igb: Fix code comments and whitespace
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / e1000_82575.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* e1000_82575
29 * e1000_82576
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
36 #include <linux/i2c.h>
37
38 #include "e1000_mac.h"
39 #include "e1000_82575.h"
40 #include "e1000_i210.h"
41
42 static s32 igb_get_invariants_82575(struct e1000_hw *);
43 static s32 igb_acquire_phy_82575(struct e1000_hw *);
44 static void igb_release_phy_82575(struct e1000_hw *);
45 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
46 static void igb_release_nvm_82575(struct e1000_hw *);
47 static s32 igb_check_for_link_82575(struct e1000_hw *);
48 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
49 static s32 igb_init_hw_82575(struct e1000_hw *);
50 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
51 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
52 static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
53 static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
54 static s32 igb_reset_hw_82575(struct e1000_hw *);
55 static s32 igb_reset_hw_82580(struct e1000_hw *);
56 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
57 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
58 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
59 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
60 static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
61 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
62 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
63 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
64 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
65 u16 *);
66 static s32 igb_get_phy_id_82575(struct e1000_hw *);
67 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
68 static bool igb_sgmii_active_82575(struct e1000_hw *);
69 static s32 igb_reset_init_script_82575(struct e1000_hw *);
70 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
71 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
72 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
73 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
75 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
76 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
77 static const u16 e1000_82580_rxpbs_table[] =
78 { 36, 72, 144, 1, 2, 4, 8, 16,
79 35, 70, 140 };
80 #define E1000_82580_RXPBS_TABLE_SIZE \
81 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
82
83 /**
84 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
85 * @hw: pointer to the HW structure
86 *
87 * Called to determine if the I2C pins are being used for I2C or as an
88 * external MDIO interface since the two options are mutually exclusive.
89 **/
90 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
91 {
92 u32 reg = 0;
93 bool ext_mdio = false;
94
95 switch (hw->mac.type) {
96 case e1000_82575:
97 case e1000_82576:
98 reg = rd32(E1000_MDIC);
99 ext_mdio = !!(reg & E1000_MDIC_DEST);
100 break;
101 case e1000_82580:
102 case e1000_i350:
103 case e1000_i210:
104 case e1000_i211:
105 reg = rd32(E1000_MDICNFG);
106 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
107 break;
108 default:
109 break;
110 }
111 return ext_mdio;
112 }
113
114 /**
115 * igb_init_phy_params_82575 - Init PHY func ptrs.
116 * @hw: pointer to the HW structure
117 **/
118 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
119 {
120 struct e1000_phy_info *phy = &hw->phy;
121 s32 ret_val = 0;
122 u32 ctrl_ext;
123
124 if (hw->phy.media_type != e1000_media_type_copper) {
125 phy->type = e1000_phy_none;
126 goto out;
127 }
128
129 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
130 phy->reset_delay_us = 100;
131
132 ctrl_ext = rd32(E1000_CTRL_EXT);
133
134 if (igb_sgmii_active_82575(hw)) {
135 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
136 ctrl_ext |= E1000_CTRL_I2C_ENA;
137 } else {
138 phy->ops.reset = igb_phy_hw_reset;
139 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
140 }
141
142 wr32(E1000_CTRL_EXT, ctrl_ext);
143 igb_reset_mdicnfg_82580(hw);
144
145 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
146 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
147 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
148 } else {
149 switch (hw->mac.type) {
150 case e1000_82580:
151 case e1000_i350:
152 phy->ops.read_reg = igb_read_phy_reg_82580;
153 phy->ops.write_reg = igb_write_phy_reg_82580;
154 break;
155 case e1000_i210:
156 case e1000_i211:
157 phy->ops.read_reg = igb_read_phy_reg_gs40g;
158 phy->ops.write_reg = igb_write_phy_reg_gs40g;
159 break;
160 default:
161 phy->ops.read_reg = igb_read_phy_reg_igp;
162 phy->ops.write_reg = igb_write_phy_reg_igp;
163 }
164 }
165
166 /* set lan id */
167 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
168 E1000_STATUS_FUNC_SHIFT;
169
170 /* Set phy->phy_addr and phy->id. */
171 ret_val = igb_get_phy_id_82575(hw);
172 if (ret_val)
173 return ret_val;
174
175 /* Verify phy id and set remaining function pointers */
176 switch (phy->id) {
177 case I347AT4_E_PHY_ID:
178 case M88E1112_E_PHY_ID:
179 case M88E1111_I_PHY_ID:
180 phy->type = e1000_phy_m88;
181 phy->ops.get_phy_info = igb_get_phy_info_m88;
182 if (phy->id == I347AT4_E_PHY_ID ||
183 phy->id == M88E1112_E_PHY_ID)
184 phy->ops.get_cable_length =
185 igb_get_cable_length_m88_gen2;
186 else
187 phy->ops.get_cable_length = igb_get_cable_length_m88;
188 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
189 break;
190 case IGP03E1000_E_PHY_ID:
191 phy->type = e1000_phy_igp_3;
192 phy->ops.get_phy_info = igb_get_phy_info_igp;
193 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
194 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
195 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
196 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
197 break;
198 case I82580_I_PHY_ID:
199 case I350_I_PHY_ID:
200 phy->type = e1000_phy_82580;
201 phy->ops.force_speed_duplex =
202 igb_phy_force_speed_duplex_82580;
203 phy->ops.get_cable_length = igb_get_cable_length_82580;
204 phy->ops.get_phy_info = igb_get_phy_info_82580;
205 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
206 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
207 break;
208 case I210_I_PHY_ID:
209 phy->type = e1000_phy_i210;
210 phy->ops.check_polarity = igb_check_polarity_m88;
211 phy->ops.get_phy_info = igb_get_phy_info_m88;
212 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
213 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
214 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
215 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
216 break;
217 default:
218 ret_val = -E1000_ERR_PHY;
219 goto out;
220 }
221
222 out:
223 return ret_val;
224 }
225
226 /**
227 * igb_init_nvm_params_82575 - Init NVM func ptrs.
228 * @hw: pointer to the HW structure
229 **/
230 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
231 {
232 struct e1000_nvm_info *nvm = &hw->nvm;
233 u32 eecd = rd32(E1000_EECD);
234 u16 size;
235
236 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
237 E1000_EECD_SIZE_EX_SHIFT);
238 /* Added to a constant, "size" becomes the left-shift value
239 * for setting word_size.
240 */
241 size += NVM_WORD_SIZE_BASE_SHIFT;
242
243 /* Just in case size is out of range, cap it to the largest
244 * EEPROM size supported
245 */
246 if (size > 15)
247 size = 15;
248
249 nvm->word_size = 1 << size;
250 if (hw->mac.type < e1000_i210) {
251 nvm->opcode_bits = 8;
252 nvm->delay_usec = 1;
253
254 switch (nvm->override) {
255 case e1000_nvm_override_spi_large:
256 nvm->page_size = 32;
257 nvm->address_bits = 16;
258 break;
259 case e1000_nvm_override_spi_small:
260 nvm->page_size = 8;
261 nvm->address_bits = 8;
262 break;
263 default:
264 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
265 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
266 16 : 8;
267 break;
268 }
269 if (nvm->word_size == (1 << 15))
270 nvm->page_size = 128;
271
272 nvm->type = e1000_nvm_eeprom_spi;
273 } else {
274 nvm->type = e1000_nvm_flash_hw;
275 }
276
277 /* NVM Function Pointers */
278 switch (hw->mac.type) {
279 case e1000_82580:
280 nvm->ops.validate = igb_validate_nvm_checksum_82580;
281 nvm->ops.update = igb_update_nvm_checksum_82580;
282 nvm->ops.acquire = igb_acquire_nvm_82575;
283 nvm->ops.release = igb_release_nvm_82575;
284 if (nvm->word_size < (1 << 15))
285 nvm->ops.read = igb_read_nvm_eerd;
286 else
287 nvm->ops.read = igb_read_nvm_spi;
288 nvm->ops.write = igb_write_nvm_spi;
289 break;
290 case e1000_i350:
291 nvm->ops.validate = igb_validate_nvm_checksum_i350;
292 nvm->ops.update = igb_update_nvm_checksum_i350;
293 nvm->ops.acquire = igb_acquire_nvm_82575;
294 nvm->ops.release = igb_release_nvm_82575;
295 if (nvm->word_size < (1 << 15))
296 nvm->ops.read = igb_read_nvm_eerd;
297 else
298 nvm->ops.read = igb_read_nvm_spi;
299 nvm->ops.write = igb_write_nvm_spi;
300 break;
301 case e1000_i210:
302 nvm->ops.validate = igb_validate_nvm_checksum_i210;
303 nvm->ops.update = igb_update_nvm_checksum_i210;
304 nvm->ops.acquire = igb_acquire_nvm_i210;
305 nvm->ops.release = igb_release_nvm_i210;
306 nvm->ops.read = igb_read_nvm_srrd_i210;
307 nvm->ops.write = igb_write_nvm_srwr_i210;
308 nvm->ops.valid_led_default = igb_valid_led_default_i210;
309 break;
310 case e1000_i211:
311 nvm->ops.acquire = igb_acquire_nvm_i210;
312 nvm->ops.release = igb_release_nvm_i210;
313 nvm->ops.read = igb_read_nvm_i211;
314 nvm->ops.valid_led_default = igb_valid_led_default_i210;
315 nvm->ops.validate = NULL;
316 nvm->ops.update = NULL;
317 nvm->ops.write = NULL;
318 break;
319 default:
320 nvm->ops.validate = igb_validate_nvm_checksum;
321 nvm->ops.update = igb_update_nvm_checksum;
322 nvm->ops.acquire = igb_acquire_nvm_82575;
323 nvm->ops.release = igb_release_nvm_82575;
324 if (nvm->word_size < (1 << 15))
325 nvm->ops.read = igb_read_nvm_eerd;
326 else
327 nvm->ops.read = igb_read_nvm_spi;
328 nvm->ops.write = igb_write_nvm_spi;
329 break;
330 }
331
332 return 0;
333 }
334
335 /**
336 * igb_init_mac_params_82575 - Init MAC func ptrs.
