Merge tag 'range-macro' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / e1000_mac.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 #include <linux/pci.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33
34 #include "e1000_mac.h"
35
36 #include "igb.h"
37
38 static s32 igb_set_default_fc(struct e1000_hw *hw);
39 static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
40
41 /**
42 * igb_get_bus_info_pcie - Get PCIe bus information
43 * @hw: pointer to the HW structure
44 *
45 * Determines and stores the system bus information for a particular
46 * network interface. The following bus information is determined and stored:
47 * bus speed, bus width, type (PCIe), and PCIe function.
48 **/
49 s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
50 {
51 struct e1000_bus_info *bus = &hw->bus;
52 s32 ret_val;
53 u32 reg;
54 u16 pcie_link_status;
55
56 bus->type = e1000_bus_type_pci_express;
57
58 ret_val = igb_read_pcie_cap_reg(hw,
59 PCI_EXP_LNKSTA,
60 &pcie_link_status);
61 if (ret_val) {
62 bus->width = e1000_bus_width_unknown;
63 bus->speed = e1000_bus_speed_unknown;
64 } else {
65 switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
66 case PCI_EXP_LNKSTA_CLS_2_5GB:
67 bus->speed = e1000_bus_speed_2500;
68 break;
69 case PCI_EXP_LNKSTA_CLS_5_0GB:
70 bus->speed = e1000_bus_speed_5000;
71 break;
72 default:
73 bus->speed = e1000_bus_speed_unknown;
74 break;
75 }
76
77 bus->width = (enum e1000_bus_width)((pcie_link_status &
78 PCI_EXP_LNKSTA_NLW) >>
79 PCI_EXP_LNKSTA_NLW_SHIFT);
80 }
81
82 reg = rd32(E1000_STATUS);
83 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
84
85 return 0;
86 }
87
88 /**
89 * igb_clear_vfta - Clear VLAN filter table
90 * @hw: pointer to the HW structure
91 *
92 * Clears the register array which contains the VLAN filter table by
93 * setting all the values to 0.
94 **/
95 void igb_clear_vfta(struct e1000_hw *hw)
96 {
97 u32 offset;
98
99 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
100 array_wr32(E1000_VFTA, offset, 0);
101 wrfl();
102 }
103 }
104
105 /**
106 * igb_write_vfta - Write value to VLAN filter table
107 * @hw: pointer to the HW structure
108 * @offset: register offset in VLAN filter table
109 * @value: register value written to VLAN filter table
110 *
111 * Writes value at the given offset in the register array which stores
112 * the VLAN filter table.
113 **/
114 static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
115 {
116 array_wr32(E1000_VFTA, offset, value);
117 wrfl();
118 }
119
120 /* Due to a hw errata, if the host tries to configure the VFTA register
121 * while performing queries from the BMC or DMA, then the VFTA in some
122 * cases won't be written.
123 */
124
125 /**
126 * igb_clear_vfta_i350 - Clear VLAN filter table
127 * @hw: pointer to the HW structure
128 *
129 * Clears the register array which contains the VLAN filter table by
130 * setting all the values to 0.
131 **/
132 void igb_clear_vfta_i350(struct e1000_hw *hw)
133 {
134 u32 offset;
135 int i;
136
137 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
138 for (i = 0; i < 10; i++)
139 array_wr32(E1000_VFTA, offset, 0);
140
141 wrfl();
142 }
143 }
144
145 /**
146 * igb_write_vfta_i350 - Write value to VLAN filter table
147 * @hw: pointer to the HW structure
148 * @offset: register offset in VLAN filter table
149 * @value: register value written to VLAN filter table
150 *
151 * Writes value at the given offset in the register array which stores
152 * the VLAN filter table.
153 **/
154 static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
155 {
156 int i;
157
158 for (i = 0; i < 10; i++)
159 array_wr32(E1000_VFTA, offset, value);
160
161 wrfl();
162 }
163
164 /**
165 * igb_init_rx_addrs - Initialize receive address's
166 * @hw: pointer to the HW structure
167 * @rar_count: receive address registers
168 *
169 * Setups the receive address registers by setting the base receive address
170 * register to the devices MAC address and clearing all the other receive
171 * address registers to 0.
172 **/
173 void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
174 {
175 u32 i;
176 u8 mac_addr[ETH_ALEN] = {0};
177
178 /* Setup the receive address */
179 hw_dbg("Programming MAC Address into RAR[0]\n");
180
181 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
182
183 /* Zero out the other (rar_entry_count - 1) receive addresses */
184 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
185 for (i = 1; i < rar_count; i++)
186 hw->mac.ops.rar_set(hw, mac_addr, i);
187 }
188
189 /**
190 * igb_vfta_set - enable or disable vlan in VLAN filter table
191 * @hw: pointer to the HW structure
192 * @vid: VLAN id to add or remove
193 * @add: if true add filter, if false remove
194 *
195 * Sets or clears a bit in the VLAN filter table array based on VLAN id
196 * and if we are adding or removing the filter
197 **/
198 s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
199 {
200 u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
201 u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
202 u32 vfta;
203 struct igb_adapter *adapter = hw->back;
204 s32 ret_val = 0;
205
206 vfta = adapter->shadow_vfta[index];
207
208 /* bit was set/cleared before we started */
209 if ((!!(vfta & mask)) == add) {
210 ret_val = -E1000_ERR_CONFIG;
211 } else {
212 if (add)
213 vfta |= mask;
214 else
215 vfta &= ~mask;
216 }
217 if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
218 igb_write_vfta_i350(hw, index, vfta);
219 else
220 igb_write_vfta(hw, index, vfta);
221 adapter->shadow_vfta[index] = vfta;
222
223 return ret_val;
224 }
225
226 /**
227 * igb_check_alt_mac_addr - Check for alternate MAC addr
228 * @hw: pointer to the HW structure
229 *
230 * Checks the nvm for an alternate MAC address. An alternate MAC address
231 * can be setup by pre-boot software and must be treated like a permanent
232 * address and must override the actual permanent MAC address. If an
233 * alternate MAC address is found it is saved in the hw struct and
234 * programmed into RAR0 and the function returns success, otherwise the
235 * function returns an error.
