Merge branch 'drm-intel-fixes' of git://people.freedesktop.org/~danvet/drm-intel...
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40
41 #include "igb.h"
42
43 struct igb_stats {
44 char stat_string[ETH_GSTRING_LEN];
45 int sizeof_stat;
46 int stat_offset;
47 };
48
49 #define IGB_STAT(_name, _stat) { \
50 .stat_string = _name, \
51 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
52 .stat_offset = offsetof(struct igb_adapter, _stat) \
53 }
54 static const struct igb_stats igb_gstrings_stats[] = {
55 IGB_STAT("rx_packets", stats.gprc),
56 IGB_STAT("tx_packets", stats.gptc),
57 IGB_STAT("rx_bytes", stats.gorc),
58 IGB_STAT("tx_bytes", stats.gotc),
59 IGB_STAT("rx_broadcast", stats.bprc),
60 IGB_STAT("tx_broadcast", stats.bptc),
61 IGB_STAT("rx_multicast", stats.mprc),
62 IGB_STAT("tx_multicast", stats.mptc),
63 IGB_STAT("multicast", stats.mprc),
64 IGB_STAT("collisions", stats.colc),
65 IGB_STAT("rx_crc_errors", stats.crcerrs),
66 IGB_STAT("rx_no_buffer_count", stats.rnbc),
67 IGB_STAT("rx_missed_errors", stats.mpc),
68 IGB_STAT("tx_aborted_errors", stats.ecol),
69 IGB_STAT("tx_carrier_errors", stats.tncrs),
70 IGB_STAT("tx_window_errors", stats.latecol),
71 IGB_STAT("tx_abort_late_coll", stats.latecol),
72 IGB_STAT("tx_deferred_ok", stats.dc),
73 IGB_STAT("tx_single_coll_ok", stats.scc),
74 IGB_STAT("tx_multi_coll_ok", stats.mcc),
75 IGB_STAT("tx_timeout_count", tx_timeout_count),
76 IGB_STAT("rx_long_length_errors", stats.roc),
77 IGB_STAT("rx_short_length_errors", stats.ruc),
78 IGB_STAT("rx_align_errors", stats.algnerrc),
79 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
80 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
81 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
82 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
83 IGB_STAT("tx_flow_control_xon", stats.xontxc),
84 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
85 IGB_STAT("rx_long_byte_count", stats.gorc),
86 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
87 IGB_STAT("tx_smbus", stats.mgptc),
88 IGB_STAT("rx_smbus", stats.mgprc),
89 IGB_STAT("dropped_smbus", stats.mgpdc),
90 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
91 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
92 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
93 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
94 };
95
96 #define IGB_NETDEV_STAT(_net_stat) { \
97 .stat_string = __stringify(_net_stat), \
98 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102 IGB_NETDEV_STAT(rx_errors),
103 IGB_NETDEV_STAT(tx_errors),
104 IGB_NETDEV_STAT(tx_dropped),
105 IGB_NETDEV_STAT(rx_length_errors),
106 IGB_NETDEV_STAT(rx_over_errors),
107 IGB_NETDEV_STAT(rx_frame_errors),
108 IGB_NETDEV_STAT(rx_fifo_errors),
109 IGB_NETDEV_STAT(tx_fifo_errors),
110 IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112
113 #define IGB_GLOBAL_STATS_LEN \
114 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN \
116 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121
122 #define IGB_QUEUE_STATS_LEN \
123 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124 IGB_RX_QUEUE_STATS_LEN) + \
125 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126 IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129
130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131 "Register test (offline)", "Eeprom test (offline)",
132 "Interrupt test (offline)", "Loopback test (offline)",
133 "Link test (on/offline)"
134 };
135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136
137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138 {
139 struct igb_adapter *adapter = netdev_priv(netdev);
140 struct e1000_hw *hw = &adapter->hw;
141 u32 status;
142
143 if (hw->phy.media_type == e1000_media_type_copper) {
144
145 ecmd->supported = (SUPPORTED_10baseT_Half |
146 SUPPORTED_10baseT_Full |
147 SUPPORTED_100baseT_Half |
148 SUPPORTED_100baseT_Full |
149 SUPPORTED_1000baseT_Full|
150 SUPPORTED_Autoneg |
151 SUPPORTED_TP);
152 ecmd->advertising = (ADVERTISED_TP |
153 ADVERTISED_Pause);
154
155 if (hw->mac.autoneg == 1) {
156 ecmd->advertising |= ADVERTISED_Autoneg;
157 /* the e1000 autoneg seems to match ethtool nicely */
158 ecmd->advertising |= hw->phy.autoneg_advertised;
159 }
160
161 ecmd->port = PORT_TP;
162 ecmd->phy_address = hw->phy.addr;
163 } else {
164 ecmd->supported = (SUPPORTED_1000baseT_Full |
165 SUPPORTED_FIBRE |
166 SUPPORTED_Autoneg);
167
168 ecmd->advertising = (ADVERTISED_1000baseT_Full |
169 ADVERTISED_FIBRE |
170 ADVERTISED_Autoneg |
171 ADVERTISED_Pause);
172
173 ecmd->port = PORT_FIBRE;
174 }
175
176 ecmd->transceiver = XCVR_INTERNAL;
177
178 status = rd32(E1000_STATUS);
179
180 if (status & E1000_STATUS_LU) {
181
182 if ((status & E1000_STATUS_SPEED_1000) ||
183 hw->phy.media_type != e1000_media_type_copper)
184 ethtool_cmd_speed_set(ecmd, SPEED_1000);
185 else if (status & E1000_STATUS_SPEED_100)
186 ethtool_cmd_speed_set(ecmd, SPEED_100);
187 else
188 ethtool_cmd_speed_set(ecmd, SPEED_10);
189
190 if ((status & E1000_STATUS_FD) ||
191 hw->phy.media_type != e1000_media_type_copper)
192 ecmd->duplex = DUPLEX_FULL;
193 else
194 ecmd->duplex = DUPLEX_HALF;
195 } else {
196 ethtool_cmd_speed_set(ecmd, -1);
197 ecmd->duplex = -1;
198 }
199
200 ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
201 return 0;
202 }
203
204 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
205 {
206 struct igb_adapter *adapter = netdev_priv(netdev);
207 struct e1000_hw *hw = &adapter->hw;
208
209 /* When SoL/IDER sessions are active, autoneg/speed/duplex
210 * cannot be changed */
211 if (igb_check_reset_block(hw)) {
212 dev_err(&adapter->pdev->dev, "Cannot change link "
213 "characteristics when SoL/IDER is active.\n");
214 return -EINVAL;
215 }
216
217 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
218 msleep(1);
219
220 if (ecmd->autoneg == AUTONEG_ENABLE) {
221 hw->mac.autoneg = 1;
222 hw->phy.autoneg_advertised = ecmd->advertising |
223 ADVERTISED_TP |
224 ADVERTISED_Autoneg;
225 ecmd->advertising = hw->phy.autoneg_advertised;
226 if (adapter->fc_autoneg)
227 hw->fc.requested_mode = e1000_fc_default;
228 } else {
229 u32 speed = ethtool_cmd_speed(ecmd);
230 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
231 clear_bit(__IGB_RESETTING, &adapter->state);
232 return -EINVAL;
233 }
234 }
235
236 /* reset the link */
237 if (netif_running(adapter->netdev)) {
238 igb_down(adapter);
239 igb_up(adapter);
240 } else
241 igb_reset(adapter);
242
243 clear_bit(__IGB_RESETTING, &adapter->state);
244 return 0;
245 }
246
247 static u32 igb_get_link(struct net_device *netdev)
248 {
249 struct igb_adapter *adapter = netdev_priv(netdev);
250 struct e1000_mac_info *mac = &adapter->hw.mac;
251
252 /*
253 * If the link is not reported up to netdev, interrupts are disabled,
254 * and so the physical link state may have changed since we last
255 * looked. Set get_link_status to make sure that the true link
256 * state is interrogated, rather than pulling a cached and possibly
257 * stale link state from the driver.
