Merge branch 'v4l_for_linus' into patchwork
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / e1000_82575.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* e1000_82575
29 * e1000_82576
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
36 #include <linux/i2c.h>
37
38 #include "e1000_mac.h"
39 #include "e1000_82575.h"
40 #include "e1000_i210.h"
41
42 static s32 igb_get_invariants_82575(struct e1000_hw *);
43 static s32 igb_acquire_phy_82575(struct e1000_hw *);
44 static void igb_release_phy_82575(struct e1000_hw *);
45 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
46 static void igb_release_nvm_82575(struct e1000_hw *);
47 static s32 igb_check_for_link_82575(struct e1000_hw *);
48 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
49 static s32 igb_init_hw_82575(struct e1000_hw *);
50 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
51 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
52 static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
53 static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
54 static s32 igb_reset_hw_82575(struct e1000_hw *);
55 static s32 igb_reset_hw_82580(struct e1000_hw *);
56 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
57 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
58 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
59 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
60 static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
61 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
62 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
63 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
64 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
65 u16 *);
66 static s32 igb_get_phy_id_82575(struct e1000_hw *);
67 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
68 static bool igb_sgmii_active_82575(struct e1000_hw *);
69 static s32 igb_reset_init_script_82575(struct e1000_hw *);
70 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
71 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
72 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
73 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
75 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
76 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
77 static const u16 e1000_82580_rxpbs_table[] =
78 { 36, 72, 144, 1, 2, 4, 8, 16,
79 35, 70, 140 };
80 #define E1000_82580_RXPBS_TABLE_SIZE \
81 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
82
83 /**
84 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
85 * @hw: pointer to the HW structure
86 *
87 * Called to determine if the I2C pins are being used for I2C or as an
88 * external MDIO interface since the two options are mutually exclusive.
89 **/
90 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
91 {
92 u32 reg = 0;
93 bool ext_mdio = false;
94
95 switch (hw->mac.type) {
96 case e1000_82575:
97 case e1000_82576:
98 reg = rd32(E1000_MDIC);
99 ext_mdio = !!(reg & E1000_MDIC_DEST);
100 break;
101 case e1000_82580:
102 case e1000_i350:
103 case e1000_i354:
104 case e1000_i210:
105 case e1000_i211:
106 reg = rd32(E1000_MDICNFG);
107 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
108 break;
109 default:
110 break;
111 }
112 return ext_mdio;
113 }
114
115 /**
116 * igb_init_phy_params_82575 - Init PHY func ptrs.
117 * @hw: pointer to the HW structure
118 **/
119 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
120 {
121 struct e1000_phy_info *phy = &hw->phy;
122 s32 ret_val = 0;
123 u32 ctrl_ext;
124
125 if (hw->phy.media_type != e1000_media_type_copper) {
126 phy->type = e1000_phy_none;
127 goto out;
128 }
129
130 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
131 phy->reset_delay_us = 100;
132
133 ctrl_ext = rd32(E1000_CTRL_EXT);
134
135 if (igb_sgmii_active_82575(hw)) {
136 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
137 ctrl_ext |= E1000_CTRL_I2C_ENA;
138 } else {
139 phy->ops.reset = igb_phy_hw_reset;
140 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
141 }
142
143 wr32(E1000_CTRL_EXT, ctrl_ext);
144 igb_reset_mdicnfg_82580(hw);
145
146 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
147 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
148 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
149 } else {
150 switch (hw->mac.type) {
151 case e1000_82580:
152 case e1000_i350:
153 case e1000_i354:
154 phy->ops.read_reg = igb_read_phy_reg_82580;
155 phy->ops.write_reg = igb_write_phy_reg_82580;
156 break;
157 case e1000_i210:
158 case e1000_i211:
159 phy->ops.read_reg = igb_read_phy_reg_gs40g;
160 phy->ops.write_reg = igb_write_phy_reg_gs40g;
161 break;
162 default:
163 phy->ops.read_reg = igb_read_phy_reg_igp;
164 phy->ops.write_reg = igb_write_phy_reg_igp;
165 }
166 }
167
168 /* set lan id */
169 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
170 E1000_STATUS_FUNC_SHIFT;
171
172 /* Set phy->phy_addr and phy->id. */
173 ret_val = igb_get_phy_id_82575(hw);
174 if (ret_val)
175 return ret_val;
176
177 /* Verify phy id and set remaining function pointers */
178 switch (phy->id) {
179 case M88E1545_E_PHY_ID:
180 case I347AT4_E_PHY_ID:
181 case M88E1112_E_PHY_ID:
182 case M88E1111_I_PHY_ID:
183 phy->type = e1000_phy_m88;
184 phy->ops.check_polarity = igb_check_polarity_m88;
185 phy->ops.get_phy_info = igb_get_phy_info_m88;
186 if (phy->id != M88E1111_I_PHY_ID)
187 phy->ops.get_cable_length =
188 igb_get_cable_length_m88_gen2;
189 else
190 phy->ops.get_cable_length = igb_get_cable_length_m88;
191 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
192 break;
193 case IGP03E1000_E_PHY_ID:
194 phy->type = e1000_phy_igp_3;
195 phy->ops.get_phy_info = igb_get_phy_info_igp;
196 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
197 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
198 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
199 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
200 break;
201 case I82580_I_PHY_ID:
202 case I350_I_PHY_ID:
203 phy->type = e1000_phy_82580;
204 phy->ops.force_speed_duplex =
205 igb_phy_force_speed_duplex_82580;
206 phy->ops.get_cable_length = igb_get_cable_length_82580;
207 phy->ops.get_phy_info = igb_get_phy_info_82580;
208 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
209 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
210 break;
211 case I210_I_PHY_ID:
212 phy->type = e1000_phy_i210;
213 phy->ops.check_polarity = igb_check_polarity_m88;
214 phy->ops.get_phy_info = igb_get_phy_info_m88;
215 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
216 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
217 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
218 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
219 break;
220 default:
221 ret_val = -E1000_ERR_PHY;
222 goto out;
223 }
224
225 out:
226 return ret_val;
227 }
228
229 /**
230 * igb_init_nvm_params_82575 - Init NVM func ptrs.
231 * @hw: pointer to the HW structure
232 **/
233 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
234 {
235 struct e1000_nvm_info *nvm = &hw->nvm;
236 u32 eecd = rd32(E1000_EECD);
237 u16 size;
238
239 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
240 E1000_EECD_SIZE_EX_SHIFT);
241 /* Added to a constant, "size" becomes the left-shift value
242 * for setting word_size.
243 */
244 size += NVM_WORD_SIZE_BASE_SHIFT;
245
246 /* Just in case size is out of range, cap it to the largest
247 * EEPROM size supported
248 */
249 if (size > 15)
250 size = 15;
251
252 nvm->word_size = 1 << size;
253 if (hw->mac.type < e1000_i210) {
254 nvm->opcode_bits = 8;
255 nvm->delay_usec = 1;
256
257 switch (nvm->override) {
258 case e1000_nvm_override_spi_large:
259 nvm->page_size = 32;
260 nvm->address_bits = 16;
261 break;
262 case e1000_nvm_override_spi_small:
263 nvm->page_size = 8;
264 nvm->address_bits = 8;
265 break;
266 default:
267 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
268 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
269 16 : 8;
270 break;
271 }
272 if (nvm->word_size == (1 << 15))
273 nvm->page_size = 128;
274
275 nvm->type = e1000_nvm_eeprom_spi;
276 } else {
277 nvm->type = e1000_nvm_flash_hw;
278 }
279
280 /* NVM Function Pointers */
281 switch (hw->mac.type) {
282 case e1000_82580:
283 nvm->ops.validate = igb_validate_nvm_checksum_82580;
284 nvm->ops.update = igb_update_nvm_checksum_82580;
285 nvm->ops.acquire = igb_acquire_nvm_82575;
286 nvm->ops.release = igb_release_nvm_82575;
287 if (nvm->word_size < (1 << 15))
288 nvm->ops.read = igb_read_nvm_eerd;
289 else
290 nvm->ops.read = igb_read_nvm_spi;
291 nvm->ops.write = igb_write_nvm_spi;
292 break;
293 case e1000_i354:
294 case e1000_i350:
295 nvm->ops.validate = igb_validate_nvm_checksum_i350;
296 nvm->ops.update = igb_update_nvm_checksum_i350;
297 nvm->ops.acquire = igb_acquire_nvm_82575;
298 nvm->ops.release = igb_release_nvm_82575;
299 if (nvm->word_size < (1 << 15))
300 nvm->ops.read = igb_read_nvm_eerd;
301 else
302 nvm->ops.read = igb_read_nvm_spi;
303 nvm->ops.write = igb_write_nvm_spi;
304 break;
305 case e1000_i210:
306 nvm->ops.validate = igb_validate_nvm_checksum_i210;
307 nvm->ops.update = igb_update_nvm_checksum_i210;
308 nvm->ops.acquire = igb_acquire_nvm_i210;
309 nvm->ops.release = igb_release_nvm_i210;
310 nvm->ops.read = igb_read_nvm_srrd_i210;
311 nvm->ops.write = igb_write_nvm_srwr_i210;
312 nvm->ops.valid_led_default = igb_valid_led_default_i210;
313 break;
314 case e1000_i211:
315 nvm->ops.acquire = igb_acquire_nvm_i210;
316 nvm->ops.release = igb_release_nvm_i210;
317 nvm->ops.read = igb_read_nvm_i211;
318 nvm->ops.valid_led_default = igb_valid_led_default_i210;
319 nvm->ops.validate = NULL;
320 nvm->ops.update = NULL;
321 nvm->ops.write = NULL;
322 break;
323 default:
324 nvm->ops.validate = igb_validate_nvm_checksum;
325 nvm->ops.update = igb_update_nvm_checksum;
326 nvm->ops.acquire = igb_acquire_nvm_82575;
327 nvm->ops.release = igb_release_nvm_82575;
328 if (nvm->word_size < (1 << 15))
329 nvm->ops.read = igb_read_nvm_eerd;
330 else
331 nvm->ops.read = igb_read_nvm_spi;
332 nvm->ops.write = igb_write_nvm_spi;
333 break;
334 }
335
336 return 0;
337 }
338
339 /**
340 * igb_init_mac_params_82575 - Init MAC func ptrs.
