igb: Cleanups to fix msleep warnings
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / e1000_phy.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24 #include <linux/if_ether.h>
25 #include <linux/delay.h>
26
27 #include "e1000_mac.h"
28 #include "e1000_phy.h"
29
30 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw);
31 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
32 u16 *phy_ctrl);
33 static s32 igb_wait_autoneg(struct e1000_hw *hw);
34 static s32 igb_set_master_slave_mode(struct e1000_hw *hw);
35
36 /* Cable length tables */
37 static const u16 e1000_m88_cable_length_table[] = {
38 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
39 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
40 (sizeof(e1000_m88_cable_length_table) / \
41 sizeof(e1000_m88_cable_length_table[0]))
42
43 static const u16 e1000_igp_2_cable_length_table[] = {
44 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
45 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
46 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
47 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
48 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
49 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
50 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
51 104, 109, 114, 118, 121, 124};
52 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
53 (sizeof(e1000_igp_2_cable_length_table) / \
54 sizeof(e1000_igp_2_cable_length_table[0]))
55
56 /**
57 * igb_check_reset_block - Check if PHY reset is blocked
58 * @hw: pointer to the HW structure
59 *
60 * Read the PHY management control register and check whether a PHY reset
61 * is blocked. If a reset is not blocked return 0, otherwise
62 * return E1000_BLK_PHY_RESET (12).
63 **/
64 s32 igb_check_reset_block(struct e1000_hw *hw)
65 {
66 u32 manc;
67
68 manc = rd32(E1000_MANC);
69
70 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
71 }
72
73 /**
74 * igb_get_phy_id - Retrieve the PHY ID and revision
75 * @hw: pointer to the HW structure
76 *
77 * Reads the PHY registers and stores the PHY ID and possibly the PHY
78 * revision in the hardware structure.
79 **/
80 s32 igb_get_phy_id(struct e1000_hw *hw)
81 {
82 struct e1000_phy_info *phy = &hw->phy;
83 s32 ret_val = 0;
84 u16 phy_id;
85
86 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
87 if (ret_val)
88 goto out;
89
90 phy->id = (u32)(phy_id << 16);
91 udelay(20);
92 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
93 if (ret_val)
94 goto out;
95
96 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
97 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
98
99 out:
100 return ret_val;
101 }
102
103 /**
104 * igb_phy_reset_dsp - Reset PHY DSP
105 * @hw: pointer to the HW structure
106 *
107 * Reset the digital signal processor.
108 **/
109 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
110 {
111 s32 ret_val = 0;
112
113 if (!(hw->phy.ops.write_reg))
114 goto out;
115
116 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
117 if (ret_val)
118 goto out;
119
120 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
121
122 out:
123 return ret_val;
124 }
125
126 /**
127 * igb_read_phy_reg_mdic - Read MDI control register
128 * @hw: pointer to the HW structure
129 * @offset: register offset to be read
130 * @data: pointer to the read data
131 *
132 * Reads the MDI control regsiter in the PHY at offset and stores the
133 * information read to data.
134 **/
135 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
136 {
137 struct e1000_phy_info *phy = &hw->phy;
138 u32 i, mdic = 0;
139 s32 ret_val = 0;
140
141 if (offset > MAX_PHY_REG_ADDRESS) {
142 hw_dbg("PHY Address %d is out of range\n", offset);
143 ret_val = -E1000_ERR_PARAM;
144 goto out;
145 }
146
147 /* Set up Op-code, Phy Address, and register offset in the MDI
148 * Control register. The MAC will take care of interfacing with the
149 * PHY to retrieve the desired data.
150 */
151 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
152 (phy->addr << E1000_MDIC_PHY_SHIFT) |
153 (E1000_MDIC_OP_READ));
154
155 wr32(E1000_MDIC, mdic);
156
157 /* Poll the ready bit to see if the MDI read completed
158 * Increasing the time out as testing showed failures with
159 * the lower time out
160 */
161 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
162 udelay(50);
163 mdic = rd32(E1000_MDIC);
164 if (mdic & E1000_MDIC_READY)
165 break;
166 }
167 if (!(mdic & E1000_MDIC_READY)) {
168 hw_dbg("MDI Read did not complete\n");
169 ret_val = -E1000_ERR_PHY;
170 goto out;
171 }
172 if (mdic & E1000_MDIC_ERROR) {
173 hw_dbg("MDI Error\n");
174 ret_val = -E1000_ERR_PHY;
175 goto out;
176 }
177 *data = (u16) mdic;
178
179 out:
180 return ret_val;
181 }
182
183 /**
184 * igb_write_phy_reg_mdic - Write MDI control register
185 * @hw: pointer to the HW structure
186 * @offset: register offset to write to
187 * @data: data to write to register at offset
188 *
189 * Writes data to MDI control register in the PHY at offset.
190 **/
191 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
192 {
193 struct e1000_phy_info *phy = &hw->phy;
194 u32 i, mdic = 0;
195 s32 ret_val = 0;
196
197 if (offset > MAX_PHY_REG_ADDRESS) {
198 hw_dbg("PHY Address %d is out of range\n", offset);
199 ret_val = -E1000_ERR_PARAM;
200 goto out;
201 }
202
203 /* Set up Op-code, Phy Address, and register offset in the MDI
204 * Control register. The MAC will take care of interfacing with the
205 * PHY to retrieve the desired data.
206 */
207 mdic = (((u32)data) |
208 (offset << E1000_MDIC_REG_SHIFT) |
209 (phy->addr << E1000_MDIC_PHY_SHIFT) |
210 (E1000_MDIC_OP_WRITE));
211
212 wr32(E1000_MDIC, mdic);
213
214 /* Poll the ready bit to see if the MDI read completed
215 * Increasing the time out as testing showed failures with
216 * the lower time out
217 */
218 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
219 udelay(50);
220 mdic = rd32(E1000_MDIC);
221 if (mdic & E1000_MDIC_READY)
222 break;
223 }
224 if (!(mdic & E1000_MDIC_READY)) {
225 hw_dbg("MDI Write did not complete\n");
226 ret_val = -E1000_ERR_PHY;
227 goto out;
228 }
229 if (mdic & E1000_MDIC_ERROR) {
230 hw_dbg("MDI Error\n");
231 ret_val = -E1000_ERR_PHY;
232 goto out;
233 }
234
235 out:
236 return ret_val;
237 }
238
239 /**
240 * igb_read_phy_reg_i2c - Read PHY register using i2c
241 * @hw: pointer to the HW structure
242 * @offset: register offset to be read
243 * @data: pointer to the read data
244 *
245 * Reads the PHY register at offset using the i2c interface and stores the
246 * retrieved information in data.
247 **/
248 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
249 {
250 struct e1000_phy_info *phy = &hw->phy;
251 u32 i, i2ccmd = 0;
252
253 /* Set up Op-code, Phy Address, and register address in the I2CCMD
254 * register. The MAC will take care of interfacing with the
255 * PHY to retrieve the desired data.
256 */
257 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
258 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
259 (E1000_I2CCMD_OPCODE_READ));
260
261 wr32(E1000_I2CCMD, i2ccmd);
262
263 /* Poll the ready bit to see if the I2C read completed */
264 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
265 udelay(50);
266 i2ccmd = rd32(E1000_I2CCMD);
267 if (i2ccmd & E1000_I2CCMD_READY)
268 break;
269 }
270 if (!(i2ccmd & E1000_I2CCMD_READY)) {
271 hw_dbg("I2CCMD Read did not complete\n");
272 return -E1000_ERR_PHY;
273 }
274 if (i2ccmd & E1000_I2CCMD_ERROR) {
275 hw_dbg("I2CCMD Error bit set\n");
276 return -E1000_ERR_PHY;
277 }
278
279 /* Need to byte-swap the 16-bit value. */
280 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
281
282 return 0;
283 }
284
285 /**
286 * igb_write_phy_reg_i2c - Write PHY register using i2c
287 * @hw: pointer to the HW structure
288 * @offset: register offset to write to
289 * @data: data to write at register offset
290 *
291 * Writes the data to PHY register at the offset using the i2c interface.
292 **/
293 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
294 {
295 struct e1000_phy_info *phy = &hw->phy;
296 u32 i, i2ccmd = 0;
297 u16 phy_data_swapped;
298
299 /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
300 if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
301 hw_dbg("PHY I2C Address %d is out of range.\n",
302 hw->phy.addr);
303 return -E1000_ERR_CONFIG;
304 }
305
306 /* Swap the data bytes for the I2C interface */
307 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
308
309 /* Set up Op-code, Phy Address, and register address in the I2CCMD
310 * register. The MAC will take care of interfacing with the
311 * PHY to retrieve the desired data.
