a84297c85fb1250342fa7b8d3e52a0a64be626a0
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24 /* ethtool support for igb */
25
26 #include <linux/vmalloc.h>
27 #include <linux/netdevice.h>
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/if_ether.h>
32 #include <linux/ethtool.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/highmem.h>
37 #include <linux/mdio.h>
38
39 #include "igb.h"
40
41 struct igb_stats {
42 char stat_string[ETH_GSTRING_LEN];
43 int sizeof_stat;
44 int stat_offset;
45 };
46
47 #define IGB_STAT(_name, _stat) { \
48 .stat_string = _name, \
49 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
50 .stat_offset = offsetof(struct igb_adapter, _stat) \
51 }
52 static const struct igb_stats igb_gstrings_stats[] = {
53 IGB_STAT("rx_packets", stats.gprc),
54 IGB_STAT("tx_packets", stats.gptc),
55 IGB_STAT("rx_bytes", stats.gorc),
56 IGB_STAT("tx_bytes", stats.gotc),
57 IGB_STAT("rx_broadcast", stats.bprc),
58 IGB_STAT("tx_broadcast", stats.bptc),
59 IGB_STAT("rx_multicast", stats.mprc),
60 IGB_STAT("tx_multicast", stats.mptc),
61 IGB_STAT("multicast", stats.mprc),
62 IGB_STAT("collisions", stats.colc),
63 IGB_STAT("rx_crc_errors", stats.crcerrs),
64 IGB_STAT("rx_no_buffer_count", stats.rnbc),
65 IGB_STAT("rx_missed_errors", stats.mpc),
66 IGB_STAT("tx_aborted_errors", stats.ecol),
67 IGB_STAT("tx_carrier_errors", stats.tncrs),
68 IGB_STAT("tx_window_errors", stats.latecol),
69 IGB_STAT("tx_abort_late_coll", stats.latecol),
70 IGB_STAT("tx_deferred_ok", stats.dc),
71 IGB_STAT("tx_single_coll_ok", stats.scc),
72 IGB_STAT("tx_multi_coll_ok", stats.mcc),
73 IGB_STAT("tx_timeout_count", tx_timeout_count),
74 IGB_STAT("rx_long_length_errors", stats.roc),
75 IGB_STAT("rx_short_length_errors", stats.ruc),
76 IGB_STAT("rx_align_errors", stats.algnerrc),
77 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
78 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
79 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
80 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
81 IGB_STAT("tx_flow_control_xon", stats.xontxc),
82 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
83 IGB_STAT("rx_long_byte_count", stats.gorc),
84 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
85 IGB_STAT("tx_smbus", stats.mgptc),
86 IGB_STAT("rx_smbus", stats.mgprc),
87 IGB_STAT("dropped_smbus", stats.mgpdc),
88 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
89 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
90 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
91 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
92 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
93 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 };
95
96 #define IGB_NETDEV_STAT(_net_stat) { \
97 .stat_string = __stringify(_net_stat), \
98 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102 IGB_NETDEV_STAT(rx_errors),
103 IGB_NETDEV_STAT(tx_errors),
104 IGB_NETDEV_STAT(tx_dropped),
105 IGB_NETDEV_STAT(rx_length_errors),
106 IGB_NETDEV_STAT(rx_over_errors),
107 IGB_NETDEV_STAT(rx_frame_errors),
108 IGB_NETDEV_STAT(rx_fifo_errors),
109 IGB_NETDEV_STAT(tx_fifo_errors),
110 IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112
113 #define IGB_GLOBAL_STATS_LEN \
114 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN \
116 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121
122 #define IGB_QUEUE_STATS_LEN \
123 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124 IGB_RX_QUEUE_STATS_LEN) + \
125 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126 IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129
130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131 "Register test (offline)", "Eeprom test (offline)",
132 "Interrupt test (offline)", "Loopback test (offline)",
133 "Link test (on/offline)"
134 };
135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136
137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138 {
139 struct igb_adapter *adapter = netdev_priv(netdev);
140 struct e1000_hw *hw = &adapter->hw;
141 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
142 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
143 u32 status;
144
145 status = rd32(E1000_STATUS);
146 if (hw->phy.media_type == e1000_media_type_copper) {
147
148 ecmd->supported = (SUPPORTED_10baseT_Half |
149 SUPPORTED_10baseT_Full |
150 SUPPORTED_100baseT_Half |
151 SUPPORTED_100baseT_Full |
152 SUPPORTED_1000baseT_Full|
153 SUPPORTED_Autoneg |
154 SUPPORTED_TP |
155 SUPPORTED_Pause);
156 ecmd->advertising = ADVERTISED_TP;
157
158 if (hw->mac.autoneg == 1) {
159 ecmd->advertising |= ADVERTISED_Autoneg;
160 /* the e1000 autoneg seems to match ethtool nicely */
161 ecmd->advertising |= hw->phy.autoneg_advertised;
162 }
163
164 ecmd->port = PORT_TP;
165 ecmd->phy_address = hw->phy.addr;
166 ecmd->transceiver = XCVR_INTERNAL;
167 } else {
168 ecmd->supported = (SUPPORTED_FIBRE |
169 SUPPORTED_1000baseKX_Full |
170 SUPPORTED_Autoneg |
171 SUPPORTED_Pause);
172 ecmd->advertising = (ADVERTISED_FIBRE |
173 ADVERTISED_1000baseKX_Full);
174 if (hw->mac.type == e1000_i354) {
175 if ((hw->device_id ==
176 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
177 !(status & E1000_STATUS_2P5_SKU_OVER)) {
178 ecmd->supported |= SUPPORTED_2500baseX_Full;
179 ecmd->supported &=
180 ~SUPPORTED_1000baseKX_Full;
181 ecmd->advertising |= ADVERTISED_2500baseX_Full;
182 ecmd->advertising &=
183 ~ADVERTISED_1000baseKX_Full;
184 }
185 }
186 if (eth_flags->e100_base_fx) {
187 ecmd->supported |= SUPPORTED_100baseT_Full;
188 ecmd->advertising |= ADVERTISED_100baseT_Full;
189 }
190 if (hw->mac.autoneg == 1)
191 ecmd->advertising |= ADVERTISED_Autoneg;
192
193 ecmd->port = PORT_FIBRE;
194 ecmd->transceiver = XCVR_EXTERNAL;
195 }
196 if (hw->mac.autoneg != 1)
197 ecmd->advertising &= ~(ADVERTISED_Pause |
198 ADVERTISED_Asym_Pause);
199
200 switch (hw->fc.requested_mode) {
201 case e1000_fc_full:
202 ecmd->advertising |= ADVERTISED_Pause;
203 break;
204 case e1000_fc_rx_pause:
205 ecmd->advertising |= (ADVERTISED_Pause |
206 ADVERTISED_Asym_Pause);
207 break;
208 case e1000_fc_tx_pause:
209 ecmd->advertising |= ADVERTISED_Asym_Pause;
210 break;
211 default:
212 ecmd->advertising &= ~(ADVERTISED_Pause |
213 ADVERTISED_Asym_Pause);
214 }
215 if (status & E1000_STATUS_LU) {
216 if ((status & E1000_STATUS_2P5_SKU) &&
217 !(status & E1000_STATUS_2P5_SKU_OVER)) {
218 ecmd->speed = SPEED_2500;
219 } else if (status & E1000_STATUS_SPEED_1000) {
220 ecmd->speed = SPEED_1000;
221 } else if (status & E1000_STATUS_SPEED_100) {
222 ecmd->speed = SPEED_100;
223 } else {
224 ecmd->speed = SPEED_10;
225 }
226 if ((status & E1000_STATUS_FD) ||
227 hw->phy.media_type != e1000_media_type_copper)
228 ecmd->duplex = DUPLEX_FULL;
229 else
230 ecmd->duplex = DUPLEX_HALF;
231 } else {
232 ecmd->speed = -1;
233 ecmd->duplex = -1;
234 }
235 if ((hw->phy.media_type == e1000_media_type_fiber) ||
236 hw->mac.autoneg)
237 ecmd->autoneg = AUTONEG_ENABLE;
238 else
239 ecmd->autoneg = AUTONEG_DISABLE;
240
241 /* MDI-X => 2; MDI =>1; Invalid =>0 */
242 if (hw->phy.media_type == e1000_media_type_copper)
243 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
244 ETH_TP_MDI;
245 else
246 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
247
248 if (hw->phy.mdix == AUTO_ALL_MODES)
249 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
250 else
251 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
252
253 return 0;
254 }
255
256 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
257 {
258 struct igb_adapter *adapter = netdev_priv(netdev);
259 struct e1000_hw *hw = &adapter->hw;
260
261 /* When SoL/IDER sessions are active, autoneg/speed/duplex
262 * cannot be changed
263 */
264 if (igb_check_reset_block(hw)) {
265 dev_err(&adapter->pdev->dev,
266 "Cannot change link characteristics when SoL/IDER is active.\n");
267 return -EINVAL;
268 }
269
270 /* MDI setting is only allowed when autoneg enabled because
271 * some hardware doesn't allow MDI setting when speed or
272 * duplex is forced.
273 */
274 if (ecmd->eth_tp_mdix_ctrl) {
275 if (hw->phy.media_type != e1000_media_type_copper)
276 return -EOPNOTSUPP;
277
278 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
279 (ecmd->autoneg != AUTONEG_ENABLE)) {
280 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
281 return -EINVAL;
282 }
283 }
284
285 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
286 usleep_range(1000, 2000);
287
288 if (ecmd->autoneg == AUTONEG_ENABLE) {
289 hw->mac.autoneg = 1;
290 if (hw->phy.media_type == e1000_media_type_fiber) {
291 hw->phy.autoneg_advertised = ecmd->advertising |
292 ADVERTISED_FIBRE |
293 ADVERTISED_Autoneg;
294 switch (adapter->link_speed) {
295 case SPEED_2500:
296 hw->phy.autoneg_advertised =
297 ADVERTISED_2500baseX_Full;
298 break;
299 case SPEED_1000:
300 hw->phy.autoneg_advertised =
301 ADVERTISED_1000baseT_Full;
302 break;
303 case SPEED_100:
304 hw->phy.autoneg_advertised =
305 ADVERTISED_100baseT_Full;
306 break;
307 default:
308 break;
309 }
310 } else {
311 hw->phy.autoneg_advertised = ecmd->advertising |
312 ADVERTISED_TP |
313 ADVERTISED_Autoneg;
314 }
315 ecmd->advertising = hw->phy.autoneg_advertised;
316 if (adapter->fc_autoneg)
317 hw->fc.requested_mode = e1000_fc_default;
318 } else {
319 u32 speed = ethtool_cmd_speed(ecmd);
320 /* calling this overrides forced MDI setting */
321 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
322 clear_bit(__IGB_RESETTING, &adapter->state);
323 return -EINVAL;
324 }
325 }
326
327 /* MDI-X => 2; MDI => 1; Auto => 3 */
328 if (ecmd->eth_tp_mdix_ctrl) {
329 /* fix up the value for auto (3 => 0) as zero is mapped
330 * internally to auto
331 */
332 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
333 hw->phy.mdix = AUTO_ALL_MODES;
334 else
335 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
336 }
337
338 /* reset the link */
339 if (netif_running(adapter->netdev)) {
340 igb_down(adapter);
341 igb_up(adapter);
342 } else
343 igb_reset(adapter);
344
345 clear_bit(__IGB_RESETTING, &adapter->state);
346 return 0;
347 }
348
349 static u32 igb_get_link(struct net_device *netdev)
350 {
351 struct igb_adapter *adapter = netdev_priv(netdev);
352 struct e1000_mac_info *mac = &adapter->hw.mac;
353
354 /* If the link is not reported up to netdev, interrupts are disabled,
355 * and so the physical link state may have changed since we last
356 * looked. Set get_link_status to make sure that the true link
357 * state is interrogated, rather than pulling a cached and possibly
358 * stale link state from the driver.