258 */
259 if (!netif_carrier_ok(netdev))
260 mac->get_link_status = 1;
261
262 return igb_has_link(adapter);
263 }
264
265 static void igb_get_pauseparam(struct net_device *netdev,
266 struct ethtool_pauseparam *pause)
267 {
268 struct igb_adapter *adapter = netdev_priv(netdev);
269 struct e1000_hw *hw = &adapter->hw;
270
271 pause->autoneg =
272 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
273
274 if (hw->fc.current_mode == e1000_fc_rx_pause)
275 pause->rx_pause = 1;
276 else if (hw->fc.current_mode == e1000_fc_tx_pause)
277 pause->tx_pause = 1;
278 else if (hw->fc.current_mode == e1000_fc_full) {
279 pause->rx_pause = 1;
280 pause->tx_pause = 1;
281 }
282 }
283
284 static int igb_set_pauseparam(struct net_device *netdev,
285 struct ethtool_pauseparam *pause)
286 {
287 struct igb_adapter *adapter = netdev_priv(netdev);
288 struct e1000_hw *hw = &adapter->hw;
289 int retval = 0;
290
291 adapter->fc_autoneg = pause->autoneg;
292
293 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
294 msleep(1);
295
296 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
297 hw->fc.requested_mode = e1000_fc_default;
298 if (netif_running(adapter->netdev)) {
299 igb_down(adapter);
300 igb_up(adapter);
301 } else {
302 igb_reset(adapter);
303 }
304 } else {
305 if (pause->rx_pause && pause->tx_pause)
306 hw->fc.requested_mode = e1000_fc_full;
307 else if (pause->rx_pause && !pause->tx_pause)
308 hw->fc.requested_mode = e1000_fc_rx_pause;
309 else if (!pause->rx_pause && pause->tx_pause)
310 hw->fc.requested_mode = e1000_fc_tx_pause;
311 else if (!pause->rx_pause && !pause->tx_pause)
312 hw->fc.requested_mode = e1000_fc_none;
313
314 hw->fc.current_mode = hw->fc.requested_mode;
315
316 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
317 igb_force_mac_fc(hw) : igb_setup_link(hw));
318 }
319
320 clear_bit(__IGB_RESETTING, &adapter->state);
321 return retval;
322 }
323
324 static u32 igb_get_msglevel(struct net_device *netdev)
325 {
326 struct igb_adapter *adapter = netdev_priv(netdev);
327 return adapter->msg_enable;
328 }
329
330 static void igb_set_msglevel(struct net_device *netdev, u32 data)
331 {
332 struct igb_adapter *adapter = netdev_priv(netdev);
333 adapter->msg_enable = data;
334 }
335
336 static int igb_get_regs_len(struct net_device *netdev)
337 {
338 #define IGB_REGS_LEN 739
339 return IGB_REGS_LEN * sizeof(u32);
340 }
341
342 static void igb_get_regs(struct net_device *netdev,
343 struct ethtool_regs *regs, void *p)
344 {
345 struct igb_adapter *adapter = netdev_priv(netdev);
346 struct e1000_hw *hw = &adapter->hw;
347 u32 *regs_buff = p;
348 u8 i;
349
350 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
351
352 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
353
354 /* General Registers */
355 regs_buff[0] = rd32(E1000_CTRL);
356 regs_buff[1] = rd32(E1000_STATUS);
357 regs_buff[2] = rd32(E1000_CTRL_EXT);
358 regs_buff[3] = rd32(E1000_MDIC);
359 regs_buff[4] = rd32(E1000_SCTL);
360 regs_buff[5] = rd32(E1000_CONNSW);
361 regs_buff[6] = rd32(E1000_VET);
362 regs_buff[7] = rd32(E1000_LEDCTL);
363 regs_buff[8] = rd32(E1000_PBA);
364 regs_buff[9] = rd32(E1000_PBS);
365 regs_buff[10] = rd32(E1000_FRTIMER);
366 regs_buff[11] = rd32(E1000_TCPTIMER);
367
368 /* NVM Register */
369 regs_buff[12] = rd32(E1000_EECD);
370
371 /* Interrupt */
372 /* Reading EICS for EICR because they read the
373 * same but EICS does not clear on read */
374 regs_buff[13] = rd32(E1000_EICS);
375 regs_buff[14] = rd32(E1000_EICS);
376 regs_buff[15] = rd32(E1000_EIMS);
377 regs_buff[16] = rd32(E1000_EIMC);
378 regs_buff[17] = rd32(E1000_EIAC);
379 regs_buff[18] = rd32(E1000_EIAM);
380 /* Reading ICS for ICR because they read the
381 * same but ICS does not clear on read */
382 regs_buff[19] = rd32(E1000_ICS);
383 regs_buff[20] = rd32(E1000_ICS);
384 regs_buff[21] = rd32(E1000_IMS);
385 regs_buff[22] = rd32(E1000_IMC);
386 regs_buff[23] = rd32(E1000_IAC);
387 regs_buff[24] = rd32(E1000_IAM);
388 regs_buff[25] = rd32(E1000_IMIRVP);
389
390 /* Flow Control */
391 regs_buff[26] = rd32(E1000_FCAL);
392 regs_buff[27] = rd32(E1000_FCAH);
393 regs_buff[28] = rd32(E1000_FCTTV);
394 regs_buff[29] = rd32(E1000_FCRTL);
395 regs_buff[30] = rd32(E1000_FCRTH);
396 regs_buff[31] = rd32(E1000_FCRTV);
397
398 /* Receive */
399 regs_buff[32] = rd32(E1000_RCTL);
400 regs_buff[33] = rd32(E1000_RXCSUM);
401 regs_buff[34] = rd32(E1000_RLPML);
402 regs_buff[35] = rd32(E1000_RFCTL);
403 regs_buff[36] = rd32(E1000_MRQC);
404 regs_buff[37] = rd32(E1000_VT_CTL);
405
406 /* Transmit */
407 regs_buff[38] = rd32(E1000_TCTL);
408 regs_buff[39] = rd32(E1000_TCTL_EXT);
409 regs_buff[40] = rd32(E1000_TIPG);
410 regs_buff[41] = rd32(E1000_DTXCTL);
411
412 /* Wake Up */
413 regs_buff[42] = rd32(E1000_WUC);
414 regs_buff[43] = rd32(E1000_WUFC);
415 regs_buff[44] = rd32(E1000_WUS);
416 regs_buff[45] = rd32(E1000_IPAV);
417 regs_buff[46] = rd32(E1000_WUPL);
418
419 /* MAC */
420 regs_buff[47] = rd32(E1000_PCS_CFG0);
421 regs_buff[48] = rd32(E1000_PCS_LCTL);
422 regs_buff[49] = rd32(E1000_PCS_LSTAT);
423 regs_buff[50] = rd32(E1000_PCS_ANADV);
424 regs_buff[51] = rd32(E1000_PCS_LPAB);
425 regs_buff[52] = rd32(E1000_PCS_NPTX);
426 regs_buff[53] = rd32(E1000_PCS_LPABNP);
427
428 /* Statistics */
429 regs_buff[54] = adapter->stats.crcerrs;
430 regs_buff[55] = adapter->stats.algnerrc;
431 regs_buff[56] = adapter->stats.symerrs;
432 regs_buff[57] = adapter->stats.rxerrc;
433 regs_buff[58] = adapter->stats.mpc;
434 regs_buff[59] = adapter->stats.scc;
435 regs_buff[60] = adapter->stats.ecol;
436 regs_buff[61] = adapter->stats.mcc;
437 regs_buff[62] = adapter->stats.latecol;
438 regs_buff[63] = adapter->stats.colc;
439 regs_buff[64] = adapter->stats.dc;
440 regs_buff[65] = adapter->stats.tncrs;
441 regs_buff[66] = adapter->stats.sec;
442 regs_buff[67] = adapter->stats.htdpmc;
443 regs_buff[68] = adapter->stats.rlec;
444 regs_buff[69] = adapter->stats.xonrxc;
445 regs_buff[70] = adapter->stats.xontxc;
446 regs_buff[71] = adapter->stats.xoffrxc;
447 regs_buff[72] = adapter->stats.xofftxc;
448 regs_buff[73] = adapter->stats.fcruc;
449 regs_buff[74] = adapter->stats.prc64;
450 regs_buff[75] = adapter->stats.prc127;
451 regs_buff[76] = adapter->stats.prc255;
452 regs_buff[77] = adapter->stats.prc511;
453 regs_buff[78] = adapter->stats.prc1023;
454 regs_buff[79] = adapter->stats.prc1522;
455 regs_buff[80] = adapter->stats.gprc;
456 regs_buff[81] = adapter->stats.bprc;
457 regs_buff[82] = adapter->stats.mprc;
458 regs_buff[83] = adapter->stats.gptc;
459 regs_buff[84] = adapter->stats.gorc;
460 regs_buff[86] = adapter->stats.gotc;
461 regs_buff[88] = adapter->stats.rnbc;
462 regs_buff[89] = adapter->stats.ruc;
463 regs_buff[90] = adapter->stats.rfc;
464 regs_buff[91] = adapter->stats.roc;
465 regs_buff[92] = adapter->stats.rjc;
466 regs_buff[93] = adapter->stats.mgprc;
467 regs_buff[94] = adapter->stats.mgpdc;
468 regs_buff[95] = adapter->stats.mgptc;
469 regs_buff[96] = adapter->stats.tor;
470 regs_buff[98] = adapter->stats.tot;
471 regs_buff[100] = adapter->stats.tpr;
472 regs_buff[101] = adapter->stats.tpt;
473 regs_buff[102] = adapter->stats.ptc64;
474 regs_buff[103] = adapter->stats.ptc127;
475 regs_buff[104] = adapter->stats.ptc255;
476 regs_buff[105] = adapter->stats.ptc511;
477 regs_buff[106] = adapter->stats.ptc1023;
478 regs_buff[107] = adapter->stats.ptc1522;
479 regs_buff[108] = adapter->stats.mptc;
480 regs_buff[109] = adapter->stats.bptc;
481 regs_buff[110] = adapter->stats.tsctc;
482 regs_buff[111] = adapter->stats.iac;
483 regs_buff[112] = adapter->stats.rpthc;
484 regs_buff[113] = adapter->stats.hgptc;
485 regs_buff[114] = adapter->stats.hgorc;
486 regs_buff[116] = adapter->stats.hgotc;
487 regs_buff[118] = adapter->stats.lenerrs;
488 regs_buff[119] = adapter->stats.scvpc;
489 regs_buff[120] = adapter->stats.hrmpc;
490
491 for (i = 0; i < 4; i++)
492 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
493 for (i = 0; i < 4; i++)
494 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
495 for (i = 0; i < 4; i++)
496 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
497 for (i = 0; i < 4; i++)
498 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
499 for (i = 0; i < 4; i++)
500 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
501 for (i = 0; i < 4; i++)
502 regs_buff[141 + i] = rd32(E1000_RDH(i));
503 for (i = 0; i < 4; i++)
504 regs_buff[145 + i] = rd32(E1000_RDT(i));
505 for (i = 0; i < 4; i++)
506 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
507
508 for (i = 0; i < 10; i++)
509 regs_buff[153 + i] = rd32(E1000_EITR(i));
510 for (i = 0; i < 8; i++)
511 regs_buff[163 + i] = rd32(E1000_IMIR(i));
512 for (i = 0; i < 8; i++)
513 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
514 for (i = 0; i < 16; i++)
515 regs_buff[179 + i] = rd32(E1000_RAL(i));
516 for (i = 0; i < 16; i++)
517 regs_buff[195 + i] = rd32(E1000_RAH(i));
518
519 for (i = 0; i < 4; i++)
520 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
521 for (i = 0; i < 4; i++)
522 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
523 for (i = 0; i < 4; i++)
524 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