337 * @hw: pointer to the HW structure
338 **/
339 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
340 {
341 struct e1000_mac_info *mac = &hw->mac;
342 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
343
344 /* Set mta register count */
345 mac->mta_reg_count = 128;
346 /* Set rar entry count */
347 switch (mac->type) {
348 case e1000_82576:
349 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
350 break;
351 case e1000_82580:
352 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
353 break;
354 case e1000_i350:
355 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
356 break;
357 default:
358 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
359 break;
360 }
361 /* reset */
362 if (mac->type >= e1000_82580)
363 mac->ops.reset_hw = igb_reset_hw_82580;
364 else
365 mac->ops.reset_hw = igb_reset_hw_82575;
366
367 if (mac->type >= e1000_i210) {
368 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
369 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
370
371 } else {
372 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
373 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
374 }
375
376 /* Set if part includes ASF firmware */
377 mac->asf_firmware_present = true;
378 /* Set if manageability features are enabled. */
379 mac->arc_subsystem_valid =
380 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
381 ? true : false;
382 /* enable EEE on i350 parts and later parts */
383 if (mac->type >= e1000_i350)
384 dev_spec->eee_disable = false;
385 else
386 dev_spec->eee_disable = true;
387 /* physical interface link setup */
388 mac->ops.setup_physical_interface =
389 (hw->phy.media_type == e1000_media_type_copper)
390 ? igb_setup_copper_link_82575
391 : igb_setup_serdes_link_82575;
392
393 return 0;
394 }
395
396 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
397 {
398 struct e1000_mac_info *mac = &hw->mac;
399 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
400 s32 ret_val;
401 u32 ctrl_ext = 0;
402
403 switch (hw->device_id) {
404 case E1000_DEV_ID_82575EB_COPPER:
405 case E1000_DEV_ID_82575EB_FIBER_SERDES:
406 case E1000_DEV_ID_82575GB_QUAD_COPPER:
407 mac->type = e1000_82575;
408 break;
409 case E1000_DEV_ID_82576:
410 case E1000_DEV_ID_82576_NS:
411 case E1000_DEV_ID_82576_NS_SERDES:
412 case E1000_DEV_ID_82576_FIBER:
413 case E1000_DEV_ID_82576_SERDES:
414 case E1000_DEV_ID_82576_QUAD_COPPER:
415 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
416 case E1000_DEV_ID_82576_SERDES_QUAD:
417 mac->type = e1000_82576;
418 break;
419 case E1000_DEV_ID_82580_COPPER:
420 case E1000_DEV_ID_82580_FIBER:
421 case E1000_DEV_ID_82580_QUAD_FIBER:
422 case E1000_DEV_ID_82580_SERDES:
423 case E1000_DEV_ID_82580_SGMII:
424 case E1000_DEV_ID_82580_COPPER_DUAL:
425 case E1000_DEV_ID_DH89XXCC_SGMII:
426 case E1000_DEV_ID_DH89XXCC_SERDES:
427 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
428 case E1000_DEV_ID_DH89XXCC_SFP:
429 mac->type = e1000_82580;
430 break;
431 case E1000_DEV_ID_I350_COPPER:
432 case E1000_DEV_ID_I350_FIBER:
433 case E1000_DEV_ID_I350_SERDES:
434 case E1000_DEV_ID_I350_SGMII:
435 mac->type = e1000_i350;
436 break;
437 case E1000_DEV_ID_I210_COPPER:
438 case E1000_DEV_ID_I210_COPPER_OEM1:
439 case E1000_DEV_ID_I210_COPPER_IT:
440 case E1000_DEV_ID_I210_FIBER:
441 case E1000_DEV_ID_I210_SERDES:
442 case E1000_DEV_ID_I210_SGMII:
443 mac->type = e1000_i210;
444 break;
445 case E1000_DEV_ID_I211_COPPER:
446 mac->type = e1000_i211;
447 break;
448 default:
449 return -E1000_ERR_MAC_INIT;
450 break;
451 }
452
453 /* Set media type */
454 /* The 82575 uses bits 22:23 for link mode. The mode can be changed
455 * based on the EEPROM. We cannot rely upon device ID. There
456 * is no distinguishable difference between fiber and internal
457 * SerDes mode on the 82575. There can be an external PHY attached
458 * on the SGMII interface. For this, we'll set sgmii_active to true.
459 */
460 hw->phy.media_type = e1000_media_type_copper;
461 dev_spec->sgmii_active = false;
462
463 ctrl_ext = rd32(E1000_CTRL_EXT);
464 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
465 case E1000_CTRL_EXT_LINK_MODE_SGMII:
466 dev_spec->sgmii_active = true;
467 break;
468 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
469 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
470 hw->phy.media_type = e1000_media_type_internal_serdes;
471 break;
472 default:
473 break;
474 }
475
476 /* mac initialization and operations */
477 ret_val = igb_init_mac_params_82575(hw);
478 if (ret_val)
479 goto out;
480
481 /* NVM initialization */
482 ret_val = igb_init_nvm_params_82575(hw);
483 if (ret_val)
484 goto out;
485
486 /* if part supports SR-IOV then initialize mailbox parameters */
487 switch (mac->type) {
488 case e1000_82576:
489 case e1000_i350:
490 igb_init_mbx_params_pf(hw);
491 break;
492 default:
493 break;
494 }
495
496 /* setup PHY parameters */
497 ret_val = igb_init_phy_params_82575(hw);
498
499 out:
500 return ret_val;
501 }
502
503 /**
504 * igb_acquire_phy_82575 - Acquire rights to access PHY
505 * @hw: pointer to the HW structure
506 *
507 * Acquire access rights to the correct PHY. This is a
508 * function pointer entry point called by the api module.
509 **/
510 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
511 {
512 u16 mask = E1000_SWFW_PHY0_SM;
513
514 if (hw->bus.func == E1000_FUNC_1)
515 mask = E1000_SWFW_PHY1_SM;
516 else if (hw->bus.func == E1000_FUNC_2)
517 mask = E1000_SWFW_PHY2_SM;
518 else if (hw->bus.func == E1000_FUNC_3)
519 mask = E1000_SWFW_PHY3_SM;
520
521 return hw->mac.ops.acquire_swfw_sync(hw, mask);
522 }
523
524 /**
525 * igb_release_phy_82575 - Release rights to access PHY
526 * @hw: pointer to the HW structure
527 *
528 * A wrapper to release access rights to the correct PHY. This is a
529 * function pointer entry point called by the api module.
530 **/
531 static void igb_release_phy_82575(struct e1000_hw *hw)
532 {
533 u16 mask = E1000_SWFW_PHY0_SM;
534
535 if (hw->bus.func == E1000_FUNC_1)
536 mask = E1000_SWFW_PHY1_SM;
537 else if (hw->bus.func == E1000_FUNC_2)
538 mask = E1000_SWFW_PHY2_SM;
539 else if (hw->bus.func == E1000_FUNC_3)
540 mask = E1000_SWFW_PHY3_SM;
541
542 hw->mac.ops.release_swfw_sync(hw, mask);
543 }
544
545 /**
546 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
547 * @hw: pointer to the HW structure
548 * @offset: register offset to be read
549 * @data: pointer to the read data
550 *
551 * Reads the PHY register at offset using the serial gigabit media independent
552 * interface and stores the retrieved information in data.
553 **/
554 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
555 u16 *data)
556 {
557 s32 ret_val = -E1000_ERR_PARAM;
558
559 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
560 hw_dbg("PHY Address %u is out of range\n", offset);
561 goto out;
562 }
563
564 ret_val = hw->phy.ops.acquire(hw);
565 if (ret_val)
566 goto out;
567
568 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
569
570 hw->phy.ops.release(hw);
571
572 out:
573 return ret_val;
574 }
575
576 /**
577 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
578 * @hw: pointer to the HW structure
579 * @offset: register offset to write to
580 * @data: data to write at register offset
581 *
582 * Writes the data to PHY register at the offset using the serial gigabit
583 * media independent interface.
584 **/
585 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
586 u16 data)
587 {
588 s32 ret_val = -E1000_ERR_PARAM;
589
590
591 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
592 hw_dbg("PHY Address %d is out of range\n", offset);
593 goto out;
594 }
595
596 ret_val = hw->phy.ops.acquire(hw);
597 if (ret_val)
598 goto out;
599
600 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
601
602 hw->phy.ops.release(hw);
603
604 out:
605 return ret_val;
606 }
607
608 /**
609 * igb_get_phy_id_82575 - Retrieve PHY addr and id
610 * @hw: pointer to the HW structure
611 *
612 * Retrieves the PHY address and ID for both PHY's which do and do not use
613 * sgmi interface.
