igb: Add device support for flashless SKU of i210 device
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / e1000_i210.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 ******************************************************************************/
27
28 /* e1000_i210
29 * e1000_i211
30 */
31
32 #include <linux/types.h>
33 #include <linux/if_ether.h>
34
35 #include "e1000_hw.h"
36 #include "e1000_i210.h"
37
38 /**
39 * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
40 * @hw: pointer to the HW structure
41 *
42 * Acquire the HW semaphore to access the PHY or NVM
43 */
44 static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
45 {
46 u32 swsm;
47 s32 timeout = hw->nvm.word_size + 1;
48 s32 i = 0;
49
50 /* Get the SW semaphore */
51 while (i < timeout) {
52 swsm = rd32(E1000_SWSM);
53 if (!(swsm & E1000_SWSM_SMBI))
54 break;
55
56 udelay(50);
57 i++;
58 }
59
60 if (i == timeout) {
61 /* In rare circumstances, the SW semaphore may already be held
62 * unintentionally. Clear the semaphore once before giving up.
63 */
64 if (hw->dev_spec._82575.clear_semaphore_once) {
65 hw->dev_spec._82575.clear_semaphore_once = false;
66 igb_put_hw_semaphore(hw);
67 for (i = 0; i < timeout; i++) {
68 swsm = rd32(E1000_SWSM);
69 if (!(swsm & E1000_SWSM_SMBI))
70 break;
71
72 udelay(50);
73 }
74 }
75
76 /* If we do not have the semaphore here, we have to give up. */
77 if (i == timeout) {
78 hw_dbg("Driver can't access device - SMBI bit is set.\n");
79 return -E1000_ERR_NVM;
80 }
81 }
82
83 /* Get the FW semaphore. */
84 for (i = 0; i < timeout; i++) {
85 swsm = rd32(E1000_SWSM);
86 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
87
88 /* Semaphore acquired if bit latched */
89 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
90 break;
91
92 udelay(50);
93 }
94
95 if (i == timeout) {
96 /* Release semaphores */
97 igb_put_hw_semaphore(hw);
98 hw_dbg("Driver can't access the NVM\n");
99 return -E1000_ERR_NVM;
100 }
101
102 return E1000_SUCCESS;
103 }
104
105 /**
106 * igb_acquire_nvm_i210 - Request for access to EEPROM
107 * @hw: pointer to the HW structure
108 *
109 * Acquire the necessary semaphores for exclusive access to the EEPROM.
110 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
111 * Return successful if access grant bit set, else clear the request for
112 * EEPROM access and return -E1000_ERR_NVM (-1).
113 **/
114 s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
115 {
116 return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
117 }
118
119 /**
120 * igb_release_nvm_i210 - Release exclusive access to EEPROM
121 * @hw: pointer to the HW structure
122 *
123 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
124 * then release the semaphores acquired.
125 **/
126 void igb_release_nvm_i210(struct e1000_hw *hw)
127 {
128 igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
129 }
130
131 /**
132 * igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
133 * @hw: pointer to the HW structure
134 * @mask: specifies which semaphore to acquire
135 *
136 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
137 * will also specify which port we're acquiring the lock for.
138 **/
139 s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
140 {
141 u32 swfw_sync;
142 u32 swmask = mask;
143 u32 fwmask = mask << 16;
144 s32 ret_val = E1000_SUCCESS;
145 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
146
147 while (i < timeout) {
148 if (igb_get_hw_semaphore_i210(hw)) {
149 ret_val = -E1000_ERR_SWFW_SYNC;
150 goto out;
151 }
152
153 swfw_sync = rd32(E1000_SW_FW_SYNC);
154 if (!(swfw_sync & (fwmask | swmask)))
155 break;
156
157 /* Firmware currently using resource (fwmask) */
158 igb_put_hw_semaphore(hw);
159 mdelay(5);
160 i++;
161 }
162
163 if (i == timeout) {
164 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
165 ret_val = -E1000_ERR_SWFW_SYNC;
166 goto out;
167 }
168
169 swfw_sync |= swmask;
170 wr32(E1000_SW_FW_SYNC, swfw_sync);
171
172 igb_put_hw_semaphore(hw);
173 out:
174 return ret_val;
175 }
176
177 /**
178 * igb_release_swfw_sync_i210 - Release SW/FW semaphore
179 * @hw: pointer to the HW structure
180 * @mask: specifies which semaphore to acquire
181 *
182 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
183 * will also specify which port we're releasing the lock for.