525 for (i = 0; i < 4; i++)
526 regs_buff[223 + i] = rd32(E1000_TDH(i));
527 for (i = 0; i < 4; i++)
528 regs_buff[227 + i] = rd32(E1000_TDT(i));
529 for (i = 0; i < 4; i++)
530 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
531 for (i = 0; i < 4; i++)
532 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
533 for (i = 0; i < 4; i++)
534 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
535 for (i = 0; i < 4; i++)
536 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
537
538 for (i = 0; i < 4; i++)
539 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
540 for (i = 0; i < 4; i++)
541 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
542 for (i = 0; i < 32; i++)
543 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
544 for (i = 0; i < 128; i++)
545 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
546 for (i = 0; i < 128; i++)
547 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
548 for (i = 0; i < 4; i++)
549 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
550
551 regs_buff[547] = rd32(E1000_TDFH);
552 regs_buff[548] = rd32(E1000_TDFT);
553 regs_buff[549] = rd32(E1000_TDFHS);
554 regs_buff[550] = rd32(E1000_TDFPC);
555
556 if (hw->mac.type > e1000_82580) {
557 regs_buff[551] = adapter->stats.o2bgptc;
558 regs_buff[552] = adapter->stats.b2ospc;
559 regs_buff[553] = adapter->stats.o2bspc;
560 regs_buff[554] = adapter->stats.b2ogprc;
561 }
562
563 if (hw->mac.type != e1000_82576)
564 return;
565 for (i = 0; i < 12; i++)
566 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
567 for (i = 0; i < 4; i++)
568 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
569 for (i = 0; i < 12; i++)
570 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
571 for (i = 0; i < 12; i++)
572 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
573 for (i = 0; i < 12; i++)
574 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
575 for (i = 0; i < 12; i++)
576 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
577 for (i = 0; i < 12; i++)
578 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
579 for (i = 0; i < 12; i++)
580 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
581
582 for (i = 0; i < 12; i++)
583 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
584 for (i = 0; i < 12; i++)
585 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
586 for (i = 0; i < 12; i++)
587 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
588 for (i = 0; i < 12; i++)
589 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
590 for (i = 0; i < 12; i++)
591 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
592 for (i = 0; i < 12; i++)
593 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
594 for (i = 0; i < 12; i++)
595 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
596 for (i = 0; i < 12; i++)
597 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
598 }
599
600 static int igb_get_eeprom_len(struct net_device *netdev)
601 {
602 struct igb_adapter *adapter = netdev_priv(netdev);
603 return adapter->hw.nvm.word_size * 2;
604 }
605
606 static int igb_get_eeprom(struct net_device *netdev,
607 struct ethtool_eeprom *eeprom, u8 *bytes)
608 {
609 struct igb_adapter *adapter = netdev_priv(netdev);
610 struct e1000_hw *hw = &adapter->hw;
611 u16 *eeprom_buff;
612 int first_word, last_word;
613 int ret_val = 0;
614 u16 i;
615
616 if (eeprom->len == 0)
617 return -EINVAL;
618
619 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
620
621 first_word = eeprom->offset >> 1;
622 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
623
624 eeprom_buff = kmalloc(sizeof(u16) *
625 (last_word - first_word + 1), GFP_KERNEL);
626 if (!eeprom_buff)
627 return -ENOMEM;
628
629 if (hw->nvm.type == e1000_nvm_eeprom_spi)
630 ret_val = hw->nvm.ops.read(hw, first_word,
631 last_word - first_word + 1,
632 eeprom_buff);
633 else {
634 for (i = 0; i < last_word - first_word + 1; i++) {
635 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
636 &eeprom_buff[i]);
637 if (ret_val)
638 break;
639 }
640 }
641
642 /* Device's eeprom is always little-endian, word addressable */
643 for (i = 0; i < last_word - first_word + 1; i++)
644 le16_to_cpus(&eeprom_buff[i]);
645
646 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
647 eeprom->len);
648 kfree(eeprom_buff);
649
650 return ret_val;
651 }
652
653 static int igb_set_eeprom(struct net_device *netdev,
654 struct ethtool_eeprom *eeprom, u8 *bytes)
655 {
656 struct igb_adapter *adapter = netdev_priv(netdev);
657 struct e1000_hw *hw = &adapter->hw;
658 u16 *eeprom_buff;
659 void *ptr;
660 int max_len, first_word, last_word, ret_val = 0;
661 u16 i;
662
663 if (eeprom->len == 0)
664 return -EOPNOTSUPP;
665
666 if (hw->mac.type == e1000_i211)
667 return -EOPNOTSUPP;
668
669 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
670 return -EFAULT;
671
672 max_len = hw->nvm.word_size * 2;
673
674 first_word = eeprom->offset >> 1;
675 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
676 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
677 if (!eeprom_buff)
678 return -ENOMEM;
679
680 ptr = (void *)eeprom_buff;
681
682 if (eeprom->offset & 1) {
683 /* need read/modify/write of first changed EEPROM word */
684 /* only the second byte of the word is being modified */
685 ret_val = hw->nvm.ops.read(hw, first_word, 1,
686 &eeprom_buff[0]);
687 ptr++;
688 }
689 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
690 /* need read/modify/write of last changed EEPROM word */
691 /* only the first byte of the word is being modified */
692 ret_val = hw->nvm.ops.read(hw, last_word, 1,
693 &eeprom_buff[last_word - first_word]);
694 }
695
696 /* Device's eeprom is always little-endian, word addressable */
697 for (i = 0; i < last_word - first_word + 1; i++)
698 le16_to_cpus(&eeprom_buff[i]);
699
700 memcpy(ptr, bytes, eeprom->len);
701
702 for (i = 0; i < last_word - first_word + 1; i++)
703 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
704
705 ret_val = hw->nvm.ops.write(hw, first_word,
706 last_word - first_word + 1, eeprom_buff);
707
708 /* Update the checksum over the first part of the EEPROM if needed
709 * and flush shadow RAM for 82573 controllers */
710 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
711 hw->nvm.ops.update(hw);
712
713 igb_set_fw_version(adapter);
714 kfree(eeprom_buff);
715 return ret_val;
716 }
717
718 static void igb_get_drvinfo(struct net_device *netdev,
719 struct ethtool_drvinfo *drvinfo)
720 {
721 struct igb_adapter *adapter = netdev_priv(netdev);
722
723 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
724 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
725
726 /*
727 * EEPROM image version # is reported as firmware version # for
728 * 82575 controllers
729 */
730 strlcpy(drvinfo->fw_version, adapter->fw_version,
731 sizeof(drvinfo->fw_version));
732 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
733 sizeof(drvinfo->bus_info));
734 drvinfo->n_stats = IGB_STATS_LEN;
735 drvinfo->testinfo_len = IGB_TEST_LEN;
736 drvinfo->regdump_len = igb_get_regs_len(netdev);
737 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
738 }
739
740 static void igb_get_ringparam(struct net_device *netdev,
741 struct ethtool_ringparam *ring)
742 {
743 struct igb_adapter *adapter = netdev_priv(netdev);
744
745 ring->rx_max_pending = IGB_MAX_RXD;
746 ring->tx_max_pending = IGB_MAX_TXD;
747 ring->rx_pending = adapter->rx_ring_count;
748 ring->tx_pending = adapter->tx_ring_count;
749 }
750
751 static int igb_set_ringparam(struct net_device *netdev,
752 struct ethtool_ringparam *ring)
753 {
754 struct igb_adapter *adapter = netdev_priv(netdev);
755 struct igb_ring *temp_ring;
756 int i, err = 0;
757 u16 new_rx_count, new_tx_count;
758
759 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
760 return -EINVAL;
761
762 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
763 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
764 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
765
766 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
767 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
768 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
769
770 if ((new_tx_count == adapter->tx_ring_count) &&
771 (new_rx_count == adapter->rx_ring_count)) {
772 /* nothing to do */
773 return 0;
774 }
775
776 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
777 msleep(1);
778
779 if (!netif_running(adapter->netdev)) {
780 for (i = 0; i < adapter->num_tx_queues; i++)
781 adapter->tx_ring[i]->count = new_tx_count;
782 for (i = 0; i < adapter->num_rx_queues; i++)
783 adapter->rx_ring[i]->count = new_rx_count;
784 adapter->tx_ring_count = new_tx_count;
785 adapter->rx_ring_count = new_rx_count;
786 goto clear_reset;
787 }
788
789 if (adapter->num_tx_queues > adapter->num_rx_queues)
790 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
791 else
792 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
793
794 if (!temp_ring) {
795 err = -ENOMEM;
796 goto clear_reset;
797 }
798
799 igb_down(adapter);
800
801 /*
802 * We can't just free everything and then setup again,
803 * because the ISRs in MSI-X mode get passed pointers
804 * to the tx and rx ring structs.