614 **/
615 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
616 {
617 struct e1000_phy_info *phy = &hw->phy;
618 s32 ret_val = 0;
619 u16 phy_id;
620 u32 ctrl_ext;
621 u32 mdic;
622
623 /* For SGMII PHYs, we try the list of possible addresses until
624 * we find one that works. For non-SGMII PHYs
625 * (e.g. integrated copper PHYs), an address of 1 should
626 * work. The result of this function should mean phy->phy_addr
627 * and phy->id are set correctly.
628 */
629 if (!(igb_sgmii_active_82575(hw))) {
630 phy->addr = 1;
631 ret_val = igb_get_phy_id(hw);
632 goto out;
633 }
634
635 if (igb_sgmii_uses_mdio_82575(hw)) {
636 switch (hw->mac.type) {
637 case e1000_82575:
638 case e1000_82576:
639 mdic = rd32(E1000_MDIC);
640 mdic &= E1000_MDIC_PHY_MASK;
641 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
642 break;
643 case e1000_82580:
644 case e1000_i350:
645 case e1000_i210:
646 case e1000_i211:
647 mdic = rd32(E1000_MDICNFG);
648 mdic &= E1000_MDICNFG_PHY_MASK;
649 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
650 break;
651 default:
652 ret_val = -E1000_ERR_PHY;
653 goto out;
654 break;
655 }
656 ret_val = igb_get_phy_id(hw);
657 goto out;
658 }
659
660 /* Power on sgmii phy if it is disabled */
661 ctrl_ext = rd32(E1000_CTRL_EXT);
662 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
663 wrfl();
664 msleep(300);
665
666 /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
667 * Therefore, we need to test 1-7
668 */
669 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
670 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
671 if (ret_val == 0) {
672 hw_dbg("Vendor ID 0x%08X read at address %u\n",
673 phy_id, phy->addr);
674 /* At the time of this writing, The M88 part is
675 * the only supported SGMII PHY product.
676 */
677 if (phy_id == M88_VENDOR)
678 break;
679 } else {
680 hw_dbg("PHY address %u was unreadable\n", phy->addr);
681 }
682 }
683
684 /* A valid PHY type couldn't be found. */
685 if (phy->addr == 8) {
686 phy->addr = 0;
687 ret_val = -E1000_ERR_PHY;
688 goto out;
689 } else {
690 ret_val = igb_get_phy_id(hw);
691 }
692
693 /* restore previous sfp cage power state */
694 wr32(E1000_CTRL_EXT, ctrl_ext);
695
696 out:
697 return ret_val;
698 }
699
700 /**
701 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
702 * @hw: pointer to the HW structure
703 *
704 * Resets the PHY using the serial gigabit media independent interface.
705 **/
706 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
707 {
708 s32 ret_val;
709
710 /* This isn't a true "hard" reset, but is the only reset
711 * available to us at this time.
712 */
713
714 hw_dbg("Soft resetting SGMII attached PHY...\n");
715
716 /* SFP documentation requires the following to configure the SPF module
717 * to work on SGMII. No further documentation is given.
718 */
719 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
720 if (ret_val)
721 goto out;
722
723 ret_val = igb_phy_sw_reset(hw);
724
725 out:
726 return ret_val;
727 }
728
729 /**
730 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
731 * @hw: pointer to the HW structure
732 * @active: true to enable LPLU, false to disable
733 *
734 * Sets the LPLU D0 state according to the active flag. When
735 * activating LPLU this function also disables smart speed
736 * and vice versa. LPLU will not be activated unless the
737 * device autonegotiation advertisement meets standards of
738 * either 10 or 10/100 or 10/100/1000 at all duplexes.
739 * This is a function pointer entry point only called by
740 * PHY setup routines.
741 **/
742 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
743 {
744 struct e1000_phy_info *phy = &hw->phy;
745 s32 ret_val;
746 u16 data;
747
748 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
749 if (ret_val)
750 goto out;
751
752 if (active) {
753 data |= IGP02E1000_PM_D0_LPLU;
754 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
755 data);
756 if (ret_val)
757 goto out;
758
759 /* When LPLU is enabled, we should disable SmartSpeed */
760 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
761 &data);
762 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
763 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
764 data);
765 if (ret_val)
766 goto out;
767 } else {
768 data &= ~IGP02E1000_PM_D0_LPLU;
769 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
770 data);
771 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
772 * during Dx states where the power conservation is most
773 * important. During driver activity we should enable
774 * SmartSpeed, so performance is maintained.
775 */
776 if (phy->smart_speed == e1000_smart_speed_on) {
777 ret_val = phy->ops.read_reg(hw,
778 IGP01E1000_PHY_PORT_CONFIG, &data);
779 if (ret_val)
780 goto out;
781
782 data |= IGP01E1000_PSCFR_SMART_SPEED;
783 ret_val = phy->ops.write_reg(hw,
784 IGP01E1000_PHY_PORT_CONFIG, data);
785 if (ret_val)
786 goto out;
787 } else if (phy->smart_speed == e1000_smart_speed_off) {
788 ret_val = phy->ops.read_reg(hw,
789 IGP01E1000_PHY_PORT_CONFIG, &data);
790 if (ret_val)
791 goto out;
792
793 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
794 ret_val = phy->ops.write_reg(hw,
795 IGP01E1000_PHY_PORT_CONFIG, data);
796 if (ret_val)
797 goto out;
798 }
799 }
800
801 out:
802 return ret_val;
803 }
804
805 /**
806 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
807 * @hw: pointer to the HW structure
808 * @active: true to enable LPLU, false to disable
809 *
810 * Sets the LPLU D0 state according to the active flag. When
811 * activating LPLU this function also disables smart speed
812 * and vice versa. LPLU will not be activated unless the
813 * device autonegotiation advertisement meets standards of
814 * either 10 or 10/100 or 10/100/1000 at all duplexes.
815 * This is a function pointer entry point only called by
816 * PHY setup routines.
817 **/
818 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
819 {
820 struct e1000_phy_info *phy = &hw->phy;
821 s32 ret_val = 0;
822 u16 data;
823
824 data = rd32(E1000_82580_PHY_POWER_MGMT);
825
826 if (active) {
827 data |= E1000_82580_PM_D0_LPLU;
828
829 /* When LPLU is enabled, we should disable SmartSpeed */
830 data &= ~E1000_82580_PM_SPD;
831 } else {
832 data &= ~E1000_82580_PM_D0_LPLU;
833
834 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
835 * during Dx states where the power conservation is most
836 * important. During driver activity we should enable
837 * SmartSpeed, so performance is maintained.
838 */
839 if (phy->smart_speed == e1000_smart_speed_on)
840 data |= E1000_82580_PM_SPD;
841 else if (phy->smart_speed == e1000_smart_speed_off)
842 data &= ~E1000_82580_PM_SPD; }
843
844 wr32(E1000_82580_PHY_POWER_MGMT, data);
845 return ret_val;
846 }
847
848 /**
849 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
850 * @hw: pointer to the HW structure
851 * @active: boolean used to enable/disable lplu
852 *
853 * Success returns 0, Failure returns 1
854 *
855 * The low power link up (lplu) state is set to the power management level D3
856 * and SmartSpeed is disabled when active is true, else clear lplu for D3
857 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
858 * is used during Dx states where the power conservation is most important.
859 * During driver activity, SmartSpeed should be enabled so performance is
860 * maintained.
861 **/
862 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
863 {
864 struct e1000_phy_info *phy = &hw->phy;
865 s32 ret_val = 0;
866 u16 data;
867
868 data = rd32(E1000_82580_PHY_POWER_MGMT);
869
870 if (!active) {
871 data &= ~E1000_82580_PM_D3_LPLU;
872 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
873 * during Dx states where the power conservation is most
874 * important. During driver activity we should enable
875 * SmartSpeed, so performance is maintained.
876 */
877 if (phy->smart_speed == e1000_smart_speed_on)
878 data |= E1000_82580_PM_SPD;
879 else if (phy->smart_speed == e1000_smart_speed_off)
880 data &= ~E1000_82580_PM_SPD;
881 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
882 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
883 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
884 data |= E1000_82580_PM_D3_LPLU;
885 /* When LPLU is enabled, we should disable SmartSpeed */
886 data &= ~E1000_82580_PM_SPD;
887 }
888
889 wr32(E1000_82580_PHY_POWER_MGMT, data);
890 return ret_val;
891 }
892
893 /**
894 * igb_acquire_nvm_82575 - Request for access to EEPROM
895 * @hw: pointer to the HW structure
896 *
897 * Acquire the necessary semaphores for exclusive access to the EEPROM.
898 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
899 * Return successful if access grant bit set, else clear the request for
900 * EEPROM access and return -E1000_ERR_NVM (-1).
901 **/
902 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
903 {
904 s32 ret_val;
905
906 ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
907 if (ret_val)
908 goto out;
909
910 ret_val = igb_acquire_nvm(hw);
911
912 if (ret_val)
913 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
914
915 out:
916 return ret_val;
917 }
918
919 /**
920 * igb_release_nvm_82575 - Release exclusive access to EEPROM
921 * @hw: pointer to the HW structure
922 *
923 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
924 * then release the semaphores acquired.
