igb: Add device support for flashless SKU of i210 device
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/highmem.h>
41 #include <linux/mdio.h>
42
43 #include "igb.h"
44
45 struct igb_stats {
46 char stat_string[ETH_GSTRING_LEN];
47 int sizeof_stat;
48 int stat_offset;
49 };
50
51 #define IGB_STAT(_name, _stat) { \
52 .stat_string = _name, \
53 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
54 .stat_offset = offsetof(struct igb_adapter, _stat) \
55 }
56 static const struct igb_stats igb_gstrings_stats[] = {
57 IGB_STAT("rx_packets", stats.gprc),
58 IGB_STAT("tx_packets", stats.gptc),
59 IGB_STAT("rx_bytes", stats.gorc),
60 IGB_STAT("tx_bytes", stats.gotc),
61 IGB_STAT("rx_broadcast", stats.bprc),
62 IGB_STAT("tx_broadcast", stats.bptc),
63 IGB_STAT("rx_multicast", stats.mprc),
64 IGB_STAT("tx_multicast", stats.mptc),
65 IGB_STAT("multicast", stats.mprc),
66 IGB_STAT("collisions", stats.colc),
67 IGB_STAT("rx_crc_errors", stats.crcerrs),
68 IGB_STAT("rx_no_buffer_count", stats.rnbc),
69 IGB_STAT("rx_missed_errors", stats.mpc),
70 IGB_STAT("tx_aborted_errors", stats.ecol),
71 IGB_STAT("tx_carrier_errors", stats.tncrs),
72 IGB_STAT("tx_window_errors", stats.latecol),
73 IGB_STAT("tx_abort_late_coll", stats.latecol),
74 IGB_STAT("tx_deferred_ok", stats.dc),
75 IGB_STAT("tx_single_coll_ok", stats.scc),
76 IGB_STAT("tx_multi_coll_ok", stats.mcc),
77 IGB_STAT("tx_timeout_count", tx_timeout_count),
78 IGB_STAT("rx_long_length_errors", stats.roc),
79 IGB_STAT("rx_short_length_errors", stats.ruc),
80 IGB_STAT("rx_align_errors", stats.algnerrc),
81 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
82 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
83 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
84 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
85 IGB_STAT("tx_flow_control_xon", stats.xontxc),
86 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
87 IGB_STAT("rx_long_byte_count", stats.gorc),
88 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
89 IGB_STAT("tx_smbus", stats.mgptc),
90 IGB_STAT("rx_smbus", stats.mgprc),
91 IGB_STAT("dropped_smbus", stats.mgpdc),
92 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
93 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
94 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
95 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
96 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
98 };
99
100 #define IGB_NETDEV_STAT(_net_stat) { \
101 .stat_string = __stringify(_net_stat), \
102 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
103 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
104 }
105 static const struct igb_stats igb_gstrings_net_stats[] = {
106 IGB_NETDEV_STAT(rx_errors),
107 IGB_NETDEV_STAT(tx_errors),
108 IGB_NETDEV_STAT(tx_dropped),
109 IGB_NETDEV_STAT(rx_length_errors),
110 IGB_NETDEV_STAT(rx_over_errors),
111 IGB_NETDEV_STAT(rx_frame_errors),
112 IGB_NETDEV_STAT(rx_fifo_errors),
113 IGB_NETDEV_STAT(tx_fifo_errors),
114 IGB_NETDEV_STAT(tx_heartbeat_errors)
115 };
116
117 #define IGB_GLOBAL_STATS_LEN \
118 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
119 #define IGB_NETDEV_STATS_LEN \
120 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
121 #define IGB_RX_QUEUE_STATS_LEN \
122 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
123
124 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
125
126 #define IGB_QUEUE_STATS_LEN \
127 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
128 IGB_RX_QUEUE_STATS_LEN) + \
129 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
130 IGB_TX_QUEUE_STATS_LEN))
131 #define IGB_STATS_LEN \
132 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
133
134 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
135 "Register test (offline)", "Eeprom test (offline)",
136 "Interrupt test (offline)", "Loopback test (offline)",
137 "Link test (on/offline)"
138 };
139 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
140
141 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
142 {
143 struct igb_adapter *adapter = netdev_priv(netdev);
144 struct e1000_hw *hw = &adapter->hw;
145 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
146 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
147 u32 status;
148
149 if (hw->phy.media_type == e1000_media_type_copper) {
150
151 ecmd->supported = (SUPPORTED_10baseT_Half |
152 SUPPORTED_10baseT_Full |
153 SUPPORTED_100baseT_Half |
154 SUPPORTED_100baseT_Full |
155 SUPPORTED_1000baseT_Full|
156 SUPPORTED_Autoneg |
157 SUPPORTED_TP |
158 SUPPORTED_Pause);
159 ecmd->advertising = ADVERTISED_TP;
160
161 if (hw->mac.autoneg == 1) {
162 ecmd->advertising |= ADVERTISED_Autoneg;
163 /* the e1000 autoneg seems to match ethtool nicely */
164 ecmd->advertising |= hw->phy.autoneg_advertised;
165 }
166
167 ecmd->port = PORT_TP;
168 ecmd->phy_address = hw->phy.addr;
169 ecmd->transceiver = XCVR_INTERNAL;
170 } else {
171 ecmd->supported = (SUPPORTED_FIBRE |
172 SUPPORTED_Autoneg |
173 SUPPORTED_Pause);
174 ecmd->advertising = ADVERTISED_FIBRE;
175 if (hw->mac.type == e1000_i354) {
176 ecmd->supported |= SUPPORTED_2500baseX_Full;
177 ecmd->advertising |= ADVERTISED_2500baseX_Full;
178 }
179 if ((eth_flags->e1000_base_lx) || (eth_flags->e1000_base_sx)) {
180 ecmd->supported |= SUPPORTED_1000baseT_Full;
181 ecmd->advertising |= ADVERTISED_1000baseT_Full;
182 }
183 if (eth_flags->e100_base_fx) {
184 ecmd->supported |= SUPPORTED_100baseT_Full;
185 ecmd->advertising |= ADVERTISED_100baseT_Full;
186 }
187 if (hw->mac.autoneg == 1)
188 ecmd->advertising |= ADVERTISED_Autoneg;
189
190 ecmd->port = PORT_FIBRE;
191 ecmd->transceiver = XCVR_EXTERNAL;
192 }
193
194 if (hw->mac.autoneg != 1)
195 ecmd->advertising &= ~(ADVERTISED_Pause |
196 ADVERTISED_Asym_Pause);
197
198 if (hw->fc.requested_mode == e1000_fc_full)
199 ecmd->advertising |= ADVERTISED_Pause;
200 else if (hw->fc.requested_mode == e1000_fc_rx_pause)
201 ecmd->advertising |= (ADVERTISED_Pause |
202 ADVERTISED_Asym_Pause);
203 else if (hw->fc.requested_mode == e1000_fc_tx_pause)
204 ecmd->advertising |= ADVERTISED_Asym_Pause;
205 else
206 ecmd->advertising &= ~(ADVERTISED_Pause |
207 ADVERTISED_Asym_Pause);
208
209 status = rd32(E1000_STATUS);
210
211 if (status & E1000_STATUS_LU) {
212 if ((hw->mac.type == e1000_i354) &&
213 (status & E1000_STATUS_2P5_SKU) &&
214 !(status & E1000_STATUS_2P5_SKU_OVER))
215 ecmd->speed = SPEED_2500;
216 else if (status & E1000_STATUS_SPEED_1000)
217 ecmd->speed = SPEED_1000;
218 else if (status & E1000_STATUS_SPEED_100)
219 ecmd->speed = SPEED_100;
220 else
221 ecmd->speed = SPEED_10;
222 if ((status & E1000_STATUS_FD) ||
223 hw->phy.media_type != e1000_media_type_copper)
224 ecmd->duplex = DUPLEX_FULL;
225 else
226 ecmd->duplex = DUPLEX_HALF;
227 } else {
228 ecmd->speed = -1;
229 ecmd->duplex = -1;
230 }
231
232 if ((hw->phy.media_type == e1000_media_type_fiber) ||
233 hw->mac.autoneg)
234 ecmd->autoneg = AUTONEG_ENABLE;
235 else
236 ecmd->autoneg = AUTONEG_DISABLE;
237
238 /* MDI-X => 2; MDI =>1; Invalid =>0 */
239 if (hw->phy.media_type == e1000_media_type_copper)
240 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
241 ETH_TP_MDI;
242 else
243 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
244
245 if (hw->phy.mdix == AUTO_ALL_MODES)
246 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
247 else
248 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
249
250 return 0;
251 }
252
253 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
254 {
255 struct igb_adapter *adapter = netdev_priv(netdev);
256 struct e1000_hw *hw = &adapter->hw;
257
258 /* When SoL/IDER sessions are active, autoneg/speed/duplex
259 * cannot be changed
260 */
261 if (igb_check_reset_block(hw)) {
262 dev_err(&adapter->pdev->dev,
263 "Cannot change link characteristics when SoL/IDER is active.\n");
264 return -EINVAL;
265 }
266
267 /* MDI setting is only allowed when autoneg enabled because
268 * some hardware doesn't allow MDI setting when speed or
269 * duplex is forced.
270 */
271 if (ecmd->eth_tp_mdix_ctrl) {
272 if (hw->phy.media_type != e1000_media_type_copper)
273 return -EOPNOTSUPP;
274
275 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
276 (ecmd->autoneg != AUTONEG_ENABLE)) {
277 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
278 return -EINVAL;
279 }
280 }
281
282 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
283 msleep(1);
284
285 if (ecmd->autoneg == AUTONEG_ENABLE) {
286 hw->mac.autoneg = 1;
287 if (hw->phy.media_type == e1000_media_type_fiber) {
288 hw->phy.autoneg_advertised = ecmd->advertising |
289 ADVERTISED_FIBRE |
290 ADVERTISED_Autoneg;
291 switch (adapter->link_speed) {
292 case SPEED_2500:
293 hw->phy.autoneg_advertised =
294 ADVERTISED_2500baseX_Full;
295 break;
296 case SPEED_1000:
297 hw->phy.autoneg_advertised =
298 ADVERTISED_1000baseT_Full;
299 break;
300 case SPEED_100:
301 hw->phy.autoneg_advertised =
302 ADVERTISED_100baseT_Full;
303 break;
304 default:
305 break;
306 }
307 } else {
308 hw->phy.autoneg_advertised = ecmd->advertising |
309 ADVERTISED_TP |
310 ADVERTISED_Autoneg;
311 }
312 ecmd->advertising = hw->phy.autoneg_advertised;
313 if (adapter->fc_autoneg)
314 hw->fc.requested_mode = e1000_fc_default;
315 } else {
316 u32 speed = ethtool_cmd_speed(ecmd);
317 /* calling this overrides forced MDI setting */
318 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
319 clear_bit(__IGB_RESETTING, &adapter->state);
320 return -EINVAL;
321 }
322 }
323
324 /* MDI-X => 2; MDI => 1; Auto => 3 */
325 if (ecmd->eth_tp_mdix_ctrl) {
326 /* fix up the value for auto (3 => 0) as zero is mapped
327 * internally to auto
328 */
329 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
330 hw->phy.mdix = AUTO_ALL_MODES;
331 else
332 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
333 }
334
335 /* reset the link */
336 if (netif_running(adapter->netdev)) {
337 igb_down(adapter);
338 igb_up(adapter);
339 } else
340 igb_reset(adapter);
341
342 clear_bit(__IGB_RESETTING, &adapter->state);
343 return 0;
344 }
345
346 static u32 igb_get_link(struct net_device *netdev)
347 {
348 struct igb_adapter *adapter = netdev_priv(netdev);
349 struct e1000_mac_info *mac = &adapter->hw.mac;
350
351 /* If the link is not reported up to netdev, interrupts are disabled,
352 * and so the physical link state may have changed since we last
353 * looked. Set get_link_status to make sure that the true link
354 * state is interrogated, rather than pulling a cached and possibly
355 * stale link state from the driver.