312 */
313 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
314 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
315 E1000_I2CCMD_OPCODE_WRITE |
316 phy_data_swapped);
317
318 wr32(E1000_I2CCMD, i2ccmd);
319
320 /* Poll the ready bit to see if the I2C read completed */
321 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
322 udelay(50);
323 i2ccmd = rd32(E1000_I2CCMD);
324 if (i2ccmd & E1000_I2CCMD_READY)
325 break;
326 }
327 if (!(i2ccmd & E1000_I2CCMD_READY)) {
328 hw_dbg("I2CCMD Write did not complete\n");
329 return -E1000_ERR_PHY;
330 }
331 if (i2ccmd & E1000_I2CCMD_ERROR) {
332 hw_dbg("I2CCMD Error bit set\n");
333 return -E1000_ERR_PHY;
334 }
335
336 return 0;
337 }
338
339 /**
340 * igb_read_sfp_data_byte - Reads SFP module data.
341 * @hw: pointer to the HW structure
342 * @offset: byte location offset to be read
343 * @data: read data buffer pointer
344 *
345 * Reads one byte from SFP module data stored
346 * in SFP resided EEPROM memory or SFP diagnostic area.
347 * Function should be called with
348 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
349 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
350 * access
351 **/
352 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
353 {
354 u32 i = 0;
355 u32 i2ccmd = 0;
356 u32 data_local = 0;
357
358 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
359 hw_dbg("I2CCMD command address exceeds upper limit\n");
360 return -E1000_ERR_PHY;
361 }
362
363 /* Set up Op-code, EEPROM Address,in the I2CCMD
364 * register. The MAC will take care of interfacing with the
365 * EEPROM to retrieve the desired data.
366 */
367 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
368 E1000_I2CCMD_OPCODE_READ);
369
370 wr32(E1000_I2CCMD, i2ccmd);
371
372 /* Poll the ready bit to see if the I2C read completed */
373 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
374 udelay(50);
375 data_local = rd32(E1000_I2CCMD);
376 if (data_local & E1000_I2CCMD_READY)
377 break;
378 }
379 if (!(data_local & E1000_I2CCMD_READY)) {
380 hw_dbg("I2CCMD Read did not complete\n");
381 return -E1000_ERR_PHY;
382 }
383 if (data_local & E1000_I2CCMD_ERROR) {
384 hw_dbg("I2CCMD Error bit set\n");
385 return -E1000_ERR_PHY;
386 }
387 *data = (u8) data_local & 0xFF;
388
389 return 0;
390 }
391
392 /**
393 * igb_read_phy_reg_igp - Read igp PHY register
394 * @hw: pointer to the HW structure
395 * @offset: register offset to be read
396 * @data: pointer to the read data
397 *
398 * Acquires semaphore, if necessary, then reads the PHY register at offset
399 * and storing the retrieved information in data. Release any acquired
400 * semaphores before exiting.
401 **/
402 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
403 {
404 s32 ret_val = 0;
405
406 if (!(hw->phy.ops.acquire))
407 goto out;
408
409 ret_val = hw->phy.ops.acquire(hw);
410 if (ret_val)
411 goto out;
412
413 if (offset > MAX_PHY_MULTI_PAGE_REG) {
414 ret_val = igb_write_phy_reg_mdic(hw,
415 IGP01E1000_PHY_PAGE_SELECT,
416 (u16)offset);
417 if (ret_val) {
418 hw->phy.ops.release(hw);
419 goto out;
420 }
421 }
422
423 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
424 data);
425
426 hw->phy.ops.release(hw);
427
428 out:
429 return ret_val;
430 }
431
432 /**
433 * igb_write_phy_reg_igp - Write igp PHY register
434 * @hw: pointer to the HW structure
435 * @offset: register offset to write to
436 * @data: data to write at register offset
437 *
438 * Acquires semaphore, if necessary, then writes the data to PHY register
439 * at the offset. Release any acquired semaphores before exiting.
440 **/
441 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
442 {
443 s32 ret_val = 0;
444
445 if (!(hw->phy.ops.acquire))
446 goto out;
447
448 ret_val = hw->phy.ops.acquire(hw);
449 if (ret_val)
450 goto out;
451
452 if (offset > MAX_PHY_MULTI_PAGE_REG) {
453 ret_val = igb_write_phy_reg_mdic(hw,
454 IGP01E1000_PHY_PAGE_SELECT,
455 (u16)offset);
456 if (ret_val) {
457 hw->phy.ops.release(hw);
458 goto out;
459 }
460 }
461
462 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
463 data);
464
465 hw->phy.ops.release(hw);
466
467 out:
468 return ret_val;
469 }
470
471 /**
472 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
473 * @hw: pointer to the HW structure
474 *
475 * Sets up Carrier-sense on Transmit and downshift values.
476 **/
477 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
478 {
479 struct e1000_phy_info *phy = &hw->phy;
480 s32 ret_val;
481 u16 phy_data;
482
483 if (phy->reset_disable) {
484 ret_val = 0;
485 goto out;
486 }
487
488 if (phy->type == e1000_phy_82580) {
489 ret_val = hw->phy.ops.reset(hw);
490 if (ret_val) {
491 hw_dbg("Error resetting the PHY.\n");
492 goto out;
493 }
494 }
495
496 /* Enable CRS on TX. This must be set for half-duplex operation. */
497 ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
498 if (ret_val)
499 goto out;
500
501 phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
502
503 /* Enable downshift */
504 phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
505
506 ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
507 if (ret_val)
508 goto out;
509
510 /* Set MDI/MDIX mode */
511 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
512 if (ret_val)
513 goto out;
514 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
515 /* Options:
516 * 0 - Auto (default)
517 * 1 - MDI mode
518 * 2 - MDI-X mode
519 */
520 switch (hw->phy.mdix) {
521 case 1:
522 break;
523 case 2:
524 phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
525 break;
526 case 0:
527 default:
528 phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
529 break;
530 }
531 ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
532
533 out:
534 return ret_val;
535 }
536
537 /**
538 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
539 * @hw: pointer to the HW structure
540 *
541 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
542 * and downshift values are set also.
543 **/
544 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
545 {
546 struct e1000_phy_info *phy = &hw->phy;
547 s32 ret_val;
548 u16 phy_data;
549
550 if (phy->reset_disable) {
551 ret_val = 0;
552 goto out;
553 }
554
555 /* Enable CRS on TX. This must be set for half-duplex operation. */
556 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
557 if (ret_val)
558 goto out;
559
560 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
561
562 /* Options:
563 * MDI/MDI-X = 0 (default)
564 * 0 - Auto for all speeds
565 * 1 - MDI mode
566 * 2 - MDI-X mode
567 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
568 */
569 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
570
571 switch (phy->mdix) {
572 case 1:
573 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
574 break;
575 case 2:
576 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
577 break;
578 case 3:
579 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
580 break;
581 case 0:
582 default:
583 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
584 break;
585 }
586
587 /* Options:
588 * disable_polarity_correction = 0 (default)
589 * Automatic Correction for Reversed Cable Polarity
590 * 0 - Disabled
591 * 1 - Enabled
592 */
593 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
594 if (phy->disable_polarity_correction == 1)
595 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
596
597 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
598 if (ret_val)
599 goto out;
600
601 if (phy->revision < E1000_REVISION_4) {
602 /* Force TX_CLK in the Extended PHY Specific Control Register
603 * to 25MHz clock.
604 */
605 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
606 &phy_data);
607 if (ret_val)
608 goto out;
609
610 phy_data |= M88E1000_EPSCR_TX_CLK_25;
611
612 if ((phy->revision == E1000_REVISION_2) &&
613 (phy->id == M88E1111_I_PHY_ID)) {
614 /* 82573L PHY - set the downshift counter to 5x. */
615 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
616 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
617 } else {
618 /* Configure Master and Slave downshift values */
619 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
620 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
621 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
622 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
623 }
624 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
625 phy_data);
626 if (ret_val)
627 goto out;
628 }
629
630 /* Commit the changes. */
631 ret_val = igb_phy_sw_reset(hw);
632 if (ret_val) {
633 hw_dbg("Error committing the PHY changes\n");
634 goto out;
635 }
636
637 out:
638 return ret_val;
639 }
640
641 /**
642 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
643 * @hw: pointer to the HW structure
644 *
645 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
646 * Also enables and sets the downshift parameters.
