igb: Combine all flag info fields into a single tx_flags structure
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2011 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39
40 #include "igb.h"
41
42 struct igb_stats {
43 char stat_string[ETH_GSTRING_LEN];
44 int sizeof_stat;
45 int stat_offset;
46 };
47
48 #define IGB_STAT(_name, _stat) { \
49 .stat_string = _name, \
50 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
51 .stat_offset = offsetof(struct igb_adapter, _stat) \
52 }
53 static const struct igb_stats igb_gstrings_stats[] = {
54 IGB_STAT("rx_packets", stats.gprc),
55 IGB_STAT("tx_packets", stats.gptc),
56 IGB_STAT("rx_bytes", stats.gorc),
57 IGB_STAT("tx_bytes", stats.gotc),
58 IGB_STAT("rx_broadcast", stats.bprc),
59 IGB_STAT("tx_broadcast", stats.bptc),
60 IGB_STAT("rx_multicast", stats.mprc),
61 IGB_STAT("tx_multicast", stats.mptc),
62 IGB_STAT("multicast", stats.mprc),
63 IGB_STAT("collisions", stats.colc),
64 IGB_STAT("rx_crc_errors", stats.crcerrs),
65 IGB_STAT("rx_no_buffer_count", stats.rnbc),
66 IGB_STAT("rx_missed_errors", stats.mpc),
67 IGB_STAT("tx_aborted_errors", stats.ecol),
68 IGB_STAT("tx_carrier_errors", stats.tncrs),
69 IGB_STAT("tx_window_errors", stats.latecol),
70 IGB_STAT("tx_abort_late_coll", stats.latecol),
71 IGB_STAT("tx_deferred_ok", stats.dc),
72 IGB_STAT("tx_single_coll_ok", stats.scc),
73 IGB_STAT("tx_multi_coll_ok", stats.mcc),
74 IGB_STAT("tx_timeout_count", tx_timeout_count),
75 IGB_STAT("rx_long_length_errors", stats.roc),
76 IGB_STAT("rx_short_length_errors", stats.ruc),
77 IGB_STAT("rx_align_errors", stats.algnerrc),
78 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
79 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
80 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
81 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
82 IGB_STAT("tx_flow_control_xon", stats.xontxc),
83 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
84 IGB_STAT("rx_long_byte_count", stats.gorc),
85 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
86 IGB_STAT("tx_smbus", stats.mgptc),
87 IGB_STAT("rx_smbus", stats.mgprc),
88 IGB_STAT("dropped_smbus", stats.mgpdc),
89 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
90 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
91 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
92 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
93 };
94
95 #define IGB_NETDEV_STAT(_net_stat) { \
96 .stat_string = __stringify(_net_stat), \
97 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
98 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
99 }
100 static const struct igb_stats igb_gstrings_net_stats[] = {
101 IGB_NETDEV_STAT(rx_errors),
102 IGB_NETDEV_STAT(tx_errors),
103 IGB_NETDEV_STAT(tx_dropped),
104 IGB_NETDEV_STAT(rx_length_errors),
105 IGB_NETDEV_STAT(rx_over_errors),
106 IGB_NETDEV_STAT(rx_frame_errors),
107 IGB_NETDEV_STAT(rx_fifo_errors),
108 IGB_NETDEV_STAT(tx_fifo_errors),
109 IGB_NETDEV_STAT(tx_heartbeat_errors)
110 };
111
112 #define IGB_GLOBAL_STATS_LEN \
113 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
114 #define IGB_NETDEV_STATS_LEN \
115 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
116 #define IGB_RX_QUEUE_STATS_LEN \
117 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
118
119 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
120
121 #define IGB_QUEUE_STATS_LEN \
122 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
123 IGB_RX_QUEUE_STATS_LEN) + \
124 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
125 IGB_TX_QUEUE_STATS_LEN))
126 #define IGB_STATS_LEN \
127 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
128
129 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
130 "Register test (offline)", "Eeprom test (offline)",
131 "Interrupt test (offline)", "Loopback test (offline)",
132 "Link test (on/offline)"
133 };
134 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
135
136 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
137 {
138 struct igb_adapter *adapter = netdev_priv(netdev);
139 struct e1000_hw *hw = &adapter->hw;
140 u32 status;
141
142 if (hw->phy.media_type == e1000_media_type_copper) {
143
144 ecmd->supported = (SUPPORTED_10baseT_Half |
145 SUPPORTED_10baseT_Full |
146 SUPPORTED_100baseT_Half |
147 SUPPORTED_100baseT_Full |
148 SUPPORTED_1000baseT_Full|
149 SUPPORTED_Autoneg |
150 SUPPORTED_TP);
151 ecmd->advertising = ADVERTISED_TP;
152
153 if (hw->mac.autoneg == 1) {
154 ecmd->advertising |= ADVERTISED_Autoneg;
155 /* the e1000 autoneg seems to match ethtool nicely */
156 ecmd->advertising |= hw->phy.autoneg_advertised;
157 }
158
159 ecmd->port = PORT_TP;
160 ecmd->phy_address = hw->phy.addr;
161 } else {
162 ecmd->supported = (SUPPORTED_1000baseT_Full |
163 SUPPORTED_FIBRE |
164 SUPPORTED_Autoneg);
165
166 ecmd->advertising = (ADVERTISED_1000baseT_Full |
167 ADVERTISED_FIBRE |
168 ADVERTISED_Autoneg);
169
170 ecmd->port = PORT_FIBRE;
171 }
172
173 ecmd->transceiver = XCVR_INTERNAL;
174
175 status = rd32(E1000_STATUS);
176
177 if (status & E1000_STATUS_LU) {
178
179 if ((status & E1000_STATUS_SPEED_1000) ||
180 hw->phy.media_type != e1000_media_type_copper)
181 ethtool_cmd_speed_set(ecmd, SPEED_1000);
182 else if (status & E1000_STATUS_SPEED_100)
183 ethtool_cmd_speed_set(ecmd, SPEED_100);
184 else
185 ethtool_cmd_speed_set(ecmd, SPEED_10);
186
187 if ((status & E1000_STATUS_FD) ||
188 hw->phy.media_type != e1000_media_type_copper)
189 ecmd->duplex = DUPLEX_FULL;
190 else
191 ecmd->duplex = DUPLEX_HALF;
192 } else {
193 ethtool_cmd_speed_set(ecmd, -1);
194 ecmd->duplex = -1;
195 }
196
197 ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
198 return 0;
199 }
200
201 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
202 {
203 struct igb_adapter *adapter = netdev_priv(netdev);
204 struct e1000_hw *hw = &adapter->hw;
205
206 /* When SoL/IDER sessions are active, autoneg/speed/duplex
207 * cannot be changed */
208 if (igb_check_reset_block(hw)) {
209 dev_err(&adapter->pdev->dev, "Cannot change link "
210 "characteristics when SoL/IDER is active.\n");
211 return -EINVAL;
212 }
213
214 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
215 msleep(1);
216
217 if (ecmd->autoneg == AUTONEG_ENABLE) {
218 hw->mac.autoneg = 1;
219 hw->phy.autoneg_advertised = ecmd->advertising |
220 ADVERTISED_TP |
221 ADVERTISED_Autoneg;
222 ecmd->advertising = hw->phy.autoneg_advertised;
223 if (adapter->fc_autoneg)
224 hw->fc.requested_mode = e1000_fc_default;
225 } else {
226 u32 speed = ethtool_cmd_speed(ecmd);
227 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
228 clear_bit(__IGB_RESETTING, &adapter->state);
229 return -EINVAL;
230 }
231 }
232
233 /* reset the link */
234 if (netif_running(adapter->netdev)) {
235 igb_down(adapter);
236 igb_up(adapter);
237 } else
238 igb_reset(adapter);
239
240 clear_bit(__IGB_RESETTING, &adapter->state);
241 return 0;
242 }
243
244 static u32 igb_get_link(struct net_device *netdev)
245 {
246 struct igb_adapter *adapter = netdev_priv(netdev);
247 struct e1000_mac_info *mac = &adapter->hw.mac;
248
249 /*
250 * If the link is not reported up to netdev, interrupts are disabled,
251 * and so the physical link state may have changed since we last
252 * looked. Set get_link_status to make sure that the true link
253 * state is interrogated, rather than pulling a cached and possibly
254 * stale link state from the driver.