359 */
360 if (!netif_carrier_ok(netdev))
361 mac->get_link_status = 1;
362
363 return igb_has_link(adapter);
364 }
365
366 static void igb_get_pauseparam(struct net_device *netdev,
367 struct ethtool_pauseparam *pause)
368 {
369 struct igb_adapter *adapter = netdev_priv(netdev);
370 struct e1000_hw *hw = &adapter->hw;
371
372 pause->autoneg =
373 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
374
375 if (hw->fc.current_mode == e1000_fc_rx_pause)
376 pause->rx_pause = 1;
377 else if (hw->fc.current_mode == e1000_fc_tx_pause)
378 pause->tx_pause = 1;
379 else if (hw->fc.current_mode == e1000_fc_full) {
380 pause->rx_pause = 1;
381 pause->tx_pause = 1;
382 }
383 }
384
385 static int igb_set_pauseparam(struct net_device *netdev,
386 struct ethtool_pauseparam *pause)
387 {
388 struct igb_adapter *adapter = netdev_priv(netdev);
389 struct e1000_hw *hw = &adapter->hw;
390 int retval = 0;
391
392 /* 100basefx does not support setting link flow control */
393 if (hw->dev_spec._82575.eth_flags.e100_base_fx)
394 return -EINVAL;
395
396 adapter->fc_autoneg = pause->autoneg;
397
398 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
399 usleep_range(1000, 2000);
400
401 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
402 hw->fc.requested_mode = e1000_fc_default;
403 if (netif_running(adapter->netdev)) {
404 igb_down(adapter);
405 igb_up(adapter);
406 } else {
407 igb_reset(adapter);
408 }
409 } else {
410 if (pause->rx_pause && pause->tx_pause)
411 hw->fc.requested_mode = e1000_fc_full;
412 else if (pause->rx_pause && !pause->tx_pause)
413 hw->fc.requested_mode = e1000_fc_rx_pause;
414 else if (!pause->rx_pause && pause->tx_pause)
415 hw->fc.requested_mode = e1000_fc_tx_pause;
416 else if (!pause->rx_pause && !pause->tx_pause)
417 hw->fc.requested_mode = e1000_fc_none;
418
419 hw->fc.current_mode = hw->fc.requested_mode;
420
421 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
422 igb_force_mac_fc(hw) : igb_setup_link(hw));
423 }
424
425 clear_bit(__IGB_RESETTING, &adapter->state);
426 return retval;
427 }
428
429 static u32 igb_get_msglevel(struct net_device *netdev)
430 {
431 struct igb_adapter *adapter = netdev_priv(netdev);
432 return adapter->msg_enable;
433 }
434
435 static void igb_set_msglevel(struct net_device *netdev, u32 data)
436 {
437 struct igb_adapter *adapter = netdev_priv(netdev);
438 adapter->msg_enable = data;
439 }
440
441 static int igb_get_regs_len(struct net_device *netdev)
442 {
443 #define IGB_REGS_LEN 739
444 return IGB_REGS_LEN * sizeof(u32);
445 }
446
447 static void igb_get_regs(struct net_device *netdev,
448 struct ethtool_regs *regs, void *p)
449 {
450 struct igb_adapter *adapter = netdev_priv(netdev);
451 struct e1000_hw *hw = &adapter->hw;
452 u32 *regs_buff = p;
453 u8 i;
454
455 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
456
457 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
458
459 /* General Registers */
460 regs_buff[0] = rd32(E1000_CTRL);
461 regs_buff[1] = rd32(E1000_STATUS);
462 regs_buff[2] = rd32(E1000_CTRL_EXT);
463 regs_buff[3] = rd32(E1000_MDIC);
464 regs_buff[4] = rd32(E1000_SCTL);
465 regs_buff[5] = rd32(E1000_CONNSW);
466 regs_buff[6] = rd32(E1000_VET);
467 regs_buff[7] = rd32(E1000_LEDCTL);
468 regs_buff[8] = rd32(E1000_PBA);
469 regs_buff[9] = rd32(E1000_PBS);
470 regs_buff[10] = rd32(E1000_FRTIMER);
471 regs_buff[11] = rd32(E1000_TCPTIMER);
472
473 /* NVM Register */
474 regs_buff[12] = rd32(E1000_EECD);
475
476 /* Interrupt */
477 /* Reading EICS for EICR because they read the
478 * same but EICS does not clear on read
479 */
480 regs_buff[13] = rd32(E1000_EICS);
481 regs_buff[14] = rd32(E1000_EICS);
482 regs_buff[15] = rd32(E1000_EIMS);
483 regs_buff[16] = rd32(E1000_EIMC);
484 regs_buff[17] = rd32(E1000_EIAC);
485 regs_buff[18] = rd32(E1000_EIAM);
486 /* Reading ICS for ICR because they read the
487 * same but ICS does not clear on read
488 */
489 regs_buff[19] = rd32(E1000_ICS);
490 regs_buff[20] = rd32(E1000_ICS);
491 regs_buff[21] = rd32(E1000_IMS);
492 regs_buff[22] = rd32(E1000_IMC);
493 regs_buff[23] = rd32(E1000_IAC);
494 regs_buff[24] = rd32(E1000_IAM);
495 regs_buff[25] = rd32(E1000_IMIRVP);
496
497 /* Flow Control */
498 regs_buff[26] = rd32(E1000_FCAL);
499 regs_buff[27] = rd32(E1000_FCAH);
500 regs_buff[28] = rd32(E1000_FCTTV);
501 regs_buff[29] = rd32(E1000_FCRTL);
502 regs_buff[30] = rd32(E1000_FCRTH);
503 regs_buff[31] = rd32(E1000_FCRTV);
504
505 /* Receive */
506 regs_buff[32] = rd32(E1000_RCTL);
507 regs_buff[33] = rd32(E1000_RXCSUM);
508 regs_buff[34] = rd32(E1000_RLPML);
509 regs_buff[35] = rd32(E1000_RFCTL);
510 regs_buff[36] = rd32(E1000_MRQC);
511 regs_buff[37] = rd32(E1000_VT_CTL);
512
513 /* Transmit */
514 regs_buff[38] = rd32(E1000_TCTL);
515 regs_buff[39] = rd32(E1000_TCTL_EXT);
516 regs_buff[40] = rd32(E1000_TIPG);
517 regs_buff[41] = rd32(E1000_DTXCTL);
518
519 /* Wake Up */
520 regs_buff[42] = rd32(E1000_WUC);
521 regs_buff[43] = rd32(E1000_WUFC);
522 regs_buff[44] = rd32(E1000_WUS);
523 regs_buff[45] = rd32(E1000_IPAV);
524 regs_buff[46] = rd32(E1000_WUPL);
525
526 /* MAC */
527 regs_buff[47] = rd32(E1000_PCS_CFG0);
528 regs_buff[48] = rd32(E1000_PCS_LCTL);
529 regs_buff[49] = rd32(E1000_PCS_LSTAT);
530 regs_buff[50] = rd32(E1000_PCS_ANADV);
531 regs_buff[51] = rd32(E1000_PCS_LPAB);
532 regs_buff[52] = rd32(E1000_PCS_NPTX);
533 regs_buff[53] = rd32(E1000_PCS_LPABNP);
534
535 /* Statistics */
536 regs_buff[54] = adapter->stats.crcerrs;
537 regs_buff[55] = adapter->stats.algnerrc;
538 regs_buff[56] = adapter->stats.symerrs;
539 regs_buff[57] = adapter->stats.rxerrc;
540 regs_buff[58] = adapter->stats.mpc;
541 regs_buff[59] = adapter->stats.scc;
542 regs_buff[60] = adapter->stats.ecol;
543 regs_buff[61] = adapter->stats.mcc;
544 regs_buff[62] = adapter->stats.latecol;
545 regs_buff[63] = adapter->stats.colc;
546 regs_buff[64] = adapter->stats.dc;
547 regs_buff[65] = adapter->stats.tncrs;
548 regs_buff[66] = adapter->stats.sec;
549 regs_buff[67] = adapter->stats.htdpmc;
550 regs_buff[68] = adapter->stats.rlec;
551 regs_buff[69] = adapter->stats.xonrxc;
552 regs_buff[70] = adapter->stats.xontxc;
553 regs_buff[71] = adapter->stats.xoffrxc;
554 regs_buff[72] = adapter->stats.xofftxc;
555 regs_buff[73] = adapter->stats.fcruc;
556 regs_buff[74] = adapter->stats.prc64;
557 regs_buff[75] = adapter->stats.prc127;
558 regs_buff[76] = adapter->stats.prc255;
559 regs_buff[77] = adapter->stats.prc511;
560 regs_buff[78] = adapter->stats.prc1023;
561 regs_buff[79] = adapter->stats.prc1522;
562 regs_buff[80] = adapter->stats.gprc;
563 regs_buff[81] = adapter->stats.bprc;
564 regs_buff[82] = adapter->stats.mprc;
565 regs_buff[83] = adapter->stats.gptc;
566 regs_buff[84] = adapter->stats.gorc;
567 regs_buff[86] = adapter->stats.gotc;
568 regs_buff[88] = adapter->stats.rnbc;
569 regs_buff[89] = adapter->stats.ruc;
570 regs_buff[90] = adapter->stats.rfc;
571 regs_buff[91] = adapter->stats.roc;
572 regs_buff[92] = adapter->stats.rjc;
573 regs_buff[93] = adapter->stats.mgprc;
574 regs_buff[94] = adapter->stats.mgpdc;
575 regs_buff[95] = adapter->stats.mgptc;
576 regs_buff[96] = adapter->stats.tor;
577 regs_buff[98] = adapter->stats.tot;
578 regs_buff[100] = adapter->stats.tpr;
579 regs_buff[101] = adapter->stats.tpt;
580 regs_buff[102] = adapter->stats.ptc64;
581 regs_buff[103] = adapter->stats.ptc127;
582 regs_buff[104] = adapter->stats.ptc255;
583 regs_buff[105] = adapter->stats.ptc511;
584 regs_buff[106] = adapter->stats.ptc1023;
585 regs_buff[107] = adapter->stats.ptc1522;
586 regs_buff[108] = adapter->stats.mptc;
587 regs_buff[109] = adapter->stats.bptc;
588 regs_buff[110] = adapter->stats.tsctc;
589 regs_buff[111] = adapter->stats.iac;
590 regs_buff[112] = adapter->stats.rpthc;
591 regs_buff[113] = adapter->stats.hgptc;
592 regs_buff[114] = adapter->stats.hgorc;
593 regs_buff[116] = adapter->stats.hgotc;
594 regs_buff[118] = adapter->stats.lenerrs;
595 regs_buff[119] = adapter->stats.scvpc;
596 regs_buff[120] = adapter->stats.hrmpc;
597
598 for (i = 0; i < 4; i++)
599 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
600 for (i = 0; i < 4; i++)
601 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
602 for (i = 0; i < 4; i++)
603 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
604 for (i = 0; i < 4; i++)
605 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
606 for (i = 0; i < 4; i++)
607 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
608 for (i = 0; i < 4; i++)
609 regs_buff[141 + i] = rd32(E1000_RDH(i));
610 for (i = 0; i < 4; i++)
611 regs_buff[145 + i] = rd32(E1000_RDT(i));
612 for (i = 0; i < 4; i++)
613 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
614
615 for (i = 0; i < 10; i++)
616 regs_buff[153 + i] = rd32(E1000_EITR(i));
617 for (i = 0; i < 8; i++)
618 regs_buff[163 + i] = rd32(E1000_IMIR(i));
619 for (i = 0; i < 8; i++)
620 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
621 for (i = 0; i < 16; i++)
622 regs_buff[179 + i] = rd32(E1000_RAL(i));
623 for (i = 0; i < 16; i++)
624 regs_buff[195 + i] = rd32(E1000_RAH(i));
625
626 for (i = 0; i < 4; i++)
627 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
628 for (i = 0; i < 4; i++)
629 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
630 for (i = 0; i < 4; i++)
631 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
632 for (i = 0; i < 4; i++)
633 regs_buff[223 + i] = rd32(E1000_TDH(i));
634 for (i = 0; i < 4; i++)
635 regs_buff[227 + i] = rd32(E1000_TDT(i));
636 for (i = 0; i < 4; i++)
637 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
638 for (i = 0; i < 4; i++)
639 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
640 for (i = 0; i < 4; i++)
641 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
642 for (i = 0; i < 4; i++)
643 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
644
645 for (i = 0; i < 4; i++)
646 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
647 for (i = 0; i < 4; i++)
648 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
649 for (i = 0; i < 32; i++)
650 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
651 for (i = 0; i < 128; i++)
652 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
653 for (i = 0; i < 128; i++)
654 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
655 for (i = 0; i < 4; i++)