184 **/
185 void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
186 {
187 u32 swfw_sync;
188
189 while (igb_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
190 ; /* Empty */
191
192 swfw_sync = rd32(E1000_SW_FW_SYNC);
193 swfw_sync &= ~mask;
194 wr32(E1000_SW_FW_SYNC, swfw_sync);
195
196 igb_put_hw_semaphore(hw);
197 }
198
199 /**
200 * igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
201 * @hw: pointer to the HW structure
202 * @offset: offset of word in the Shadow Ram to read
203 * @words: number of words to read
204 * @data: word read from the Shadow Ram
205 *
206 * Reads a 16 bit word from the Shadow Ram using the EERD register.
207 * Uses necessary synchronization semaphores.
208 **/
209 s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
210 u16 *data)
211 {
212 s32 status = E1000_SUCCESS;
213 u16 i, count;
214
215 /* We cannot hold synchronization semaphores for too long,
216 * because of forceful takeover procedure. However it is more efficient
217 * to read in bursts than synchronizing access for each word.
218 */
219 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
220 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
221 E1000_EERD_EEWR_MAX_COUNT : (words - i);
222 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
223 status = igb_read_nvm_eerd(hw, offset, count,
224 data + i);
225 hw->nvm.ops.release(hw);
226 } else {
227 status = E1000_ERR_SWFW_SYNC;
228 }
229
230 if (status != E1000_SUCCESS)
231 break;
232 }
233
234 return status;
235 }
236
237 /**
238 * igb_write_nvm_srwr - Write to Shadow Ram using EEWR
239 * @hw: pointer to the HW structure
240 * @offset: offset within the Shadow Ram to be written to
241 * @words: number of words to write
242 * @data: 16 bit word(s) to be written to the Shadow Ram
243 *
244 * Writes data to Shadow Ram at offset using EEWR register.
245 *
246 * If igb_update_nvm_checksum is not called after this function , the
247 * Shadow Ram will most likely contain an invalid checksum.
248 **/
249 static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
250 u16 *data)
251 {
252 struct e1000_nvm_info *nvm = &hw->nvm;
253 u32 i, k, eewr = 0;
254 u32 attempts = 100000;
255 s32 ret_val = E1000_SUCCESS;
256
257 /* A check for invalid values: offset too large, too many words,
258 * too many words for the offset, and not enough words.
259 */
260 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
261 (words == 0)) {
262 hw_dbg("nvm parameter(s) out of bounds\n");
263 ret_val = -E1000_ERR_NVM;
264 goto out;
265 }
266
267 for (i = 0; i < words; i++) {
268 eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
269 (data[i] << E1000_NVM_RW_REG_DATA) |
270 E1000_NVM_RW_REG_START;
271
272 wr32(E1000_SRWR, eewr);
273
274 for (k = 0; k < attempts; k++) {
275 if (E1000_NVM_RW_REG_DONE &
276 rd32(E1000_SRWR)) {
277 ret_val = E1000_SUCCESS;
278 break;
279 }
280 udelay(5);
281 }
282
283 if (ret_val != E1000_SUCCESS) {
284 hw_dbg("Shadow RAM write EEWR timed out\n");
285 break;
286 }
287 }
288
289 out:
290 return ret_val;
291 }
292
293 /**
294 * igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
295 * @hw: pointer to the HW structure
296 * @offset: offset within the Shadow RAM to be written to
297 * @words: number of words to write
298 * @data: 16 bit word(s) to be written to the Shadow RAM
299 *
300 * Writes data to Shadow RAM at offset using EEWR register.