805 */
806 if (new_tx_count != adapter->tx_ring_count) {
807 for (i = 0; i < adapter->num_tx_queues; i++) {
808 memcpy(&temp_ring[i], adapter->tx_ring[i],
809 sizeof(struct igb_ring));
810
811 temp_ring[i].count = new_tx_count;
812 err = igb_setup_tx_resources(&temp_ring[i]);
813 if (err) {
814 while (i) {
815 i--;
816 igb_free_tx_resources(&temp_ring[i]);
817 }
818 goto err_setup;
819 }
820 }
821
822 for (i = 0; i < adapter->num_tx_queues; i++) {
823 igb_free_tx_resources(adapter->tx_ring[i]);
824
825 memcpy(adapter->tx_ring[i], &temp_ring[i],
826 sizeof(struct igb_ring));
827 }
828
829 adapter->tx_ring_count = new_tx_count;
830 }
831
832 if (new_rx_count != adapter->rx_ring_count) {
833 for (i = 0; i < adapter->num_rx_queues; i++) {
834 memcpy(&temp_ring[i], adapter->rx_ring[i],
835 sizeof(struct igb_ring));
836
837 temp_ring[i].count = new_rx_count;
838 err = igb_setup_rx_resources(&temp_ring[i]);
839 if (err) {
840 while (i) {
841 i--;
842 igb_free_rx_resources(&temp_ring[i]);
843 }
844 goto err_setup;
845 }
846
847 }
848
849 for (i = 0; i < adapter->num_rx_queues; i++) {
850 igb_free_rx_resources(adapter->rx_ring[i]);
851
852 memcpy(adapter->rx_ring[i], &temp_ring[i],
853 sizeof(struct igb_ring));
854 }
855
856 adapter->rx_ring_count = new_rx_count;
857 }
858 err_setup:
859 igb_up(adapter);
860 vfree(temp_ring);
861 clear_reset:
862 clear_bit(__IGB_RESETTING, &adapter->state);
863 return err;
864 }
865
866 /* ethtool register test data */
867 struct igb_reg_test {
868 u16 reg;
869 u16 reg_offset;
870 u16 array_len;
871 u16 test_type;
872 u32 mask;
873 u32 write;
874 };
875
876 /* In the hardware, registers are laid out either singly, in arrays
877 * spaced 0x100 bytes apart, or in contiguous tables. We assume
878 * most tests take place on arrays or single registers (handled
879 * as a single-element array) and special-case the tables.
880 * Table tests are always pattern tests.
881 *
882 * We also make provision for some required setup steps by specifying
883 * registers to be written without any read-back testing.
884 */
885
886 #define PATTERN_TEST 1
887 #define SET_READ_TEST 2
888 #define WRITE_NO_TEST 3
889 #define TABLE32_TEST 4
890 #define TABLE64_TEST_LO 5
891 #define TABLE64_TEST_HI 6
892
893 /* i210 reg test */
894 static struct igb_reg_test reg_test_i210[] = {
895 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
896 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
897 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
898 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
899 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
900 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
901 /* RDH is read-only for i210, only test RDT. */
902 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
903 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
904 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
905 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
906 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
907 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
908 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
909 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
910 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
911 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
912 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
913 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
914 { E1000_RA, 0, 16, TABLE64_TEST_LO,
915 0xFFFFFFFF, 0xFFFFFFFF },
916 { E1000_RA, 0, 16, TABLE64_TEST_HI,
917 0x900FFFFF, 0xFFFFFFFF },
918 { E1000_MTA, 0, 128, TABLE32_TEST,
919 0xFFFFFFFF, 0xFFFFFFFF },
920 { 0, 0, 0, 0, 0 }
921 };
922
923 /* i350 reg test */
924 static struct igb_reg_test reg_test_i350[] = {
925 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
926 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
927 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
928 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
929 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
930 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
931 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
932 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
933 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
934 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
935 /* RDH is read-only for i350, only test RDT. */
936 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
937 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
938 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
939 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
940 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
941 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
942 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
943 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
944 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
945 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
946 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
947 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
948 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
949 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
950 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
951 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
952 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
953 { E1000_RA, 0, 16, TABLE64_TEST_LO,
954 0xFFFFFFFF, 0xFFFFFFFF },
955 { E1000_RA, 0, 16, TABLE64_TEST_HI,
956 0xC3FFFFFF, 0xFFFFFFFF },
957 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
958 0xFFFFFFFF, 0xFFFFFFFF },
959 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
960 0xC3FFFFFF, 0xFFFFFFFF },
961 { E1000_MTA, 0, 128, TABLE32_TEST,
962 0xFFFFFFFF, 0xFFFFFFFF },
963 { 0, 0, 0, 0 }
964 };
965
966 /* 82580 reg test */
967 static struct igb_reg_test reg_test_82580[] = {
968 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
969 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
970 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
971 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
972 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
973 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
974 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
975 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
976 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
977 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
978 /* RDH is read-only for 82580, only test RDT. */
979 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
980 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
981 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
982 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
983 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
984 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
985 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
986 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
987 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
988 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
989 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
990 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
991 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
992 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
993 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
994 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
995 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
996 { E1000_RA, 0, 16, TABLE64_TEST_LO,
997 0xFFFFFFFF, 0xFFFFFFFF },
998 { E1000_RA, 0, 16, TABLE64_TEST_HI,
999 0x83FFFFFF, 0xFFFFFFFF },
1000 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
1001 0xFFFFFFFF, 0xFFFFFFFF },
1002 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
1003 0x83FFFFFF, 0xFFFFFFFF },
1004 { E1000_MTA, 0, 128, TABLE32_TEST,
1005 0xFFFFFFFF, 0xFFFFFFFF },
1006 { 0, 0, 0, 0 }
1007 };
1008
1009 /* 82576 reg test */
1010 static struct igb_reg_test reg_test_82576[] = {
1011 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1012 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1013 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1014 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1015 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1016 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1017 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1018 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1019 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1020 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1021 /* Enable all RX queues before testing. */
1022 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1023 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1024 /* RDH is read-only for 82576, only test RDT. */
1025 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1026 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1027 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1028 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1029 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1030 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1031 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1032 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1033 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1034 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1035 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1036 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1037 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1038 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1039 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1040 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1041 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1042 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1043 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1044 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1045 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1046 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1047 { 0, 0, 0, 0 }
1048 };
1049
1050 /* 82575 register test */
1051 static struct igb_reg_test reg_test_82575[] = {
1052 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1053 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1054 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1055 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1056 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1057 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1058 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1059 /* Enable all four RX queues before testing. */
1060 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1061 /* RDH is read-only for 82575, only test RDT. */
1062 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1063 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1064 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1065 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1066 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1067 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1068 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1069 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1070 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1071 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1072 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1073 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1074 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1075 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1076 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1077 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1078 { 0, 0, 0, 0 }
1079 };
1080
1081 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1082 int reg, u32 mask, u32 write)
1083 {
1084 struct e1000_hw *hw = &adapter->hw;
1085 u32 pat, val;
1086 static const u32 _test[] =
1087 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1088 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1089 wr32(reg, (_test[pat] & write));
1090 val = rd32(reg) & mask;
1091 if (val != (_test[pat] & write & mask)) {
1092 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1093 "failed: got 0x%08X expected 0x%08X\n",
1094 reg, val, (_test[pat] & write & mask));
1095 *data = reg;
1096 return 1;
1097 }
1098 }
1099
1100 return 0;
1101 }
1102
1103 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1104 int reg, u32 mask, u32 write)
1105 {
1106 struct e1000_hw *hw = &adapter->hw;
1107 u32 val;
1108 wr32(reg, write & mask);
1109 val = rd32(reg);
1110 if ((write & mask) != (val & mask)) {
1111 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1112 " got 0x%08X expected 0x%08X\n", reg,
1113 (val & mask), (write & mask));
1114 *data = reg;
1115 return 1;
1116 }
1117
1118 return 0;
1119 }
1120
1121 #define REG_PATTERN_TEST(reg, mask, write) \
1122 do { \
1123 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1124 return 1; \
1125 } while (0)
1126
1127 #define REG_SET_AND_CHECK(reg, mask, write) \
1128 do { \
1129 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1130 return 1; \
1131 } while (0)
1132
1133 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1134 {
1135 struct e1000_hw *hw = &adapter->hw;
1136 struct igb_reg_test *test;
1137 u32 value, before, after;
1138 u32 i, toggle;
1139
1140 switch (adapter->hw.mac.type) {
1141 case e1000_i350:
1142 test = reg_test_i350;
1143 toggle = 0x7FEFF3FF;
1144 break;
1145 case e1000_i210:
1146 case e1000_i211:
1147 test = reg_test_i210;
1148 toggle = 0x7FEFF3FF;
1149 break;
1150 case e1000_82580:
1151 test = reg_test_82580;
1152 toggle = 0x7FEFF3FF;
1153 break;
1154 case e1000_82576:
1155 test = reg_test_82576;
1156 toggle = 0x7FFFF3FF;
1157 break;
1158 default:
1159 test = reg_test_82575;
1160 toggle = 0x7FFFF3FF;
1161 break;
1162 }
1163
1164 /* Because the status register is such a special case,
1165 * we handle it separately from the rest of the register
1166 * tests. Some bits are read-only, some toggle, and some
1167 * are writable on newer MACs.