656 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
657
658 regs_buff[547] = rd32(E1000_TDFH);
659 regs_buff[548] = rd32(E1000_TDFT);
660 regs_buff[549] = rd32(E1000_TDFHS);
661 regs_buff[550] = rd32(E1000_TDFPC);
662
663 if (hw->mac.type > e1000_82580) {
664 regs_buff[551] = adapter->stats.o2bgptc;
665 regs_buff[552] = adapter->stats.b2ospc;
666 regs_buff[553] = adapter->stats.o2bspc;
667 regs_buff[554] = adapter->stats.b2ogprc;
668 }
669
670 if (hw->mac.type != e1000_82576)
671 return;
672 for (i = 0; i < 12; i++)
673 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
674 for (i = 0; i < 4; i++)
675 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
676 for (i = 0; i < 12; i++)
677 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
678 for (i = 0; i < 12; i++)
679 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
680 for (i = 0; i < 12; i++)
681 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
682 for (i = 0; i < 12; i++)
683 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
684 for (i = 0; i < 12; i++)
685 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
686 for (i = 0; i < 12; i++)
687 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
688
689 for (i = 0; i < 12; i++)
690 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
691 for (i = 0; i < 12; i++)
692 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
693 for (i = 0; i < 12; i++)
694 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
695 for (i = 0; i < 12; i++)
696 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
697 for (i = 0; i < 12; i++)
698 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
699 for (i = 0; i < 12; i++)
700 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
701 for (i = 0; i < 12; i++)
702 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
703 for (i = 0; i < 12; i++)
704 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
705 }
706
707 static int igb_get_eeprom_len(struct net_device *netdev)
708 {
709 struct igb_adapter *adapter = netdev_priv(netdev);
710 return adapter->hw.nvm.word_size * 2;
711 }
712
713 static int igb_get_eeprom(struct net_device *netdev,
714 struct ethtool_eeprom *eeprom, u8 *bytes)
715 {
716 struct igb_adapter *adapter = netdev_priv(netdev);
717 struct e1000_hw *hw = &adapter->hw;
718 u16 *eeprom_buff;
719 int first_word, last_word;
720 int ret_val = 0;
721 u16 i;
722
723 if (eeprom->len == 0)
724 return -EINVAL;
725
726 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
727
728 first_word = eeprom->offset >> 1;
729 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
730
731 eeprom_buff = kmalloc(sizeof(u16) *
732 (last_word - first_word + 1), GFP_KERNEL);
733 if (!eeprom_buff)
734 return -ENOMEM;
735
736 if (hw->nvm.type == e1000_nvm_eeprom_spi)
737 ret_val = hw->nvm.ops.read(hw, first_word,
738 last_word - first_word + 1,
739 eeprom_buff);
740 else {
741 for (i = 0; i < last_word - first_word + 1; i++) {
742 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
743 &eeprom_buff[i]);
744 if (ret_val)
745 break;
746 }
747 }
748
749 /* Device's eeprom is always little-endian, word addressable */
750 for (i = 0; i < last_word - first_word + 1; i++)
751 le16_to_cpus(&eeprom_buff[i]);
752
753 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
754 eeprom->len);
755 kfree(eeprom_buff);
756
757 return ret_val;
758 }
759
760 static int igb_set_eeprom(struct net_device *netdev,
761 struct ethtool_eeprom *eeprom, u8 *bytes)
762 {
763 struct igb_adapter *adapter = netdev_priv(netdev);
764 struct e1000_hw *hw = &adapter->hw;
765 u16 *eeprom_buff;
766 void *ptr;
767 int max_len, first_word, last_word, ret_val = 0;
768 u16 i;
769
770 if (eeprom->len == 0)
771 return -EOPNOTSUPP;
772
773 if ((hw->mac.type >= e1000_i210) &&
774 !igb_get_flash_presence_i210(hw)) {
775 return -EOPNOTSUPP;
776 }
777
778 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
779 return -EFAULT;
780
781 max_len = hw->nvm.word_size * 2;
782
783 first_word = eeprom->offset >> 1;
784 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
785 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
786 if (!eeprom_buff)
787 return -ENOMEM;
788
789 ptr = (void *)eeprom_buff;
790
791 if (eeprom->offset & 1) {
792 /* need read/modify/write of first changed EEPROM word
793 * only the second byte of the word is being modified
794 */
795 ret_val = hw->nvm.ops.read(hw, first_word, 1,
796 &eeprom_buff[0]);
797 ptr++;
798 }
799 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
800 /* need read/modify/write of last changed EEPROM word
801 * only the first byte of the word is being modified
802 */
803 ret_val = hw->nvm.ops.read(hw, last_word, 1,
804 &eeprom_buff[last_word - first_word]);
805 }
806
807 /* Device's eeprom is always little-endian, word addressable */
808 for (i = 0; i < last_word - first_word + 1; i++)
809 le16_to_cpus(&eeprom_buff[i]);
810
811 memcpy(ptr, bytes, eeprom->len);
812
813 for (i = 0; i < last_word - first_word + 1; i++)
814 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
815
816 ret_val = hw->nvm.ops.write(hw, first_word,
817 last_word - first_word + 1, eeprom_buff);
818
819 /* Update the checksum if nvm write succeeded */
820 if (ret_val == 0)
821 hw->nvm.ops.update(hw);
822
823 igb_set_fw_version(adapter);
824 kfree(eeprom_buff);
825 return ret_val;
826 }
827
828 static void igb_get_drvinfo(struct net_device *netdev,
829 struct ethtool_drvinfo *drvinfo)
830 {
831 struct igb_adapter *adapter = netdev_priv(netdev);
832
833 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
834 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
835
836 /* EEPROM image version # is reported as firmware version # for
837 * 82575 controllers
838 */
839 strlcpy(drvinfo->fw_version, adapter->fw_version,
840 sizeof(drvinfo->fw_version));
841 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
842 sizeof(drvinfo->bus_info));
843 drvinfo->n_stats = IGB_STATS_LEN;
844 drvinfo->testinfo_len = IGB_TEST_LEN;
845 drvinfo->regdump_len = igb_get_regs_len(netdev);
846 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
847 }
848
849 static void igb_get_ringparam(struct net_device *netdev,
850 struct ethtool_ringparam *ring)
851 {
852 struct igb_adapter *adapter = netdev_priv(netdev);
853
854 ring->rx_max_pending = IGB_MAX_RXD;
855 ring->tx_max_pending = IGB_MAX_TXD;
856 ring->rx_pending = adapter->rx_ring_count;
857 ring->tx_pending = adapter->tx_ring_count;
858 }
859
860 static int igb_set_ringparam(struct net_device *netdev,
861 struct ethtool_ringparam *ring)
862 {
863 struct igb_adapter *adapter = netdev_priv(netdev);
864 struct igb_ring *temp_ring;
865 int i, err = 0;
866 u16 new_rx_count, new_tx_count;
867
868 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
869 return -EINVAL;
870
871 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
872 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
873 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
874
875 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
876 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
877 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
878
879 if ((new_tx_count == adapter->tx_ring_count) &&
880 (new_rx_count == adapter->rx_ring_count)) {
881 /* nothing to do */
882 return 0;
883 }
884
885 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
886 usleep_range(1000, 2000);
887
888 if (!netif_running(adapter->netdev)) {
889 for (i = 0; i < adapter->num_tx_queues; i++)
890 adapter->tx_ring[i]->count = new_tx_count;
891 for (i = 0; i < adapter->num_rx_queues; i++)
892 adapter->rx_ring[i]->count = new_rx_count;
893 adapter->tx_ring_count = new_tx_count;
894 adapter->rx_ring_count = new_rx_count;
895 goto clear_reset;
896 }
897
898 if (adapter->num_tx_queues > adapter->num_rx_queues)
899 temp_ring = vmalloc(adapter->num_tx_queues *
900 sizeof(struct igb_ring));
901 else
902 temp_ring = vmalloc(adapter->num_rx_queues *
903 sizeof(struct igb_ring));
904
905 if (!temp_ring) {
906 err = -ENOMEM;
907 goto clear_reset;
908 }
909
910 igb_down(adapter);
911
912 /* We can't just free everything and then setup again,
913 * because the ISRs in MSI-X mode get passed pointers
914 * to the Tx and Rx ring structs.
915 */
916 if (new_tx_count != adapter->tx_ring_count) {
917 for (i = 0; i < adapter->num_tx_queues; i++) {
918 memcpy(&temp_ring[i], adapter->tx_ring[i],
919 sizeof(struct igb_ring));
920
921 temp_ring[i].count = new_tx_count;
922 err = igb_setup_tx_resources(&temp_ring[i]);
923 if (err) {
924 while (i) {
925 i--;
926 igb_free_tx_resources(&temp_ring[i]);
927 }
928 goto err_setup;
929 }
930 }
931
932 for (i = 0; i < adapter->num_tx_queues; i++) {
933 igb_free_tx_resources(adapter->tx_ring[i]);
934
935 memcpy(adapter->tx_ring[i], &temp_ring[i],
936 sizeof(struct igb_ring));
937 }
938
939 adapter->tx_ring_count = new_tx_count;
940 }
941
942 if (new_rx_count != adapter->rx_ring_count) {
943 for (i = 0; i < adapter->num_rx_queues; i++) {
944 memcpy(&temp_ring[i], adapter->rx_ring[i],
945 sizeof(struct igb_ring));
946
947 temp_ring[i].count = new_rx_count;
948 err = igb_setup_rx_resources(&temp_ring[i]);
949 if (err) {
950 while (i) {
951 i--;
952 igb_free_rx_resources(&temp_ring[i]);
953 }
954 goto err_setup;
955 }
956
957 }
958
959 for (i = 0; i < adapter->num_rx_queues; i++) {
960 igb_free_rx_resources(adapter->rx_ring[i]);
961
962 memcpy(adapter->rx_ring[i], &temp_ring[i],
963 sizeof(struct igb_ring));
964 }
965
966 adapter->rx_ring_count = new_rx_count;
967 }
968 err_setup:
969 igb_up(adapter);
970 vfree(temp_ring);
971 clear_reset:
972 clear_bit(__IGB_RESETTING, &adapter->state);
973 return err;
974 }
975
976 /* ethtool register test data */
977 struct igb_reg_test {
978 u16 reg;
979 u16 reg_offset;
980 u16 array_len;
981 u16 test_type;
982 u32 mask;
983 u32 write;
984 };
985
986 /* In the hardware, registers are laid out either singly, in arrays
987 * spaced 0x100 bytes apart, or in contiguous tables. We assume
988 * most tests take place on arrays or single registers (handled
989 * as a single-element array) and special-case the tables.
990 * Table tests are always pattern tests.
991 *
992 * We also make provision for some required setup steps by specifying
993 * registers to be written without any read-back testing.
