Merge branch 'for-3.11-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / e1000_82575.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* e1000_82575
29 * e1000_82576
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
36 #include <linux/i2c.h>
37
38 #include "e1000_mac.h"
39 #include "e1000_82575.h"
40 #include "e1000_i210.h"
41
42 static s32 igb_get_invariants_82575(struct e1000_hw *);
43 static s32 igb_acquire_phy_82575(struct e1000_hw *);
44 static void igb_release_phy_82575(struct e1000_hw *);
45 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
46 static void igb_release_nvm_82575(struct e1000_hw *);
47 static s32 igb_check_for_link_82575(struct e1000_hw *);
48 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
49 static s32 igb_init_hw_82575(struct e1000_hw *);
50 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
51 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
52 static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
53 static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
54 static s32 igb_reset_hw_82575(struct e1000_hw *);
55 static s32 igb_reset_hw_82580(struct e1000_hw *);
56 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
57 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
58 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
59 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
60 static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
61 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
62 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
63 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
64 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
65 u16 *);
66 static s32 igb_get_phy_id_82575(struct e1000_hw *);
67 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
68 static bool igb_sgmii_active_82575(struct e1000_hw *);
69 static s32 igb_reset_init_script_82575(struct e1000_hw *);
70 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
71 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
72 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
73 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
75 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
76 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
77 static const u16 e1000_82580_rxpbs_table[] =
78 { 36, 72, 144, 1, 2, 4, 8, 16,
79 35, 70, 140 };
80 #define E1000_82580_RXPBS_TABLE_SIZE \
81 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
82
83 /**
84 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
85 * @hw: pointer to the HW structure
86 *
87 * Called to determine if the I2C pins are being used for I2C or as an
88 * external MDIO interface since the two options are mutually exclusive.
89 **/
90 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
91 {
92 u32 reg = 0;
93 bool ext_mdio = false;
94
95 switch (hw->mac.type) {
96 case e1000_82575:
97 case e1000_82576:
98 reg = rd32(E1000_MDIC);
99 ext_mdio = !!(reg & E1000_MDIC_DEST);
100 break;
101 case e1000_82580:
102 case e1000_i350:
103 case e1000_i354:
104 case e1000_i210:
105 case e1000_i211:
106 reg = rd32(E1000_MDICNFG);
107 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
108 break;
109 default:
110 break;
111 }
112 return ext_mdio;
113 }
114
115 /**
116 * igb_init_phy_params_82575 - Init PHY func ptrs.
117 * @hw: pointer to the HW structure
118 **/
119 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
120 {
121 struct e1000_phy_info *phy = &hw->phy;
122 s32 ret_val = 0;
123 u32 ctrl_ext;
124
125 if (hw->phy.media_type != e1000_media_type_copper) {
126 phy->type = e1000_phy_none;
127 goto out;
128 }
129
130 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
131 phy->reset_delay_us = 100;
132
133 ctrl_ext = rd32(E1000_CTRL_EXT);
134
135 if (igb_sgmii_active_82575(hw)) {
136 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
137 ctrl_ext |= E1000_CTRL_I2C_ENA;
138 } else {
139 phy->ops.reset = igb_phy_hw_reset;
140 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
141 }
142
143 wr32(E1000_CTRL_EXT, ctrl_ext);
144 igb_reset_mdicnfg_82580(hw);
145
146 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
147 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
148 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
149 } else {
150 switch (hw->mac.type) {
151 case e1000_82580:
152 case e1000_i350:
153 case e1000_i354:
154 phy->ops.read_reg = igb_read_phy_reg_82580;
155 phy->ops.write_reg = igb_write_phy_reg_82580;
156 break;
157 case e1000_i210:
158 case e1000_i211:
159 phy->ops.read_reg = igb_read_phy_reg_gs40g;
160 phy->ops.write_reg = igb_write_phy_reg_gs40g;
161 break;
162 default:
163 phy->ops.read_reg = igb_read_phy_reg_igp;
164 phy->ops.write_reg = igb_write_phy_reg_igp;
165 }
166 }
167
168 /* set lan id */
169 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
170 E1000_STATUS_FUNC_SHIFT;
171
172 /* Set phy->phy_addr and phy->id. */
173 ret_val = igb_get_phy_id_82575(hw);
174 if (ret_val)
175 return ret_val;
176
177 /* Verify phy id and set remaining function pointers */
178 switch (phy->id) {
179 case M88E1545_E_PHY_ID:
180 case I347AT4_E_PHY_ID:
181 case M88E1112_E_PHY_ID:
182 case M88E1111_I_PHY_ID:
183 phy->type = e1000_phy_m88;
184 phy->ops.check_polarity = igb_check_polarity_m88;
185 phy->ops.get_phy_info = igb_get_phy_info_m88;
186 if (phy->id != M88E1111_I_PHY_ID)
187 phy->ops.get_cable_length =
188 igb_get_cable_length_m88_gen2;
189 else
190 phy->ops.get_cable_length = igb_get_cable_length_m88;
191 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
192 break;
193 case IGP03E1000_E_PHY_ID:
194 phy->type = e1000_phy_igp_3;
195 phy->ops.get_phy_info = igb_get_phy_info_igp;
196 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
197 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
198 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
199 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
200 break;
201 case I82580_I_PHY_ID:
202 case I350_I_PHY_ID:
203 phy->type = e1000_phy_82580;
204 phy->ops.force_speed_duplex =
205 igb_phy_force_speed_duplex_82580;
206 phy->ops.get_cable_length = igb_get_cable_length_82580;
207 phy->ops.get_phy_info = igb_get_phy_info_82580;
208 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
209 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
210 break;
211 case I210_I_PHY_ID:
212 phy->type = e1000_phy_i210;
213 phy->ops.check_polarity = igb_check_polarity_m88;
214 phy->ops.get_phy_info = igb_get_phy_info_m88;
215 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
216 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
217 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
218 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
219 break;
220 default:
221 ret_val = -E1000_ERR_PHY;
222 goto out;
223 }
224
225 out:
226 return ret_val;
227 }
228
229 /**
230 * igb_init_nvm_params_82575 - Init NVM func ptrs.
231 * @hw: pointer to the HW structure
232 **/
233 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
234 {
235 struct e1000_nvm_info *nvm = &hw->nvm;
236 u32 eecd = rd32(E1000_EECD);
237 u16 size;
238
239 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
240 E1000_EECD_SIZE_EX_SHIFT);
241 /* Added to a constant, "size" becomes the left-shift value
242 * for setting word_size.
243 */
244 size += NVM_WORD_SIZE_BASE_SHIFT;
245
246 /* Just in case size is out of range, cap it to the largest
247 * EEPROM size supported
248 */
249 if (size > 15)
250 size = 15;
251
252 nvm->word_size = 1 << size;
253 if (hw->mac.type < e1000_i210) {
254 nvm->opcode_bits = 8;
255 nvm->delay_usec = 1;
256
257 switch (nvm->override) {
258 case e1000_nvm_override_spi_large:
259 nvm->page_size = 32;
260 nvm->address_bits = 16;
261 break;
262 case e1000_nvm_override_spi_small:
263 nvm->page_size = 8;
264 nvm->address_bits = 8;
265 break;
266 default:
267 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
268 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
269 16 : 8;
270 break;
271 }
272 if (nvm->word_size == (1 << 15))
273 nvm->page_size = 128;
274
275 nvm->type = e1000_nvm_eeprom_spi;
276 } else {
277 nvm->type = e1000_nvm_flash_hw;
278 }
279
280 /* NVM Function Pointers */
281 switch (hw->mac.type) {
282 case e1000_82580:
283 nvm->ops.validate = igb_validate_nvm_checksum_82580;
284 nvm->ops.update = igb_update_nvm_checksum_82580;
285 nvm->ops.acquire = igb_acquire_nvm_82575;
286 nvm->ops.release = igb_release_nvm_82575;
287 if (nvm->word_size < (1 << 15))
288 nvm->ops.read = igb_read_nvm_eerd;
289 else
290 nvm->ops.read = igb_read_nvm_spi;
291 nvm->ops.write = igb_write_nvm_spi;
292 break;
293 case e1000_i354:
294 case e1000_i350:
295 nvm->ops.validate = igb_validate_nvm_checksum_i350;
296 nvm->ops.update = igb_update_nvm_checksum_i350;
297 nvm->ops.acquire = igb_acquire_nvm_82575;
298 nvm->ops.release = igb_release_nvm_82575;
299 if (nvm->word_size < (1 << 15))
300 nvm->ops.read = igb_read_nvm_eerd;
301 else
302 nvm->ops.read = igb_read_nvm_spi;
303 nvm->ops.write = igb_write_nvm_spi;
304 break;
305 case e1000_i210:
306 nvm->ops.validate = igb_validate_nvm_checksum_i210;
307 nvm->ops.update = igb_update_nvm_checksum_i210;
308 nvm->ops.acquire = igb_acquire_nvm_i210;
309 nvm->ops.release = igb_release_nvm_i210;
310 nvm->ops.read = igb_read_nvm_srrd_i210;
311 nvm->ops.write = igb_write_nvm_srwr_i210;
312 nvm->ops.valid_led_default = igb_valid_led_default_i210;
313 break;
314 case e1000_i211:
315 nvm->ops.acquire = igb_acquire_nvm_i210;
316 nvm->ops.release = igb_release_nvm_i210;
317 nvm->ops.read = igb_read_nvm_i211;
318 nvm->ops.valid_led_default = igb_valid_led_default_i210;
319 nvm->ops.validate = NULL;
320 nvm->ops.update = NULL;
321 nvm->ops.write = NULL;
322 break;
323 default:
324 nvm->ops.validate = igb_validate_nvm_checksum;
325 nvm->ops.update = igb_update_nvm_checksum;
326 nvm->ops.acquire = igb_acquire_nvm_82575;
327 nvm->ops.release = igb_release_nvm_82575;
328 if (nvm->word_size < (1 << 15))
329 nvm->ops.read = igb_read_nvm_eerd;
330 else
331 nvm->ops.read = igb_read_nvm_spi;
332 nvm->ops.write = igb_write_nvm_spi;
333 break;
334 }
335
336 return 0;
337 }
338
339 /**
340 * igb_init_mac_params_82575 - Init MAC func ptrs.