925 **/
926 static void igb_release_nvm_82575(struct e1000_hw *hw)
927 {
928 igb_release_nvm(hw);
929 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
930 }
931
932 /**
933 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
934 * @hw: pointer to the HW structure
935 * @mask: specifies which semaphore to acquire
936 *
937 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
938 * will also specify which port we're acquiring the lock for.
939 **/
940 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
941 {
942 u32 swfw_sync;
943 u32 swmask = mask;
944 u32 fwmask = mask << 16;
945 s32 ret_val = 0;
946 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
947
948 while (i < timeout) {
949 if (igb_get_hw_semaphore(hw)) {
950 ret_val = -E1000_ERR_SWFW_SYNC;
951 goto out;
952 }
953
954 swfw_sync = rd32(E1000_SW_FW_SYNC);
955 if (!(swfw_sync & (fwmask | swmask)))
956 break;
957
958 /* Firmware currently using resource (fwmask)
959 * or other software thread using resource (swmask)
960 */
961 igb_put_hw_semaphore(hw);
962 mdelay(5);
963 i++;
964 }
965
966 if (i == timeout) {
967 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
968 ret_val = -E1000_ERR_SWFW_SYNC;
969 goto out;
970 }
971
972 swfw_sync |= swmask;
973 wr32(E1000_SW_FW_SYNC, swfw_sync);
974
975 igb_put_hw_semaphore(hw);
976
977 out:
978 return ret_val;
979 }
980
981 /**
982 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
983 * @hw: pointer to the HW structure
984 * @mask: specifies which semaphore to acquire
985 *
986 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
987 * will also specify which port we're releasing the lock for.
988 **/
989 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
990 {
991 u32 swfw_sync;
992
993 while (igb_get_hw_semaphore(hw) != 0);
994 /* Empty */
995
996 swfw_sync = rd32(E1000_SW_FW_SYNC);
997 swfw_sync &= ~mask;
998 wr32(E1000_SW_FW_SYNC, swfw_sync);
999
1000 igb_put_hw_semaphore(hw);
1001 }
1002
1003 /**
1004 * igb_get_cfg_done_82575 - Read config done bit
1005 * @hw: pointer to the HW structure
1006 *
1007 * Read the management control register for the config done bit for
1008 * completion status. NOTE: silicon which is EEPROM-less will fail trying
1009 * to read the config done bit, so an error is *ONLY* logged and returns
1010 * 0. If we were to return with error, EEPROM-less silicon
1011 * would not be able to be reset or change link.
1012 **/
1013 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1014 {
1015 s32 timeout = PHY_CFG_TIMEOUT;
1016 s32 ret_val = 0;
1017 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1018
1019 if (hw->bus.func == 1)
1020 mask = E1000_NVM_CFG_DONE_PORT_1;
1021 else if (hw->bus.func == E1000_FUNC_2)
1022 mask = E1000_NVM_CFG_DONE_PORT_2;
1023 else if (hw->bus.func == E1000_FUNC_3)
1024 mask = E1000_NVM_CFG_DONE_PORT_3;
1025
1026 while (timeout) {
1027 if (rd32(E1000_EEMNGCTL) & mask)
1028 break;
1029 msleep(1);
1030 timeout--;
1031 }
1032 if (!timeout)
1033 hw_dbg("MNG configuration cycle has not completed.\n");
1034
1035 /* If EEPROM is not marked present, init the PHY manually */
1036 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1037 (hw->phy.type == e1000_phy_igp_3))
1038 igb_phy_init_script_igp3(hw);
1039
1040 return ret_val;
1041 }
1042
1043 /**
1044 * igb_check_for_link_82575 - Check for link
1045 * @hw: pointer to the HW structure
1046 *
1047 * If sgmii is enabled, then use the pcs register to determine link, otherwise
1048 * use the generic interface for determining link.
1049 **/
1050 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1051 {
1052 s32 ret_val;
1053 u16 speed, duplex;
1054
1055 if (hw->phy.media_type != e1000_media_type_copper) {
1056 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1057 &duplex);
1058 /* Use this flag to determine if link needs to be checked or
1059 * not. If we have link clear the flag so that we do not
1060 * continue to check for link.
1061 */
1062 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1063
1064 /* Configure Flow Control now that Auto-Neg has completed.
1065 * First, we need to restore the desired flow control
1066 * settings because we may have had to re-autoneg with a
1067 * different link partner.
1068 */
1069 ret_val = igb_config_fc_after_link_up(hw);
1070 if (ret_val)
1071 hw_dbg("Error configuring flow control\n");
1072 } else {
1073 ret_val = igb_check_for_copper_link(hw);
1074 }
1075
1076 return ret_val;
1077 }
1078
1079 /**
1080 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1081 * @hw: pointer to the HW structure
1082 **/
1083 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1084 {
1085 u32 reg;
1086
1087
1088 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1089 !igb_sgmii_active_82575(hw))
1090 return;
1091
1092 /* Enable PCS to turn on link */
1093 reg = rd32(E1000_PCS_CFG0);
1094 reg |= E1000_PCS_CFG_PCS_EN;
1095 wr32(E1000_PCS_CFG0, reg);
1096
1097 /* Power up the laser */
1098 reg = rd32(E1000_CTRL_EXT);
1099 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1100 wr32(E1000_CTRL_EXT, reg);
1101
1102 /* flush the write to verify completion */
1103 wrfl();
1104 msleep(1);
1105 }
1106
1107 /**
1108 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1109 * @hw: pointer to the HW structure
1110 * @speed: stores the current speed
1111 * @duplex: stores the current duplex
1112 *
1113 * Using the physical coding sub-layer (PCS), retrieve the current speed and
1114 * duplex, then store the values in the pointers provided.
1115 **/
1116 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1117 u16 *duplex)
1118 {
1119 struct e1000_mac_info *mac = &hw->mac;
1120 u32 pcs;
1121
1122 /* Set up defaults for the return values of this function */
1123 mac->serdes_has_link = false;
1124 *speed = 0;
1125 *duplex = 0;
1126
1127 /* Read the PCS Status register for link state. For non-copper mode,
1128 * the status register is not accurate. The PCS status register is
1129 * used instead.
1130 */
1131 pcs = rd32(E1000_PCS_LSTAT);
1132
1133 /* The link up bit determines when link is up on autoneg. The sync ok
1134 * gets set once both sides sync up and agree upon link. Stable link
1135 * can be determined by checking for both link up and link sync ok
1136 */
1137 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1138 mac->serdes_has_link = true;
1139
1140 /* Detect and store PCS speed */
1141 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1142 *speed = SPEED_1000;
1143 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1144 *speed = SPEED_100;
1145 } else {
1146 *speed = SPEED_10;
1147 }
1148
1149 /* Detect and store PCS duplex */
1150 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1151 *duplex = FULL_DUPLEX;
1152 } else {
1153 *duplex = HALF_DUPLEX;
1154 }
1155 }
1156
1157 return 0;
1158 }
1159
1160 /**
1161 * igb_shutdown_serdes_link_82575 - Remove link during power down
1162 * @hw: pointer to the HW structure
1163 *
1164 * In the case of fiber serdes, shut down optics and PCS on driver unload
1165 * when management pass thru is not enabled.
1166 **/
1167 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1168 {
1169 u32 reg;
1170
1171 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1172 igb_sgmii_active_82575(hw))
1173 return;
1174
1175 if (!igb_enable_mng_pass_thru(hw)) {
1176 /* Disable PCS to turn off link */
1177 reg = rd32(E1000_PCS_CFG0);
1178 reg &= ~E1000_PCS_CFG_PCS_EN;
1179 wr32(E1000_PCS_CFG0, reg);
1180
1181 /* shutdown the laser */
1182 reg = rd32(E1000_CTRL_EXT);
1183 reg |= E1000_CTRL_EXT_SDP3_DATA;
1184 wr32(E1000_CTRL_EXT, reg);
1185
1186 /* flush the write to verify completion */
1187 wrfl();
1188 msleep(1);
1189 }
1190 }
1191
1192 /**
1193 * igb_reset_hw_82575 - Reset hardware
1194 * @hw: pointer to the HW structure
1195 *
1196 * This resets the hardware into a known state. This is a
1197 * function pointer entry point called by the api module.
1198 **/
1199 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1200 {
1201 u32 ctrl, icr;
1202 s32 ret_val;
1203
1204 /* Prevent the PCI-E bus from sticking if there is no TLP connection
1205 * on the last TLP read/write transaction when MAC is reset.
1206 */
1207 ret_val = igb_disable_pcie_master(hw);
1208 if (ret_val)
1209 hw_dbg("PCI-E Master disable polling has failed.\n");
1210
1211 /* set the completion timeout for interface */
1212 ret_val = igb_set_pcie_completion_timeout(hw);
1213 if (ret_val) {
1214 hw_dbg("PCI-E Set completion timeout has failed.\n");
1215 }
1216
1217 hw_dbg("Masking off all interrupts\n");
1218 wr32(E1000_IMC, 0xffffffff);
1219
1220 wr32(E1000_RCTL, 0);
1221 wr32(E1000_TCTL, E1000_TCTL_PSP);
1222 wrfl();
1223
1224 msleep(10);
1225
1226 ctrl = rd32(E1000_CTRL);
1227
1228 hw_dbg("Issuing a global reset to MAC\n");
1229 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1230
1231 ret_val = igb_get_auto_rd_done(hw);
1232 if (ret_val) {
1233 /* When auto config read does not complete, do not
1234 * return with an error. This can happen in situations
1235 * where there is no eeprom and prevents getting link.