236 **/
237 s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
238 {
239 u32 i;
240 s32 ret_val = 0;
241 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
242 u8 alt_mac_addr[ETH_ALEN];
243
244 /* Alternate MAC address is handled by the option ROM for 82580
245 * and newer. SW support not required.
246 */
247 if (hw->mac.type >= e1000_82580)
248 goto out;
249
250 ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
251 &nvm_alt_mac_addr_offset);
252 if (ret_val) {
253 hw_dbg("NVM Read Error\n");
254 goto out;
255 }
256
257 if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
258 (nvm_alt_mac_addr_offset == 0x0000))
259 /* There is no Alternate MAC Address */
260 goto out;
261
262 if (hw->bus.func == E1000_FUNC_1)
263 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
264 if (hw->bus.func == E1000_FUNC_2)
265 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
266
267 if (hw->bus.func == E1000_FUNC_3)
268 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
269 for (i = 0; i < ETH_ALEN; i += 2) {
270 offset = nvm_alt_mac_addr_offset + (i >> 1);
271 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
272 if (ret_val) {
273 hw_dbg("NVM Read Error\n");
274 goto out;
275 }
276
277 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
278 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
279 }
280
281 /* if multicast bit is set, the alternate address will not be used */
282 if (is_multicast_ether_addr(alt_mac_addr)) {
283 hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
284 goto out;
285 }
286
287 /* We have a valid alternate MAC address, and we want to treat it the
288 * same as the normal permanent MAC address stored by the HW into the
289 * RAR. Do this by mapping this address into RAR0.
290 */
291 hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
292
293 out:
294 return ret_val;
295 }
296
297 /**
298 * igb_rar_set - Set receive address register
299 * @hw: pointer to the HW structure
300 * @addr: pointer to the receive address
301 * @index: receive address array register
302 *
303 * Sets the receive address array register at index to the address passed
304 * in by addr.
305 **/
306 void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
307 {
308 u32 rar_low, rar_high;
309
310 /* HW expects these in little endian so we reverse the byte order
311 * from network order (big endian) to little endian
312 */
313 rar_low = ((u32) addr[0] |
314 ((u32) addr[1] << 8) |
315 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
316
317 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
318
319 /* If MAC address zero, no need to set the AV bit */
320 if (rar_low || rar_high)
321 rar_high |= E1000_RAH_AV;
322
323 /* Some bridges will combine consecutive 32-bit writes into
324 * a single burst write, which will malfunction on some parts.
325 * The flushes avoid this.
326 */
327 wr32(E1000_RAL(index), rar_low);
328 wrfl();
329 wr32(E1000_RAH(index), rar_high);
330 wrfl();
331 }
332
333 /**
334 * igb_mta_set - Set multicast filter table address
335 * @hw: pointer to the HW structure
336 * @hash_value: determines the MTA register and bit to set
337 *
338 * The multicast table address is a register array of 32-bit registers.
339 * The hash_value is used to determine what register the bit is in, the
340 * current value is read, the new bit is OR'd in and the new value is
341 * written back into the register.
342 **/
343 void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
344 {
345 u32 hash_bit, hash_reg, mta;
346
347 /* The MTA is a register array of 32-bit registers. It is
348 * treated like an array of (32*mta_reg_count) bits. We want to
349 * set bit BitArray[hash_value]. So we figure out what register
350 * the bit is in, read it, OR in the new bit, then write
351 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
352 * mask to bits 31:5 of the hash value which gives us the
353 * register we're modifying. The hash bit within that register
354 * is determined by the lower 5 bits of the hash value.
355 */
356 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
357 hash_bit = hash_value & 0x1F;
358
359 mta = array_rd32(E1000_MTA, hash_reg);
360
361 mta |= (1 << hash_bit);
362
363 array_wr32(E1000_MTA, hash_reg, mta);
364 wrfl();
365 }
366
367 /**
368 * igb_hash_mc_addr - Generate a multicast hash value
369 * @hw: pointer to the HW structure
370 * @mc_addr: pointer to a multicast address
371 *
372 * Generates a multicast address hash value which is used to determine
373 * the multicast filter table array address and new table value. See
374 * igb_mta_set()
375 **/
376 static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
377 {
378 u32 hash_value, hash_mask;
379 u8 bit_shift = 0;
380
381 /* Register count multiplied by bits per register */
382 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
383
384 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
385 * where 0xFF would still fall within the hash mask.
386 */
387 while (hash_mask >> bit_shift != 0xFF)
388 bit_shift++;
389
390 /* The portion of the address that is used for the hash table
391 * is determined by the mc_filter_type setting.
392 * The algorithm is such that there is a total of 8 bits of shifting.
393 * The bit_shift for a mc_filter_type of 0 represents the number of
394 * left-shifts where the MSB of mc_addr[5] would still fall within
395 * the hash_mask. Case 0 does this exactly. Since there are a total
396 * of 8 bits of shifting, then mc_addr[4] will shift right the
397 * remaining number of bits. Thus 8 - bit_shift. The rest of the
398 * cases are a variation of this algorithm...essentially raising the
399 * number of bits to shift mc_addr[5] left, while still keeping the
400 * 8-bit shifting total.
401 *
402 * For example, given the following Destination MAC Address and an
403 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
404 * we can see that the bit_shift for case 0 is 4. These are the hash
405 * values resulting from each mc_filter_type...
406 * [0] [1] [2] [3] [4] [5]
407 * 01 AA 00 12 34 56
408 * LSB MSB
409 *
410 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
411 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
412 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
413 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
414 */
415 switch (hw->mac.mc_filter_type) {
416 default:
417 case 0:
418 break;
419 case 1:
420 bit_shift += 1;
421 break;
422 case 2:
423 bit_shift += 2;
424 break;
425 case 3:
426 bit_shift += 4;
427 break;
428 }
429
430 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
431 (((u16) mc_addr[5]) << bit_shift)));
432
433 return hash_value;
434 }
435
436 /**
437 * igb_update_mc_addr_list - Update Multicast addresses
438 * @hw: pointer to the HW structure
439 * @mc_addr_list: array of multicast addresses to program
440 * @mc_addr_count: number of multicast addresses to program
441 *
442 * Updates entire Multicast Table Array.
443 * The caller must have a packed mc_addr_list of multicast addresses.