341 * @hw: pointer to the HW structure
342 **/
343 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
344 {
345 struct e1000_mac_info *mac = &hw->mac;
346 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
347
348 /* Set mta register count */
349 mac->mta_reg_count = 128;
350 /* Set rar entry count */
351 switch (mac->type) {
352 case e1000_82576:
353 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
354 break;
355 case e1000_82580:
356 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
357 break;
358 case e1000_i350:
359 case e1000_i354:
360 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
361 break;
362 default:
363 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
364 break;
365 }
366 /* reset */
367 if (mac->type >= e1000_82580)
368 mac->ops.reset_hw = igb_reset_hw_82580;
369 else
370 mac->ops.reset_hw = igb_reset_hw_82575;
371
372 if (mac->type >= e1000_i210) {
373 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
374 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
375
376 } else {
377 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
378 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
379 }
380
381 /* Set if part includes ASF firmware */
382 mac->asf_firmware_present = true;
383 /* Set if manageability features are enabled. */
384 mac->arc_subsystem_valid =
385 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
386 ? true : false;
387 /* enable EEE on i350 parts and later parts */
388 if (mac->type >= e1000_i350)
389 dev_spec->eee_disable = false;
390 else
391 dev_spec->eee_disable = true;
392 /* Allow a single clear of the SW semaphore on I210 and newer */
393 if (mac->type >= e1000_i210)
394 dev_spec->clear_semaphore_once = true;
395 /* physical interface link setup */
396 mac->ops.setup_physical_interface =
397 (hw->phy.media_type == e1000_media_type_copper)
398 ? igb_setup_copper_link_82575
399 : igb_setup_serdes_link_82575;
400
401 return 0;
402 }
403
404 /**
405 * igb_set_sfp_media_type_82575 - derives SFP module media type.
406 * @hw: pointer to the HW structure
407 *
408 * The media type is chosen based on SFP module.
409 * compatibility flags retrieved from SFP ID EEPROM.
410 **/
411 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
412 {
413 s32 ret_val = E1000_ERR_CONFIG;
414 u32 ctrl_ext = 0;
415 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
416 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
417 u8 tranceiver_type = 0;
418 s32 timeout = 3;
419
420 /* Turn I2C interface ON and power on sfp cage */
421 ctrl_ext = rd32(E1000_CTRL_EXT);
422 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
423 wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
424
425 wrfl();
426
427 /* Read SFP module data */
428 while (timeout) {
429 ret_val = igb_read_sfp_data_byte(hw,
430 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
431 &tranceiver_type);
432 if (ret_val == 0)
433 break;
434 msleep(100);
435 timeout--;
436 }
437 if (ret_val != 0)
438 goto out;
439
440 ret_val = igb_read_sfp_data_byte(hw,
441 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
442 (u8 *)eth_flags);
443 if (ret_val != 0)
444 goto out;
445
446 /* Check if there is some SFP module plugged and powered */
447 if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
448 (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
449 dev_spec->module_plugged = true;
450 if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
451 hw->phy.media_type = e1000_media_type_internal_serdes;
452 } else if (eth_flags->e100_base_fx) {
453 dev_spec->sgmii_active = true;
454 hw->phy.media_type = e1000_media_type_internal_serdes;
455 } else if (eth_flags->e1000_base_t) {
456 dev_spec->sgmii_active = true;
457 hw->phy.media_type = e1000_media_type_copper;
458 } else {
459 hw->phy.media_type = e1000_media_type_unknown;
460 hw_dbg("PHY module has not been recognized\n");
461 goto out;
462 }
463 } else {
464 hw->phy.media_type = e1000_media_type_unknown;
465 }
466 ret_val = 0;
467 out:
468 /* Restore I2C interface setting */
469 wr32(E1000_CTRL_EXT, ctrl_ext);
470 return ret_val;
471 }
472
473 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
474 {
475 struct e1000_mac_info *mac = &hw->mac;
476 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
477 s32 ret_val;
478 u32 ctrl_ext = 0;
479 u32 link_mode = 0;
480
481 switch (hw->device_id) {
482 case E1000_DEV_ID_82575EB_COPPER:
483 case E1000_DEV_ID_82575EB_FIBER_SERDES:
484 case E1000_DEV_ID_82575GB_QUAD_COPPER:
485 mac->type = e1000_82575;
486 break;
487 case E1000_DEV_ID_82576:
488 case E1000_DEV_ID_82576_NS:
489 case E1000_DEV_ID_82576_NS_SERDES:
490 case E1000_DEV_ID_82576_FIBER:
491 case E1000_DEV_ID_82576_SERDES:
492 case E1000_DEV_ID_82576_QUAD_COPPER:
493 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
494 case E1000_DEV_ID_82576_SERDES_QUAD:
495 mac->type = e1000_82576;
496 break;
497 case E1000_DEV_ID_82580_COPPER:
498 case E1000_DEV_ID_82580_FIBER:
499 case E1000_DEV_ID_82580_QUAD_FIBER:
500 case E1000_DEV_ID_82580_SERDES:
501 case E1000_DEV_ID_82580_SGMII:
502 case E1000_DEV_ID_82580_COPPER_DUAL:
503 case E1000_DEV_ID_DH89XXCC_SGMII:
504 case E1000_DEV_ID_DH89XXCC_SERDES:
505 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
506 case E1000_DEV_ID_DH89XXCC_SFP:
507 mac->type = e1000_82580;
508 break;
509 case E1000_DEV_ID_I350_COPPER:
510 case E1000_DEV_ID_I350_FIBER:
511 case E1000_DEV_ID_I350_SERDES:
512 case E1000_DEV_ID_I350_SGMII:
513 mac->type = e1000_i350;
514 break;
515 case E1000_DEV_ID_I210_COPPER:
516 case E1000_DEV_ID_I210_FIBER:
517 case E1000_DEV_ID_I210_SERDES:
518 case E1000_DEV_ID_I210_SGMII:
519 mac->type = e1000_i210;
520 break;
521 case E1000_DEV_ID_I211_COPPER:
522 mac->type = e1000_i211;
523 break;
524 case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
525 case E1000_DEV_ID_I354_SGMII:
526 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
527 mac->type = e1000_i354;
528 break;
529 default:
530 return -E1000_ERR_MAC_INIT;
531 break;
532 }
533
534 /* Set media type */
535 /* The 82575 uses bits 22:23 for link mode. The mode can be changed
536 * based on the EEPROM. We cannot rely upon device ID. There
537 * is no distinguishable difference between fiber and internal
538 * SerDes mode on the 82575. There can be an external PHY attached
539 * on the SGMII interface. For this, we'll set sgmii_active to true.
540 */
541 hw->phy.media_type = e1000_media_type_copper;
542 dev_spec->sgmii_active = false;
543 dev_spec->module_plugged = false;
544
545 ctrl_ext = rd32(E1000_CTRL_EXT);
546
547 link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
548 switch (link_mode) {
549 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
550 hw->phy.media_type = e1000_media_type_internal_serdes;
551 break;
552 case E1000_CTRL_EXT_LINK_MODE_SGMII:
553 /* Get phy control interface type set (MDIO vs. I2C)*/
554 if (igb_sgmii_uses_mdio_82575(hw)) {
555 hw->phy.media_type = e1000_media_type_copper;
556 dev_spec->sgmii_active = true;
557 break;
558 }
559 /* fall through for I2C based SGMII */
560 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
561 /* read media type from SFP EEPROM */
562 ret_val = igb_set_sfp_media_type_82575(hw);
563 if ((ret_val != 0) ||
564 (hw->phy.media_type == e1000_media_type_unknown)) {
565 /* If media type was not identified then return media
566 * type defined by the CTRL_EXT settings.
567 */
568 hw->phy.media_type = e1000_media_type_internal_serdes;
569
570 if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
571 hw->phy.media_type = e1000_media_type_copper;
572 dev_spec->sgmii_active = true;
573 }
574
575 break;
576 }
577
578 /* do not change link mode for 100BaseFX */
579 if (dev_spec->eth_flags.e100_base_fx)
580 break;
581
582 /* change current link mode setting */
583 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
584
585 if (hw->phy.media_type == e1000_media_type_copper)
586 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
587 else
588 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
589
590 wr32(E1000_CTRL_EXT, ctrl_ext);
591
592 break;
593 default:
594 break;
595 }
596
597 /* mac initialization and operations */
598 ret_val = igb_init_mac_params_82575(hw);
599 if (ret_val)
600 goto out;
601
602 /* NVM initialization */
603 ret_val = igb_init_nvm_params_82575(hw);
604 if (ret_val)
605 goto out;
606
607 /* if part supports SR-IOV then initialize mailbox parameters */
608 switch (mac->type) {
609 case e1000_82576:
610 case e1000_i350:
611 igb_init_mbx_params_pf(hw);
612 break;
613 default:
614 break;
615 }
616
617 /* setup PHY parameters */
618 ret_val = igb_init_phy_params_82575(hw);
619
620 out:
621 return ret_val;
622 }
623
624 /**
625 * igb_acquire_phy_82575 - Acquire rights to access PHY
626 * @hw: pointer to the HW structure
627 *
628 * Acquire access rights to the correct PHY. This is a
629 * function pointer entry point called by the api module.
630 **/
631 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
632 {
633 u16 mask = E1000_SWFW_PHY0_SM;
634
635 if (hw->bus.func == E1000_FUNC_1)
636 mask = E1000_SWFW_PHY1_SM;
637 else if (hw->bus.func == E1000_FUNC_2)
638 mask = E1000_SWFW_PHY2_SM;
639 else if (hw->bus.func == E1000_FUNC_3)
640 mask = E1000_SWFW_PHY3_SM;
641
642 return hw->mac.ops.acquire_swfw_sync(hw, mask);
643 }
644
645 /**
646 * igb_release_phy_82575 - Release rights to access PHY
647 * @hw: pointer to the HW structure
648 *
649 * A wrapper to release access rights to the correct PHY. This is a
650 * function pointer entry point called by the api module.
651 **/
652 static void igb_release_phy_82575(struct e1000_hw *hw)
653 {
654 u16 mask = E1000_SWFW_PHY0_SM;
655
656 if (hw->bus.func == E1000_FUNC_1)
657 mask = E1000_SWFW_PHY1_SM;
658 else if (hw->bus.func == E1000_FUNC_2)
659 mask = E1000_SWFW_PHY2_SM;
660 else if (hw->bus.func == E1000_FUNC_3)
661 mask = E1000_SWFW_PHY3_SM;
662
663 hw->mac.ops.release_swfw_sync(hw, mask);
664 }
665
666 /**
667 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
668 * @hw: pointer to the HW structure
669 * @offset: register offset to be read
670 * @data: pointer to the read data
671 *
672 * Reads the PHY register at offset using the serial gigabit media independent
673 * interface and stores the retrieved information in data.
