Merge branch 'stable' of git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux...
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / e1000_nvm.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30
31 #include "e1000_mac.h"
32 #include "e1000_nvm.h"
33
34 /**
35 * igb_raise_eec_clk - Raise EEPROM clock
36 * @hw: pointer to the HW structure
37 * @eecd: pointer to the EEPROM
38 *
39 * Enable/Raise the EEPROM clock bit.
40 **/
41 static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
42 {
43 *eecd = *eecd | E1000_EECD_SK;
44 wr32(E1000_EECD, *eecd);
45 wrfl();
46 udelay(hw->nvm.delay_usec);
47 }
48
49 /**
50 * igb_lower_eec_clk - Lower EEPROM clock
51 * @hw: pointer to the HW structure
52 * @eecd: pointer to the EEPROM
53 *
54 * Clear/Lower the EEPROM clock bit.
55 **/
56 static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
57 {
58 *eecd = *eecd & ~E1000_EECD_SK;
59 wr32(E1000_EECD, *eecd);
60 wrfl();
61 udelay(hw->nvm.delay_usec);
62 }
63
64 /**
65 * igb_shift_out_eec_bits - Shift data bits our to the EEPROM
66 * @hw: pointer to the HW structure
67 * @data: data to send to the EEPROM
68 * @count: number of bits to shift out
69 *
70 * We need to shift 'count' bits out to the EEPROM. So, the value in the
71 * "data" parameter will be shifted out to the EEPROM one bit at a time.
72 * In order to do this, "data" must be broken down into bits.
73 **/
74 static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
75 {
76 struct e1000_nvm_info *nvm = &hw->nvm;
77 u32 eecd = rd32(E1000_EECD);
78 u32 mask;
79
80 mask = 0x01 << (count - 1);
81 if (nvm->type == e1000_nvm_eeprom_spi)
82 eecd |= E1000_EECD_DO;
83
84 do {
85 eecd &= ~E1000_EECD_DI;
86
87 if (data & mask)
88 eecd |= E1000_EECD_DI;
89
90 wr32(E1000_EECD, eecd);
91 wrfl();
92
93 udelay(nvm->delay_usec);
94
95 igb_raise_eec_clk(hw, &eecd);
96 igb_lower_eec_clk(hw, &eecd);
97
98 mask >>= 1;
99 } while (mask);
100
101 eecd &= ~E1000_EECD_DI;
102 wr32(E1000_EECD, eecd);
103 }
104
105 /**
106 * igb_shift_in_eec_bits - Shift data bits in from the EEPROM
107 * @hw: pointer to the HW structure
108 * @count: number of bits to shift in
109 *
110 * In order to read a register from the EEPROM, we need to shift 'count' bits
111 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
112 * the EEPROM (setting the SK bit), and then reading the value of the data out
113 * "DO" bit. During this "shifting in" process the data in "DI" bit should
114 * always be clear.
115 **/
116 static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
117 {
118 u32 eecd;
119 u32 i;
120 u16 data;
121
122 eecd = rd32(E1000_EECD);
123
124 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
125 data = 0;
126
127 for (i = 0; i < count; i++) {
128 data <<= 1;
129 igb_raise_eec_clk(hw, &eecd);
130
131 eecd = rd32(E1000_EECD);
132
133 eecd &= ~E1000_EECD_DI;
134 if (eecd & E1000_EECD_DO)
135 data |= 1;
136
137 igb_lower_eec_clk(hw, &eecd);
138 }
139
140 return data;
141 }
142
143 /**
144 * igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
145 * @hw: pointer to the HW structure
146 * @ee_reg: EEPROM flag for polling
147 *
148 * Polls the EEPROM status bit for either read or write completion based
149 * upon the value of 'ee_reg'.
150 **/
151 static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
152 {
153 u32 attempts = 100000;
154 u32 i, reg = 0;
155 s32 ret_val = -E1000_ERR_NVM;
156
157 for (i = 0; i < attempts; i++) {
158 if (ee_reg == E1000_NVM_POLL_READ)
159 reg = rd32(E1000_EERD);
160 else
161 reg = rd32(E1000_EEWR);
162
163 if (reg & E1000_NVM_RW_REG_DONE) {
164 ret_val = 0;
165 break;
166 }
167
168 udelay(5);
169 }
170
171 return ret_val;
172 }
173
174 /**
175 * igb_acquire_nvm - Generic request for access to EEPROM
176 * @hw: pointer to the HW structure
177 *
178 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
179 * Return successful if access grant bit set, else clear the request for
180 * EEPROM access and return -E1000_ERR_NVM (-1).