444 **/
445 void igb_update_mc_addr_list(struct e1000_hw *hw,
446 u8 *mc_addr_list, u32 mc_addr_count)
447 {
448 u32 hash_value, hash_bit, hash_reg;
449 int i;
450
451 /* clear mta_shadow */
452 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
453
454 /* update mta_shadow from mc_addr_list */
455 for (i = 0; (u32) i < mc_addr_count; i++) {
456 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
457
458 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
459 hash_bit = hash_value & 0x1F;
460
461 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
462 mc_addr_list += (ETH_ALEN);
463 }
464
465 /* replace the entire MTA table */
466 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
467 array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
468 wrfl();
469 }
470
471 /**
472 * igb_clear_hw_cntrs_base - Clear base hardware counters
473 * @hw: pointer to the HW structure
474 *
475 * Clears the base hardware counters by reading the counter registers.
476 **/
477 void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
478 {
479 rd32(E1000_CRCERRS);
480 rd32(E1000_SYMERRS);
481 rd32(E1000_MPC);
482 rd32(E1000_SCC);
483 rd32(E1000_ECOL);
484 rd32(E1000_MCC);
485 rd32(E1000_LATECOL);
486 rd32(E1000_COLC);
487 rd32(E1000_DC);
488 rd32(E1000_SEC);
489 rd32(E1000_RLEC);
490 rd32(E1000_XONRXC);
491 rd32(E1000_XONTXC);
492 rd32(E1000_XOFFRXC);
493 rd32(E1000_XOFFTXC);
494 rd32(E1000_FCRUC);
495 rd32(E1000_GPRC);
496 rd32(E1000_BPRC);
497 rd32(E1000_MPRC);
498 rd32(E1000_GPTC);
499 rd32(E1000_GORCL);
500 rd32(E1000_GORCH);
501 rd32(E1000_GOTCL);
502 rd32(E1000_GOTCH);
503 rd32(E1000_RNBC);
504 rd32(E1000_RUC);
505 rd32(E1000_RFC);
506 rd32(E1000_ROC);
507 rd32(E1000_RJC);
508 rd32(E1000_TORL);
509 rd32(E1000_TORH);
510 rd32(E1000_TOTL);
511 rd32(E1000_TOTH);
512 rd32(E1000_TPR);
513 rd32(E1000_TPT);
514 rd32(E1000_MPTC);
515 rd32(E1000_BPTC);
516 }
517
518 /**
519 * igb_check_for_copper_link - Check for link (Copper)
520 * @hw: pointer to the HW structure
521 *
522 * Checks to see of the link status of the hardware has changed. If a
523 * change in link status has been detected, then we read the PHY registers
524 * to get the current speed/duplex if link exists.
525 **/
526 s32 igb_check_for_copper_link(struct e1000_hw *hw)
527 {
528 struct e1000_mac_info *mac = &hw->mac;
529 s32 ret_val;
530 bool link;
531
532 /* We only want to go out to the PHY registers to see if Auto-Neg
533 * has completed and/or if our link status has changed. The
534 * get_link_status flag is set upon receiving a Link Status
535 * Change or Rx Sequence Error interrupt.
536 */
537 if (!mac->get_link_status) {
538 ret_val = 0;
539 goto out;
540 }
541
542 /* First we want to see if the MII Status Register reports
543 * link. If so, then we want to get the current speed/duplex
544 * of the PHY.
545 */
546 ret_val = igb_phy_has_link(hw, 1, 0, &link);
547 if (ret_val)
548 goto out;
549
550 if (!link)
551 goto out; /* No link detected */
552
553 mac->get_link_status = false;
554
555 /* Check if there was DownShift, must be checked
556 * immediately after link-up
557 */
558 igb_check_downshift(hw);
559
560 /* If we are forcing speed/duplex, then we simply return since
561 * we have already determined whether we have link or not.
562 */
563 if (!mac->autoneg) {
564 ret_val = -E1000_ERR_CONFIG;
565 goto out;
566 }
567
568 /* Auto-Neg is enabled. Auto Speed Detection takes care
569 * of MAC speed/duplex configuration. So we only need to
570 * configure Collision Distance in the MAC.
571 */
572 igb_config_collision_dist(hw);
573
574 /* Configure Flow Control now that Auto-Neg has completed.
575 * First, we need to restore the desired flow control
576 * settings because we may have had to re-autoneg with a
577 * different link partner.
578 */
579 ret_val = igb_config_fc_after_link_up(hw);
580 if (ret_val)
581 hw_dbg("Error configuring flow control\n");
582
583 out:
584 return ret_val;
585 }
586
587 /**
588 * igb_setup_link - Setup flow control and link settings
589 * @hw: pointer to the HW structure
590 *
591 * Determines which flow control settings to use, then configures flow
592 * control. Calls the appropriate media-specific link configuration
593 * function. Assuming the adapter has a valid link partner, a valid link
594 * should be established. Assumes the hardware has previously been reset
595 * and the transmitter and receiver are not enabled.
596 **/
597 s32 igb_setup_link(struct e1000_hw *hw)
598 {
599 s32 ret_val = 0;
600
601 /* In the case of the phy reset being blocked, we already have a link.
602 * We do not need to set it up again.
603 */
604 if (igb_check_reset_block(hw))
605 goto out;
606
607 /* If requested flow control is set to default, set flow control
608 * based on the EEPROM flow control settings.
609 */
610 if (hw->fc.requested_mode == e1000_fc_default) {
611 ret_val = igb_set_default_fc(hw);
612 if (ret_val)
613 goto out;
614 }
615
616 /* We want to save off the original Flow Control configuration just
617 * in case we get disconnected and then reconnected into a different
618 * hub or switch with different Flow Control capabilities.
619 */
620 hw->fc.current_mode = hw->fc.requested_mode;
621
622 hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
623
624 /* Call the necessary media_type subroutine to configure the link. */
625 ret_val = hw->mac.ops.setup_physical_interface(hw);
626 if (ret_val)
627 goto out;
628
629 /* Initialize the flow control address, type, and PAUSE timer
630 * registers to their default values. This is done even if flow
631 * control is disabled, because it does not hurt anything to
632 * initialize these registers.