341 * @hw: pointer to the HW structure
342 **/
343 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
344 {
345 struct e1000_mac_info *mac = &hw->mac;
346 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
347
348 /* Set mta register count */
349 mac->mta_reg_count = 128;
350 /* Set rar entry count */
351 switch (mac->type) {
352 case e1000_82576:
353 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
354 break;
355 case e1000_82580:
356 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
357 break;
358 case e1000_i350:
359 case e1000_i354:
360 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
361 break;
362 default:
363 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
364 break;
365 }
366 /* reset */
367 if (mac->type >= e1000_82580)
368 mac->ops.reset_hw = igb_reset_hw_82580;
369 else
370 mac->ops.reset_hw = igb_reset_hw_82575;
371
372 if (mac->type >= e1000_i210) {
373 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
374 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
375
376 } else {
377 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
378 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
379 }
380
381 /* Set if part includes ASF firmware */
382 mac->asf_firmware_present = true;
383 /* Set if manageability features are enabled. */
384 mac->arc_subsystem_valid =
385 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
386 ? true : false;
387 /* enable EEE on i350 parts and later parts */
388 if (mac->type >= e1000_i350)
389 dev_spec->eee_disable = false;
390 else
391 dev_spec->eee_disable = true;
392 /* Allow a single clear of the SW semaphore on I210 and newer */
393 if (mac->type >= e1000_i210)
394 dev_spec->clear_semaphore_once = true;
395 /* physical interface link setup */
396 mac->ops.setup_physical_interface =
397 (hw->phy.media_type == e1000_media_type_copper)
398 ? igb_setup_copper_link_82575
399 : igb_setup_serdes_link_82575;
400
401 return 0;
402 }
403
404 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
405 {
406 struct e1000_mac_info *mac = &hw->mac;
407 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
408 s32 ret_val;
409 u32 ctrl_ext = 0;
410
411 switch (hw->device_id) {
412 case E1000_DEV_ID_82575EB_COPPER:
413 case E1000_DEV_ID_82575EB_FIBER_SERDES:
414 case E1000_DEV_ID_82575GB_QUAD_COPPER:
415 mac->type = e1000_82575;
416 break;
417 case E1000_DEV_ID_82576:
418 case E1000_DEV_ID_82576_NS:
419 case E1000_DEV_ID_82576_NS_SERDES:
420 case E1000_DEV_ID_82576_FIBER:
421 case E1000_DEV_ID_82576_SERDES:
422 case E1000_DEV_ID_82576_QUAD_COPPER:
423 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
424 case E1000_DEV_ID_82576_SERDES_QUAD:
425 mac->type = e1000_82576;
426 break;
427 case E1000_DEV_ID_82580_COPPER:
428 case E1000_DEV_ID_82580_FIBER:
429 case E1000_DEV_ID_82580_QUAD_FIBER:
430 case E1000_DEV_ID_82580_SERDES:
431 case E1000_DEV_ID_82580_SGMII:
432 case E1000_DEV_ID_82580_COPPER_DUAL:
433 case E1000_DEV_ID_DH89XXCC_SGMII:
434 case E1000_DEV_ID_DH89XXCC_SERDES:
435 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
436 case E1000_DEV_ID_DH89XXCC_SFP:
437 mac->type = e1000_82580;
438 break;
439 case E1000_DEV_ID_I350_COPPER:
440 case E1000_DEV_ID_I350_FIBER:
441 case E1000_DEV_ID_I350_SERDES:
442 case E1000_DEV_ID_I350_SGMII:
443 mac->type = e1000_i350;
444 break;
445 case E1000_DEV_ID_I210_COPPER:
446 case E1000_DEV_ID_I210_FIBER:
447 case E1000_DEV_ID_I210_SERDES:
448 case E1000_DEV_ID_I210_SGMII:
449 mac->type = e1000_i210;
450 break;
451 case E1000_DEV_ID_I211_COPPER:
452 mac->type = e1000_i211;
453 break;
454 case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
455 case E1000_DEV_ID_I354_SGMII:
456 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
457 mac->type = e1000_i354;
458 break;
459 default:
460 return -E1000_ERR_MAC_INIT;
461 break;
462 }
463
464 /* Set media type */
465 /* The 82575 uses bits 22:23 for link mode. The mode can be changed
466 * based on the EEPROM. We cannot rely upon device ID. There
467 * is no distinguishable difference between fiber and internal
468 * SerDes mode on the 82575. There can be an external PHY attached
469 * on the SGMII interface. For this, we'll set sgmii_active to true.
470 */
471 hw->phy.media_type = e1000_media_type_copper;
472 dev_spec->sgmii_active = false;
473
474 ctrl_ext = rd32(E1000_CTRL_EXT);
475 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
476 case E1000_CTRL_EXT_LINK_MODE_SGMII:
477 dev_spec->sgmii_active = true;
478 break;
479 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
480 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
481 hw->phy.media_type = e1000_media_type_internal_serdes;
482 break;
483 default:
484 break;
485 }
486
487 /* mac initialization and operations */
488 ret_val = igb_init_mac_params_82575(hw);
489 if (ret_val)
490 goto out;
491
492 /* NVM initialization */
493 ret_val = igb_init_nvm_params_82575(hw);
494 if (ret_val)
495 goto out;
496
497 /* if part supports SR-IOV then initialize mailbox parameters */
498 switch (mac->type) {
499 case e1000_82576:
500 case e1000_i350:
501 igb_init_mbx_params_pf(hw);
502 break;
503 default:
504 break;
505 }
506
507 /* setup PHY parameters */
508 ret_val = igb_init_phy_params_82575(hw);
509
510 out:
511 return ret_val;
512 }
513
514 /**
515 * igb_acquire_phy_82575 - Acquire rights to access PHY
516 * @hw: pointer to the HW structure
517 *
518 * Acquire access rights to the correct PHY. This is a
519 * function pointer entry point called by the api module.
520 **/
521 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
522 {
523 u16 mask = E1000_SWFW_PHY0_SM;
524
525 if (hw->bus.func == E1000_FUNC_1)
526 mask = E1000_SWFW_PHY1_SM;
527 else if (hw->bus.func == E1000_FUNC_2)
528 mask = E1000_SWFW_PHY2_SM;
529 else if (hw->bus.func == E1000_FUNC_3)
530 mask = E1000_SWFW_PHY3_SM;
531
532 return hw->mac.ops.acquire_swfw_sync(hw, mask);
533 }
534
535 /**
536 * igb_release_phy_82575 - Release rights to access PHY
537 * @hw: pointer to the HW structure
538 *
539 * A wrapper to release access rights to the correct PHY. This is a
540 * function pointer entry point called by the api module.
541 **/
542 static void igb_release_phy_82575(struct e1000_hw *hw)
543 {
544 u16 mask = E1000_SWFW_PHY0_SM;
545
546 if (hw->bus.func == E1000_FUNC_1)
547 mask = E1000_SWFW_PHY1_SM;
548 else if (hw->bus.func == E1000_FUNC_2)
549 mask = E1000_SWFW_PHY2_SM;
550 else if (hw->bus.func == E1000_FUNC_3)
551 mask = E1000_SWFW_PHY3_SM;
552
553 hw->mac.ops.release_swfw_sync(hw, mask);
554 }
555
556 /**
557 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
558 * @hw: pointer to the HW structure
559 * @offset: register offset to be read
560 * @data: pointer to the read data
561 *
562 * Reads the PHY register at offset using the serial gigabit media independent
563 * interface and stores the retrieved information in data.
564 **/
565 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
566 u16 *data)
567 {
568 s32 ret_val = -E1000_ERR_PARAM;
569
570 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
571 hw_dbg("PHY Address %u is out of range\n", offset);
572 goto out;
573 }
574
575 ret_val = hw->phy.ops.acquire(hw);
576 if (ret_val)
577 goto out;
578
579 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
580
581 hw->phy.ops.release(hw);
582
583 out:
584 return ret_val;
585 }
586
587 /**
588 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
589 * @hw: pointer to the HW structure
590 * @offset: register offset to write to
591 * @data: data to write at register offset
592 *
593 * Writes the data to PHY register at the offset using the serial gigabit
594 * media independent interface.
595 **/
596 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
597 u16 data)
598 {
599 s32 ret_val = -E1000_ERR_PARAM;
600
601
602 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
603 hw_dbg("PHY Address %d is out of range\n", offset);
604 goto out;
605 }
606
607 ret_val = hw->phy.ops.acquire(hw);
608 if (ret_val)
609 goto out;
610
611 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
612
613 hw->phy.ops.release(hw);
614
615 out:
616 return ret_val;
617 }
618
619 /**
620 * igb_get_phy_id_82575 - Retrieve PHY addr and id
621 * @hw: pointer to the HW structure
622 *
623 * Retrieves the PHY address and ID for both PHY's which do and do not use
624 * sgmi interface.
625 **/
626 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
627 {
628 struct e1000_phy_info *phy = &hw->phy;
629 s32 ret_val = 0;
630 u16 phy_id;
631 u32 ctrl_ext;
632 u32 mdic;
633
634 /* For SGMII PHYs, we try the list of possible addresses until
635 * we find one that works. For non-SGMII PHYs
636 * (e.g. integrated copper PHYs), an address of 1 should
637 * work. The result of this function should mean phy->phy_addr
638 * and phy->id are set correctly.