1168 */
1169 before = rd32(E1000_STATUS);
1170 value = (rd32(E1000_STATUS) & toggle);
1171 wr32(E1000_STATUS, toggle);
1172 after = rd32(E1000_STATUS) & toggle;
1173 if (value != after) {
1174 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1175 "got: 0x%08X expected: 0x%08X\n", after, value);
1176 *data = 1;
1177 return 1;
1178 }
1179 /* restore previous status */
1180 wr32(E1000_STATUS, before);
1181
1182 /* Perform the remainder of the register test, looping through
1183 * the test table until we either fail or reach the null entry.
1184 */
1185 while (test->reg) {
1186 for (i = 0; i < test->array_len; i++) {
1187 switch (test->test_type) {
1188 case PATTERN_TEST:
1189 REG_PATTERN_TEST(test->reg +
1190 (i * test->reg_offset),
1191 test->mask,
1192 test->write);
1193 break;
1194 case SET_READ_TEST:
1195 REG_SET_AND_CHECK(test->reg +
1196 (i * test->reg_offset),
1197 test->mask,
1198 test->write);
1199 break;
1200 case WRITE_NO_TEST:
1201 writel(test->write,
1202 (adapter->hw.hw_addr + test->reg)
1203 + (i * test->reg_offset));
1204 break;
1205 case TABLE32_TEST:
1206 REG_PATTERN_TEST(test->reg + (i * 4),
1207 test->mask,
1208 test->write);
1209 break;
1210 case TABLE64_TEST_LO:
1211 REG_PATTERN_TEST(test->reg + (i * 8),
1212 test->mask,
1213 test->write);
1214 break;
1215 case TABLE64_TEST_HI:
1216 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1217 test->mask,
1218 test->write);
1219 break;
1220 }
1221 }
1222 test++;
1223 }
1224
1225 *data = 0;
1226 return 0;
1227 }
1228
1229 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1230 {
1231 *data = 0;
1232
1233 /* Validate eeprom on all parts but i211 */
1234 if (adapter->hw.mac.type != e1000_i211) {
1235 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1236 *data = 2;
1237 }
1238
1239 return *data;
1240 }
1241
1242 static irqreturn_t igb_test_intr(int irq, void *data)
1243 {
1244 struct igb_adapter *adapter = (struct igb_adapter *) data;
1245 struct e1000_hw *hw = &adapter->hw;
1246
1247 adapter->test_icr |= rd32(E1000_ICR);
1248
1249 return IRQ_HANDLED;
1250 }
1251
1252 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1253 {
1254 struct e1000_hw *hw = &adapter->hw;
1255 struct net_device *netdev = adapter->netdev;
1256 u32 mask, ics_mask, i = 0, shared_int = true;
1257 u32 irq = adapter->pdev->irq;
1258
1259 *data = 0;
1260
1261 /* Hook up test interrupt handler just for this test */
1262 if (adapter->msix_entries) {
1263 if (request_irq(adapter->msix_entries[0].vector,
1264 igb_test_intr, 0, netdev->name, adapter)) {
1265 *data = 1;
1266 return -1;
1267 }
1268 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1269 shared_int = false;
1270 if (request_irq(irq,
1271 igb_test_intr, 0, netdev->name, adapter)) {
1272 *data = 1;
1273 return -1;
1274 }
1275 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1276 netdev->name, adapter)) {
1277 shared_int = false;
1278 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1279 netdev->name, adapter)) {
1280 *data = 1;
1281 return -1;
1282 }
1283 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1284 (shared_int ? "shared" : "unshared"));
1285
1286 /* Disable all the interrupts */
1287 wr32(E1000_IMC, ~0);
1288 wrfl();
1289 msleep(10);
1290
1291 /* Define all writable bits for ICS */
1292 switch (hw->mac.type) {
1293 case e1000_82575:
1294 ics_mask = 0x37F47EDD;
1295 break;
1296 case e1000_82576:
1297 ics_mask = 0x77D4FBFD;
1298 break;
1299 case e1000_82580:
1300 ics_mask = 0x77DCFED5;
1301 break;
1302 case e1000_i350:
1303 case e1000_i210:
1304 case e1000_i211:
1305 ics_mask = 0x77DCFED5;
1306 break;
1307 default:
1308 ics_mask = 0x7FFFFFFF;
1309 break;
1310 }
1311
1312 /* Test each interrupt */
1313 for (; i < 31; i++) {
1314 /* Interrupt to test */
1315 mask = 1 << i;
1316
1317 if (!(mask & ics_mask))
1318 continue;
1319
1320 if (!shared_int) {
1321 /* Disable the interrupt to be reported in
1322 * the cause register and then force the same
1323 * interrupt and see if one gets posted. If
1324 * an interrupt was posted to the bus, the
1325 * test failed.
1326 */
1327 adapter->test_icr = 0;
1328
1329 /* Flush any pending interrupts */
1330 wr32(E1000_ICR, ~0);
1331
1332 wr32(E1000_IMC, mask);
1333 wr32(E1000_ICS, mask);
1334 wrfl();
1335 msleep(10);
1336
1337 if (adapter->test_icr & mask) {
1338 *data = 3;
1339 break;
1340 }
1341 }
1342
1343 /* Enable the interrupt to be reported in
1344 * the cause register and then force the same
1345 * interrupt and see if one gets posted. If
1346 * an interrupt was not posted to the bus, the
1347 * test failed.
1348 */
1349 adapter->test_icr = 0;
1350
1351 /* Flush any pending interrupts */
1352 wr32(E1000_ICR, ~0);
1353
1354 wr32(E1000_IMS, mask);
1355 wr32(E1000_ICS, mask);
1356 wrfl();
1357 msleep(10);
1358
1359 if (!(adapter->test_icr & mask)) {
1360 *data = 4;
1361 break;
1362 }
1363
1364 if (!shared_int) {
1365 /* Disable the other interrupts to be reported in
1366 * the cause register and then force the other
1367 * interrupts and see if any get posted. If
1368 * an interrupt was posted to the bus, the
1369 * test failed.
1370 */
1371 adapter->test_icr = 0;
1372
1373 /* Flush any pending interrupts */
1374 wr32(E1000_ICR, ~0);
1375
1376 wr32(E1000_IMC, ~mask);
1377 wr32(E1000_ICS, ~mask);
1378 wrfl();
1379 msleep(10);
1380
1381 if (adapter->test_icr & mask) {
1382 *data = 5;
1383 break;
1384 }
1385 }
1386 }
1387
1388 /* Disable all the interrupts */
1389 wr32(E1000_IMC, ~0);
1390 wrfl();
1391 msleep(10);
1392
1393 /* Unhook test interrupt handler */
1394 if (adapter->msix_entries)
1395 free_irq(adapter->msix_entries[0].vector, adapter);
1396 else
1397 free_irq(irq, adapter);
1398
1399 return *data;
1400 }
1401
1402 static void igb_free_desc_rings(struct igb_adapter *adapter)
1403 {
1404 igb_free_tx_resources(&adapter->test_tx_ring);
1405 igb_free_rx_resources(&adapter->test_rx_ring);
1406 }
1407
1408 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1409 {
1410 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1411 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1412 struct e1000_hw *hw = &adapter->hw;
1413 int ret_val;
1414
1415 /* Setup Tx descriptor ring and Tx buffers */
1416 tx_ring->count = IGB_DEFAULT_TXD;
1417 tx_ring->dev = &adapter->pdev->dev;
1418 tx_ring->netdev = adapter->netdev;
1419 tx_ring->reg_idx = adapter->vfs_allocated_count;
1420
1421 if (igb_setup_tx_resources(tx_ring)) {
1422 ret_val = 1;
1423 goto err_nomem;
1424 }
1425
1426 igb_setup_tctl(adapter);
1427 igb_configure_tx_ring(adapter, tx_ring);
1428
1429 /* Setup Rx descriptor ring and Rx buffers */
1430 rx_ring->count = IGB_DEFAULT_RXD;
1431 rx_ring->dev = &adapter->pdev->dev;
1432 rx_ring->netdev = adapter->netdev;
1433 rx_ring->reg_idx = adapter->vfs_allocated_count;
1434
1435 if (igb_setup_rx_resources(rx_ring)) {
1436 ret_val = 3;
1437 goto err_nomem;
1438 }
1439
1440 /* set the default queue to queue 0 of PF */
1441 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1442
1443 /* enable receive ring */
1444 igb_setup_rctl(adapter);
1445 igb_configure_rx_ring(adapter, rx_ring);
1446
1447 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1448
1449 return 0;
1450
1451 err_nomem:
1452 igb_free_desc_rings(adapter);
1453 return ret_val;
1454 }
1455
1456 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1457 {
1458 struct e1000_hw *hw = &adapter->hw;
1459
1460 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1461 igb_write_phy_reg(hw, 29, 0x001F);
1462 igb_write_phy_reg(hw, 30, 0x8FFC);
1463 igb_write_phy_reg(hw, 29, 0x001A);
1464 igb_write_phy_reg(hw, 30, 0x8FF0);
1465 }
1466
1467 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1468 {
1469 struct e1000_hw *hw = &adapter->hw;
1470 u32 ctrl_reg = 0;
1471 u16 phy_reg = 0;
1472
1473 hw->mac.autoneg = false;
1474
1475 switch (hw->phy.type) {
1476 case e1000_phy_m88:
1477 /* Auto-MDI/MDIX Off */
1478 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1479 /* reset to update Auto-MDI/MDIX */
1480 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1481 /* autoneg off */
1482 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1483 break;
1484 case e1000_phy_82580:
1485 /* enable MII loopback */
1486 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1487 break;
1488 case e1000_phy_i210:
1489 /* set loopback speed in PHY */
1490 igb_read_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1491 &phy_reg);
1492 phy_reg |= GS40G_MAC_SPEED_1G;
1493 igb_write_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1494 phy_reg);
1495 ctrl_reg = rd32(E1000_CTRL_EXT);
1496 default:
1497 break;
1498 }