633 */
634 hw_dbg("Initializing the Flow Control address, type and timer regs\n");
635 wr32(E1000_FCT, FLOW_CONTROL_TYPE);
636 wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
637 wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
638
639 wr32(E1000_FCTTV, hw->fc.pause_time);
640
641 ret_val = igb_set_fc_watermarks(hw);
642
643 out:
644
645 return ret_val;
646 }
647
648 /**
649 * igb_config_collision_dist - Configure collision distance
650 * @hw: pointer to the HW structure
651 *
652 * Configures the collision distance to the default value and is used
653 * during link setup. Currently no func pointer exists and all
654 * implementations are handled in the generic version of this function.
655 **/
656 void igb_config_collision_dist(struct e1000_hw *hw)
657 {
658 u32 tctl;
659
660 tctl = rd32(E1000_TCTL);
661
662 tctl &= ~E1000_TCTL_COLD;
663 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
664
665 wr32(E1000_TCTL, tctl);
666 wrfl();
667 }
668
669 /**
670 * igb_set_fc_watermarks - Set flow control high/low watermarks
671 * @hw: pointer to the HW structure
672 *
673 * Sets the flow control high/low threshold (watermark) registers. If
674 * flow control XON frame transmission is enabled, then set XON frame
675 * tansmission as well.
676 **/
677 static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
678 {
679 s32 ret_val = 0;
680 u32 fcrtl = 0, fcrth = 0;
681
682 /* Set the flow control receive threshold registers. Normally,
683 * these registers will be set to a default threshold that may be
684 * adjusted later by the driver's runtime code. However, if the
685 * ability to transmit pause frames is not enabled, then these
686 * registers will be set to 0.
687 */
688 if (hw->fc.current_mode & e1000_fc_tx_pause) {
689 /* We need to set up the Receive Threshold high and low water
690 * marks as well as (optionally) enabling the transmission of
691 * XON frames.
692 */
693 fcrtl = hw->fc.low_water;
694 if (hw->fc.send_xon)
695 fcrtl |= E1000_FCRTL_XONE;
696
697 fcrth = hw->fc.high_water;
698 }
699 wr32(E1000_FCRTL, fcrtl);
700 wr32(E1000_FCRTH, fcrth);
701
702 return ret_val;
703 }
704
705 /**
706 * igb_set_default_fc - Set flow control default values
707 * @hw: pointer to the HW structure
708 *
709 * Read the EEPROM for the default values for flow control and store the
710 * values.
711 **/
712 static s32 igb_set_default_fc(struct e1000_hw *hw)
713 {
714 s32 ret_val = 0;
715 u16 lan_offset;
716 u16 nvm_data;
717
718 /* Read and store word 0x0F of the EEPROM. This word contains bits
719 * that determine the hardware's default PAUSE (flow control) mode,
720 * a bit that determines whether the HW defaults to enabling or
721 * disabling auto-negotiation, and the direction of the
722 * SW defined pins. If there is no SW over-ride of the flow
723 * control setting, then the variable hw->fc will
724 * be initialized based on a value in the EEPROM.
725 */
726 if (hw->mac.type == e1000_i350) {
727 lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
728 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG
729 + lan_offset, 1, &nvm_data);
730 } else {
731 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG,
732 1, &nvm_data);
733 }
734
735 if (ret_val) {
736 hw_dbg("NVM Read Error\n");
737 goto out;
738 }
739
740 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
741 hw->fc.requested_mode = e1000_fc_none;
742 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
743 NVM_WORD0F_ASM_DIR)
744 hw->fc.requested_mode = e1000_fc_tx_pause;
745 else
746 hw->fc.requested_mode = e1000_fc_full;
747
748 out:
749 return ret_val;
750 }
751
752 /**
753 * igb_force_mac_fc - Force the MAC's flow control settings
754 * @hw: pointer to the HW structure
755 *
756 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
757 * device control register to reflect the adapter settings. TFCE and RFCE
758 * need to be explicitly set by software when a copper PHY is used because
759 * autonegotiation is managed by the PHY rather than the MAC. Software must
760 * also configure these bits when link is forced on a fiber connection.
761 **/
762 s32 igb_force_mac_fc(struct e1000_hw *hw)
763 {
764 u32 ctrl;
765 s32 ret_val = 0;
766
767 ctrl = rd32(E1000_CTRL);
768
769 /* Because we didn't get link via the internal auto-negotiation
770 * mechanism (we either forced link or we got link via PHY
771 * auto-neg), we have to manually enable/disable transmit an
772 * receive flow control.
773 *
774 * The "Case" statement below enables/disable flow control
775 * according to the "hw->fc.current_mode" parameter.
776 *
777 * The possible values of the "fc" parameter are:
778 * 0: Flow control is completely disabled
779 * 1: Rx flow control is enabled (we can receive pause
780 * frames but not send pause frames).
781 * 2: Tx flow control is enabled (we can send pause frames
782 * frames but we do not receive pause frames).
783 * 3: Both Rx and TX flow control (symmetric) is enabled.
784 * other: No other values should be possible at this point.
785 */
786 hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
787
788 switch (hw->fc.current_mode) {
789 case e1000_fc_none:
790 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
791 break;
792 case e1000_fc_rx_pause:
793 ctrl &= (~E1000_CTRL_TFCE);
794 ctrl |= E1000_CTRL_RFCE;
795 break;
796 case e1000_fc_tx_pause:
797 ctrl &= (~E1000_CTRL_RFCE);
798 ctrl |= E1000_CTRL_TFCE;
799 break;
800 case e1000_fc_full:
801 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
802 break;
803 default:
804 hw_dbg("Flow control param set incorrectly\n");
805 ret_val = -E1000_ERR_CONFIG;
806 goto out;
807 }
808
809 wr32(E1000_CTRL, ctrl);
810
811 out:
812 return ret_val;
813 }
814
815 /**
816 * igb_config_fc_after_link_up - Configures flow control after link
817 * @hw: pointer to the HW structure
818 *
819 * Checks the status of auto-negotiation after link up to ensure that the
820 * speed and duplex were not forced. If the link needed to be forced, then
821 * flow control needs to be forced also. If auto-negotiation is enabled
822 * and did not fail, then we configure flow control based on our link
823 * partner.