255 */
256 if (!netif_carrier_ok(netdev))
257 mac->get_link_status = 1;
258
259 return igb_has_link(adapter);
260 }
261
262 static void igb_get_pauseparam(struct net_device *netdev,
263 struct ethtool_pauseparam *pause)
264 {
265 struct igb_adapter *adapter = netdev_priv(netdev);
266 struct e1000_hw *hw = &adapter->hw;
267
268 pause->autoneg =
269 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
270
271 if (hw->fc.current_mode == e1000_fc_rx_pause)
272 pause->rx_pause = 1;
273 else if (hw->fc.current_mode == e1000_fc_tx_pause)
274 pause->tx_pause = 1;
275 else if (hw->fc.current_mode == e1000_fc_full) {
276 pause->rx_pause = 1;
277 pause->tx_pause = 1;
278 }
279 }
280
281 static int igb_set_pauseparam(struct net_device *netdev,
282 struct ethtool_pauseparam *pause)
283 {
284 struct igb_adapter *adapter = netdev_priv(netdev);
285 struct e1000_hw *hw = &adapter->hw;
286 int retval = 0;
287
288 adapter->fc_autoneg = pause->autoneg;
289
290 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
291 msleep(1);
292
293 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
294 hw->fc.requested_mode = e1000_fc_default;
295 if (netif_running(adapter->netdev)) {
296 igb_down(adapter);
297 igb_up(adapter);
298 } else {
299 igb_reset(adapter);
300 }
301 } else {
302 if (pause->rx_pause && pause->tx_pause)
303 hw->fc.requested_mode = e1000_fc_full;
304 else if (pause->rx_pause && !pause->tx_pause)
305 hw->fc.requested_mode = e1000_fc_rx_pause;
306 else if (!pause->rx_pause && pause->tx_pause)
307 hw->fc.requested_mode = e1000_fc_tx_pause;
308 else if (!pause->rx_pause && !pause->tx_pause)
309 hw->fc.requested_mode = e1000_fc_none;
310
311 hw->fc.current_mode = hw->fc.requested_mode;
312
313 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
314 igb_force_mac_fc(hw) : igb_setup_link(hw));
315 }
316
317 clear_bit(__IGB_RESETTING, &adapter->state);
318 return retval;
319 }
320
321 static u32 igb_get_msglevel(struct net_device *netdev)
322 {
323 struct igb_adapter *adapter = netdev_priv(netdev);
324 return adapter->msg_enable;
325 }
326
327 static void igb_set_msglevel(struct net_device *netdev, u32 data)
328 {
329 struct igb_adapter *adapter = netdev_priv(netdev);
330 adapter->msg_enable = data;
331 }
332
333 static int igb_get_regs_len(struct net_device *netdev)
334 {
335 #define IGB_REGS_LEN 551
336 return IGB_REGS_LEN * sizeof(u32);
337 }
338
339 static void igb_get_regs(struct net_device *netdev,
340 struct ethtool_regs *regs, void *p)
341 {
342 struct igb_adapter *adapter = netdev_priv(netdev);
343 struct e1000_hw *hw = &adapter->hw;
344 u32 *regs_buff = p;
345 u8 i;
346
347 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
348
349 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
350
351 /* General Registers */
352 regs_buff[0] = rd32(E1000_CTRL);
353 regs_buff[1] = rd32(E1000_STATUS);
354 regs_buff[2] = rd32(E1000_CTRL_EXT);
355 regs_buff[3] = rd32(E1000_MDIC);
356 regs_buff[4] = rd32(E1000_SCTL);
357 regs_buff[5] = rd32(E1000_CONNSW);
358 regs_buff[6] = rd32(E1000_VET);
359 regs_buff[7] = rd32(E1000_LEDCTL);
360 regs_buff[8] = rd32(E1000_PBA);
361 regs_buff[9] = rd32(E1000_PBS);
362 regs_buff[10] = rd32(E1000_FRTIMER);
363 regs_buff[11] = rd32(E1000_TCPTIMER);
364
365 /* NVM Register */
366 regs_buff[12] = rd32(E1000_EECD);
367
368 /* Interrupt */
369 /* Reading EICS for EICR because they read the
370 * same but EICS does not clear on read */
371 regs_buff[13] = rd32(E1000_EICS);
372 regs_buff[14] = rd32(E1000_EICS);
373 regs_buff[15] = rd32(E1000_EIMS);
374 regs_buff[16] = rd32(E1000_EIMC);
375 regs_buff[17] = rd32(E1000_EIAC);
376 regs_buff[18] = rd32(E1000_EIAM);
377 /* Reading ICS for ICR because they read the
378 * same but ICS does not clear on read */
379 regs_buff[19] = rd32(E1000_ICS);
380 regs_buff[20] = rd32(E1000_ICS);
381 regs_buff[21] = rd32(E1000_IMS);
382 regs_buff[22] = rd32(E1000_IMC);
383 regs_buff[23] = rd32(E1000_IAC);
384 regs_buff[24] = rd32(E1000_IAM);
385 regs_buff[25] = rd32(E1000_IMIRVP);
386
387 /* Flow Control */
388 regs_buff[26] = rd32(E1000_FCAL);
389 regs_buff[27] = rd32(E1000_FCAH);
390 regs_buff[28] = rd32(E1000_FCTTV);
391 regs_buff[29] = rd32(E1000_FCRTL);
392 regs_buff[30] = rd32(E1000_FCRTH);
393 regs_buff[31] = rd32(E1000_FCRTV);
394
395 /* Receive */
396 regs_buff[32] = rd32(E1000_RCTL);
397 regs_buff[33] = rd32(E1000_RXCSUM);
398 regs_buff[34] = rd32(E1000_RLPML);
399 regs_buff[35] = rd32(E1000_RFCTL);
400 regs_buff[36] = rd32(E1000_MRQC);
401 regs_buff[37] = rd32(E1000_VT_CTL);
402
403 /* Transmit */
404 regs_buff[38] = rd32(E1000_TCTL);
405 regs_buff[39] = rd32(E1000_TCTL_EXT);
406 regs_buff[40] = rd32(E1000_TIPG);
407 regs_buff[41] = rd32(E1000_DTXCTL);
408
409 /* Wake Up */
410 regs_buff[42] = rd32(E1000_WUC);
411 regs_buff[43] = rd32(E1000_WUFC);
412 regs_buff[44] = rd32(E1000_WUS);
413 regs_buff[45] = rd32(E1000_IPAV);
414 regs_buff[46] = rd32(E1000_WUPL);
415
416 /* MAC */
417 regs_buff[47] = rd32(E1000_PCS_CFG0);
418 regs_buff[48] = rd32(E1000_PCS_LCTL);
419 regs_buff[49] = rd32(E1000_PCS_LSTAT);
420 regs_buff[50] = rd32(E1000_PCS_ANADV);
421 regs_buff[51] = rd32(E1000_PCS_LPAB);
422 regs_buff[52] = rd32(E1000_PCS_NPTX);
423 regs_buff[53] = rd32(E1000_PCS_LPABNP);
424
425 /* Statistics */
426 regs_buff[54] = adapter->stats.crcerrs;
427 regs_buff[55] = adapter->stats.algnerrc;
428 regs_buff[56] = adapter->stats.symerrs;
429 regs_buff[57] = adapter->stats.rxerrc;
430 regs_buff[58] = adapter->stats.mpc;
431 regs_buff[59] = adapter->stats.scc;
432 regs_buff[60] = adapter->stats.ecol;
433 regs_buff[61] = adapter->stats.mcc;
434 regs_buff[62] = adapter->stats.latecol;
435 regs_buff[63] = adapter->stats.colc;
436 regs_buff[64] = adapter->stats.dc;
437 regs_buff[65] = adapter->stats.tncrs;
438 regs_buff[66] = adapter->stats.sec;
439 regs_buff[67] = adapter->stats.htdpmc;
440 regs_buff[68] = adapter->stats.rlec;
441 regs_buff[69] = adapter->stats.xonrxc;
442 regs_buff[70] = adapter->stats.xontxc;
443 regs_buff[71] = adapter->stats.xoffrxc;
444 regs_buff[72] = adapter->stats.xofftxc;
445 regs_buff[73] = adapter->stats.fcruc;
446 regs_buff[74] = adapter->stats.prc64;
447 regs_buff[75] = adapter->stats.prc127;
448 regs_buff[76] = adapter->stats.prc255;
449 regs_buff[77] = adapter->stats.prc511;
450 regs_buff[78] = adapter->stats.prc1023;
451 regs_buff[79] = adapter->stats.prc1522;
452 regs_buff[80] = adapter->stats.gprc;
453 regs_buff[81] = adapter->stats.bprc;
454 regs_buff[82] = adapter->stats.mprc;
455 regs_buff[83] = adapter->stats.gptc;
456 regs_buff[84] = adapter->stats.gorc;
457 regs_buff[86] = adapter->stats.gotc;
458 regs_buff[88] = adapter->stats.rnbc;
459 regs_buff[89] = adapter->stats.ruc;
460 regs_buff[90] = adapter->stats.rfc;
461 regs_buff[91] = adapter->stats.roc;
462 regs_buff[92] = adapter->stats.rjc;
463 regs_buff[93] = adapter->stats.mgprc;
464 regs_buff[94] = adapter->stats.mgpdc;
465 regs_buff[95] = adapter->stats.mgptc;
466 regs_buff[96] = adapter->stats.tor;
467 regs_buff[98] = adapter->stats.tot;
468 regs_buff[100] = adapter->stats.tpr;
469 regs_buff[101] = adapter->stats.tpt;
470 regs_buff[102] = adapter->stats.ptc64;
471 regs_buff[103] = adapter->stats.ptc127;
472 regs_buff[104] = adapter->stats.ptc255;
473 regs_buff[105] = adapter->stats.ptc511;
474 regs_buff[106] = adapter->stats.ptc1023;
475 regs_buff[107] = adapter->stats.ptc1522;
476 regs_buff[108] = adapter->stats.mptc;
477 regs_buff[109] = adapter->stats.bptc;
478 regs_buff[110] = adapter->stats.tsctc;
479 regs_buff[111] = adapter->stats.iac;
480 regs_buff[112] = adapter->stats.rpthc;
481 regs_buff[113] = adapter->stats.hgptc;
482 regs_buff[114] = adapter->stats.hgorc;
483 regs_buff[116] = adapter->stats.hgotc;
484 regs_buff[118] = adapter->stats.lenerrs;
485 regs_buff[119] = adapter->stats.scvpc;
486 regs_buff[120] = adapter->stats.hrmpc;
487
488 for (i = 0; i < 4; i++)
489 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
490 for (i = 0; i < 4; i++)
491 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
492 for (i = 0; i < 4; i++)
493 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
494 for (i = 0; i < 4; i++)
495 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
496 for (i = 0; i < 4; i++)
497 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
498 for (i = 0; i < 4; i++)
499 regs_buff[141 + i] = rd32(E1000_RDH(i));
500 for (i = 0; i < 4; i++)
501 regs_buff[145 + i] = rd32(E1000_RDT(i));
502 for (i = 0; i < 4; i++)
503 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
504
505 for (i = 0; i < 10; i++)
506 regs_buff[153 + i] = rd32(E1000_EITR(i));