994 */
995
996 #define PATTERN_TEST 1
997 #define SET_READ_TEST 2
998 #define WRITE_NO_TEST 3
999 #define TABLE32_TEST 4
1000 #define TABLE64_TEST_LO 5
1001 #define TABLE64_TEST_HI 6
1002
1003 /* i210 reg test */
1004 static struct igb_reg_test reg_test_i210[] = {
1005 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1006 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1007 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1008 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1009 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1010 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1011 /* RDH is read-only for i210, only test RDT. */
1012 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1013 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1014 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1015 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1016 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1017 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1018 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1019 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1020 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1021 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1022 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1023 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1024 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1025 0xFFFFFFFF, 0xFFFFFFFF },
1026 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1027 0x900FFFFF, 0xFFFFFFFF },
1028 { E1000_MTA, 0, 128, TABLE32_TEST,
1029 0xFFFFFFFF, 0xFFFFFFFF },
1030 { 0, 0, 0, 0, 0 }
1031 };
1032
1033 /* i350 reg test */
1034 static struct igb_reg_test reg_test_i350[] = {
1035 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1036 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1037 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1038 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1039 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1040 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1041 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1042 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1043 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1044 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1045 /* RDH is read-only for i350, only test RDT. */
1046 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1047 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1048 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1049 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1050 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1051 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1052 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1053 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1054 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1055 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1056 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1057 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1058 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1059 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1060 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1061 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1062 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1063 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1064 0xFFFFFFFF, 0xFFFFFFFF },
1065 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1066 0xC3FFFFFF, 0xFFFFFFFF },
1067 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
1068 0xFFFFFFFF, 0xFFFFFFFF },
1069 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
1070 0xC3FFFFFF, 0xFFFFFFFF },
1071 { E1000_MTA, 0, 128, TABLE32_TEST,
1072 0xFFFFFFFF, 0xFFFFFFFF },
1073 { 0, 0, 0, 0 }
1074 };
1075
1076 /* 82580 reg test */
1077 static struct igb_reg_test reg_test_82580[] = {
1078 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1079 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1080 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1081 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1082 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1083 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1084 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1085 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1086 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1087 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1088 /* RDH is read-only for 82580, only test RDT. */
1089 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1090 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1091 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1092 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1093 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1094 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1095 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1096 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1097 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1098 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1099 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1100 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1101 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1102 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1103 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1104 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1105 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1106 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1107 0xFFFFFFFF, 0xFFFFFFFF },
1108 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1109 0x83FFFFFF, 0xFFFFFFFF },
1110 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
1111 0xFFFFFFFF, 0xFFFFFFFF },
1112 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
1113 0x83FFFFFF, 0xFFFFFFFF },
1114 { E1000_MTA, 0, 128, TABLE32_TEST,
1115 0xFFFFFFFF, 0xFFFFFFFF },
1116 { 0, 0, 0, 0 }
1117 };
1118
1119 /* 82576 reg test */
1120 static struct igb_reg_test reg_test_82576[] = {
1121 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1122 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1123 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1124 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1125 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1126 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1127 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1128 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1129 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1130 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1131 /* Enable all RX queues before testing. */
1132 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1133 E1000_RXDCTL_QUEUE_ENABLE },
1134 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1135 E1000_RXDCTL_QUEUE_ENABLE },
1136 /* RDH is read-only for 82576, only test RDT. */
1137 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1138 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1139 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1140 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1141 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1142 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1143 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1144 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1145 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1146 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1147 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1148 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1149 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1150 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1151 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1152 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1153 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1154 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1155 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1156 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1157 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1158 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1159 { 0, 0, 0, 0 }
1160 };
1161
1162 /* 82575 register test */
1163 static struct igb_reg_test reg_test_82575[] = {
1164 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1165 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1166 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1167 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1168 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1169 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1170 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1171 /* Enable all four RX queues before testing. */
1172 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1173 E1000_RXDCTL_QUEUE_ENABLE },
1174 /* RDH is read-only for 82575, only test RDT. */
1175 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1176 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1177 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1178 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1179 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1180 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1181 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1182 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1183 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1184 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1185 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1186 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1187 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1188 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1189 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1190 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1191 { 0, 0, 0, 0 }
1192 };
1193
1194 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1195 int reg, u32 mask, u32 write)
1196 {
1197 struct e1000_hw *hw = &adapter->hw;
1198 u32 pat, val;
1199 static const u32 _test[] = {
1200 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1201 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1202 wr32(reg, (_test[pat] & write));
1203 val = rd32(reg) & mask;
1204 if (val != (_test[pat] & write & mask)) {
1205 dev_err(&adapter->pdev->dev,
1206 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1207 reg, val, (_test[pat] & write & mask));
1208 *data = reg;
1209 return true;
1210 }
1211 }
1212
1213 return false;
1214 }
1215
1216 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1217 int reg, u32 mask, u32 write)
1218 {
1219 struct e1000_hw *hw = &adapter->hw;
1220 u32 val;
1221
1222 wr32(reg, write & mask);
1223 val = rd32(reg);
1224 if ((write & mask) != (val & mask)) {
1225 dev_err(&adapter->pdev->dev,
1226 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1227 reg, (val & mask), (write & mask));
1228 *data = reg;
1229 return true;
1230 }
1231
1232 return false;
1233 }
1234
1235 #define REG_PATTERN_TEST(reg, mask, write) \
1236 do { \
1237 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1238 return 1; \
1239 } while (0)
1240
1241 #define REG_SET_AND_CHECK(reg, mask, write) \
1242 do { \
1243 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1244 return 1; \
1245 } while (0)
1246
1247 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1248 {
1249 struct e1000_hw *hw = &adapter->hw;
1250 struct igb_reg_test *test;
1251 u32 value, before, after;
1252 u32 i, toggle;
1253
1254 switch (adapter->hw.mac.type) {
1255 case e1000_i350:
1256 case e1000_i354:
1257 test = reg_test_i350;
1258 toggle = 0x7FEFF3FF;
1259 break;
1260 case e1000_i210:
1261 case e1000_i211:
1262 test = reg_test_i210;
1263 toggle = 0x7FEFF3FF;
1264 break;
1265 case e1000_82580:
1266 test = reg_test_82580;
1267 toggle = 0x7FEFF3FF;
1268 break;
1269 case e1000_82576:
1270 test = reg_test_82576;
1271 toggle = 0x7FFFF3FF;
1272 break;
1273 default:
1274 test = reg_test_82575;
1275 toggle = 0x7FFFF3FF;
1276 break;
1277 }
1278
1279 /* Because the status register is such a special case,
1280 * we handle it separately from the rest of the register
1281 * tests. Some bits are read-only, some toggle, and some
1282 * are writable on newer MACs.
1283 */
1284 before = rd32(E1000_STATUS);
1285 value = (rd32(E1000_STATUS) & toggle);
1286 wr32(E1000_STATUS, toggle);
1287 after = rd32(E1000_STATUS) & toggle;
1288 if (value != after) {
1289 dev_err(&adapter->pdev->dev,
1290 "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1291 after, value);
1292 *data = 1;
1293 return 1;
1294 }
1295 /* restore previous status */
1296 wr32(E1000_STATUS, before);
1297
1298 /* Perform the remainder of the register test, looping through
1299 * the test table until we either fail or reach the null entry.
1300 */
1301 while (test->reg) {
1302 for (i = 0; i < test->array_len; i++) {
1303 switch (test->test_type) {
1304 case PATTERN_TEST:
1305 REG_PATTERN_TEST(test->reg +
1306 (i * test->reg_offset),
1307 test->mask,
1308 test->write);
1309 break;
1310 case SET_READ_TEST:
1311 REG_SET_AND_CHECK(test->reg +
1312 (i * test->reg_offset),
1313 test->mask,
1314 test->write);
1315 break;
1316 case WRITE_NO_TEST:
1317 writel(test->write,
1318 (adapter->hw.hw_addr + test->reg)
1319 + (i * test->reg_offset));
1320 break;
1321 case TABLE32_TEST:
1322 REG_PATTERN_TEST(test->reg + (i * 4),
1323 test->mask,
1324 test->write);
1325 break;
1326 case TABLE64_TEST_LO:
1327 REG_PATTERN_TEST(test->reg + (i * 8),
1328 test->mask,
1329 test->write);
1330 break;
1331 case TABLE64_TEST_HI:
1332 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1333 test->mask,
1334 test->write);
1335 break;
1336 }
1337 }
1338 test++;
1339 }
1340
1341 *data = 0;
1342 return 0;
1343 }
1344
1345 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1346 {
1347 struct e1000_hw *hw = &adapter->hw;
1348
1349 *data = 0;
1350
1351 /* Validate eeprom on all parts but flashless */
1352 switch (hw->mac.type) {
1353 case e1000_i210:
1354 case e1000_i211:
1355 if (igb_get_flash_presence_i210(hw)) {
1356 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1357 *data = 2;
1358 }
1359 break;
1360 default:
1361 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1362 *data = 2;
1363 break;
1364 }
1365
1366 return *data;
1367 }
1368
1369 static irqreturn_t igb_test_intr(int irq, void *data)
1370 {
1371 struct igb_adapter *adapter = (struct igb_adapter *) data;
1372 struct e1000_hw *hw = &adapter->hw;
1373
1374 adapter->test_icr |= rd32(E1000_ICR);
1375
1376 return IRQ_HANDLED;
1377 }
1378
1379 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1380 {
1381 struct e1000_hw *hw = &adapter->hw;
1382 struct net_device *netdev = adapter->netdev;
1383 u32 mask, ics_mask, i = 0, shared_int = true;
1384 u32 irq = adapter->pdev->irq;
1385
1386 *data = 0;
1387
1388 /* Hook up test interrupt handler just for this test */
1389 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1390 if (request_irq(adapter->msix_entries[0].vector,
1391 igb_test_intr, 0, netdev->name, adapter)) {
1392 *data = 1;
1393 return -1;
1394 }
1395 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1396 shared_int = false;
1397 if (request_irq(irq,
1398 igb_test_intr, 0, netdev->name, adapter)) {
1399 *data = 1;
1400 return -1;
1401 }
1402 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1403 netdev->name, adapter)) {
1404 shared_int = false;
1405 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1406 netdev->name, adapter)) {
1407 *data = 1;
1408 return -1;
1409 }
1410 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1411 (shared_int ? "shared" : "unshared"));
1412
1413 /* Disable all the interrupts */
1414 wr32(E1000_IMC, ~0);
1415 wrfl();
1416 usleep_range(10000, 11000);
1417
1418 /* Define all writable bits for ICS */
1419 switch (hw->mac.type) {
1420 case e1000_82575:
1421 ics_mask = 0x37F47EDD;
1422 break;
1423 case e1000_82576:
1424 ics_mask = 0x77D4FBFD;
1425 break;
1426 case e1000_82580:
1427 ics_mask = 0x77DCFED5;
1428 break;
1429 case e1000_i350:
1430 case e1000_i354:
1431 case e1000_i210:
1432 case e1000_i211:
1433 ics_mask = 0x77DCFED5;
1434 break;
1435 default:
1436 ics_mask = 0x7FFFFFFF;
1437 break;
1438 }
1439
1440 /* Test each interrupt */
1441 for (; i < 31; i++) {
1442 /* Interrupt to test */
1443 mask = 1 << i;
1444
1445 if (!(mask & ics_mask))
1446 continue;
1447
1448 if (!shared_int) {
1449 /* Disable the interrupt to be reported in
1450 * the cause register and then force the same
1451 * interrupt and see if one gets posted. If
1452 * an interrupt was posted to the bus, the
1453 * test failed.
1454 */
1455 adapter->test_icr = 0;
1456
1457 /* Flush any pending interrupts */
1458 wr32(E1000_ICR, ~0);
1459
1460 wr32(E1000_IMC, mask);
1461 wr32(E1000_ICS, mask);
1462 wrfl();
1463 usleep_range(10000, 11000);
1464
1465 if (adapter->test_icr & mask) {
1466 *data = 3;
1467 break;
1468 }
1469 }
1470
1471 /* Enable the interrupt to be reported in
1472 * the cause register and then force the same
1473 * interrupt and see if one gets posted. If
1474 * an interrupt was not posted to the bus, the
1475 * test failed.
1476 */
1477 adapter->test_icr = 0;
1478
1479 /* Flush any pending interrupts */
1480 wr32(E1000_ICR, ~0);
1481
1482 wr32(E1000_IMS, mask);
1483 wr32(E1000_ICS, mask);
1484 wrfl();
1485 usleep_range(10000, 11000);
1486
1487 if (!(adapter->test_icr & mask)) {
1488 *data = 4;
1489 break;
1490 }
1491
1492 if (!shared_int) {
1493 /* Disable the other interrupts to be reported in
1494 * the cause register and then force the other
1495 * interrupts and see if any get posted. If
1496 * an interrupt was posted to the bus, the
1497 * test failed.