674 **/
675 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
676 u16 *data)
677 {
678 s32 ret_val = -E1000_ERR_PARAM;
679
680 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
681 hw_dbg("PHY Address %u is out of range\n", offset);
682 goto out;
683 }
684
685 ret_val = hw->phy.ops.acquire(hw);
686 if (ret_val)
687 goto out;
688
689 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
690
691 hw->phy.ops.release(hw);
692
693 out:
694 return ret_val;
695 }
696
697 /**
698 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
699 * @hw: pointer to the HW structure
700 * @offset: register offset to write to
701 * @data: data to write at register offset
702 *
703 * Writes the data to PHY register at the offset using the serial gigabit
704 * media independent interface.
705 **/
706 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
707 u16 data)
708 {
709 s32 ret_val = -E1000_ERR_PARAM;
710
711
712 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
713 hw_dbg("PHY Address %d is out of range\n", offset);
714 goto out;
715 }
716
717 ret_val = hw->phy.ops.acquire(hw);
718 if (ret_val)
719 goto out;
720
721 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
722
723 hw->phy.ops.release(hw);
724
725 out:
726 return ret_val;
727 }
728
729 /**
730 * igb_get_phy_id_82575 - Retrieve PHY addr and id
731 * @hw: pointer to the HW structure
732 *
733 * Retrieves the PHY address and ID for both PHY's which do and do not use
734 * sgmi interface.
735 **/
736 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
737 {
738 struct e1000_phy_info *phy = &hw->phy;
739 s32 ret_val = 0;
740 u16 phy_id;
741 u32 ctrl_ext;
742 u32 mdic;
743
744 /* For SGMII PHYs, we try the list of possible addresses until
745 * we find one that works. For non-SGMII PHYs
746 * (e.g. integrated copper PHYs), an address of 1 should
747 * work. The result of this function should mean phy->phy_addr
748 * and phy->id are set correctly.
749 */
750 if (!(igb_sgmii_active_82575(hw))) {
751 phy->addr = 1;
752 ret_val = igb_get_phy_id(hw);
753 goto out;
754 }
755
756 if (igb_sgmii_uses_mdio_82575(hw)) {
757 switch (hw->mac.type) {
758 case e1000_82575:
759 case e1000_82576:
760 mdic = rd32(E1000_MDIC);
761 mdic &= E1000_MDIC_PHY_MASK;
762 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
763 break;
764 case e1000_82580:
765 case e1000_i350:
766 case e1000_i354:
767 case e1000_i210:
768 case e1000_i211:
769 mdic = rd32(E1000_MDICNFG);
770 mdic &= E1000_MDICNFG_PHY_MASK;
771 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
772 break;
773 default:
774 ret_val = -E1000_ERR_PHY;
775 goto out;
776 break;
777 }
778 ret_val = igb_get_phy_id(hw);
779 goto out;
780 }
781
782 /* Power on sgmii phy if it is disabled */
783 ctrl_ext = rd32(E1000_CTRL_EXT);
784 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
785 wrfl();
786 msleep(300);
787
788 /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
789 * Therefore, we need to test 1-7
790 */
791 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
792 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
793 if (ret_val == 0) {
794 hw_dbg("Vendor ID 0x%08X read at address %u\n",
795 phy_id, phy->addr);
796 /* At the time of this writing, The M88 part is
797 * the only supported SGMII PHY product.
798 */
799 if (phy_id == M88_VENDOR)
800 break;
801 } else {
802 hw_dbg("PHY address %u was unreadable\n", phy->addr);
803 }
804 }
805
806 /* A valid PHY type couldn't be found. */
807 if (phy->addr == 8) {
808 phy->addr = 0;
809 ret_val = -E1000_ERR_PHY;
810 goto out;
811 } else {
812 ret_val = igb_get_phy_id(hw);
813 }
814
815 /* restore previous sfp cage power state */
816 wr32(E1000_CTRL_EXT, ctrl_ext);
817
818 out:
819 return ret_val;
820 }
821
822 /**
823 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
824 * @hw: pointer to the HW structure
825 *
826 * Resets the PHY using the serial gigabit media independent interface.
827 **/
828 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
829 {
830 s32 ret_val;
831
832 /* This isn't a true "hard" reset, but is the only reset
833 * available to us at this time.
834 */
835
836 hw_dbg("Soft resetting SGMII attached PHY...\n");
837
838 /* SFP documentation requires the following to configure the SPF module
839 * to work on SGMII. No further documentation is given.
840 */
841 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
842 if (ret_val)
843 goto out;
844
845 ret_val = igb_phy_sw_reset(hw);
846
847 out:
848 return ret_val;
849 }
850
851 /**
852 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
853 * @hw: pointer to the HW structure
854 * @active: true to enable LPLU, false to disable
855 *
856 * Sets the LPLU D0 state according to the active flag. When
857 * activating LPLU this function also disables smart speed
858 * and vice versa. LPLU will not be activated unless the
859 * device autonegotiation advertisement meets standards of
860 * either 10 or 10/100 or 10/100/1000 at all duplexes.
861 * This is a function pointer entry point only called by
862 * PHY setup routines.
863 **/
864 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
865 {
866 struct e1000_phy_info *phy = &hw->phy;
867 s32 ret_val;
868 u16 data;
869
870 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
871 if (ret_val)
872 goto out;
873
874 if (active) {
875 data |= IGP02E1000_PM_D0_LPLU;
876 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
877 data);
878 if (ret_val)
879 goto out;
880
881 /* When LPLU is enabled, we should disable SmartSpeed */
882 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
883 &data);
884 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
885 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
886 data);
887 if (ret_val)
888 goto out;
889 } else {
890 data &= ~IGP02E1000_PM_D0_LPLU;
891 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
892 data);
893 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
894 * during Dx states where the power conservation is most
895 * important. During driver activity we should enable
896 * SmartSpeed, so performance is maintained.
897 */
898 if (phy->smart_speed == e1000_smart_speed_on) {
899 ret_val = phy->ops.read_reg(hw,
900 IGP01E1000_PHY_PORT_CONFIG, &data);
901 if (ret_val)
902 goto out;
903
904 data |= IGP01E1000_PSCFR_SMART_SPEED;
905 ret_val = phy->ops.write_reg(hw,
906 IGP01E1000_PHY_PORT_CONFIG, data);
907 if (ret_val)
908 goto out;
909 } else if (phy->smart_speed == e1000_smart_speed_off) {
910 ret_val = phy->ops.read_reg(hw,
911 IGP01E1000_PHY_PORT_CONFIG, &data);
912 if (ret_val)
913 goto out;
914
915 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
916 ret_val = phy->ops.write_reg(hw,
917 IGP01E1000_PHY_PORT_CONFIG, data);
918 if (ret_val)
919 goto out;
920 }
921 }
922
923 out:
924 return ret_val;
925 }
926
927 /**
928 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
929 * @hw: pointer to the HW structure
930 * @active: true to enable LPLU, false to disable
931 *
932 * Sets the LPLU D0 state according to the active flag. When
933 * activating LPLU this function also disables smart speed
934 * and vice versa. LPLU will not be activated unless the
935 * device autonegotiation advertisement meets standards of
936 * either 10 or 10/100 or 10/100/1000 at all duplexes.
937 * This is a function pointer entry point only called by
938 * PHY setup routines.
939 **/
940 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
941 {
942 struct e1000_phy_info *phy = &hw->phy;
943 s32 ret_val = 0;
944 u16 data;
945
946 data = rd32(E1000_82580_PHY_POWER_MGMT);
947
948 if (active) {
949 data |= E1000_82580_PM_D0_LPLU;
950
951 /* When LPLU is enabled, we should disable SmartSpeed */
952 data &= ~E1000_82580_PM_SPD;
953 } else {
954 data &= ~E1000_82580_PM_D0_LPLU;
955
956 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
957 * during Dx states where the power conservation is most
958 * important. During driver activity we should enable
959 * SmartSpeed, so performance is maintained.
960 */
961 if (phy->smart_speed == e1000_smart_speed_on)
962 data |= E1000_82580_PM_SPD;
963 else if (phy->smart_speed == e1000_smart_speed_off)
964 data &= ~E1000_82580_PM_SPD; }
965
966 wr32(E1000_82580_PHY_POWER_MGMT, data);
967 return ret_val;
968 }
969
970 /**
971 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
972 * @hw: pointer to the HW structure
973 * @active: boolean used to enable/disable lplu
974 *
975 * Success returns 0, Failure returns 1
976 *
977 * The low power link up (lplu) state is set to the power management level D3
978 * and SmartSpeed is disabled when active is true, else clear lplu for D3
979 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
980 * is used during Dx states where the power conservation is most important.
981 * During driver activity, SmartSpeed should be enabled so performance is
982 * maintained.
983 **/
984 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
985 {
986 struct e1000_phy_info *phy = &hw->phy;
987 s32 ret_val = 0;
988 u16 data;
989
990 data = rd32(E1000_82580_PHY_POWER_MGMT);
991
992 if (!active) {
993 data &= ~E1000_82580_PM_D3_LPLU;
994 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
995 * during Dx states where the power conservation is most
996 * important. During driver activity we should enable
997 * SmartSpeed, so performance is maintained.
998 */
999 if (phy->smart_speed == e1000_smart_speed_on)
1000 data |= E1000_82580_PM_SPD;
1001 else if (phy->smart_speed == e1000_smart_speed_off)
1002 data &= ~E1000_82580_PM_SPD;
1003 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1004 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1005 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1006 data |= E1000_82580_PM_D3_LPLU;
1007 /* When LPLU is enabled, we should disable SmartSpeed */
1008 data &= ~E1000_82580_PM_SPD;
1009 }
1010
1011 wr32(E1000_82580_PHY_POWER_MGMT, data);
1012 return ret_val;
1013 }
1014
1015 /**
1016 * igb_acquire_nvm_82575 - Request for access to EEPROM
1017 * @hw: pointer to the HW structure
1018 *
1019 * Acquire the necessary semaphores for exclusive access to the EEPROM.