647 **/
648 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
649 {
650 struct e1000_phy_info *phy = &hw->phy;
651 s32 ret_val;
652 u16 phy_data;
653
654 if (phy->reset_disable)
655 return 0;
656
657 /* Enable CRS on Tx. This must be set for half-duplex operation. */
658 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
659 if (ret_val)
660 return ret_val;
661
662 /* Options:
663 * MDI/MDI-X = 0 (default)
664 * 0 - Auto for all speeds
665 * 1 - MDI mode
666 * 2 - MDI-X mode
667 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
668 */
669 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
670
671 switch (phy->mdix) {
672 case 1:
673 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
674 break;
675 case 2:
676 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
677 break;
678 case 3:
679 /* M88E1112 does not support this mode) */
680 if (phy->id != M88E1112_E_PHY_ID) {
681 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
682 break;
683 }
684 case 0:
685 default:
686 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
687 break;
688 }
689
690 /* Options:
691 * disable_polarity_correction = 0 (default)
692 * Automatic Correction for Reversed Cable Polarity
693 * 0 - Disabled
694 * 1 - Enabled
695 */
696 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
697 if (phy->disable_polarity_correction == 1)
698 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
699
700 /* Enable downshift and setting it to X6 */
701 if (phy->id == M88E1543_E_PHY_ID) {
702 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
703 ret_val =
704 phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
705 if (ret_val)
706 return ret_val;
707
708 ret_val = igb_phy_sw_reset(hw);
709 if (ret_val) {
710 hw_dbg("Error committing the PHY changes\n");
711 return ret_val;
712 }
713 }
714
715 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
716 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
717 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
718
719 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
720 if (ret_val)
721 return ret_val;
722
723 /* Commit the changes. */
724 ret_val = igb_phy_sw_reset(hw);
725 if (ret_val) {
726 hw_dbg("Error committing the PHY changes\n");
727 return ret_val;
728 }
729 ret_val = igb_set_master_slave_mode(hw);
730 if (ret_val)
731 return ret_val;
732
733 return 0;
734 }
735
736 /**
737 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
738 * @hw: pointer to the HW structure
739 *
740 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
741 * igp PHY's.
742 **/
743 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
744 {
745 struct e1000_phy_info *phy = &hw->phy;
746 s32 ret_val;
747 u16 data;
748
749 if (phy->reset_disable) {
750 ret_val = 0;
751 goto out;
752 }
753
754 ret_val = phy->ops.reset(hw);
755 if (ret_val) {
756 hw_dbg("Error resetting the PHY.\n");
757 goto out;
758 }
759
760 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
761 * timeout issues when LFS is enabled.
762 */
763 msleep(100);
764
765 /* The NVM settings will configure LPLU in D3 for
766 * non-IGP1 PHYs.
767 */
768 if (phy->type == e1000_phy_igp) {
769 /* disable lplu d3 during driver init */
770 if (phy->ops.set_d3_lplu_state)
771 ret_val = phy->ops.set_d3_lplu_state(hw, false);
772 if (ret_val) {
773 hw_dbg("Error Disabling LPLU D3\n");
774 goto out;
775 }
776 }
777
778 /* disable lplu d0 during driver init */
779 ret_val = phy->ops.set_d0_lplu_state(hw, false);
780 if (ret_val) {
781 hw_dbg("Error Disabling LPLU D0\n");
782 goto out;
783 }
784 /* Configure mdi-mdix settings */
785 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
786 if (ret_val)
787 goto out;
788
789 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
790
791 switch (phy->mdix) {
792 case 1:
793 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
794 break;
795 case 2:
796 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
797 break;
798 case 0:
799 default:
800 data |= IGP01E1000_PSCR_AUTO_MDIX;
801 break;
802 }
803 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
804 if (ret_val)
805 goto out;
806
807 /* set auto-master slave resolution settings */
808 if (hw->mac.autoneg) {
809 /* when autonegotiation advertisement is only 1000Mbps then we
810 * should disable SmartSpeed and enable Auto MasterSlave
811 * resolution as hardware default.
812 */
813 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
814 /* Disable SmartSpeed */
815 ret_val = phy->ops.read_reg(hw,
816 IGP01E1000_PHY_PORT_CONFIG,
817 &data);
818 if (ret_val)
819 goto out;
820
821 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
822 ret_val = phy->ops.write_reg(hw,
823 IGP01E1000_PHY_PORT_CONFIG,
824 data);
825 if (ret_val)
826 goto out;
827
828 /* Set auto Master/Slave resolution process */
829 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
830 if (ret_val)
831 goto out;
832
833 data &= ~CR_1000T_MS_ENABLE;
834 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
835 if (ret_val)
836 goto out;
837 }
838
839 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
840 if (ret_val)
841 goto out;
842
843 /* load defaults for future use */
844 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
845 ((data & CR_1000T_MS_VALUE) ?
846 e1000_ms_force_master :
847 e1000_ms_force_slave) :
848 e1000_ms_auto;
849
850 switch (phy->ms_type) {
851 case e1000_ms_force_master:
852 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
853 break;
854 case e1000_ms_force_slave:
855 data |= CR_1000T_MS_ENABLE;
856 data &= ~(CR_1000T_MS_VALUE);
857 break;
858 case e1000_ms_auto:
859 data &= ~CR_1000T_MS_ENABLE;
860 default:
861 break;
862 }
863 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
864 if (ret_val)
865 goto out;
866 }
867
868 out:
869 return ret_val;
870 }
871
872 /**
873 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
874 * @hw: pointer to the HW structure
875 *
876 * Performs initial bounds checking on autoneg advertisement parameter, then
877 * configure to advertise the full capability. Setup the PHY to autoneg
878 * and restart the negotiation process between the link partner. If
879 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
880 **/
881 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
882 {
883 struct e1000_phy_info *phy = &hw->phy;
884 s32 ret_val;
885 u16 phy_ctrl;
886
887 /* Perform some bounds checking on the autoneg advertisement
888 * parameter.
889 */
890 phy->autoneg_advertised &= phy->autoneg_mask;
891
892 /* If autoneg_advertised is zero, we assume it was not defaulted
893 * by the calling code so we set to advertise full capability.
894 */
895 if (phy->autoneg_advertised == 0)
896 phy->autoneg_advertised = phy->autoneg_mask;
897
898 hw_dbg("Reconfiguring auto-neg advertisement params\n");
899 ret_val = igb_phy_setup_autoneg(hw);
900 if (ret_val) {
901 hw_dbg("Error Setting up Auto-Negotiation\n");
902 goto out;
903 }
904 hw_dbg("Restarting Auto-Neg\n");
905
906 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
907 * the Auto Neg Restart bit in the PHY control register.
908 */
909 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
910 if (ret_val)
911 goto out;
912
913 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
914 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
915 if (ret_val)
916 goto out;
917
918 /* Does the user want to wait for Auto-Neg to complete here, or
919 * check at a later time (for example, callback routine).
920 */
921 if (phy->autoneg_wait_to_complete) {
922 ret_val = igb_wait_autoneg(hw);
923 if (ret_val) {
924 hw_dbg("Error while waiting for autoneg to complete\n");
925 goto out;
926 }
927 }
928
929 hw->mac.get_link_status = true;
930
931 out:
932 return ret_val;
933 }
934
935 /**
936 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
937 * @hw: pointer to the HW structure
938 *
939 * Reads the MII auto-neg advertisement register and/or the 1000T control
940 * register and if the PHY is already setup for auto-negotiation, then
941 * return successful. Otherwise, setup advertisement and flow control to
942 * the appropriate values for the wanted auto-negotiation.
943 **/
944 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
945 {
946 struct e1000_phy_info *phy = &hw->phy;
947 s32 ret_val;
948 u16 mii_autoneg_adv_reg;
949 u16 mii_1000t_ctrl_reg = 0;
950
951 phy->autoneg_advertised &= phy->autoneg_mask;
952
953 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
954 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
955 if (ret_val)
956 goto out;
957
958 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
959 /* Read the MII 1000Base-T Control Register (Address 9). */
960 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
961 &mii_1000t_ctrl_reg);
962 if (ret_val)
963 goto out;
964 }
965
966 /* Need to parse both autoneg_advertised and fc and set up
967 * the appropriate PHY registers. First we will parse for
968 * autoneg_advertised software override. Since we can advertise
969 * a plethora of combinations, we need to check each bit
970 * individually.
971 */
972
973 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
974 * Advertisement Register (Address 4) and the 1000 mb speed bits in
975 * the 1000Base-T Control Register (Address 9).
