done did not complete\n");
1966 }
1967
1968 /* If EEPROM is not present, run manual init scripts */
1969 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1970 igb_reset_init_script_82575(hw);
1971
1972 /* clear global device reset status bit */
1973 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1974
1975 /* Clear any pending interrupt events. */
1976 wr32(E1000_IMC, 0xffffffff);
1977 icr = rd32(E1000_ICR);
1978
1979 ret_val = igb_reset_mdicnfg_82580(hw);
1980 if (ret_val)
1981 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1982
1983 /* Install any alternate MAC address into RAR0 */
1984 ret_val = igb_check_alt_mac_addr(hw);
1985
1986 /* Release semaphore */
1987 if (global_device_reset)
1988 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
1989
1990 return ret_val;
1991 }
1992
1993 /**
1994 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1995 * @data: data received by reading RXPBS register
1996 *
1997 * The 82580 uses a table based approach for packet buffer allocation sizes.
1998 * This function converts the retrieved value into the correct table value
1999 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2000 * 0x0 36 72 144 1 2 4 8 16
2001 * 0x8 35 70 140 rsv rsv rsv rsv rsv
2002 */
2003 u16 igb_rxpbs_adjust_82580(u32 data)
2004 {
2005 u16 ret_val = 0;
2006
2007 if (data < E1000_82580_RXPBS_TABLE_SIZE)
2008 ret_val = e1000_82580_rxpbs_table[data];
2009
2010 return ret_val;
2011 }
2012
2013 /**
2014 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
2015 * checksum
2016 * @hw: pointer to the HW structure
2017 * @offset: offset in words of the checksum protected region
2018 *
2019 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2020 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2021 **/
2022 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2023 u16 offset)
2024 {
2025 s32 ret_val = 0;
2026 u16 checksum = 0;
2027 u16 i, nvm_data;
2028
2029 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2030 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2031 if (ret_val) {
2032 hw_dbg("NVM Read Error\n");
2033 goto out;
2034 }
2035 checksum += nvm_data;
2036 }
2037
2038 if (checksum != (u16) NVM_SUM) {
2039 hw_dbg("NVM Checksum Invalid\n");
2040 ret_val = -E1000_ERR_NVM;
2041 goto out;
2042 }
2043
2044 out:
2045 return ret_val;
2046 }
2047
2048 /**
2049 * igb_update_nvm_checksum_with_offset - Update EEPROM
2050 * checksum
2051 * @hw: pointer to the HW structure
2052 * @offset: offset in words of the checksum protected region
2053 *
2054 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2055 * up to the checksum. Then calculates the EEPROM checksum and writes the
2056 * value to the EEPROM.
2057 **/
2058 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2059 {
2060 s32 ret_val;
2061 u16 checksum = 0;
2062 u16 i, nvm_data;
2063
2064 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2065 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2066 if (ret_val) {
2067 hw_dbg("NVM Read Error while updating checksum.\n");
2068 goto out;
2069 }
2070 checksum += nvm_data;
2071 }
2072 checksum = (u16) NVM_SUM - checksum;
2073 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2074 &checksum);
2075 if (ret_val)
2076 hw_dbg("NVM Write Error while updating checksum.\n");
2077
2078 out:
2079 return ret_val;
2080 }
2081
2082 /**
2083 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2084 * @hw: pointer to the HW structure
2085 *
2086 * Calculates the EEPROM section checksum by reading/adding each word of
2087 * the EEPROM and then verifies that the sum of the EEPROM is
2088 * equal to 0xBABA.
2089 **/
2090 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2091 {
2092 s32 ret_val = 0;
2093 u16 eeprom_regions_count = 1;
2094 u16 j, nvm_data;
2095 u16 nvm_offset;
2096
2097 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2098 if (ret_val) {
2099 hw_dbg("NVM Read Error\n");
2100 goto out;
2101 }
2102
2103 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2104 /* if checksums compatibility bit is set validate checksums
2105 * for all 4 ports. */
2106 eeprom_regions_count = 4;
2107 }
2108
2109 for (j = 0; j < eeprom_regions_count; j++) {
2110 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2111 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2112 nvm_offset);
2113 if (ret_val != 0)
2114 goto out;
2115 }
2116
2117 out:
2118 return ret_val;
2119 }
2120
2121 /**
2122 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
2123 * @hw: pointer to the HW structure
2124 *
2125 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2126 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2127 * checksum and writes the value to the EEPROM.