639 */
640 if (!(igb_sgmii_active_82575(hw))) {
641 phy->addr = 1;
642 ret_val = igb_get_phy_id(hw);
643 goto out;
644 }
645
646 if (igb_sgmii_uses_mdio_82575(hw)) {
647 switch (hw->mac.type) {
648 case e1000_82575:
649 case e1000_82576:
650 mdic = rd32(E1000_MDIC);
651 mdic &= E1000_MDIC_PHY_MASK;
652 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
653 break;
654 case e1000_82580:
655 case e1000_i350:
656 case e1000_i354:
657 case e1000_i210:
658 case e1000_i211:
659 mdic = rd32(E1000_MDICNFG);
660 mdic &= E1000_MDICNFG_PHY_MASK;
661 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
662 break;
663 default:
664 ret_val = -E1000_ERR_PHY;
665 goto out;
666 break;
667 }
668 ret_val = igb_get_phy_id(hw);
669 goto out;
670 }
671
672 /* Power on sgmii phy if it is disabled */
673 ctrl_ext = rd32(E1000_CTRL_EXT);
674 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
675 wrfl();
676 msleep(300);
677
678 /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
679 * Therefore, we need to test 1-7
680 */
681 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
682 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
683 if (ret_val == 0) {
684 hw_dbg("Vendor ID 0x%08X read at address %u\n",
685 phy_id, phy->addr);
686 /* At the time of this writing, The M88 part is
687 * the only supported SGMII PHY product.
688 */
689 if (phy_id == M88_VENDOR)
690 break;
691 } else {
692 hw_dbg("PHY address %u was unreadable\n", phy->addr);
693 }
694 }
695
696 /* A valid PHY type couldn't be found. */
697 if (phy->addr == 8) {
698 phy->addr = 0;
699 ret_val = -E1000_ERR_PHY;
700 goto out;
701 } else {
702 ret_val = igb_get_phy_id(hw);
703 }
704
705 /* restore previous sfp cage power state */
706 wr32(E1000_CTRL_EXT, ctrl_ext);
707
708 out:
709 return ret_val;
710 }
711
712 /**
713 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
714 * @hw: pointer to the HW structure
715 *
716 * Resets the PHY using the serial gigabit media independent interface.
717 **/
718 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
719 {
720 s32 ret_val;
721
722 /* This isn't a true "hard" reset, but is the only reset
723 * available to us at this time.
724 */
725
726 hw_dbg("Soft resetting SGMII attached PHY...\n");
727
728 /* SFP documentation requires the following to configure the SPF module
729 * to work on SGMII. No further documentation is given.
730 */
731 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
732 if (ret_val)
733 goto out;
734
735 ret_val = igb_phy_sw_reset(hw);
736
737 out:
738 return ret_val;
739 }
740
741 /**
742 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
743 * @hw: pointer to the HW structure
744 * @active: true to enable LPLU, false to disable
745 *
746 * Sets the LPLU D0 state according to the active flag. When
747 * activating LPLU this function also disables smart speed
748 * and vice versa. LPLU will not be activated unless the
749 * device autonegotiation advertisement meets standards of
750 * either 10 or 10/100 or 10/100/1000 at all duplexes.
751 * This is a function pointer entry point only called by
752 * PHY setup routines.
753 **/
754 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
755 {
756 struct e1000_phy_info *phy = &hw->phy;
757 s32 ret_val;
758 u16 data;
759
760 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
761 if (ret_val)
762 goto out;
763
764 if (active) {
765 data |= IGP02E1000_PM_D0_LPLU;
766 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
767 data);
768 if (ret_val)
769 goto out;
770
771 /* When LPLU is enabled, we should disable SmartSpeed */
772 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
773 &data);
774 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
775 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
776 data);
777 if (ret_val)
778 goto out;
779 } else {
780 data &= ~IGP02E1000_PM_D0_LPLU;
781 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
782 data);
783 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
784 * during Dx states where the power conservation is most
785 * important. During driver activity we should enable
786 * SmartSpeed, so performance is maintained.
787 */
788 if (phy->smart_speed == e1000_smart_speed_on) {
789 ret_val = phy->ops.read_reg(hw,
790 IGP01E1000_PHY_PORT_CONFIG, &data);
791 if (ret_val)
792 goto out;
793
794 data |= IGP01E1000_PSCFR_SMART_SPEED;
795 ret_val = phy->ops.write_reg(hw,
796 IGP01E1000_PHY_PORT_CONFIG, data);
797 if (ret_val)
798 goto out;
799 } else if (phy->smart_speed == e1000_smart_speed_off) {
800 ret_val = phy->ops.read_reg(hw,
801 IGP01E1000_PHY_PORT_CONFIG, &data);
802 if (ret_val)
803 goto out;
804
805 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
806 ret_val = phy->ops.write_reg(hw,
807 IGP01E1000_PHY_PORT_CONFIG, data);
808 if (ret_val)
809 goto out;
810 }
811 }
812
813 out:
814 return ret_val;
815 }
816
817 /**
818 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
819 * @hw: pointer to the HW structure
820 * @active: true to enable LPLU, false to disable
821 *
822 * Sets the LPLU D0 state according to the active flag. When
823 * activating LPLU this function also disables smart speed
824 * and vice versa. LPLU will not be activated unless the
825 * device autonegotiation advertisement meets standards of
826 * either 10 or 10/100 or 10/100/1000 at all duplexes.
827 * This is a function pointer entry point only called by
828 * PHY setup routines.
829 **/
830 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
831 {
832 struct e1000_phy_info *phy = &hw->phy;
833 s32 ret_val = 0;
834 u16 data;
835
836 data = rd32(E1000_82580_PHY_POWER_MGMT);
837
838 if (active) {
839 data |= E1000_82580_PM_D0_LPLU;
840
841 /* When LPLU is enabled, we should disable SmartSpeed */
842 data &= ~E1000_82580_PM_SPD;
843 } else {
844 data &= ~E1000_82580_PM_D0_LPLU;
845
846 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
847 * during Dx states where the power conservation is most
848 * important. During driver activity we should enable
849 * SmartSpeed, so performance is maintained.
850 */
851 if (phy->smart_speed == e1000_smart_speed_on)
852 data |= E1000_82580_PM_SPD;
853 else if (phy->smart_speed == e1000_smart_speed_off)
854 data &= ~E1000_82580_PM_SPD; }
855
856 wr32(E1000_82580_PHY_POWER_MGMT, data);
857 return ret_val;
858 }
859
860 /**
861 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
862 * @hw: pointer to the HW structure
863 * @active: boolean used to enable/disable lplu
864 *
865 * Success returns 0, Failure returns 1
866 *
867 * The low power link up (lplu) state is set to the power management level D3
868 * and SmartSpeed is disabled when active is true, else clear lplu for D3
869 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
870 * is used during Dx states where the power conservation is most important.
871 * During driver activity, SmartSpeed should be enabled so performance is
872 * maintained.
873 **/
874 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
875 {
876 struct e1000_phy_info *phy = &hw->phy;
877 s32 ret_val = 0;
878 u16 data;
879
880 data = rd32(E1000_82580_PHY_POWER_MGMT);
881
882 if (!active) {
883 data &= ~E1000_82580_PM_D3_LPLU;
884 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
885 * during Dx states where the power conservation is most
886 * important. During driver activity we should enable
887 * SmartSpeed, so performance is maintained.
888 */
889 if (phy->smart_speed == e1000_smart_speed_on)
890 data |= E1000_82580_PM_SPD;
891 else if (phy->smart_speed == e1000_smart_speed_off)
892 data &= ~E1000_82580_PM_SPD;
893 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
894 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
895 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
896 data |= E1000_82580_PM_D3_LPLU;
897 /* When LPLU is enabled, we should disable SmartSpeed */
898 data &= ~E1000_82580_PM_SPD;
899 }
900
901 wr32(E1000_82580_PHY_POWER_MGMT, data);
902 return ret_val;
903 }
904
905 /**
906 * igb_acquire_nvm_82575 - Request for access to EEPROM
907 * @hw: pointer to the HW structure
908 *
909 * Acquire the necessary semaphores for exclusive access to the EEPROM.
910 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
911 * Return successful if access grant bit set, else clear the request for
912 * EEPROM access and return -E1000_ERR_NVM (-1).
913 **/
914 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
915 {
916 s32 ret_val;
917
918 ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
919 if (ret_val)
920 goto out;
921
922 ret_val = igb_acquire_nvm(hw);
923
924 if (ret_val)
925 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
926
927 out:
928 return ret_val;
929 }
930
931 /**
932 * igb_release_nvm_82575 - Release exclusive access to EEPROM
933 * @hw: pointer to the HW structure
934 *
935 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
936 * then release the semaphores acquired.
937 **/
938 static void igb_release_nvm_82575(struct e1000_hw *hw)
939 {
940 igb_release_nvm(hw);
941 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
942 }
943
944 /**
945 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
946 * @hw: pointer to the HW structure
947 * @mask: specifies which semaphore to acquire
948 *
949 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
950 * will also specify which port we're acquiring the lock for.
951 **/
952 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
953 {
954 u32 swfw_sync;
955 u32 swmask = mask;
956 u32 fwmask = mask << 16;
957 s32 ret_val = 0;
958 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
959
960 while (i < timeout) {
961 if (igb_get_hw_semaphore(hw)) {
962 ret_val = -E1000_ERR_SWFW_SYNC;
963 goto out;
964 }
965
966 swfw_sync = rd32(E1000_SW_FW_SYNC);
967 if (!(swfw_sync & (fwmask | swmask)))
968 break;
969
970 /* Firmware currently using resource (fwmask)
971 * or other software thread using resource (swmask)
972 */
973 igb_put_hw_semaphore(hw);
974 mdelay(5);
975 i++;
976 }
977
978 if (i == timeout) {
979 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
980 ret_val = -E1000_ERR_SWFW_SYNC;
981 goto out;
982 }
983
984 swfw_sync |= swmask;
985 wr32(E1000_SW_FW_SYNC, swfw_sync);
986
987 igb_put_hw_semaphore(hw);
988
989 out:
990 return ret_val;
991 }
992
993 /**
994 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
995 * @hw: pointer to the HW structure
996 * @mask: specifies which semaphore to acquire
997 *
998 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
999 * will also specify which port we're releasing the lock for.