181 **/
182 s32 igb_acquire_nvm(struct e1000_hw *hw)
183 {
184 u32 eecd = rd32(E1000_EECD);
185 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
186 s32 ret_val = 0;
187
188
189 wr32(E1000_EECD, eecd | E1000_EECD_REQ);
190 eecd = rd32(E1000_EECD);
191
192 while (timeout) {
193 if (eecd & E1000_EECD_GNT)
194 break;
195 udelay(5);
196 eecd = rd32(E1000_EECD);
197 timeout--;
198 }
199
200 if (!timeout) {
201 eecd &= ~E1000_EECD_REQ;
202 wr32(E1000_EECD, eecd);
203 hw_dbg("Could not acquire NVM grant\n");
204 ret_val = -E1000_ERR_NVM;
205 }
206
207 return ret_val;
208 }
209
210 /**
211 * igb_standby_nvm - Return EEPROM to standby state
212 * @hw: pointer to the HW structure
213 *
214 * Return the EEPROM to a standby state.
215 **/
216 static void igb_standby_nvm(struct e1000_hw *hw)
217 {
218 struct e1000_nvm_info *nvm = &hw->nvm;
219 u32 eecd = rd32(E1000_EECD);
220
221 if (nvm->type == e1000_nvm_eeprom_spi) {
222 /* Toggle CS to flush commands */
223 eecd |= E1000_EECD_CS;
224 wr32(E1000_EECD, eecd);
225 wrfl();
226 udelay(nvm->delay_usec);
227 eecd &= ~E1000_EECD_CS;
228 wr32(E1000_EECD, eecd);
229 wrfl();
230 udelay(nvm->delay_usec);
231 }
232 }
233
234 /**
235 * e1000_stop_nvm - Terminate EEPROM command
236 * @hw: pointer to the HW structure
237 *
238 * Terminates the current command by inverting the EEPROM's chip select pin.
239 **/
240 static void e1000_stop_nvm(struct e1000_hw *hw)
241 {
242 u32 eecd;
243
244 eecd = rd32(E1000_EECD);
245 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
246 /* Pull CS high */
247 eecd |= E1000_EECD_CS;
248 igb_lower_eec_clk(hw, &eecd);
249 }
250 }
251
252 /**
253 * igb_release_nvm - Release exclusive access to EEPROM
254 * @hw: pointer to the HW structure
255 *
256 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
257 **/
258 void igb_release_nvm(struct e1000_hw *hw)
259 {
260 u32 eecd;
261
262 e1000_stop_nvm(hw);
263
264 eecd = rd32(E1000_EECD);
265 eecd &= ~E1000_EECD_REQ;
266 wr32(E1000_EECD, eecd);
267 }
268
269 /**
270 * igb_ready_nvm_eeprom - Prepares EEPROM for read/write
271 * @hw: pointer to the HW structure
272 *
273 * Setups the EEPROM for reading and writing.
274 **/
275 static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
276 {
277 struct e1000_nvm_info *nvm = &hw->nvm;
278 u32 eecd = rd32(E1000_EECD);
279 s32 ret_val = 0;
280 u16 timeout = 0;
281 u8 spi_stat_reg;
282
283
284 if (nvm->type == e1000_nvm_eeprom_spi) {
285 /* Clear SK and CS */
286 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
287 wr32(E1000_EECD, eecd);
288 wrfl();
289 udelay(1);
290 timeout = NVM_MAX_RETRY_SPI;
291
292 /* Read "Status Register" repeatedly until the LSB is cleared.
293 * The EEPROM will signal that the command has been completed
294 * by clearing bit 0 of the internal status register. If it's
295 * not cleared within 'timeout', then error out.
296 */
297 while (timeout) {
298 igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
299 hw->nvm.opcode_bits);
300 spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
301 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
302 break;
303
304 udelay(5);
305 igb_standby_nvm(hw);
306 timeout--;
307 }
308
309 if (!timeout) {
310 hw_dbg("SPI NVM Status error\n");
311 ret_val = -E1000_ERR_NVM;
312 goto out;
313 }
314 }
315
316 out:
317 return ret_val;
318 }
319
320 /**
321 * igb_read_nvm_spi - Read EEPROM's using SPI
322 * @hw: pointer to the HW structure
323 * @offset: offset of word in the EEPROM to read
324 * @words: number of words to read
325 * @data: word read from the EEPROM
326 *
327 * Reads a 16 bit word from the EEPROM.