2128 **/
2129 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2130 {
2131 s32 ret_val;
2132 u16 j, nvm_data;
2133 u16 nvm_offset;
2134
2135 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2136 if (ret_val) {
2137 hw_dbg("NVM Read Error while updating checksum"
2138 " compatibility bit.\n");
2139 goto out;
2140 }
2141
2142 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2143 /* set compatibility bit to validate checksums appropriately */
2144 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2145 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2146 &nvm_data);
2147 if (ret_val) {
2148 hw_dbg("NVM Write Error while updating checksum"
2149 " compatibility bit.\n");
2150 goto out;
2151 }
2152 }
2153
2154 for (j = 0; j < 4; j++) {
2155 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2156 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2157 if (ret_val)
2158 goto out;
2159 }
2160
2161 out:
2162 return ret_val;
2163 }
2164
2165 /**
2166 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2167 * @hw: pointer to the HW structure
2168 *
2169 * Calculates the EEPROM section checksum by reading/adding each word of
2170 * the EEPROM and then verifies that the sum of the EEPROM is
2171 * equal to 0xBABA.
2172 **/
2173 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2174 {
2175 s32 ret_val = 0;
2176 u16 j;
2177 u16 nvm_offset;
2178
2179 for (j = 0; j < 4; j++) {
2180 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2181 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2182 nvm_offset);
2183 if (ret_val != 0)
2184 goto out;
2185 }
2186
2187 out:
2188 return ret_val;
2189 }
2190
2191 /**
2192 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2193 * @hw: pointer to the HW structure
2194 *
2195 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2196 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2197 * checksum and writes the value to the EEPROM.
2198 **/
2199 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2200 {
2201 s32 ret_val = 0;
2202 u16 j;
2203 u16 nvm_offset;
2204
2205 for (j = 0; j < 4; j++) {
2206 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2207 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2208 if (ret_val != 0)
2209 goto out;
2210 }
2211
2212 out:
2213 return ret_val;
2214 }
2215
2216 /**
2217 * igb_set_eee_i350 - Enable/disable EEE support
2218 * @hw: pointer to the HW structure
2219 *
2220 * Enable/disable EEE based on setting in dev_spec structure.
2221 *
2222 **/
2223 s32 igb_set_eee_i350(struct e1000_hw *hw)
2224 {
2225 s32 ret_val = 0;
2226 u32 ipcnfg, eeer, ctrl_ext;
2227
2228 ctrl_ext = rd32(E1000_CTRL_EXT);
2229 if ((hw->mac.type != e1000_i350) ||
2230 (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
2231 goto out;
2232 ipcnfg = rd32(E1000_IPCNFG);
2233 eeer = rd32(E1000_EEER);
2234
2235 /* enable or disable per user setting */
2236 if (!(hw->dev_spec._82575.eee_disable)) {
2237 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2238 E1000_IPCNFG_EEE_100M_AN);
2239 eeer |= (E1000_EEER_TX_LPI_EN |
2240 E1000_EEER_RX_LPI_EN |
2241 E1000_EEER_LPI_FC);
2242
2243 } else {
2244 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2245 E1000_IPCNFG_EEE_100M_AN);
2246 eeer &= ~(E1000_EEER_TX_LPI_EN |
2247 E1000_EEER_RX_LPI_EN |
2248 E1000_EEER_LPI_FC);
2249 }
2250 wr32(E1000_IPCNFG, ipcnfg);
2251 wr32(E1000_EEER, eeer);
2252 out:
2253
2254 return ret_val;
2255 }
2256
2257 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2258 .init_hw = igb_init_hw_82575,
2259 .check_for_link = igb_check_for_link_82575,
2260 .rar_set = igb_rar_set,
2261 .read_mac_addr = igb_read_mac_addr_82575,
2262 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2263 };
2264
2265 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2266 .acquire = igb_acquire_phy_82575,
2267 .get_cfg_done = igb_get_cfg_done_82575,
2268 .release = igb_release_phy_82575,
2269 };
2270
2271 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2272 .acquire = igb_acquire_nvm_82575,
2273 .read = igb_read_nvm_eerd,
2274 .release = igb_release_nvm_82575,
2275 .write = igb_write_nvm_spi,
2276 };
2277
2278 const struct e1000_info e1000_82575_info = {
2279 .get_invariants = igb_get_invariants_82575,
2280 .mac_ops = &e1000_mac_ops_82575,
2281 .phy_ops = &e1000_phy_ops_82575,
2282 .nvm_ops = &e1000_nvm_ops_82575,
2283 };
2284
This page took 0.102799 seconds and 5 git commands to generate.