301 *
302 * If e1000_update_nvm_checksum is not called after this function , the
303 * data will not be committed to FLASH and also Shadow RAM will most likely
304 * contain an invalid checksum.
305 *
306 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
307 * partially written.
308 **/
309 s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
310 u16 *data)
311 {
312 s32 status = E1000_SUCCESS;
313 u16 i, count;
314
315 /* We cannot hold synchronization semaphores for too long,
316 * because of forceful takeover procedure. However it is more efficient
317 * to write in bursts than synchronizing access for each word.
318 */
319 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
320 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
321 E1000_EERD_EEWR_MAX_COUNT : (words - i);
322 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
323 status = igb_write_nvm_srwr(hw, offset, count,
324 data + i);
325 hw->nvm.ops.release(hw);
326 } else {
327 status = E1000_ERR_SWFW_SYNC;
328 }
329
330 if (status != E1000_SUCCESS)
331 break;
332 }
333
334 return status;
335 }
336
337 /**
338 * igb_read_invm_word_i210 - Reads OTP
339 * @hw: pointer to the HW structure
340 * @address: the word address (aka eeprom offset) to read
341 * @data: pointer to the data read
342 *
343 * Reads 16-bit words from the OTP. Return error when the word is not
344 * stored in OTP.
345 **/
346 static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
347 {
348 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
349 u32 invm_dword;
350 u16 i;
351 u8 record_type, word_address;
352
353 for (i = 0; i < E1000_INVM_SIZE; i++) {
354 invm_dword = rd32(E1000_INVM_DATA_REG(i));
355 /* Get record type */
356 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
357 if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
358 break;
359 if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
360 i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
361 if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
362 i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
363 if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
364 word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
365 if (word_address == address) {
366 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
367 hw_dbg("Read INVM Word 0x%02x = %x",
368 address, *data);
369 status = E1000_SUCCESS;
370 break;
371 }
372 }
373 }
374 if (status != E1000_SUCCESS)
375 hw_dbg("Requested word 0x%02x not found in OTP\n", address);
376 return status;
377 }
378
379 /**
380 * igb_read_invm_i210 - Read invm wrapper function for I210/I211
381 * @hw: pointer to the HW structure
382 * @words: number of words to read
383 * @data: pointer to the data read
384 *
385 * Wrapper function to return data formerly found in the NVM.
386 **/
387 static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
388 u16 words __always_unused, u16 *data)
389 {
390 s32 ret_val = E1000_SUCCESS;
391
392 /* Only the MAC addr is required to be present in the iNVM */
393 switch (offset) {
394 case NVM_MAC_ADDR:
395 ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
396 ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
397 &data[1]);
398 ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
399 &data[2]);
400 if (ret_val != E1000_SUCCESS)
401 hw_dbg("MAC Addr not found in iNVM\n");
402 break;
403 case NVM_INIT_CTRL_2:
404 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
405 if (ret_val != E1000_SUCCESS) {
406 *data = NVM_INIT_CTRL_2_DEFAULT_I211;
407 ret_val = E1000_SUCCESS;
408 }
409 break;
410 case NVM_INIT_CTRL_4:
411 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
412 if (ret_val != E1000_SUCCESS) {
413 *data = NVM_INIT_CTRL_4_DEFAULT_I211;
414 ret_val = E1000_SUCCESS;
415 }
416 break;
417 case NVM_LED_1_CFG:
418 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
419 if (ret_val != E1000_SUCCESS) {
420 *data = NVM_LED_1_CFG_DEFAULT_I211;
421 ret_val = E1000_SUCCESS;
422 }
423 break;
424 case NVM_LED_0_2_CFG:
425 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
426 if (ret_val != E1000_SUCCESS) {
427 *data = NVM_LED_0_2_CFG_DEFAULT_I211;
428 ret_val = E1000_SUCCESS;
429 }
430 break;
431 case NVM_ID_LED_SETTINGS:
432 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
433 if (ret_val != E1000_SUCCESS) {
434 *data = ID_LED_RESERVED_FFFF;
435 ret_val = E1000_SUCCESS;
436 }
437 case NVM_SUB_DEV_ID:
438 *data = hw->subsystem_device_id;
439 break;
440 case NVM_SUB_VEN_ID:
441 *data = hw->subsystem_vendor_id;
442 break;
443 case NVM_DEV_ID:
444 *data = hw->device_id;
445 break;
446 case NVM_VEN_ID:
447 *data = hw->vendor_id;
448 break;
449 default:
450 hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
451 *data = NVM_RESERVED_WORD;
452 break;
453 }
454 return ret_val;
455 }
456
457 /**
458 * igb_read_invm_version - Reads iNVM version and image type
459 * @hw: pointer to the HW structure
460 * @invm_ver: version structure for the version read
461 *
462 * Reads iNVM version and image type.