1498 */
1499 adapter->test_icr = 0;
1500
1501 /* Flush any pending interrupts */
1502 wr32(E1000_ICR, ~0);
1503
1504 wr32(E1000_IMC, ~mask);
1505 wr32(E1000_ICS, ~mask);
1506 wrfl();
1507 usleep_range(10000, 11000);
1508
1509 if (adapter->test_icr & mask) {
1510 *data = 5;
1511 break;
1512 }
1513 }
1514 }
1515
1516 /* Disable all the interrupts */
1517 wr32(E1000_IMC, ~0);
1518 wrfl();
1519 usleep_range(10000, 11000);
1520
1521 /* Unhook test interrupt handler */
1522 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1523 free_irq(adapter->msix_entries[0].vector, adapter);
1524 else
1525 free_irq(irq, adapter);
1526
1527 return *data;
1528 }
1529
1530 static void igb_free_desc_rings(struct igb_adapter *adapter)
1531 {
1532 igb_free_tx_resources(&adapter->test_tx_ring);
1533 igb_free_rx_resources(&adapter->test_rx_ring);
1534 }
1535
1536 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1537 {
1538 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1539 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1540 struct e1000_hw *hw = &adapter->hw;
1541 int ret_val;
1542
1543 /* Setup Tx descriptor ring and Tx buffers */
1544 tx_ring->count = IGB_DEFAULT_TXD;
1545 tx_ring->dev = &adapter->pdev->dev;
1546 tx_ring->netdev = adapter->netdev;
1547 tx_ring->reg_idx = adapter->vfs_allocated_count;
1548
1549 if (igb_setup_tx_resources(tx_ring)) {
1550 ret_val = 1;
1551 goto err_nomem;
1552 }
1553
1554 igb_setup_tctl(adapter);
1555 igb_configure_tx_ring(adapter, tx_ring);
1556
1557 /* Setup Rx descriptor ring and Rx buffers */
1558 rx_ring->count = IGB_DEFAULT_RXD;
1559 rx_ring->dev = &adapter->pdev->dev;
1560 rx_ring->netdev = adapter->netdev;
1561 rx_ring->reg_idx = adapter->vfs_allocated_count;
1562
1563 if (igb_setup_rx_resources(rx_ring)) {
1564 ret_val = 3;
1565 goto err_nomem;
1566 }
1567
1568 /* set the default queue to queue 0 of PF */
1569 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1570
1571 /* enable receive ring */
1572 igb_setup_rctl(adapter);
1573 igb_configure_rx_ring(adapter, rx_ring);
1574
1575 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1576
1577 return 0;
1578
1579 err_nomem:
1580 igb_free_desc_rings(adapter);
1581 return ret_val;
1582 }
1583
1584 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1585 {
1586 struct e1000_hw *hw = &adapter->hw;
1587
1588 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1589 igb_write_phy_reg(hw, 29, 0x001F);
1590 igb_write_phy_reg(hw, 30, 0x8FFC);
1591 igb_write_phy_reg(hw, 29, 0x001A);
1592 igb_write_phy_reg(hw, 30, 0x8FF0);
1593 }
1594
1595 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1596 {
1597 struct e1000_hw *hw = &adapter->hw;
1598 u32 ctrl_reg = 0;
1599
1600 hw->mac.autoneg = false;
1601
1602 if (hw->phy.type == e1000_phy_m88) {
1603 if (hw->phy.id != I210_I_PHY_ID) {
1604 /* Auto-MDI/MDIX Off */
1605 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1606 /* reset to update Auto-MDI/MDIX */
1607 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1608 /* autoneg off */
1609 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1610 } else {
1611 /* force 1000, set loopback */
1612 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1613 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1614 }
1615 } else if (hw->phy.type == e1000_phy_82580) {
1616 /* enable MII loopback */
1617 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1618 }
1619
1620 /* add small delay to avoid loopback test failure */
1621 msleep(50);
1622
1623 /* force 1000, set loopback */
1624 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1625
1626 /* Now set up the MAC to the same speed/duplex as the PHY. */
1627 ctrl_reg = rd32(E1000_CTRL);
1628 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1629 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1630 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1631 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1632 E1000_CTRL_FD | /* Force Duplex to FULL */
1633 E1000_CTRL_SLU); /* Set link up enable bit */
1634
1635 if (hw->phy.type == e1000_phy_m88)
1636 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1637
1638 wr32(E1000_CTRL, ctrl_reg);
1639
1640 /* Disable the receiver on the PHY so when a cable is plugged in, the
1641 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1642 */
1643 if (hw->phy.type == e1000_phy_m88)
1644 igb_phy_disable_receiver(adapter);
1645
1646 mdelay(500);
1647 return 0;
1648 }
1649
1650 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1651 {
1652 return igb_integrated_phy_loopback(adapter);
1653 }
1654
1655 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1656 {
1657 struct e1000_hw *hw = &adapter->hw;
1658 u32 reg;
1659
1660 reg = rd32(E1000_CTRL_EXT);
1661
1662 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1663 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1664 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1665 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1666 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1667 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1668 (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1669
1670 /* Enable DH89xxCC MPHY for near end loopback */
1671 reg = rd32(E1000_MPHY_ADDR_CTL);
1672 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1673 E1000_MPHY_PCS_CLK_REG_OFFSET;
1674 wr32(E1000_MPHY_ADDR_CTL, reg);
1675
1676 reg = rd32(E1000_MPHY_DATA);
1677 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1678 wr32(E1000_MPHY_DATA, reg);
1679 }
1680
1681 reg = rd32(E1000_RCTL);
1682 reg |= E1000_RCTL_LBM_TCVR;
1683 wr32(E1000_RCTL, reg);
1684
1685 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1686
1687 reg = rd32(E1000_CTRL);
1688 reg &= ~(E1000_CTRL_RFCE |
1689 E1000_CTRL_TFCE |
1690 E1000_CTRL_LRST);
1691 reg |= E1000_CTRL_SLU |
1692 E1000_CTRL_FD;
1693 wr32(E1000_CTRL, reg);
1694
1695 /* Unset switch control to serdes energy detect */
1696 reg = rd32(E1000_CONNSW);
1697 reg &= ~E1000_CONNSW_ENRGSRC;
1698 wr32(E1000_CONNSW, reg);
1699
1700 /* Unset sigdetect for SERDES loopback on
1701 * 82580 and newer devices.
1702 */
1703 if (hw->mac.type >= e1000_82580) {
1704 reg = rd32(E1000_PCS_CFG0);
1705 reg |= E1000_PCS_CFG_IGN_SD;
1706 wr32(E1000_PCS_CFG0, reg);
1707 }
1708
1709 /* Set PCS register for forced speed */
1710 reg = rd32(E1000_PCS_LCTL);
1711 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1712 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1713 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1714 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1715 E1000_PCS_LCTL_FSD | /* Force Speed */
1716 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1717 wr32(E1000_PCS_LCTL, reg);
1718
1719 return 0;
1720 }
1721
1722 return igb_set_phy_loopback(adapter);
1723 }
1724
1725 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1726 {
1727 struct e1000_hw *hw = &adapter->hw;
1728 u32 rctl;
1729 u16 phy_reg;
1730
1731 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1732 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1733 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1734 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1735 (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1736 u32 reg;
1737
1738 /* Disable near end loopback on DH89xxCC */
1739 reg = rd32(E1000_MPHY_ADDR_CTL);
1740 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1741 E1000_MPHY_PCS_CLK_REG_OFFSET;
1742 wr32(E1000_MPHY_ADDR_CTL, reg);
1743
1744 reg = rd32(E1000_MPHY_DATA);
1745 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1746 wr32(E1000_MPHY_DATA, reg);
1747 }
1748
1749 rctl = rd32(E1000_RCTL);
1750 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1751 wr32(E1000_RCTL, rctl);
1752
1753 hw->mac.autoneg = true;
1754 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1755 if (phy_reg & MII_CR_LOOPBACK) {
1756 phy_reg &= ~MII_CR_LOOPBACK;
1757 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1758 igb_phy_sw_reset(hw);
1759 }
1760 }
1761
1762 static void igb_create_lbtest_frame(struct sk_buff *skb,
1763 unsigned int frame_size)
1764 {
1765 memset(skb->data, 0xFF, frame_size);
1766 frame_size /= 2;
1767 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1768 memset(&skb->data[frame_size + 10], 0xBE, 1);
1769 memset(&skb->data[frame_size + 12], 0xAF, 1);
1770 }
1771
1772 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1773 unsigned int frame_size)
1774 {
1775 unsigned char *data;
1776 bool match = true;
1777
1778 frame_size >>= 1;
1779
1780 data = kmap(rx_buffer->page);
1781
1782 if (data[3] != 0xFF ||
1783 data[frame_size + 10] != 0xBE ||
1784 data[frame_size + 12] != 0xAF)
1785 match = false;
1786
1787 kunmap(rx_buffer->page);
1788
1789 return match;
1790 }
1791
1792 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1793 struct igb_ring *tx_ring,
1794 unsigned int size)
1795 {
1796 union e1000_adv_rx_desc *rx_desc;
1797 struct igb_rx_buffer *rx_buffer_info;
1798 struct igb_tx_buffer *tx_buffer_info;
1799 u16 rx_ntc, tx_ntc, count = 0;
1800
1801 /* initialize next to clean and descriptor values */
1802 rx_ntc = rx_ring->next_to_clean;
1803 tx_ntc = tx_ring->next_to_clean;
1804 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1805
1806 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1807 /* check Rx buffer */
1808 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1809
1810 /* sync Rx buffer for CPU read */
1811 dma_sync_single_for_cpu(rx_ring->dev,
1812 rx_buffer_info->dma,
1813 IGB_RX_BUFSZ,
1814 DMA_FROM_DEVICE);
1815
1816 /* verify contents of skb */
1817 if (igb_check_lbtest_frame(rx_buffer_info, size))
1818 count++;
1819
1820 /* sync Rx buffer for device write */
1821 dma_sync_single_for_device(rx_ring->dev,
1822 rx_buffer_info->dma,
1823 IGB_RX_BUFSZ,
1824 DMA_FROM_DEVICE);
1825
1826 /* unmap buffer on Tx side */
1827 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1828 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1829
1830 /* increment Rx/Tx next to clean counters */
1831 rx_ntc++;
1832 if (rx_ntc == rx_ring->count)
1833 rx_ntc = 0;
1834 tx_ntc++;
1835 if (tx_ntc == tx_ring->count)
1836 tx_ntc = 0;
1837
1838 /* fetch next descriptor */
1839 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1840 }
1841
1842 netdev_tx_reset_queue(txring_txq(tx_ring));
1843
1844 /* re-map buffers to ring, store next to clean values */
1845 igb_alloc_rx_buffers(rx_ring, count);
1846 rx_ring->next_to_clean = rx_ntc;
1847 tx_ring->next_to_clean = tx_ntc;
1848
1849 return count;
1850 }
1851
1852 static int igb_run_loopback_test(struct igb_adapter *adapter)
1853 {
1854 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1855 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1856 u16 i, j, lc, good_cnt;
1857 int ret_val = 0;
1858 unsigned int size = IGB_RX_HDR_LEN;
1859 netdev_tx_t tx_ret_val;
1860 struct sk_buff *skb;
1861
1862 /* allocate test skb */
1863 skb = alloc_skb(size, GFP_KERNEL);
1864 if (!skb)
1865 return 11;
1866
1867 /* place data into test skb */
1868 igb_create_lbtest_frame(skb, size);
1869 skb_put(skb, size);
1870
1871 /* Calculate the loop count based on the largest descriptor ring