356 */
357 if (!netif_carrier_ok(netdev))
358 mac->get_link_status = 1;
359
360 return igb_has_link(adapter);
361 }
362
363 static void igb_get_pauseparam(struct net_device *netdev,
364 struct ethtool_pauseparam *pause)
365 {
366 struct igb_adapter *adapter = netdev_priv(netdev);
367 struct e1000_hw *hw = &adapter->hw;
368
369 pause->autoneg =
370 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
371
372 if (hw->fc.current_mode == e1000_fc_rx_pause)
373 pause->rx_pause = 1;
374 else if (hw->fc.current_mode == e1000_fc_tx_pause)
375 pause->tx_pause = 1;
376 else if (hw->fc.current_mode == e1000_fc_full) {
377 pause->rx_pause = 1;
378 pause->tx_pause = 1;
379 }
380 }
381
382 static int igb_set_pauseparam(struct net_device *netdev,
383 struct ethtool_pauseparam *pause)
384 {
385 struct igb_adapter *adapter = netdev_priv(netdev);
386 struct e1000_hw *hw = &adapter->hw;
387 int retval = 0;
388
389 /* 100basefx does not support setting link flow control */
390 if (hw->dev_spec._82575.eth_flags.e100_base_fx)
391 return -EINVAL;
392
393 adapter->fc_autoneg = pause->autoneg;
394
395 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
396 msleep(1);
397
398 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
399 hw->fc.requested_mode = e1000_fc_default;
400 if (netif_running(adapter->netdev)) {
401 igb_down(adapter);
402 igb_up(adapter);
403 } else {
404 igb_reset(adapter);
405 }
406 } else {
407 if (pause->rx_pause && pause->tx_pause)
408 hw->fc.requested_mode = e1000_fc_full;
409 else if (pause->rx_pause && !pause->tx_pause)
410 hw->fc.requested_mode = e1000_fc_rx_pause;
411 else if (!pause->rx_pause && pause->tx_pause)
412 hw->fc.requested_mode = e1000_fc_tx_pause;
413 else if (!pause->rx_pause && !pause->tx_pause)
414 hw->fc.requested_mode = e1000_fc_none;
415
416 hw->fc.current_mode = hw->fc.requested_mode;
417
418 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
419 igb_force_mac_fc(hw) : igb_setup_link(hw));
420 }
421
422 clear_bit(__IGB_RESETTING, &adapter->state);
423 return retval;
424 }
425
426 static u32 igb_get_msglevel(struct net_device *netdev)
427 {
428 struct igb_adapter *adapter = netdev_priv(netdev);
429 return adapter->msg_enable;
430 }
431
432 static void igb_set_msglevel(struct net_device *netdev, u32 data)
433 {
434 struct igb_adapter *adapter = netdev_priv(netdev);
435 adapter->msg_enable = data;
436 }
437
438 static int igb_get_regs_len(struct net_device *netdev)
439 {
440 #define IGB_REGS_LEN 739
441 return IGB_REGS_LEN * sizeof(u32);
442 }
443
444 static void igb_get_regs(struct net_device *netdev,
445 struct ethtool_regs *regs, void *p)
446 {
447 struct igb_adapter *adapter = netdev_priv(netdev);
448 struct e1000_hw *hw = &adapter->hw;
449 u32 *regs_buff = p;
450 u8 i;
451
452 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
453
454 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
455
456 /* General Registers */
457 regs_buff[0] = rd32(E1000_CTRL);
458 regs_buff[1] = rd32(E1000_STATUS);
459 regs_buff[2] = rd32(E1000_CTRL_EXT);
460 regs_buff[3] = rd32(E1000_MDIC);
461 regs_buff[4] = rd32(E1000_SCTL);
462 regs_buff[5] = rd32(E1000_CONNSW);
463 regs_buff[6] = rd32(E1000_VET);
464 regs_buff[7] = rd32(E1000_LEDCTL);
465 regs_buff[8] = rd32(E1000_PBA);
466 regs_buff[9] = rd32(E1000_PBS);
467 regs_buff[10] = rd32(E1000_FRTIMER);
468 regs_buff[11] = rd32(E1000_TCPTIMER);
469
470 /* NVM Register */
471 regs_buff[12] = rd32(E1000_EECD);
472
473 /* Interrupt */
474 /* Reading EICS for EICR because they read the
475 * same but EICS does not clear on read
476 */
477 regs_buff[13] = rd32(E1000_EICS);
478 regs_buff[14] = rd32(E1000_EICS);
479 regs_buff[15] = rd32(E1000_EIMS);
480 regs_buff[16] = rd32(E1000_EIMC);
481 regs_buff[17] = rd32(E1000_EIAC);
482 regs_buff[18] = rd32(E1000_EIAM);
483 /* Reading ICS for ICR because they read the
484 * same but ICS does not clear on read
485 */
486 regs_buff[19] = rd32(E1000_ICS);
487 regs_buff[20] = rd32(E1000_ICS);
488 regs_buff[21] = rd32(E1000_IMS);
489 regs_buff[22] = rd32(E1000_IMC);
490 regs_buff[23] = rd32(E1000_IAC);
491 regs_buff[24] = rd32(E1000_IAM);
492 regs_buff[25] = rd32(E1000_IMIRVP);
493
494 /* Flow Control */
495 regs_buff[26] = rd32(E1000_FCAL);
496 regs_buff[27] = rd32(E1000_FCAH);
497 regs_buff[28] = rd32(E1000_FCTTV);
498 regs_buff[29] = rd32(E1000_FCRTL);
499 regs_buff[30] = rd32(E1000_FCRTH);
500 regs_buff[31] = rd32(E1000_FCRTV);
501
502 /* Receive */
503 regs_buff[32] = rd32(E1000_RCTL);
504 regs_buff[33] = rd32(E1000_RXCSUM);
505 regs_buff[34] = rd32(E1000_RLPML);
506 regs_buff[35] = rd32(E1000_RFCTL);
507 regs_buff[36] = rd32(E1000_MRQC);
508 regs_buff[37] = rd32(E1000_VT_CTL);
509
510 /* Transmit */
511 regs_buff[38] = rd32(E1000_TCTL);
512 regs_buff[39] = rd32(E1000_TCTL_EXT);
513 regs_buff[40] = rd32(E1000_TIPG);
514 regs_buff[41] = rd32(E1000_DTXCTL);
515
516 /* Wake Up */
517 regs_buff[42] = rd32(E1000_WUC);
518 regs_buff[43] = rd32(E1000_WUFC);
519 regs_buff[44] = rd32(E1000_WUS);
520 regs_buff[45] = rd32(E1000_IPAV);
521 regs_buff[46] = rd32(E1000_WUPL);
522
523 /* MAC */
524 regs_buff[47] = rd32(E1000_PCS_CFG0);
525 regs_buff[48] = rd32(E1000_PCS_LCTL);
526 regs_buff[49] = rd32(E1000_PCS_LSTAT);
527 regs_buff[50] = rd32(E1000_PCS_ANADV);
528 regs_buff[51] = rd32(E1000_PCS_LPAB);
529 regs_buff[52] = rd32(E1000_PCS_NPTX);
530 regs_buff[53] = rd32(E1000_PCS_LPABNP);
531
532 /* Statistics */
533 regs_buff[54] = adapter->stats.crcerrs;
534 regs_buff[55] = adapter->stats.algnerrc;
535 regs_buff[56] = adapter->stats.symerrs;
536 regs_buff[57] = adapter->stats.rxerrc;
537 regs_buff[58] = adapter->stats.mpc;
538 regs_buff[59] = adapter->stats.scc;
539 regs_buff[60] = adapter->stats.ecol;
540 regs_buff[61] = adapter->stats.mcc;
541 regs_buff[62] = adapter->stats.latecol;
542 regs_buff[63] = adapter->stats.colc;
543 regs_buff[64] = adapter->stats.dc;
544 regs_buff[65] = adapter->stats.tncrs;
545 regs_buff[66] = adapter->stats.sec;
546 regs_buff[67] = adapter->stats.htdpmc;
547 regs_buff[68] = adapter->stats.rlec;
548 regs_buff[69] = adapter->stats.xonrxc;
549 regs_buff[70] = adapter->stats.xontxc;
550 regs_buff[71] = adapter->stats.xoffrxc;
551 regs_buff[72] = adapter->stats.xofftxc;
552 regs_buff[73] = adapter->stats.fcruc;
553 regs_buff[74] = adapter->stats.prc64;
554 regs_buff[75] = adapter->stats.prc127;
555 regs_buff[76] = adapter->stats.prc255;
556 regs_buff[77] = adapter->stats.prc511;
557 regs_buff[78] = adapter->stats.prc1023;
558 regs_buff[79] = adapter->stats.prc1522;
559 regs_buff[80] = adapter->stats.gprc;
560 regs_buff[81] = adapter->stats.bprc;
561 regs_buff[82] = adapter->stats.mprc;
562 regs_buff[83] = adapter->stats.gptc;
563 regs_buff[84] = adapter->stats.gorc;
564 regs_buff[86] = adapter->stats.gotc;
565 regs_buff[88] = adapter->stats.rnbc;
566 regs_buff[89] = adapter->stats.ruc;
567 regs_buff[90] = adapter->stats.rfc;
568 regs_buff[91] = adapter->stats.roc;
569 regs_buff[92] = adapter->stats.rjc;
570 regs_buff[93] = adapter->stats.mgprc;
571 regs_buff[94] = adapter->stats.mgpdc;
572 regs_buff[95] = adapter->stats.mgptc;
573 regs_buff[96] = adapter->stats.tor;
574 regs_buff[98] = adapter->stats.tot;
575 regs_buff[100] = adapter->stats.tpr;
576 regs_buff[101] = adapter->stats.tpt;
577 regs_buff[102] = adapter->stats.ptc64;
578 regs_buff[103] = adapter->stats.ptc127;
579 regs_buff[104] = adapter->stats.ptc255;
580 regs_buff[105] = adapter->stats.ptc511;
581 regs_buff[106] = adapter->stats.ptc1023;
582 regs_buff[107] = adapter->stats.ptc1522;
583 regs_buff[108] = adapter->stats.mptc;
584 regs_buff[109] = adapter->stats.bptc;
585 regs_buff[110] = adapter->stats.tsctc;
586 regs_buff[111] = adapter->stats.iac;
587 regs_buff[112] = adapter->stats.rpthc;
588 regs_buff[113] = adapter->stats.hgptc;
589 regs_buff[114] = adapter->stats.hgorc;
590 regs_buff[116] = adapter->stats.hgotc;
591 regs_buff[118] = adapter->stats.lenerrs;
592 regs_buff[119] = adapter->stats.scvpc;
593 regs_buff[120] = adapter->stats.hrmpc;
594
595 for (i = 0; i < 4; i++)
596 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
597 for (i = 0; i < 4; i++)
598 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
599 for (i = 0; i < 4; i++)
600 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
601 for (i = 0; i < 4; i++)
602 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
603 for (i = 0; i < 4; i++)
604 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
605 for (i = 0; i < 4; i++)
606 regs_buff[141 + i] = rd32(E1000_RDH(i));
607 for (i = 0; i < 4; i++)
608 regs_buff[145 + i] = rd32(E1000_RDT(i));
609 for (i = 0; i < 4; i++)
610 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
611
612 for (i = 0; i < 10; i++)
613 regs_buff[153 + i] = rd32(E1000_EITR(i));
614 for (i = 0; i < 8; i++)
615 regs_buff[163 + i] = rd32(E1000_IMIR(i));
616 for (i = 0; i < 8; i++)
617 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
618 for (i = 0; i < 16; i++)
619 regs_buff[179 + i] = rd32(E1000_RAL(i));
620 for (i = 0; i < 16; i++)
621 regs_buff[195 + i] = rd32(E1000_RAH(i));
622
623 for (i = 0; i < 4; i++)
624 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
625 for (i = 0; i < 4; i++)
626 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
627 for (i = 0; i < 4; i++)
628 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
629 for (i = 0; i < 4; i++)
630 regs_buff[223 + i] = rd32(E1000_TDH(i));
631 for (i = 0; i < 4; i++)
632 regs_buff[227 + i] = rd32(E1000_TDT(i));
633 for (i = 0; i < 4; i++)
634 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
635 for (i = 0; i < 4; i++)
636 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
637 for (i = 0; i < 4; i++)
638 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
639 for (i = 0; i < 4; i++)
640 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
641
642 for (i = 0; i < 4; i++)
643 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
644 for (i = 0; i < 4; i++)
645 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
646 for (i = 0; i < 32; i++)
647 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
648 for (i = 0; i < 128; i++)
649 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