1000 **/
1001 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1002 {
1003 u32 swfw_sync;
1004
1005 while (igb_get_hw_semaphore(hw) != 0);
1006 /* Empty */
1007
1008 swfw_sync = rd32(E1000_SW_FW_SYNC);
1009 swfw_sync &= ~mask;
1010 wr32(E1000_SW_FW_SYNC, swfw_sync);
1011
1012 igb_put_hw_semaphore(hw);
1013 }
1014
1015 /**
1016 * igb_get_cfg_done_82575 - Read config done bit
1017 * @hw: pointer to the HW structure
1018 *
1019 * Read the management control register for the config done bit for
1020 * completion status. NOTE: silicon which is EEPROM-less will fail trying
1021 * to read the config done bit, so an error is *ONLY* logged and returns
1022 * 0. If we were to return with error, EEPROM-less silicon
1023 * would not be able to be reset or change link.
1024 **/
1025 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1026 {
1027 s32 timeout = PHY_CFG_TIMEOUT;
1028 s32 ret_val = 0;
1029 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1030
1031 if (hw->bus.func == 1)
1032 mask = E1000_NVM_CFG_DONE_PORT_1;
1033 else if (hw->bus.func == E1000_FUNC_2)
1034 mask = E1000_NVM_CFG_DONE_PORT_2;
1035 else if (hw->bus.func == E1000_FUNC_3)
1036 mask = E1000_NVM_CFG_DONE_PORT_3;
1037
1038 while (timeout) {
1039 if (rd32(E1000_EEMNGCTL) & mask)
1040 break;
1041 msleep(1);
1042 timeout--;
1043 }
1044 if (!timeout)
1045 hw_dbg("MNG configuration cycle has not completed.\n");
1046
1047 /* If EEPROM is not marked present, init the PHY manually */
1048 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1049 (hw->phy.type == e1000_phy_igp_3))
1050 igb_phy_init_script_igp3(hw);
1051
1052 return ret_val;
1053 }
1054
1055 /**
1056 * igb_check_for_link_82575 - Check for link
1057 * @hw: pointer to the HW structure
1058 *
1059 * If sgmii is enabled, then use the pcs register to determine link, otherwise
1060 * use the generic interface for determining link.
1061 **/
1062 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1063 {
1064 s32 ret_val;
1065 u16 speed, duplex;
1066
1067 if (hw->phy.media_type != e1000_media_type_copper) {
1068 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1069 &duplex);
1070 /* Use this flag to determine if link needs to be checked or
1071 * not. If we have link clear the flag so that we do not
1072 * continue to check for link.
1073 */
1074 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1075
1076 /* Configure Flow Control now that Auto-Neg has completed.
1077 * First, we need to restore the desired flow control
1078 * settings because we may have had to re-autoneg with a
1079 * different link partner.
1080 */
1081 ret_val = igb_config_fc_after_link_up(hw);
1082 if (ret_val)
1083 hw_dbg("Error configuring flow control\n");
1084 } else {
1085 ret_val = igb_check_for_copper_link(hw);
1086 }
1087
1088 return ret_val;
1089 }
1090
1091 /**
1092 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1093 * @hw: pointer to the HW structure
1094 **/
1095 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1096 {
1097 u32 reg;
1098
1099
1100 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1101 !igb_sgmii_active_82575(hw))
1102 return;
1103
1104 /* Enable PCS to turn on link */
1105 reg = rd32(E1000_PCS_CFG0);
1106 reg |= E1000_PCS_CFG_PCS_EN;
1107 wr32(E1000_PCS_CFG0, reg);
1108
1109 /* Power up the laser */
1110 reg = rd32(E1000_CTRL_EXT);
1111 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1112 wr32(E1000_CTRL_EXT, reg);
1113
1114 /* flush the write to verify completion */
1115 wrfl();
1116 msleep(1);
1117 }
1118
1119 /**
1120 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1121 * @hw: pointer to the HW structure
1122 * @speed: stores the current speed
1123 * @duplex: stores the current duplex
1124 *
1125 * Using the physical coding sub-layer (PCS), retrieve the current speed and
1126 * duplex, then store the values in the pointers provided.
1127 **/
1128 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1129 u16 *duplex)
1130 {
1131 struct e1000_mac_info *mac = &hw->mac;
1132 u32 pcs;
1133
1134 /* Set up defaults for the return values of this function */
1135 mac->serdes_has_link = false;
1136 *speed = 0;
1137 *duplex = 0;
1138
1139 /* Read the PCS Status register for link state. For non-copper mode,
1140 * the status register is not accurate. The PCS status register is
1141 * used instead.
1142 */
1143 pcs = rd32(E1000_PCS_LSTAT);
1144
1145 /* The link up bit determines when link is up on autoneg. The sync ok
1146 * gets set once both sides sync up and agree upon link. Stable link
1147 * can be determined by checking for both link up and link sync ok
1148 */
1149 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1150 mac->serdes_has_link = true;
1151
1152 /* Detect and store PCS speed */
1153 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1154 *speed = SPEED_1000;
1155 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1156 *speed = SPEED_100;
1157 } else {
1158 *speed = SPEED_10;
1159 }
1160
1161 /* Detect and store PCS duplex */
1162 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1163 *duplex = FULL_DUPLEX;
1164 } else {
1165 *duplex = HALF_DUPLEX;
1166 }
1167 }
1168
1169 return 0;
1170 }
1171
1172 /**
1173 * igb_shutdown_serdes_link_82575 - Remove link during power down
1174 * @hw: pointer to the HW structure
1175 *
1176 * In the case of fiber serdes, shut down optics and PCS on driver unload
1177 * when management pass thru is not enabled.
1178 **/
1179 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1180 {
1181 u32 reg;
1182
1183 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1184 igb_sgmii_active_82575(hw))
1185 return;
1186
1187 if (!igb_enable_mng_pass_thru(hw)) {
1188 /* Disable PCS to turn off link */
1189 reg = rd32(E1000_PCS_CFG0);
1190 reg &= ~E1000_PCS_CFG_PCS_EN;
1191 wr32(E1000_PCS_CFG0, reg);
1192
1193 /* shutdown the laser */
1194 reg = rd32(E1000_CTRL_EXT);
1195 reg |= E1000_CTRL_EXT_SDP3_DATA;
1196 wr32(E1000_CTRL_EXT, reg);
1197
1198 /* flush the write to verify completion */
1199 wrfl();
1200 msleep(1);
1201 }
1202 }
1203
1204 /**
1205 * igb_reset_hw_82575 - Reset hardware
1206 * @hw: pointer to the HW structure
1207 *
1208 * This resets the hardware into a known state. This is a
1209 * function pointer entry point called by the api module.
1210 **/
1211 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1212 {
1213 u32 ctrl, icr;
1214 s32 ret_val;
1215
1216 /* Prevent the PCI-E bus from sticking if there is no TLP connection
1217 * on the last TLP read/write transaction when MAC is reset.
1218 */
1219 ret_val = igb_disable_pcie_master(hw);
1220 if (ret_val)
1221 hw_dbg("PCI-E Master disable polling has failed.\n");
1222
1223 /* set the completion timeout for interface */
1224 ret_val = igb_set_pcie_completion_timeout(hw);
1225 if (ret_val) {
1226 hw_dbg("PCI-E Set completion timeout has failed.\n");
1227 }
1228
1229 hw_dbg("Masking off all interrupts\n");
1230 wr32(E1000_IMC, 0xffffffff);
1231
1232 wr32(E1000_RCTL, 0);
1233 wr32(E1000_TCTL, E1000_TCTL_PSP);
1234 wrfl();
1235
1236 msleep(10);
1237
1238 ctrl = rd32(E1000_CTRL);
1239
1240 hw_dbg("Issuing a global reset to MAC\n");
1241 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1242
1243 ret_val = igb_get_auto_rd_done(hw);
1244 if (ret_val) {
1245 /* When auto config read does not complete, do not
1246 * return with an error. This can happen in situations
1247 * where there is no eeprom and prevents getting link.
1248 */
1249 hw_dbg("Auto Read Done did not complete\n");
1250 }
1251
1252 /* If EEPROM is not present, run manual init scripts */
1253 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1254 igb_reset_init_script_82575(hw);
1255
1256 /* Clear any pending interrupt events. */
1257 wr32(E1000_IMC, 0xffffffff);
1258 icr = rd32(E1000_ICR);
1259
1260 /* Install any alternate MAC address into RAR0 */
1261 ret_val = igb_check_alt_mac_addr(hw);
1262
1263 return ret_val;
1264 }
1265
1266 /**
1267 * igb_init_hw_82575 - Initialize hardware
1268 * @hw: pointer to the HW structure
1269 *
1270 * This inits the hardware readying it for operation.
1271 **/
1272 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1273 {
1274 struct e1000_mac_info *mac = &hw->mac;
1275 s32 ret_val;
1276 u16 i, rar_count = mac->rar_entry_count;
1277
1278 /* Initialize identification LED */
1279 ret_val = igb_id_led_init(hw);
1280 if (ret_val) {
1281 hw_dbg("Error initializing identification LED\n");
1282 /* This is not fatal and we should not stop init due to this */
1283 }
1284
1285 /* Disabling VLAN filtering */
1286 hw_dbg("Initializing the IEEE VLAN\n");
1287 if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1288 igb_clear_vfta_i350(hw);
1289 else
1290 igb_clear_vfta(hw);
1291
1292 /* Setup the receive address */
1293 igb_init_rx_addrs(hw, rar_count);
1294
1295 /* Zero out the Multicast HASH table */
1296 hw_dbg("Zeroing the MTA\n");
1297 for (i = 0; i < mac->mta_reg_count; i++)
1298 array_wr32(E1000_MTA, i, 0);
1299
1300 /* Zero out the Unicast HASH table */
1301 hw_dbg("Zeroing the UTA\n");
1302 for (i = 0; i < mac->uta_reg_count; i++)
1303 array_wr32(E1000_UTA, i, 0);
1304
1305 /* Setup link and flow control */
1306 ret_val = igb_setup_link(hw);
1307
1308 /* Clear all of the statistics registers (clear on read). It is
1309 * important that we do this after we have tried to establish link
1310 * because the symbol error count will increment wildly if there
1311 * is no link.