1872 * The idea is to wrap the largest ring a number of times using 64
1873 * send/receive pairs during each loop
1874 */
1875
1876 if (rx_ring->count <= tx_ring->count)
1877 lc = ((tx_ring->count / 64) * 2) + 1;
1878 else
1879 lc = ((rx_ring->count / 64) * 2) + 1;
1880
1881 for (j = 0; j <= lc; j++) { /* loop count loop */
1882 /* reset count of good packets */
1883 good_cnt = 0;
1884
1885 /* place 64 packets on the transmit queue*/
1886 for (i = 0; i < 64; i++) {
1887 skb_get(skb);
1888 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1889 if (tx_ret_val == NETDEV_TX_OK)
1890 good_cnt++;
1891 }
1892
1893 if (good_cnt != 64) {
1894 ret_val = 12;
1895 break;
1896 }
1897
1898 /* allow 200 milliseconds for packets to go from Tx to Rx */
1899 msleep(200);
1900
1901 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1902 if (good_cnt != 64) {
1903 ret_val = 13;
1904 break;
1905 }
1906 } /* end loop count loop */
1907
1908 /* free the original skb */
1909 kfree_skb(skb);
1910
1911 return ret_val;
1912 }
1913
1914 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1915 {
1916 /* PHY loopback cannot be performed if SoL/IDER
1917 * sessions are active
1918 */
1919 if (igb_check_reset_block(&adapter->hw)) {
1920 dev_err(&adapter->pdev->dev,
1921 "Cannot do PHY loopback test when SoL/IDER is active.\n");
1922 *data = 0;
1923 goto out;
1924 }
1925
1926 if (adapter->hw.mac.type == e1000_i354) {
1927 dev_info(&adapter->pdev->dev,
1928 "Loopback test not supported on i354.\n");
1929 *data = 0;
1930 goto out;
1931 }
1932 *data = igb_setup_desc_rings(adapter);
1933 if (*data)
1934 goto out;
1935 *data = igb_setup_loopback_test(adapter);
1936 if (*data)
1937 goto err_loopback;
1938 *data = igb_run_loopback_test(adapter);
1939 igb_loopback_cleanup(adapter);
1940
1941 err_loopback:
1942 igb_free_desc_rings(adapter);
1943 out:
1944 return *data;
1945 }
1946
1947 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1948 {
1949 struct e1000_hw *hw = &adapter->hw;
1950 *data = 0;
1951 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1952 int i = 0;
1953
1954 hw->mac.serdes_has_link = false;
1955
1956 /* On some blade server designs, link establishment
1957 * could take as long as 2-3 minutes
1958 */
1959 do {
1960 hw->mac.ops.check_for_link(&adapter->hw);
1961 if (hw->mac.serdes_has_link)
1962 return *data;
1963 msleep(20);
1964 } while (i++ < 3750);
1965
1966 *data = 1;
1967 } else {
1968 hw->mac.ops.check_for_link(&adapter->hw);
1969 if (hw->mac.autoneg)
1970 msleep(5000);
1971
1972 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1973 *data = 1;
1974 }
1975 return *data;
1976 }
1977
1978 static void igb_diag_test(struct net_device *netdev,
1979 struct ethtool_test *eth_test, u64 *data)
1980 {
1981 struct igb_adapter *adapter = netdev_priv(netdev);
1982 u16 autoneg_advertised;
1983 u8 forced_speed_duplex, autoneg;
1984 bool if_running = netif_running(netdev);
1985
1986 set_bit(__IGB_TESTING, &adapter->state);
1987
1988 /* can't do offline tests on media switching devices */
1989 if (adapter->hw.dev_spec._82575.mas_capable)
1990 eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
1991 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1992 /* Offline tests */
1993
1994 /* save speed, duplex, autoneg settings */
1995 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1996 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1997 autoneg = adapter->hw.mac.autoneg;
1998
1999 dev_info(&adapter->pdev->dev, "offline testing starting\n");
2000
2001 /* power up link for link test */
2002 igb_power_up_link(adapter);
2003
2004 /* Link test performed before hardware reset so autoneg doesn't
2005 * interfere with test result
2006 */
2007 if (igb_link_test(adapter, &data[4]))
2008 eth_test->flags |= ETH_TEST_FL_FAILED;
2009
2010 if (if_running)
2011 /* indicate we're in test mode */
2012 dev_close(netdev);
2013 else
2014 igb_reset(adapter);
2015
2016 if (igb_reg_test(adapter, &data[0]))
2017 eth_test->flags |= ETH_TEST_FL_FAILED;
2018
2019 igb_reset(adapter);
2020 if (igb_eeprom_test(adapter, &data[1]))
2021 eth_test->flags |= ETH_TEST_FL_FAILED;
2022
2023 igb_reset(adapter);
2024 if (igb_intr_test(adapter, &data[2]))
2025 eth_test->flags |= ETH_TEST_FL_FAILED;
2026
2027 igb_reset(adapter);
2028 /* power up link for loopback test */
2029 igb_power_up_link(adapter);
2030 if (igb_loopback_test(adapter, &data[3]))
2031 eth_test->flags |= ETH_TEST_FL_FAILED;
2032
2033 /* restore speed, duplex, autoneg settings */
2034 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2035 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2036 adapter->hw.mac.autoneg = autoneg;
2037
2038 /* force this routine to wait until autoneg complete/timeout */
2039 adapter->hw.phy.autoneg_wait_to_complete = true;
2040 igb_reset(adapter);
2041 adapter->hw.phy.autoneg_wait_to_complete = false;
2042
2043 clear_bit(__IGB_TESTING, &adapter->state);
2044 if (if_running)
2045 dev_open(netdev);
2046 } else {
2047 dev_info(&adapter->pdev->dev, "online testing starting\n");
2048
2049 /* PHY is powered down when interface is down */
2050 if (if_running && igb_link_test(adapter, &data[4]))
2051 eth_test->flags |= ETH_TEST_FL_FAILED;
2052 else
2053 data[4] = 0;
2054
2055 /* Online tests aren't run; pass by default */
2056 data[0] = 0;
2057 data[1] = 0;
2058 data[2] = 0;
2059 data[3] = 0;
2060
2061 clear_bit(__IGB_TESTING, &adapter->state);
2062 }
2063 msleep_interruptible(4 * 1000);
2064 }
2065
2066 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2067 {
2068 struct igb_adapter *adapter = netdev_priv(netdev);
2069
2070 wol->wolopts = 0;
2071
2072 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2073 return;
2074
2075 wol->supported = WAKE_UCAST | WAKE_MCAST |
2076 WAKE_BCAST | WAKE_MAGIC |
2077 WAKE_PHY;
2078
2079 /* apply any specific unsupported masks here */
2080 switch (adapter->hw.device_id) {
2081 default:
2082 break;
2083 }
2084
2085 if (adapter->wol & E1000_WUFC_EX)
2086 wol->wolopts |= WAKE_UCAST;
2087 if (adapter->wol & E1000_WUFC_MC)
2088 wol->wolopts |= WAKE_MCAST;
2089 if (adapter->wol & E1000_WUFC_BC)
2090 wol->wolopts |= WAKE_BCAST;
2091 if (adapter->wol & E1000_WUFC_MAG)
2092 wol->wolopts |= WAKE_MAGIC;
2093 if (adapter->wol & E1000_WUFC_LNKC)
2094 wol->wolopts |= WAKE_PHY;
2095 }
2096
2097 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2098 {
2099 struct igb_adapter *adapter = netdev_priv(netdev);
2100
2101 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2102 return -EOPNOTSUPP;
2103
2104 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2105 return wol->wolopts ? -EOPNOTSUPP : 0;
2106
2107 /* these settings will always override what we currently have */
2108 adapter->wol = 0;
2109
2110 if (wol->wolopts & WAKE_UCAST)
2111 adapter->wol |= E1000_WUFC_EX;
2112 if (wol->wolopts & WAKE_MCAST)
2113 adapter->wol |= E1000_WUFC_MC;
2114 if (wol->wolopts & WAKE_BCAST)
2115 adapter->wol |= E1000_WUFC_BC;
2116 if (wol->wolopts & WAKE_MAGIC)
2117 adapter->wol |= E1000_WUFC_MAG;
2118 if (wol->wolopts & WAKE_PHY)
2119 adapter->wol |= E1000_WUFC_LNKC;
2120 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2121
2122 return 0;
2123 }
2124
2125 /* bit defines for adapter->led_status */
2126 #define IGB_LED_ON 0
2127
2128 static int igb_set_phys_id(struct net_device *netdev,
2129 enum ethtool_phys_id_state state)
2130 {
2131 struct igb_adapter *adapter = netdev_priv(netdev);
2132 struct e1000_hw *hw = &adapter->hw;
2133
2134 switch (state) {
2135 case ETHTOOL_ID_ACTIVE:
2136 igb_blink_led(hw);
2137 return 2;
2138 case ETHTOOL_ID_ON:
2139 igb_blink_led(hw);
2140 break;
2141 case ETHTOOL_ID_OFF:
2142 igb_led_off(hw);
2143 break;
2144 case ETHTOOL_ID_INACTIVE:
2145 igb_led_off(hw);
2146 clear_bit(IGB_LED_ON, &adapter->led_status);
2147 igb_cleanup_led(hw);
2148 break;
2149 }
2150
2151 return 0;
2152 }
2153
2154 static int igb_set_coalesce(struct net_device *netdev,
2155 struct ethtool_coalesce *ec)
2156 {
2157 struct igb_adapter *adapter = netdev_priv(netdev);
2158 int i;
2159
2160 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2161 ((ec->rx_coalesce_usecs > 3) &&
2162 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2163 (ec->rx_coalesce_usecs == 2))
2164 return -EINVAL;
2165
2166 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2167 ((ec->tx_coalesce_usecs > 3) &&
2168 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2169 (ec->tx_coalesce_usecs == 2))
2170 return -EINVAL;
2171
2172 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2173 return -EINVAL;
2174
2175 /* If ITR is disabled, disable DMAC */
2176 if (ec->rx_coalesce_usecs == 0) {
2177 if (adapter->flags & IGB_FLAG_DMAC)
2178 adapter->flags &= ~IGB_FLAG_DMAC;
2179 }
2180
2181 /* convert to rate of irq's per second */
2182 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2183 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2184 else
2185 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2186
2187 /* convert to rate of irq's per second */
2188 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2189 adapter->tx_itr_setting = adapter->rx_itr_setting;
2190 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2191 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2192 else
2193 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2194
2195 for (i = 0; i < adapter->num_q_vectors; i++) {
2196 struct igb_q_vector *q_vector = adapter->q_vector[i];
2197 q_vector->tx.work_limit = adapter->tx_work_limit;
2198 if (q_vector->rx.ring)
2199 q_vector->itr_val = adapter->rx_itr_setting;
2200 else
2201 q_vector->itr_val = adapter->tx_itr_setting;
2202 if (q_vector->itr_val && q_vector->itr_val <= 3)
2203 q_vector->itr_val = IGB_START_ITR;
2204 q_vector->set_itr = 1;
2205 }
2206
2207 return 0;
2208 }
2209
2210 static int igb_get_coalesce(struct net_device *netdev,
2211 struct ethtool_coalesce *ec)
2212 {
2213 struct igb_adapter *adapter = netdev_priv(netdev);
2214
2215 if (adapter->rx_itr_setting <= 3)
2216 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2217 else
2218 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2219
2220 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2221 if (adapter->tx_itr_setting <= 3)
2222 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2223 else
2224 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2225 }
2226
2227 return 0;
2228 }
2229
2230 static int igb_nway_reset(struct net_device *netdev)
2231 {
2232 struct igb_adapter *adapter = netdev_priv(netdev);
2233 if (netif_running(netdev))
2234 igb_reinit_locked(adapter);
2235 return 0;
2236 }
2237
2238 static int igb_get_sset_count(struct net_device *netdev, int sset)
2239 {
2240 switch (sset) {
2241 case ETH_SS_STATS:
2242 return IGB_STATS_LEN;
2243 case ETH_SS_TEST:
2244 return IGB_TEST_LEN;
2245 default:
2246 return -ENOTSUPP;
2247 }
2248 }
2249
2250 static void igb_get_ethtool_stats(struct net_device *netdev,
2251 struct ethtool_stats *stats, u64 *data)
2252 {
2253 struct igb_adapter *adapter = netdev_priv(netdev);
2254 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2255 unsigned int start;
2256 struct igb_ring *ring;
2257 int i, j;
2258 char *p;
2259
2260 spin_lock(&adapter->stats64_lock);