650 for (i = 0; i < 128; i++)
651 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
652 for (i = 0; i < 4; i++)
653 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
654
655 regs_buff[547] = rd32(E1000_TDFH);
656 regs_buff[548] = rd32(E1000_TDFT);
657 regs_buff[549] = rd32(E1000_TDFHS);
658 regs_buff[550] = rd32(E1000_TDFPC);
659
660 if (hw->mac.type > e1000_82580) {
661 regs_buff[551] = adapter->stats.o2bgptc;
662 regs_buff[552] = adapter->stats.b2ospc;
663 regs_buff[553] = adapter->stats.o2bspc;
664 regs_buff[554] = adapter->stats.b2ogprc;
665 }
666
667 if (hw->mac.type != e1000_82576)
668 return;
669 for (i = 0; i < 12; i++)
670 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
671 for (i = 0; i < 4; i++)
672 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
673 for (i = 0; i < 12; i++)
674 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
675 for (i = 0; i < 12; i++)
676 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
677 for (i = 0; i < 12; i++)
678 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
679 for (i = 0; i < 12; i++)
680 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
681 for (i = 0; i < 12; i++)
682 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
683 for (i = 0; i < 12; i++)
684 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
685
686 for (i = 0; i < 12; i++)
687 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
688 for (i = 0; i < 12; i++)
689 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
690 for (i = 0; i < 12; i++)
691 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
692 for (i = 0; i < 12; i++)
693 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
694 for (i = 0; i < 12; i++)
695 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
696 for (i = 0; i < 12; i++)
697 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
698 for (i = 0; i < 12; i++)
699 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
700 for (i = 0; i < 12; i++)
701 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
702 }
703
704 static int igb_get_eeprom_len(struct net_device *netdev)
705 {
706 struct igb_adapter *adapter = netdev_priv(netdev);
707 return adapter->hw.nvm.word_size * 2;
708 }
709
710 static int igb_get_eeprom(struct net_device *netdev,
711 struct ethtool_eeprom *eeprom, u8 *bytes)
712 {
713 struct igb_adapter *adapter = netdev_priv(netdev);
714 struct e1000_hw *hw = &adapter->hw;
715 u16 *eeprom_buff;
716 int first_word, last_word;
717 int ret_val = 0;
718 u16 i;
719
720 if (eeprom->len == 0)
721 return -EINVAL;
722
723 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
724
725 first_word = eeprom->offset >> 1;
726 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
727
728 eeprom_buff = kmalloc(sizeof(u16) *
729 (last_word - first_word + 1), GFP_KERNEL);
730 if (!eeprom_buff)
731 return -ENOMEM;
732
733 if (hw->nvm.type == e1000_nvm_eeprom_spi)
734 ret_val = hw->nvm.ops.read(hw, first_word,
735 last_word - first_word + 1,
736 eeprom_buff);
737 else {
738 for (i = 0; i < last_word - first_word + 1; i++) {
739 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
740 &eeprom_buff[i]);
741 if (ret_val)
742 break;
743 }
744 }
745
746 /* Device's eeprom is always little-endian, word addressable */
747 for (i = 0; i < last_word - first_word + 1; i++)
748 le16_to_cpus(&eeprom_buff[i]);
749
750 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
751 eeprom->len);
752 kfree(eeprom_buff);
753
754 return ret_val;
755 }
756
757 static int igb_set_eeprom(struct net_device *netdev,
758 struct ethtool_eeprom *eeprom, u8 *bytes)
759 {
760 struct igb_adapter *adapter = netdev_priv(netdev);
761 struct e1000_hw *hw = &adapter->hw;
762 u16 *eeprom_buff;
763 void *ptr;
764 int max_len, first_word, last_word, ret_val = 0;
765 u16 i;
766
767 if (eeprom->len == 0)
768 return -EOPNOTSUPP;
769
770 if (hw->mac.type == e1000_i211)
771 return -EOPNOTSUPP;
772
773 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
774 return -EFAULT;
775
776 max_len = hw->nvm.word_size * 2;
777
778 first_word = eeprom->offset >> 1;
779 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
780 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
781 if (!eeprom_buff)
782 return -ENOMEM;
783
784 ptr = (void *)eeprom_buff;
785
786 if (eeprom->offset & 1) {
787 /* need read/modify/write of first changed EEPROM word
788 * only the second byte of the word is being modified
789 */
790 ret_val = hw->nvm.ops.read(hw, first_word, 1,
791 &eeprom_buff[0]);
792 ptr++;
793 }
794 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
795 /* need read/modify/write of last changed EEPROM word
796 * only the first byte of the word is being modified
797 */
798 ret_val = hw->nvm.ops.read(hw, last_word, 1,
799 &eeprom_buff[last_word - first_word]);
800 }
801
802 /* Device's eeprom is always little-endian, word addressable */
803 for (i = 0; i < last_word - first_word + 1; i++)
804 le16_to_cpus(&eeprom_buff[i]);
805
806 memcpy(ptr, bytes, eeprom->len);
807
808 for (i = 0; i < last_word - first_word + 1; i++)
809 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
810
811 ret_val = hw->nvm.ops.write(hw, first_word,
812 last_word - first_word + 1, eeprom_buff);
813
814 /* Update the checksum if nvm write succeeded */
815 if (ret_val == 0)
816 hw->nvm.ops.update(hw);
817
818 igb_set_fw_version(adapter);
819 kfree(eeprom_buff);
820 return ret_val;
821 }
822
823 static void igb_get_drvinfo(struct net_device *netdev,
824 struct ethtool_drvinfo *drvinfo)
825 {
826 struct igb_adapter *adapter = netdev_priv(netdev);
827
828 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
829 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
830
831 /* EEPROM image version # is reported as firmware version # for
832 * 82575 controllers
833 */
834 strlcpy(drvinfo->fw_version, adapter->fw_version,
835 sizeof(drvinfo->fw_version));
836 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
837 sizeof(drvinfo->bus_info));
838 drvinfo->n_stats = IGB_STATS_LEN;
839 drvinfo->testinfo_len = IGB_TEST_LEN;
840 drvinfo->regdump_len = igb_get_regs_len(netdev);
841 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
842 }
843
844 static void igb_get_ringparam(struct net_device *netdev,
845 struct ethtool_ringparam *ring)
846 {
847 struct igb_adapter *adapter = netdev_priv(netdev);
848
849 ring->rx_max_pending = IGB_MAX_RXD;
850 ring->tx_max_pending = IGB_MAX_TXD;
851 ring->rx_pending = adapter->rx_ring_count;
852 ring->tx_pending = adapter->tx_ring_count;
853 }
854
855 static int igb_set_ringparam(struct net_device *netdev,
856 struct ethtool_ringparam *ring)
857 {
858 struct igb_adapter *adapter = netdev_priv(netdev);
859 struct igb_ring *temp_ring;
860 int i, err = 0;
861 u16 new_rx_count, new_tx_count;
862
863 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
864 return -EINVAL;
865
866 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
867 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
868 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
869
870 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
871 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
872 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
873
874 if ((new_tx_count == adapter->tx_ring_count) &&
875 (new_rx_count == adapter->rx_ring_count)) {
876 /* nothing to do */
877 return 0;
878 }
879
880 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
881 msleep(1);
882
883 if (!netif_running(adapter->netdev)) {
884 for (i = 0; i < adapter->num_tx_queues; i++)
885 adapter->tx_ring[i]->count = new_tx_count;
886 for (i = 0; i < adapter->num_rx_queues; i++)
887 adapter->rx_ring[i]->count = new_rx_count;
888 adapter->tx_ring_count = new_tx_count;
889 adapter->rx_ring_count = new_rx_count;
890 goto clear_reset;
891 }
892
893 if (adapter->num_tx_queues > adapter->num_rx_queues)
894 temp_ring = vmalloc(adapter->num_tx_queues *
895 sizeof(struct igb_ring));
896 else
897 temp_ring = vmalloc(adapter->num_rx_queues *
898 sizeof(struct igb_ring));
899
900 if (!temp_ring) {
901 err = -ENOMEM;
902 goto clear_reset;
903 }
904
905 igb_down(adapter);
906
907 /* We can't just free everything and then setup again,
908 * because the ISRs in MSI-X mode get passed pointers
909 * to the Tx and Rx ring structs.
910 */
911 if (new_tx_count != adapter->tx_ring_count) {
912 for (i = 0; i < adapter->num_tx_queues; i++) {
913 memcpy(&temp_ring[i], adapter->tx_ring[i],
914 sizeof(struct igb_ring));
915
916 temp_ring[i].count = new_tx_count;
917 err = igb_setup_tx_resources(&temp_ring[i]);
918 if (err) {
919 while (i) {
920 i--;
921 igb_free_tx_resources(&temp_ring[i]);
922 }
923 goto err_setup;
924 }
925 }
926
927 for (i = 0; i < adapter->num_tx_queues; i++) {
928 igb_free_tx_resources(adapter->tx_ring[i]);
929
930 memcpy(adapter->tx_ring[i], &temp_ring[i],
931 sizeof(struct igb_ring));
932 }
933
934 adapter->tx_ring_count = new_tx_count;
935 }
936
937 if (new_rx_count != adapter->rx_ring_count) {
938 for (i = 0; i < adapter->num_rx_queues; i++) {
939 memcpy(&temp_ring[i], adapter->rx_ring[i],
940 sizeof(struct igb_ring));
941
942 temp_ring[i].count = new_rx_count;
943 err = igb_setup_rx_resources(&temp_ring[i]);
944 if (err) {
945 while (i) {
946 i--;
947 igb_free_rx_resources(&temp_ring[i]);
948 }
949 goto err_setup;
950 }
951
952 }
953
954 for (i = 0; i < adapter->num_rx_queues; i++) {
955 igb_free_rx_resources(adapter->rx_ring[i]);
956
957 memcpy(adapter->rx_ring[i], &temp_ring[i],
958 sizeof(struct igb_ring));
959 }
960
961 adapter->rx_ring_count = new_rx_count;
962 }
963 err_setup:
964 igb_up(adapter);
965 vfree(temp_ring);
966 clear_reset:
967 clear_bit(__IGB_RESETTING, &adapter->state);
968 return err;
969 }
970
971 /* ethtool register test data */
972 struct igb_reg_test {
973 u16 reg;
974 u16 reg_offset;
975 u16 array_len;
976 u16 test_type;
977 u32 mask;
978 u32 write;
979 };
980
981 /* In the hardware, registers are laid out either singly, in arrays
982 * spaced 0x100 bytes apart, or in contiguous tables. We assume
983 * most tests take place on arrays or single registers (handled
984 * as a single-element array) and special-case the tables.