976 */
977 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
978 NWAY_AR_100TX_HD_CAPS |
979 NWAY_AR_10T_FD_CAPS |
980 NWAY_AR_10T_HD_CAPS);
981 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
982
983 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
984
985 /* Do we want to advertise 10 Mb Half Duplex? */
986 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
987 hw_dbg("Advertise 10mb Half duplex\n");
988 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
989 }
990
991 /* Do we want to advertise 10 Mb Full Duplex? */
992 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
993 hw_dbg("Advertise 10mb Full duplex\n");
994 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
995 }
996
997 /* Do we want to advertise 100 Mb Half Duplex? */
998 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
999 hw_dbg("Advertise 100mb Half duplex\n");
1000 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1001 }
1002
1003 /* Do we want to advertise 100 Mb Full Duplex? */
1004 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1005 hw_dbg("Advertise 100mb Full duplex\n");
1006 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1007 }
1008
1009 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1010 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1011 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1012
1013 /* Do we want to advertise 1000 Mb Full Duplex? */
1014 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1015 hw_dbg("Advertise 1000mb Full duplex\n");
1016 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1017 }
1018
1019 /* Check for a software override of the flow control settings, and
1020 * setup the PHY advertisement registers accordingly. If
1021 * auto-negotiation is enabled, then software will have to set the
1022 * "PAUSE" bits to the correct value in the Auto-Negotiation
1023 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1024 * negotiation.
1025 *
1026 * The possible values of the "fc" parameter are:
1027 * 0: Flow control is completely disabled
1028 * 1: Rx flow control is enabled (we can receive pause frames
1029 * but not send pause frames).
1030 * 2: Tx flow control is enabled (we can send pause frames
1031 * but we do not support receiving pause frames).
1032 * 3: Both Rx and TX flow control (symmetric) are enabled.
1033 * other: No software override. The flow control configuration
1034 * in the EEPROM is used.
1035 */
1036 switch (hw->fc.current_mode) {
1037 case e1000_fc_none:
1038 /* Flow control (RX & TX) is completely disabled by a
1039 * software over-ride.
1040 */
1041 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1042 break;
1043 case e1000_fc_rx_pause:
1044 /* RX Flow control is enabled, and TX Flow control is
1045 * disabled, by a software over-ride.
1046 *
1047 * Since there really isn't a way to advertise that we are
1048 * capable of RX Pause ONLY, we will advertise that we
1049 * support both symmetric and asymmetric RX PAUSE. Later
1050 * (in e1000_config_fc_after_link_up) we will disable the
1051 * hw's ability to send PAUSE frames.
1052 */
1053 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1054 break;
1055 case e1000_fc_tx_pause:
1056 /* TX Flow control is enabled, and RX Flow control is
1057 * disabled, by a software over-ride.
1058 */
1059 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1060 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1061 break;
1062 case e1000_fc_full:
1063 /* Flow control (both RX and TX) is enabled by a software
1064 * over-ride.
1065 */
1066 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1067 break;
1068 default:
1069 hw_dbg("Flow control param set incorrectly\n");
1070 ret_val = -E1000_ERR_CONFIG;
1071 goto out;
1072 }
1073
1074 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1075 if (ret_val)
1076 goto out;
1077
1078 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1079
1080 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1081 ret_val = phy->ops.write_reg(hw,
1082 PHY_1000T_CTRL,
1083 mii_1000t_ctrl_reg);
1084 if (ret_val)
1085 goto out;
1086 }
1087
1088 out:
1089 return ret_val;
1090 }
1091
1092 /**
1093 * igb_setup_copper_link - Configure copper link settings
1094 * @hw: pointer to the HW structure
1095 *
1096 * Calls the appropriate function to configure the link for auto-neg or forced
1097 * speed and duplex. Then we check for link, once link is established calls
1098 * to configure collision distance and flow control are called. If link is
1099 * not established, we return -E1000_ERR_PHY (-2).
1100 **/
1101 s32 igb_setup_copper_link(struct e1000_hw *hw)
1102 {
1103 s32 ret_val;
1104 bool link;
1105
1106 if (hw->mac.autoneg) {
1107 /* Setup autoneg and flow control advertisement and perform
1108 * autonegotiation.
1109 */
1110 ret_val = igb_copper_link_autoneg(hw);
1111 if (ret_val)
1112 goto out;
1113 } else {
1114 /* PHY will be set to 10H, 10F, 100H or 100F
1115 * depending on user settings.
1116 */
1117 hw_dbg("Forcing Speed and Duplex\n");
1118 ret_val = hw->phy.ops.force_speed_duplex(hw);
1119 if (ret_val) {
1120 hw_dbg("Error Forcing Speed and Duplex\n");
1121 goto out;
1122 }
1123 }
1124
1125 /* Check link status. Wait up to 100 microseconds for link to become
1126 * valid.
1127 */
1128 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1129 if (ret_val)
1130 goto out;
1131
1132 if (link) {
1133 hw_dbg("Valid link established!!!\n");
1134 igb_config_collision_dist(hw);
1135 ret_val = igb_config_fc_after_link_up(hw);
1136 } else {
1137 hw_dbg("Unable to establish link!!!\n");
1138 }
1139
1140 out:
1141 return ret_val;
1142 }
1143
1144 /**
1145 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1146 * @hw: pointer to the HW structure
1147 *
1148 * Calls the PHY setup function to force speed and duplex. Clears the
1149 * auto-crossover to force MDI manually. Waits for link and returns
1150 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1151 **/
1152 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1153 {
1154 struct e1000_phy_info *phy = &hw->phy;
1155 s32 ret_val;
1156 u16 phy_data;
1157 bool link;
1158
1159 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1160 if (ret_val)
1161 goto out;
1162
1163 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1164
1165 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1166 if (ret_val)
1167 goto out;
1168
1169 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1170 * forced whenever speed and duplex are forced.
1171 */
1172 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1173 if (ret_val)
1174 goto out;
1175
1176 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1177 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1178
1179 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1180 if (ret_val)
1181 goto out;
1182
1183 hw_dbg("IGP PSCR: %X\n", phy_data);
1184
1185 udelay(1);
1186
1187 if (phy->autoneg_wait_to_complete) {
1188 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1189
1190 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1191 if (ret_val)
1192 goto out;
1193
1194 if (!link)
1195 hw_dbg("Link taking longer than expected.\n");
1196
1197 /* Try once more */
1198 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1199 if (ret_val)
1200 goto out;
1201 }
1202
1203 out:
1204 return ret_val;
1205 }
1206
1207 /**
1208 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1209 * @hw: pointer to the HW structure
1210 *
1211 * Calls the PHY setup function to force speed and duplex. Clears the
1212 * auto-crossover to force MDI manually. Resets the PHY to commit the
1213 * changes. If time expires while waiting for link up, we reset the DSP.
1214 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
1215 * successful completion, else return corresponding error code.
1216 **/
1217 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1218 {
1219 struct e1000_phy_info *phy = &hw->phy;
1220 s32 ret_val;
1221 u16 phy_data;
1222 bool link;
1223
1224 /* I210 and I211 devices support Auto-Crossover in forced operation. */
1225 if (phy->type != e1000_phy_i210) {
1226 /* Clear Auto-Crossover to force MDI manually. M88E1000
1227 * requires MDI forced whenever speed and duplex are forced.
1228 */
1229 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1230 &phy_data);
1231 if (ret_val)
1232 goto out;
1233
1234 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1235 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1236 phy_data);
1237 if (ret_val)
1238 goto out;
1239
1240 hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1241 }
1242
1243 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1244 if (ret_val)
1245 goto out;
1246
1247 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1248
1249 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1250 if (ret_val)
1251 goto out;
1252
1253 /* Reset the phy to commit changes. */
1254 ret_val = igb_phy_sw_reset(hw);
1255 if (ret_val)
1256 goto out;
1257
1258 if (phy->autoneg_wait_to_complete) {
1259 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1260
1261 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1262 if (ret_val)
1263 goto out;
1264
1265 if (!link) {
1266 bool reset_dsp = true;
1267
1268 switch (hw->phy.id) {
1269 case I347AT4_E_PHY_ID:
1270 case M88E1112_E_PHY_ID:
1271 case I210_I_PHY_ID:
1272 reset_dsp = false;
1273 break;
1274 default:
1275 if (hw->phy.type != e1000_phy_m88)
1276 reset_dsp = false;
1277 break;
1278 }
1279 if (!reset_dsp)
1280 hw_dbg("Link taking longer than expected.\n");
1281 else {
1282 /* We didn't get link.
1283 * Reset the DSP and cross our fingers.