1236 */
1237 hw_dbg("Auto Read Done did not complete\n");
1238 }
1239
1240 /* If EEPROM is not present, run manual init scripts */
1241 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1242 igb_reset_init_script_82575(hw);
1243
1244 /* Clear any pending interrupt events. */
1245 wr32(E1000_IMC, 0xffffffff);
1246 icr = rd32(E1000_ICR);
1247
1248 /* Install any alternate MAC address into RAR0 */
1249 ret_val = igb_check_alt_mac_addr(hw);
1250
1251 return ret_val;
1252 }
1253
1254 /**
1255 * igb_init_hw_82575 - Initialize hardware
1256 * @hw: pointer to the HW structure
1257 *
1258 * This inits the hardware readying it for operation.
1259 **/
1260 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1261 {
1262 struct e1000_mac_info *mac = &hw->mac;
1263 s32 ret_val;
1264 u16 i, rar_count = mac->rar_entry_count;
1265
1266 /* Initialize identification LED */
1267 ret_val = igb_id_led_init(hw);
1268 if (ret_val) {
1269 hw_dbg("Error initializing identification LED\n");
1270 /* This is not fatal and we should not stop init due to this */
1271 }
1272
1273 /* Disabling VLAN filtering */
1274 hw_dbg("Initializing the IEEE VLAN\n");
1275 if (hw->mac.type == e1000_i350)
1276 igb_clear_vfta_i350(hw);
1277 else
1278 igb_clear_vfta(hw);
1279
1280 /* Setup the receive address */
1281 igb_init_rx_addrs(hw, rar_count);
1282
1283 /* Zero out the Multicast HASH table */
1284 hw_dbg("Zeroing the MTA\n");
1285 for (i = 0; i < mac->mta_reg_count; i++)
1286 array_wr32(E1000_MTA, i, 0);
1287
1288 /* Zero out the Unicast HASH table */
1289 hw_dbg("Zeroing the UTA\n");
1290 for (i = 0; i < mac->uta_reg_count; i++)
1291 array_wr32(E1000_UTA, i, 0);
1292
1293 /* Setup link and flow control */
1294 ret_val = igb_setup_link(hw);
1295
1296 /* Clear all of the statistics registers (clear on read). It is
1297 * important that we do this after we have tried to establish link
1298 * because the symbol error count will increment wildly if there
1299 * is no link.
1300 */
1301 igb_clear_hw_cntrs_82575(hw);
1302 return ret_val;
1303 }
1304
1305 /**
1306 * igb_setup_copper_link_82575 - Configure copper link settings
1307 * @hw: pointer to the HW structure
1308 *
1309 * Configures the link for auto-neg or forced speed and duplex. Then we check
1310 * for link, once link is established calls to configure collision distance
1311 * and flow control are called.
1312 **/
1313 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1314 {
1315 u32 ctrl;
1316 s32 ret_val;
1317 u32 phpm_reg;
1318
1319 ctrl = rd32(E1000_CTRL);
1320 ctrl |= E1000_CTRL_SLU;
1321 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1322 wr32(E1000_CTRL, ctrl);
1323
1324 /* Clear Go Link Disconnect bit */
1325 if (hw->mac.type >= e1000_82580) {
1326 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1327 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1328 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1329 }
1330
1331 ret_val = igb_setup_serdes_link_82575(hw);
1332 if (ret_val)
1333 goto out;
1334
1335 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1336 /* allow time for SFP cage time to power up phy */
1337 msleep(300);
1338
1339 ret_val = hw->phy.ops.reset(hw);
1340 if (ret_val) {
1341 hw_dbg("Error resetting the PHY.\n");
1342 goto out;
1343 }
1344 }
1345 switch (hw->phy.type) {
1346 case e1000_phy_i210:
1347 case e1000_phy_m88:
1348 switch (hw->phy.id) {
1349 case I347AT4_E_PHY_ID:
1350 case M88E1112_E_PHY_ID:
1351 case I210_I_PHY_ID:
1352 ret_val = igb_copper_link_setup_m88_gen2(hw);
1353 break;
1354 default:
1355 ret_val = igb_copper_link_setup_m88(hw);
1356 break;
1357 }
1358 break;
1359 case e1000_phy_igp_3:
1360 ret_val = igb_copper_link_setup_igp(hw);
1361 break;
1362 case e1000_phy_82580:
1363 ret_val = igb_copper_link_setup_82580(hw);
1364 break;
1365 default:
1366 ret_val = -E1000_ERR_PHY;
1367 break;
1368 }
1369
1370 if (ret_val)
1371 goto out;
1372
1373 ret_val = igb_setup_copper_link(hw);
1374 out:
1375 return ret_val;
1376 }
1377
1378 /**
1379 * igb_setup_serdes_link_82575 - Setup link for serdes
1380 * @hw: pointer to the HW structure
1381 *
1382 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1383 * used on copper connections where the serialized gigabit media independent
1384 * interface (sgmii), or serdes fiber is being used. Configures the link
1385 * for auto-negotiation or forces speed/duplex.
1386 **/
1387 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1388 {
1389 u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1390 bool pcs_autoneg;
1391 s32 ret_val = E1000_SUCCESS;
1392 u16 data;
1393
1394 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1395 !igb_sgmii_active_82575(hw))
1396 return ret_val;
1397
1398
1399 /* On the 82575, SerDes loopback mode persists until it is
1400 * explicitly turned off or a power cycle is performed. A read to
1401 * the register does not indicate its status. Therefore, we ensure
1402 * loopback mode is disabled during initialization.
1403 */
1404 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1405
1406 /* power on the sfp cage if present and turn on I2C */
1407 ctrl_ext = rd32(E1000_CTRL_EXT);
1408 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1409 ctrl_ext |= E1000_CTRL_I2C_ENA;
1410 wr32(E1000_CTRL_EXT, ctrl_ext);
1411
1412 ctrl_reg = rd32(E1000_CTRL);
1413 ctrl_reg |= E1000_CTRL_SLU;
1414
1415 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1416 /* set both sw defined pins */
1417 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1418
1419 /* Set switch control to serdes energy detect */
1420 reg = rd32(E1000_CONNSW);
1421 reg |= E1000_CONNSW_ENRGSRC;
1422 wr32(E1000_CONNSW, reg);
1423 }
1424
1425 reg = rd32(E1000_PCS_LCTL);
1426
1427 /* default pcs_autoneg to the same setting as mac autoneg */
1428 pcs_autoneg = hw->mac.autoneg;
1429
1430 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1431 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1432 /* sgmii mode lets the phy handle forcing speed/duplex */
1433 pcs_autoneg = true;
1434 /* autoneg time out should be disabled for SGMII mode */
1435 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1436 break;
1437 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1438 /* disable PCS autoneg and support parallel detect only */
1439 pcs_autoneg = false;
1440 default:
1441 if (hw->mac.type == e1000_82575 ||
1442 hw->mac.type == e1000_82576) {
1443 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1444 if (ret_val) {
1445 printk(KERN_DEBUG "NVM Read Error\n\n");
1446 return ret_val;
1447 }
1448
1449 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1450 pcs_autoneg = false;
1451 }
1452
1453 /* non-SGMII modes only supports a speed of 1000/Full for the
1454 * link so it is best to just force the MAC and let the pcs
1455 * link either autoneg or be forced to 1000/Full
1456 */
1457 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1458 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1459
1460 /* set speed of 1000/Full if speed/duplex is forced */
1461 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1462 break;
1463 }
1464
1465 wr32(E1000_CTRL, ctrl_reg);
1466
1467 /* New SerDes mode allows for forcing speed or autonegotiating speed
1468 * at 1gb. Autoneg should be default set by most drivers. This is the
1469 * mode that will be compatible with older link partners and switches.
1470 * However, both are supported by the hardware and some drivers/tools.
1471 */
1472 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1473 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1474
1475 if (pcs_autoneg) {
1476 /* Set PCS register for autoneg */
1477 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1478 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1479
1480 /* Disable force flow control for autoneg */
1481 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1482
1483 /* Configure flow control advertisement for autoneg */
1484 anadv_reg = rd32(E1000_PCS_ANADV);
1485 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1486 switch (hw->fc.requested_mode) {
1487 case e1000_fc_full:
1488 case e1000_fc_rx_pause:
1489 anadv_reg |= E1000_TXCW_ASM_DIR;
1490 anadv_reg |= E1000_TXCW_PAUSE;
1491 break;
1492 case e1000_fc_tx_pause:
1493 anadv_reg |= E1000_TXCW_ASM_DIR;
1494 break;
1495 default:
1496 break;
1497 }
1498 wr32(E1000_PCS_ANADV, anadv_reg);
1499
1500 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1501 } else {
1502 /* Set PCS register for forced link */
1503 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
1504
1505 /* Force flow control for forced link */
1506 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1507
1508 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1509 }
1510
1511 wr32(E1000_PCS_LCTL, reg);
1512
1513 if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1514 igb_force_mac_fc(hw);
1515
1516 return ret_val;
1517 }
1518
1519 /**
1520 * igb_sgmii_active_82575 - Return sgmii state
1521 * @hw: pointer to the HW structure
1522 *
1523 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1524 * which can be enabled for use in the embedded applications. Simply
1525 * return the current state of the sgmii interface.