1020 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1021 * Return successful if access grant bit set, else clear the request for
1022 * EEPROM access and return -E1000_ERR_NVM (-1).
1023 **/
1024 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1025 {
1026 s32 ret_val;
1027
1028 ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1029 if (ret_val)
1030 goto out;
1031
1032 ret_val = igb_acquire_nvm(hw);
1033
1034 if (ret_val)
1035 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1036
1037 out:
1038 return ret_val;
1039 }
1040
1041 /**
1042 * igb_release_nvm_82575 - Release exclusive access to EEPROM
1043 * @hw: pointer to the HW structure
1044 *
1045 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
1046 * then release the semaphores acquired.
1047 **/
1048 static void igb_release_nvm_82575(struct e1000_hw *hw)
1049 {
1050 igb_release_nvm(hw);
1051 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1052 }
1053
1054 /**
1055 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1056 * @hw: pointer to the HW structure
1057 * @mask: specifies which semaphore to acquire
1058 *
1059 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
1060 * will also specify which port we're acquiring the lock for.
1061 **/
1062 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1063 {
1064 u32 swfw_sync;
1065 u32 swmask = mask;
1066 u32 fwmask = mask << 16;
1067 s32 ret_val = 0;
1068 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
1069
1070 while (i < timeout) {
1071 if (igb_get_hw_semaphore(hw)) {
1072 ret_val = -E1000_ERR_SWFW_SYNC;
1073 goto out;
1074 }
1075
1076 swfw_sync = rd32(E1000_SW_FW_SYNC);
1077 if (!(swfw_sync & (fwmask | swmask)))
1078 break;
1079
1080 /* Firmware currently using resource (fwmask)
1081 * or other software thread using resource (swmask)
1082 */
1083 igb_put_hw_semaphore(hw);
1084 mdelay(5);
1085 i++;
1086 }
1087
1088 if (i == timeout) {
1089 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1090 ret_val = -E1000_ERR_SWFW_SYNC;
1091 goto out;
1092 }
1093
1094 swfw_sync |= swmask;
1095 wr32(E1000_SW_FW_SYNC, swfw_sync);
1096
1097 igb_put_hw_semaphore(hw);
1098
1099 out:
1100 return ret_val;
1101 }
1102
1103 /**
1104 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
1105 * @hw: pointer to the HW structure
1106 * @mask: specifies which semaphore to acquire
1107 *
1108 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
1109 * will also specify which port we're releasing the lock for.
1110 **/
1111 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1112 {
1113 u32 swfw_sync;
1114
1115 while (igb_get_hw_semaphore(hw) != 0);
1116 /* Empty */
1117
1118 swfw_sync = rd32(E1000_SW_FW_SYNC);
1119 swfw_sync &= ~mask;
1120 wr32(E1000_SW_FW_SYNC, swfw_sync);
1121
1122 igb_put_hw_semaphore(hw);
1123 }
1124
1125 /**
1126 * igb_get_cfg_done_82575 - Read config done bit
1127 * @hw: pointer to the HW structure
1128 *
1129 * Read the management control register for the config done bit for
1130 * completion status. NOTE: silicon which is EEPROM-less will fail trying
1131 * to read the config done bit, so an error is *ONLY* logged and returns
1132 * 0. If we were to return with error, EEPROM-less silicon
1133 * would not be able to be reset or change link.
1134 **/
1135 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1136 {
1137 s32 timeout = PHY_CFG_TIMEOUT;
1138 s32 ret_val = 0;
1139 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1140
1141 if (hw->bus.func == 1)
1142 mask = E1000_NVM_CFG_DONE_PORT_1;
1143 else if (hw->bus.func == E1000_FUNC_2)
1144 mask = E1000_NVM_CFG_DONE_PORT_2;
1145 else if (hw->bus.func == E1000_FUNC_3)
1146 mask = E1000_NVM_CFG_DONE_PORT_3;
1147
1148 while (timeout) {
1149 if (rd32(E1000_EEMNGCTL) & mask)
1150 break;
1151 msleep(1);
1152 timeout--;
1153 }
1154 if (!timeout)
1155 hw_dbg("MNG configuration cycle has not completed.\n");
1156
1157 /* If EEPROM is not marked present, init the PHY manually */
1158 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1159 (hw->phy.type == e1000_phy_igp_3))
1160 igb_phy_init_script_igp3(hw);
1161
1162 return ret_val;
1163 }
1164
1165 /**
1166 * igb_check_for_link_82575 - Check for link
1167 * @hw: pointer to the HW structure
1168 *
1169 * If sgmii is enabled, then use the pcs register to determine link, otherwise
1170 * use the generic interface for determining link.
1171 **/
1172 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1173 {
1174 s32 ret_val;
1175 u16 speed, duplex;
1176
1177 if (hw->phy.media_type != e1000_media_type_copper) {
1178 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1179 &duplex);
1180 /* Use this flag to determine if link needs to be checked or
1181 * not. If we have link clear the flag so that we do not
1182 * continue to check for link.
1183 */
1184 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1185
1186 /* Configure Flow Control now that Auto-Neg has completed.
1187 * First, we need to restore the desired flow control
1188 * settings because we may have had to re-autoneg with a
1189 * different link partner.
1190 */
1191 ret_val = igb_config_fc_after_link_up(hw);
1192 if (ret_val)
1193 hw_dbg("Error configuring flow control\n");
1194 } else {
1195 ret_val = igb_check_for_copper_link(hw);
1196 }
1197
1198 return ret_val;
1199 }
1200
1201 /**
1202 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1203 * @hw: pointer to the HW structure
1204 **/
1205 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1206 {
1207 u32 reg;
1208
1209
1210 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1211 !igb_sgmii_active_82575(hw))
1212 return;
1213
1214 /* Enable PCS to turn on link */
1215 reg = rd32(E1000_PCS_CFG0);
1216 reg |= E1000_PCS_CFG_PCS_EN;
1217 wr32(E1000_PCS_CFG0, reg);
1218
1219 /* Power up the laser */
1220 reg = rd32(E1000_CTRL_EXT);
1221 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1222 wr32(E1000_CTRL_EXT, reg);
1223
1224 /* flush the write to verify completion */
1225 wrfl();
1226 msleep(1);
1227 }
1228
1229 /**
1230 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1231 * @hw: pointer to the HW structure
1232 * @speed: stores the current speed
1233 * @duplex: stores the current duplex
1234 *
1235 * Using the physical coding sub-layer (PCS), retrieve the current speed and
1236 * duplex, then store the values in the pointers provided.
1237 **/
1238 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1239 u16 *duplex)
1240 {
1241 struct e1000_mac_info *mac = &hw->mac;
1242 u32 pcs;
1243
1244 /* Set up defaults for the return values of this function */
1245 mac->serdes_has_link = false;
1246 *speed = 0;
1247 *duplex = 0;
1248
1249 /* Read the PCS Status register for link state. For non-copper mode,
1250 * the status register is not accurate. The PCS status register is
1251 * used instead.
1252 */
1253 pcs = rd32(E1000_PCS_LSTAT);
1254
1255 /* The link up bit determines when link is up on autoneg. The sync ok
1256 * gets set once both sides sync up and agree upon link. Stable link
1257 * can be determined by checking for both link up and link sync ok
1258 */
1259 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1260 mac->serdes_has_link = true;
1261
1262 /* Detect and store PCS speed */
1263 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1264 *speed = SPEED_1000;
1265 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1266 *speed = SPEED_100;
1267 } else {
1268 *speed = SPEED_10;
1269 }
1270
1271 /* Detect and store PCS duplex */
1272 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1273 *duplex = FULL_DUPLEX;
1274 } else {
1275 *duplex = HALF_DUPLEX;
1276 }
1277 }
1278
1279 return 0;
1280 }
1281
1282 /**
1283 * igb_shutdown_serdes_link_82575 - Remove link during power down
1284 * @hw: pointer to the HW structure
1285 *
1286 * In the case of fiber serdes, shut down optics and PCS on driver unload
1287 * when management pass thru is not enabled.
1288 **/
1289 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1290 {
1291 u32 reg;
1292
1293 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1294 igb_sgmii_active_82575(hw))
1295 return;
1296
1297 if (!igb_enable_mng_pass_thru(hw)) {
1298 /* Disable PCS to turn off link */
1299 reg = rd32(E1000_PCS_CFG0);
1300 reg &= ~E1000_PCS_CFG_PCS_EN;
1301 wr32(E1000_PCS_CFG0, reg);
1302
1303 /* shutdown the laser */
1304 reg = rd32(E1000_CTRL_EXT);
1305 reg |= E1000_CTRL_EXT_SDP3_DATA;
1306 wr32(E1000_CTRL_EXT, reg);
1307
1308 /* flush the write to verify completion */
1309 wrfl();
1310 msleep(1);
1311 }
1312 }
1313
1314 /**
1315 * igb_reset_hw_82575 - Reset hardware
1316 * @hw: pointer to the HW structure
1317 *
1318 * This resets the hardware into a known state. This is a
1319 * function pointer entry point called by the api module.
1320 **/
1321 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1322 {
1323 u32 ctrl, icr;
1324 s32 ret_val;
1325
1326 /* Prevent the PCI-E bus from sticking if there is no TLP connection
1327 * on the last TLP read/write transaction when MAC is reset.
1328 */
1329 ret_val = igb_disable_pcie_master(hw);
1330 if (ret_val)
1331 hw_dbg("PCI-E Master disable polling has failed.\n");
1332
1333 /* set the completion timeout for interface */
1334 ret_val = igb_set_pcie_completion_timeout(hw);
1335 if (ret_val) {
1336 hw_dbg("PCI-E Set completion timeout has failed.\n");
1337 }
1338
1339 hw_dbg("Masking off all interrupts\n");
1340 wr32(E1000_IMC, 0xffffffff);
1341
1342 wr32(E1000_RCTL, 0);
1343 wr32(E1000_TCTL, E1000_TCTL_PSP);
1344 wrfl();
1345
1346 msleep(10);
1347
1348 ctrl = rd32(E1000_CTRL);
1349
1350 hw_dbg("Issuing a global reset to MAC\n");
1351 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1352
1353 ret_val = igb_get_auto_rd_done(hw);
1354 if (ret_val) {
1355 /* When auto config read does not complete, do not
1356 * return with an error. This can happen in situations
1357 * where there is no eeprom and prevents getting link.