1284 */
1285 ret_val = phy->ops.write_reg(hw,
1286 M88E1000_PHY_PAGE_SELECT,
1287 0x001d);
1288 if (ret_val)
1289 goto out;
1290 ret_val = igb_phy_reset_dsp(hw);
1291 if (ret_val)
1292 goto out;
1293 }
1294 }
1295
1296 /* Try once more */
1297 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1298 100000, &link);
1299 if (ret_val)
1300 goto out;
1301 }
1302
1303 if (hw->phy.type != e1000_phy_m88 ||
1304 hw->phy.id == I347AT4_E_PHY_ID ||
1305 hw->phy.id == M88E1112_E_PHY_ID ||
1306 hw->phy.id == I210_I_PHY_ID)
1307 goto out;
1308
1309 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1310 if (ret_val)
1311 goto out;
1312
1313 /* Resetting the phy means we need to re-force TX_CLK in the
1314 * Extended PHY Specific Control Register to 25MHz clock from
1315 * the reset value of 2.5MHz.
1316 */
1317 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1318 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1319 if (ret_val)
1320 goto out;
1321
1322 /* In addition, we must re-enable CRS on Tx for both half and full
1323 * duplex.
1324 */
1325 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1326 if (ret_val)
1327 goto out;
1328
1329 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1330 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1331
1332 out:
1333 return ret_val;
1334 }
1335
1336 /**
1337 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1338 * @hw: pointer to the HW structure
1339 * @phy_ctrl: pointer to current value of PHY_CONTROL
1340 *
1341 * Forces speed and duplex on the PHY by doing the following: disable flow
1342 * control, force speed/duplex on the MAC, disable auto speed detection,
1343 * disable auto-negotiation, configure duplex, configure speed, configure
1344 * the collision distance, write configuration to CTRL register. The
1345 * caller must write to the PHY_CONTROL register for these settings to
1346 * take affect.
1347 **/
1348 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1349 u16 *phy_ctrl)
1350 {
1351 struct e1000_mac_info *mac = &hw->mac;
1352 u32 ctrl;
1353
1354 /* Turn off flow control when forcing speed/duplex */
1355 hw->fc.current_mode = e1000_fc_none;
1356
1357 /* Force speed/duplex on the mac */
1358 ctrl = rd32(E1000_CTRL);
1359 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1360 ctrl &= ~E1000_CTRL_SPD_SEL;
1361
1362 /* Disable Auto Speed Detection */
1363 ctrl &= ~E1000_CTRL_ASDE;
1364
1365 /* Disable autoneg on the phy */
1366 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1367
1368 /* Forcing Full or Half Duplex? */
1369 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1370 ctrl &= ~E1000_CTRL_FD;
1371 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1372 hw_dbg("Half Duplex\n");
1373 } else {
1374 ctrl |= E1000_CTRL_FD;
1375 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1376 hw_dbg("Full Duplex\n");
1377 }
1378
1379 /* Forcing 10mb or 100mb? */
1380 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1381 ctrl |= E1000_CTRL_SPD_100;
1382 *phy_ctrl |= MII_CR_SPEED_100;
1383 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1384 hw_dbg("Forcing 100mb\n");
1385 } else {
1386 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1387 *phy_ctrl |= MII_CR_SPEED_10;
1388 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1389 hw_dbg("Forcing 10mb\n");
1390 }
1391
1392 igb_config_collision_dist(hw);
1393
1394 wr32(E1000_CTRL, ctrl);
1395 }
1396
1397 /**
1398 * igb_set_d3_lplu_state - Sets low power link up state for D3
1399 * @hw: pointer to the HW structure
1400 * @active: boolean used to enable/disable lplu
1401 *
1402 * Success returns 0, Failure returns 1
1403 *
1404 * The low power link up (lplu) state is set to the power management level D3
1405 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1406 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1407 * is used during Dx states where the power conservation is most important.
1408 * During driver activity, SmartSpeed should be enabled so performance is
1409 * maintained.
1410 **/
1411 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1412 {
1413 struct e1000_phy_info *phy = &hw->phy;
1414 s32 ret_val = 0;
1415 u16 data;
1416
1417 if (!(hw->phy.ops.read_reg))
1418 goto out;
1419
1420 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1421 if (ret_val)
1422 goto out;
1423
1424 if (!active) {
1425 data &= ~IGP02E1000_PM_D3_LPLU;
1426 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1427 data);
1428 if (ret_val)
1429 goto out;
1430 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1431 * during Dx states where the power conservation is most
1432 * important. During driver activity we should enable
1433 * SmartSpeed, so performance is maintained.
1434 */
1435 if (phy->smart_speed == e1000_smart_speed_on) {
1436 ret_val = phy->ops.read_reg(hw,
1437 IGP01E1000_PHY_PORT_CONFIG,
1438 &data);
1439 if (ret_val)
1440 goto out;
1441
1442 data |= IGP01E1000_PSCFR_SMART_SPEED;
1443 ret_val = phy->ops.write_reg(hw,
1444 IGP01E1000_PHY_PORT_CONFIG,
1445 data);
1446 if (ret_val)
1447 goto out;
1448 } else if (phy->smart_speed == e1000_smart_speed_off) {
1449 ret_val = phy->ops.read_reg(hw,
1450 IGP01E1000_PHY_PORT_CONFIG,
1451 &data);
1452 if (ret_val)
1453 goto out;
1454
1455 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1456 ret_val = phy->ops.write_reg(hw,
1457 IGP01E1000_PHY_PORT_CONFIG,
1458 data);
1459 if (ret_val)
1460 goto out;
1461 }
1462 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1463 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1464 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1465 data |= IGP02E1000_PM_D3_LPLU;
1466 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1467 data);
1468 if (ret_val)
1469 goto out;
1470
1471 /* When LPLU is enabled, we should disable SmartSpeed */
1472 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1473 &data);
1474 if (ret_val)
1475 goto out;
1476
1477 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1478 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1479 data);
1480 }
1481
1482 out:
1483 return ret_val;
1484 }
1485
1486 /**
1487 * igb_check_downshift - Checks whether a downshift in speed occurred
1488 * @hw: pointer to the HW structure
1489 *
1490 * Success returns 0, Failure returns 1
1491 *
1492 * A downshift is detected by querying the PHY link health.
1493 **/
1494 s32 igb_check_downshift(struct e1000_hw *hw)
1495 {
1496 struct e1000_phy_info *phy = &hw->phy;
1497 s32 ret_val;
1498 u16 phy_data, offset, mask;
1499
1500 switch (phy->type) {
1501 case e1000_phy_i210:
1502 case e1000_phy_m88:
1503 case e1000_phy_gg82563:
1504 offset = M88E1000_PHY_SPEC_STATUS;
1505 mask = M88E1000_PSSR_DOWNSHIFT;
1506 break;
1507 case e1000_phy_igp_2:
1508 case e1000_phy_igp:
1509 case e1000_phy_igp_3:
1510 offset = IGP01E1000_PHY_LINK_HEALTH;
1511 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1512 break;
1513 default:
1514 /* speed downshift not supported */
1515 phy->speed_downgraded = false;
1516 ret_val = 0;
1517 goto out;
1518 }
1519
1520 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1521
1522 if (!ret_val)
1523 phy->speed_downgraded = (phy_data & mask) ? true : false;
1524
1525 out:
1526 return ret_val;
1527 }
1528
1529 /**
1530 * igb_check_polarity_m88 - Checks the polarity.
1531 * @hw: pointer to the HW structure
1532 *
1533 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1534 *
1535 * Polarity is determined based on the PHY specific status register.
1536 **/
1537 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1538 {
1539 struct e1000_phy_info *phy = &hw->phy;
1540 s32 ret_val;
1541 u16 data;
1542
1543 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1544
1545 if (!ret_val)
1546 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1547 ? e1000_rev_polarity_reversed
1548 : e1000_rev_polarity_normal;
1549
1550 return ret_val;
1551 }
1552
1553 /**
1554 * igb_check_polarity_igp - Checks the polarity.
1555 * @hw: pointer to the HW structure
1556 *
1557 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1558 *
1559 * Polarity is determined based on the PHY port status register, and the
1560 * current speed (since there is no polarity at 100Mbps).
1561 **/
1562 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1563 {
1564 struct e1000_phy_info *phy = &hw->phy;
1565 s32 ret_val;
1566 u16 data, offset, mask;
1567
1568 /* Polarity is determined based on the speed of
1569 * our connection.
1570 */
1571 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1572 if (ret_val)
1573 goto out;
1574
1575 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1576 IGP01E1000_PSSR_SPEED_1000MBPS) {
1577 offset = IGP01E1000_PHY_PCS_INIT_REG;
1578 mask = IGP01E1000_PHY_POLARITY_MASK;
1579 } else {
1580 /* This really only applies to 10Mbps since
1581 * there is no polarity for 100Mbps (always 0).