1526 **/
1527 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1528 {
1529 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1530 return dev_spec->sgmii_active;
1531 }
1532
1533 /**
1534 * igb_reset_init_script_82575 - Inits HW defaults after reset
1535 * @hw: pointer to the HW structure
1536 *
1537 * Inits recommended HW defaults after a reset when there is no EEPROM
1538 * detected. This is only for the 82575.
1539 **/
1540 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1541 {
1542 if (hw->mac.type == e1000_82575) {
1543 hw_dbg("Running reset init script for 82575\n");
1544 /* SerDes configuration via SERDESCTRL */
1545 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1546 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1547 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1548 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1549
1550 /* CCM configuration via CCMCTL register */
1551 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1552 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1553
1554 /* PCIe lanes configuration */
1555 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1556 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1557 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1558 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1559
1560 /* PCIe PLL Configuration */
1561 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1562 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1563 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1564 }
1565
1566 return 0;
1567 }
1568
1569 /**
1570 * igb_read_mac_addr_82575 - Read device MAC address
1571 * @hw: pointer to the HW structure
1572 **/
1573 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1574 {
1575 s32 ret_val = 0;
1576
1577 /* If there's an alternate MAC address place it in RAR0
1578 * so that it will override the Si installed default perm
1579 * address.
1580 */
1581 ret_val = igb_check_alt_mac_addr(hw);
1582 if (ret_val)
1583 goto out;
1584
1585 ret_val = igb_read_mac_addr(hw);
1586
1587 out:
1588 return ret_val;
1589 }
1590
1591 /**
1592 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1593 * @hw: pointer to the HW structure
1594 *
1595 * In the case of a PHY power down to save power, or to turn off link during a
1596 * driver unload, or wake on lan is not enabled, remove the link.
1597 **/
1598 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1599 {
1600 /* If the management interface is not enabled, then power down */
1601 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1602 igb_power_down_phy_copper(hw);
1603 }
1604
1605 /**
1606 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1607 * @hw: pointer to the HW structure
1608 *
1609 * Clears the hardware counters by reading the counter registers.
1610 **/
1611 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1612 {
1613 igb_clear_hw_cntrs_base(hw);
1614
1615 rd32(E1000_PRC64);
1616 rd32(E1000_PRC127);
1617 rd32(E1000_PRC255);
1618 rd32(E1000_PRC511);
1619 rd32(E1000_PRC1023);
1620 rd32(E1000_PRC1522);
1621 rd32(E1000_PTC64);
1622 rd32(E1000_PTC127);
1623 rd32(E1000_PTC255);
1624 rd32(E1000_PTC511);
1625 rd32(E1000_PTC1023);
1626 rd32(E1000_PTC1522);
1627
1628 rd32(E1000_ALGNERRC);
1629 rd32(E1000_RXERRC);
1630 rd32(E1000_TNCRS);
1631 rd32(E1000_CEXTERR);
1632 rd32(E1000_TSCTC);
1633 rd32(E1000_TSCTFC);
1634
1635 rd32(E1000_MGTPRC);
1636 rd32(E1000_MGTPDC);
1637 rd32(E1000_MGTPTC);
1638
1639 rd32(E1000_IAC);
1640 rd32(E1000_ICRXOC);
1641
1642 rd32(E1000_ICRXPTC);
1643 rd32(E1000_ICRXATC);
1644 rd32(E1000_ICTXPTC);
1645 rd32(E1000_ICTXATC);
1646 rd32(E1000_ICTXQEC);
1647 rd32(E1000_ICTXQMTC);
1648 rd32(E1000_ICRXDMTC);
1649
1650 rd32(E1000_CBTMPC);
1651 rd32(E1000_HTDPMC);
1652 rd32(E1000_CBRMPC);
1653 rd32(E1000_RPTHC);
1654 rd32(E1000_HGPTC);
1655 rd32(E1000_HTCBDPC);
1656 rd32(E1000_HGORCL);
1657 rd32(E1000_HGORCH);
1658 rd32(E1000_HGOTCL);
1659 rd32(E1000_HGOTCH);
1660 rd32(E1000_LENERRS);
1661
1662 /* This register should not be read in copper configurations */
1663 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1664 igb_sgmii_active_82575(hw))
1665 rd32(E1000_SCVPC);
1666 }
1667
1668 /**
1669 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1670 * @hw: pointer to the HW structure
1671 *
1672 * After rx enable if managability is enabled then there is likely some
1673 * bad data at the start of the fifo and possibly in the DMA fifo. This
1674 * function clears the fifos and flushes any packets that came in as rx was
1675 * being enabled.
1676 **/
1677 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1678 {
1679 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1680 int i, ms_wait;
1681
1682 if (hw->mac.type != e1000_82575 ||
1683 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1684 return;
1685
1686 /* Disable all RX queues */
1687 for (i = 0; i < 4; i++) {
1688 rxdctl[i] = rd32(E1000_RXDCTL(i));
1689 wr32(E1000_RXDCTL(i),
1690 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1691 }
1692 /* Poll all queues to verify they have shut down */
1693 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1694 msleep(1);
1695 rx_enabled = 0;
1696 for (i = 0; i < 4; i++)
1697 rx_enabled |= rd32(E1000_RXDCTL(i));
1698 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1699 break;
1700 }
1701
1702 if (ms_wait == 10)
1703 hw_dbg("Queue disable timed out after 10ms\n");
1704
1705 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1706 * incoming packets are rejected. Set enable and wait 2ms so that
1707 * any packet that was coming in as RCTL.EN was set is flushed
1708 */
1709 rfctl = rd32(E1000_RFCTL);
1710 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1711
1712 rlpml = rd32(E1000_RLPML);
1713 wr32(E1000_RLPML, 0);
1714
1715 rctl = rd32(E1000_RCTL);
1716 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1717 temp_rctl |= E1000_RCTL_LPE;
1718
1719 wr32(E1000_RCTL, temp_rctl);
1720 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1721 wrfl();
1722 msleep(2);
1723
1724 /* Enable RX queues that were previously enabled and restore our
1725 * previous state
1726 */
1727 for (i = 0; i < 4; i++)
1728 wr32(E1000_RXDCTL(i), rxdctl[i]);
1729 wr32(E1000_RCTL, rctl);
1730 wrfl();
1731
1732 wr32(E1000_RLPML, rlpml);
1733 wr32(E1000_RFCTL, rfctl);
1734
1735 /* Flush receive errors generated by workaround */
1736 rd32(E1000_ROC);
1737 rd32(E1000_RNBC);
1738 rd32(E1000_MPC);
1739 }
1740
1741 /**
1742 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1743 * @hw: pointer to the HW structure
1744 *
1745 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1746 * however the hardware default for these parts is 500us to 1ms which is less
1747 * than the 10ms recommended by the pci-e spec. To address this we need to
1748 * increase the value to either 10ms to 200ms for capability version 1 config,
1749 * or 16ms to 55ms for version 2.
1750 **/
1751 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1752 {
1753 u32 gcr = rd32(E1000_GCR);
1754 s32 ret_val = 0;
1755 u16 pcie_devctl2;
1756
1757 /* only take action if timeout value is defaulted to 0 */
1758 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1759 goto out;
1760
1761 /* if capabilities version is type 1 we can write the
1762 * timeout of 10ms to 200ms through the GCR register
1763 */
1764 if (!(gcr & E1000_GCR_CAP_VER2)) {
1765 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1766 goto out;
1767 }
1768
1769 /* for version 2 capabilities we need to write the config space
1770 * directly in order to set the completion timeout value for
1771 * 16ms to 55ms
1772 */
1773 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1774 &pcie_devctl2);
1775 if (ret_val)
1776 goto out;
1777
1778 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1779
1780 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1781 &pcie_devctl2);
1782 out:
1783 /* disable completion timeout resend */
1784 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1785
1786 wr32(E1000_GCR, gcr);
1787 return ret_val;
1788 }
1789
1790 /**
1791 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1792 * @hw: pointer to the hardware struct
1793 * @enable: state to enter, either enabled or disabled
1794 * @pf: Physical Function pool - do not set anti-spoofing for the PF
1795 *
1796 * enables/disables L2 switch anti-spoofing functionality.
1797 **/
1798 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1799 {
1800 u32 reg_val, reg_offset;
1801
1802 switch (hw->mac.type) {
1803 case e1000_82576:
1804 reg_offset = E1000_DTXSWC;
1805 break;
1806 case e1000_i350:
1807 reg_offset = E1000_TXSWC;
1808 break;
1809 default:
1810 return;
1811 }
1812
1813 reg_val = rd32(reg_offset);
1814 if (enable) {
1815 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1816 E1000_DTXSWC_VLAN_SPOOF_MASK);
1817 /* The PF can spoof - it has to in order to
1818 * support emulation mode NICs
1819 */
1820 reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1821 } else {
1822 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1823 E1000_DTXSWC_VLAN_SPOOF_MASK);
1824 }
1825 wr32(reg_offset, reg_val);
1826 }
1827
1828 /**
1829 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1830 * @hw: pointer to the hardware struct
1831 * @enable: state to enter, either enabled or disabled
1832 *
1833 * enables/disables L2 switch loopback functionality.