1312 */
1313 igb_clear_hw_cntrs_82575(hw);
1314 return ret_val;
1315 }
1316
1317 /**
1318 * igb_setup_copper_link_82575 - Configure copper link settings
1319 * @hw: pointer to the HW structure
1320 *
1321 * Configures the link for auto-neg or forced speed and duplex. Then we check
1322 * for link, once link is established calls to configure collision distance
1323 * and flow control are called.
1324 **/
1325 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1326 {
1327 u32 ctrl;
1328 s32 ret_val;
1329 u32 phpm_reg;
1330
1331 ctrl = rd32(E1000_CTRL);
1332 ctrl |= E1000_CTRL_SLU;
1333 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1334 wr32(E1000_CTRL, ctrl);
1335
1336 /* Clear Go Link Disconnect bit */
1337 if (hw->mac.type >= e1000_82580) {
1338 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1339 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1340 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1341 }
1342
1343 ret_val = igb_setup_serdes_link_82575(hw);
1344 if (ret_val)
1345 goto out;
1346
1347 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1348 /* allow time for SFP cage time to power up phy */
1349 msleep(300);
1350
1351 ret_val = hw->phy.ops.reset(hw);
1352 if (ret_val) {
1353 hw_dbg("Error resetting the PHY.\n");
1354 goto out;
1355 }
1356 }
1357 switch (hw->phy.type) {
1358 case e1000_phy_i210:
1359 case e1000_phy_m88:
1360 switch (hw->phy.id) {
1361 case I347AT4_E_PHY_ID:
1362 case M88E1112_E_PHY_ID:
1363 case M88E1545_E_PHY_ID:
1364 case I210_I_PHY_ID:
1365 ret_val = igb_copper_link_setup_m88_gen2(hw);
1366 break;
1367 default:
1368 ret_val = igb_copper_link_setup_m88(hw);
1369 break;
1370 }
1371 break;
1372 case e1000_phy_igp_3:
1373 ret_val = igb_copper_link_setup_igp(hw);
1374 break;
1375 case e1000_phy_82580:
1376 ret_val = igb_copper_link_setup_82580(hw);
1377 break;
1378 default:
1379 ret_val = -E1000_ERR_PHY;
1380 break;
1381 }
1382
1383 if (ret_val)
1384 goto out;
1385
1386 ret_val = igb_setup_copper_link(hw);
1387 out:
1388 return ret_val;
1389 }
1390
1391 /**
1392 * igb_setup_serdes_link_82575 - Setup link for serdes
1393 * @hw: pointer to the HW structure
1394 *
1395 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1396 * used on copper connections where the serialized gigabit media independent
1397 * interface (sgmii), or serdes fiber is being used. Configures the link
1398 * for auto-negotiation or forces speed/duplex.
1399 **/
1400 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1401 {
1402 u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1403 bool pcs_autoneg;
1404 s32 ret_val = E1000_SUCCESS;
1405 u16 data;
1406
1407 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1408 !igb_sgmii_active_82575(hw))
1409 return ret_val;
1410
1411
1412 /* On the 82575, SerDes loopback mode persists until it is
1413 * explicitly turned off or a power cycle is performed. A read to
1414 * the register does not indicate its status. Therefore, we ensure
1415 * loopback mode is disabled during initialization.
1416 */
1417 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1418
1419 /* power on the sfp cage if present and turn on I2C */
1420 ctrl_ext = rd32(E1000_CTRL_EXT);
1421 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1422 ctrl_ext |= E1000_CTRL_I2C_ENA;
1423 wr32(E1000_CTRL_EXT, ctrl_ext);
1424
1425 ctrl_reg = rd32(E1000_CTRL);
1426 ctrl_reg |= E1000_CTRL_SLU;
1427
1428 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1429 /* set both sw defined pins */
1430 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1431
1432 /* Set switch control to serdes energy detect */
1433 reg = rd32(E1000_CONNSW);
1434 reg |= E1000_CONNSW_ENRGSRC;
1435 wr32(E1000_CONNSW, reg);
1436 }
1437
1438 reg = rd32(E1000_PCS_LCTL);
1439
1440 /* default pcs_autoneg to the same setting as mac autoneg */
1441 pcs_autoneg = hw->mac.autoneg;
1442
1443 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1444 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1445 /* sgmii mode lets the phy handle forcing speed/duplex */
1446 pcs_autoneg = true;
1447 /* autoneg time out should be disabled for SGMII mode */
1448 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1449 break;
1450 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1451 /* disable PCS autoneg and support parallel detect only */
1452 pcs_autoneg = false;
1453 default:
1454 if (hw->mac.type == e1000_82575 ||
1455 hw->mac.type == e1000_82576) {
1456 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1457 if (ret_val) {
1458 printk(KERN_DEBUG "NVM Read Error\n\n");
1459 return ret_val;
1460 }
1461
1462 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1463 pcs_autoneg = false;
1464 }
1465
1466 /* non-SGMII modes only supports a speed of 1000/Full for the
1467 * link so it is best to just force the MAC and let the pcs
1468 * link either autoneg or be forced to 1000/Full
1469 */
1470 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1471 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1472
1473 /* set speed of 1000/Full if speed/duplex is forced */
1474 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1475 break;
1476 }
1477
1478 wr32(E1000_CTRL, ctrl_reg);
1479
1480 /* New SerDes mode allows for forcing speed or autonegotiating speed
1481 * at 1gb. Autoneg should be default set by most drivers. This is the
1482 * mode that will be compatible with older link partners and switches.
1483 * However, both are supported by the hardware and some drivers/tools.
1484 */
1485 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1486 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1487
1488 if (pcs_autoneg) {
1489 /* Set PCS register for autoneg */
1490 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1491 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1492
1493 /* Disable force flow control for autoneg */
1494 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1495
1496 /* Configure flow control advertisement for autoneg */
1497 anadv_reg = rd32(E1000_PCS_ANADV);
1498 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1499 switch (hw->fc.requested_mode) {
1500 case e1000_fc_full:
1501 case e1000_fc_rx_pause:
1502 anadv_reg |= E1000_TXCW_ASM_DIR;
1503 anadv_reg |= E1000_TXCW_PAUSE;
1504 break;
1505 case e1000_fc_tx_pause:
1506 anadv_reg |= E1000_TXCW_ASM_DIR;
1507 break;
1508 default:
1509 break;
1510 }
1511 wr32(E1000_PCS_ANADV, anadv_reg);
1512
1513 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1514 } else {
1515 /* Set PCS register for forced link */
1516 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
1517
1518 /* Force flow control for forced link */
1519 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1520
1521 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1522 }
1523
1524 wr32(E1000_PCS_LCTL, reg);
1525
1526 if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1527 igb_force_mac_fc(hw);
1528
1529 return ret_val;
1530 }
1531
1532 /**
1533 * igb_sgmii_active_82575 - Return sgmii state
1534 * @hw: pointer to the HW structure
1535 *
1536 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1537 * which can be enabled for use in the embedded applications. Simply
1538 * return the current state of the sgmii interface.
1539 **/
1540 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1541 {
1542 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1543 return dev_spec->sgmii_active;
1544 }
1545
1546 /**
1547 * igb_reset_init_script_82575 - Inits HW defaults after reset
1548 * @hw: pointer to the HW structure
1549 *
1550 * Inits recommended HW defaults after a reset when there is no EEPROM
1551 * detected. This is only for the 82575.
1552 **/
1553 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1554 {
1555 if (hw->mac.type == e1000_82575) {
1556 hw_dbg("Running reset init script for 82575\n");
1557 /* SerDes configuration via SERDESCTRL */
1558 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1559 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1560 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1561 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1562
1563 /* CCM configuration via CCMCTL register */
1564 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1565 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1566
1567 /* PCIe lanes configuration */
1568 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1569 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1570 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1571 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1572
1573 /* PCIe PLL Configuration */
1574 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1575 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1576 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1577 }
1578
1579 return 0;
1580 }
1581
1582 /**
1583 * igb_read_mac_addr_82575 - Read device MAC address
1584 * @hw: pointer to the HW structure
1585 **/
1586 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1587 {
1588 s32 ret_val = 0;
1589
1590 /* If there's an alternate MAC address place it in RAR0
1591 * so that it will override the Si installed default perm
1592 * address.
1593 */
1594 ret_val = igb_check_alt_mac_addr(hw);
1595 if (ret_val)
1596 goto out;
1597
1598 ret_val = igb_read_mac_addr(hw);
1599
1600 out:
1601 return ret_val;
1602 }
1603
1604 /**
1605 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1606 * @hw: pointer to the HW structure
1607 *
1608 * In the case of a PHY power down to save power, or to turn off link during a
1609 * driver unload, or wake on lan is not enabled, remove the link.
1610 **/
1611 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1612 {
1613 /* If the management interface is not enabled, then power down */
1614 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1615 igb_power_down_phy_copper(hw);
1616 }
1617
1618 /**
1619 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1620 * @hw: pointer to the HW structure
1621 *
1622 * Clears the hardware counters by reading the counter registers.