1499
1500 /* force 1000, set loopback */
1501 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1502
1503 /* Now set up the MAC to the same speed/duplex as the PHY. */
1504 ctrl_reg = rd32(E1000_CTRL);
1505 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1506 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1507 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1508 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1509 E1000_CTRL_FD | /* Force Duplex to FULL */
1510 E1000_CTRL_SLU); /* Set link up enable bit */
1511
1512 if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1513 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1514
1515 wr32(E1000_CTRL, ctrl_reg);
1516
1517 /* Disable the receiver on the PHY so when a cable is plugged in, the
1518 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1519 */
1520 if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1521 igb_phy_disable_receiver(adapter);
1522
1523 udelay(500);
1524
1525 return 0;
1526 }
1527
1528 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1529 {
1530 return igb_integrated_phy_loopback(adapter);
1531 }
1532
1533 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1534 {
1535 struct e1000_hw *hw = &adapter->hw;
1536 u32 reg;
1537
1538 reg = rd32(E1000_CTRL_EXT);
1539
1540 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1541 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1542 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1543 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1544 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1545 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1546
1547 /* Enable DH89xxCC MPHY for near end loopback */
1548 reg = rd32(E1000_MPHY_ADDR_CTL);
1549 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1550 E1000_MPHY_PCS_CLK_REG_OFFSET;
1551 wr32(E1000_MPHY_ADDR_CTL, reg);
1552
1553 reg = rd32(E1000_MPHY_DATA);
1554 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1555 wr32(E1000_MPHY_DATA, reg);
1556 }
1557
1558 reg = rd32(E1000_RCTL);
1559 reg |= E1000_RCTL_LBM_TCVR;
1560 wr32(E1000_RCTL, reg);
1561
1562 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1563
1564 reg = rd32(E1000_CTRL);
1565 reg &= ~(E1000_CTRL_RFCE |
1566 E1000_CTRL_TFCE |
1567 E1000_CTRL_LRST);
1568 reg |= E1000_CTRL_SLU |
1569 E1000_CTRL_FD;
1570 wr32(E1000_CTRL, reg);
1571
1572 /* Unset switch control to serdes energy detect */
1573 reg = rd32(E1000_CONNSW);
1574 reg &= ~E1000_CONNSW_ENRGSRC;
1575 wr32(E1000_CONNSW, reg);
1576
1577 /* Set PCS register for forced speed */
1578 reg = rd32(E1000_PCS_LCTL);
1579 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1580 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1581 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1582 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1583 E1000_PCS_LCTL_FSD | /* Force Speed */
1584 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1585 wr32(E1000_PCS_LCTL, reg);
1586
1587 return 0;
1588 }
1589
1590 return igb_set_phy_loopback(adapter);
1591 }
1592
1593 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1594 {
1595 struct e1000_hw *hw = &adapter->hw;
1596 u32 rctl;
1597 u16 phy_reg;
1598
1599 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1600 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1601 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1602 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1603 u32 reg;
1604
1605 /* Disable near end loopback on DH89xxCC */
1606 reg = rd32(E1000_MPHY_ADDR_CTL);
1607 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1608 E1000_MPHY_PCS_CLK_REG_OFFSET;
1609 wr32(E1000_MPHY_ADDR_CTL, reg);
1610
1611 reg = rd32(E1000_MPHY_DATA);
1612 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1613 wr32(E1000_MPHY_DATA, reg);
1614 }
1615
1616 rctl = rd32(E1000_RCTL);
1617 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1618 wr32(E1000_RCTL, rctl);
1619
1620 hw->mac.autoneg = true;
1621 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1622 if (phy_reg & MII_CR_LOOPBACK) {
1623 phy_reg &= ~MII_CR_LOOPBACK;
1624 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1625 igb_phy_sw_reset(hw);
1626 }
1627 }
1628
1629 static void igb_create_lbtest_frame(struct sk_buff *skb,
1630 unsigned int frame_size)
1631 {
1632 memset(skb->data, 0xFF, frame_size);
1633 frame_size /= 2;
1634 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1635 memset(&skb->data[frame_size + 10], 0xBE, 1);
1636 memset(&skb->data[frame_size + 12], 0xAF, 1);
1637 }
1638
1639 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1640 {
1641 frame_size /= 2;
1642 if (*(skb->data + 3) == 0xFF) {
1643 if ((*(skb->data + frame_size + 10) == 0xBE) &&
1644 (*(skb->data + frame_size + 12) == 0xAF)) {
1645 return 0;
1646 }
1647 }
1648 return 13;
1649 }
1650
1651 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1652 struct igb_ring *tx_ring,
1653 unsigned int size)
1654 {
1655 union e1000_adv_rx_desc *rx_desc;
1656 struct igb_rx_buffer *rx_buffer_info;
1657 struct igb_tx_buffer *tx_buffer_info;
1658 struct netdev_queue *txq;
1659 u16 rx_ntc, tx_ntc, count = 0;
1660 unsigned int total_bytes = 0, total_packets = 0;
1661
1662 /* initialize next to clean and descriptor values */
1663 rx_ntc = rx_ring->next_to_clean;
1664 tx_ntc = tx_ring->next_to_clean;
1665 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1666
1667 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1668 /* check rx buffer */
1669 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1670
1671 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1672 dma_unmap_single(rx_ring->dev,
1673 rx_buffer_info->dma,
1674 IGB_RX_HDR_LEN,
1675 DMA_FROM_DEVICE);
1676 rx_buffer_info->dma = 0;
1677
1678 /* verify contents of skb */
1679 if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1680 count++;
1681
1682 /* unmap buffer on tx side */
1683 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1684 total_bytes += tx_buffer_info->bytecount;
1685 total_packets += tx_buffer_info->gso_segs;
1686 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1687
1688 /* increment rx/tx next to clean counters */
1689 rx_ntc++;
1690 if (rx_ntc == rx_ring->count)
1691 rx_ntc = 0;
1692 tx_ntc++;
1693 if (tx_ntc == tx_ring->count)
1694 tx_ntc = 0;
1695
1696 /* fetch next descriptor */
1697 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1698 }
1699
1700 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->queue_index);
1701 netdev_tx_completed_queue(txq, total_packets, total_bytes);
1702
1703 /* re-map buffers to ring, store next to clean values */
1704 igb_alloc_rx_buffers(rx_ring, count);
1705 rx_ring->next_to_clean = rx_ntc;
1706 tx_ring->next_to_clean = tx_ntc;
1707
1708 return count;
1709 }
1710
1711 static int igb_run_loopback_test(struct igb_adapter *adapter)
1712 {
1713 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1714 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1715 u16 i, j, lc, good_cnt;
1716 int ret_val = 0;
1717 unsigned int size = IGB_RX_HDR_LEN;
1718 netdev_tx_t tx_ret_val;
1719 struct sk_buff *skb;
1720
1721 /* allocate test skb */
1722 skb = alloc_skb(size, GFP_KERNEL);
1723 if (!skb)
1724 return 11;
1725
1726 /* place data into test skb */
1727 igb_create_lbtest_frame(skb, size);
1728 skb_put(skb, size);
1729
1730 /*
1731 * Calculate the loop count based on the largest descriptor ring
1732 * The idea is to wrap the largest ring a number of times using 64
1733 * send/receive pairs during each loop
1734 */
1735
1736 if (rx_ring->count <= tx_ring->count)
1737 lc = ((tx_ring->count / 64) * 2) + 1;
1738 else
1739 lc = ((rx_ring->count / 64) * 2) + 1;
1740
1741 for (j = 0; j <= lc; j++) { /* loop count loop */
1742 /* reset count of good packets */
1743 good_cnt = 0;
1744
1745 /* place 64 packets on the transmit queue*/
1746 for (i = 0; i < 64; i++) {
1747 skb_get(skb);
1748 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1749 if (tx_ret_val == NETDEV_TX_OK)
1750 good_cnt++;
1751 }
1752
1753 if (good_cnt != 64) {
1754 ret_val = 12;
1755 break;
1756 }
1757
1758 /* allow 200 milliseconds for packets to go from tx to rx */
1759 msleep(200);
1760
1761 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1762 if (good_cnt != 64) {
1763 ret_val = 13;
1764 break;
1765 }
1766 } /* end loop count loop */
1767
1768 /* free the original skb */
1769 kfree_skb(skb);
1770
1771 return ret_val;
1772 }
1773
1774 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1775 {
1776 /* PHY loopback cannot be performed if SoL/IDER
1777 * sessions are active */
1778 if (igb_check_reset_block(&adapter->hw)) {