1834 **/
1835 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1836 {
1837 u32 dtxswc;
1838
1839 switch (hw->mac.type) {
1840 case e1000_82576:
1841 dtxswc = rd32(E1000_DTXSWC);
1842 if (enable)
1843 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1844 else
1845 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1846 wr32(E1000_DTXSWC, dtxswc);
1847 break;
1848 case e1000_i350:
1849 dtxswc = rd32(E1000_TXSWC);
1850 if (enable)
1851 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1852 else
1853 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1854 wr32(E1000_TXSWC, dtxswc);
1855 break;
1856 default:
1857 /* Currently no other hardware supports loopback */
1858 break;
1859 }
1860
1861 }
1862
1863 /**
1864 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1865 * @hw: pointer to the hardware struct
1866 * @enable: state to enter, either enabled or disabled
1867 *
1868 * enables/disables replication of packets across multiple pools.
1869 **/
1870 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1871 {
1872 u32 vt_ctl = rd32(E1000_VT_CTL);
1873
1874 if (enable)
1875 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1876 else
1877 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1878
1879 wr32(E1000_VT_CTL, vt_ctl);
1880 }
1881
1882 /**
1883 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1884 * @hw: pointer to the HW structure
1885 * @offset: register offset to be read
1886 * @data: pointer to the read data
1887 *
1888 * Reads the MDI control register in the PHY at offset and stores the
1889 * information read to data.
1890 **/
1891 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1892 {
1893 s32 ret_val;
1894
1895 ret_val = hw->phy.ops.acquire(hw);
1896 if (ret_val)
1897 goto out;
1898
1899 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1900
1901 hw->phy.ops.release(hw);
1902
1903 out:
1904 return ret_val;
1905 }
1906
1907 /**
1908 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1909 * @hw: pointer to the HW structure
1910 * @offset: register offset to write to
1911 * @data: data to write to register at offset
1912 *
1913 * Writes data to MDI control register in the PHY at offset.
1914 **/
1915 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1916 {
1917 s32 ret_val;
1918
1919
1920 ret_val = hw->phy.ops.acquire(hw);
1921 if (ret_val)
1922 goto out;
1923
1924 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1925
1926 hw->phy.ops.release(hw);
1927
1928 out:
1929 return ret_val;
1930 }
1931
1932 /**
1933 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1934 * @hw: pointer to the HW structure
1935 *
1936 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1937 * the values found in the EEPROM. This addresses an issue in which these
1938 * bits are not restored from EEPROM after reset.
1939 **/
1940 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1941 {
1942 s32 ret_val = 0;
1943 u32 mdicnfg;
1944 u16 nvm_data = 0;
1945
1946 if (hw->mac.type != e1000_82580)
1947 goto out;
1948 if (!igb_sgmii_active_82575(hw))
1949 goto out;
1950
1951 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1952 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1953 &nvm_data);
1954 if (ret_val) {
1955 hw_dbg("NVM Read Error\n");
1956 goto out;
1957 }
1958
1959 mdicnfg = rd32(E1000_MDICNFG);
1960 if (nvm_data & NVM_WORD24_EXT_MDIO)
1961 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1962 if (nvm_data & NVM_WORD24_COM_MDIO)
1963 mdicnfg |= E1000_MDICNFG_COM_MDIO;
1964 wr32(E1000_MDICNFG, mdicnfg);
1965 out:
1966 return ret_val;
1967 }
1968
1969 /**
1970 * igb_reset_hw_82580 - Reset hardware
1971 * @hw: pointer to the HW structure
1972 *
1973 * This resets function or entire device (all ports, etc.)
1974 * to a known state.
1975 **/
1976 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1977 {
1978 s32 ret_val = 0;
1979 /* BH SW mailbox bit in SW_FW_SYNC */
1980 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1981 u32 ctrl, icr;
1982 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1983
1984
1985 hw->dev_spec._82575.global_device_reset = false;
1986
1987 /* due to hw errata, global device reset doesn't always
1988 * work on 82580
1989 */
1990 if (hw->mac.type == e1000_82580)
1991 global_device_reset = false;
1992
1993 /* Get current control state. */
1994 ctrl = rd32(E1000_CTRL);
1995
1996 /* Prevent the PCI-E bus from sticking if there is no TLP connection
1997 * on the last TLP read/write transaction when MAC is reset.
1998 */
1999 ret_val = igb_disable_pcie_master(hw);
2000 if (ret_val)
2001 hw_dbg("PCI-E Master disable polling has failed.\n");
2002
2003 hw_dbg("Masking off all interrupts\n");
2004 wr32(E1000_IMC, 0xffffffff);
2005 wr32(E1000_RCTL, 0);
2006 wr32(E1000_TCTL, E1000_TCTL_PSP);
2007 wrfl();
2008
2009 msleep(10);
2010
2011 /* Determine whether or not a global dev reset is requested */
2012 if (global_device_reset &&
2013 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2014 global_device_reset = false;
2015
2016 if (global_device_reset &&
2017 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2018 ctrl |= E1000_CTRL_DEV_RST;
2019 else
2020 ctrl |= E1000_CTRL_RST;
2021
2022 wr32(E1000_CTRL, ctrl);
2023 wrfl();
2024
2025 /* Add delay to insure DEV_RST has time to complete */
2026 if (global_device_reset)
2027 msleep(5);
2028
2029 ret_val = igb_get_auto_rd_done(hw);
2030 if (ret_val) {
2031 /* When auto config read does not complete, do not
2032 * return with an error. This can happen in situations
2033 * where there is no eeprom and prevents getting link.
2034 */
2035 hw_dbg("Auto Read Done did not complete\n");
2036 }
2037
2038 /* If EEPROM is not present, run manual init scripts */
2039 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
2040 igb_reset_init_script_82575(hw);
2041
2042 /* clear global device reset status bit */
2043 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2044
2045 /* Clear any pending interrupt events. */
2046 wr32(E1000_IMC, 0xffffffff);
2047 icr = rd32(E1000_ICR);
2048
2049 ret_val = igb_reset_mdicnfg_82580(hw);
2050 if (ret_val)
2051 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2052
2053 /* Install any alternate MAC address into RAR0 */
2054 ret_val = igb_check_alt_mac_addr(hw);
2055
2056 /* Release semaphore */
2057 if (global_device_reset)
2058 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2059
2060 return ret_val;
2061 }
2062
2063 /**
2064 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2065 * @data: data received by reading RXPBS register
2066 *
2067 * The 82580 uses a table based approach for packet buffer allocation sizes.
2068 * This function converts the retrieved value into the correct table value
2069 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2070 * 0x0 36 72 144 1 2 4 8 16
2071 * 0x8 35 70 140 rsv rsv rsv rsv rsv
2072 */
2073 u16 igb_rxpbs_adjust_82580(u32 data)
2074 {
2075 u16 ret_val = 0;
2076
2077 if (data < E1000_82580_RXPBS_TABLE_SIZE)
2078 ret_val = e1000_82580_rxpbs_table[data];
2079
2080 return ret_val;
2081 }
2082
2083 /**
2084 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
2085 * checksum
2086 * @hw: pointer to the HW structure
2087 * @offset: offset in words of the checksum protected region
2088 *
2089 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2090 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2091 **/
2092 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2093 u16 offset)
2094 {
2095 s32 ret_val = 0;
2096 u16 checksum = 0;
2097 u16 i, nvm_data;
2098
2099 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2100 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2101 if (ret_val) {
2102 hw_dbg("NVM Read Error\n");
2103 goto out;
2104 }
2105 checksum += nvm_data;
2106 }
2107
2108 if (checksum != (u16) NVM_SUM) {
2109 hw_dbg("NVM Checksum Invalid\n");
2110 ret_val = -E1000_ERR_NVM;
2111 goto out;
2112 }
2113
2114 out:
2115 return ret_val;
2116 }
2117
2118 /**
2119 * igb_update_nvm_checksum_with_offset - Update EEPROM
2120 * checksum
2121 * @hw: pointer to the HW structure
2122 * @offset: offset in words of the checksum protected region
2123 *
2124 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2125 * up to the checksum. Then calculates the EEPROM checksum and writes the
2126 * value to the EEPROM.
2127 **/
2128 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2129 {
2130 s32 ret_val;
2131 u16 checksum = 0;
2132 u16 i, nvm_data;
2133
2134 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2135 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2136 if (ret_val) {
2137 hw_dbg("NVM Read Error while updating checksum.\n");
2138 goto out;
2139 }
2140 checksum += nvm_data;
2141 }
2142 checksum = (u16) NVM_SUM - checksum;
2143 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2144 &checksum);
2145 if (ret_val)
2146 hw_dbg("NVM Write Error while updating checksum.\n");
2147
2148 out:
2149 return ret_val;
2150 }
2151
2152 /**
2153 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2154 * @hw: pointer to the HW structure
2155 *
2156 * Calculates the EEPROM section checksum by reading/adding each word of
2157 * the EEPROM and then verifies that the sum of the EEPROM is
2158 * equal to 0xBABA.
2159 **/
2160 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2161 {
2162 s32 ret_val = 0;
2163 u16 eeprom_regions_count = 1;
2164 u16 j, nvm_data;
2165 u16 nvm_offset;
2166
2167 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2168 if (ret_val) {
2169 hw_dbg("NVM Read Error\n");
2170 goto out;
2171 }
2172
2173 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2174 /* if checksums compatibility bit is set validate checksums
2175 * for all 4 ports.