507 for (i = 0; i < 8; i++)
508 regs_buff[163 + i] = rd32(E1000_IMIR(i));
509 for (i = 0; i < 8; i++)
510 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
511 for (i = 0; i < 16; i++)
512 regs_buff[179 + i] = rd32(E1000_RAL(i));
513 for (i = 0; i < 16; i++)
514 regs_buff[195 + i] = rd32(E1000_RAH(i));
515
516 for (i = 0; i < 4; i++)
517 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
518 for (i = 0; i < 4; i++)
519 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
520 for (i = 0; i < 4; i++)
521 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
522 for (i = 0; i < 4; i++)
523 regs_buff[223 + i] = rd32(E1000_TDH(i));
524 for (i = 0; i < 4; i++)
525 regs_buff[227 + i] = rd32(E1000_TDT(i));
526 for (i = 0; i < 4; i++)
527 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
528 for (i = 0; i < 4; i++)
529 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
530 for (i = 0; i < 4; i++)
531 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
532 for (i = 0; i < 4; i++)
533 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
534
535 for (i = 0; i < 4; i++)
536 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
537 for (i = 0; i < 4; i++)
538 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
539 for (i = 0; i < 32; i++)
540 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
541 for (i = 0; i < 128; i++)
542 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
543 for (i = 0; i < 128; i++)
544 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
545 for (i = 0; i < 4; i++)
546 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
547
548 regs_buff[547] = rd32(E1000_TDFH);
549 regs_buff[548] = rd32(E1000_TDFT);
550 regs_buff[549] = rd32(E1000_TDFHS);
551 regs_buff[550] = rd32(E1000_TDFPC);
552 regs_buff[551] = adapter->stats.o2bgptc;
553 regs_buff[552] = adapter->stats.b2ospc;
554 regs_buff[553] = adapter->stats.o2bspc;
555 regs_buff[554] = adapter->stats.b2ogprc;
556 }
557
558 static int igb_get_eeprom_len(struct net_device *netdev)
559 {
560 struct igb_adapter *adapter = netdev_priv(netdev);
561 return adapter->hw.nvm.word_size * 2;
562 }
563
564 static int igb_get_eeprom(struct net_device *netdev,
565 struct ethtool_eeprom *eeprom, u8 *bytes)
566 {
567 struct igb_adapter *adapter = netdev_priv(netdev);
568 struct e1000_hw *hw = &adapter->hw;
569 u16 *eeprom_buff;
570 int first_word, last_word;
571 int ret_val = 0;
572 u16 i;
573
574 if (eeprom->len == 0)
575 return -EINVAL;
576
577 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
578
579 first_word = eeprom->offset >> 1;
580 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
581
582 eeprom_buff = kmalloc(sizeof(u16) *
583 (last_word - first_word + 1), GFP_KERNEL);
584 if (!eeprom_buff)
585 return -ENOMEM;
586
587 if (hw->nvm.type == e1000_nvm_eeprom_spi)
588 ret_val = hw->nvm.ops.read(hw, first_word,
589 last_word - first_word + 1,
590 eeprom_buff);
591 else {
592 for (i = 0; i < last_word - first_word + 1; i++) {
593 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
594 &eeprom_buff[i]);
595 if (ret_val)
596 break;
597 }
598 }
599
600 /* Device's eeprom is always little-endian, word addressable */
601 for (i = 0; i < last_word - first_word + 1; i++)
602 le16_to_cpus(&eeprom_buff[i]);
603
604 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
605 eeprom->len);
606 kfree(eeprom_buff);
607
608 return ret_val;
609 }
610
611 static int igb_set_eeprom(struct net_device *netdev,
612 struct ethtool_eeprom *eeprom, u8 *bytes)
613 {
614 struct igb_adapter *adapter = netdev_priv(netdev);
615 struct e1000_hw *hw = &adapter->hw;
616 u16 *eeprom_buff;
617 void *ptr;
618 int max_len, first_word, last_word, ret_val = 0;
619 u16 i;
620
621 if (eeprom->len == 0)
622 return -EOPNOTSUPP;
623
624 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
625 return -EFAULT;
626
627 max_len = hw->nvm.word_size * 2;
628
629 first_word = eeprom->offset >> 1;
630 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
631 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
632 if (!eeprom_buff)
633 return -ENOMEM;
634
635 ptr = (void *)eeprom_buff;
636
637 if (eeprom->offset & 1) {
638 /* need read/modify/write of first changed EEPROM word */
639 /* only the second byte of the word is being modified */
640 ret_val = hw->nvm.ops.read(hw, first_word, 1,
641 &eeprom_buff[0]);
642 ptr++;
643 }
644 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
645 /* need read/modify/write of last changed EEPROM word */
646 /* only the first byte of the word is being modified */
647 ret_val = hw->nvm.ops.read(hw, last_word, 1,
648 &eeprom_buff[last_word - first_word]);
649 }
650
651 /* Device's eeprom is always little-endian, word addressable */
652 for (i = 0; i < last_word - first_word + 1; i++)
653 le16_to_cpus(&eeprom_buff[i]);
654
655 memcpy(ptr, bytes, eeprom->len);
656
657 for (i = 0; i < last_word - first_word + 1; i++)
658 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
659
660 ret_val = hw->nvm.ops.write(hw, first_word,
661 last_word - first_word + 1, eeprom_buff);
662
663 /* Update the checksum over the first part of the EEPROM if needed
664 * and flush shadow RAM for 82573 controllers */
665 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
666 hw->nvm.ops.update(hw);
667
668 kfree(eeprom_buff);
669 return ret_val;
670 }
671
672 static void igb_get_drvinfo(struct net_device *netdev,
673 struct ethtool_drvinfo *drvinfo)
674 {
675 struct igb_adapter *adapter = netdev_priv(netdev);
676 char firmware_version[32];
677 u16 eeprom_data;
678
679 strncpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver) - 1);
680 strncpy(drvinfo->version, igb_driver_version,
681 sizeof(drvinfo->version) - 1);
682
683 /* EEPROM image version # is reported as firmware version # for
684 * 82575 controllers */
685 adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
686 sprintf(firmware_version, "%d.%d-%d",
687 (eeprom_data & 0xF000) >> 12,
688 (eeprom_data & 0x0FF0) >> 4,
689 eeprom_data & 0x000F);
690
691 strncpy(drvinfo->fw_version, firmware_version,
692 sizeof(drvinfo->fw_version) - 1);
693 strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
694 sizeof(drvinfo->bus_info) - 1);
695 drvinfo->n_stats = IGB_STATS_LEN;
696 drvinfo->testinfo_len = IGB_TEST_LEN;
697 drvinfo->regdump_len = igb_get_regs_len(netdev);
698 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
699 }
700
701 static void igb_get_ringparam(struct net_device *netdev,
702 struct ethtool_ringparam *ring)
703 {
704 struct igb_adapter *adapter = netdev_priv(netdev);
705
706 ring->rx_max_pending = IGB_MAX_RXD;
707 ring->tx_max_pending = IGB_MAX_TXD;
708 ring->rx_mini_max_pending = 0;
709 ring->rx_jumbo_max_pending = 0;
710 ring->rx_pending = adapter->rx_ring_count;
711 ring->tx_pending = adapter->tx_ring_count;
712 ring->rx_mini_pending = 0;
713 ring->rx_jumbo_pending = 0;
714 }
715
716 static int igb_set_ringparam(struct net_device *netdev,
717 struct ethtool_ringparam *ring)
718 {
719 struct igb_adapter *adapter = netdev_priv(netdev);
720 struct igb_ring *temp_ring;
721 int i, err = 0;
722 u16 new_rx_count, new_tx_count;
723
724 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
725 return -EINVAL;
726
727 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
728 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
729 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
730
731 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
732 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
733 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
734
735 if ((new_tx_count == adapter->tx_ring_count) &&
736 (new_rx_count == adapter->rx_ring_count)) {
737 /* nothing to do */
738 return 0;
739 }
740
741 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
742 msleep(1);
743
744 if (!netif_running(adapter->netdev)) {
745 for (i = 0; i < adapter->num_tx_queues; i++)
746 adapter->tx_ring[i]->count = new_tx_count;
747 for (i = 0; i < adapter->num_rx_queues; i++)
748 adapter->rx_ring[i]->count = new_rx_count;
749 adapter->tx_ring_count = new_tx_count;
750 adapter->rx_ring_count = new_rx_count;
751 goto clear_reset;
752 }
753
754 if (adapter->num_tx_queues > adapter->num_rx_queues)
755 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
756 else
757 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
758
759 if (!temp_ring) {
760 err = -ENOMEM;
761 goto clear_reset;
762 }
763
764 igb_down(adapter);
765
766 /*
767 * We can't just free everything and then setup again,
768 * because the ISRs in MSI-X mode get passed pointers
769 * to the tx and rx ring structs.