1358 */
1359 hw_dbg("Auto Read Done did not complete\n");
1360 }
1361
1362 /* If EEPROM is not present, run manual init scripts */
1363 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1364 igb_reset_init_script_82575(hw);
1365
1366 /* Clear any pending interrupt events. */
1367 wr32(E1000_IMC, 0xffffffff);
1368 icr = rd32(E1000_ICR);
1369
1370 /* Install any alternate MAC address into RAR0 */
1371 ret_val = igb_check_alt_mac_addr(hw);
1372
1373 return ret_val;
1374 }
1375
1376 /**
1377 * igb_init_hw_82575 - Initialize hardware
1378 * @hw: pointer to the HW structure
1379 *
1380 * This inits the hardware readying it for operation.
1381 **/
1382 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1383 {
1384 struct e1000_mac_info *mac = &hw->mac;
1385 s32 ret_val;
1386 u16 i, rar_count = mac->rar_entry_count;
1387
1388 /* Initialize identification LED */
1389 ret_val = igb_id_led_init(hw);
1390 if (ret_val) {
1391 hw_dbg("Error initializing identification LED\n");
1392 /* This is not fatal and we should not stop init due to this */
1393 }
1394
1395 /* Disabling VLAN filtering */
1396 hw_dbg("Initializing the IEEE VLAN\n");
1397 if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1398 igb_clear_vfta_i350(hw);
1399 else
1400 igb_clear_vfta(hw);
1401
1402 /* Setup the receive address */
1403 igb_init_rx_addrs(hw, rar_count);
1404
1405 /* Zero out the Multicast HASH table */
1406 hw_dbg("Zeroing the MTA\n");
1407 for (i = 0; i < mac->mta_reg_count; i++)
1408 array_wr32(E1000_MTA, i, 0);
1409
1410 /* Zero out the Unicast HASH table */
1411 hw_dbg("Zeroing the UTA\n");
1412 for (i = 0; i < mac->uta_reg_count; i++)
1413 array_wr32(E1000_UTA, i, 0);
1414
1415 /* Setup link and flow control */
1416 ret_val = igb_setup_link(hw);
1417
1418 /* Clear all of the statistics registers (clear on read). It is
1419 * important that we do this after we have tried to establish link
1420 * because the symbol error count will increment wildly if there
1421 * is no link.
1422 */
1423 igb_clear_hw_cntrs_82575(hw);
1424 return ret_val;
1425 }
1426
1427 /**
1428 * igb_setup_copper_link_82575 - Configure copper link settings
1429 * @hw: pointer to the HW structure
1430 *
1431 * Configures the link for auto-neg or forced speed and duplex. Then we check
1432 * for link, once link is established calls to configure collision distance
1433 * and flow control are called.
1434 **/
1435 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1436 {
1437 u32 ctrl;
1438 s32 ret_val;
1439 u32 phpm_reg;
1440
1441 ctrl = rd32(E1000_CTRL);
1442 ctrl |= E1000_CTRL_SLU;
1443 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1444 wr32(E1000_CTRL, ctrl);
1445
1446 /* Clear Go Link Disconnect bit */
1447 if (hw->mac.type >= e1000_82580) {
1448 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1449 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1450 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1451 }
1452
1453 ret_val = igb_setup_serdes_link_82575(hw);
1454 if (ret_val)
1455 goto out;
1456
1457 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1458 /* allow time for SFP cage time to power up phy */
1459 msleep(300);
1460
1461 ret_val = hw->phy.ops.reset(hw);
1462 if (ret_val) {
1463 hw_dbg("Error resetting the PHY.\n");
1464 goto out;
1465 }
1466 }
1467 switch (hw->phy.type) {
1468 case e1000_phy_i210:
1469 case e1000_phy_m88:
1470 switch (hw->phy.id) {
1471 case I347AT4_E_PHY_ID:
1472 case M88E1112_E_PHY_ID:
1473 case M88E1545_E_PHY_ID:
1474 case I210_I_PHY_ID:
1475 ret_val = igb_copper_link_setup_m88_gen2(hw);
1476 break;
1477 default:
1478 ret_val = igb_copper_link_setup_m88(hw);
1479 break;
1480 }
1481 break;
1482 case e1000_phy_igp_3:
1483 ret_val = igb_copper_link_setup_igp(hw);
1484 break;
1485 case e1000_phy_82580:
1486 ret_val = igb_copper_link_setup_82580(hw);
1487 break;
1488 default:
1489 ret_val = -E1000_ERR_PHY;
1490 break;
1491 }
1492
1493 if (ret_val)
1494 goto out;
1495
1496 ret_val = igb_setup_copper_link(hw);
1497 out:
1498 return ret_val;
1499 }
1500
1501 /**
1502 * igb_setup_serdes_link_82575 - Setup link for serdes
1503 * @hw: pointer to the HW structure
1504 *
1505 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1506 * used on copper connections where the serialized gigabit media independent
1507 * interface (sgmii), or serdes fiber is being used. Configures the link
1508 * for auto-negotiation or forces speed/duplex.
1509 **/
1510 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1511 {
1512 u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1513 bool pcs_autoneg;
1514 s32 ret_val = E1000_SUCCESS;
1515 u16 data;
1516
1517 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1518 !igb_sgmii_active_82575(hw))
1519 return ret_val;
1520
1521
1522 /* On the 82575, SerDes loopback mode persists until it is
1523 * explicitly turned off or a power cycle is performed. A read to
1524 * the register does not indicate its status. Therefore, we ensure
1525 * loopback mode is disabled during initialization.
1526 */
1527 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1528
1529 /* power on the sfp cage if present and turn on I2C */
1530 ctrl_ext = rd32(E1000_CTRL_EXT);
1531 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1532 ctrl_ext |= E1000_CTRL_I2C_ENA;
1533 wr32(E1000_CTRL_EXT, ctrl_ext);
1534
1535 ctrl_reg = rd32(E1000_CTRL);
1536 ctrl_reg |= E1000_CTRL_SLU;
1537
1538 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1539 /* set both sw defined pins */
1540 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1541
1542 /* Set switch control to serdes energy detect */
1543 reg = rd32(E1000_CONNSW);
1544 reg |= E1000_CONNSW_ENRGSRC;
1545 wr32(E1000_CONNSW, reg);
1546 }
1547
1548 reg = rd32(E1000_PCS_LCTL);
1549
1550 /* default pcs_autoneg to the same setting as mac autoneg */
1551 pcs_autoneg = hw->mac.autoneg;
1552
1553 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1554 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1555 /* sgmii mode lets the phy handle forcing speed/duplex */
1556 pcs_autoneg = true;
1557 /* autoneg time out should be disabled for SGMII mode */
1558 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1559 break;
1560 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1561 /* disable PCS autoneg and support parallel detect only */
1562 pcs_autoneg = false;
1563 default:
1564 if (hw->mac.type == e1000_82575 ||
1565 hw->mac.type == e1000_82576) {
1566 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1567 if (ret_val) {
1568 printk(KERN_DEBUG "NVM Read Error\n\n");
1569 return ret_val;
1570 }
1571
1572 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1573 pcs_autoneg = false;
1574 }
1575
1576 /* non-SGMII modes only supports a speed of 1000/Full for the
1577 * link so it is best to just force the MAC and let the pcs
1578 * link either autoneg or be forced to 1000/Full
1579 */
1580 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1581 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1582
1583 /* set speed of 1000/Full if speed/duplex is forced */
1584 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1585 break;
1586 }
1587
1588 wr32(E1000_CTRL, ctrl_reg);
1589
1590 /* New SerDes mode allows for forcing speed or autonegotiating speed
1591 * at 1gb. Autoneg should be default set by most drivers. This is the
1592 * mode that will be compatible with older link partners and switches.
1593 * However, both are supported by the hardware and some drivers/tools.
1594 */
1595 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1596 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1597
1598 if (pcs_autoneg) {
1599 /* Set PCS register for autoneg */
1600 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1601 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1602
1603 /* Disable force flow control for autoneg */
1604 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1605
1606 /* Configure flow control advertisement for autoneg */
1607 anadv_reg = rd32(E1000_PCS_ANADV);
1608 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1609 switch (hw->fc.requested_mode) {
1610 case e1000_fc_full:
1611 case e1000_fc_rx_pause:
1612 anadv_reg |= E1000_TXCW_ASM_DIR;
1613 anadv_reg |= E1000_TXCW_PAUSE;
1614 break;
1615 case e1000_fc_tx_pause:
1616 anadv_reg |= E1000_TXCW_ASM_DIR;
1617 break;
1618 default:
1619 break;
1620 }
1621 wr32(E1000_PCS_ANADV, anadv_reg);
1622
1623 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1624 } else {
1625 /* Set PCS register for forced link */
1626 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
1627
1628 /* Force flow control for forced link */
1629 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1630
1631 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1632 }
1633
1634 wr32(E1000_PCS_LCTL, reg);
1635
1636 if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1637 igb_force_mac_fc(hw);
1638
1639 return ret_val;
1640 }
1641
1642 /**
1643 * igb_sgmii_active_82575 - Return sgmii state
1644 * @hw: pointer to the HW structure
1645 *
1646 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1647 * which can be enabled for use in the embedded applications. Simply
1648 * return the current state of the sgmii interface.
1649 **/
1650 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1651 {
1652 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1653 return dev_spec->sgmii_active;
1654 }
1655
1656 /**
1657 * igb_reset_init_script_82575 - Inits HW defaults after reset
1658 * @hw: pointer to the HW structure
1659 *
1660 * Inits recommended HW defaults after a reset when there is no EEPROM
1661 * detected. This is only for the 82575.
1662 **/
1663 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1664 {
1665 if (hw->mac.type == e1000_82575) {
1666 hw_dbg("Running reset init script for 82575\n");
1667 /* SerDes configuration via SERDESCTRL */
1668 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1669 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1670 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1671 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1672
1673 /* CCM configuration via CCMCTL register */
1674 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1675 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1676
1677 /* PCIe lanes configuration */
1678 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1679 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1680 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1681 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1682
1683 /* PCIe PLL Configuration */
1684 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1685 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1686 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1687 }
1688
1689 return 0;
1690 }
1691
1692 /**
1693 * igb_read_mac_addr_82575 - Read device MAC address
1694 * @hw: pointer to the HW structure
1695 **/
1696 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1697 {
1698 s32 ret_val = 0;
1699
1700 /* If there's an alternate MAC address place it in RAR0
1701 * so that it will override the Si installed default perm
1702 * address.