824 **/
825 s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
826 {
827 struct e1000_mac_info *mac = &hw->mac;
828 s32 ret_val = 0;
829 u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
830 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
831 u16 speed, duplex;
832
833 /* Check for the case where we have fiber media and auto-neg failed
834 * so we had to force link. In this case, we need to force the
835 * configuration of the MAC to match the "fc" parameter.
836 */
837 if (mac->autoneg_failed) {
838 if (hw->phy.media_type == e1000_media_type_internal_serdes)
839 ret_val = igb_force_mac_fc(hw);
840 } else {
841 if (hw->phy.media_type == e1000_media_type_copper)
842 ret_val = igb_force_mac_fc(hw);
843 }
844
845 if (ret_val) {
846 hw_dbg("Error forcing flow control settings\n");
847 goto out;
848 }
849
850 /* Check for the case where we have copper media and auto-neg is
851 * enabled. In this case, we need to check and see if Auto-Neg
852 * has completed, and if so, how the PHY and link partner has
853 * flow control configured.
854 */
855 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
856 /* Read the MII Status Register and check to see if AutoNeg
857 * has completed. We read this twice because this reg has
858 * some "sticky" (latched) bits.
859 */
860 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
861 &mii_status_reg);
862 if (ret_val)
863 goto out;
864 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
865 &mii_status_reg);
866 if (ret_val)
867 goto out;
868
869 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
870 hw_dbg("Copper PHY and Auto Neg "
871 "has not completed.\n");
872 goto out;
873 }
874
875 /* The AutoNeg process has completed, so we now need to
876 * read both the Auto Negotiation Advertisement
877 * Register (Address 4) and the Auto_Negotiation Base
878 * Page Ability Register (Address 5) to determine how
879 * flow control was negotiated.
880 */
881 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
882 &mii_nway_adv_reg);
883 if (ret_val)
884 goto out;
885 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
886 &mii_nway_lp_ability_reg);
887 if (ret_val)
888 goto out;
889
890 /* Two bits in the Auto Negotiation Advertisement Register
891 * (Address 4) and two bits in the Auto Negotiation Base
892 * Page Ability Register (Address 5) determine flow control
893 * for both the PHY and the link partner. The following
894 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
895 * 1999, describes these PAUSE resolution bits and how flow
896 * control is determined based upon these settings.
897 * NOTE: DC = Don't Care
898 *
899 * LOCAL DEVICE | LINK PARTNER
900 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
901 *-------|---------|-------|---------|--------------------
902 * 0 | 0 | DC | DC | e1000_fc_none
903 * 0 | 1 | 0 | DC | e1000_fc_none
904 * 0 | 1 | 1 | 0 | e1000_fc_none
905 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
906 * 1 | 0 | 0 | DC | e1000_fc_none
907 * 1 | DC | 1 | DC | e1000_fc_full
908 * 1 | 1 | 0 | 0 | e1000_fc_none
909 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
910 *
911 * Are both PAUSE bits set to 1? If so, this implies
912 * Symmetric Flow Control is enabled at both ends. The
913 * ASM_DIR bits are irrelevant per the spec.
914 *
915 * For Symmetric Flow Control:
916 *
917 * LOCAL DEVICE | LINK PARTNER
918 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
919 *-------|---------|-------|---------|--------------------
920 * 1 | DC | 1 | DC | E1000_fc_full
921 *
922 */
923 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
924 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
925 /* Now we need to check if the user selected RX ONLY
926 * of pause frames. In this case, we had to advertise
927 * FULL flow control because we could not advertise RX
928 * ONLY. Hence, we must now check to see if we need to
929 * turn OFF the TRANSMISSION of PAUSE frames.
930 */
931 if (hw->fc.requested_mode == e1000_fc_full) {
932 hw->fc.current_mode = e1000_fc_full;
933 hw_dbg("Flow Control = FULL.\r\n");
934 } else {
935 hw->fc.current_mode = e1000_fc_rx_pause;
936 hw_dbg("Flow Control = "
937 "RX PAUSE frames only.\r\n");
938 }
939 }
940 /* For receiving PAUSE frames ONLY.
941 *
942 * LOCAL DEVICE | LINK PARTNER
943 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
944 *-------|---------|-------|---------|--------------------
945 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
946 */
947 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
948 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
949 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
950 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
951 hw->fc.current_mode = e1000_fc_tx_pause;
952 hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
953 }
954 /* For transmitting PAUSE frames ONLY.
955 *
956 * LOCAL DEVICE | LINK PARTNER
957 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
958 *-------|---------|-------|---------|--------------------
959 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
960 */
961 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
962 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
963 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
964 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
965 hw->fc.current_mode = e1000_fc_rx_pause;
966 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
967 }
968 /* Per the IEEE spec, at this point flow control should be
969 * disabled. However, we want to consider that we could
970 * be connected to a legacy switch that doesn't advertise
971 * desired flow control, but can be forced on the link
972 * partner. So if we advertised no flow control, that is
973 * what we will resolve to. If we advertised some kind of
974 * receive capability (Rx Pause Only or Full Flow Control)
975 * and the link partner advertised none, we will configure
976 * ourselves to enable Rx Flow Control only. We can do
977 * this safely for two reasons: If the link partner really
978 * didn't want flow control enabled, and we enable Rx, no
979 * harm done since we won't be receiving any PAUSE frames
980 * anyway. If the intent on the link partner was to have
981 * flow control enabled, then by us enabling RX only, we
982 * can at least receive pause frames and process them.
983 * This is a good idea because in most cases, since we are
984 * predominantly a server NIC, more times than not we will
985 * be asked to delay transmission of packets than asking
986 * our link partner to pause transmission of frames.
987 */
988 else if ((hw->fc.requested_mode == e1000_fc_none) ||
989 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
990 (hw->fc.strict_ieee)) {
991 hw->fc.current_mode = e1000_fc_none;
992 hw_dbg("Flow Control = NONE.\r\n");
993 } else {
994 hw->fc.current_mode = e1000_fc_rx_pause;
995 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
996 }
997
998 /* Now we need to do one last check... If we auto-
999 * negotiated to HALF DUPLEX, flow control should not be
1000 * enabled per IEEE 802.3 spec.