1582 */
1583 offset = IGP01E1000_PHY_PORT_STATUS;
1584 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1585 }
1586
1587 ret_val = phy->ops.read_reg(hw, offset, &data);
1588
1589 if (!ret_val)
1590 phy->cable_polarity = (data & mask)
1591 ? e1000_rev_polarity_reversed
1592 : e1000_rev_polarity_normal;
1593
1594 out:
1595 return ret_val;
1596 }
1597
1598 /**
1599 * igb_wait_autoneg - Wait for auto-neg completion
1600 * @hw: pointer to the HW structure
1601 *
1602 * Waits for auto-negotiation to complete or for the auto-negotiation time
1603 * limit to expire, which ever happens first.
1604 **/
1605 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1606 {
1607 s32 ret_val = 0;
1608 u16 i, phy_status;
1609
1610 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1611 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1612 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1613 if (ret_val)
1614 break;
1615 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1616 if (ret_val)
1617 break;
1618 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1619 break;
1620 msleep(100);
1621 }
1622
1623 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1624 * has completed.
1625 */
1626 return ret_val;
1627 }
1628
1629 /**
1630 * igb_phy_has_link - Polls PHY for link
1631 * @hw: pointer to the HW structure
1632 * @iterations: number of times to poll for link
1633 * @usec_interval: delay between polling attempts
1634 * @success: pointer to whether polling was successful or not
1635 *
1636 * Polls the PHY status register for link, 'iterations' number of times.
1637 **/
1638 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1639 u32 usec_interval, bool *success)
1640 {
1641 s32 ret_val = 0;
1642 u16 i, phy_status;
1643
1644 for (i = 0; i < iterations; i++) {
1645 /* Some PHYs require the PHY_STATUS register to be read
1646 * twice due to the link bit being sticky. No harm doing
1647 * it across the board.
1648 */
1649 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1650 if (ret_val && usec_interval > 0) {
1651 /* If the first read fails, another entity may have
1652 * ownership of the resources, wait and try again to
1653 * see if they have relinquished the resources yet.
1654 */
1655 if (usec_interval >= 1000)
1656 mdelay(usec_interval/1000);
1657 else
1658 udelay(usec_interval);
1659 }
1660 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1661 if (ret_val)
1662 break;
1663 if (phy_status & MII_SR_LINK_STATUS)
1664 break;
1665 if (usec_interval >= 1000)
1666 mdelay(usec_interval/1000);
1667 else
1668 udelay(usec_interval);
1669 }
1670
1671 *success = (i < iterations) ? true : false;
1672
1673 return ret_val;
1674 }
1675
1676 /**
1677 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
1678 * @hw: pointer to the HW structure
1679 *
1680 * Reads the PHY specific status register to retrieve the cable length
1681 * information. The cable length is determined by averaging the minimum and
1682 * maximum values to get the "average" cable length. The m88 PHY has four
1683 * possible cable length values, which are:
1684 * Register Value Cable Length
1685 * 0 < 50 meters
1686 * 1 50 - 80 meters
1687 * 2 80 - 110 meters
1688 * 3 110 - 140 meters
1689 * 4 > 140 meters
1690 **/
1691 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1692 {
1693 struct e1000_phy_info *phy = &hw->phy;
1694 s32 ret_val;
1695 u16 phy_data, index;
1696
1697 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1698 if (ret_val)
1699 goto out;
1700
1701 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1702 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1703 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1704 ret_val = -E1000_ERR_PHY;
1705 goto out;
1706 }
1707
1708 phy->min_cable_length = e1000_m88_cable_length_table[index];
1709 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1710
1711 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1712
1713 out:
1714 return ret_val;
1715 }
1716
1717 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1718 {
1719 struct e1000_phy_info *phy = &hw->phy;
1720 s32 ret_val;
1721 u16 phy_data, phy_data2, index, default_page, is_cm;
1722
1723 switch (hw->phy.id) {
1724 case I210_I_PHY_ID:
1725 /* Get cable length from PHY Cable Diagnostics Control Reg */
1726 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1727 (I347AT4_PCDL + phy->addr),
1728 &phy_data);
1729 if (ret_val)
1730 return ret_val;
1731
1732 /* Check if the unit of cable length is meters or cm */
1733 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1734 I347AT4_PCDC, &phy_data2);
1735 if (ret_val)
1736 return ret_val;
1737
1738 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1739
1740 /* Populate the phy structure with cable length in meters */
1741 phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1742 phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1743 phy->cable_length = phy_data / (is_cm ? 100 : 1);
1744 break;
1745 case M88E1543_E_PHY_ID:
1746 case I347AT4_E_PHY_ID:
1747 /* Remember the original page select and set it to 7 */
1748 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1749 &default_page);
1750 if (ret_val)
1751 goto out;
1752
1753 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1754 if (ret_val)
1755 goto out;
1756
1757 /* Get cable length from PHY Cable Diagnostics Control Reg */
1758 ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1759 &phy_data);
1760 if (ret_val)
1761 goto out;
1762
1763 /* Check if the unit of cable length is meters or cm */
1764 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1765 if (ret_val)
1766 goto out;
1767
1768 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1769
1770 /* Populate the phy structure with cable length in meters */
1771 phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1772 phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1773 phy->cable_length = phy_data / (is_cm ? 100 : 1);
1774
1775 /* Reset the page selec to its original value */
1776 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1777 default_page);
1778 if (ret_val)
1779 goto out;
1780 break;
1781 case M88E1112_E_PHY_ID:
1782 /* Remember the original page select and set it to 5 */
1783 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1784 &default_page);
1785 if (ret_val)
1786 goto out;
1787
1788 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1789 if (ret_val)
1790 goto out;
1791
1792 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1793 &phy_data);
1794 if (ret_val)
1795 goto out;
1796
1797 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1798 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1799 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1800 ret_val = -E1000_ERR_PHY;
1801 goto out;
1802 }
1803
1804 phy->min_cable_length = e1000_m88_cable_length_table[index];
1805 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1806
1807 phy->cable_length = (phy->min_cable_length +
1808 phy->max_cable_length) / 2;
1809
1810 /* Reset the page select to its original value */
1811 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1812 default_page);
1813 if (ret_val)
1814 goto out;
1815
1816 break;
1817 default:
1818 ret_val = -E1000_ERR_PHY;
1819 goto out;
1820 }
1821
1822 out:
1823 return ret_val;
1824 }
1825
1826 /**
1827 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1828 * @hw: pointer to the HW structure
1829 *
1830 * The automatic gain control (agc) normalizes the amplitude of the
1831 * received signal, adjusting for the attenuation produced by the
1832 * cable. By reading the AGC registers, which represent the
1833 * combination of coarse and fine gain value, the value can be put
1834 * into a lookup table to obtain the approximate cable length
1835 * for each channel.
1836 **/
1837 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1838 {
1839 struct e1000_phy_info *phy = &hw->phy;
1840 s32 ret_val = 0;
1841 u16 phy_data, i, agc_value = 0;
1842 u16 cur_agc_index, max_agc_index = 0;
1843 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1844 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1845 IGP02E1000_PHY_AGC_A,
1846 IGP02E1000_PHY_AGC_B,
1847 IGP02E1000_PHY_AGC_C,
1848 IGP02E1000_PHY_AGC_D
1849 };
1850
1851 /* Read the AGC registers for all channels */
1852 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1853 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1854 if (ret_val)
1855 goto out;
1856
1857 /* Getting bits 15:9, which represent the combination of
1858 * coarse and fine gain values. The result is a number
1859 * that can be put into the lookup table to obtain the
1860 * approximate cable length.
1861 */
1862 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1863 IGP02E1000_AGC_LENGTH_MASK;
1864
1865 /* Array index bound check. */
1866 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1867 (cur_agc_index == 0)) {
1868 ret_val = -E1000_ERR_PHY;
1869 goto out;
1870 }
1871
1872 /* Remove min & max AGC values from calculation. */
1873 if (e1000_igp_2_cable_length_table[min_agc_index] >
1874 e1000_igp_2_cable_length_table[cur_agc_index])
1875 min_agc_index = cur_agc_index;
1876 if (e1000_igp_2_cable_length_table[max_agc_index] <
1877 e1000_igp_2_cable_length_table[cur_agc_index])
1878 max_agc_index = cur_agc_index;
1879
1880 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1881 }
1882
1883 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1884 e1000_igp_2_cable_length_table[max_agc_index]);
1885 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1886
1887 /* Calculate cable length with the error range of +/- 10 meters. */
1888 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1889 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1890 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1891
1892 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1893
1894 out:
1895 return ret_val;
1896 }
1897
1898 /**
1899 * igb_get_phy_info_m88 - Retrieve PHY information
1900 * @hw: pointer to the HW structure
1901 *
1902 * Valid for only copper links. Read the PHY status register (sticky read)
1903 * to verify that link is up. Read the PHY special control register to
1904 * determine the polarity and 10base-T extended distance. Read the PHY
1905 * special status register to determine MDI/MDIx and current speed. If
1906 * speed is 1000, then determine cable length, local and remote receiver.