1779 dev_err(&adapter->pdev->dev,
1780 "Cannot do PHY loopback test "
1781 "when SoL/IDER is active.\n");
1782 *data = 0;
1783 goto out;
1784 }
1785 if ((adapter->hw.mac.type == e1000_i210)
1786 || (adapter->hw.mac.type == e1000_i210)) {
1787 dev_err(&adapter->pdev->dev,
1788 "Loopback test not supported "
1789 "on this part at this time.\n");
1790 *data = 0;
1791 goto out;
1792 }
1793 *data = igb_setup_desc_rings(adapter);
1794 if (*data)
1795 goto out;
1796 *data = igb_setup_loopback_test(adapter);
1797 if (*data)
1798 goto err_loopback;
1799 *data = igb_run_loopback_test(adapter);
1800 igb_loopback_cleanup(adapter);
1801
1802 err_loopback:
1803 igb_free_desc_rings(adapter);
1804 out:
1805 return *data;
1806 }
1807
1808 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1809 {
1810 struct e1000_hw *hw = &adapter->hw;
1811 *data = 0;
1812 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1813 int i = 0;
1814 hw->mac.serdes_has_link = false;
1815
1816 /* On some blade server designs, link establishment
1817 * could take as long as 2-3 minutes */
1818 do {
1819 hw->mac.ops.check_for_link(&adapter->hw);
1820 if (hw->mac.serdes_has_link)
1821 return *data;
1822 msleep(20);
1823 } while (i++ < 3750);
1824
1825 *data = 1;
1826 } else {
1827 hw->mac.ops.check_for_link(&adapter->hw);
1828 if (hw->mac.autoneg)
1829 msleep(4000);
1830
1831 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1832 *data = 1;
1833 }
1834 return *data;
1835 }
1836
1837 static void igb_diag_test(struct net_device *netdev,
1838 struct ethtool_test *eth_test, u64 *data)
1839 {
1840 struct igb_adapter *adapter = netdev_priv(netdev);
1841 u16 autoneg_advertised;
1842 u8 forced_speed_duplex, autoneg;
1843 bool if_running = netif_running(netdev);
1844
1845 set_bit(__IGB_TESTING, &adapter->state);
1846 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1847 /* Offline tests */
1848
1849 /* save speed, duplex, autoneg settings */
1850 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1851 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1852 autoneg = adapter->hw.mac.autoneg;
1853
1854 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1855
1856 /* power up link for link test */
1857 igb_power_up_link(adapter);
1858
1859 /* Link test performed before hardware reset so autoneg doesn't
1860 * interfere with test result */
1861 if (igb_link_test(adapter, &data[4]))
1862 eth_test->flags |= ETH_TEST_FL_FAILED;
1863
1864 if (if_running)
1865 /* indicate we're in test mode */
1866 dev_close(netdev);
1867 else
1868 igb_reset(adapter);
1869
1870 if (igb_reg_test(adapter, &data[0]))
1871 eth_test->flags |= ETH_TEST_FL_FAILED;
1872
1873 igb_reset(adapter);
1874 if (igb_eeprom_test(adapter, &data[1]))
1875 eth_test->flags |= ETH_TEST_FL_FAILED;
1876
1877 igb_reset(adapter);
1878 if (igb_intr_test(adapter, &data[2]))
1879 eth_test->flags |= ETH_TEST_FL_FAILED;
1880
1881 igb_reset(adapter);
1882 /* power up link for loopback test */
1883 igb_power_up_link(adapter);
1884 if (igb_loopback_test(adapter, &data[3]))
1885 eth_test->flags |= ETH_TEST_FL_FAILED;
1886
1887 /* restore speed, duplex, autoneg settings */
1888 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1889 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1890 adapter->hw.mac.autoneg = autoneg;
1891
1892 /* force this routine to wait until autoneg complete/timeout */
1893 adapter->hw.phy.autoneg_wait_to_complete = true;
1894 igb_reset(adapter);
1895 adapter->hw.phy.autoneg_wait_to_complete = false;
1896
1897 clear_bit(__IGB_TESTING, &adapter->state);
1898 if (if_running)
1899 dev_open(netdev);
1900 } else {
1901 dev_info(&adapter->pdev->dev, "online testing starting\n");
1902
1903 /* PHY is powered down when interface is down */
1904 if (if_running && igb_link_test(adapter, &data[4]))
1905 eth_test->flags |= ETH_TEST_FL_FAILED;
1906 else
1907 data[4] = 0;
1908
1909 /* Online tests aren't run; pass by default */
1910 data[0] = 0;
1911 data[1] = 0;
1912 data[2] = 0;
1913 data[3] = 0;
1914
1915 clear_bit(__IGB_TESTING, &adapter->state);
1916 }
1917 msleep_interruptible(4 * 1000);
1918 }
1919
1920 static int igb_wol_exclusion(struct igb_adapter *adapter,
1921 struct ethtool_wolinfo *wol)
1922 {
1923 struct e1000_hw *hw = &adapter->hw;
1924 int retval = 1; /* fail by default */
1925
1926 switch (hw->device_id) {
1927 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1928 /* WoL not supported */
1929 wol->supported = 0;
1930 break;
1931 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1932 case E1000_DEV_ID_82576_FIBER:
1933 case E1000_DEV_ID_82576_SERDES:
1934 /* Wake events not supported on port B */
1935 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1936 wol->supported = 0;
1937 break;
1938 }
1939 /* return success for non excluded adapter ports */
1940 retval = 0;
1941 break;
1942 case E1000_DEV_ID_82576_QUAD_COPPER:
1943 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1944 /* quad port adapters only support WoL on port A */
1945 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1946 wol->supported = 0;
1947 break;
1948 }
1949 /* return success for non excluded adapter ports */
1950 retval = 0;
1951 break;
1952 default:
1953 /* dual port cards only support WoL on port A from now on
1954 * unless it was enabled in the eeprom for port B
1955 * so exclude FUNC_1 ports from having WoL enabled */
1956 if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1957 !adapter->eeprom_wol) {
1958 wol->supported = 0;
1959 break;
1960 }
1961
1962 retval = 0;
1963 }
1964
1965 return retval;
1966 }
1967
1968 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1969 {
1970 struct igb_adapter *adapter = netdev_priv(netdev);
1971
1972 wol->supported = WAKE_UCAST | WAKE_MCAST |
1973 WAKE_BCAST | WAKE_MAGIC |
1974 WAKE_PHY;
1975 wol->wolopts = 0;
1976
1977 /* this function will set ->supported = 0 and return 1 if wol is not
1978 * supported by this hardware */
1979 if (igb_wol_exclusion(adapter, wol) ||
1980 !device_can_wakeup(&adapter->pdev->dev))
1981 return;
1982
1983 /* apply any specific unsupported masks here */
1984 switch (adapter->hw.device_id) {
1985 default:
1986 break;
1987 }
1988
1989 if (adapter->wol & E1000_WUFC_EX)
1990 wol->wolopts |= WAKE_UCAST;
1991 if (adapter->wol & E1000_WUFC_MC)
1992 wol->wolopts |= WAKE_MCAST;
1993 if (adapter->wol & E1000_WUFC_BC)
1994 wol->wolopts |= WAKE_BCAST;
1995 if (adapter->wol & E1000_WUFC_MAG)
1996 wol->wolopts |= WAKE_MAGIC;
1997 if (adapter->wol & E1000_WUFC_LNKC)
1998 wol->wolopts |= WAKE_PHY;
1999 }
2000
2001 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2002 {
2003 struct igb_adapter *adapter = netdev_priv(netdev);
2004
2005 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2006 return -EOPNOTSUPP;
2007
2008 if (igb_wol_exclusion(adapter, wol) ||
2009 !device_can_wakeup(&adapter->pdev->dev))
2010 return wol->wolopts ? -EOPNOTSUPP : 0;
2011
2012 /* these settings will always override what we currently have */
2013 adapter->wol = 0;
2014
2015 if (wol->wolopts & WAKE_UCAST)
2016 adapter->wol |= E1000_WUFC_EX;
2017 if (wol->wolopts & WAKE_MCAST)
2018 adapter->wol |= E1000_WUFC_MC;
2019 if (wol->wolopts & WAKE_BCAST)
2020 adapter->wol |= E1000_WUFC_BC;
2021 if (wol->wolopts & WAKE_MAGIC)
2022 adapter->wol |= E1000_WUFC_MAG;
2023 if (wol->wolopts & WAKE_PHY)
2024 adapter->wol |= E1000_WUFC_LNKC;
2025 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2026
2027 return 0;
2028 }
2029
2030 /* bit defines for adapter->led_status */
2031 #define IGB_LED_ON 0
2032
2033 static int igb_set_phys_id(struct net_device *netdev,
2034 enum ethtool_phys_id_state state)
2035 {
2036 struct igb_adapter *adapter = netdev_priv(netdev);
2037 struct e1000_hw *hw = &adapter->hw;
2038
2039 switch (state) {
2040 case ETHTOOL_ID_ACTIVE:
2041 igb_blink_led(hw);
2042 return 2;
2043 case ETHTOOL_ID_ON:
2044 igb_blink_led(hw);
2045 break;
2046 case ETHTOOL_ID_OFF:
2047 igb_led_off(hw);
2048 break;
2049 case ETHTOOL_ID_INACTIVE:
2050 igb_led_off(hw);
2051 clear_bit(IGB_LED_ON, &adapter->led_status);
2052 igb_cleanup_led(hw);
2053 break;
2054 }
2055
2056 return 0;
2057 }
2058
2059 static int igb_set_coalesce(struct net_device *netdev,
2060 struct ethtool_coalesce *ec)
2061 {
2062 struct igb_adapter *adapter = netdev_priv(netdev);
2063 int i;
2064
2065 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2066 ((ec->rx_coalesce_usecs > 3) &&
2067 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2068 (ec->rx_coalesce_usecs == 2))
2069 return -EINVAL;
2070
2071 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2072 ((ec->tx_coalesce_usecs > 3) &&