1001 */
1002 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1003 if (ret_val) {
1004 hw_dbg("Error getting link speed and duplex\n");
1005 goto out;
1006 }
1007
1008 if (duplex == HALF_DUPLEX)
1009 hw->fc.current_mode = e1000_fc_none;
1010
1011 /* Now we call a subroutine to actually force the MAC
1012 * controller to use the correct flow control settings.
1013 */
1014 ret_val = igb_force_mac_fc(hw);
1015 if (ret_val) {
1016 hw_dbg("Error forcing flow control settings\n");
1017 goto out;
1018 }
1019 }
1020 /* Check for the case where we have SerDes media and auto-neg is
1021 * enabled. In this case, we need to check and see if Auto-Neg
1022 * has completed, and if so, how the PHY and link partner has
1023 * flow control configured.
1024 */
1025 if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1026 && mac->autoneg) {
1027 /* Read the PCS_LSTS and check to see if AutoNeg
1028 * has completed.
1029 */
1030 pcs_status_reg = rd32(E1000_PCS_LSTAT);
1031
1032 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1033 hw_dbg("PCS Auto Neg has not completed.\n");
1034 return ret_val;
1035 }
1036
1037 /* The AutoNeg process has completed, so we now need to
1038 * read both the Auto Negotiation Advertisement
1039 * Register (PCS_ANADV) and the Auto_Negotiation Base
1040 * Page Ability Register (PCS_LPAB) to determine how
1041 * flow control was negotiated.
1042 */
1043 pcs_adv_reg = rd32(E1000_PCS_ANADV);
1044 pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1045
1046 /* Two bits in the Auto Negotiation Advertisement Register
1047 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1048 * Page Ability Register (PCS_LPAB) determine flow control
1049 * for both the PHY and the link partner. The following
1050 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1051 * 1999, describes these PAUSE resolution bits and how flow
1052 * control is determined based upon these settings.
1053 * NOTE: DC = Don't Care
1054 *
1055 * LOCAL DEVICE | LINK PARTNER
1056 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1057 *-------|---------|-------|---------|--------------------
1058 * 0 | 0 | DC | DC | e1000_fc_none
1059 * 0 | 1 | 0 | DC | e1000_fc_none
1060 * 0 | 1 | 1 | 0 | e1000_fc_none
1061 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1062 * 1 | 0 | 0 | DC | e1000_fc_none
1063 * 1 | DC | 1 | DC | e1000_fc_full
1064 * 1 | 1 | 0 | 0 | e1000_fc_none
1065 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1066 *
1067 * Are both PAUSE bits set to 1? If so, this implies
1068 * Symmetric Flow Control is enabled at both ends. The
1069 * ASM_DIR bits are irrelevant per the spec.
1070 *
1071 * For Symmetric Flow Control:
1072 *
1073 * LOCAL DEVICE | LINK PARTNER
1074 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1075 *-------|---------|-------|---------|--------------------
1076 * 1 | DC | 1 | DC | e1000_fc_full
1077 *
1078 */
1079 if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1080 (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1081 /* Now we need to check if the user selected Rx ONLY
1082 * of pause frames. In this case, we had to advertise
1083 * FULL flow control because we could not advertise Rx
1084 * ONLY. Hence, we must now check to see if we need to
1085 * turn OFF the TRANSMISSION of PAUSE frames.
1086 */
1087 if (hw->fc.requested_mode == e1000_fc_full) {
1088 hw->fc.current_mode = e1000_fc_full;
1089 hw_dbg("Flow Control = FULL.\n");
1090 } else {
1091 hw->fc.current_mode = e1000_fc_rx_pause;
1092 hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1093 }
1094 }
1095 /* For receiving PAUSE frames ONLY.
1096 *
1097 * LOCAL DEVICE | LINK PARTNER
1098 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1099 *-------|---------|-------|---------|--------------------
1100 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1101 */
1102 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1103 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1104 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1105 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1106 hw->fc.current_mode = e1000_fc_tx_pause;
1107 hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1108 }
1109 /* For transmitting PAUSE frames ONLY.
1110 *
1111 * LOCAL DEVICE | LINK PARTNER
1112 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1113 *-------|---------|-------|---------|--------------------
1114 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1115 */
1116 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1117 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1118 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1119 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1120 hw->fc.current_mode = e1000_fc_rx_pause;
1121 hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1122 } else {
1123 /* Per the IEEE spec, at this point flow control
1124 * should be disabled.
1125 */
1126 hw->fc.current_mode = e1000_fc_none;
1127 hw_dbg("Flow Control = NONE.\n");
1128 }
1129
1130 /* Now we call a subroutine to actually force the MAC
1131 * controller to use the correct flow control settings.
1132 */
1133 pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1134 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1135 wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1136
1137 ret_val = igb_force_mac_fc(hw);
1138 if (ret_val) {
1139 hw_dbg("Error forcing flow control settings\n");
1140 return ret_val;
1141 }
1142 }
1143
1144 out:
1145 return ret_val;
1146 }
1147
1148 /**
1149 * igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1150 * @hw: pointer to the HW structure
1151 * @speed: stores the current speed
1152 * @duplex: stores the current duplex
1153 *
1154 * Read the status register for the current speed/duplex and store the current
1155 * speed and duplex for copper connections.