1907 **/
1908 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1909 {
1910 struct e1000_phy_info *phy = &hw->phy;
1911 s32 ret_val;
1912 u16 phy_data;
1913 bool link;
1914
1915 if (phy->media_type != e1000_media_type_copper) {
1916 hw_dbg("Phy info is only valid for copper media\n");
1917 ret_val = -E1000_ERR_CONFIG;
1918 goto out;
1919 }
1920
1921 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1922 if (ret_val)
1923 goto out;
1924
1925 if (!link) {
1926 hw_dbg("Phy info is only valid if link is up\n");
1927 ret_val = -E1000_ERR_CONFIG;
1928 goto out;
1929 }
1930
1931 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1932 if (ret_val)
1933 goto out;
1934
1935 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1936 ? true : false;
1937
1938 ret_val = igb_check_polarity_m88(hw);
1939 if (ret_val)
1940 goto out;
1941
1942 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1943 if (ret_val)
1944 goto out;
1945
1946 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1947
1948 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1949 ret_val = phy->ops.get_cable_length(hw);
1950 if (ret_val)
1951 goto out;
1952
1953 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1954 if (ret_val)
1955 goto out;
1956
1957 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1958 ? e1000_1000t_rx_status_ok
1959 : e1000_1000t_rx_status_not_ok;
1960
1961 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1962 ? e1000_1000t_rx_status_ok
1963 : e1000_1000t_rx_status_not_ok;
1964 } else {
1965 /* Set values to "undefined" */
1966 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1967 phy->local_rx = e1000_1000t_rx_status_undefined;
1968 phy->remote_rx = e1000_1000t_rx_status_undefined;
1969 }
1970
1971 out:
1972 return ret_val;
1973 }
1974
1975 /**
1976 * igb_get_phy_info_igp - Retrieve igp PHY information
1977 * @hw: pointer to the HW structure
1978 *
1979 * Read PHY status to determine if link is up. If link is up, then
1980 * set/determine 10base-T extended distance and polarity correction. Read
1981 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1982 * determine on the cable length, local and remote receiver.
1983 **/
1984 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1985 {
1986 struct e1000_phy_info *phy = &hw->phy;
1987 s32 ret_val;
1988 u16 data;
1989 bool link;
1990
1991 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1992 if (ret_val)
1993 goto out;
1994
1995 if (!link) {
1996 hw_dbg("Phy info is only valid if link is up\n");
1997 ret_val = -E1000_ERR_CONFIG;
1998 goto out;
1999 }
2000
2001 phy->polarity_correction = true;
2002
2003 ret_val = igb_check_polarity_igp(hw);
2004 if (ret_val)
2005 goto out;
2006
2007 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2008 if (ret_val)
2009 goto out;
2010
2011 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2012
2013 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2014 IGP01E1000_PSSR_SPEED_1000MBPS) {
2015 ret_val = phy->ops.get_cable_length(hw);
2016 if (ret_val)
2017 goto out;
2018
2019 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2020 if (ret_val)
2021 goto out;
2022
2023 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2024 ? e1000_1000t_rx_status_ok
2025 : e1000_1000t_rx_status_not_ok;
2026
2027 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2028 ? e1000_1000t_rx_status_ok
2029 : e1000_1000t_rx_status_not_ok;
2030 } else {
2031 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2032 phy->local_rx = e1000_1000t_rx_status_undefined;
2033 phy->remote_rx = e1000_1000t_rx_status_undefined;
2034 }
2035
2036 out:
2037 return ret_val;
2038 }
2039
2040 /**
2041 * igb_phy_sw_reset - PHY software reset
2042 * @hw: pointer to the HW structure
2043 *
2044 * Does a software reset of the PHY by reading the PHY control register and
2045 * setting/write the control register reset bit to the PHY.
2046 **/
2047 s32 igb_phy_sw_reset(struct e1000_hw *hw)
2048 {
2049 s32 ret_val = 0;
2050 u16 phy_ctrl;
2051
2052 if (!(hw->phy.ops.read_reg))
2053 goto out;
2054
2055 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2056 if (ret_val)
2057 goto out;
2058
2059 phy_ctrl |= MII_CR_RESET;
2060 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2061 if (ret_val)
2062 goto out;
2063
2064 udelay(1);
2065
2066 out:
2067 return ret_val;
2068 }
2069
2070 /**
2071 * igb_phy_hw_reset - PHY hardware reset
2072 * @hw: pointer to the HW structure
2073 *
2074 * Verify the reset block is not blocking us from resetting. Acquire
2075 * semaphore (if necessary) and read/set/write the device control reset
2076 * bit in the PHY. Wait the appropriate delay time for the device to
2077 * reset and release the semaphore (if necessary).
2078 **/
2079 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2080 {
2081 struct e1000_phy_info *phy = &hw->phy;
2082 s32 ret_val;
2083 u32 ctrl;
2084
2085 ret_val = igb_check_reset_block(hw);
2086 if (ret_val) {
2087 ret_val = 0;
2088 goto out;
2089 }
2090
2091 ret_val = phy->ops.acquire(hw);
2092 if (ret_val)
2093 goto out;
2094
2095 ctrl = rd32(E1000_CTRL);
2096 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2097 wrfl();
2098
2099 udelay(phy->reset_delay_us);
2100
2101 wr32(E1000_CTRL, ctrl);
2102 wrfl();
2103
2104 udelay(150);
2105
2106 phy->ops.release(hw);
2107
2108 ret_val = phy->ops.get_cfg_done(hw);
2109
2110 out:
2111 return ret_val;
2112 }
2113
2114 /**
2115 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
2116 * @hw: pointer to the HW structure
2117 *
2118 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2119 **/
2120 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2121 {
2122 hw_dbg("Running IGP 3 PHY init script\n");
2123
2124 /* PHY init IGP 3 */
2125 /* Enable rise/fall, 10-mode work in class-A */
2126 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2127 /* Remove all caps from Replica path filter */
2128 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2129 /* Bias trimming for ADC, AFE and Driver (Default) */
2130 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2131 /* Increase Hybrid poly bias */
2132 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2133 /* Add 4% to TX amplitude in Giga mode */
2134 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2135 /* Disable trimming (TTT) */
2136 hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2137 /* Poly DC correction to 94.6% + 2% for all channels */
2138 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2139 /* ABS DC correction to 95.9% */
2140 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2141 /* BG temp curve trim */
2142 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2143 /* Increasing ADC OPAMP stage 1 currents to max */
2144 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2145 /* Force 1000 ( required for enabling PHY regs configuration) */
2146 hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2147 /* Set upd_freq to 6 */
2148 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2149 /* Disable NPDFE */
2150 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2151 /* Disable adaptive fixed FFE (Default) */
2152 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2153 /* Enable FFE hysteresis */
2154 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2155 /* Fixed FFE for short cable lengths */
2156 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2157 /* Fixed FFE for medium cable lengths */
2158 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2159 /* Fixed FFE for long cable lengths */
2160 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2161 /* Enable Adaptive Clip Threshold */
2162 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2163 /* AHT reset limit to 1 */
2164 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2165 /* Set AHT master delay to 127 msec */
2166 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2167 /* Set scan bits for AHT */
2168 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2169 /* Set AHT Preset bits */
2170 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2171 /* Change integ_factor of channel A to 3 */
2172 hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2173 /* Change prop_factor of channels BCD to 8 */
2174 hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2175 /* Change cg_icount + enable integbp for channels BCD */
2176 hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2177 /* Change cg_icount + enable integbp + change prop_factor_master
2178 * to 8 for channel A
2179 */
2180 hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2181 /* Disable AHT in Slave mode on channel A */
2182 hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2183 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2184 * Enable SPD+B2B
2185 */
2186 hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2187 /* Enable restart AN on an1000_dis change */
2188 hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2189 /* Enable wh_fifo read clock in 10/100 modes */
2190 hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2191 /* Restart AN, Speed selection is 1000 */
2192 hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2193
2194 return 0;
2195 }
2196
2197 /**
2198 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2199 * @hw: pointer to the HW structure
2200 *
2201 * In the case of a PHY power down to save power, or to turn off link during a
2202 * driver unload, restore the link to previous settings.