1623 **/
1624 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1625 {
1626 igb_clear_hw_cntrs_base(hw);
1627
1628 rd32(E1000_PRC64);
1629 rd32(E1000_PRC127);
1630 rd32(E1000_PRC255);
1631 rd32(E1000_PRC511);
1632 rd32(E1000_PRC1023);
1633 rd32(E1000_PRC1522);
1634 rd32(E1000_PTC64);
1635 rd32(E1000_PTC127);
1636 rd32(E1000_PTC255);
1637 rd32(E1000_PTC511);
1638 rd32(E1000_PTC1023);
1639 rd32(E1000_PTC1522);
1640
1641 rd32(E1000_ALGNERRC);
1642 rd32(E1000_RXERRC);
1643 rd32(E1000_TNCRS);
1644 rd32(E1000_CEXTERR);
1645 rd32(E1000_TSCTC);
1646 rd32(E1000_TSCTFC);
1647
1648 rd32(E1000_MGTPRC);
1649 rd32(E1000_MGTPDC);
1650 rd32(E1000_MGTPTC);
1651
1652 rd32(E1000_IAC);
1653 rd32(E1000_ICRXOC);
1654
1655 rd32(E1000_ICRXPTC);
1656 rd32(E1000_ICRXATC);
1657 rd32(E1000_ICTXPTC);
1658 rd32(E1000_ICTXATC);
1659 rd32(E1000_ICTXQEC);
1660 rd32(E1000_ICTXQMTC);
1661 rd32(E1000_ICRXDMTC);
1662
1663 rd32(E1000_CBTMPC);
1664 rd32(E1000_HTDPMC);
1665 rd32(E1000_CBRMPC);
1666 rd32(E1000_RPTHC);
1667 rd32(E1000_HGPTC);
1668 rd32(E1000_HTCBDPC);
1669 rd32(E1000_HGORCL);
1670 rd32(E1000_HGORCH);
1671 rd32(E1000_HGOTCL);
1672 rd32(E1000_HGOTCH);
1673 rd32(E1000_LENERRS);
1674
1675 /* This register should not be read in copper configurations */
1676 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1677 igb_sgmii_active_82575(hw))
1678 rd32(E1000_SCVPC);
1679 }
1680
1681 /**
1682 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1683 * @hw: pointer to the HW structure
1684 *
1685 * After rx enable if managability is enabled then there is likely some
1686 * bad data at the start of the fifo and possibly in the DMA fifo. This
1687 * function clears the fifos and flushes any packets that came in as rx was
1688 * being enabled.
1689 **/
1690 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1691 {
1692 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1693 int i, ms_wait;
1694
1695 if (hw->mac.type != e1000_82575 ||
1696 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1697 return;
1698
1699 /* Disable all RX queues */
1700 for (i = 0; i < 4; i++) {
1701 rxdctl[i] = rd32(E1000_RXDCTL(i));
1702 wr32(E1000_RXDCTL(i),
1703 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1704 }
1705 /* Poll all queues to verify they have shut down */
1706 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1707 msleep(1);
1708 rx_enabled = 0;
1709 for (i = 0; i < 4; i++)
1710 rx_enabled |= rd32(E1000_RXDCTL(i));
1711 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1712 break;
1713 }
1714
1715 if (ms_wait == 10)
1716 hw_dbg("Queue disable timed out after 10ms\n");
1717
1718 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1719 * incoming packets are rejected. Set enable and wait 2ms so that
1720 * any packet that was coming in as RCTL.EN was set is flushed
1721 */
1722 rfctl = rd32(E1000_RFCTL);
1723 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1724
1725 rlpml = rd32(E1000_RLPML);
1726 wr32(E1000_RLPML, 0);
1727
1728 rctl = rd32(E1000_RCTL);
1729 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1730 temp_rctl |= E1000_RCTL_LPE;
1731
1732 wr32(E1000_RCTL, temp_rctl);
1733 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1734 wrfl();
1735 msleep(2);
1736
1737 /* Enable RX queues that were previously enabled and restore our
1738 * previous state
1739 */
1740 for (i = 0; i < 4; i++)
1741 wr32(E1000_RXDCTL(i), rxdctl[i]);
1742 wr32(E1000_RCTL, rctl);
1743 wrfl();
1744
1745 wr32(E1000_RLPML, rlpml);
1746 wr32(E1000_RFCTL, rfctl);
1747
1748 /* Flush receive errors generated by workaround */
1749 rd32(E1000_ROC);
1750 rd32(E1000_RNBC);
1751 rd32(E1000_MPC);
1752 }
1753
1754 /**
1755 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1756 * @hw: pointer to the HW structure
1757 *
1758 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1759 * however the hardware default for these parts is 500us to 1ms which is less
1760 * than the 10ms recommended by the pci-e spec. To address this we need to
1761 * increase the value to either 10ms to 200ms for capability version 1 config,
1762 * or 16ms to 55ms for version 2.
1763 **/
1764 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1765 {
1766 u32 gcr = rd32(E1000_GCR);
1767 s32 ret_val = 0;
1768 u16 pcie_devctl2;
1769
1770 /* only take action if timeout value is defaulted to 0 */
1771 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1772 goto out;
1773
1774 /* if capabilities version is type 1 we can write the
1775 * timeout of 10ms to 200ms through the GCR register
1776 */
1777 if (!(gcr & E1000_GCR_CAP_VER2)) {
1778 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1779 goto out;
1780 }
1781
1782 /* for version 2 capabilities we need to write the config space
1783 * directly in order to set the completion timeout value for
1784 * 16ms to 55ms
1785 */
1786 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1787 &pcie_devctl2);
1788 if (ret_val)
1789 goto out;
1790
1791 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1792
1793 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1794 &pcie_devctl2);
1795 out:
1796 /* disable completion timeout resend */
1797 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1798
1799 wr32(E1000_GCR, gcr);
1800 return ret_val;
1801 }
1802
1803 /**
1804 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1805 * @hw: pointer to the hardware struct
1806 * @enable: state to enter, either enabled or disabled
1807 * @pf: Physical Function pool - do not set anti-spoofing for the PF
1808 *
1809 * enables/disables L2 switch anti-spoofing functionality.
1810 **/
1811 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1812 {
1813 u32 reg_val, reg_offset;
1814
1815 switch (hw->mac.type) {
1816 case e1000_82576:
1817 reg_offset = E1000_DTXSWC;
1818 break;
1819 case e1000_i350:
1820 case e1000_i354:
1821 reg_offset = E1000_TXSWC;
1822 break;
1823 default:
1824 return;
1825 }
1826
1827 reg_val = rd32(reg_offset);
1828 if (enable) {
1829 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1830 E1000_DTXSWC_VLAN_SPOOF_MASK);
1831 /* The PF can spoof - it has to in order to
1832 * support emulation mode NICs
1833 */
1834 reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1835 } else {
1836 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1837 E1000_DTXSWC_VLAN_SPOOF_MASK);
1838 }
1839 wr32(reg_offset, reg_val);
1840 }
1841
1842 /**
1843 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1844 * @hw: pointer to the hardware struct
1845 * @enable: state to enter, either enabled or disabled
1846 *
1847 * enables/disables L2 switch loopback functionality.
1848 **/
1849 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1850 {
1851 u32 dtxswc;
1852
1853 switch (hw->mac.type) {
1854 case e1000_82576:
1855 dtxswc = rd32(E1000_DTXSWC);
1856 if (enable)
1857 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1858 else
1859 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1860 wr32(E1000_DTXSWC, dtxswc);
1861 break;
1862 case e1000_i354:
1863 case e1000_i350:
1864 dtxswc = rd32(E1000_TXSWC);
1865 if (enable)
1866 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1867 else
1868 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1869 wr32(E1000_TXSWC, dtxswc);
1870 break;
1871 default:
1872 /* Currently no other hardware supports loopback */
1873 break;
1874 }
1875
1876 }
1877
1878 /**
1879 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1880 * @hw: pointer to the hardware struct
1881 * @enable: state to enter, either enabled or disabled
1882 *
1883 * enables/disables replication of packets across multiple pools.
1884 **/
1885 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1886 {
1887 u32 vt_ctl = rd32(E1000_VT_CTL);
1888
1889 if (enable)
1890 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1891 else
1892 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1893
1894 wr32(E1000_VT_CTL, vt_ctl);
1895 }
1896
1897 /**
1898 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1899 * @hw: pointer to the HW structure
1900 * @offset: register offset to be read
1901 * @data: pointer to the read data
1902 *
1903 * Reads the MDI control register in the PHY at offset and stores the
1904 * information read to data.
1905 **/
1906 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1907 {
1908 s32 ret_val;
1909
1910 ret_val = hw->phy.ops.acquire(hw);
1911 if (ret_val)
1912 goto out;
1913
1914 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1915
1916 hw->phy.ops.release(hw);
1917
1918 out:
1919 return ret_val;
1920 }
1921
1922 /**
1923 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1924 * @hw: pointer to the HW structure
1925 * @offset: register offset to write to
1926 * @data: data to write to register at offset
1927 *
1928 * Writes data to MDI control register in the PHY at offset.
1929 **/
1930 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1931 {
1932 s32 ret_val;
1933
1934
1935 ret_val = hw->phy.ops.acquire(hw);
1936 if (ret_val)
1937 goto out;
1938
1939 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1940
1941 hw->phy.ops.release(hw);
1942
1943 out:
1944 return ret_val;
1945 }
1946
1947 /**
1948 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1949 * @hw: pointer to the HW structure
1950 *
1951 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1952 * the values found in the EEPROM. This addresses an issue in which these
1953 * bits are not restored from EEPROM after reset.
1954 **/
1955 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1956 {
1957 s32 ret_val = 0;
1958 u32 mdicnfg;
1959 u16 nvm_data = 0;
1960
1961 if (hw->mac.type != e1000_82580)
1962 goto out;
1963 if (!igb_sgmii_active_82575(hw))
1964 goto out;
1965
1966 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1967 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1968 &nvm_data);
1969 if (ret_val) {
1970 hw_dbg("NVM Read Error\n");
1971 goto out;
1972 }
1973
1974 mdicnfg = rd32(E1000_MDICNFG);
1975 if (nvm_data & NVM_WORD24_EXT_MDIO)
1976 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1977 if (nvm_data & NVM_WORD24_COM_MDIO)
1978 mdicnfg |= E1000_MDICNFG_COM_MDIO;
1979 wr32(E1000_MDICNFG, mdicnfg);
1980 out:
1981 return ret_val;
1982 }
1983
1984 /**
1985 * igb_reset_hw_82580 - Reset hardware
1986 * @hw: pointer to the HW structure
1987 *
1988 * This resets function or entire device (all ports, etc.)