985 * Table tests are always pattern tests.
986 *
987 * We also make provision for some required setup steps by specifying
988 * registers to be written without any read-back testing.
989 */
990
991 #define PATTERN_TEST 1
992 #define SET_READ_TEST 2
993 #define WRITE_NO_TEST 3
994 #define TABLE32_TEST 4
995 #define TABLE64_TEST_LO 5
996 #define TABLE64_TEST_HI 6
997
998 /* i210 reg test */
999 static struct igb_reg_test reg_test_i210[] = {
1000 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1001 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1002 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1003 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1004 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1005 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1006 /* RDH is read-only for i210, only test RDT. */
1007 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1008 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1009 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1010 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1011 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1012 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1014 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1015 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1016 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1017 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1018 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1019 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1020 0xFFFFFFFF, 0xFFFFFFFF },
1021 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1022 0x900FFFFF, 0xFFFFFFFF },
1023 { E1000_MTA, 0, 128, TABLE32_TEST,
1024 0xFFFFFFFF, 0xFFFFFFFF },
1025 { 0, 0, 0, 0, 0 }
1026 };
1027
1028 /* i350 reg test */
1029 static struct igb_reg_test reg_test_i350[] = {
1030 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1032 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1033 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1034 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1035 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1036 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1037 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1038 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1039 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1040 /* RDH is read-only for i350, only test RDT. */
1041 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1042 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1043 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1044 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1045 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1046 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1047 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1048 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1049 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1050 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1051 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1052 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1053 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1054 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1055 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1056 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1057 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1058 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1059 0xFFFFFFFF, 0xFFFFFFFF },
1060 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1061 0xC3FFFFFF, 0xFFFFFFFF },
1062 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
1063 0xFFFFFFFF, 0xFFFFFFFF },
1064 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
1065 0xC3FFFFFF, 0xFFFFFFFF },
1066 { E1000_MTA, 0, 128, TABLE32_TEST,
1067 0xFFFFFFFF, 0xFFFFFFFF },
1068 { 0, 0, 0, 0 }
1069 };
1070
1071 /* 82580 reg test */
1072 static struct igb_reg_test reg_test_82580[] = {
1073 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1074 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1075 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1076 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1078 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1079 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1080 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1081 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1082 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1083 /* RDH is read-only for 82580, only test RDT. */
1084 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1085 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1086 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1087 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1088 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1089 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1090 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1091 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1092 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1093 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1094 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1095 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1096 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1097 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1098 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1099 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1100 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1101 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1102 0xFFFFFFFF, 0xFFFFFFFF },
1103 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1104 0x83FFFFFF, 0xFFFFFFFF },
1105 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
1106 0xFFFFFFFF, 0xFFFFFFFF },
1107 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
1108 0x83FFFFFF, 0xFFFFFFFF },
1109 { E1000_MTA, 0, 128, TABLE32_TEST,
1110 0xFFFFFFFF, 0xFFFFFFFF },
1111 { 0, 0, 0, 0 }
1112 };
1113
1114 /* 82576 reg test */
1115 static struct igb_reg_test reg_test_82576[] = {
1116 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1117 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1118 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1119 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1121 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1122 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1123 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1124 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1125 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1126 /* Enable all RX queues before testing. */
1127 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1128 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1129 /* RDH is read-only for 82576, only test RDT. */
1130 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1131 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1132 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1133 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1134 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1135 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1136 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1137 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1138 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1139 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1140 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1141 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1142 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1143 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1144 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1145 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1146 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1147 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1148 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1149 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1150 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1151 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1152 { 0, 0, 0, 0 }
1153 };
1154
1155 /* 82575 register test */
1156 static struct igb_reg_test reg_test_82575[] = {
1157 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1158 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1159 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1160 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1161 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1162 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1163 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1164 /* Enable all four RX queues before testing. */
1165 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1166 /* RDH is read-only for 82575, only test RDT. */
1167 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1168 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1169 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1170 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1171 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1172 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1173 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1174 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1175 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1176 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1177 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1178 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1179 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1180 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1181 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1182 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1183 { 0, 0, 0, 0 }
1184 };
1185
1186 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1187 int reg, u32 mask, u32 write)
1188 {
1189 struct e1000_hw *hw = &adapter->hw;
1190 u32 pat, val;
1191 static const u32 _test[] =
1192 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1193 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1194 wr32(reg, (_test[pat] & write));
1195 val = rd32(reg) & mask;
1196 if (val != (_test[pat] & write & mask)) {
1197 dev_err(&adapter->pdev->dev,
1198 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1199 reg, val, (_test[pat] & write & mask));
1200 *data = reg;
1201 return 1;
1202 }
1203 }
1204
1205 return 0;
1206 }
1207
1208 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1209 int reg, u32 mask, u32 write)
1210 {
1211 struct e1000_hw *hw = &adapter->hw;
1212 u32 val;
1213 wr32(reg, write & mask);
1214 val = rd32(reg);
1215 if ((write & mask) != (val & mask)) {
1216 dev_err(&adapter->pdev->dev,
1217 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1218 (val & mask), (write & mask));
1219 *data = reg;
1220 return 1;
1221 }
1222
1223 return 0;
1224 }
1225
1226 #define REG_PATTERN_TEST(reg, mask, write) \
1227 do { \
1228 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1229 return 1; \
1230 } while (0)
1231
1232 #define REG_SET_AND_CHECK(reg, mask, write) \
1233 do { \
1234 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1235 return 1; \
1236 } while (0)
1237
1238 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1239 {
1240 struct e1000_hw *hw = &adapter->hw;
1241 struct igb_reg_test *test;
1242 u32 value, before, after;
1243 u32 i, toggle;
1244
1245 switch (adapter->hw.mac.type) {
1246 case e1000_i350:
1247 case e1000_i354:
1248 test = reg_test_i350;
1249 toggle = 0x7FEFF3FF;
1250 break;
1251 case e1000_i210:
1252 case e1000_i211:
1253 test = reg_test_i210;
1254 toggle = 0x7FEFF3FF;
1255 break;
1256 case e1000_82580:
1257 test = reg_test_82580;
1258 toggle = 0x7FEFF3FF;
1259 break;
1260 case e1000_82576:
1261 test = reg_test_82576;
1262 toggle = 0x7FFFF3FF;
1263 break;
1264 default:
1265 test = reg_test_82575;
1266 toggle = 0x7FFFF3FF;
1267 break;
1268 }
1269
1270 /* Because the status register is such a special case,
1271 * we handle it separately from the rest of the register
1272 * tests. Some bits are read-only, some toggle, and some
1273 * are writable on newer MACs.
1274 */
1275 before = rd32(E1000_STATUS);
1276 value = (rd32(E1000_STATUS) & toggle);
1277 wr32(E1000_STATUS, toggle);
1278 after = rd32(E1000_STATUS) & toggle;
1279 if (value != after) {
1280 dev_err(&adapter->pdev->dev,
1281 "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1282 after, value);
1283 *data = 1;
1284 return 1;
1285 }
1286 /* restore previous status */
1287 wr32(E1000_STATUS, before);
1288
1289 /* Perform the remainder of the register test, looping through
1290 * the test table until we either fail or reach the null entry.
1291 */
1292 while (test->reg) {
1293 for (i = 0; i < test->array_len; i++) {
1294 switch (test->test_type) {
1295 case PATTERN_TEST:
1296 REG_PATTERN_TEST(test->reg +
1297 (i * test->reg_offset),
1298 test->mask,
1299 test->write);
1300 break;
1301 case SET_READ_TEST:
1302 REG_SET_AND_CHECK(test->reg +
1303 (i * test->reg_offset),
1304 test->mask,
1305 test->write);
1306 break;
1307 case WRITE_NO_TEST:
1308 writel(test->write,
1309 (adapter->hw.hw_addr + test->reg)
1310 + (i * test->reg_offset));
1311 break;
1312 case TABLE32_TEST:
1313 REG_PATTERN_TEST(test->reg + (i * 4),
1314 test->mask,
1315 test->write);
1316 break;
1317 case TABLE64_TEST_LO:
1318 REG_PATTERN_TEST(test->reg + (i * 8),
1319 test->mask,
1320 test->write);
1321 break;
1322 case TABLE64_TEST_HI:
1323 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1324 test->mask,
1325 test->write);
1326 break;
1327 }
1328 }
1329 test++;
1330 }
1331
1332 *data = 0;
1333 return 0;
1334 }
1335
1336 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1337 {
1338 struct e1000_hw *hw = &adapter->hw;
1339
1340 *data = 0;
1341
1342 /* Validate eeprom on all parts but flashless */
1343 switch (hw->mac.type) {
1344 case e1000_i210:
1345 case e1000_i211:
1346 if (igb_get_flash_presence_i210(hw)) {
1347 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1348 *data = 2;
1349 }
1350 break;
1351 default:
1352 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1353 *data = 2;
1354 break;
1355 }
1356
1357 return *data;
1358 }
1359
1360 static irqreturn_t igb_test_intr(int irq, void *data)
1361 {
1362 struct igb_adapter *adapter = (struct igb_adapter *) data;
1363 struct e1000_hw *hw = &adapter->hw;
1364
1365 adapter->test_icr |= rd32(E1000_ICR);
1366
1367 return IRQ_HANDLED;
1368 }
1369
1370 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1371 {
1372 struct e1000_hw *hw = &adapter->hw;
1373 struct net_device *netdev = adapter->netdev;
1374 u32 mask, ics_mask, i = 0, shared_int = true;
1375 u32 irq = adapter->pdev->irq;
1376
1377 *data = 0;
1378
1379 /* Hook up test interrupt handler just for this test */
1380 if (adapter->msix_entries) {
1381 if (request_irq(adapter->msix_entries[0].vector,
1382 igb_test_intr, 0, netdev->name, adapter)) {
1383 *data = 1;
1384 return -1;
1385 }
1386 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1387 shared_int = false;
1388 if (request_irq(irq,
1389 igb_test_intr, 0, netdev->name, adapter)) {
1390 *data = 1;
1391 return -1;
1392 }
1393 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1394 netdev->name, adapter)) {
1395 shared_int = false;
1396 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1397 netdev->name, adapter)) {
1398 *data = 1;
1399 return -1;
1400 }
1401 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1402 (shared_int ? "shared" : "unshared"));
1403
1404 /* Disable all the interrupts */
1405 wr32(E1000_IMC, ~0);
1406 wrfl();
1407 msleep(10);
1408
1409 /* Define all writable bits for ICS */
1410 switch (hw->mac.type) {
1411 case e1000_82575:
1412 ics_mask = 0x37F47EDD;
1413 break;
1414 case e1000_82576:
1415 ics_mask = 0x77D4FBFD;
1416 break;
1417 case e1000_82580:
1418 ics_mask = 0x77DCFED5;
1419 break;
1420 case e1000_i350:
1421 case e1000_i354:
1422 case e1000_i210:
1423 case e1000_i211:
1424 ics_mask = 0x77DCFED5;
1425 break;
1426 default:
1427 ics_mask = 0x7FFFFFFF;
1428 break;
1429 }
1430
1431 /* Test each interrupt */
1432 for (; i < 31; i++) {
1433 /* Interrupt to test */
1434 mask = 1 << i;
1435
1436 if (!(mask & ics_mask))
1437 continue;
1438
1439 if (!shared_int) {
1440 /* Disable the interrupt to be reported in
1441 * the cause register and then force the same
1442 * interrupt and see if one gets posted. If
1443 * an interrupt was posted to the bus, the
1444 * test failed.