463 **/
464 s32 igb_read_invm_version(struct e1000_hw *hw,
465 struct e1000_fw_version *invm_ver) {
466 u32 *record = NULL;
467 u32 *next_record = NULL;
468 u32 i = 0;
469 u32 invm_dword = 0;
470 u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
471 E1000_INVM_RECORD_SIZE_IN_BYTES);
472 u32 buffer[E1000_INVM_SIZE];
473 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
474 u16 version = 0;
475
476 /* Read iNVM memory */
477 for (i = 0; i < E1000_INVM_SIZE; i++) {
478 invm_dword = rd32(E1000_INVM_DATA_REG(i));
479 buffer[i] = invm_dword;
480 }
481
482 /* Read version number */
483 for (i = 1; i < invm_blocks; i++) {
484 record = &buffer[invm_blocks - i];
485 next_record = &buffer[invm_blocks - i + 1];
486
487 /* Check if we have first version location used */
488 if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
489 version = 0;
490 status = E1000_SUCCESS;
491 break;
492 }
493 /* Check if we have second version location used */
494 else if ((i == 1) &&
495 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
496 version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
497 status = E1000_SUCCESS;
498 break;
499 }
500 /* Check if we have odd version location
501 * used and it is the last one used
502 */
503 else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
504 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
505 (i != 1))) {
506 version = (*next_record & E1000_INVM_VER_FIELD_TWO)
507 >> 13;
508 status = E1000_SUCCESS;
509 break;
510 }
511 /* Check if we have even version location
512 * used and it is the last one used
513 */
514 else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
515 ((*record & 0x3) == 0)) {
516 version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
517 status = E1000_SUCCESS;
518 break;
519 }
520 }
521
522 if (status == E1000_SUCCESS) {
523 invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
524 >> E1000_INVM_MAJOR_SHIFT;
525 invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
526 }
527 /* Read Image Type */
528 for (i = 1; i < invm_blocks; i++) {
529 record = &buffer[invm_blocks - i];
530 next_record = &buffer[invm_blocks - i + 1];
531
532 /* Check if we have image type in first location used */
533 if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
534 invm_ver->invm_img_type = 0;
535 status = E1000_SUCCESS;
536 break;
537 }
538 /* Check if we have image type in first location used */
539 else if ((((*record & 0x3) == 0) &&
540 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
541 ((((*record & 0x3) != 0) && (i != 1)))) {
542 invm_ver->invm_img_type =
543 (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
544 status = E1000_SUCCESS;
545 break;
546 }
547 }
548 return status;
549 }
550
551 /**
552 * igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
553 * @hw: pointer to the HW structure
554 *
555 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
556 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
557 **/
558 s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
559 {
560 s32 status = E1000_SUCCESS;
561 s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
562
563 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
564
565 /* Replace the read function with semaphore grabbing with
566 * the one that skips this for a while.