770 */
771 if (new_tx_count != adapter->tx_ring_count) {
772 for (i = 0; i < adapter->num_tx_queues; i++) {
773 memcpy(&temp_ring[i], adapter->tx_ring[i],
774 sizeof(struct igb_ring));
775
776 temp_ring[i].count = new_tx_count;
777 err = igb_setup_tx_resources(&temp_ring[i]);
778 if (err) {
779 while (i) {
780 i--;
781 igb_free_tx_resources(&temp_ring[i]);
782 }
783 goto err_setup;
784 }
785 }
786
787 for (i = 0; i < adapter->num_tx_queues; i++) {
788 igb_free_tx_resources(adapter->tx_ring[i]);
789
790 memcpy(adapter->tx_ring[i], &temp_ring[i],
791 sizeof(struct igb_ring));
792 }
793
794 adapter->tx_ring_count = new_tx_count;
795 }
796
797 if (new_rx_count != adapter->rx_ring_count) {
798 for (i = 0; i < adapter->num_rx_queues; i++) {
799 memcpy(&temp_ring[i], adapter->rx_ring[i],
800 sizeof(struct igb_ring));
801
802 temp_ring[i].count = new_rx_count;
803 err = igb_setup_rx_resources(&temp_ring[i]);
804 if (err) {
805 while (i) {
806 i--;
807 igb_free_rx_resources(&temp_ring[i]);
808 }
809 goto err_setup;
810 }
811
812 }
813
814 for (i = 0; i < adapter->num_rx_queues; i++) {
815 igb_free_rx_resources(adapter->rx_ring[i]);
816
817 memcpy(adapter->rx_ring[i], &temp_ring[i],
818 sizeof(struct igb_ring));
819 }
820
821 adapter->rx_ring_count = new_rx_count;
822 }
823 err_setup:
824 igb_up(adapter);
825 vfree(temp_ring);
826 clear_reset:
827 clear_bit(__IGB_RESETTING, &adapter->state);
828 return err;
829 }
830
831 /* ethtool register test data */
832 struct igb_reg_test {
833 u16 reg;
834 u16 reg_offset;
835 u16 array_len;
836 u16 test_type;
837 u32 mask;
838 u32 write;
839 };
840
841 /* In the hardware, registers are laid out either singly, in arrays
842 * spaced 0x100 bytes apart, or in contiguous tables. We assume
843 * most tests take place on arrays or single registers (handled
844 * as a single-element array) and special-case the tables.
845 * Table tests are always pattern tests.
846 *
847 * We also make provision for some required setup steps by specifying
848 * registers to be written without any read-back testing.
849 */
850
851 #define PATTERN_TEST 1
852 #define SET_READ_TEST 2
853 #define WRITE_NO_TEST 3
854 #define TABLE32_TEST 4
855 #define TABLE64_TEST_LO 5
856 #define TABLE64_TEST_HI 6
857
858 /* i350 reg test */
859 static struct igb_reg_test reg_test_i350[] = {
860 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
861 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
862 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
863 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
864 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
865 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
866 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
867 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
868 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
869 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
870 /* RDH is read-only for i350, only test RDT. */
871 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
872 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
873 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
874 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
875 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
876 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
877 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
878 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
879 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
880 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
881 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
882 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
883 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
884 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
885 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
886 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
887 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
888 { E1000_RA, 0, 16, TABLE64_TEST_LO,
889 0xFFFFFFFF, 0xFFFFFFFF },
890 { E1000_RA, 0, 16, TABLE64_TEST_HI,
891 0xC3FFFFFF, 0xFFFFFFFF },
892 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
893 0xFFFFFFFF, 0xFFFFFFFF },
894 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
895 0xC3FFFFFF, 0xFFFFFFFF },
896 { E1000_MTA, 0, 128, TABLE32_TEST,
897 0xFFFFFFFF, 0xFFFFFFFF },
898 { 0, 0, 0, 0 }
899 };
900
901 /* 82580 reg test */
902 static struct igb_reg_test reg_test_82580[] = {
903 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
904 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
905 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
906 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
907 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
908 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
909 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
910 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
911 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
912 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
913 /* RDH is read-only for 82580, only test RDT. */
914 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
915 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
916 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
917 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
918 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
919 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
920 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
921 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
922 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
923 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
924 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
925 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
926 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
927 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
928 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
929 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
930 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
931 { E1000_RA, 0, 16, TABLE64_TEST_LO,
932 0xFFFFFFFF, 0xFFFFFFFF },
933 { E1000_RA, 0, 16, TABLE64_TEST_HI,
934 0x83FFFFFF, 0xFFFFFFFF },
935 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
936 0xFFFFFFFF, 0xFFFFFFFF },
937 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
938 0x83FFFFFF, 0xFFFFFFFF },
939 { E1000_MTA, 0, 128, TABLE32_TEST,
940 0xFFFFFFFF, 0xFFFFFFFF },
941 { 0, 0, 0, 0 }
942 };
943
944 /* 82576 reg test */
945 static struct igb_reg_test reg_test_82576[] = {
946 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
947 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
948 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
949 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
950 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
951 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
952 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
953 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
954 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
955 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
956 /* Enable all RX queues before testing. */
957 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
958 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
959 /* RDH is read-only for 82576, only test RDT. */
960 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
961 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
962 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
963 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
964 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
965 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
966 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
967 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
968 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
969 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
970 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
971 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
972 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
973 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
974 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
975 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
976 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
977 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
978 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
979 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
980 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
981 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
982 { 0, 0, 0, 0 }
983 };
984
985 /* 82575 register test */
986 static struct igb_reg_test reg_test_82575[] = {
987 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
988 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
989 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
990 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
991 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
992 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
993 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
994 /* Enable all four RX queues before testing. */
995 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
996 /* RDH is read-only for 82575, only test RDT. */
997 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
998 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
999 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1000 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1001 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1002 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1003 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1004 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1005 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1006 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1007 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1008 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1009 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1010 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1011 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1012 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013 { 0, 0, 0, 0 }
1014 };
1015
1016 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1017 int reg, u32 mask, u32 write)
1018 {
1019 struct e1000_hw *hw = &adapter->hw;
1020 u32 pat, val;
1021 static const u32 _test[] =
1022 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1023 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1024 wr32(reg, (_test[pat] & write));
1025 val = rd32(reg) & mask;
1026 if (val != (_test[pat] & write & mask)) {
1027 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1028 "failed: got 0x%08X expected 0x%08X\n",
1029 reg, val, (_test[pat] & write & mask));
1030 *data = reg;
1031 return 1;
1032 }
1033 }
1034
1035 return 0;
1036 }
1037
1038 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1039 int reg, u32 mask, u32 write)
1040 {
1041 struct e1000_hw *hw = &adapter->hw;
1042 u32 val;
1043 wr32(reg, write & mask);
1044 val = rd32(reg);
1045 if ((write & mask) != (val & mask)) {
1046 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1047 " got 0x%08X expected 0x%08X\n", reg,
1048 (val & mask), (write & mask));
1049 *data = reg;
1050 return 1;
1051 }
1052
1053 return 0;
1054 }
1055
1056 #define REG_PATTERN_TEST(reg, mask, write) \
1057 do { \
1058 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1059 return 1; \
1060 } while (0)
1061
1062 #define REG_SET_AND_CHECK(reg, mask, write) \
1063 do { \
1064 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1065 return 1; \
1066 } while (0)
1067
1068 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1069 {
1070 struct e1000_hw *hw = &adapter->hw;
1071 struct igb_reg_test *test;
1072 u32 value, before, after;
1073 u32 i, toggle;
1074
1075 switch (adapter->hw.mac.type) {
1076 case e1000_i350:
1077 test = reg_test_i350;
1078 toggle = 0x7FEFF3FF;
1079 break;
1080 case e1000_82580:
1081 test = reg_test_82580;
1082 toggle = 0x7FEFF3FF;
1083 break;
1084 case e1000_82576:
1085 test = reg_test_82576;
1086 toggle = 0x7FFFF3FF;
1087 break;
1088 default:
1089 test = reg_test_82575;
1090 toggle = 0x7FFFF3FF;
1091 break;
1092 }
1093
1094 /* Because the status register is such a special case,
1095 * we handle it separately from the rest of the register
1096 * tests. Some bits are read-only, some toggle, and some
1097 * are writable on newer MACs.