1156 **/
1157 s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1158 u16 *duplex)
1159 {
1160 u32 status;
1161
1162 status = rd32(E1000_STATUS);
1163 if (status & E1000_STATUS_SPEED_1000) {
1164 *speed = SPEED_1000;
1165 hw_dbg("1000 Mbs, ");
1166 } else if (status & E1000_STATUS_SPEED_100) {
1167 *speed = SPEED_100;
1168 hw_dbg("100 Mbs, ");
1169 } else {
1170 *speed = SPEED_10;
1171 hw_dbg("10 Mbs, ");
1172 }
1173
1174 if (status & E1000_STATUS_FD) {
1175 *duplex = FULL_DUPLEX;
1176 hw_dbg("Full Duplex\n");
1177 } else {
1178 *duplex = HALF_DUPLEX;
1179 hw_dbg("Half Duplex\n");
1180 }
1181
1182 return 0;
1183 }
1184
1185 /**
1186 * igb_get_hw_semaphore - Acquire hardware semaphore
1187 * @hw: pointer to the HW structure
1188 *
1189 * Acquire the HW semaphore to access the PHY or NVM
1190 **/
1191 s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1192 {
1193 u32 swsm;
1194 s32 ret_val = 0;
1195 s32 timeout = hw->nvm.word_size + 1;
1196 s32 i = 0;
1197
1198 /* Get the SW semaphore */
1199 while (i < timeout) {
1200 swsm = rd32(E1000_SWSM);
1201 if (!(swsm & E1000_SWSM_SMBI))
1202 break;
1203
1204 udelay(50);
1205 i++;
1206 }
1207
1208 if (i == timeout) {
1209 hw_dbg("Driver can't access device - SMBI bit is set.\n");
1210 ret_val = -E1000_ERR_NVM;
1211 goto out;
1212 }
1213
1214 /* Get the FW semaphore. */
1215 for (i = 0; i < timeout; i++) {
1216 swsm = rd32(E1000_SWSM);
1217 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1218
1219 /* Semaphore acquired if bit latched */
1220 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1221 break;
1222
1223 udelay(50);
1224 }
1225
1226 if (i == timeout) {
1227 /* Release semaphores */
1228 igb_put_hw_semaphore(hw);
1229 hw_dbg("Driver can't access the NVM\n");
1230 ret_val = -E1000_ERR_NVM;
1231 goto out;
1232 }
1233
1234 out:
1235 return ret_val;
1236 }
1237
1238 /**
1239 * igb_put_hw_semaphore - Release hardware semaphore
1240 * @hw: pointer to the HW structure
1241 *
1242 * Release hardware semaphore used to access the PHY or NVM
1243 **/
1244 void igb_put_hw_semaphore(struct e1000_hw *hw)
1245 {
1246 u32 swsm;
1247
1248 swsm = rd32(E1000_SWSM);
1249
1250 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1251
1252 wr32(E1000_SWSM, swsm);
1253 }
1254
1255 /**
1256 * igb_get_auto_rd_done - Check for auto read completion
1257 * @hw: pointer to the HW structure
1258 *
1259 * Check EEPROM for Auto Read done bit.
1260 **/
1261 s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1262 {
1263 s32 i = 0;
1264 s32 ret_val = 0;
1265
1266
1267 while (i < AUTO_READ_DONE_TIMEOUT) {
1268 if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1269 break;
1270 msleep(1);
1271 i++;
1272 }
1273
1274 if (i == AUTO_READ_DONE_TIMEOUT) {
1275 hw_dbg("Auto read by HW from NVM has not completed.\n");
1276 ret_val = -E1000_ERR_RESET;
1277 goto out;
1278 }
1279
1280 out:
1281 return ret_val;
1282 }
1283
1284 /**
1285 * igb_valid_led_default - Verify a valid default LED config
1286 * @hw: pointer to the HW structure
1287 * @data: pointer to the NVM (EEPROM)
1288 *
1289 * Read the EEPROM for the current default LED configuration. If the
1290 * LED configuration is not valid, set to a valid LED configuration.
1291 **/
1292 static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1293 {
1294 s32 ret_val;
1295
1296 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1297 if (ret_val) {
1298 hw_dbg("NVM Read Error\n");
1299 goto out;
1300 }
1301
1302 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1303 switch(hw->phy.media_type) {
1304 case e1000_media_type_internal_serdes:
1305 *data = ID_LED_DEFAULT_82575_SERDES;
1306 break;
1307 case e1000_media_type_copper:
1308 default:
1309 *data = ID_LED_DEFAULT;
1310 break;
1311 }
1312 }
1313 out:
1314 return ret_val;
1315 }
1316
1317 /**
1318 * igb_id_led_init -
1319 * @hw: pointer to the HW structure
1320 *
1321 **/
1322 s32 igb_id_led_init(struct e1000_hw *hw)
1323 {
1324 struct e1000_mac_info *mac = &hw->mac;
1325 s32 ret_val;
1326 const u32 ledctl_mask = 0x000000FF;
1327 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1328 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1329 u16 data, i, temp;
1330 const u16 led_mask = 0x0F;
1331
1332 /* i210 and i211 devices have different LED mechanism */
1333 if ((hw->mac.type == e1000_i210) ||
1334 (hw->mac.type == e1000_i211))
1335 ret_val = igb_valid_led_default_i210(hw, &data);
1336 else
1337 ret_val = igb_valid_led_default(hw, &data);
1338
1339 if (ret_val)
1340 goto out;
1341
1342 mac->ledctl_default = rd32(E1000_LEDCTL);
1343 mac->ledctl_mode1 = mac->ledctl_default;
1344 mac->ledctl_mode2 = mac->ledctl_default;
1345
1346 for (i = 0; i < 4; i++) {
1347 temp = (data >> (i << 2)) & led_mask;
1348 switch (temp) {
1349 case ID_LED_ON1_DEF2:
1350 case ID_LED_ON1_ON2:
1351 case ID_LED_ON1_OFF2:
1352 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1353 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1354 break;
1355 case ID_LED_OFF1_DEF2:
1356 case ID_LED_OFF1_ON2:
1357 case ID_LED_OFF1_OFF2:
1358 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1359 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1360 break;
1361 default:
1362 /* Do nothing */
1363 break;
1364 }
1365 switch (temp) {
1366 case ID_LED_DEF1_ON2:
1367 case ID_LED_ON1_ON2:
1368 case ID_LED_OFF1_ON2:
1369 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1370 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1371 break;
1372 case ID_LED_DEF1_OFF2:
1373 case ID_LED_ON1_OFF2:
1374 case ID_LED_OFF1_OFF2:
1375 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1376 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1377 break;
1378 default:
1379 /* Do nothing */
1380 break;
1381 }
1382 }
1383
1384 out:
1385 return ret_val;
1386 }
1387
1388 /**
1389 * igb_cleanup_led - Set LED config to default operation
1390 * @hw: pointer to the HW structure
1391 *
1392 * Remove the current LED configuration and set the LED configuration
1393 * to the default value, saved from the EEPROM.
1394 **/
1395 s32 igb_cleanup_led(struct e1000_hw *hw)
1396 {
1397 wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1398 return 0;
1399 }
1400
1401 /**
1402 * igb_blink_led - Blink LED
1403 * @hw: pointer to the HW structure
1404 *
1405 * Blink the led's which are set to be on.