567 * We have semaphore taken already here.
568 */
569 read_op_ptr = hw->nvm.ops.read;
570 hw->nvm.ops.read = igb_read_nvm_eerd;
571
572 status = igb_validate_nvm_checksum(hw);
573
574 /* Revert original read operation. */
575 hw->nvm.ops.read = read_op_ptr;
576
577 hw->nvm.ops.release(hw);
578 } else {
579 status = E1000_ERR_SWFW_SYNC;
580 }
581
582 return status;
583 }
584
585 /**
586 * igb_update_nvm_checksum_i210 - Update EEPROM checksum
587 * @hw: pointer to the HW structure
588 *
589 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
590 * up to the checksum. Then calculates the EEPROM checksum and writes the
591 * value to the EEPROM. Next commit EEPROM data onto the Flash.
592 **/
593 s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
594 {
595 s32 ret_val = E1000_SUCCESS;
596 u16 checksum = 0;
597 u16 i, nvm_data;
598
599 /* Read the first word from the EEPROM. If this times out or fails, do
600 * not continue or we could be in for a very long wait while every
601 * EEPROM read fails
602 */
603 ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
604 if (ret_val != E1000_SUCCESS) {
605 hw_dbg("EEPROM read failed\n");
606 goto out;
607 }
608
609 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
610 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
611 * because we do not want to take the synchronization
612 * semaphores twice here.
613 */
614
615 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
616 ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
617 if (ret_val) {
618 hw->nvm.ops.release(hw);
619 hw_dbg("NVM Read Error while updating checksum.\n");
620 goto out;
621 }
622 checksum += nvm_data;
623 }
624 checksum = (u16) NVM_SUM - checksum;
625 ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
626 &checksum);
627 if (ret_val != E1000_SUCCESS) {
628 hw->nvm.ops.release(hw);
629 hw_dbg("NVM Write Error while updating checksum.\n");
630 goto out;
631 }
632
633 hw->nvm.ops.release(hw);
634
635 ret_val = igb_update_flash_i210(hw);
636 } else {
637 ret_val = -E1000_ERR_SWFW_SYNC;
638 }
639 out:
640 return ret_val;
641 }
642
643 /**
644 * igb_pool_flash_update_done_i210 - Pool FLUDONE status.
645 * @hw: pointer to the HW structure
646 *
647 **/
648 static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
649 {
650 s32 ret_val = -E1000_ERR_NVM;
651 u32 i, reg;
652
653 for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
654 reg = rd32(E1000_EECD);
655 if (reg & E1000_EECD_FLUDONE_I210) {
656 ret_val = E1000_SUCCESS;
657 break;
658 }
659 udelay(5);
660 }
661
662 return ret_val;
663 }
664
665 /**
666 * igb_get_flash_presence_i210 - Check if flash device is detected.
667 * @hw: pointer to the HW structure
668 *
669 **/
670 bool igb_get_flash_presence_i210(struct e1000_hw *hw)
671 {
672 u32 eec = 0;
673 bool ret_val = false;
674
675 eec = rd32(E1000_EECD);
676 if (eec & E1000_EECD_FLASH_DETECTED_I210)
677 ret_val = true;
678
679 return ret_val;
680 }
681
682 /**
683 * igb_update_flash_i210 - Commit EEPROM to the flash
684 * @hw: pointer to the HW structure
685 *
686 **/
687 s32 igb_update_flash_i210(struct e1000_hw *hw)
688 {
689 s32 ret_val = E1000_SUCCESS;
690 u32 flup;
691
692 ret_val = igb_pool_flash_update_done_i210(hw);
693 if (ret_val == -E1000_ERR_NVM) {
694 hw_dbg("Flash update time out\n");
695 goto out;
696 }
697
698 flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
699 wr32(E1000_EECD, flup);
700
701 ret_val = igb_pool_flash_update_done_i210(hw);
702 if (ret_val == E1000_SUCCESS)
703 hw_dbg("Flash update complete\n");
704 else
705 hw_dbg("Flash update time out\n");
706
707 out:
708 return ret_val;
709 }
710
711 /**
712 * igb_valid_led_default_i210 - Verify a valid default LED config
713 * @hw: pointer to the HW structure
714 * @data: pointer to the NVM (EEPROM)
715 *
716 * Read the EEPROM for the current default LED configuration. If the
717 * LED configuration is not valid, set to a valid LED configuration.