2203 **/
2204 void igb_power_up_phy_copper(struct e1000_hw *hw)
2205 {
2206 u16 mii_reg = 0;
2207 u16 power_reg = 0;
2208
2209 /* The PHY will retain its settings across a power down/up cycle */
2210 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2211 mii_reg &= ~MII_CR_POWER_DOWN;
2212 if (hw->phy.type == e1000_phy_i210) {
2213 hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2214 power_reg &= ~GS40G_CS_POWER_DOWN;
2215 hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2216 }
2217 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2218 }
2219
2220 /**
2221 * igb_power_down_phy_copper - Power down copper PHY
2222 * @hw: pointer to the HW structure
2223 *
2224 * Power down PHY to save power when interface is down and wake on lan
2225 * is not enabled.
2226 **/
2227 void igb_power_down_phy_copper(struct e1000_hw *hw)
2228 {
2229 u16 mii_reg = 0;
2230 u16 power_reg = 0;
2231
2232 /* The PHY will retain its settings across a power down/up cycle */
2233 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2234 mii_reg |= MII_CR_POWER_DOWN;
2235
2236 /* i210 Phy requires an additional bit for power up/down */
2237 if (hw->phy.type == e1000_phy_i210) {
2238 hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2239 power_reg |= GS40G_CS_POWER_DOWN;
2240 hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2241 }
2242 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2243 usleep_range(1000, 2000);
2244 }
2245
2246 /**
2247 * igb_check_polarity_82580 - Checks the polarity.
2248 * @hw: pointer to the HW structure
2249 *
2250 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2251 *
2252 * Polarity is determined based on the PHY specific status register.
2253 **/
2254 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2255 {
2256 struct e1000_phy_info *phy = &hw->phy;
2257 s32 ret_val;
2258 u16 data;
2259
2260
2261 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2262
2263 if (!ret_val)
2264 phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2265 ? e1000_rev_polarity_reversed
2266 : e1000_rev_polarity_normal;
2267
2268 return ret_val;
2269 }
2270
2271 /**
2272 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2273 * @hw: pointer to the HW structure
2274 *
2275 * Calls the PHY setup function to force speed and duplex. Clears the
2276 * auto-crossover to force MDI manually. Waits for link and returns
2277 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2278 **/
2279 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2280 {
2281 struct e1000_phy_info *phy = &hw->phy;
2282 s32 ret_val;
2283 u16 phy_data;
2284 bool link;
2285
2286 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2287 if (ret_val)
2288 goto out;
2289
2290 igb_phy_force_speed_duplex_setup(hw, &phy_data);
2291
2292 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2293 if (ret_val)
2294 goto out;
2295
2296 /* Clear Auto-Crossover to force MDI manually. 82580 requires MDI
2297 * forced whenever speed and duplex are forced.
2298 */
2299 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2300 if (ret_val)
2301 goto out;
2302
2303 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2304
2305 ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2306 if (ret_val)
2307 goto out;
2308
2309 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2310
2311 udelay(1);
2312
2313 if (phy->autoneg_wait_to_complete) {
2314 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2315
2316 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2317 if (ret_val)
2318 goto out;
2319
2320 if (!link)
2321 hw_dbg("Link taking longer than expected.\n");
2322
2323 /* Try once more */
2324 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2325 if (ret_val)
2326 goto out;
2327 }
2328
2329 out:
2330 return ret_val;
2331 }
2332
2333 /**
2334 * igb_get_phy_info_82580 - Retrieve I82580 PHY information
2335 * @hw: pointer to the HW structure
2336 *
2337 * Read PHY status to determine if link is up. If link is up, then
2338 * set/determine 10base-T extended distance and polarity correction. Read
2339 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2340 * determine on the cable length, local and remote receiver.
2341 **/
2342 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2343 {
2344 struct e1000_phy_info *phy = &hw->phy;
2345 s32 ret_val;
2346 u16 data;
2347 bool link;
2348
2349 ret_val = igb_phy_has_link(hw, 1, 0, &link);
2350 if (ret_val)
2351 goto out;
2352
2353 if (!link) {
2354 hw_dbg("Phy info is only valid if link is up\n");
2355 ret_val = -E1000_ERR_CONFIG;
2356 goto out;
2357 }
2358
2359 phy->polarity_correction = true;
2360
2361 ret_val = igb_check_polarity_82580(hw);
2362 if (ret_val)
2363 goto out;
2364
2365 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2366 if (ret_val)
2367 goto out;
2368
2369 phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2370
2371 if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2372 I82580_PHY_STATUS2_SPEED_1000MBPS) {
2373 ret_val = hw->phy.ops.get_cable_length(hw);
2374 if (ret_val)
2375 goto out;
2376
2377 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2378 if (ret_val)
2379 goto out;
2380
2381 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2382 ? e1000_1000t_rx_status_ok
2383 : e1000_1000t_rx_status_not_ok;
2384
2385 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2386 ? e1000_1000t_rx_status_ok
2387 : e1000_1000t_rx_status_not_ok;
2388 } else {
2389 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2390 phy->local_rx = e1000_1000t_rx_status_undefined;
2391 phy->remote_rx = e1000_1000t_rx_status_undefined;
2392 }
2393
2394 out:
2395 return ret_val;
2396 }
2397
2398 /**
2399 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2400 * @hw: pointer to the HW structure
2401 *
2402 * Reads the diagnostic status register and verifies result is valid before
2403 * placing it in the phy_cable_length field.
2404 **/
2405 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2406 {
2407 struct e1000_phy_info *phy = &hw->phy;
2408 s32 ret_val;
2409 u16 phy_data, length;
2410
2411 ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2412 if (ret_val)
2413 goto out;
2414
2415 length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2416 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2417
2418 if (length == E1000_CABLE_LENGTH_UNDEFINED)
2419 ret_val = -E1000_ERR_PHY;
2420
2421 phy->cable_length = length;
2422
2423 out:
2424 return ret_val;
2425 }
2426
2427 /**
2428 * igb_write_phy_reg_gs40g - Write GS40G PHY register
2429 * @hw: pointer to the HW structure
2430 * @offset: lower half is register offset to write to
2431 * upper half is page to use.
2432 * @data: data to write at register offset
2433 *
2434 * Acquires semaphore, if necessary, then writes the data to PHY register
2435 * at the offset. Release any acquired semaphores before exiting.
2436 **/
2437 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2438 {
2439 s32 ret_val;
2440 u16 page = offset >> GS40G_PAGE_SHIFT;
2441
2442 offset = offset & GS40G_OFFSET_MASK;
2443 ret_val = hw->phy.ops.acquire(hw);
2444 if (ret_val)
2445 return ret_val;
2446
2447 ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2448 if (ret_val)
2449 goto release;
2450 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2451
2452 release:
2453 hw->phy.ops.release(hw);
2454 return ret_val;
2455 }
2456
2457 /**
2458 * igb_read_phy_reg_gs40g - Read GS40G PHY register
2459 * @hw: pointer to the HW structure
2460 * @offset: lower half is register offset to read to
2461 * upper half is page to use.
2462 * @data: data to read at register offset
2463 *
2464 * Acquires semaphore, if necessary, then reads the data in the PHY register
2465 * at the offset. Release any acquired semaphores before exiting.
2466 **/
2467 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2468 {
2469 s32 ret_val;
2470 u16 page = offset >> GS40G_PAGE_SHIFT;
2471
2472 offset = offset & GS40G_OFFSET_MASK;
2473 ret_val = hw->phy.ops.acquire(hw);
2474 if (ret_val)
2475 return ret_val;
2476
2477 ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2478 if (ret_val)
2479 goto release;
2480 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2481
2482 release:
2483 hw->phy.ops.release(hw);
2484 return ret_val;
2485 }
2486
2487 /**
2488 * igb_set_master_slave_mode - Setup PHY for Master/slave mode
2489 * @hw: pointer to the HW structure
2490 *
2491 * Sets up Master/slave mode
2492 **/
2493 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2494 {
2495 s32 ret_val;
2496 u16 phy_data;
2497
2498 /* Resolve Master/Slave mode */
2499 ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2500 if (ret_val)
2501 return ret_val;
2502
2503 /* load defaults for future use */
2504 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2505 ((phy_data & CR_1000T_MS_VALUE) ?
2506 e1000_ms_force_master :
2507 e1000_ms_force_slave) : e1000_ms_auto;
2508
2509 switch (hw->phy.ms_type) {
2510 case e1000_ms_force_master:
2511 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2512 break;
2513 case e1000_ms_force_slave:
2514 phy_data |= CR_1000T_MS_ENABLE;
2515 phy_data &= ~(CR_1000T_MS_VALUE);
2516 break;
2517 case e1000_ms_auto:
2518 phy_data &= ~CR_1000T_MS_ENABLE;
2519 /* fall-through */
2520 default:
2521 break;
2522 }
2523
2524 return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2525 }
This page took 0.087305 seconds and 5 git commands to generate.