1703 */
1704 ret_val = igb_check_alt_mac_addr(hw);
1705 if (ret_val)
1706 goto out;
1707
1708 ret_val = igb_read_mac_addr(hw);
1709
1710 out:
1711 return ret_val;
1712 }
1713
1714 /**
1715 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1716 * @hw: pointer to the HW structure
1717 *
1718 * In the case of a PHY power down to save power, or to turn off link during a
1719 * driver unload, or wake on lan is not enabled, remove the link.
1720 **/
1721 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1722 {
1723 /* If the management interface is not enabled, then power down */
1724 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1725 igb_power_down_phy_copper(hw);
1726 }
1727
1728 /**
1729 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1730 * @hw: pointer to the HW structure
1731 *
1732 * Clears the hardware counters by reading the counter registers.
1733 **/
1734 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1735 {
1736 igb_clear_hw_cntrs_base(hw);
1737
1738 rd32(E1000_PRC64);
1739 rd32(E1000_PRC127);
1740 rd32(E1000_PRC255);
1741 rd32(E1000_PRC511);
1742 rd32(E1000_PRC1023);
1743 rd32(E1000_PRC1522);
1744 rd32(E1000_PTC64);
1745 rd32(E1000_PTC127);
1746 rd32(E1000_PTC255);
1747 rd32(E1000_PTC511);
1748 rd32(E1000_PTC1023);
1749 rd32(E1000_PTC1522);
1750
1751 rd32(E1000_ALGNERRC);
1752 rd32(E1000_RXERRC);
1753 rd32(E1000_TNCRS);
1754 rd32(E1000_CEXTERR);
1755 rd32(E1000_TSCTC);
1756 rd32(E1000_TSCTFC);
1757
1758 rd32(E1000_MGTPRC);
1759 rd32(E1000_MGTPDC);
1760 rd32(E1000_MGTPTC);
1761
1762 rd32(E1000_IAC);
1763 rd32(E1000_ICRXOC);
1764
1765 rd32(E1000_ICRXPTC);
1766 rd32(E1000_ICRXATC);
1767 rd32(E1000_ICTXPTC);
1768 rd32(E1000_ICTXATC);
1769 rd32(E1000_ICTXQEC);
1770 rd32(E1000_ICTXQMTC);
1771 rd32(E1000_ICRXDMTC);
1772
1773 rd32(E1000_CBTMPC);
1774 rd32(E1000_HTDPMC);
1775 rd32(E1000_CBRMPC);
1776 rd32(E1000_RPTHC);
1777 rd32(E1000_HGPTC);
1778 rd32(E1000_HTCBDPC);
1779 rd32(E1000_HGORCL);
1780 rd32(E1000_HGORCH);
1781 rd32(E1000_HGOTCL);
1782 rd32(E1000_HGOTCH);
1783 rd32(E1000_LENERRS);
1784
1785 /* This register should not be read in copper configurations */
1786 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1787 igb_sgmii_active_82575(hw))
1788 rd32(E1000_SCVPC);
1789 }
1790
1791 /**
1792 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1793 * @hw: pointer to the HW structure
1794 *
1795 * After rx enable if managability is enabled then there is likely some
1796 * bad data at the start of the fifo and possibly in the DMA fifo. This
1797 * function clears the fifos and flushes any packets that came in as rx was
1798 * being enabled.
1799 **/
1800 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1801 {
1802 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1803 int i, ms_wait;
1804
1805 if (hw->mac.type != e1000_82575 ||
1806 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1807 return;
1808
1809 /* Disable all RX queues */
1810 for (i = 0; i < 4; i++) {
1811 rxdctl[i] = rd32(E1000_RXDCTL(i));
1812 wr32(E1000_RXDCTL(i),
1813 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1814 }
1815 /* Poll all queues to verify they have shut down */
1816 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1817 msleep(1);
1818 rx_enabled = 0;
1819 for (i = 0; i < 4; i++)
1820 rx_enabled |= rd32(E1000_RXDCTL(i));
1821 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1822 break;
1823 }
1824
1825 if (ms_wait == 10)
1826 hw_dbg("Queue disable timed out after 10ms\n");
1827
1828 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1829 * incoming packets are rejected. Set enable and wait 2ms so that
1830 * any packet that was coming in as RCTL.EN was set is flushed
1831 */
1832 rfctl = rd32(E1000_RFCTL);
1833 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1834
1835 rlpml = rd32(E1000_RLPML);
1836 wr32(E1000_RLPML, 0);
1837
1838 rctl = rd32(E1000_RCTL);
1839 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1840 temp_rctl |= E1000_RCTL_LPE;
1841
1842 wr32(E1000_RCTL, temp_rctl);
1843 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1844 wrfl();
1845 msleep(2);
1846
1847 /* Enable RX queues that were previously enabled and restore our
1848 * previous state
1849 */
1850 for (i = 0; i < 4; i++)
1851 wr32(E1000_RXDCTL(i), rxdctl[i]);
1852 wr32(E1000_RCTL, rctl);
1853 wrfl();
1854
1855 wr32(E1000_RLPML, rlpml);
1856 wr32(E1000_RFCTL, rfctl);
1857
1858 /* Flush receive errors generated by workaround */
1859 rd32(E1000_ROC);
1860 rd32(E1000_RNBC);
1861 rd32(E1000_MPC);
1862 }
1863
1864 /**
1865 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1866 * @hw: pointer to the HW structure
1867 *
1868 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1869 * however the hardware default for these parts is 500us to 1ms which is less
1870 * than the 10ms recommended by the pci-e spec. To address this we need to
1871 * increase the value to either 10ms to 200ms for capability version 1 config,
1872 * or 16ms to 55ms for version 2.
1873 **/
1874 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1875 {
1876 u32 gcr = rd32(E1000_GCR);
1877 s32 ret_val = 0;
1878 u16 pcie_devctl2;
1879
1880 /* only take action if timeout value is defaulted to 0 */
1881 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1882 goto out;
1883
1884 /* if capabilities version is type 1 we can write the
1885 * timeout of 10ms to 200ms through the GCR register
1886 */
1887 if (!(gcr & E1000_GCR_CAP_VER2)) {
1888 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1889 goto out;
1890 }
1891
1892 /* for version 2 capabilities we need to write the config space
1893 * directly in order to set the completion timeout value for
1894 * 16ms to 55ms
1895 */
1896 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1897 &pcie_devctl2);
1898 if (ret_val)
1899 goto out;
1900
1901 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1902
1903 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1904 &pcie_devctl2);
1905 out:
1906 /* disable completion timeout resend */
1907 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1908
1909 wr32(E1000_GCR, gcr);
1910 return ret_val;
1911 }
1912
1913 /**
1914 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1915 * @hw: pointer to the hardware struct
1916 * @enable: state to enter, either enabled or disabled
1917 * @pf: Physical Function pool - do not set anti-spoofing for the PF
1918 *
1919 * enables/disables L2 switch anti-spoofing functionality.
1920 **/
1921 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1922 {
1923 u32 reg_val, reg_offset;
1924
1925 switch (hw->mac.type) {
1926 case e1000_82576:
1927 reg_offset = E1000_DTXSWC;
1928 break;
1929 case e1000_i350:
1930 case e1000_i354:
1931 reg_offset = E1000_TXSWC;
1932 break;
1933 default:
1934 return;
1935 }
1936
1937 reg_val = rd32(reg_offset);
1938 if (enable) {
1939 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1940 E1000_DTXSWC_VLAN_SPOOF_MASK);
1941 /* The PF can spoof - it has to in order to
1942 * support emulation mode NICs
1943 */
1944 reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1945 } else {
1946 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1947 E1000_DTXSWC_VLAN_SPOOF_MASK);
1948 }
1949 wr32(reg_offset, reg_val);
1950 }
1951
1952 /**
1953 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1954 * @hw: pointer to the hardware struct
1955 * @enable: state to enter, either enabled or disabled
1956 *
1957 * enables/disables L2 switch loopback functionality.
1958 **/
1959 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1960 {
1961 u32 dtxswc;
1962
1963 switch (hw->mac.type) {
1964 case e1000_82576:
1965 dtxswc = rd32(E1000_DTXSWC);
1966 if (enable)
1967 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1968 else
1969 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1970 wr32(E1000_DTXSWC, dtxswc);
1971 break;
1972 case e1000_i354:
1973 case e1000_i350:
1974 dtxswc = rd32(E1000_TXSWC);
1975 if (enable)
1976 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1977 else
1978 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1979 wr32(E1000_TXSWC, dtxswc);
1980 break;
1981 default:
1982 /* Currently no other hardware supports loopback */
1983 break;
1984 }
1985
1986 }
1987
1988 /**
1989 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1990 * @hw: pointer to the hardware struct
1991 * @enable: state to enter, either enabled or disabled
1992 *
1993 * enables/disables replication of packets across multiple pools.
1994 **/
1995 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1996 {
1997 u32 vt_ctl = rd32(E1000_VT_CTL);
1998
1999 if (enable)
2000 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2001 else
2002 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2003
2004 wr32(E1000_VT_CTL, vt_ctl);
2005 }
2006
2007 /**
2008 * igb_read_phy_reg_82580 - Read 82580 MDI control register
2009 * @hw: pointer to the HW structure
2010 * @offset: register offset to be read
2011 * @data: pointer to the read data
2012 *
2013 * Reads the MDI control register in the PHY at offset and stores the
2014 * information read to data.
2015 **/
2016 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2017 {
2018 s32 ret_val;
2019
2020 ret_val = hw->phy.ops.acquire(hw);
2021 if (ret_val)
2022 goto out;
2023
2024 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2025
2026 hw->phy.ops.release(hw);
2027
2028 out:
2029 return ret_val;
2030 }
2031
2032 /**
2033 * igb_write_phy_reg_82580 - Write 82580 MDI control register
2034 * @hw: pointer to the HW structure
2035 * @offset: register offset to write to
2036 * @data: data to write to register at offset
2037 *
2038 * Writes data to MDI control register in the PHY at offset.
2039 **/
2040 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2041 {
2042 s32 ret_val;
2043
2044
2045 ret_val = hw->phy.ops.acquire(hw);
2046 if (ret_val)
2047 goto out;
2048
2049 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2050
2051 hw->phy.ops.release(hw);
2052
2053 out:
2054 return ret_val;
2055 }
2056
2057 /**
2058 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2059 * @hw: pointer to the HW structure
2060 *
2061 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2062 * the values found in the EEPROM. This addresses an issue in which these
2063 * bits are not restored from EEPROM after reset.