1445 */
1446 adapter->test_icr = 0;
1447
1448 /* Flush any pending interrupts */
1449 wr32(E1000_ICR, ~0);
1450
1451 wr32(E1000_IMC, mask);
1452 wr32(E1000_ICS, mask);
1453 wrfl();
1454 msleep(10);
1455
1456 if (adapter->test_icr & mask) {
1457 *data = 3;
1458 break;
1459 }
1460 }
1461
1462 /* Enable the interrupt to be reported in
1463 * the cause register and then force the same
1464 * interrupt and see if one gets posted. If
1465 * an interrupt was not posted to the bus, the
1466 * test failed.
1467 */
1468 adapter->test_icr = 0;
1469
1470 /* Flush any pending interrupts */
1471 wr32(E1000_ICR, ~0);
1472
1473 wr32(E1000_IMS, mask);
1474 wr32(E1000_ICS, mask);
1475 wrfl();
1476 msleep(10);
1477
1478 if (!(adapter->test_icr & mask)) {
1479 *data = 4;
1480 break;
1481 }
1482
1483 if (!shared_int) {
1484 /* Disable the other interrupts to be reported in
1485 * the cause register and then force the other
1486 * interrupts and see if any get posted. If
1487 * an interrupt was posted to the bus, the
1488 * test failed.
1489 */
1490 adapter->test_icr = 0;
1491
1492 /* Flush any pending interrupts */
1493 wr32(E1000_ICR, ~0);
1494
1495 wr32(E1000_IMC, ~mask);
1496 wr32(E1000_ICS, ~mask);
1497 wrfl();
1498 msleep(10);
1499
1500 if (adapter->test_icr & mask) {
1501 *data = 5;
1502 break;
1503 }
1504 }
1505 }
1506
1507 /* Disable all the interrupts */
1508 wr32(E1000_IMC, ~0);
1509 wrfl();
1510 msleep(10);
1511
1512 /* Unhook test interrupt handler */
1513 if (adapter->msix_entries)
1514 free_irq(adapter->msix_entries[0].vector, adapter);
1515 else
1516 free_irq(irq, adapter);
1517
1518 return *data;
1519 }
1520
1521 static void igb_free_desc_rings(struct igb_adapter *adapter)
1522 {
1523 igb_free_tx_resources(&adapter->test_tx_ring);
1524 igb_free_rx_resources(&adapter->test_rx_ring);
1525 }
1526
1527 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1528 {
1529 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1530 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1531 struct e1000_hw *hw = &adapter->hw;
1532 int ret_val;
1533
1534 /* Setup Tx descriptor ring and Tx buffers */
1535 tx_ring->count = IGB_DEFAULT_TXD;
1536 tx_ring->dev = &adapter->pdev->dev;
1537 tx_ring->netdev = adapter->netdev;
1538 tx_ring->reg_idx = adapter->vfs_allocated_count;
1539
1540 if (igb_setup_tx_resources(tx_ring)) {
1541 ret_val = 1;
1542 goto err_nomem;
1543 }
1544
1545 igb_setup_tctl(adapter);
1546 igb_configure_tx_ring(adapter, tx_ring);
1547
1548 /* Setup Rx descriptor ring and Rx buffers */
1549 rx_ring->count = IGB_DEFAULT_RXD;
1550 rx_ring->dev = &adapter->pdev->dev;
1551 rx_ring->netdev = adapter->netdev;
1552 rx_ring->reg_idx = adapter->vfs_allocated_count;
1553
1554 if (igb_setup_rx_resources(rx_ring)) {
1555 ret_val = 3;
1556 goto err_nomem;
1557 }
1558
1559 /* set the default queue to queue 0 of PF */
1560 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1561
1562 /* enable receive ring */
1563 igb_setup_rctl(adapter);
1564 igb_configure_rx_ring(adapter, rx_ring);
1565
1566 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1567
1568 return 0;
1569
1570 err_nomem:
1571 igb_free_desc_rings(adapter);
1572 return ret_val;
1573 }
1574
1575 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1576 {
1577 struct e1000_hw *hw = &adapter->hw;
1578
1579 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1580 igb_write_phy_reg(hw, 29, 0x001F);
1581 igb_write_phy_reg(hw, 30, 0x8FFC);
1582 igb_write_phy_reg(hw, 29, 0x001A);
1583 igb_write_phy_reg(hw, 30, 0x8FF0);
1584 }
1585
1586 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1587 {
1588 struct e1000_hw *hw = &adapter->hw;
1589 u32 ctrl_reg = 0;
1590
1591 hw->mac.autoneg = false;
1592
1593 if (hw->phy.type == e1000_phy_m88) {
1594 if (hw->phy.id != I210_I_PHY_ID) {
1595 /* Auto-MDI/MDIX Off */
1596 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1597 /* reset to update Auto-MDI/MDIX */
1598 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1599 /* autoneg off */
1600 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1601 } else {
1602 /* force 1000, set loopback */
1603 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1604 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1605 }
1606 }
1607
1608 /* add small delay to avoid loopback test failure */
1609 msleep(50);
1610
1611 /* force 1000, set loopback */
1612 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1613
1614 /* Now set up the MAC to the same speed/duplex as the PHY. */
1615 ctrl_reg = rd32(E1000_CTRL);
1616 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1617 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1618 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1619 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1620 E1000_CTRL_FD | /* Force Duplex to FULL */
1621 E1000_CTRL_SLU); /* Set link up enable bit */
1622
1623 if (hw->phy.type == e1000_phy_m88)
1624 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1625
1626 wr32(E1000_CTRL, ctrl_reg);
1627
1628 /* Disable the receiver on the PHY so when a cable is plugged in, the
1629 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1630 */
1631 if (hw->phy.type == e1000_phy_m88)
1632 igb_phy_disable_receiver(adapter);
1633
1634 mdelay(500);
1635 return 0;
1636 }
1637
1638 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1639 {
1640 return igb_integrated_phy_loopback(adapter);
1641 }
1642
1643 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1644 {
1645 struct e1000_hw *hw = &adapter->hw;
1646 u32 reg;
1647
1648 reg = rd32(E1000_CTRL_EXT);
1649
1650 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1651 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1652 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1653 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1654 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1655 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1656
1657 /* Enable DH89xxCC MPHY for near end loopback */
1658 reg = rd32(E1000_MPHY_ADDR_CTL);
1659 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1660 E1000_MPHY_PCS_CLK_REG_OFFSET;
1661 wr32(E1000_MPHY_ADDR_CTL, reg);
1662
1663 reg = rd32(E1000_MPHY_DATA);
1664 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1665 wr32(E1000_MPHY_DATA, reg);
1666 }
1667
1668 reg = rd32(E1000_RCTL);
1669 reg |= E1000_RCTL_LBM_TCVR;
1670 wr32(E1000_RCTL, reg);
1671
1672 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1673
1674 reg = rd32(E1000_CTRL);
1675 reg &= ~(E1000_CTRL_RFCE |
1676 E1000_CTRL_TFCE |
1677 E1000_CTRL_LRST);
1678 reg |= E1000_CTRL_SLU |
1679 E1000_CTRL_FD;
1680 wr32(E1000_CTRL, reg);
1681
1682 /* Unset switch control to serdes energy detect */
1683 reg = rd32(E1000_CONNSW);
1684 reg &= ~E1000_CONNSW_ENRGSRC;
1685 wr32(E1000_CONNSW, reg);
1686
1687 /* Unset sigdetect for SERDES loopback on
1688 * 82580 and newer devices.