718 **/
719 s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
720 {
721 s32 ret_val;
722
723 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
724 if (ret_val) {
725 hw_dbg("NVM Read Error\n");
726 goto out;
727 }
728
729 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
730 switch (hw->phy.media_type) {
731 case e1000_media_type_internal_serdes:
732 *data = ID_LED_DEFAULT_I210_SERDES;
733 break;
734 case e1000_media_type_copper:
735 default:
736 *data = ID_LED_DEFAULT_I210;
737 break;
738 }
739 }
740 out:
741 return ret_val;
742 }
743
744 /**
745 * __igb_access_xmdio_reg - Read/write XMDIO register
746 * @hw: pointer to the HW structure
747 * @address: XMDIO address to program
748 * @dev_addr: device address to program
749 * @data: pointer to value to read/write from/to the XMDIO address
750 * @read: boolean flag to indicate read or write
751 **/
752 static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
753 u8 dev_addr, u16 *data, bool read)
754 {
755 s32 ret_val = E1000_SUCCESS;
756
757 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
758 if (ret_val)
759 return ret_val;
760
761 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
762 if (ret_val)
763 return ret_val;
764
765 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
766 dev_addr);
767 if (ret_val)
768 return ret_val;
769
770 if (read)
771 ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
772 else
773 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
774 if (ret_val)
775 return ret_val;
776
777 /* Recalibrate the device back to 0 */
778 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
779 if (ret_val)
780 return ret_val;
781
782 return ret_val;
783 }
784
785 /**
786 * igb_read_xmdio_reg - Read XMDIO register
787 * @hw: pointer to the HW structure
788 * @addr: XMDIO address to program
789 * @dev_addr: device address to program
790 * @data: value to be read from the EMI address
791 **/
792 s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
793 {
794 return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
795 }
796
797 /**
798 * igb_write_xmdio_reg - Write XMDIO register
799 * @hw: pointer to the HW structure
800 * @addr: XMDIO address to program
801 * @dev_addr: device address to program
802 * @data: value to be written to the XMDIO address
803 **/
804 s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
805 {
806 return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
807 }
808
809 /**
810 * igb_init_nvm_params_i210 - Init NVM func ptrs.
811 * @hw: pointer to the HW structure
812 **/
813 s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
814 {
815 s32 ret_val = 0;
816 struct e1000_nvm_info *nvm = &hw->nvm;
817
818 nvm->ops.acquire = igb_acquire_nvm_i210;
819 nvm->ops.release = igb_release_nvm_i210;
820 nvm->ops.valid_led_default = igb_valid_led_default_i210;
821
822 /* NVM Function Pointers */
823 if (igb_get_flash_presence_i210(hw)) {
824 hw->nvm.type = e1000_nvm_flash_hw;
825 nvm->ops.read = igb_read_nvm_srrd_i210;
826 nvm->ops.write = igb_write_nvm_srwr_i210;
827 nvm->ops.validate = igb_validate_nvm_checksum_i210;
828 nvm->ops.update = igb_update_nvm_checksum_i210;
829 } else {
830 hw->nvm.type = e1000_nvm_invm;
831 nvm->ops.read = igb_read_invm_i210;
832 nvm->ops.write = NULL;
833 nvm->ops.validate = NULL;
834 nvm->ops.update = NULL;
835 }
836 return ret_val;
837 }
This page took 0.049416 seconds and 5 git commands to generate.