2064 **/
2065 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2066 {
2067 s32 ret_val = 0;
2068 u32 mdicnfg;
2069 u16 nvm_data = 0;
2070
2071 if (hw->mac.type != e1000_82580)
2072 goto out;
2073 if (!igb_sgmii_active_82575(hw))
2074 goto out;
2075
2076 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2077 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2078 &nvm_data);
2079 if (ret_val) {
2080 hw_dbg("NVM Read Error\n");
2081 goto out;
2082 }
2083
2084 mdicnfg = rd32(E1000_MDICNFG);
2085 if (nvm_data & NVM_WORD24_EXT_MDIO)
2086 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2087 if (nvm_data & NVM_WORD24_COM_MDIO)
2088 mdicnfg |= E1000_MDICNFG_COM_MDIO;
2089 wr32(E1000_MDICNFG, mdicnfg);
2090 out:
2091 return ret_val;
2092 }
2093
2094 /**
2095 * igb_reset_hw_82580 - Reset hardware
2096 * @hw: pointer to the HW structure
2097 *
2098 * This resets function or entire device (all ports, etc.)
2099 * to a known state.
2100 **/
2101 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2102 {
2103 s32 ret_val = 0;
2104 /* BH SW mailbox bit in SW_FW_SYNC */
2105 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2106 u32 ctrl, icr;
2107 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2108
2109
2110 hw->dev_spec._82575.global_device_reset = false;
2111
2112 /* due to hw errata, global device reset doesn't always
2113 * work on 82580
2114 */
2115 if (hw->mac.type == e1000_82580)
2116 global_device_reset = false;
2117
2118 /* Get current control state. */
2119 ctrl = rd32(E1000_CTRL);
2120
2121 /* Prevent the PCI-E bus from sticking if there is no TLP connection
2122 * on the last TLP read/write transaction when MAC is reset.
2123 */
2124 ret_val = igb_disable_pcie_master(hw);
2125 if (ret_val)
2126 hw_dbg("PCI-E Master disable polling has failed.\n");
2127
2128 hw_dbg("Masking off all interrupts\n");
2129 wr32(E1000_IMC, 0xffffffff);
2130 wr32(E1000_RCTL, 0);
2131 wr32(E1000_TCTL, E1000_TCTL_PSP);
2132 wrfl();
2133
2134 msleep(10);
2135
2136 /* Determine whether or not a global dev reset is requested */
2137 if (global_device_reset &&
2138 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2139 global_device_reset = false;
2140
2141 if (global_device_reset &&
2142 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2143 ctrl |= E1000_CTRL_DEV_RST;
2144 else
2145 ctrl |= E1000_CTRL_RST;
2146
2147 wr32(E1000_CTRL, ctrl);
2148 wrfl();
2149
2150 /* Add delay to insure DEV_RST has time to complete */
2151 if (global_device_reset)
2152 msleep(5);
2153
2154 ret_val = igb_get_auto_rd_done(hw);
2155 if (ret_val) {
2156 /* When auto config read does not complete, do not
2157 * return with an error. This can happen in situations
2158 * where there is no eeprom and prevents getting link.
2159 */
2160 hw_dbg("Auto Read Done did not complete\n");
2161 }
2162
2163 /* clear global device reset status bit */
2164 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2165
2166 /* Clear any pending interrupt events. */
2167 wr32(E1000_IMC, 0xffffffff);
2168 icr = rd32(E1000_ICR);
2169
2170 ret_val = igb_reset_mdicnfg_82580(hw);
2171 if (ret_val)
2172 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2173
2174 /* Install any alternate MAC address into RAR0 */
2175 ret_val = igb_check_alt_mac_addr(hw);
2176
2177 /* Release semaphore */
2178 if (global_device_reset)
2179 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2180
2181 return ret_val;
2182 }
2183
2184 /**
2185 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2186 * @data: data received by reading RXPBS register
2187 *
2188 * The 82580 uses a table based approach for packet buffer allocation sizes.
2189 * This function converts the retrieved value into the correct table value
2190 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2191 * 0x0 36 72 144 1 2 4 8 16
2192 * 0x8 35 70 140 rsv rsv rsv rsv rsv
2193 */
2194 u16 igb_rxpbs_adjust_82580(u32 data)
2195 {
2196 u16 ret_val = 0;
2197
2198 if (data < E1000_82580_RXPBS_TABLE_SIZE)
2199 ret_val = e1000_82580_rxpbs_table[data];
2200
2201 return ret_val;
2202 }
2203
2204 /**
2205 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
2206 * checksum
2207 * @hw: pointer to the HW structure
2208 * @offset: offset in words of the checksum protected region
2209 *
2210 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2211 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2212 **/
2213 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2214 u16 offset)
2215 {
2216 s32 ret_val = 0;
2217 u16 checksum = 0;
2218 u16 i, nvm_data;
2219
2220 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2221 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2222 if (ret_val) {
2223 hw_dbg("NVM Read Error\n");
2224 goto out;
2225 }
2226 checksum += nvm_data;
2227 }
2228
2229 if (checksum != (u16) NVM_SUM) {
2230 hw_dbg("NVM Checksum Invalid\n");
2231 ret_val = -E1000_ERR_NVM;
2232 goto out;
2233 }
2234
2235 out:
2236 return ret_val;
2237 }
2238
2239 /**
2240 * igb_update_nvm_checksum_with_offset - Update EEPROM
2241 * checksum
2242 * @hw: pointer to the HW structure
2243 * @offset: offset in words of the checksum protected region
2244 *
2245 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2246 * up to the checksum. Then calculates the EEPROM checksum and writes the
2247 * value to the EEPROM.
2248 **/
2249 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2250 {
2251 s32 ret_val;
2252 u16 checksum = 0;
2253 u16 i, nvm_data;
2254
2255 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2256 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2257 if (ret_val) {
2258 hw_dbg("NVM Read Error while updating checksum.\n");
2259 goto out;
2260 }
2261 checksum += nvm_data;
2262 }
2263 checksum = (u16) NVM_SUM - checksum;
2264 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2265 &checksum);
2266 if (ret_val)
2267 hw_dbg("NVM Write Error while updating checksum.\n");
2268
2269 out:
2270 return ret_val;
2271 }
2272
2273 /**
2274 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2275 * @hw: pointer to the HW structure
2276 *
2277 * Calculates the EEPROM section checksum by reading/adding each word of
2278 * the EEPROM and then verifies that the sum of the EEPROM is
2279 * equal to 0xBABA.
2280 **/
2281 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2282 {
2283 s32 ret_val = 0;
2284 u16 eeprom_regions_count = 1;
2285 u16 j, nvm_data;
2286 u16 nvm_offset;
2287
2288 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2289 if (ret_val) {
2290 hw_dbg("NVM Read Error\n");
2291 goto out;
2292 }
2293
2294 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2295 /* if checksums compatibility bit is set validate checksums
2296 * for all 4 ports.
2297 */
2298 eeprom_regions_count = 4;
2299 }
2300
2301 for (j = 0; j < eeprom_regions_count; j++) {
2302 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2303 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2304 nvm_offset);
2305 if (ret_val != 0)
2306 goto out;
2307 }
2308
2309 out:
2310 return ret_val;
2311 }
2312
2313 /**
2314 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
2315 * @hw: pointer to the HW structure
2316 *
2317 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2318 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2319 * checksum and writes the value to the EEPROM.
2320 **/
2321 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2322 {
2323 s32 ret_val;
2324 u16 j, nvm_data;
2325 u16 nvm_offset;
2326
2327 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2328 if (ret_val) {
2329 hw_dbg("NVM Read Error while updating checksum"
2330 " compatibility bit.\n");
2331 goto out;
2332 }
2333
2334 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2335 /* set compatibility bit to validate checksums appropriately */
2336 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2337 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2338 &nvm_data);
2339 if (ret_val) {
2340 hw_dbg("NVM Write Error while updating checksum"
2341 " compatibility bit.\n");
2342 goto out;
2343 }
2344 }
2345
2346 for (j = 0; j < 4; j++) {
2347 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2348 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2349 if (ret_val)
2350 goto out;
2351 }
2352
2353 out:
2354 return ret_val;
2355 }
2356
2357 /**
2358 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2359 * @hw: pointer to the HW structure
2360 *
2361 * Calculates the EEPROM section checksum by reading/adding each word of
2362 * the EEPROM and then verifies that the sum of the EEPROM is
2363 * equal to 0xBABA.
2364 **/
2365 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2366 {
2367 s32 ret_val = 0;
2368 u16 j;
2369 u16 nvm_offset;
2370
2371 for (j = 0; j < 4; j++) {
2372 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2373 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2374 nvm_offset);
2375 if (ret_val != 0)
2376 goto out;
2377 }
2378
2379 out:
2380 return ret_val;
2381 }
2382
2383 /**
2384 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2385 * @hw: pointer to the HW structure
2386 *
2387 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2388 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2389 * checksum and writes the value to the EEPROM.
2390 **/
2391 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2392 {
2393 s32 ret_val = 0;
2394 u16 j;
2395 u16 nvm_offset;
2396
2397 for (j = 0; j < 4; j++) {
2398 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2399 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2400 if (ret_val != 0)
2401 goto out;
2402 }
2403
2404 out:
2405 return ret_val;
2406 }
2407
2408 /**
2409 * __igb_access_emi_reg - Read/write EMI register
2410 * @hw: pointer to the HW structure
2411 * @addr: EMI address to program
2412 * @data: pointer to value to read/write from/to the EMI address
2413 * @read: boolean flag to indicate read or write
2414 **/
2415 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2416 u16 *data, bool read)
2417 {
2418 s32 ret_val = E1000_SUCCESS;
2419
2420 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2421 if (ret_val)
2422 return ret_val;
2423
2424 if (read)
2425 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2426 else
2427 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2428
2429 return ret_val;
2430 }
2431
2432 /**
2433 * igb_read_emi_reg - Read Extended Management Interface register
2434 * @hw: pointer to the HW structure
2435 * @addr: EMI address to program
2436 * @data: value to be read from the EMI address
2437 **/
2438 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2439 {
2440 return __igb_access_emi_reg(hw, addr, data, true);
2441 }
2442
2443 /**
2444 * igb_set_eee_i350 - Enable/disable EEE support
2445 * @hw: pointer to the HW structure
2446 *
2447 * Enable/disable EEE based on setting in dev_spec structure.