1989 * to a known state.
1990 **/
1991 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1992 {
1993 s32 ret_val = 0;
1994 /* BH SW mailbox bit in SW_FW_SYNC */
1995 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1996 u32 ctrl, icr;
1997 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1998
1999
2000 hw->dev_spec._82575.global_device_reset = false;
2001
2002 /* due to hw errata, global device reset doesn't always
2003 * work on 82580
2004 */
2005 if (hw->mac.type == e1000_82580)
2006 global_device_reset = false;
2007
2008 /* Get current control state. */
2009 ctrl = rd32(E1000_CTRL);
2010
2011 /* Prevent the PCI-E bus from sticking if there is no TLP connection
2012 * on the last TLP read/write transaction when MAC is reset.
2013 */
2014 ret_val = igb_disable_pcie_master(hw);
2015 if (ret_val)
2016 hw_dbg("PCI-E Master disable polling has failed.\n");
2017
2018 hw_dbg("Masking off all interrupts\n");
2019 wr32(E1000_IMC, 0xffffffff);
2020 wr32(E1000_RCTL, 0);
2021 wr32(E1000_TCTL, E1000_TCTL_PSP);
2022 wrfl();
2023
2024 msleep(10);
2025
2026 /* Determine whether or not a global dev reset is requested */
2027 if (global_device_reset &&
2028 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2029 global_device_reset = false;
2030
2031 if (global_device_reset &&
2032 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2033 ctrl |= E1000_CTRL_DEV_RST;
2034 else
2035 ctrl |= E1000_CTRL_RST;
2036
2037 wr32(E1000_CTRL, ctrl);
2038 wrfl();
2039
2040 /* Add delay to insure DEV_RST has time to complete */
2041 if (global_device_reset)
2042 msleep(5);
2043
2044 ret_val = igb_get_auto_rd_done(hw);
2045 if (ret_val) {
2046 /* When auto config read does not complete, do not
2047 * return with an error. This can happen in situations
2048 * where there is no eeprom and prevents getting link.
2049 */
2050 hw_dbg("Auto Read Done did not complete\n");
2051 }
2052
2053 /* clear global device reset status bit */
2054 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2055
2056 /* Clear any pending interrupt events. */
2057 wr32(E1000_IMC, 0xffffffff);
2058 icr = rd32(E1000_ICR);
2059
2060 ret_val = igb_reset_mdicnfg_82580(hw);
2061 if (ret_val)
2062 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2063
2064 /* Install any alternate MAC address into RAR0 */
2065 ret_val = igb_check_alt_mac_addr(hw);
2066
2067 /* Release semaphore */
2068 if (global_device_reset)
2069 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2070
2071 return ret_val;
2072 }
2073
2074 /**
2075 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2076 * @data: data received by reading RXPBS register
2077 *
2078 * The 82580 uses a table based approach for packet buffer allocation sizes.
2079 * This function converts the retrieved value into the correct table value
2080 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2081 * 0x0 36 72 144 1 2 4 8 16
2082 * 0x8 35 70 140 rsv rsv rsv rsv rsv
2083 */
2084 u16 igb_rxpbs_adjust_82580(u32 data)
2085 {
2086 u16 ret_val = 0;
2087
2088 if (data < E1000_82580_RXPBS_TABLE_SIZE)
2089 ret_val = e1000_82580_rxpbs_table[data];
2090
2091 return ret_val;
2092 }
2093
2094 /**
2095 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
2096 * checksum
2097 * @hw: pointer to the HW structure
2098 * @offset: offset in words of the checksum protected region
2099 *
2100 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2101 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2102 **/
2103 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2104 u16 offset)
2105 {
2106 s32 ret_val = 0;
2107 u16 checksum = 0;
2108 u16 i, nvm_data;
2109
2110 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2111 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2112 if (ret_val) {
2113 hw_dbg("NVM Read Error\n");
2114 goto out;
2115 }
2116 checksum += nvm_data;
2117 }
2118
2119 if (checksum != (u16) NVM_SUM) {
2120 hw_dbg("NVM Checksum Invalid\n");
2121 ret_val = -E1000_ERR_NVM;
2122 goto out;
2123 }
2124
2125 out:
2126 return ret_val;
2127 }
2128
2129 /**
2130 * igb_update_nvm_checksum_with_offset - Update EEPROM
2131 * checksum
2132 * @hw: pointer to the HW structure
2133 * @offset: offset in words of the checksum protected region
2134 *
2135 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2136 * up to the checksum. Then calculates the EEPROM checksum and writes the
2137 * value to the EEPROM.
2138 **/
2139 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2140 {
2141 s32 ret_val;
2142 u16 checksum = 0;
2143 u16 i, nvm_data;
2144
2145 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2146 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2147 if (ret_val) {
2148 hw_dbg("NVM Read Error while updating checksum.\n");
2149 goto out;
2150 }
2151 checksum += nvm_data;
2152 }
2153 checksum = (u16) NVM_SUM - checksum;
2154 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2155 &checksum);
2156 if (ret_val)
2157 hw_dbg("NVM Write Error while updating checksum.\n");
2158
2159 out:
2160 return ret_val;
2161 }
2162
2163 /**
2164 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2165 * @hw: pointer to the HW structure
2166 *
2167 * Calculates the EEPROM section checksum by reading/adding each word of
2168 * the EEPROM and then verifies that the sum of the EEPROM is
2169 * equal to 0xBABA.
2170 **/
2171 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2172 {
2173 s32 ret_val = 0;
2174 u16 eeprom_regions_count = 1;
2175 u16 j, nvm_data;
2176 u16 nvm_offset;
2177
2178 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2179 if (ret_val) {
2180 hw_dbg("NVM Read Error\n");
2181 goto out;
2182 }
2183
2184 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2185 /* if checksums compatibility bit is set validate checksums
2186 * for all 4 ports.
2187 */
2188 eeprom_regions_count = 4;
2189 }
2190
2191 for (j = 0; j < eeprom_regions_count; j++) {
2192 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2193 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2194 nvm_offset);
2195 if (ret_val != 0)
2196 goto out;
2197 }
2198
2199 out:
2200 return ret_val;
2201 }
2202
2203 /**
2204 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
2205 * @hw: pointer to the HW structure
2206 *
2207 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2208 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2209 * checksum and writes the value to the EEPROM.
2210 **/
2211 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2212 {
2213 s32 ret_val;
2214 u16 j, nvm_data;
2215 u16 nvm_offset;
2216
2217 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2218 if (ret_val) {
2219 hw_dbg("NVM Read Error while updating checksum"
2220 " compatibility bit.\n");
2221 goto out;
2222 }
2223
2224 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2225 /* set compatibility bit to validate checksums appropriately */
2226 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2227 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2228 &nvm_data);
2229 if (ret_val) {
2230 hw_dbg("NVM Write Error while updating checksum"
2231 " compatibility bit.\n");
2232 goto out;
2233 }
2234 }
2235
2236 for (j = 0; j < 4; j++) {
2237 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2238 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2239 if (ret_val)
2240 goto out;
2241 }
2242
2243 out:
2244 return ret_val;
2245 }
2246
2247 /**
2248 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2249 * @hw: pointer to the HW structure
2250 *
2251 * Calculates the EEPROM section checksum by reading/adding each word of
2252 * the EEPROM and then verifies that the sum of the EEPROM is
2253 * equal to 0xBABA.
2254 **/
2255 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2256 {
2257 s32 ret_val = 0;
2258 u16 j;
2259 u16 nvm_offset;
2260
2261 for (j = 0; j < 4; j++) {
2262 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2263 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2264 nvm_offset);
2265 if (ret_val != 0)
2266 goto out;
2267 }
2268
2269 out:
2270 return ret_val;
2271 }
2272
2273 /**
2274 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2275 * @hw: pointer to the HW structure
2276 *
2277 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2278 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2279 * checksum and writes the value to the EEPROM.
2280 **/
2281 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2282 {
2283 s32 ret_val = 0;
2284 u16 j;
2285 u16 nvm_offset;
2286
2287 for (j = 0; j < 4; j++) {
2288 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2289 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2290 if (ret_val != 0)
2291 goto out;
2292 }
2293
2294 out:
2295 return ret_val;
2296 }
2297
2298 /**
2299 * __igb_access_emi_reg - Read/write EMI register
2300 * @hw: pointer to the HW structure
2301 * @addr: EMI address to program
2302 * @data: pointer to value to read/write from/to the EMI address
2303 * @read: boolean flag to indicate read or write
2304 **/
2305 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2306 u16 *data, bool read)
2307 {
2308 s32 ret_val = E1000_SUCCESS;
2309
2310 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2311 if (ret_val)
2312 return ret_val;
2313
2314 if (read)
2315 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2316 else
2317 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2318
2319 return ret_val;
2320 }
2321
2322 /**
2323 * igb_read_emi_reg - Read Extended Management Interface register
2324 * @hw: pointer to the HW structure
2325 * @addr: EMI address to program
2326 * @data: value to be read from the EMI address
2327 **/
2328 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2329 {
2330 return __igb_access_emi_reg(hw, addr, data, true);
2331 }
2332
2333 /**
2334 * igb_set_eee_i350 - Enable/disable EEE support
2335 * @hw: pointer to the HW structure
2336 *
2337 * Enable/disable EEE based on setting in dev_spec structure.