1689 */
1690 if (hw->mac.type >= e1000_82580) {
1691 reg = rd32(E1000_PCS_CFG0);
1692 reg |= E1000_PCS_CFG_IGN_SD;
1693 wr32(E1000_PCS_CFG0, reg);
1694 }
1695
1696 /* Set PCS register for forced speed */
1697 reg = rd32(E1000_PCS_LCTL);
1698 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1699 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1700 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1701 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1702 E1000_PCS_LCTL_FSD | /* Force Speed */
1703 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1704 wr32(E1000_PCS_LCTL, reg);
1705
1706 return 0;
1707 }
1708
1709 return igb_set_phy_loopback(adapter);
1710 }
1711
1712 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1713 {
1714 struct e1000_hw *hw = &adapter->hw;
1715 u32 rctl;
1716 u16 phy_reg;
1717
1718 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1719 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1720 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1721 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1722 u32 reg;
1723
1724 /* Disable near end loopback on DH89xxCC */
1725 reg = rd32(E1000_MPHY_ADDR_CTL);
1726 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1727 E1000_MPHY_PCS_CLK_REG_OFFSET;
1728 wr32(E1000_MPHY_ADDR_CTL, reg);
1729
1730 reg = rd32(E1000_MPHY_DATA);
1731 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1732 wr32(E1000_MPHY_DATA, reg);
1733 }
1734
1735 rctl = rd32(E1000_RCTL);
1736 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1737 wr32(E1000_RCTL, rctl);
1738
1739 hw->mac.autoneg = true;
1740 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1741 if (phy_reg & MII_CR_LOOPBACK) {
1742 phy_reg &= ~MII_CR_LOOPBACK;
1743 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1744 igb_phy_sw_reset(hw);
1745 }
1746 }
1747
1748 static void igb_create_lbtest_frame(struct sk_buff *skb,
1749 unsigned int frame_size)
1750 {
1751 memset(skb->data, 0xFF, frame_size);
1752 frame_size /= 2;
1753 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1754 memset(&skb->data[frame_size + 10], 0xBE, 1);
1755 memset(&skb->data[frame_size + 12], 0xAF, 1);
1756 }
1757
1758 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1759 unsigned int frame_size)
1760 {
1761 unsigned char *data;
1762 bool match = true;
1763
1764 frame_size >>= 1;
1765
1766 data = kmap(rx_buffer->page);
1767
1768 if (data[3] != 0xFF ||
1769 data[frame_size + 10] != 0xBE ||
1770 data[frame_size + 12] != 0xAF)
1771 match = false;
1772
1773 kunmap(rx_buffer->page);
1774
1775 return match;
1776 }
1777
1778 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1779 struct igb_ring *tx_ring,
1780 unsigned int size)
1781 {
1782 union e1000_adv_rx_desc *rx_desc;
1783 struct igb_rx_buffer *rx_buffer_info;
1784 struct igb_tx_buffer *tx_buffer_info;
1785 u16 rx_ntc, tx_ntc, count = 0;
1786
1787 /* initialize next to clean and descriptor values */
1788 rx_ntc = rx_ring->next_to_clean;
1789 tx_ntc = tx_ring->next_to_clean;
1790 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1791
1792 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1793 /* check Rx buffer */
1794 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1795
1796 /* sync Rx buffer for CPU read */
1797 dma_sync_single_for_cpu(rx_ring->dev,
1798 rx_buffer_info->dma,
1799 IGB_RX_BUFSZ,
1800 DMA_FROM_DEVICE);
1801
1802 /* verify contents of skb */
1803 if (igb_check_lbtest_frame(rx_buffer_info, size))
1804 count++;
1805
1806 /* sync Rx buffer for device write */
1807 dma_sync_single_for_device(rx_ring->dev,
1808 rx_buffer_info->dma,
1809 IGB_RX_BUFSZ,
1810 DMA_FROM_DEVICE);
1811
1812 /* unmap buffer on Tx side */
1813 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1814 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1815
1816 /* increment Rx/Tx next to clean counters */
1817 rx_ntc++;
1818 if (rx_ntc == rx_ring->count)
1819 rx_ntc = 0;
1820 tx_ntc++;
1821 if (tx_ntc == tx_ring->count)
1822 tx_ntc = 0;
1823
1824 /* fetch next descriptor */
1825 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1826 }
1827
1828 netdev_tx_reset_queue(txring_txq(tx_ring));
1829
1830 /* re-map buffers to ring, store next to clean values */
1831 igb_alloc_rx_buffers(rx_ring, count);
1832 rx_ring->next_to_clean = rx_ntc;
1833 tx_ring->next_to_clean = tx_ntc;
1834
1835 return count;
1836 }
1837
1838 static int igb_run_loopback_test(struct igb_adapter *adapter)
1839 {
1840 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1841 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1842 u16 i, j, lc, good_cnt;
1843 int ret_val = 0;
1844 unsigned int size = IGB_RX_HDR_LEN;
1845 netdev_tx_t tx_ret_val;
1846 struct sk_buff *skb;
1847
1848 /* allocate test skb */
1849 skb = alloc_skb(size, GFP_KERNEL);
1850 if (!skb)
1851 return 11;
1852
1853 /* place data into test skb */
1854 igb_create_lbtest_frame(skb, size);
1855 skb_put(skb, size);
1856
1857 /* Calculate the loop count based on the largest descriptor ring
1858 * The idea is to wrap the largest ring a number of times using 64
1859 * send/receive pairs during each loop
1860 */
1861
1862 if (rx_ring->count <= tx_ring->count)
1863 lc = ((tx_ring->count / 64) * 2) + 1;
1864 else
1865 lc = ((rx_ring->count / 64) * 2) + 1;
1866
1867 for (j = 0; j <= lc; j++) { /* loop count loop */
1868 /* reset count of good packets */
1869 good_cnt = 0;
1870
1871 /* place 64 packets on the transmit queue*/
1872 for (i = 0; i < 64; i++) {
1873 skb_get(skb);
1874 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1875 if (tx_ret_val == NETDEV_TX_OK)
1876 good_cnt++;
1877 }
1878
1879 if (good_cnt != 64) {
1880 ret_val = 12;
1881 break;
1882 }
1883
1884 /* allow 200 milliseconds for packets to go from Tx to Rx */
1885 msleep(200);
1886
1887 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1888 if (good_cnt != 64) {
1889 ret_val = 13;
1890 break;
1891 }
1892 } /* end loop count loop */
1893
1894 /* free the original skb */
1895 kfree_skb(skb);
1896
1897 return ret_val;
1898 }
1899
1900 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1901 {
1902 /* PHY loopback cannot be performed if SoL/IDER
1903 * sessions are active
1904 */
1905 if (igb_check_reset_block(&adapter->hw)) {
1906 dev_err(&adapter->pdev->dev,
1907 "Cannot do PHY loopback test when SoL/IDER is active.\n");
1908 *data = 0;
1909 goto out;
1910 }
1911
1912 if (adapter->hw.mac.type == e1000_i354) {
1913 dev_info(&adapter->pdev->dev,
1914 "Loopback test not supported on i354.\n");
1915 *data = 0;
1916 goto out;
1917 }
1918 *data = igb_setup_desc_rings(adapter);
1919 if (*data)
1920 goto out;
1921 *data = igb_setup_loopback_test(adapter);
1922 if (*data)
1923 goto err_loopback;
1924 *data = igb_run_loopback_test(adapter);
1925 igb_loopback_cleanup(adapter);
1926
1927 err_loopback:
1928 igb_free_desc_rings(adapter);
1929 out:
1930 return *data;
1931 }
1932
1933 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1934 {
1935 struct e1000_hw *hw = &adapter->hw;
1936 *data = 0;
1937 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1938 int i = 0;
1939 hw->mac.serdes_has_link = false;
1940
1941 /* On some blade server designs, link establishment
1942 * could take as long as 2-3 minutes
1943 */
1944 do {
1945 hw->mac.ops.check_for_link(&adapter->hw);
1946 if (hw->mac.serdes_has_link)
1947 return *data;
1948 msleep(20);
1949 } while (i++ < 3750);
1950
1951 *data = 1;
1952 } else {
1953 hw->mac.ops.check_for_link(&adapter->hw);
1954 if (hw->mac.autoneg)
1955 msleep(5000);
1956
1957 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1958 *data = 1;
1959 }
1960 return *data;
1961 }
1962
1963 static void igb_diag_test(struct net_device *netdev,
1964 struct ethtool_test *eth_test, u64 *data)
1965 {
1966 struct igb_adapter *adapter = netdev_priv(netdev);
1967 u16 autoneg_advertised;
1968 u8 forced_speed_duplex, autoneg;
1969 bool if_running = netif_running(netdev);
1970
1971 set_bit(__IGB_TESTING, &adapter->state);
1972 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1973 /* Offline tests */
1974
1975 /* save speed, duplex, autoneg settings */
1976 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1977 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1978 autoneg = adapter->hw.mac.autoneg;
1979
1980 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1981
1982 /* power up link for link test */
1983 igb_power_up_link(adapter);
1984
1985 /* Link test performed before hardware reset so autoneg doesn't
1986 * interfere with test result
1987 */
1988 if (igb_link_test(adapter, &data[4]))
1989 eth_test->flags |= ETH_TEST_FL_FAILED;
1990
1991 if (if_running)
1992 /* indicate we're in test mode */
1993 dev_close(netdev);
1994 else
1995 igb_reset(adapter);
1996
1997 if (igb_reg_test(adapter, &data[0]))
1998 eth_test->flags |= ETH_TEST_FL_FAILED;
1999
2000 igb_reset(adapter);
2001 if (igb_eeprom_test(adapter, &data[1]))
2002 eth_test->flags |= ETH_TEST_FL_FAILED;
2003
2004 igb_reset(adapter);
2005 if (igb_intr_test(adapter, &data[2]))
2006 eth_test->flags |= ETH_TEST_FL_FAILED;
2007
2008 igb_reset(adapter);
2009 /* power up link for loopback test */
2010 igb_power_up_link(adapter);
2011 if (igb_loopback_test(adapter, &data[3]))
2012 eth_test->flags |= ETH_TEST_FL_FAILED;
2013
2014 /* restore speed, duplex, autoneg settings */
2015 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2016 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2017 adapter->hw.mac.autoneg = autoneg;
2018
2019 /* force this routine to wait until autoneg complete/timeout */
2020 adapter->hw.phy.autoneg_wait_to_complete = true;
2021 igb_reset(adapter);
2022 adapter->hw.phy.autoneg_wait_to_complete = false;
2023
2024 clear_bit(__IGB_TESTING, &adapter->state);
2025 if (if_running)
2026 dev_open(netdev);
2027 } else {
2028 dev_info(&adapter->pdev->dev, "online testing starting\n");
2029
2030 /* PHY is powered down when interface is down */
2031 if (if_running && igb_link_test(adapter, &data[4]))
2032 eth_test->flags |= ETH_TEST_FL_FAILED;
2033 else
2034 data[4] = 0;
2035
2036 /* Online tests aren't run; pass by default */
2037 data[0] = 0;
2038 data[1] = 0;
2039 data[2] = 0;
2040 data[3] = 0;
2041
2042 clear_bit(__IGB_TESTING, &adapter->state);
2043 }
2044 msleep_interruptible(4 * 1000);
2045 }
2046
2047 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2048 {
2049 struct igb_adapter *adapter = netdev_priv(netdev);
2050
2051 wol->supported = WAKE_UCAST | WAKE_MCAST |
2052 WAKE_BCAST | WAKE_MAGIC |
2053 WAKE_PHY;
2054 wol->wolopts = 0;
2055
2056 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2057 return;
2058
2059 /* apply any specific unsupported masks here */
2060 switch (adapter->hw.device_id) {
2061 default:
2062 break;
2063 }
2064
2065 if (adapter->wol & E1000_WUFC_EX)
2066 wol->wolopts |= WAKE_UCAST;
2067 if (adapter->wol & E1000_WUFC_MC)
2068 wol->wolopts |= WAKE_MCAST;
2069 if (adapter->wol & E1000_WUFC_BC)
2070 wol->wolopts |= WAKE_BCAST;
2071 if (adapter->wol & E1000_WUFC_MAG)
2072 wol->wolopts |= WAKE_MAGIC;
2073 if (adapter->wol & E1000_WUFC_LNKC)
2074 wol->wolopts |= WAKE_PHY;
2075 }
2076
2077 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2078 {