328 **/
329 s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
330 {
331 struct e1000_nvm_info *nvm = &hw->nvm;
332 u32 i = 0;
333 s32 ret_val;
334 u16 word_in;
335 u8 read_opcode = NVM_READ_OPCODE_SPI;
336
337 /* A check for invalid values: offset too large, too many words,
338 * and not enough words.
339 */
340 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
341 (words == 0)) {
342 hw_dbg("nvm parameter(s) out of bounds\n");
343 ret_val = -E1000_ERR_NVM;
344 goto out;
345 }
346
347 ret_val = nvm->ops.acquire(hw);
348 if (ret_val)
349 goto out;
350
351 ret_val = igb_ready_nvm_eeprom(hw);
352 if (ret_val)
353 goto release;
354
355 igb_standby_nvm(hw);
356
357 if ((nvm->address_bits == 8) && (offset >= 128))
358 read_opcode |= NVM_A8_OPCODE_SPI;
359
360 /* Send the READ command (opcode + addr) */
361 igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
362 igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
363
364 /* Read the data. SPI NVMs increment the address with each byte
365 * read and will roll over if reading beyond the end. This allows
366 * us to read the whole NVM from any offset
367 */
368 for (i = 0; i < words; i++) {
369 word_in = igb_shift_in_eec_bits(hw, 16);
370 data[i] = (word_in >> 8) | (word_in << 8);
371 }
372
373 release:
374 nvm->ops.release(hw);
375
376 out:
377 return ret_val;
378 }
379
380 /**
381 * igb_read_nvm_eerd - Reads EEPROM using EERD register
382 * @hw: pointer to the HW structure
383 * @offset: offset of word in the EEPROM to read
384 * @words: number of words to read
385 * @data: word read from the EEPROM
386 *
387 * Reads a 16 bit word from the EEPROM using the EERD register.
388 **/
389 s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
390 {
391 struct e1000_nvm_info *nvm = &hw->nvm;
392 u32 i, eerd = 0;
393 s32 ret_val = 0;
394
395 /* A check for invalid values: offset too large, too many words,
396 * and not enough words.
397 */
398 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
399 (words == 0)) {
400 hw_dbg("nvm parameter(s) out of bounds\n");
401 ret_val = -E1000_ERR_NVM;
402 goto out;
403 }
404
405 for (i = 0; i < words; i++) {
406 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
407 E1000_NVM_RW_REG_START;
408
409 wr32(E1000_EERD, eerd);
410 ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
411 if (ret_val)
412 break;
413
414 data[i] = (rd32(E1000_EERD) >>
415 E1000_NVM_RW_REG_DATA);
416 }
417
418 out:
419 return ret_val;
420 }
421
422 /**
423 * igb_write_nvm_spi - Write to EEPROM using SPI
424 * @hw: pointer to the HW structure
425 * @offset: offset within the EEPROM to be written to
426 * @words: number of words to write
427 * @data: 16 bit word(s) to be written to the EEPROM
428 *
429 * Writes data to EEPROM at offset using SPI interface.
430 *
431 * If e1000_update_nvm_checksum is not called after this function , the
432 * EEPROM will most likley contain an invalid checksum.
433 **/
434 s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
435 {
436 struct e1000_nvm_info *nvm = &hw->nvm;
437 s32 ret_val = -E1000_ERR_NVM;
438 u16 widx = 0;
439
440 /* A check for invalid values: offset too large, too many words,
441 * and not enough words.