2338 *
2339 **/
2340 s32 igb_set_eee_i350(struct e1000_hw *hw)
2341 {
2342 s32 ret_val = 0;
2343 u32 ipcnfg, eeer;
2344
2345 if ((hw->mac.type < e1000_i350) ||
2346 (hw->phy.media_type != e1000_media_type_copper))
2347 goto out;
2348 ipcnfg = rd32(E1000_IPCNFG);
2349 eeer = rd32(E1000_EEER);
2350
2351 /* enable or disable per user setting */
2352 if (!(hw->dev_spec._82575.eee_disable)) {
2353 u32 eee_su = rd32(E1000_EEE_SU);
2354
2355 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2356 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2357 E1000_EEER_LPI_FC);
2358
2359 /* This bit should not be set in normal operation. */
2360 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2361 hw_dbg("LPI Clock Stop Bit should not be set!\n");
2362
2363 } else {
2364 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2365 E1000_IPCNFG_EEE_100M_AN);
2366 eeer &= ~(E1000_EEER_TX_LPI_EN |
2367 E1000_EEER_RX_LPI_EN |
2368 E1000_EEER_LPI_FC);
2369 }
2370 wr32(E1000_IPCNFG, ipcnfg);
2371 wr32(E1000_EEER, eeer);
2372 rd32(E1000_IPCNFG);
2373 rd32(E1000_EEER);
2374 out:
2375
2376 return ret_val;
2377 }
2378
2379 /**
2380 * igb_set_eee_i354 - Enable/disable EEE support
2381 * @hw: pointer to the HW structure
2382 *
2383 * Enable/disable EEE legacy mode based on setting in dev_spec structure.
2384 *
2385 **/
2386 s32 igb_set_eee_i354(struct e1000_hw *hw)
2387 {
2388 struct e1000_phy_info *phy = &hw->phy;
2389 s32 ret_val = 0;
2390 u16 phy_data;
2391
2392 if ((hw->phy.media_type != e1000_media_type_copper) ||
2393 (phy->id != M88E1545_E_PHY_ID))
2394 goto out;
2395
2396 if (!hw->dev_spec._82575.eee_disable) {
2397 /* Switch to PHY page 18. */
2398 ret_val = phy->ops.write_reg(hw, E1000_M88E1545_PAGE_ADDR, 18);
2399 if (ret_val)
2400 goto out;
2401
2402 ret_val = phy->ops.read_reg(hw, E1000_M88E1545_EEE_CTRL_1,
2403 &phy_data);
2404 if (ret_val)
2405 goto out;
2406
2407 phy_data |= E1000_M88E1545_EEE_CTRL_1_MS;
2408 ret_val = phy->ops.write_reg(hw, E1000_M88E1545_EEE_CTRL_1,
2409 phy_data);
2410 if (ret_val)
2411 goto out;
2412
2413 /* Return the PHY to page 0. */
2414 ret_val = phy->ops.write_reg(hw, E1000_M88E1545_PAGE_ADDR, 0);
2415 if (ret_val)
2416 goto out;
2417
2418 /* Turn on EEE advertisement. */
2419 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2420 E1000_EEE_ADV_DEV_I354,
2421 &phy_data);
2422 if (ret_val)
2423 goto out;
2424
2425 phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2426 E1000_EEE_ADV_1000_SUPPORTED;
2427 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2428 E1000_EEE_ADV_DEV_I354,
2429 phy_data);
2430 } else {
2431 /* Turn off EEE advertisement. */
2432 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2433 E1000_EEE_ADV_DEV_I354,
2434 &phy_data);
2435 if (ret_val)
2436 goto out;
2437
2438 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2439 E1000_EEE_ADV_1000_SUPPORTED);
2440 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2441 E1000_EEE_ADV_DEV_I354,
2442 phy_data);
2443 }
2444
2445 out:
2446 return ret_val;
2447 }
2448
2449 /**
2450 * igb_get_eee_status_i354 - Get EEE status
2451 * @hw: pointer to the HW structure
2452 * @status: EEE status
2453 *
2454 * Get EEE status by guessing based on whether Tx or Rx LPI indications have
2455 * been received.
2456 **/
2457 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2458 {
2459 struct e1000_phy_info *phy = &hw->phy;
2460 s32 ret_val = 0;
2461 u16 phy_data;
2462
2463 /* Check if EEE is supported on this device. */
2464 if ((hw->phy.media_type != e1000_media_type_copper) ||
2465 (phy->id != M88E1545_E_PHY_ID))
2466 goto out;
2467
2468 ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2469 E1000_PCS_STATUS_DEV_I354,
2470 &phy_data);
2471 if (ret_val)
2472 goto out;
2473
2474 *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2475 E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2476
2477 out:
2478 return ret_val;
2479 }
2480
2481 static const u8 e1000_emc_temp_data[4] = {
2482 E1000_EMC_INTERNAL_DATA,
2483 E1000_EMC_DIODE1_DATA,
2484 E1000_EMC_DIODE2_DATA,
2485 E1000_EMC_DIODE3_DATA
2486 };
2487 static const u8 e1000_emc_therm_limit[4] = {
2488 E1000_EMC_INTERNAL_THERM_LIMIT,
2489 E1000_EMC_DIODE1_THERM_LIMIT,
2490 E1000_EMC_DIODE2_THERM_LIMIT,
2491 E1000_EMC_DIODE3_THERM_LIMIT
2492 };
2493
2494 /**
2495 * igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2496 * @hw: pointer to hardware structure
2497 *
2498 * Updates the temperatures in mac.thermal_sensor_data
2499 **/
2500 s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2501 {
2502 s32 status = E1000_SUCCESS;
2503 u16 ets_offset;
2504 u16 ets_cfg;
2505 u16 ets_sensor;
2506 u8 num_sensors;
2507 u8 sensor_index;
2508 u8 sensor_location;
2509 u8 i;
2510 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2511
2512 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2513 return E1000_NOT_IMPLEMENTED;
2514
2515 data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2516
2517 /* Return the internal sensor only if ETS is unsupported */
2518 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2519 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2520 return status;
2521
2522 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2523 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2524 != NVM_ETS_TYPE_EMC)
2525 return E1000_NOT_IMPLEMENTED;
2526
2527 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2528 if (num_sensors > E1000_MAX_SENSORS)
2529 num_sensors = E1000_MAX_SENSORS;
2530
2531 for (i = 1; i < num_sensors; i++) {
2532 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2533 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2534 NVM_ETS_DATA_INDEX_SHIFT);
2535 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2536 NVM_ETS_DATA_LOC_SHIFT);
2537
2538 if (sensor_location != 0)
2539 hw->phy.ops.read_i2c_byte(hw,
2540 e1000_emc_temp_data[sensor_index],
2541 E1000_I2C_THERMAL_SENSOR_ADDR,
2542 &data->sensor[i].temp);
2543 }
2544 return status;
2545 }
2546
2547 /**
2548 * igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2549 * @hw: pointer to hardware structure
2550 *
2551 * Sets the thermal sensor thresholds according to the NVM map
2552 * and save off the threshold and location values into mac.thermal_sensor_data
2553 **/
2554 s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2555 {
2556 s32 status = E1000_SUCCESS;
2557 u16 ets_offset;
2558 u16 ets_cfg;
2559 u16 ets_sensor;
2560 u8 low_thresh_delta;
2561 u8 num_sensors;
2562 u8 sensor_index;
2563 u8 sensor_location;
2564 u8 therm_limit;
2565 u8 i;
2566 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2567
2568 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2569 return E1000_NOT_IMPLEMENTED;
2570
2571 memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2572
2573 data->sensor[0].location = 0x1;
2574 data->sensor[0].caution_thresh =
2575 (rd32(E1000_THHIGHTC) & 0xFF);
2576 data->sensor[0].max_op_thresh =
2577 (rd32(E1000_THLOWTC) & 0xFF);
2578
2579 /* Return the internal sensor only if ETS is unsupported */
2580 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2581 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2582 return status;
2583
2584 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2585 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2586 != NVM_ETS_TYPE_EMC)
2587 return E1000_NOT_IMPLEMENTED;
2588
2589 low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2590 NVM_ETS_LTHRES_DELTA_SHIFT);
2591 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2592
2593 for (i = 1; i <= num_sensors; i++) {
2594 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2595 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2596 NVM_ETS_DATA_INDEX_SHIFT);
2597 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2598 NVM_ETS_DATA_LOC_SHIFT);
2599 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2600
2601 hw->phy.ops.write_i2c_byte(hw,
2602 e1000_emc_therm_limit[sensor_index],
2603 E1000_I2C_THERMAL_SENSOR_ADDR,
2604 therm_limit);
2605
2606 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2607 data->sensor[i].location = sensor_location;
2608 data->sensor[i].caution_thresh = therm_limit;
2609 data->sensor[i].max_op_thresh = therm_limit -
2610 low_thresh_delta;
2611 }
2612 }
2613 return status;
2614 }
2615
2616 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2617 .init_hw = igb_init_hw_82575,
2618 .check_for_link = igb_check_for_link_82575,
2619 .rar_set = igb_rar_set,
2620 .read_mac_addr = igb_read_mac_addr_82575,
2621 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2622 #ifdef CONFIG_IGB_HWMON
2623 .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2624 .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2625 #endif
2626 };
2627
2628 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2629 .acquire = igb_acquire_phy_82575,
2630 .get_cfg_done = igb_get_cfg_done_82575,
2631 .release = igb_release_phy_82575,
2632 .write_i2c_byte = igb_write_i2c_byte,
2633 .read_i2c_byte = igb_read_i2c_byte,
2634 };
2635
2636 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2637 .acquire = igb_acquire_nvm_82575,
2638 .read = igb_read_nvm_eerd,
2639 .release = igb_release_nvm_82575,
2640 .write = igb_write_nvm_spi,
2641 };
2642
2643 const struct e1000_info e1000_82575_info = {
2644 .get_invariants = igb_get_invariants_82575,
2645 .mac_ops = &e1000_mac_ops_82575,
2646 .phy_ops = &e1000_phy_ops_82575,
2647 .nvm_ops = &e1000_nvm_ops_82575,
2648 };
2649
This page took 0.244635 seconds and 5 git commands to generate.