2079 struct igb_adapter *adapter = netdev_priv(netdev);
2080
2081 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2082 return -EOPNOTSUPP;
2083
2084 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2085 return wol->wolopts ? -EOPNOTSUPP : 0;
2086
2087 /* these settings will always override what we currently have */
2088 adapter->wol = 0;
2089
2090 if (wol->wolopts & WAKE_UCAST)
2091 adapter->wol |= E1000_WUFC_EX;
2092 if (wol->wolopts & WAKE_MCAST)
2093 adapter->wol |= E1000_WUFC_MC;
2094 if (wol->wolopts & WAKE_BCAST)
2095 adapter->wol |= E1000_WUFC_BC;
2096 if (wol->wolopts & WAKE_MAGIC)
2097 adapter->wol |= E1000_WUFC_MAG;
2098 if (wol->wolopts & WAKE_PHY)
2099 adapter->wol |= E1000_WUFC_LNKC;
2100 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2101
2102 return 0;
2103 }
2104
2105 /* bit defines for adapter->led_status */
2106 #define IGB_LED_ON 0
2107
2108 static int igb_set_phys_id(struct net_device *netdev,
2109 enum ethtool_phys_id_state state)
2110 {
2111 struct igb_adapter *adapter = netdev_priv(netdev);
2112 struct e1000_hw *hw = &adapter->hw;
2113
2114 switch (state) {
2115 case ETHTOOL_ID_ACTIVE:
2116 igb_blink_led(hw);
2117 return 2;
2118 case ETHTOOL_ID_ON:
2119 igb_blink_led(hw);
2120 break;
2121 case ETHTOOL_ID_OFF:
2122 igb_led_off(hw);
2123 break;
2124 case ETHTOOL_ID_INACTIVE:
2125 igb_led_off(hw);
2126 clear_bit(IGB_LED_ON, &adapter->led_status);
2127 igb_cleanup_led(hw);
2128 break;
2129 }
2130
2131 return 0;
2132 }
2133
2134 static int igb_set_coalesce(struct net_device *netdev,
2135 struct ethtool_coalesce *ec)
2136 {
2137 struct igb_adapter *adapter = netdev_priv(netdev);
2138 int i;
2139
2140 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2141 ((ec->rx_coalesce_usecs > 3) &&
2142 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2143 (ec->rx_coalesce_usecs == 2))
2144 return -EINVAL;
2145
2146 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2147 ((ec->tx_coalesce_usecs > 3) &&
2148 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2149 (ec->tx_coalesce_usecs == 2))
2150 return -EINVAL;
2151
2152 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2153 return -EINVAL;
2154
2155 /* If ITR is disabled, disable DMAC */
2156 if (ec->rx_coalesce_usecs == 0) {
2157 if (adapter->flags & IGB_FLAG_DMAC)
2158 adapter->flags &= ~IGB_FLAG_DMAC;
2159 }
2160
2161 /* convert to rate of irq's per second */
2162 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2163 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2164 else
2165 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2166
2167 /* convert to rate of irq's per second */
2168 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2169 adapter->tx_itr_setting = adapter->rx_itr_setting;
2170 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2171 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2172 else
2173 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2174
2175 for (i = 0; i < adapter->num_q_vectors; i++) {
2176 struct igb_q_vector *q_vector = adapter->q_vector[i];
2177 q_vector->tx.work_limit = adapter->tx_work_limit;
2178 if (q_vector->rx.ring)
2179 q_vector->itr_val = adapter->rx_itr_setting;
2180 else
2181 q_vector->itr_val = adapter->tx_itr_setting;
2182 if (q_vector->itr_val && q_vector->itr_val <= 3)
2183 q_vector->itr_val = IGB_START_ITR;
2184 q_vector->set_itr = 1;
2185 }
2186
2187 return 0;
2188 }
2189
2190 static int igb_get_coalesce(struct net_device *netdev,
2191 struct ethtool_coalesce *ec)
2192 {
2193 struct igb_adapter *adapter = netdev_priv(netdev);
2194
2195 if (adapter->rx_itr_setting <= 3)
2196 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2197 else
2198 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2199
2200 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2201 if (adapter->tx_itr_setting <= 3)
2202 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2203 else
2204 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2205 }
2206
2207 return 0;
2208 }
2209
2210 static int igb_nway_reset(struct net_device *netdev)
2211 {
2212 struct igb_adapter *adapter = netdev_priv(netdev);
2213 if (netif_running(netdev))
2214 igb_reinit_locked(adapter);
2215 return 0;
2216 }
2217
2218 static int igb_get_sset_count(struct net_device *netdev, int sset)
2219 {
2220 switch (sset) {
2221 case ETH_SS_STATS:
2222 return IGB_STATS_LEN;
2223 case ETH_SS_TEST:
2224 return IGB_TEST_LEN;
2225 default:
2226 return -ENOTSUPP;
2227 }
2228 }
2229
2230 static void igb_get_ethtool_stats(struct net_device *netdev,
2231 struct ethtool_stats *stats, u64 *data)
2232 {
2233 struct igb_adapter *adapter = netdev_priv(netdev);
2234 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2235 unsigned int start;
2236 struct igb_ring *ring;
2237 int i, j;
2238 char *p;
2239
2240 spin_lock(&adapter->stats64_lock);
2241 igb_update_stats(adapter, net_stats);
2242
2243 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2244 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2245 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2246 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2247 }
2248 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2249 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2250 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2251 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2252 }
2253 for (j = 0; j < adapter->num_tx_queues; j++) {
2254 u64 restart2;
2255
2256 ring = adapter->tx_ring[j];
2257 do {
2258 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2259 data[i] = ring->tx_stats.packets;
2260 data[i+1] = ring->tx_stats.bytes;
2261 data[i+2] = ring->tx_stats.restart_queue;
2262 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2263 do {
2264 start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2265 restart2 = ring->tx_stats.restart_queue2;
2266 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2267 data[i+2] += restart2;
2268
2269 i += IGB_TX_QUEUE_STATS_LEN;
2270 }
2271 for (j = 0; j < adapter->num_rx_queues; j++) {
2272 ring = adapter->rx_ring[j];
2273 do {
2274 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2275 data[i] = ring->rx_stats.packets;
2276 data[i+1] = ring->rx_stats.bytes;
2277 data[i+2] = ring->rx_stats.drops;
2278 data[i+3] = ring->rx_stats.csum_err;
2279 data[i+4] = ring->rx_stats.alloc_failed;
2280 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2281 i += IGB_RX_QUEUE_STATS_LEN;
2282 }
2283 spin_unlock(&adapter->stats64_lock);
2284 }
2285
2286 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2287 {
2288 struct igb_adapter *adapter = netdev_priv(netdev);
2289 u8 *p = data;
2290 int i;
2291
2292 switch (stringset) {
2293 case ETH_SS_TEST:
2294 memcpy(data, *igb_gstrings_test,
2295 IGB_TEST_LEN*ETH_GSTRING_LEN);
2296 break;
2297 case ETH_SS_STATS:
2298 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2299 memcpy(p, igb_gstrings_stats[i].stat_string,
2300 ETH_GSTRING_LEN);
2301 p += ETH_GSTRING_LEN;
2302 }
2303 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2304 memcpy(p, igb_gstrings_net_stats[i].stat_string,
2305 ETH_GSTRING_LEN);
2306 p += ETH_GSTRING_LEN;
2307 }
2308 for (i = 0; i < adapter->num_tx_queues; i++) {
2309 sprintf(p, "tx_queue_%u_packets", i);
2310 p += ETH_GSTRING_LEN;
2311 sprintf(p, "tx_queue_%u_bytes", i);
2312 p += ETH_GSTRING_LEN;
2313 sprintf(p, "tx_queue_%u_restart", i);
2314 p += ETH_GSTRING_LEN;
2315 }
2316 for (i = 0; i < adapter->num_rx_queues; i++) {
2317 sprintf(p, "rx_queue_%u_packets", i);
2318 p += ETH_GSTRING_LEN;
2319 sprintf(p, "rx_queue_%u_bytes", i);
2320 p += ETH_GSTRING_LEN;
2321 sprintf(p, "rx_queue_%u_drops", i);
2322 p += ETH_GSTRING_LEN;
2323 sprintf(p, "rx_queue_%u_csum_err", i);
2324 p += ETH_GSTRING_LEN;
2325 sprintf(p, "rx_queue_%u_alloc_failed", i);
2326 p += ETH_GSTRING_LEN;
2327 }
2328 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2329 break;
2330 }
2331 }
2332
2333 static int igb_get_ts_info(struct net_device *dev,
2334 struct ethtool_ts_info *info)
2335 {
2336 struct igb_adapter *adapter = netdev_priv(dev);
2337
2338 switch (adapter->hw.mac.type) {
2339 case e1000_82575:
2340 info->so_timestamping =
2341 SOF_TIMESTAMPING_TX_SOFTWARE |
2342 SOF_TIMESTAMPING_RX_SOFTWARE |
2343 SOF_TIMESTAMPING_SOFTWARE;
2344 return 0;
2345 case e1000_82576:
2346 case e1000_82580:
2347 case e1000_i350:
2348 case e1000_i354:
2349 case e1000_i210:
2350 case e1000_i211:
2351 info->so_timestamping =
2352 SOF_TIMESTAMPING_TX_SOFTWARE |
2353 SOF_TIMESTAMPING_RX_SOFTWARE |
2354 SOF_TIMESTAMPING_SOFTWARE |
2355 SOF_TIMESTAMPING_TX_HARDWARE |
2356 SOF_TIMESTAMPING_RX_HARDWARE |
2357 SOF_TIMESTAMPING_RAW_HARDWARE;
2358
2359 if (adapter->ptp_clock)
2360 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2361 else
2362 info->phc_index = -1;
2363
2364 info->tx_types =
2365 (1 << HWTSTAMP_TX_OFF) |
2366 (1 << HWTSTAMP_TX_ON);
2367
2368 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2369
2370 /* 82576 does not support timestamping all packets. */
2371 if (adapter->hw.mac.type >= e1000_82580)
2372 info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2373 else
2374 info->rx_filters |=
2375 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2376 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2377 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2378 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2379 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2380 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2381 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2382
2383 return 0;
2384 default:
2385 return -EOPNOTSUPP;
2386 }
2387 }
2388
2389 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2390 struct ethtool_rxnfc *cmd)
2391 {
2392 cmd->data = 0;
2393
2394 /* Report default options for RSS on igb */
2395 switch (cmd->flow_type) {
2396 case TCP_V4_FLOW:
2397 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2398 case UDP_V4_FLOW:
2399 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2400 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2401 case SCTP_V4_FLOW:
2402 case AH_ESP_V4_FLOW:
2403 case AH_V4_FLOW:
2404 case ESP_V4_FLOW:
2405 case IPV4_FLOW:
2406 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2407 break;
2408 case TCP_V6_FLOW:
2409 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2410 case UDP_V6_FLOW:
2411 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2412 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2413 case SCTP_V6_FLOW:
2414 case AH_ESP_V6_FLOW:
2415 case AH_V6_FLOW:
2416 case ESP_V6_FLOW:
2417 case IPV6_FLOW:
2418 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2419 break;
2420 default:
2421 return -EINVAL;
2422 }
2423
2424 return 0;
2425 }
2426
2427 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2428 u32 *rule_locs)
2429 {
2430 struct igb_adapter *adapter = netdev_priv(dev);
2431 int ret = -EOPNOTSUPP;
2432
2433 switch (cmd->cmd) {
2434 case ETHTOOL_GRXRINGS:
2435 cmd->data = adapter->num_rx_queues;
2436 ret = 0;
2437 break;
2438 case ETHTOOL_GRXFH:
2439 ret = igb_get_rss_hash_opts(adapter, cmd);
2440 break;
2441 default:
2442 break;
2443 }
2444
2445 return ret;
2446 }
2447