442 */
443 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
444 (words == 0)) {
445 hw_dbg("nvm parameter(s) out of bounds\n");
446 return ret_val;
447 }
448
449 while (widx < words) {
450 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
451
452 ret_val = nvm->ops.acquire(hw);
453 if (ret_val)
454 return ret_val;
455
456 ret_val = igb_ready_nvm_eeprom(hw);
457 if (ret_val) {
458 nvm->ops.release(hw);
459 return ret_val;
460 }
461
462 igb_standby_nvm(hw);
463
464 /* Send the WRITE ENABLE command (8 bit opcode) */
465 igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
466 nvm->opcode_bits);
467
468 igb_standby_nvm(hw);
469
470 /* Some SPI eeproms use the 8th address bit embedded in the
471 * opcode
472 */
473 if ((nvm->address_bits == 8) && (offset >= 128))
474 write_opcode |= NVM_A8_OPCODE_SPI;
475
476 /* Send the Write command (8-bit opcode + addr) */
477 igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
478 igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
479 nvm->address_bits);
480
481 /* Loop to allow for up to whole page write of eeprom */
482 while (widx < words) {
483 u16 word_out = data[widx];
484 word_out = (word_out >> 8) | (word_out << 8);
485 igb_shift_out_eec_bits(hw, word_out, 16);
486 widx++;
487
488 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
489 igb_standby_nvm(hw);
490 break;
491 }
492 }
493 usleep_range(1000, 2000);
494 nvm->ops.release(hw);
495 }
496
497 return ret_val;
498 }
499
500 /**
501 * igb_read_part_string - Read device part number
502 * @hw: pointer to the HW structure
503 * @part_num: pointer to device part number
504 * @part_num_size: size of part number buffer
505 *
506 * Reads the product board assembly (PBA) number from the EEPROM and stores
507 * the value in part_num.
508 **/
509 s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
510 {
511 s32 ret_val;
512 u16 nvm_data;
513 u16 pointer;
514 u16 offset;
515 u16 length;
516
517 if (part_num == NULL) {
518 hw_dbg("PBA string buffer was null\n");
519 ret_val = E1000_ERR_INVALID_ARGUMENT;
520 goto out;
521 }
522
523 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
524 if (ret_val) {
525 hw_dbg("NVM Read Error\n");
526 goto out;
527 }
528
529 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
530 if (ret_val) {
531 hw_dbg("NVM Read Error\n");
532 goto out;
533 }
534
535 /* if nvm_data is not ptr guard the PBA must be in legacy format which
536 * means pointer is actually our second data word for the PBA number
537 * and we can decode it into an ascii string
538 */
539 if (nvm_data != NVM_PBA_PTR_GUARD) {
540 hw_dbg("NVM PBA number is not stored as string\n");
541
542 /* we will need 11 characters to store the PBA */
543 if (part_num_size < 11) {
544 hw_dbg("PBA string buffer too small\n");
545 return E1000_ERR_NO_SPACE;
546 }
547
548 /* extract hex string from data and pointer */
549 part_num[0] = (nvm_data >> 12) & 0xF;
550 part_num[1] = (nvm_data >> 8) & 0xF;
551 part_num[2] = (nvm_data >> 4) & 0xF;
552 part_num[3] = nvm_data & 0xF;
553 part_num[4] = (pointer >> 12) & 0xF;
554 part_num[5] = (pointer >> 8) & 0xF;
555 part_num[6] = '-';
556 part_num[7] = 0;
557 part_num[8] = (pointer >> 4) & 0xF;
558 part_num[9] = pointer & 0xF;
559
560 /* put a null character on the end of our string */
561 part_num[10] = '\0';
562
563 /* switch all the data but the '-' to hex char */
564 for (offset = 0; offset < 10; offset++) {
565 if (part_num[offset] < 0xA)
566 part_num[offset] += '0';
567 else if (part_num[offset] < 0x10)
568 part_num[offset] += 'A' - 0xA;
569 }
570
571 goto out;
572 }
573
574 ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
575 if (ret_val) {
576 hw_dbg("NVM Read Error\n");
577 goto out;
578 }
579
580 if (length == 0xFFFF || length == 0) {
581 hw_dbg("NVM PBA number section invalid length\n");
582 ret_val = E1000_ERR_NVM_PBA_SECTION;
583 goto out;
584 }
585 /* check if part_num buffer is big enough */
586 if (part_num_size < (((u32)length * 2) - 1)) {
587 hw_dbg("PBA string buffer too small\n");
588 ret_val = E1000_ERR_NO_SPACE;
589 goto out;
590 }
591
592 /* trim pba length from start of string */
593 pointer++;
594 length--;
595
596 for (offset = 0; offset < length; offset++) {
597 ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
598 if (ret_val) {
599 hw_dbg("NVM Read Error\n");
600 goto out;
601 }
602 part_num[offset * 2] = (u8)(nvm_data >> 8);
603 part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
604 }
605 part_num[offset * 2] = '\0';
606
607 out:
608 return ret_val;
609 }
610
611 /**
612 * igb_read_mac_addr - Read device MAC address
613 * @hw: pointer to the HW structure
614 *
615 * Reads the device MAC address from the EEPROM and stores the value.