1098 */
1099 before = rd32(E1000_STATUS);
1100 value = (rd32(E1000_STATUS) & toggle);
1101 wr32(E1000_STATUS, toggle);
1102 after = rd32(E1000_STATUS) & toggle;
1103 if (value != after) {
1104 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1105 "got: 0x%08X expected: 0x%08X\n", after, value);
1106 *data = 1;
1107 return 1;
1108 }
1109 /* restore previous status */
1110 wr32(E1000_STATUS, before);
1111
1112 /* Perform the remainder of the register test, looping through
1113 * the test table until we either fail or reach the null entry.
1114 */
1115 while (test->reg) {
1116 for (i = 0; i < test->array_len; i++) {
1117 switch (test->test_type) {
1118 case PATTERN_TEST:
1119 REG_PATTERN_TEST(test->reg +
1120 (i * test->reg_offset),
1121 test->mask,
1122 test->write);
1123 break;
1124 case SET_READ_TEST:
1125 REG_SET_AND_CHECK(test->reg +
1126 (i * test->reg_offset),
1127 test->mask,
1128 test->write);
1129 break;
1130 case WRITE_NO_TEST:
1131 writel(test->write,
1132 (adapter->hw.hw_addr + test->reg)
1133 + (i * test->reg_offset));
1134 break;
1135 case TABLE32_TEST:
1136 REG_PATTERN_TEST(test->reg + (i * 4),
1137 test->mask,
1138 test->write);
1139 break;
1140 case TABLE64_TEST_LO:
1141 REG_PATTERN_TEST(test->reg + (i * 8),
1142 test->mask,
1143 test->write);
1144 break;
1145 case TABLE64_TEST_HI:
1146 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1147 test->mask,
1148 test->write);
1149 break;
1150 }
1151 }
1152 test++;
1153 }
1154
1155 *data = 0;
1156 return 0;
1157 }
1158
1159 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1160 {
1161 u16 temp;
1162 u16 checksum = 0;
1163 u16 i;
1164
1165 *data = 0;
1166 /* Read and add up the contents of the EEPROM */
1167 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1168 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp)) < 0) {
1169 *data = 1;
1170 break;
1171 }
1172 checksum += temp;
1173 }
1174
1175 /* If Checksum is not Correct return error else test passed */
1176 if ((checksum != (u16) NVM_SUM) && !(*data))
1177 *data = 2;
1178
1179 return *data;
1180 }
1181
1182 static irqreturn_t igb_test_intr(int irq, void *data)
1183 {
1184 struct igb_adapter *adapter = (struct igb_adapter *) data;
1185 struct e1000_hw *hw = &adapter->hw;
1186
1187 adapter->test_icr |= rd32(E1000_ICR);
1188
1189 return IRQ_HANDLED;
1190 }
1191
1192 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1193 {
1194 struct e1000_hw *hw = &adapter->hw;
1195 struct net_device *netdev = adapter->netdev;
1196 u32 mask, ics_mask, i = 0, shared_int = true;
1197 u32 irq = adapter->pdev->irq;
1198
1199 *data = 0;
1200
1201 /* Hook up test interrupt handler just for this test */
1202 if (adapter->msix_entries) {
1203 if (request_irq(adapter->msix_entries[0].vector,
1204 igb_test_intr, 0, netdev->name, adapter)) {
1205 *data = 1;
1206 return -1;
1207 }
1208 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1209 shared_int = false;
1210 if (request_irq(irq,
1211 igb_test_intr, 0, netdev->name, adapter)) {
1212 *data = 1;
1213 return -1;
1214 }
1215 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1216 netdev->name, adapter)) {
1217 shared_int = false;
1218 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1219 netdev->name, adapter)) {
1220 *data = 1;
1221 return -1;
1222 }
1223 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1224 (shared_int ? "shared" : "unshared"));
1225
1226 /* Disable all the interrupts */
1227 wr32(E1000_IMC, ~0);
1228 wrfl();
1229 msleep(10);
1230
1231 /* Define all writable bits for ICS */
1232 switch (hw->mac.type) {
1233 case e1000_82575:
1234 ics_mask = 0x37F47EDD;
1235 break;
1236 case e1000_82576:
1237 ics_mask = 0x77D4FBFD;
1238 break;
1239 case e1000_82580:
1240 ics_mask = 0x77DCFED5;
1241 break;
1242 case e1000_i350:
1243 ics_mask = 0x77DCFED5;
1244 break;
1245 default:
1246 ics_mask = 0x7FFFFFFF;
1247 break;
1248 }
1249
1250 /* Test each interrupt */
1251 for (; i < 31; i++) {
1252 /* Interrupt to test */
1253 mask = 1 << i;
1254
1255 if (!(mask & ics_mask))
1256 continue;
1257
1258 if (!shared_int) {
1259 /* Disable the interrupt to be reported in
1260 * the cause register and then force the same
1261 * interrupt and see if one gets posted. If
1262 * an interrupt was posted to the bus, the
1263 * test failed.
1264 */
1265 adapter->test_icr = 0;
1266
1267 /* Flush any pending interrupts */
1268 wr32(E1000_ICR, ~0);
1269
1270 wr32(E1000_IMC, mask);
1271 wr32(E1000_ICS, mask);
1272 wrfl();
1273 msleep(10);
1274
1275 if (adapter->test_icr & mask) {
1276 *data = 3;
1277 break;
1278 }
1279 }
1280
1281 /* Enable the interrupt to be reported in
1282 * the cause register and then force the same
1283 * interrupt and see if one gets posted. If
1284 * an interrupt was not posted to the bus, the
1285 * test failed.
1286 */
1287 adapter->test_icr = 0;
1288
1289 /* Flush any pending interrupts */
1290 wr32(E1000_ICR, ~0);
1291
1292 wr32(E1000_IMS, mask);
1293 wr32(E1000_ICS, mask);
1294 wrfl();
1295 msleep(10);
1296
1297 if (!(adapter->test_icr & mask)) {
1298 *data = 4;
1299 break;
1300 }
1301
1302 if (!shared_int) {
1303 /* Disable the other interrupts to be reported in
1304 * the cause register and then force the other
1305 * interrupts and see if any get posted. If
1306 * an interrupt was posted to the bus, the
1307 * test failed.