1406 **/
1407 s32 igb_blink_led(struct e1000_hw *hw)
1408 {
1409 u32 ledctl_blink = 0;
1410 u32 i;
1411
1412 if (hw->phy.media_type == e1000_media_type_fiber) {
1413 /* always blink LED0 for PCI-E fiber */
1414 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1415 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1416 } else {
1417 /* Set the blink bit for each LED that's "on" (0x0E)
1418 * (or "off" if inverted) in ledctl_mode2. The blink
1419 * logic in hardware only works when mode is set to "on"
1420 * so it must be changed accordingly when the mode is
1421 * "off" and inverted.
1422 */
1423 ledctl_blink = hw->mac.ledctl_mode2;
1424 for (i = 0; i < 32; i += 8) {
1425 u32 mode = (hw->mac.ledctl_mode2 >> i) &
1426 E1000_LEDCTL_LED0_MODE_MASK;
1427 u32 led_default = hw->mac.ledctl_default >> i;
1428
1429 if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1430 (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1431 ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1432 (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1433 ledctl_blink &=
1434 ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1435 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1436 E1000_LEDCTL_MODE_LED_ON) << i;
1437 }
1438 }
1439 }
1440
1441 wr32(E1000_LEDCTL, ledctl_blink);
1442
1443 return 0;
1444 }
1445
1446 /**
1447 * igb_led_off - Turn LED off
1448 * @hw: pointer to the HW structure
1449 *
1450 * Turn LED off.
1451 **/
1452 s32 igb_led_off(struct e1000_hw *hw)
1453 {
1454 switch (hw->phy.media_type) {
1455 case e1000_media_type_copper:
1456 wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1457 break;
1458 default:
1459 break;
1460 }
1461
1462 return 0;
1463 }
1464
1465 /**
1466 * igb_disable_pcie_master - Disables PCI-express master access
1467 * @hw: pointer to the HW structure
1468 *
1469 * Returns 0 (0) if successful, else returns -10
1470 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1471 * the master requests to be disabled.
1472 *
1473 * Disables PCI-Express master access and verifies there are no pending
1474 * requests.
1475 **/
1476 s32 igb_disable_pcie_master(struct e1000_hw *hw)
1477 {
1478 u32 ctrl;
1479 s32 timeout = MASTER_DISABLE_TIMEOUT;
1480 s32 ret_val = 0;
1481
1482 if (hw->bus.type != e1000_bus_type_pci_express)
1483 goto out;
1484
1485 ctrl = rd32(E1000_CTRL);
1486 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1487 wr32(E1000_CTRL, ctrl);
1488
1489 while (timeout) {
1490 if (!(rd32(E1000_STATUS) &
1491 E1000_STATUS_GIO_MASTER_ENABLE))
1492 break;
1493 udelay(100);
1494 timeout--;
1495 }
1496
1497 if (!timeout) {
1498 hw_dbg("Master requests are pending.\n");
1499 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1500 goto out;
1501 }
1502
1503 out:
1504 return ret_val;
1505 }
1506
1507 /**
1508 * igb_validate_mdi_setting - Verify MDI/MDIx settings
1509 * @hw: pointer to the HW structure
1510 *
1511 * Verify that when not using auto-negotitation that MDI/MDIx is correctly
1512 * set, which is forced to MDI mode only.
1513 **/
1514 s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1515 {
1516 s32 ret_val = 0;
1517
1518 /* All MDI settings are supported on 82580 and newer. */
1519 if (hw->mac.type >= e1000_82580)
1520 goto out;
1521
1522 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1523 hw_dbg("Invalid MDI setting detected\n");
1524 hw->phy.mdix = 1;
1525 ret_val = -E1000_ERR_CONFIG;
1526 goto out;
1527 }
1528
1529 out:
1530 return ret_val;
1531 }
1532
1533 /**
1534 * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1535 * @hw: pointer to the HW structure
1536 * @reg: 32bit register offset such as E1000_SCTL
1537 * @offset: register offset to write to
1538 * @data: data to write at register offset
1539 *
1540 * Writes an address/data control type register. There are several of these
1541 * and they all have the format address << 8 | data and bit 31 is polled for
1542 * completion.
1543 **/
1544 s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1545 u32 offset, u8 data)
1546 {
1547 u32 i, regvalue = 0;
1548 s32 ret_val = 0;
1549
1550 /* Set up the address and data */
1551 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1552 wr32(reg, regvalue);
1553
1554 /* Poll the ready bit to see if the MDI read completed */
1555 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1556 udelay(5);
1557 regvalue = rd32(reg);
1558 if (regvalue & E1000_GEN_CTL_READY)
1559 break;
1560 }
1561 if (!(regvalue & E1000_GEN_CTL_READY)) {
1562 hw_dbg("Reg %08x did not indicate ready\n", reg);
1563 ret_val = -E1000_ERR_PHY;
1564 goto out;
1565 }
1566
1567 out:
1568 return ret_val;
1569 }
1570
1571 /**
1572 * igb_enable_mng_pass_thru - Enable processing of ARP's
1573 * @hw: pointer to the HW structure
1574 *
1575 * Verifies the hardware needs to leave interface enabled so that frames can
1576 * be directed to and from the management interface.
1577 **/
1578 bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1579 {
1580 u32 manc;
1581 u32 fwsm, factps;
1582 bool ret_val = false;
1583
1584 if (!hw->mac.asf_firmware_present)
1585 goto out;
1586
1587 manc = rd32(E1000_MANC);
1588
1589 if (!(manc & E1000_MANC_RCV_TCO_EN))
1590 goto out;
1591
1592 if (hw->mac.arc_subsystem_valid) {
1593 fwsm = rd32(E1000_FWSM);
1594 factps = rd32(E1000_FACTPS);
1595
1596 if (!(factps & E1000_FACTPS_MNGCG) &&
1597 ((fwsm & E1000_FWSM_MODE_MASK) ==
1598 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1599 ret_val = true;
1600 goto out;
1601 }
1602 } else {
1603 if ((manc & E1000_MANC_SMBUS_EN) &&
1604 !(manc & E1000_MANC_ASF_EN)) {
1605 ret_val = true;
1606 goto out;
1607 }
1608 }
1609
1610 out:
1611 return ret_val;
1612 }
This page took 0.094614 seconds and 5 git commands to generate.