2176 */
2177 eeprom_regions_count = 4;
2178 }
2179
2180 for (j = 0; j < eeprom_regions_count; j++) {
2181 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2182 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2183 nvm_offset);
2184 if (ret_val != 0)
2185 goto out;
2186 }
2187
2188 out:
2189 return ret_val;
2190 }
2191
2192 /**
2193 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
2194 * @hw: pointer to the HW structure
2195 *
2196 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2197 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2198 * checksum and writes the value to the EEPROM.
2199 **/
2200 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2201 {
2202 s32 ret_val;
2203 u16 j, nvm_data;
2204 u16 nvm_offset;
2205
2206 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2207 if (ret_val) {
2208 hw_dbg("NVM Read Error while updating checksum"
2209 " compatibility bit.\n");
2210 goto out;
2211 }
2212
2213 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2214 /* set compatibility bit to validate checksums appropriately */
2215 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2216 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2217 &nvm_data);
2218 if (ret_val) {
2219 hw_dbg("NVM Write Error while updating checksum"
2220 " compatibility bit.\n");
2221 goto out;
2222 }
2223 }
2224
2225 for (j = 0; j < 4; j++) {
2226 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2227 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2228 if (ret_val)
2229 goto out;
2230 }
2231
2232 out:
2233 return ret_val;
2234 }
2235
2236 /**
2237 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2238 * @hw: pointer to the HW structure
2239 *
2240 * Calculates the EEPROM section checksum by reading/adding each word of
2241 * the EEPROM and then verifies that the sum of the EEPROM is
2242 * equal to 0xBABA.
2243 **/
2244 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2245 {
2246 s32 ret_val = 0;
2247 u16 j;
2248 u16 nvm_offset;
2249
2250 for (j = 0; j < 4; j++) {
2251 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2252 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2253 nvm_offset);
2254 if (ret_val != 0)
2255 goto out;
2256 }
2257
2258 out:
2259 return ret_val;
2260 }
2261
2262 /**
2263 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2264 * @hw: pointer to the HW structure
2265 *
2266 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2267 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2268 * checksum and writes the value to the EEPROM.
2269 **/
2270 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2271 {
2272 s32 ret_val = 0;
2273 u16 j;
2274 u16 nvm_offset;
2275
2276 for (j = 0; j < 4; j++) {
2277 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2278 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2279 if (ret_val != 0)
2280 goto out;
2281 }
2282
2283 out:
2284 return ret_val;
2285 }
2286
2287 /**
2288 * igb_set_eee_i350 - Enable/disable EEE support
2289 * @hw: pointer to the HW structure
2290 *
2291 * Enable/disable EEE based on setting in dev_spec structure.
2292 *
2293 **/
2294 s32 igb_set_eee_i350(struct e1000_hw *hw)
2295 {
2296 s32 ret_val = 0;
2297 u32 ipcnfg, eeer;
2298
2299 if ((hw->mac.type < e1000_i350) ||
2300 (hw->phy.media_type != e1000_media_type_copper))
2301 goto out;
2302 ipcnfg = rd32(E1000_IPCNFG);
2303 eeer = rd32(E1000_EEER);
2304
2305 /* enable or disable per user setting */
2306 if (!(hw->dev_spec._82575.eee_disable)) {
2307 u32 eee_su = rd32(E1000_EEE_SU);
2308
2309 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2310 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2311 E1000_EEER_LPI_FC);
2312
2313 /* This bit should not be set in normal operation. */
2314 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2315 hw_dbg("LPI Clock Stop Bit should not be set!\n");
2316
2317 } else {
2318 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2319 E1000_IPCNFG_EEE_100M_AN);
2320 eeer &= ~(E1000_EEER_TX_LPI_EN |
2321 E1000_EEER_RX_LPI_EN |
2322 E1000_EEER_LPI_FC);
2323 }
2324 wr32(E1000_IPCNFG, ipcnfg);
2325 wr32(E1000_EEER, eeer);
2326 rd32(E1000_IPCNFG);
2327 rd32(E1000_EEER);
2328 out:
2329
2330 return ret_val;
2331 }
2332
2333 static const u8 e1000_emc_temp_data[4] = {
2334 E1000_EMC_INTERNAL_DATA,
2335 E1000_EMC_DIODE1_DATA,
2336 E1000_EMC_DIODE2_DATA,
2337 E1000_EMC_DIODE3_DATA
2338 };
2339 static const u8 e1000_emc_therm_limit[4] = {
2340 E1000_EMC_INTERNAL_THERM_LIMIT,
2341 E1000_EMC_DIODE1_THERM_LIMIT,
2342 E1000_EMC_DIODE2_THERM_LIMIT,
2343 E1000_EMC_DIODE3_THERM_LIMIT
2344 };
2345
2346 /**
2347 * igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2348 * @hw: pointer to hardware structure
2349 *
2350 * Updates the temperatures in mac.thermal_sensor_data
2351 **/
2352 s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2353 {
2354 s32 status = E1000_SUCCESS;
2355 u16 ets_offset;
2356 u16 ets_cfg;
2357 u16 ets_sensor;
2358 u8 num_sensors;
2359 u8 sensor_index;
2360 u8 sensor_location;
2361 u8 i;
2362 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2363
2364 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2365 return E1000_NOT_IMPLEMENTED;
2366
2367 data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2368
2369 /* Return the internal sensor only if ETS is unsupported */
2370 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2371 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2372 return status;
2373
2374 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2375 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2376 != NVM_ETS_TYPE_EMC)
2377 return E1000_NOT_IMPLEMENTED;
2378
2379 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2380 if (num_sensors > E1000_MAX_SENSORS)
2381 num_sensors = E1000_MAX_SENSORS;
2382
2383 for (i = 1; i < num_sensors; i++) {
2384 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2385 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2386 NVM_ETS_DATA_INDEX_SHIFT);
2387 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2388 NVM_ETS_DATA_LOC_SHIFT);
2389
2390 if (sensor_location != 0)
2391 hw->phy.ops.read_i2c_byte(hw,
2392 e1000_emc_temp_data[sensor_index],
2393 E1000_I2C_THERMAL_SENSOR_ADDR,
2394 &data->sensor[i].temp);
2395 }
2396 return status;
2397 }
2398
2399 /**
2400 * igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2401 * @hw: pointer to hardware structure
2402 *
2403 * Sets the thermal sensor thresholds according to the NVM map
2404 * and save off the threshold and location values into mac.thermal_sensor_data
2405 **/
2406 s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2407 {
2408 s32 status = E1000_SUCCESS;
2409 u16 ets_offset;
2410 u16 ets_cfg;
2411 u16 ets_sensor;
2412 u8 low_thresh_delta;
2413 u8 num_sensors;
2414 u8 sensor_index;
2415 u8 sensor_location;
2416 u8 therm_limit;
2417 u8 i;
2418 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2419
2420 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2421 return E1000_NOT_IMPLEMENTED;
2422
2423 memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2424
2425 data->sensor[0].location = 0x1;
2426 data->sensor[0].caution_thresh =
2427 (rd32(E1000_THHIGHTC) & 0xFF);
2428 data->sensor[0].max_op_thresh =
2429 (rd32(E1000_THLOWTC) & 0xFF);
2430
2431 /* Return the internal sensor only if ETS is unsupported */
2432 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2433 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2434 return status;
2435
2436 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2437 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2438 != NVM_ETS_TYPE_EMC)
2439 return E1000_NOT_IMPLEMENTED;
2440
2441 low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2442 NVM_ETS_LTHRES_DELTA_SHIFT);
2443 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2444
2445 for (i = 1; i <= num_sensors; i++) {
2446 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2447 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2448 NVM_ETS_DATA_INDEX_SHIFT);
2449 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2450 NVM_ETS_DATA_LOC_SHIFT);
2451 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2452
2453 hw->phy.ops.write_i2c_byte(hw,
2454 e1000_emc_therm_limit[sensor_index],
2455 E1000_I2C_THERMAL_SENSOR_ADDR,
2456 therm_limit);
2457
2458 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2459 data->sensor[i].location = sensor_location;
2460 data->sensor[i].caution_thresh = therm_limit;
2461 data->sensor[i].max_op_thresh = therm_limit -
2462 low_thresh_delta;
2463 }
2464 }
2465 return status;
2466 }
2467
2468 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2469 .init_hw = igb_init_hw_82575,
2470 .check_for_link = igb_check_for_link_82575,
2471 .rar_set = igb_rar_set,
2472 .read_mac_addr = igb_read_mac_addr_82575,
2473 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2474 #ifdef CONFIG_IGB_HWMON
2475 .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2476 .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2477 #endif
2478 };
2479
2480 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2481 .acquire = igb_acquire_phy_82575,
2482 .get_cfg_done = igb_get_cfg_done_82575,
2483 .release = igb_release_phy_82575,
2484 .write_i2c_byte = igb_write_i2c_byte,
2485 .read_i2c_byte = igb_read_i2c_byte,
2486 };
2487
2488 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2489 .acquire = igb_acquire_nvm_82575,
2490 .read = igb_read_nvm_eerd,
2491 .release = igb_release_nvm_82575,
2492 .write = igb_write_nvm_spi,
2493 };
2494
2495 const struct e1000_info e1000_82575_info = {
2496 .get_invariants = igb_get_invariants_82575,
2497 .mac_ops = &e1000_mac_ops_82575,
2498 .phy_ops = &e1000_phy_ops_82575,
2499 .nvm_ops = &e1000_nvm_ops_82575,
2500 };
2501
This page took 0.125091 seconds and 5 git commands to generate.