1308 */
1309 adapter->test_icr = 0;
1310
1311 /* Flush any pending interrupts */
1312 wr32(E1000_ICR, ~0);
1313
1314 wr32(E1000_IMC, ~mask);
1315 wr32(E1000_ICS, ~mask);
1316 wrfl();
1317 msleep(10);
1318
1319 if (adapter->test_icr & mask) {
1320 *data = 5;
1321 break;
1322 }
1323 }
1324 }
1325
1326 /* Disable all the interrupts */
1327 wr32(E1000_IMC, ~0);
1328 wrfl();
1329 msleep(10);
1330
1331 /* Unhook test interrupt handler */
1332 if (adapter->msix_entries)
1333 free_irq(adapter->msix_entries[0].vector, adapter);
1334 else
1335 free_irq(irq, adapter);
1336
1337 return *data;
1338 }
1339
1340 static void igb_free_desc_rings(struct igb_adapter *adapter)
1341 {
1342 igb_free_tx_resources(&adapter->test_tx_ring);
1343 igb_free_rx_resources(&adapter->test_rx_ring);
1344 }
1345
1346 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1347 {
1348 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1349 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1350 struct e1000_hw *hw = &adapter->hw;
1351 int ret_val;
1352
1353 /* Setup Tx descriptor ring and Tx buffers */
1354 tx_ring->count = IGB_DEFAULT_TXD;
1355 tx_ring->dev = &adapter->pdev->dev;
1356 tx_ring->netdev = adapter->netdev;
1357 tx_ring->reg_idx = adapter->vfs_allocated_count;
1358
1359 if (igb_setup_tx_resources(tx_ring)) {
1360 ret_val = 1;
1361 goto err_nomem;
1362 }
1363
1364 igb_setup_tctl(adapter);
1365 igb_configure_tx_ring(adapter, tx_ring);
1366
1367 /* Setup Rx descriptor ring and Rx buffers */
1368 rx_ring->count = IGB_DEFAULT_RXD;
1369 rx_ring->dev = &adapter->pdev->dev;
1370 rx_ring->netdev = adapter->netdev;
1371 rx_ring->reg_idx = adapter->vfs_allocated_count;
1372
1373 if (igb_setup_rx_resources(rx_ring)) {
1374 ret_val = 3;
1375 goto err_nomem;
1376 }
1377
1378 /* set the default queue to queue 0 of PF */
1379 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1380
1381 /* enable receive ring */
1382 igb_setup_rctl(adapter);
1383 igb_configure_rx_ring(adapter, rx_ring);
1384
1385 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1386
1387 return 0;
1388
1389 err_nomem:
1390 igb_free_desc_rings(adapter);
1391 return ret_val;
1392 }
1393
1394 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1395 {
1396 struct e1000_hw *hw = &adapter->hw;
1397
1398 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1399 igb_write_phy_reg(hw, 29, 0x001F);
1400 igb_write_phy_reg(hw, 30, 0x8FFC);
1401 igb_write_phy_reg(hw, 29, 0x001A);
1402 igb_write_phy_reg(hw, 30, 0x8FF0);
1403 }
1404
1405 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1406 {
1407 struct e1000_hw *hw = &adapter->hw;
1408 u32 ctrl_reg = 0;
1409
1410 hw->mac.autoneg = false;
1411
1412 if (hw->phy.type == e1000_phy_m88) {
1413 /* Auto-MDI/MDIX Off */
1414 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1415 /* reset to update Auto-MDI/MDIX */
1416 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1417 /* autoneg off */
1418 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1419 } else if (hw->phy.type == e1000_phy_82580) {
1420 /* enable MII loopback */
1421 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1422 }
1423
1424 ctrl_reg = rd32(E1000_CTRL);
1425
1426 /* force 1000, set loopback */
1427 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1428
1429 /* Now set up the MAC to the same speed/duplex as the PHY. */
1430 ctrl_reg = rd32(E1000_CTRL);
1431 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1432 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1433 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1434 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1435 E1000_CTRL_FD | /* Force Duplex to FULL */
1436 E1000_CTRL_SLU); /* Set link up enable bit */
1437
1438 if (hw->phy.type == e1000_phy_m88)
1439 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1440
1441 wr32(E1000_CTRL, ctrl_reg);
1442
1443 /* Disable the receiver on the PHY so when a cable is plugged in, the
1444 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1445 */
1446 if (hw->phy.type == e1000_phy_m88)
1447 igb_phy_disable_receiver(adapter);
1448
1449 udelay(500);
1450
1451 return 0;
1452 }
1453
1454 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1455 {
1456 return igb_integrated_phy_loopback(adapter);
1457 }
1458
1459 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1460 {
1461 struct e1000_hw *hw = &adapter->hw;
1462 u32 reg;
1463
1464 reg = rd32(E1000_CTRL_EXT);
1465
1466 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1467 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1468 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1469 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1470 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1471 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1472
1473 /* Enable DH89xxCC MPHY for near end loopback */
1474 reg = rd32(E1000_MPHY_ADDR_CTL);
1475 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1476 E1000_MPHY_PCS_CLK_REG_OFFSET;
1477 wr32(E1000_MPHY_ADDR_CTL, reg);
1478
1479 reg = rd32(E1000_MPHY_DATA);
1480 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1481 wr32(E1000_MPHY_DATA, reg);
1482 }
1483
1484 reg = rd32(E1000_RCTL);
1485 reg |= E1000_RCTL_LBM_TCVR;
1486 wr32(E1000_RCTL, reg);
1487
1488 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1489
1490 reg = rd32(E1000_CTRL);
1491 reg &= ~(E1000_CTRL_RFCE |
1492 E1000_CTRL_TFCE |
1493 E1000_CTRL_LRST);
1494 reg |= E1000_CTRL_SLU |
1495 E1000_CTRL_FD;
1496 wr32(E1000_CTRL, reg);
1497
1498 /* Unset switch control to serdes energy detect */
1499 reg = rd32(E1000_CONNSW);
1500 reg &= ~E1000_CONNSW_ENRGSRC;
1501 wr32(E1000_CONNSW, reg);
1502
1503 /* Set PCS register for forced speed */
1504 reg = rd32(E1000_PCS_LCTL);
1505 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1506 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1507 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1508 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1509 E1000_PCS_LCTL_FSD | /* Force Speed */
1510 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1511 wr32(E1000_PCS_LCTL, reg);
1512
1513 return 0;
1514 }
1515
1516 return igb_set_phy_loopback(adapter);
1517 }
1518
1519 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1520 {
1521 struct e1000_hw *hw = &adapter->hw;
1522 u32 rctl;
1523 u16 phy_reg;
1524
1525 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1526 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1527 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1528 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1529 u32 reg;
1530
1531 /* Disable near end loopback on DH89xxCC */
1532 reg = rd32(E1000_MPHY_ADDR_CTL);
1533 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1534 E1000_MPHY_PCS_CLK_REG_OFFSET;
1535 wr32(E1000_MPHY_ADDR_CTL, reg);
1536
1537 reg = rd32(E1000_MPHY_DATA);
1538 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1539 wr32(E1000_MPHY_DATA, reg);
1540 }
1541
1542 rctl = rd32(E1000_RCTL);
1543 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1544 wr32(E1000_RCTL, rctl);
1545
1546 hw->mac.autoneg = true;
1547 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1548 if (phy_reg & MII_CR_LOOPBACK) {
1549 phy_reg &= ~MII_CR_LOOPBACK;
1550 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1551 igb_phy_sw_reset(hw);
1552 }
1553 }
1554
1555 static void igb_create_lbtest_frame(struct sk_buff *skb,
1556 unsigned int frame_size)
1557 {
1558 memset(skb->data, 0xFF, frame_size);
1559 frame_size /= 2;
1560 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1561 memset(&skb->data[frame_size + 10], 0xBE, 1);
1562 memset(&skb->data[frame_size + 12], 0xAF, 1);
1563 }
1564
1565 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1566 {
1567 frame_size /= 2;
1568 if (*(skb->data + 3) == 0xFF) {
1569 if ((*(skb->data + frame_size + 10) == 0xBE) &&
1570 (*(skb->data + frame_size + 12) == 0xAF)) {
1571 return 0;
1572 }
1573 }
1574 return 13;
1575 }
1576
1577 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1578 struct igb_ring *tx_ring,
1579 unsigned int size)
1580 {
1581 union e1000_adv_rx_desc *rx_desc;
1582 struct igb_rx_buffer *rx_buffer_info;
1583 struct igb_tx_buffer *tx_buffer_info;
1584 int rx_ntc, tx_ntc, count = 0;
1585 u32 staterr;
1586
1587 /* initialize next to clean and descriptor values */
1588 rx_ntc = rx_ring->next_to_clean;
1589 tx_ntc = tx_ring->next_to_clean;
1590 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1591 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1592
1593 while (staterr & E1000_RXD_STAT_DD) {
1594 /* check rx buffer */
1595 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1596
1597 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1598 dma_unmap_single(rx_ring->dev,
1599 rx_buffer_info->dma,
1600 IGB_RX_HDR_LEN,
1601 DMA_FROM_DEVICE);
1602 rx_buffer_info->dma = 0;
1603
1604 /* verify contents of skb */
1605 if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1606 count++;
1607
1608 /* unmap buffer on tx side */