616 * Since devices with two ports use the same EEPROM, we increment the
617 * last bit in the MAC address for the second port.
618 **/
619 s32 igb_read_mac_addr(struct e1000_hw *hw)
620 {
621 u32 rar_high;
622 u32 rar_low;
623 u16 i;
624
625 rar_high = rd32(E1000_RAH(0));
626 rar_low = rd32(E1000_RAL(0));
627
628 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
629 hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
630
631 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
632 hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
633
634 for (i = 0; i < ETH_ALEN; i++)
635 hw->mac.addr[i] = hw->mac.perm_addr[i];
636
637 return 0;
638 }
639
640 /**
641 * igb_validate_nvm_checksum - Validate EEPROM checksum
642 * @hw: pointer to the HW structure
643 *
644 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
645 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
646 **/
647 s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
648 {
649 s32 ret_val = 0;
650 u16 checksum = 0;
651 u16 i, nvm_data;
652
653 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
654 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
655 if (ret_val) {
656 hw_dbg("NVM Read Error\n");
657 goto out;
658 }
659 checksum += nvm_data;
660 }
661
662 if (checksum != (u16) NVM_SUM) {
663 hw_dbg("NVM Checksum Invalid\n");
664 ret_val = -E1000_ERR_NVM;
665 goto out;
666 }
667
668 out:
669 return ret_val;
670 }
671
672 /**
673 * igb_update_nvm_checksum - Update EEPROM checksum
674 * @hw: pointer to the HW structure
675 *
676 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
677 * up to the checksum. Then calculates the EEPROM checksum and writes the
678 * value to the EEPROM.
679 **/
680 s32 igb_update_nvm_checksum(struct e1000_hw *hw)
681 {
682 s32 ret_val;
683 u16 checksum = 0;
684 u16 i, nvm_data;
685
686 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
687 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
688 if (ret_val) {
689 hw_dbg("NVM Read Error while updating checksum.\n");
690 goto out;
691 }
692 checksum += nvm_data;
693 }
694 checksum = (u16) NVM_SUM - checksum;
695 ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
696 if (ret_val)
697 hw_dbg("NVM Write Error while updating checksum.\n");
698
699 out:
700 return ret_val;
701 }
702
703 /**
704 * igb_get_fw_version - Get firmware version information
705 * @hw: pointer to the HW structure
706 * @fw_vers: pointer to output structure
707 *
708 * unsupported MAC types will return all 0 version structure
709 **/
710 void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
711 {
712 u16 eeprom_verh, eeprom_verl, comb_verh, comb_verl, comb_offset;
713 u16 fw_version;
714
715 memset(fw_vers, 0, sizeof(struct e1000_fw_version));
716
717 switch (hw->mac.type) {
718 case e1000_i211:
719 igb_read_invm_version(hw, fw_vers);
720 return;
721 case e1000_82575:
722 case e1000_82576:
723 case e1000_82580:
724 case e1000_i354:
725 case e1000_i350:
726 case e1000_i210:
727 break;
728 default:
729 return;
730 }
731 /* basic eeprom version numbers */
732 hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
733 fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
734 fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK);
735
736 /* etrack id */
737 hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
738 hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
739 fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) | eeprom_verl;
740
741 switch (hw->mac.type) {
742 case e1000_i210:
743 case e1000_i354:
744 case e1000_i350:
745 /* find combo image version */
746 hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
747 if ((comb_offset != 0x0) && (comb_offset != NVM_VER_INVALID)) {
748
749 hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
750 + 1), 1, &comb_verh);
751 hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
752 1, &comb_verl);
753
754 /* get Option Rom version if it exists and is valid */
755 if ((comb_verh && comb_verl) &&
756 ((comb_verh != NVM_VER_INVALID) &&
757 (comb_verl != NVM_VER_INVALID))) {
758
759 fw_vers->or_valid = true;
760 fw_vers->or_major =
761 comb_verl >> NVM_COMB_VER_SHFT;
762 fw_vers->or_build =
763 ((comb_verl << NVM_COMB_VER_SHFT)
764 | (comb_verh >> NVM_COMB_VER_SHFT));
765 fw_vers->or_patch =
766 comb_verh & NVM_COMB_VER_MASK;
767 }
768 }
769 break;
770 default:
771 break;
772 }
773 return;
774 }
This page took 0.046544 seconds and 6 git commands to generate.