2448 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2449 IGB_FLAG_RSS_FIELD_IPV6_UDP)
2450 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2451 struct ethtool_rxnfc *nfc)
2452 {
2453 u32 flags = adapter->flags;
2454
2455 /* RSS does not support anything other than hashing
2456 * to queues on src and dst IPs and ports
2457 */
2458 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2459 RXH_L4_B_0_1 | RXH_L4_B_2_3))
2460 return -EINVAL;
2461
2462 switch (nfc->flow_type) {
2463 case TCP_V4_FLOW:
2464 case TCP_V6_FLOW:
2465 if (!(nfc->data & RXH_IP_SRC) ||
2466 !(nfc->data & RXH_IP_DST) ||
2467 !(nfc->data & RXH_L4_B_0_1) ||
2468 !(nfc->data & RXH_L4_B_2_3))
2469 return -EINVAL;
2470 break;
2471 case UDP_V4_FLOW:
2472 if (!(nfc->data & RXH_IP_SRC) ||
2473 !(nfc->data & RXH_IP_DST))
2474 return -EINVAL;
2475 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2476 case 0:
2477 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2478 break;
2479 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2480 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2481 break;
2482 default:
2483 return -EINVAL;
2484 }
2485 break;
2486 case UDP_V6_FLOW:
2487 if (!(nfc->data & RXH_IP_SRC) ||
2488 !(nfc->data & RXH_IP_DST))
2489 return -EINVAL;
2490 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2491 case 0:
2492 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2493 break;
2494 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2495 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2496 break;
2497 default:
2498 return -EINVAL;
2499 }
2500 break;
2501 case AH_ESP_V4_FLOW:
2502 case AH_V4_FLOW:
2503 case ESP_V4_FLOW:
2504 case SCTP_V4_FLOW:
2505 case AH_ESP_V6_FLOW:
2506 case AH_V6_FLOW:
2507 case ESP_V6_FLOW:
2508 case SCTP_V6_FLOW:
2509 if (!(nfc->data & RXH_IP_SRC) ||
2510 !(nfc->data & RXH_IP_DST) ||
2511 (nfc->data & RXH_L4_B_0_1) ||
2512 (nfc->data & RXH_L4_B_2_3))
2513 return -EINVAL;
2514 break;
2515 default:
2516 return -EINVAL;
2517 }
2518
2519 /* if we changed something we need to update flags */
2520 if (flags != adapter->flags) {
2521 struct e1000_hw *hw = &adapter->hw;
2522 u32 mrqc = rd32(E1000_MRQC);
2523
2524 if ((flags & UDP_RSS_FLAGS) &&
2525 !(adapter->flags & UDP_RSS_FLAGS))
2526 dev_err(&adapter->pdev->dev,
2527 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2528
2529 adapter->flags = flags;
2530
2531 /* Perform hash on these packet types */
2532 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2533 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2534 E1000_MRQC_RSS_FIELD_IPV6 |
2535 E1000_MRQC_RSS_FIELD_IPV6_TCP;
2536
2537 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2538 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2539
2540 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2541 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2542
2543 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2544 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2545
2546 wr32(E1000_MRQC, mrqc);
2547 }
2548
2549 return 0;
2550 }
2551
2552 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2553 {
2554 struct igb_adapter *adapter = netdev_priv(dev);
2555 int ret = -EOPNOTSUPP;
2556
2557 switch (cmd->cmd) {
2558 case ETHTOOL_SRXFH:
2559 ret = igb_set_rss_hash_opt(adapter, cmd);
2560 break;
2561 default:
2562 break;
2563 }
2564
2565 return ret;
2566 }
2567
2568 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2569 {
2570 struct igb_adapter *adapter = netdev_priv(netdev);
2571 struct e1000_hw *hw = &adapter->hw;
2572 u32 ipcnfg, eeer, ret_val;
2573 u16 phy_data;
2574
2575 if ((hw->mac.type < e1000_i350) ||
2576 (hw->phy.media_type != e1000_media_type_copper))
2577 return -EOPNOTSUPP;
2578
2579 edata->supported = (SUPPORTED_1000baseT_Full |
2580 SUPPORTED_100baseT_Full);
2581
2582 ipcnfg = rd32(E1000_IPCNFG);
2583 eeer = rd32(E1000_EEER);
2584
2585 /* EEE status on negotiated link */
2586 if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2587 edata->advertised = ADVERTISED_1000baseT_Full;
2588
2589 if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2590 edata->advertised |= ADVERTISED_100baseT_Full;
2591
2592 /* EEE Link Partner Advertised */
2593 switch (hw->mac.type) {
2594 case e1000_i350:
2595 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2596 &phy_data);
2597 if (ret_val)
2598 return -ENODATA;
2599
2600 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2601
2602 break;
2603 case e1000_i210:
2604 case e1000_i211:
2605 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2606 E1000_EEE_LP_ADV_DEV_I210,
2607 &phy_data);
2608 if (ret_val)
2609 return -ENODATA;
2610
2611 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2612
2613 break;
2614 default:
2615 break;
2616 }
2617
2618 if (eeer & E1000_EEER_EEE_NEG)
2619 edata->eee_active = true;
2620
2621 edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2622
2623 if (eeer & E1000_EEER_TX_LPI_EN)
2624 edata->tx_lpi_enabled = true;
2625
2626 /* Report correct negotiated EEE status for devices that
2627 * wrongly report EEE at half-duplex
2628 */
2629 if (adapter->link_duplex == HALF_DUPLEX) {
2630 edata->eee_enabled = false;
2631 edata->eee_active = false;
2632 edata->tx_lpi_enabled = false;
2633 edata->advertised &= ~edata->advertised;
2634 }
2635
2636 return 0;
2637 }
2638
2639 static int igb_set_eee(struct net_device *netdev,
2640 struct ethtool_eee *edata)
2641 {
2642 struct igb_adapter *adapter = netdev_priv(netdev);
2643 struct e1000_hw *hw = &adapter->hw;
2644 struct ethtool_eee eee_curr;
2645 s32 ret_val;
2646
2647 if ((hw->mac.type < e1000_i350) ||
2648 (hw->phy.media_type != e1000_media_type_copper))
2649 return -EOPNOTSUPP;
2650
2651 ret_val = igb_get_eee(netdev, &eee_curr);
2652 if (ret_val)
2653 return ret_val;
2654
2655 if (eee_curr.eee_enabled) {
2656 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2657 dev_err(&adapter->pdev->dev,
2658 "Setting EEE tx-lpi is not supported\n");
2659 return -EINVAL;
2660 }
2661
2662 /* Tx LPI timer is not implemented currently */
2663 if (edata->tx_lpi_timer) {
2664 dev_err(&adapter->pdev->dev,
2665 "Setting EEE Tx LPI timer is not supported\n");
2666 return -EINVAL;
2667 }
2668
2669 if (eee_curr.advertised != edata->advertised) {
2670 dev_err(&adapter->pdev->dev,
2671 "Setting EEE Advertisement is not supported\n");
2672 return -EINVAL;
2673 }
2674
2675 } else if (!edata->eee_enabled) {
2676 dev_err(&adapter->pdev->dev,
2677 "Setting EEE options are not supported with EEE disabled\n");
2678 return -EINVAL;
2679 }
2680
2681 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2682 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2683 igb_set_eee_i350(hw);
2684
2685 /* reset link */
2686 if (netif_running(netdev))
2687 igb_reinit_locked(adapter);
2688 else
2689 igb_reset(adapter);
2690 }
2691
2692 return 0;
2693 }
2694
2695 static int igb_get_module_info(struct net_device *netdev,
2696 struct ethtool_modinfo *modinfo)
2697 {
2698 struct igb_adapter *adapter = netdev_priv(netdev);
2699 struct e1000_hw *hw = &adapter->hw;
2700 u32 status = E1000_SUCCESS;
2701 u16 sff8472_rev, addr_mode;
2702 bool page_swap = false;
2703
2704 if ((hw->phy.media_type == e1000_media_type_copper) ||
2705 (hw->phy.media_type == e1000_media_type_unknown))
2706 return -EOPNOTSUPP;
2707
2708 /* Check whether we support SFF-8472 or not */
2709 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2710 if (status != E1000_SUCCESS)
2711 return -EIO;
2712
2713 /* addressing mode is not supported */
2714 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2715 if (status != E1000_SUCCESS)
2716 return -EIO;
2717
2718 /* addressing mode is not supported */
2719 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2720 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2721 page_swap = true;
2722 }
2723
2724 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2725 /* We have an SFP, but it does not support SFF-8472 */
2726 modinfo->type = ETH_MODULE_SFF_8079;
2727 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2728 } else {
2729 /* We have an SFP which supports a revision of SFF-8472 */
2730 modinfo->type = ETH_MODULE_SFF_8472;
2731 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2732 }
2733
2734 return 0;
2735 }
2736
2737 static int igb_get_module_eeprom(struct net_device *netdev,
2738 struct ethtool_eeprom *ee, u8 *data)
2739 {
2740 struct igb_adapter *adapter = netdev_priv(netdev);
2741 struct e1000_hw *hw = &adapter->hw;
2742 u32 status = E1000_SUCCESS;
2743 u16 *dataword;
2744 u16 first_word, last_word;
2745 int i = 0;
2746
2747 if (ee->len == 0)
2748 return -EINVAL;
2749
2750 first_word = ee->offset >> 1;
2751 last_word = (ee->offset + ee->len - 1) >> 1;
2752
2753 dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2754 GFP_KERNEL);
2755 if (!dataword)
2756 return -ENOMEM;
2757
2758 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2759 for (i = 0; i < last_word - first_word + 1; i++) {
2760 status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2761 if (status != E1000_SUCCESS)
2762 /* Error occurred while reading module */
2763 return -EIO;
2764
2765 be16_to_cpus(&dataword[i]);
2766 }
2767
2768 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2769 kfree(dataword);
2770
2771 return 0;
2772 }
2773
2774 static int igb_ethtool_begin(struct net_device *netdev)
2775 {
2776 struct igb_adapter *adapter = netdev_priv(netdev);
2777 pm_runtime_get_sync(&adapter->pdev->dev);
2778 return 0;
2779 }
2780
2781 static void igb_ethtool_complete(struct net_device *netdev)
2782 {
2783 struct igb_adapter *adapter = netdev_priv(netdev);
2784 pm_runtime_put(&adapter->pdev->dev);
2785 }
2786
2787 static const struct ethtool_ops igb_ethtool_ops = {
2788 .get_settings = igb_get_settings,
2789 .set_settings = igb_set_settings,
2790 .get_drvinfo = igb_get_drvinfo,
2791 .get_regs_len = igb_get_regs_len,
2792 .get_regs = igb_get_regs,
2793 .get_wol = igb_get_wol,
2794 .set_wol = igb_set_wol,
2795 .get_msglevel = igb_get_msglevel,
2796 .set_msglevel = igb_set_msglevel,
2797 .nway_reset = igb_nway_reset,
2798 .get_link = igb_get_link,
2799 .get_eeprom_len = igb_get_eeprom_len,
2800 .get_eeprom = igb_get_eeprom,
2801 .set_eeprom = igb_set_eeprom,
2802 .get_ringparam = igb_get_ringparam,
2803 .set_ringparam = igb_set_ringparam,
2804 .get_pauseparam = igb_get_pauseparam,
2805 .set_pauseparam = igb_set_pauseparam,
2806 .self_test = igb_diag_test,
2807 .get_strings = igb_get_strings,
2808 .set_phys_id = igb_set_phys_id,
2809 .get_sset_count = igb_get_sset_count,
2810 .get_ethtool_stats = igb_get_ethtool_stats,
2811 .get_coalesce = igb_get_coalesce,
2812 .set_coalesce = igb_set_coalesce,
2813 .get_ts_info = igb_get_ts_info,
2814 .get_rxnfc = igb_get_rxnfc,
2815 .set_rxnfc = igb_set_rxnfc,
2816 .get_eee = igb_get_eee,
2817 .set_eee = igb_set_eee,
2818 .get_module_info = igb_get_module_info,
2819 .get_module_eeprom = igb_get_module_eeprom,
2820 .begin = igb_ethtool_begin,
2821 .complete = igb_ethtool_complete,
2822 };
2823
2824 void igb_set_ethtool_ops(struct net_device *netdev)
2825 {
2826 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2827 }
This page took 0.126712 seconds and 5 git commands to generate.