1609 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1610 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1611
1612 /* increment rx/tx next to clean counters */
1613 rx_ntc++;
1614 if (rx_ntc == rx_ring->count)
1615 rx_ntc = 0;
1616 tx_ntc++;
1617 if (tx_ntc == tx_ring->count)
1618 tx_ntc = 0;
1619
1620 /* fetch next descriptor */
1621 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1622 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1623 }
1624
1625 /* re-map buffers to ring, store next to clean values */
1626 igb_alloc_rx_buffers(rx_ring, count);
1627 rx_ring->next_to_clean = rx_ntc;
1628 tx_ring->next_to_clean = tx_ntc;
1629
1630 return count;
1631 }
1632
1633 static int igb_run_loopback_test(struct igb_adapter *adapter)
1634 {
1635 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1636 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1637 int i, j, lc, good_cnt, ret_val = 0;
1638 unsigned int size = IGB_RX_HDR_LEN;
1639 netdev_tx_t tx_ret_val;
1640 struct sk_buff *skb;
1641
1642 /* allocate test skb */
1643 skb = alloc_skb(size, GFP_KERNEL);
1644 if (!skb)
1645 return 11;
1646
1647 /* place data into test skb */
1648 igb_create_lbtest_frame(skb, size);
1649 skb_put(skb, size);
1650
1651 /*
1652 * Calculate the loop count based on the largest descriptor ring
1653 * The idea is to wrap the largest ring a number of times using 64
1654 * send/receive pairs during each loop
1655 */
1656
1657 if (rx_ring->count <= tx_ring->count)
1658 lc = ((tx_ring->count / 64) * 2) + 1;
1659 else
1660 lc = ((rx_ring->count / 64) * 2) + 1;
1661
1662 for (j = 0; j <= lc; j++) { /* loop count loop */
1663 /* reset count of good packets */
1664 good_cnt = 0;
1665
1666 /* place 64 packets on the transmit queue*/
1667 for (i = 0; i < 64; i++) {
1668 skb_get(skb);
1669 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1670 if (tx_ret_val == NETDEV_TX_OK)
1671 good_cnt++;
1672 }
1673
1674 if (good_cnt != 64) {
1675 ret_val = 12;
1676 break;
1677 }
1678
1679 /* allow 200 milliseconds for packets to go from tx to rx */
1680 msleep(200);
1681
1682 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1683 if (good_cnt != 64) {
1684 ret_val = 13;
1685 break;
1686 }
1687 } /* end loop count loop */
1688
1689 /* free the original skb */
1690 kfree_skb(skb);
1691
1692 return ret_val;
1693 }
1694
1695 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1696 {
1697 /* PHY loopback cannot be performed if SoL/IDER
1698 * sessions are active */
1699 if (igb_check_reset_block(&adapter->hw)) {
1700 dev_err(&adapter->pdev->dev,
1701 "Cannot do PHY loopback test "
1702 "when SoL/IDER is active.\n");
1703 *data = 0;
1704 goto out;
1705 }
1706 *data = igb_setup_desc_rings(adapter);
1707 if (*data)
1708 goto out;
1709 *data = igb_setup_loopback_test(adapter);
1710 if (*data)
1711 goto err_loopback;
1712 *data = igb_run_loopback_test(adapter);
1713 igb_loopback_cleanup(adapter);
1714
1715 err_loopback:
1716 igb_free_desc_rings(adapter);
1717 out:
1718 return *data;
1719 }
1720
1721 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1722 {
1723 struct e1000_hw *hw = &adapter->hw;
1724 *data = 0;
1725 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1726 int i = 0;
1727 hw->mac.serdes_has_link = false;
1728
1729 /* On some blade server designs, link establishment
1730 * could take as long as 2-3 minutes */
1731 do {
1732 hw->mac.ops.check_for_link(&adapter->hw);
1733 if (hw->mac.serdes_has_link)
1734 return *data;
1735 msleep(20);
1736 } while (i++ < 3750);
1737
1738 *data = 1;
1739 } else {
1740 hw->mac.ops.check_for_link(&adapter->hw);
1741 if (hw->mac.autoneg)
1742 msleep(4000);
1743
1744 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1745 *data = 1;
1746 }
1747 return *data;
1748 }
1749
1750 static void igb_diag_test(struct net_device *netdev,
1751 struct ethtool_test *eth_test, u64 *data)
1752 {
1753 struct igb_adapter *adapter = netdev_priv(netdev);
1754 u16 autoneg_advertised;
1755 u8 forced_speed_duplex, autoneg;
1756 bool if_running = netif_running(netdev);
1757
1758 set_bit(__IGB_TESTING, &adapter->state);
1759 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1760 /* Offline tests */
1761
1762 /* save speed, duplex, autoneg settings */
1763 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1764 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1765 autoneg = adapter->hw.mac.autoneg;
1766
1767 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1768
1769 /* power up link for link test */
1770 igb_power_up_link(adapter);
1771
1772 /* Link test performed before hardware reset so autoneg doesn't
1773 * interfere with test result */
1774 if (igb_link_test(adapter, &data[4]))
1775 eth_test->flags |= ETH_TEST_FL_FAILED;
1776
1777 if (if_running)
1778 /* indicate we're in test mode */
1779 dev_close(netdev);
1780 else
1781 igb_reset(adapter);
1782
1783 if (igb_reg_test(adapter, &data[0]))
1784 eth_test->flags |= ETH_TEST_FL_FAILED;
1785
1786 igb_reset(adapter);
1787 if (igb_eeprom_test(adapter, &data[1]))
1788 eth_test->flags |= ETH_TEST_FL_FAILED;
1789
1790 igb_reset(adapter);
1791 if (igb_intr_test(adapter, &data[2]))
1792 eth_test->flags |= ETH_TEST_FL_FAILED;
1793
1794 igb_reset(adapter);
1795 /* power up link for loopback test */
1796 igb_power_up_link(adapter);
1797 if (igb_loopback_test(adapter, &data[3]))
1798 eth_test->flags |= ETH_TEST_FL_FAILED;
1799
1800 /* restore speed, duplex, autoneg settings */
1801 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1802 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1803 adapter->hw.mac.autoneg = autoneg;
1804
1805 /* force this routine to wait until autoneg complete/timeout */
1806 adapter->hw.phy.autoneg_wait_to_complete = true;
1807 igb_reset(adapter);
1808 adapter->hw.phy.autoneg_wait_to_complete = false;
1809
1810 clear_bit(__IGB_TESTING, &adapter->state);
1811 if (if_running)
1812 dev_open(netdev);
1813 } else {
1814 dev_info(&adapter->pdev->dev, "online testing starting\n");
1815
1816 /* PHY is powered down when interface is down */
1817 if (if_running && igb_link_test(adapter, &data[4]))
1818 eth_test->flags |= ETH_TEST_FL_FAILED;
1819 else
1820 data[4] = 0;
1821
1822 /* Online tests aren't run; pass by default */
1823 data[0] = 0;
1824 data[1] = 0;
1825 data[2] = 0;
1826 data[3] = 0;
1827
1828 clear_bit(__IGB_TESTING, &adapter->state);
1829 }
1830 msleep_interruptible(4 * 1000);
1831 }
1832
1833 static int igb_wol_exclusion(struct igb_adapter *adapter,
1834 struct ethtool_wolinfo *wol)
1835 {
1836 struct e1000_hw *hw = &adapter->hw;
1837 int retval = 1; /* fail by default */
1838
1839 switch (hw->device_id) {
1840 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1841 /* WoL not supported */
1842 wol->supported = 0;
1843 break;
1844 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1845 case E1000_DEV_ID_82576_FIBER:
1846 case E1000_DEV_ID_82576_SERDES:
1847 /* Wake events not supported on port B */
1848 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1849 wol->supported = 0;
1850 break;
1851 }
1852 /* return success for non excluded adapter ports */
1853 retval = 0;
1854 break;
1855 case E1000_DEV_ID_82576_QUAD_COPPER:
1856 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1857 /* quad port adapters only support WoL on port A */
1858 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1859 wol->supported = 0;
1860 break;
1861 }
1862 /* return success for non excluded adapter ports */
1863 retval = 0;
1864 break;
1865 default:
1866 /* dual port cards only support WoL on port A from now on
1867 * unless it was enabled in the eeprom for port B
1868 * so exclude FUNC_1 ports from having WoL enabled */
1869 if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1870 !adapter->eeprom_wol) {
1871 wol->supported = 0;
1872 break;
1873 }
1874
1875 retval = 0;
1876 }
1877
1878 return retval;
1879 }
1880
1881 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1882 {
1883 struct igb_adapter *adapter = netdev_priv(netdev);
1884
1885 wol->supported = WAKE_UCAST | WAKE_MCAST |
1886 WAKE_BCAST | WAKE_MAGIC |
1887 WAKE_PHY;
1888 wol->wolopts = 0;
1889
1890 /* this function will set ->supported = 0 and return 1 if wol is not
1891 * supported by this hardware */
1892 if (igb_wol_exclusion(adapter, wol) ||
1893 !device_can_wakeup(&adapter->pdev->dev))
1894 return;
1895
1896 /* apply any specific unsupported masks here */
1897 switch (adapter->hw.device_id) {
1898 default:
1899 break;
1900 }
1901
1902 if (adapter->wol & E1000_WUFC_EX)
1903 wol->wolopts |= WAKE_UCAST;
1904 if (adapter->wol & E1000_WUFC_MC)
1905 wol->wolopts |= WAKE_MCAST;
1906 if (adapter->wol & E1000_WUFC_BC)
1907 wol->wolopts |= WAKE_BCAST;
1908 if (adapter->wol & E1000_WUFC_MAG)
1909 wol->wolopts |= WAKE_MAGIC;
1910 if (adapter->wol & E1000_WUFC_LNKC)
1911 wol->wolopts |= WAKE_PHY;
1912 }
1913
1914 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1915 {
1916 struct igb_adapter *adapter = netdev_priv(netdev);
1917
1918 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
1919 return -EOPNOTSUPP;