2073 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2074 (ec->tx_coalesce_usecs == 2))
2075 return -EINVAL;
2076
2077 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2078 return -EINVAL;
2079
2080 /* If ITR is disabled, disable DMAC */
2081 if (ec->rx_coalesce_usecs == 0) {
2082 if (adapter->flags & IGB_FLAG_DMAC)
2083 adapter->flags &= ~IGB_FLAG_DMAC;
2084 }
2085
2086 /* convert to rate of irq's per second */
2087 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2088 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2089 else
2090 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2091
2092 /* convert to rate of irq's per second */
2093 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2094 adapter->tx_itr_setting = adapter->rx_itr_setting;
2095 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2096 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2097 else
2098 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2099
2100 for (i = 0; i < adapter->num_q_vectors; i++) {
2101 struct igb_q_vector *q_vector = adapter->q_vector[i];
2102 q_vector->tx.work_limit = adapter->tx_work_limit;
2103 if (q_vector->rx.ring)
2104 q_vector->itr_val = adapter->rx_itr_setting;
2105 else
2106 q_vector->itr_val = adapter->tx_itr_setting;
2107 if (q_vector->itr_val && q_vector->itr_val <= 3)
2108 q_vector->itr_val = IGB_START_ITR;
2109 q_vector->set_itr = 1;
2110 }
2111
2112 return 0;
2113 }
2114
2115 static int igb_get_coalesce(struct net_device *netdev,
2116 struct ethtool_coalesce *ec)
2117 {
2118 struct igb_adapter *adapter = netdev_priv(netdev);
2119
2120 if (adapter->rx_itr_setting <= 3)
2121 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2122 else
2123 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2124
2125 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2126 if (adapter->tx_itr_setting <= 3)
2127 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2128 else
2129 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2130 }
2131
2132 return 0;
2133 }
2134
2135 static int igb_nway_reset(struct net_device *netdev)
2136 {
2137 struct igb_adapter *adapter = netdev_priv(netdev);
2138 if (netif_running(netdev))
2139 igb_reinit_locked(adapter);
2140 return 0;
2141 }
2142
2143 static int igb_get_sset_count(struct net_device *netdev, int sset)
2144 {
2145 switch (sset) {
2146 case ETH_SS_STATS:
2147 return IGB_STATS_LEN;
2148 case ETH_SS_TEST:
2149 return IGB_TEST_LEN;
2150 default:
2151 return -ENOTSUPP;
2152 }
2153 }
2154
2155 static void igb_get_ethtool_stats(struct net_device *netdev,
2156 struct ethtool_stats *stats, u64 *data)
2157 {
2158 struct igb_adapter *adapter = netdev_priv(netdev);
2159 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2160 unsigned int start;
2161 struct igb_ring *ring;
2162 int i, j;
2163 char *p;
2164
2165 spin_lock(&adapter->stats64_lock);
2166 igb_update_stats(adapter, net_stats);
2167
2168 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2169 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2170 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2171 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2172 }
2173 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2174 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2175 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2176 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2177 }
2178 for (j = 0; j < adapter->num_tx_queues; j++) {
2179 u64 restart2;
2180
2181 ring = adapter->tx_ring[j];
2182 do {
2183 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2184 data[i] = ring->tx_stats.packets;
2185 data[i+1] = ring->tx_stats.bytes;
2186 data[i+2] = ring->tx_stats.restart_queue;
2187 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2188 do {
2189 start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2190 restart2 = ring->tx_stats.restart_queue2;
2191 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2192 data[i+2] += restart2;
2193
2194 i += IGB_TX_QUEUE_STATS_LEN;
2195 }
2196 for (j = 0; j < adapter->num_rx_queues; j++) {
2197 ring = adapter->rx_ring[j];
2198 do {
2199 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2200 data[i] = ring->rx_stats.packets;
2201 data[i+1] = ring->rx_stats.bytes;
2202 data[i+2] = ring->rx_stats.drops;
2203 data[i+3] = ring->rx_stats.csum_err;
2204 data[i+4] = ring->rx_stats.alloc_failed;
2205 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2206 i += IGB_RX_QUEUE_STATS_LEN;
2207 }
2208 spin_unlock(&adapter->stats64_lock);
2209 }
2210
2211 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2212 {
2213 struct igb_adapter *adapter = netdev_priv(netdev);
2214 u8 *p = data;
2215 int i;
2216
2217 switch (stringset) {
2218 case ETH_SS_TEST:
2219 memcpy(data, *igb_gstrings_test,
2220 IGB_TEST_LEN*ETH_GSTRING_LEN);
2221 break;
2222 case ETH_SS_STATS:
2223 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2224 memcpy(p, igb_gstrings_stats[i].stat_string,
2225 ETH_GSTRING_LEN);
2226 p += ETH_GSTRING_LEN;
2227 }
2228 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2229 memcpy(p, igb_gstrings_net_stats[i].stat_string,
2230 ETH_GSTRING_LEN);
2231 p += ETH_GSTRING_LEN;
2232 }
2233 for (i = 0; i < adapter->num_tx_queues; i++) {
2234 sprintf(p, "tx_queue_%u_packets", i);
2235 p += ETH_GSTRING_LEN;
2236 sprintf(p, "tx_queue_%u_bytes", i);
2237 p += ETH_GSTRING_LEN;
2238 sprintf(p, "tx_queue_%u_restart", i);
2239 p += ETH_GSTRING_LEN;
2240 }
2241 for (i = 0; i < adapter->num_rx_queues; i++) {
2242 sprintf(p, "rx_queue_%u_packets", i);
2243 p += ETH_GSTRING_LEN;
2244 sprintf(p, "rx_queue_%u_bytes", i);
2245 p += ETH_GSTRING_LEN;
2246 sprintf(p, "rx_queue_%u_drops", i);
2247 p += ETH_GSTRING_LEN;
2248 sprintf(p, "rx_queue_%u_csum_err", i);
2249 p += ETH_GSTRING_LEN;
2250 sprintf(p, "rx_queue_%u_alloc_failed", i);
2251 p += ETH_GSTRING_LEN;
2252 }
2253 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2254 break;
2255 }
2256 }
2257
2258 static int igb_ethtool_begin(struct net_device *netdev)
2259 {
2260 struct igb_adapter *adapter = netdev_priv(netdev);
2261 pm_runtime_get_sync(&adapter->pdev->dev);
2262 return 0;
2263 }
2264
2265 static void igb_ethtool_complete(struct net_device *netdev)
2266 {
2267 struct igb_adapter *adapter = netdev_priv(netdev);
2268 pm_runtime_put(&adapter->pdev->dev);
2269 }
2270
2271 #ifdef CONFIG_IGB_PTP
2272 static int igb_ethtool_get_ts_info(struct net_device *dev,
2273 struct ethtool_ts_info *info)
2274 {
2275 struct igb_adapter *adapter = netdev_priv(dev);
2276
2277 info->so_timestamping =
2278 SOF_TIMESTAMPING_TX_HARDWARE |
2279 SOF_TIMESTAMPING_RX_HARDWARE |
2280 SOF_TIMESTAMPING_RAW_HARDWARE;
2281
2282 if (adapter->ptp_clock)
2283 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2284 else
2285 info->phc_index = -1;
2286
2287 info->tx_types =
2288 (1 << HWTSTAMP_TX_OFF) |
2289 (1 << HWTSTAMP_TX_ON);
2290
2291 info->rx_filters =
2292 (1 << HWTSTAMP_FILTER_NONE) |
2293 (1 << HWTSTAMP_FILTER_ALL) |
2294 (1 << HWTSTAMP_FILTER_SOME) |
2295 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2296 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2297 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2298
2299 return 0;
2300 }
2301
2302 #endif
2303 static const struct ethtool_ops igb_ethtool_ops = {
2304 .get_settings = igb_get_settings,
2305 .set_settings = igb_set_settings,
2306 .get_drvinfo = igb_get_drvinfo,
2307 .get_regs_len = igb_get_regs_len,
2308 .get_regs = igb_get_regs,
2309 .get_wol = igb_get_wol,
2310 .set_wol = igb_set_wol,
2311 .get_msglevel = igb_get_msglevel,
2312 .set_msglevel = igb_set_msglevel,
2313 .nway_reset = igb_nway_reset,
2314 .get_link = igb_get_link,
2315 .get_eeprom_len = igb_get_eeprom_len,
2316 .get_eeprom = igb_get_eeprom,
2317 .set_eeprom = igb_set_eeprom,
2318 .get_ringparam = igb_get_ringparam,
2319 .set_ringparam = igb_set_ringparam,
2320 .get_pauseparam = igb_get_pauseparam,
2321 .set_pauseparam = igb_set_pauseparam,
2322 .self_test = igb_diag_test,
2323 .get_strings = igb_get_strings,
2324 .set_phys_id = igb_set_phys_id,
2325 .get_sset_count = igb_get_sset_count,
2326 .get_ethtool_stats = igb_get_ethtool_stats,
2327 .get_coalesce = igb_get_coalesce,
2328 .set_coalesce = igb_set_coalesce,
2329 .begin = igb_ethtool_begin,
2330 .complete = igb_ethtool_complete,
2331 #ifdef CONFIG_IGB_PTP
2332 .get_ts_info = igb_ethtool_get_ts_info,
2333 #endif
2334 };
2335
2336 void igb_set_ethtool_ops(struct net_device *netdev)
2337 {
2338 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2339 }
This page took 0.132246 seconds and 5 git commands to generate.