2448 *
2449 **/
2450 s32 igb_set_eee_i350(struct e1000_hw *hw)
2451 {
2452 s32 ret_val = 0;
2453 u32 ipcnfg, eeer;
2454
2455 if ((hw->mac.type < e1000_i350) ||
2456 (hw->phy.media_type != e1000_media_type_copper))
2457 goto out;
2458 ipcnfg = rd32(E1000_IPCNFG);
2459 eeer = rd32(E1000_EEER);
2460
2461 /* enable or disable per user setting */
2462 if (!(hw->dev_spec._82575.eee_disable)) {
2463 u32 eee_su = rd32(E1000_EEE_SU);
2464
2465 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2466 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2467 E1000_EEER_LPI_FC);
2468
2469 /* This bit should not be set in normal operation. */
2470 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2471 hw_dbg("LPI Clock Stop Bit should not be set!\n");
2472
2473 } else {
2474 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2475 E1000_IPCNFG_EEE_100M_AN);
2476 eeer &= ~(E1000_EEER_TX_LPI_EN |
2477 E1000_EEER_RX_LPI_EN |
2478 E1000_EEER_LPI_FC);
2479 }
2480 wr32(E1000_IPCNFG, ipcnfg);
2481 wr32(E1000_EEER, eeer);
2482 rd32(E1000_IPCNFG);
2483 rd32(E1000_EEER);
2484 out:
2485
2486 return ret_val;
2487 }
2488
2489 /**
2490 * igb_set_eee_i354 - Enable/disable EEE support
2491 * @hw: pointer to the HW structure
2492 *
2493 * Enable/disable EEE legacy mode based on setting in dev_spec structure.
2494 *
2495 **/
2496 s32 igb_set_eee_i354(struct e1000_hw *hw)
2497 {
2498 struct e1000_phy_info *phy = &hw->phy;
2499 s32 ret_val = 0;
2500 u16 phy_data;
2501
2502 if ((hw->phy.media_type != e1000_media_type_copper) ||
2503 (phy->id != M88E1545_E_PHY_ID))
2504 goto out;
2505
2506 if (!hw->dev_spec._82575.eee_disable) {
2507 /* Switch to PHY page 18. */
2508 ret_val = phy->ops.write_reg(hw, E1000_M88E1545_PAGE_ADDR, 18);
2509 if (ret_val)
2510 goto out;
2511
2512 ret_val = phy->ops.read_reg(hw, E1000_M88E1545_EEE_CTRL_1,
2513 &phy_data);
2514 if (ret_val)
2515 goto out;
2516
2517 phy_data |= E1000_M88E1545_EEE_CTRL_1_MS;
2518 ret_val = phy->ops.write_reg(hw, E1000_M88E1545_EEE_CTRL_1,
2519 phy_data);
2520 if (ret_val)
2521 goto out;
2522
2523 /* Return the PHY to page 0. */
2524 ret_val = phy->ops.write_reg(hw, E1000_M88E1545_PAGE_ADDR, 0);
2525 if (ret_val)
2526 goto out;
2527
2528 /* Turn on EEE advertisement. */
2529 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2530 E1000_EEE_ADV_DEV_I354,
2531 &phy_data);
2532 if (ret_val)
2533 goto out;
2534
2535 phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2536 E1000_EEE_ADV_1000_SUPPORTED;
2537 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2538 E1000_EEE_ADV_DEV_I354,
2539 phy_data);
2540 } else {
2541 /* Turn off EEE advertisement. */
2542 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2543 E1000_EEE_ADV_DEV_I354,
2544 &phy_data);
2545 if (ret_val)
2546 goto out;
2547
2548 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2549 E1000_EEE_ADV_1000_SUPPORTED);
2550 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2551 E1000_EEE_ADV_DEV_I354,
2552 phy_data);
2553 }
2554
2555 out:
2556 return ret_val;
2557 }
2558
2559 /**
2560 * igb_get_eee_status_i354 - Get EEE status
2561 * @hw: pointer to the HW structure
2562 * @status: EEE status
2563 *
2564 * Get EEE status by guessing based on whether Tx or Rx LPI indications have
2565 * been received.
2566 **/
2567 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2568 {
2569 struct e1000_phy_info *phy = &hw->phy;
2570 s32 ret_val = 0;
2571 u16 phy_data;
2572
2573 /* Check if EEE is supported on this device. */
2574 if ((hw->phy.media_type != e1000_media_type_copper) ||
2575 (phy->id != M88E1545_E_PHY_ID))
2576 goto out;
2577
2578 ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2579 E1000_PCS_STATUS_DEV_I354,
2580 &phy_data);
2581 if (ret_val)
2582 goto out;
2583
2584 *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2585 E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2586
2587 out:
2588 return ret_val;
2589 }
2590
2591 static const u8 e1000_emc_temp_data[4] = {
2592 E1000_EMC_INTERNAL_DATA,
2593 E1000_EMC_DIODE1_DATA,
2594 E1000_EMC_DIODE2_DATA,
2595 E1000_EMC_DIODE3_DATA
2596 };
2597 static const u8 e1000_emc_therm_limit[4] = {
2598 E1000_EMC_INTERNAL_THERM_LIMIT,
2599 E1000_EMC_DIODE1_THERM_LIMIT,
2600 E1000_EMC_DIODE2_THERM_LIMIT,
2601 E1000_EMC_DIODE3_THERM_LIMIT
2602 };
2603
2604 /**
2605 * igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2606 * @hw: pointer to hardware structure
2607 *
2608 * Updates the temperatures in mac.thermal_sensor_data
2609 **/
2610 s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2611 {
2612 s32 status = E1000_SUCCESS;
2613 u16 ets_offset;
2614 u16 ets_cfg;
2615 u16 ets_sensor;
2616 u8 num_sensors;
2617 u8 sensor_index;
2618 u8 sensor_location;
2619 u8 i;
2620 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2621
2622 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2623 return E1000_NOT_IMPLEMENTED;
2624
2625 data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2626
2627 /* Return the internal sensor only if ETS is unsupported */
2628 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2629 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2630 return status;
2631
2632 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2633 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2634 != NVM_ETS_TYPE_EMC)
2635 return E1000_NOT_IMPLEMENTED;
2636
2637 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2638 if (num_sensors > E1000_MAX_SENSORS)
2639 num_sensors = E1000_MAX_SENSORS;
2640
2641 for (i = 1; i < num_sensors; i++) {
2642 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2643 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2644 NVM_ETS_DATA_INDEX_SHIFT);
2645 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2646 NVM_ETS_DATA_LOC_SHIFT);
2647
2648 if (sensor_location != 0)
2649 hw->phy.ops.read_i2c_byte(hw,
2650 e1000_emc_temp_data[sensor_index],
2651 E1000_I2C_THERMAL_SENSOR_ADDR,
2652 &data->sensor[i].temp);
2653 }
2654 return status;
2655 }
2656
2657 /**
2658 * igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2659 * @hw: pointer to hardware structure
2660 *
2661 * Sets the thermal sensor thresholds according to the NVM map
2662 * and save off the threshold and location values into mac.thermal_sensor_data
2663 **/
2664 s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2665 {
2666 s32 status = E1000_SUCCESS;
2667 u16 ets_offset;
2668 u16 ets_cfg;
2669 u16 ets_sensor;
2670 u8 low_thresh_delta;
2671 u8 num_sensors;
2672 u8 sensor_index;
2673 u8 sensor_location;
2674 u8 therm_limit;
2675 u8 i;
2676 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2677
2678 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2679 return E1000_NOT_IMPLEMENTED;
2680
2681 memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2682
2683 data->sensor[0].location = 0x1;
2684 data->sensor[0].caution_thresh =
2685 (rd32(E1000_THHIGHTC) & 0xFF);
2686 data->sensor[0].max_op_thresh =
2687 (rd32(E1000_THLOWTC) & 0xFF);
2688
2689 /* Return the internal sensor only if ETS is unsupported */
2690 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2691 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2692 return status;
2693
2694 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2695 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2696 != NVM_ETS_TYPE_EMC)
2697 return E1000_NOT_IMPLEMENTED;
2698
2699 low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2700 NVM_ETS_LTHRES_DELTA_SHIFT);
2701 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2702
2703 for (i = 1; i <= num_sensors; i++) {
2704 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2705 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2706 NVM_ETS_DATA_INDEX_SHIFT);
2707 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2708 NVM_ETS_DATA_LOC_SHIFT);
2709 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2710
2711 hw->phy.ops.write_i2c_byte(hw,
2712 e1000_emc_therm_limit[sensor_index],
2713 E1000_I2C_THERMAL_SENSOR_ADDR,
2714 therm_limit);
2715
2716 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2717 data->sensor[i].location = sensor_location;
2718 data->sensor[i].caution_thresh = therm_limit;
2719 data->sensor[i].max_op_thresh = therm_limit -
2720 low_thresh_delta;
2721 }
2722 }
2723 return status;
2724 }
2725
2726 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2727 .init_hw = igb_init_hw_82575,
2728 .check_for_link = igb_check_for_link_82575,
2729 .rar_set = igb_rar_set,
2730 .read_mac_addr = igb_read_mac_addr_82575,
2731 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2732 #ifdef CONFIG_IGB_HWMON
2733 .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2734 .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2735 #endif
2736 };
2737
2738 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2739 .acquire = igb_acquire_phy_82575,
2740 .get_cfg_done = igb_get_cfg_done_82575,
2741 .release = igb_release_phy_82575,
2742 .write_i2c_byte = igb_write_i2c_byte,
2743 .read_i2c_byte = igb_read_i2c_byte,
2744 };
2745
2746 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2747 .acquire = igb_acquire_nvm_82575,
2748 .read = igb_read_nvm_eerd,
2749 .release = igb_release_nvm_82575,
2750 .write = igb_write_nvm_spi,
2751 };
2752
2753 const struct e1000_info e1000_82575_info = {
2754 .get_invariants = igb_get_invariants_82575,
2755 .mac_ops = &e1000_mac_ops_82575,
2756 .phy_ops = &e1000_phy_ops_82575,
2757 .nvm_ops = &e1000_nvm_ops_82575,
2758 };
2759
This page took 0.092203 seconds and 5 git commands to generate.