1920
1921 if (igb_wol_exclusion(adapter, wol) ||
1922 !device_can_wakeup(&adapter->pdev->dev))
1923 return wol->wolopts ? -EOPNOTSUPP : 0;
1924
1925 /* these settings will always override what we currently have */
1926 adapter->wol = 0;
1927
1928 if (wol->wolopts & WAKE_UCAST)
1929 adapter->wol |= E1000_WUFC_EX;
1930 if (wol->wolopts & WAKE_MCAST)
1931 adapter->wol |= E1000_WUFC_MC;
1932 if (wol->wolopts & WAKE_BCAST)
1933 adapter->wol |= E1000_WUFC_BC;
1934 if (wol->wolopts & WAKE_MAGIC)
1935 adapter->wol |= E1000_WUFC_MAG;
1936 if (wol->wolopts & WAKE_PHY)
1937 adapter->wol |= E1000_WUFC_LNKC;
1938 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1939
1940 return 0;
1941 }
1942
1943 /* bit defines for adapter->led_status */
1944 #define IGB_LED_ON 0
1945
1946 static int igb_set_phys_id(struct net_device *netdev,
1947 enum ethtool_phys_id_state state)
1948 {
1949 struct igb_adapter *adapter = netdev_priv(netdev);
1950 struct e1000_hw *hw = &adapter->hw;
1951
1952 switch (state) {
1953 case ETHTOOL_ID_ACTIVE:
1954 igb_blink_led(hw);
1955 return 2;
1956 case ETHTOOL_ID_ON:
1957 igb_blink_led(hw);
1958 break;
1959 case ETHTOOL_ID_OFF:
1960 igb_led_off(hw);
1961 break;
1962 case ETHTOOL_ID_INACTIVE:
1963 igb_led_off(hw);
1964 clear_bit(IGB_LED_ON, &adapter->led_status);
1965 igb_cleanup_led(hw);
1966 break;
1967 }
1968
1969 return 0;
1970 }
1971
1972 static int igb_set_coalesce(struct net_device *netdev,
1973 struct ethtool_coalesce *ec)
1974 {
1975 struct igb_adapter *adapter = netdev_priv(netdev);
1976 int i;
1977
1978 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1979 ((ec->rx_coalesce_usecs > 3) &&
1980 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1981 (ec->rx_coalesce_usecs == 2))
1982 return -EINVAL;
1983
1984 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1985 ((ec->tx_coalesce_usecs > 3) &&
1986 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1987 (ec->tx_coalesce_usecs == 2))
1988 return -EINVAL;
1989
1990 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
1991 return -EINVAL;
1992
1993 /* If ITR is disabled, disable DMAC */
1994 if (ec->rx_coalesce_usecs == 0) {
1995 if (adapter->flags & IGB_FLAG_DMAC)
1996 adapter->flags &= ~IGB_FLAG_DMAC;
1997 }
1998
1999 /* convert to rate of irq's per second */
2000 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2001 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2002 else
2003 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2004
2005 /* convert to rate of irq's per second */
2006 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2007 adapter->tx_itr_setting = adapter->rx_itr_setting;
2008 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2009 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2010 else
2011 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2012
2013 for (i = 0; i < adapter->num_q_vectors; i++) {
2014 struct igb_q_vector *q_vector = adapter->q_vector[i];
2015 q_vector->tx_work_limit = adapter->tx_work_limit;
2016 if (q_vector->rx_ring)
2017 q_vector->itr_val = adapter->rx_itr_setting;
2018 else
2019 q_vector->itr_val = adapter->tx_itr_setting;
2020 if (q_vector->itr_val && q_vector->itr_val <= 3)
2021 q_vector->itr_val = IGB_START_ITR;
2022 q_vector->set_itr = 1;
2023 }
2024
2025 return 0;
2026 }
2027
2028 static int igb_get_coalesce(struct net_device *netdev,
2029 struct ethtool_coalesce *ec)
2030 {
2031 struct igb_adapter *adapter = netdev_priv(netdev);
2032
2033 if (adapter->rx_itr_setting <= 3)
2034 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2035 else
2036 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2037
2038 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2039 if (adapter->tx_itr_setting <= 3)
2040 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2041 else
2042 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2043 }
2044
2045 return 0;
2046 }
2047
2048 static int igb_nway_reset(struct net_device *netdev)
2049 {
2050 struct igb_adapter *adapter = netdev_priv(netdev);
2051 if (netif_running(netdev))
2052 igb_reinit_locked(adapter);
2053 return 0;
2054 }
2055
2056 static int igb_get_sset_count(struct net_device *netdev, int sset)
2057 {
2058 switch (sset) {
2059 case ETH_SS_STATS:
2060 return IGB_STATS_LEN;
2061 case ETH_SS_TEST:
2062 return IGB_TEST_LEN;
2063 default:
2064 return -ENOTSUPP;
2065 }
2066 }
2067
2068 static void igb_get_ethtool_stats(struct net_device *netdev,
2069 struct ethtool_stats *stats, u64 *data)
2070 {
2071 struct igb_adapter *adapter = netdev_priv(netdev);
2072 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2073 unsigned int start;
2074 struct igb_ring *ring;
2075 int i, j;
2076 char *p;
2077
2078 spin_lock(&adapter->stats64_lock);
2079 igb_update_stats(adapter, net_stats);
2080
2081 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2082 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2083 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2084 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2085 }
2086 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2087 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2088 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2089 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2090 }
2091 for (j = 0; j < adapter->num_tx_queues; j++) {
2092 u64 restart2;
2093
2094 ring = adapter->tx_ring[j];
2095 do {
2096 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2097 data[i] = ring->tx_stats.packets;
2098 data[i+1] = ring->tx_stats.bytes;
2099 data[i+2] = ring->tx_stats.restart_queue;
2100 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2101 do {
2102 start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2103 restart2 = ring->tx_stats.restart_queue2;
2104 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2105 data[i+2] += restart2;
2106
2107 i += IGB_TX_QUEUE_STATS_LEN;
2108 }
2109 for (j = 0; j < adapter->num_rx_queues; j++) {
2110 ring = adapter->rx_ring[j];
2111 do {
2112 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2113 data[i] = ring->rx_stats.packets;
2114 data[i+1] = ring->rx_stats.bytes;
2115 data[i+2] = ring->rx_stats.drops;
2116 data[i+3] = ring->rx_stats.csum_err;
2117 data[i+4] = ring->rx_stats.alloc_failed;
2118 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2119 i += IGB_RX_QUEUE_STATS_LEN;
2120 }
2121 spin_unlock(&adapter->stats64_lock);
2122 }
2123
2124 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2125 {
2126 struct igb_adapter *adapter = netdev_priv(netdev);
2127 u8 *p = data;
2128 int i;
2129
2130 switch (stringset) {
2131 case ETH_SS_TEST:
2132 memcpy(data, *igb_gstrings_test,
2133 IGB_TEST_LEN*ETH_GSTRING_LEN);
2134 break;
2135 case ETH_SS_STATS:
2136 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2137 memcpy(p, igb_gstrings_stats[i].stat_string,
2138 ETH_GSTRING_LEN);
2139 p += ETH_GSTRING_LEN;
2140 }
2141 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2142 memcpy(p, igb_gstrings_net_stats[i].stat_string,
2143 ETH_GSTRING_LEN);
2144 p += ETH_GSTRING_LEN;
2145 }
2146 for (i = 0; i < adapter->num_tx_queues; i++) {
2147 sprintf(p, "tx_queue_%u_packets", i);
2148 p += ETH_GSTRING_LEN;
2149 sprintf(p, "tx_queue_%u_bytes", i);
2150 p += ETH_GSTRING_LEN;
2151 sprintf(p, "tx_queue_%u_restart", i);
2152 p += ETH_GSTRING_LEN;
2153 }
2154 for (i = 0; i < adapter->num_rx_queues; i++) {
2155 sprintf(p, "rx_queue_%u_packets", i);
2156 p += ETH_GSTRING_LEN;
2157 sprintf(p, "rx_queue_%u_bytes", i);
2158 p += ETH_GSTRING_LEN;
2159 sprintf(p, "rx_queue_%u_drops", i);
2160 p += ETH_GSTRING_LEN;
2161 sprintf(p, "rx_queue_%u_csum_err", i);
2162 p += ETH_GSTRING_LEN;
2163 sprintf(p, "rx_queue_%u_alloc_failed", i);
2164 p += ETH_GSTRING_LEN;
2165 }
2166 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2167 break;
2168 }
2169 }
2170
2171 static const struct ethtool_ops igb_ethtool_ops = {
2172 .get_settings = igb_get_settings,
2173 .set_settings = igb_set_settings,
2174 .get_drvinfo = igb_get_drvinfo,
2175 .get_regs_len = igb_get_regs_len,
2176 .get_regs = igb_get_regs,
2177 .get_wol = igb_get_wol,
2178 .set_wol = igb_set_wol,
2179 .get_msglevel = igb_get_msglevel,
2180 .set_msglevel = igb_set_msglevel,
2181 .nway_reset = igb_nway_reset,
2182 .get_link = igb_get_link,
2183 .get_eeprom_len = igb_get_eeprom_len,
2184 .get_eeprom = igb_get_eeprom,
2185 .set_eeprom = igb_set_eeprom,
2186 .get_ringparam = igb_get_ringparam,
2187 .set_ringparam = igb_set_ringparam,
2188 .get_pauseparam = igb_get_pauseparam,
2189 .set_pauseparam = igb_set_pauseparam,
2190 .self_test = igb_diag_test,
2191 .get_strings = igb_get_strings,
2192 .set_phys_id = igb_set_phys_id,
2193 .get_sset_count = igb_get_sset_count,
2194 .get_ethtool_stats = igb_get_ethtool_stats,
2195 .get_coalesce = igb_get_coalesce,
2196 .set_coalesce = igb_set_coalesce,
2197 };
2198
2199 void igb_set_ethtool_ops(struct net_device *netdev)
2200 {
2201 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2202 }
This page took 0.113392 seconds and 5 git commands to generate.