2261 igb_update_stats(adapter, net_stats);
2262
2263 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2264 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2265 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2266 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2267 }
2268 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2269 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2270 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2271 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2272 }
2273 for (j = 0; j < adapter->num_tx_queues; j++) {
2274 u64 restart2;
2275
2276 ring = adapter->tx_ring[j];
2277 do {
2278 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2279 data[i] = ring->tx_stats.packets;
2280 data[i+1] = ring->tx_stats.bytes;
2281 data[i+2] = ring->tx_stats.restart_queue;
2282 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2283 do {
2284 start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2285 restart2 = ring->tx_stats.restart_queue2;
2286 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2287 data[i+2] += restart2;
2288
2289 i += IGB_TX_QUEUE_STATS_LEN;
2290 }
2291 for (j = 0; j < adapter->num_rx_queues; j++) {
2292 ring = adapter->rx_ring[j];
2293 do {
2294 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2295 data[i] = ring->rx_stats.packets;
2296 data[i+1] = ring->rx_stats.bytes;
2297 data[i+2] = ring->rx_stats.drops;
2298 data[i+3] = ring->rx_stats.csum_err;
2299 data[i+4] = ring->rx_stats.alloc_failed;
2300 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2301 i += IGB_RX_QUEUE_STATS_LEN;
2302 }
2303 spin_unlock(&adapter->stats64_lock);
2304 }
2305
2306 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2307 {
2308 struct igb_adapter *adapter = netdev_priv(netdev);
2309 u8 *p = data;
2310 int i;
2311
2312 switch (stringset) {
2313 case ETH_SS_TEST:
2314 memcpy(data, *igb_gstrings_test,
2315 IGB_TEST_LEN*ETH_GSTRING_LEN);
2316 break;
2317 case ETH_SS_STATS:
2318 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2319 memcpy(p, igb_gstrings_stats[i].stat_string,
2320 ETH_GSTRING_LEN);
2321 p += ETH_GSTRING_LEN;
2322 }
2323 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2324 memcpy(p, igb_gstrings_net_stats[i].stat_string,
2325 ETH_GSTRING_LEN);
2326 p += ETH_GSTRING_LEN;
2327 }
2328 for (i = 0; i < adapter->num_tx_queues; i++) {
2329 sprintf(p, "tx_queue_%u_packets", i);
2330 p += ETH_GSTRING_LEN;
2331 sprintf(p, "tx_queue_%u_bytes", i);
2332 p += ETH_GSTRING_LEN;
2333 sprintf(p, "tx_queue_%u_restart", i);
2334 p += ETH_GSTRING_LEN;
2335 }
2336 for (i = 0; i < adapter->num_rx_queues; i++) {
2337 sprintf(p, "rx_queue_%u_packets", i);
2338 p += ETH_GSTRING_LEN;
2339 sprintf(p, "rx_queue_%u_bytes", i);
2340 p += ETH_GSTRING_LEN;
2341 sprintf(p, "rx_queue_%u_drops", i);
2342 p += ETH_GSTRING_LEN;
2343 sprintf(p, "rx_queue_%u_csum_err", i);
2344 p += ETH_GSTRING_LEN;
2345 sprintf(p, "rx_queue_%u_alloc_failed", i);
2346 p += ETH_GSTRING_LEN;
2347 }
2348 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2349 break;
2350 }
2351 }
2352
2353 static int igb_get_ts_info(struct net_device *dev,
2354 struct ethtool_ts_info *info)
2355 {
2356 struct igb_adapter *adapter = netdev_priv(dev);
2357
2358 if (adapter->ptp_clock)
2359 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2360 else
2361 info->phc_index = -1;
2362
2363 switch (adapter->hw.mac.type) {
2364 case e1000_82575:
2365 info->so_timestamping =
2366 SOF_TIMESTAMPING_TX_SOFTWARE |
2367 SOF_TIMESTAMPING_RX_SOFTWARE |
2368 SOF_TIMESTAMPING_SOFTWARE;
2369 return 0;
2370 case e1000_82576:
2371 case e1000_82580:
2372 case e1000_i350:
2373 case e1000_i354:
2374 case e1000_i210:
2375 case e1000_i211:
2376 info->so_timestamping =
2377 SOF_TIMESTAMPING_TX_SOFTWARE |
2378 SOF_TIMESTAMPING_RX_SOFTWARE |
2379 SOF_TIMESTAMPING_SOFTWARE |
2380 SOF_TIMESTAMPING_TX_HARDWARE |
2381 SOF_TIMESTAMPING_RX_HARDWARE |
2382 SOF_TIMESTAMPING_RAW_HARDWARE;
2383
2384 info->tx_types =
2385 (1 << HWTSTAMP_TX_OFF) |
2386 (1 << HWTSTAMP_TX_ON);
2387
2388 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2389
2390 /* 82576 does not support timestamping all packets. */
2391 if (adapter->hw.mac.type >= e1000_82580)
2392 info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2393 else
2394 info->rx_filters |=
2395 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2396 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2397 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2398 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2399 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2400 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2401 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2402
2403 return 0;
2404 default:
2405 return -EOPNOTSUPP;
2406 }
2407 }
2408
2409 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2410 struct ethtool_rxnfc *cmd)
2411 {
2412 cmd->data = 0;
2413
2414 /* Report default options for RSS on igb */
2415 switch (cmd->flow_type) {
2416 case TCP_V4_FLOW:
2417 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2418 /* Fall through */
2419 case UDP_V4_FLOW:
2420 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2421 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2422 /* Fall through */
2423 case SCTP_V4_FLOW:
2424 case AH_ESP_V4_FLOW:
2425 case AH_V4_FLOW:
2426 case ESP_V4_FLOW:
2427 case IPV4_FLOW:
2428 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2429 break;
2430 case TCP_V6_FLOW:
2431 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2432 /* Fall through */
2433 case UDP_V6_FLOW:
2434 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2435 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2436 /* Fall through */
2437 case SCTP_V6_FLOW:
2438 case AH_ESP_V6_FLOW:
2439 case AH_V6_FLOW:
2440 case ESP_V6_FLOW:
2441 case IPV6_FLOW:
2442 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2443 break;
2444 default:
2445 return -EINVAL;
2446 }
2447
2448 return 0;
2449 }
2450
2451 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2452 u32 *rule_locs)
2453 {
2454 struct igb_adapter *adapter = netdev_priv(dev);
2455 int ret = -EOPNOTSUPP;
2456
2457 switch (cmd->cmd) {
2458 case ETHTOOL_GRXRINGS:
2459 cmd->data = adapter->num_rx_queues;
2460 ret = 0;
2461 break;
2462 case ETHTOOL_GRXFH:
2463 ret = igb_get_rss_hash_opts(adapter, cmd);
2464 break;
2465 default:
2466 break;
2467 }
2468
2469 return ret;
2470 }
2471
2472 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2473 IGB_FLAG_RSS_FIELD_IPV6_UDP)
2474 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2475 struct ethtool_rxnfc *nfc)
2476 {
2477 u32 flags = adapter->flags;
2478
2479 /* RSS does not support anything other than hashing
2480 * to queues on src and dst IPs and ports
2481 */
2482 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2483 RXH_L4_B_0_1 | RXH_L4_B_2_3))
2484 return -EINVAL;
2485
2486 switch (nfc->flow_type) {
2487 case TCP_V4_FLOW:
2488 case TCP_V6_FLOW:
2489 if (!(nfc->data & RXH_IP_SRC) ||
2490 !(nfc->data & RXH_IP_DST) ||
2491 !(nfc->data & RXH_L4_B_0_1) ||
2492 !(nfc->data & RXH_L4_B_2_3))
2493 return -EINVAL;
2494 break;
2495 case UDP_V4_FLOW:
2496 if (!(nfc->data & RXH_IP_SRC) ||
2497 !(nfc->data & RXH_IP_DST))
2498 return -EINVAL;
2499 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2500 case 0:
2501 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2502 break;
2503 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2504 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2505 break;
2506 default:
2507 return -EINVAL;
2508 }
2509 break;
2510 case UDP_V6_FLOW:
2511 if (!(nfc->data & RXH_IP_SRC) ||
2512 !(nfc->data & RXH_IP_DST))
2513 return -EINVAL;
2514 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2515 case 0:
2516 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2517 break;
2518 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2519 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2520 break;
2521 default:
2522 return -EINVAL;
2523 }
2524 break;
2525 case AH_ESP_V4_FLOW:
2526 case AH_V4_FLOW:
2527 case ESP_V4_FLOW:
2528 case SCTP_V4_FLOW:
2529 case AH_ESP_V6_FLOW:
2530 case AH_V6_FLOW:
2531 case ESP_V6_FLOW:
2532 case SCTP_V6_FLOW:
2533 if (!(nfc->data & RXH_IP_SRC) ||
2534 !(nfc->data & RXH_IP_DST) ||
2535 (nfc->data & RXH_L4_B_0_1) ||
2536 (nfc->data & RXH_L4_B_2_3))
2537 return -EINVAL;
2538 break;
2539 default:
2540 return -EINVAL;
2541 }
2542
2543 /* if we changed something we need to update flags */
2544 if (flags != adapter->flags) {
2545 struct e1000_hw *hw = &adapter->hw;
2546 u32 mrqc = rd32(E1000_MRQC);
2547
2548 if ((flags & UDP_RSS_FLAGS) &&
2549 !(adapter->flags & UDP_RSS_FLAGS))
2550 dev_err(&adapter->pdev->dev,
2551 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2552
2553 adapter->flags = flags;
2554
2555 /* Perform hash on these packet types */
2556 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2557 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2558 E1000_MRQC_RSS_FIELD_IPV6 |
2559 E1000_MRQC_RSS_FIELD_IPV6_TCP;
2560
2561 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2562 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2563
2564 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2565 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2566
2567 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2568 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2569
2570 wr32(E1000_MRQC, mrqc);
2571 }
2572
2573 return 0;
2574 }
2575
2576 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2577 {
2578 struct igb_adapter *adapter = netdev_priv(dev);
2579 int ret = -EOPNOTSUPP;
2580
2581 switch (cmd->cmd) {
2582 case ETHTOOL_SRXFH:
2583 ret = igb_set_rss_hash_opt(adapter, cmd);
2584 break;
2585 default:
2586 break;
2587 }
2588
2589 return ret;
2590 }
2591
2592 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2593 {
2594 struct igb_adapter *adapter = netdev_priv(netdev);
2595 struct e1000_hw *hw = &adapter->hw;
2596 u32 ret_val;
2597 u16 phy_data;
2598
2599 if ((hw->mac.type < e1000_i350) ||
2600 (hw->phy.media_type != e1000_media_type_copper))
2601 return -EOPNOTSUPP;
2602
2603 edata->supported = (SUPPORTED_1000baseT_Full |
2604 SUPPORTED_100baseT_Full);
2605 if (!hw->dev_spec._82575.eee_disable)
2606 edata->advertised =
2607 mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2608
2609 /* The IPCNFG and EEER registers are not supported on I354. */
2610 if (hw->mac.type == e1000_i354) {
2611 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
2612 } else {
2613 u32 eeer;
2614
2615 eeer = rd32(E1000_EEER);
2616
2617 /* EEE status on negotiated link */
2618 if (eeer & E1000_EEER_EEE_NEG)
2619 edata->eee_active = true;
2620
2621 if (eeer & E1000_EEER_TX_LPI_EN)
2622 edata->tx_lpi_enabled = true;
2623 }
2624
2625 /* EEE Link Partner Advertised */
2626 switch (hw->mac.type) {
2627 case e1000_i350:
2628 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2629 &phy_data);
2630 if (ret_val)
2631 return -ENODATA;
2632
2633 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2634 break;
2635 case e1000_i354:
2636 case e1000_i210:
2637 case e1000_i211:
2638 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2639 E1000_EEE_LP_ADV_DEV_I210,
2640 &phy_data);
2641 if (ret_val)
2642 return -ENODATA;
2643
2644 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2645
2646 break;
2647 default:
2648 break;
2649 }
2650
2651 edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2652
2653 if ((hw->mac.type == e1000_i354) &&
2654 (edata->eee_enabled))
2655 edata->tx_lpi_enabled = true;
2656
2657 /* Report correct negotiated EEE status for devices that
2658 * wrongly report EEE at half-duplex
2659 */
2660 if (adapter->link_duplex == HALF_DUPLEX) {
2661 edata->eee_enabled = false;
2662 edata->eee_active = false;
2663 edata->tx_lpi_enabled = false;
2664 edata->advertised &= ~edata->advertised;
2665 }
2666
2667 return 0;
2668 }
2669
2670 static int igb_set_eee(struct net_device *netdev,
2671 struct ethtool_eee *edata)
2672 {
2673 struct igb_adapter *adapter = netdev_priv(netdev);
2674 struct e1000_hw *hw = &adapter->hw;
2675 struct ethtool_eee eee_curr;
2676 s32 ret_val;
2677
2678 if ((hw->mac.type < e1000_i350) ||
2679 (hw->phy.media_type != e1000_media_type_copper))
2680 return -EOPNOTSUPP;
2681
2682 memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2683
2684 ret_val = igb_get_eee(netdev, &eee_curr);
2685 if (ret_val)
2686 return ret_val;
2687
2688 if (eee_curr.eee_enabled) {
2689 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2690 dev_err(&adapter->pdev->dev,
2691 "Setting EEE tx-lpi is not supported\n");
2692 return -EINVAL;
2693 }
2694
2695 /* Tx LPI timer is not implemented currently */
2696 if (edata->tx_lpi_timer) {
2697 dev_err(&adapter->pdev->dev,
2698 "Setting EEE Tx LPI timer is not supported\n");
2699 return -EINVAL;
2700 }
2701
2702 if (edata->advertised &
2703 ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2704 dev_err(&adapter->pdev->dev,
2705 "EEE Advertisement supports only 100Tx and or 100T full duplex\n");
2706 return -EINVAL;
2707 }
2708
2709 } else if (!edata->eee_enabled) {
2710 dev_err(&adapter->pdev->dev,
2711 "Setting EEE options are not supported with EEE disabled\n");
2712 return -EINVAL;
2713 }
2714
2715 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2716 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2717 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2718 adapter->flags |= IGB_FLAG_EEE;
2719 if (hw->mac.type == e1000_i350)
2720 igb_set_eee_i350(hw);
2721 else
2722 igb_set_eee_i354(hw);
2723
2724 /* reset link */
2725 if (netif_running(netdev))
2726 igb_reinit_locked(adapter);
2727 else
2728 igb_reset(adapter);
2729 }
2730
2731 return 0;
2732 }
2733
2734 static int igb_get_module_info(struct net_device *netdev,
2735 struct ethtool_modinfo *modinfo)
2736 {
2737 struct igb_adapter *adapter = netdev_priv(netdev);
2738 struct e1000_hw *hw = &adapter->hw;
2739 u32 status = E1000_SUCCESS;
2740 u16 sff8472_rev, addr_mode;
2741 bool page_swap = false;
2742
2743 if ((hw->phy.media_type == e1000_media_type_copper) ||
2744 (hw->phy.media_type == e1000_media_type_unknown))
2745 return -EOPNOTSUPP;
2746
2747 /* Check whether we support SFF-8472 or not */
2748 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2749 if (status != E1000_SUCCESS)
2750 return -EIO;
2751
2752 /* addressing mode is not supported */
2753 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2754 if (status != E1000_SUCCESS)
2755 return -EIO;
2756
2757 /* addressing mode is not supported */
2758 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2759 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2760 page_swap = true;
2761 }
2762
2763 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2764 /* We have an SFP, but it does not support SFF-8472 */
2765 modinfo->type = ETH_MODULE_SFF_8079;
2766 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2767 } else {
2768 /* We have an SFP which supports a revision of SFF-8472 */
2769 modinfo->type = ETH_MODULE_SFF_8472;
2770 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2771 }
2772
2773 return 0;
2774 }
2775
2776 static int igb_get_module_eeprom(struct net_device *netdev,
2777 struct ethtool_eeprom *ee, u8 *data)
2778 {
2779 struct igb_adapter *adapter = netdev_priv(netdev);
2780 struct e1000_hw *hw = &adapter->hw;
2781 u32 status = E1000_SUCCESS;
2782 u16 *dataword;
2783 u16 first_word, last_word;
2784 int i = 0;
2785
2786 if (ee->len == 0)
2787 return -EINVAL;
2788
2789 first_word = ee->offset >> 1;
2790 last_word = (ee->offset + ee->len - 1) >> 1;
2791
2792 dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2793 GFP_KERNEL);
2794 if (!dataword)
2795 return -ENOMEM;
2796
2797 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2798 for (i = 0; i < last_word - first_word + 1; i++) {
2799 status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2800 if (status != E1000_SUCCESS) {
2801 /* Error occurred while reading module */
2802 kfree(dataword);
2803 return -EIO;
2804 }
2805
2806 be16_to_cpus(&dataword[i]);
2807 }
2808
2809 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2810 kfree(dataword);
2811
2812 return 0;
2813 }
2814
2815 static int igb_ethtool_begin(struct net_device *netdev)
2816 {
2817 struct igb_adapter *adapter = netdev_priv(netdev);
2818 pm_runtime_get_sync(&adapter->pdev->dev);
2819 return 0;
2820 }
2821
2822 static void igb_ethtool_complete(struct net_device *netdev)
2823 {
2824 struct igb_adapter *adapter = netdev_priv(netdev);
2825 pm_runtime_put(&adapter->pdev->dev);
2826 }
2827
2828 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2829 {
2830 return IGB_RETA_SIZE;
2831 }
2832
2833 static int igb_get_rxfh_indir(struct net_device *netdev, u32 *indir)
2834 {
2835 struct igb_adapter *adapter = netdev_priv(netdev);
2836 int i;
2837
2838 for (i = 0; i < IGB_RETA_SIZE; i++)
2839 indir[i] = adapter->rss_indir_tbl[i];
2840
2841 return 0;
2842 }
2843
2844 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2845 {
2846 struct e1000_hw *hw = &adapter->hw;
2847 u32 reg = E1000_RETA(0);
2848 u32 shift = 0;
2849 int i = 0;
2850
2851 switch (hw->mac.type) {
2852 case e1000_82575:
2853 shift = 6;
2854 break;
2855 case e1000_82576:
2856 /* 82576 supports 2 RSS queues for SR-IOV */
2857 if (adapter->vfs_allocated_count)
2858 shift = 3;
2859 break;
2860 default:
2861 break;
2862 }
2863
2864 while (i < IGB_RETA_SIZE) {
2865 u32 val = 0;
2866 int j;
2867
2868 for (j = 3; j >= 0; j--) {
2869 val <<= 8;
2870 val |= adapter->rss_indir_tbl[i + j];
2871 }
2872
2873 wr32(reg, val << shift);
2874 reg += 4;
2875 i += 4;
2876 }
2877 }
2878
2879 static int igb_set_rxfh_indir(struct net_device *netdev, const u32 *indir)
2880 {
2881 struct igb_adapter *adapter = netdev_priv(netdev);
2882 struct e1000_hw *hw = &adapter->hw;
2883 int i;
2884 u32 num_queues;
2885
2886 num_queues = adapter->rss_queues;
2887
2888 switch (hw->mac.type) {
2889 case e1000_82576:
2890 /* 82576 supports 2 RSS queues for SR-IOV */
2891 if (adapter->vfs_allocated_count)
2892 num_queues = 2;
2893 break;
2894 default:
2895 break;
2896 }
2897
2898 /* Verify user input. */
2899 for (i = 0; i < IGB_RETA_SIZE; i++)
2900 if (indir[i] >= num_queues)
2901 return -EINVAL;
2902
2903
2904 for (i = 0; i < IGB_RETA_SIZE; i++)
2905 adapter->rss_indir_tbl[i] = indir[i];
2906
2907 igb_write_rss_indir_tbl(adapter);
2908
2909 return 0;
2910 }
2911
2912 static unsigned int igb_max_channels(struct igb_adapter *adapter)
2913 {
2914 struct e1000_hw *hw = &adapter->hw;
2915 unsigned int max_combined = 0;
2916
2917 switch (hw->mac.type) {
2918 case e1000_i211:
2919 max_combined = IGB_MAX_RX_QUEUES_I211;
2920 break;
2921 case e1000_82575:
2922 case e1000_i210:
2923 max_combined = IGB_MAX_RX_QUEUES_82575;
2924 break;
2925 case e1000_i350:
2926 if (!!adapter->vfs_allocated_count) {
2927 max_combined = 1;
2928 break;
2929 }
2930 /* fall through */
2931 case e1000_82576:
2932 if (!!adapter->vfs_allocated_count) {
2933 max_combined = 2;
2934 break;
2935 }
2936 /* fall through */
2937 case e1000_82580:
2938 case e1000_i354:
2939 default:
2940 max_combined = IGB_MAX_RX_QUEUES;
2941 break;
2942 }
2943
2944 return max_combined;
2945 }
2946
2947 static void igb_get_channels(struct net_device *netdev,
2948 struct ethtool_channels *ch)
2949 {
2950 struct igb_adapter *adapter = netdev_priv(netdev);
2951
2952 /* Report maximum channels */
2953 ch->max_combined = igb_max_channels(adapter);
2954
2955 /* Report info for other vector */
2956 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2957 ch->max_other = NON_Q_VECTORS;
2958 ch->other_count = NON_Q_VECTORS;
2959 }
2960
2961 ch->combined_count = adapter->rss_queues;
2962 }
2963
2964 static int igb_set_channels(struct net_device *netdev,
2965 struct ethtool_channels *ch)
2966 {
2967 struct igb_adapter *adapter = netdev_priv(netdev);
2968 unsigned int count = ch->combined_count;
2969
2970 /* Verify they are not requesting separate vectors */
2971 if (!count || ch->rx_count || ch->tx_count)
2972 return -EINVAL;
2973
2974 /* Verify other_count is valid and has not been changed */
2975 if (ch->other_count != NON_Q_VECTORS)
2976 return -EINVAL;
2977
2978 /* Verify the number of channels doesn't exceed hw limits */
2979 if (count > igb_max_channels(adapter))
2980 return -EINVAL;
2981
2982 if (count != adapter->rss_queues) {
2983 adapter->rss_queues = count;
2984
2985 /* Hardware has to reinitialize queues and interrupts to
2986 * match the new configuration.
2987 */
2988 return igb_reinit_queues(adapter);
2989 }
2990
2991 return 0;
2992 }
2993
2994 static const struct ethtool_ops igb_ethtool_ops = {
2995 .get_settings = igb_get_settings,
2996 .set_settings = igb_set_settings,
2997 .get_drvinfo = igb_get_drvinfo,
2998 .get_regs_len = igb_get_regs_len,
2999 .get_regs = igb_get_regs,
3000 .get_wol = igb_get_wol,
3001 .set_wol = igb_set_wol,
3002 .get_msglevel = igb_get_msglevel,
3003 .set_msglevel = igb_set_msglevel,
3004 .nway_reset = igb_nway_reset,
3005 .get_link = igb_get_link,
3006 .get_eeprom_len = igb_get_eeprom_len,
3007 .get_eeprom = igb_get_eeprom,
3008 .set_eeprom = igb_set_eeprom,
3009 .get_ringparam = igb_get_ringparam,
3010 .set_ringparam = igb_set_ringparam,
3011 .get_pauseparam = igb_get_pauseparam,
3012 .set_pauseparam = igb_set_pauseparam,
3013 .self_test = igb_diag_test,
3014 .get_strings = igb_get_strings,
3015 .set_phys_id = igb_set_phys_id,
3016 .get_sset_count = igb_get_sset_count,
3017 .get_ethtool_stats = igb_get_ethtool_stats,
3018 .get_coalesce = igb_get_coalesce,
3019 .set_coalesce = igb_set_coalesce,
3020 .get_ts_info = igb_get_ts_info,
3021 .get_rxnfc = igb_get_rxnfc,
3022 .set_rxnfc = igb_set_rxnfc,
3023 .get_eee = igb_get_eee,
3024 .set_eee = igb_set_eee,
3025 .get_module_info = igb_get_module_info,
3026 .get_module_eeprom = igb_get_module_eeprom,
3027 .get_rxfh_indir_size = igb_get_rxfh_indir_size,
3028 .get_rxfh_indir = igb_get_rxfh_indir,
3029 .set_rxfh_indir = igb_set_rxfh_indir,
3030 .get_channels = igb_get_channels,
3031 .set_channels = igb_set_channels,
3032 .begin = igb_ethtool_begin,
3033 .complete = igb_ethtool_complete,
3034 };
3035
3036 void igb_set_ethtool_ops(struct net_device *netdev)
3037 {
3038 netdev->ethtool_ops = &igb_ethtool_ops;
3039 }
This page took 0.09411 seconds and 4 git commands to generate.