Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2014 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, see <http://www.gnu.org/licenses/>.
17
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
20
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/bitops.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/netdevice.h>
36 #include <linux/ipv6.h>
37 #include <linux/slab.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #include <linux/net_tstamp.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if.h>
44 #include <linux/if_vlan.h>
45 #include <linux/pci.h>
46 #include <linux/pci-aspm.h>
47 #include <linux/delay.h>
48 #include <linux/interrupt.h>
49 #include <linux/ip.h>
50 #include <linux/tcp.h>
51 #include <linux/sctp.h>
52 #include <linux/if_ether.h>
53 #include <linux/aer.h>
54 #include <linux/prefetch.h>
55 #include <linux/pm_runtime.h>
56 #ifdef CONFIG_IGB_DCA
57 #include <linux/dca.h>
58 #endif
59 #include <linux/i2c.h>
60 #include "igb.h"
61
62 #define MAJ 5
63 #define MIN 0
64 #define BUILD 5
65 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66 __stringify(BUILD) "-k"
67 char igb_driver_name[] = "igb";
68 char igb_driver_version[] = DRV_VERSION;
69 static const char igb_driver_string[] =
70 "Intel(R) Gigabit Ethernet Network Driver";
71 static const char igb_copyright[] =
72 "Copyright (c) 2007-2014 Intel Corporation.";
73
74 static const struct e1000_info *igb_info_tbl[] = {
75 [board_82575] = &e1000_82575_info,
76 };
77
78 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
114 /* required last entry */
115 {0, }
116 };
117
118 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
119
120 void igb_reset(struct igb_adapter *);
121 static int igb_setup_all_tx_resources(struct igb_adapter *);
122 static int igb_setup_all_rx_resources(struct igb_adapter *);
123 static void igb_free_all_tx_resources(struct igb_adapter *);
124 static void igb_free_all_rx_resources(struct igb_adapter *);
125 static void igb_setup_mrqc(struct igb_adapter *);
126 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
127 static void igb_remove(struct pci_dev *pdev);
128 static int igb_sw_init(struct igb_adapter *);
129 static int igb_open(struct net_device *);
130 static int igb_close(struct net_device *);
131 static void igb_configure(struct igb_adapter *);
132 static void igb_configure_tx(struct igb_adapter *);
133 static void igb_configure_rx(struct igb_adapter *);
134 static void igb_clean_all_tx_rings(struct igb_adapter *);
135 static void igb_clean_all_rx_rings(struct igb_adapter *);
136 static void igb_clean_tx_ring(struct igb_ring *);
137 static void igb_clean_rx_ring(struct igb_ring *);
138 static void igb_set_rx_mode(struct net_device *);
139 static void igb_update_phy_info(unsigned long);
140 static void igb_watchdog(unsigned long);
141 static void igb_watchdog_task(struct work_struct *);
142 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
143 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
144 struct rtnl_link_stats64 *stats);
145 static int igb_change_mtu(struct net_device *, int);
146 static int igb_set_mac(struct net_device *, void *);
147 static void igb_set_uta(struct igb_adapter *adapter);
148 static irqreturn_t igb_intr(int irq, void *);
149 static irqreturn_t igb_intr_msi(int irq, void *);
150 static irqreturn_t igb_msix_other(int irq, void *);
151 static irqreturn_t igb_msix_ring(int irq, void *);
152 #ifdef CONFIG_IGB_DCA
153 static void igb_update_dca(struct igb_q_vector *);
154 static void igb_setup_dca(struct igb_adapter *);
155 #endif /* CONFIG_IGB_DCA */
156 static int igb_poll(struct napi_struct *, int);
157 static bool igb_clean_tx_irq(struct igb_q_vector *);
158 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
159 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
160 static void igb_tx_timeout(struct net_device *);
161 static void igb_reset_task(struct work_struct *);
162 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
163 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
164 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
165 static void igb_restore_vlan(struct igb_adapter *);
166 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
167 static void igb_ping_all_vfs(struct igb_adapter *);
168 static void igb_msg_task(struct igb_adapter *);
169 static void igb_vmm_control(struct igb_adapter *);
170 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
171 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
172 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
173 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
174 int vf, u16 vlan, u8 qos);
175 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
176 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
177 bool setting);
178 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
179 struct ifla_vf_info *ivi);
180 static void igb_check_vf_rate_limit(struct igb_adapter *);
181
182 #ifdef CONFIG_PCI_IOV
183 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185 #endif
186
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 #ifdef CONFIG_PM_RUNTIME
193 static int igb_runtime_suspend(struct device *dev);
194 static int igb_runtime_resume(struct device *dev);
195 static int igb_runtime_idle(struct device *dev);
196 #endif
197 static const struct dev_pm_ops igb_pm_ops = {
198 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200 igb_runtime_idle)
201 };
202 #endif
203 static void igb_shutdown(struct pci_dev *);
204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205 #ifdef CONFIG_IGB_DCA
206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207 static struct notifier_block dca_notifier = {
208 .notifier_call = igb_notify_dca,
209 .next = NULL,
210 .priority = 0
211 };
212 #endif
213 #ifdef CONFIG_NET_POLL_CONTROLLER
214 /* for netdump / net console */
215 static void igb_netpoll(struct net_device *);
216 #endif
217 #ifdef CONFIG_PCI_IOV
218 static unsigned int max_vfs = 0;
219 module_param(max_vfs, uint, 0);
220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
221 "per physical function");
222 #endif /* CONFIG_PCI_IOV */
223
224 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
225 pci_channel_state_t);
226 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
227 static void igb_io_resume(struct pci_dev *);
228
229 static const struct pci_error_handlers igb_err_handler = {
230 .error_detected = igb_io_error_detected,
231 .slot_reset = igb_io_slot_reset,
232 .resume = igb_io_resume,
233 };
234
235 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236
237 static struct pci_driver igb_driver = {
238 .name = igb_driver_name,
239 .id_table = igb_pci_tbl,
240 .probe = igb_probe,
241 .remove = igb_remove,
242 #ifdef CONFIG_PM
243 .driver.pm = &igb_pm_ops,
244 #endif
245 .shutdown = igb_shutdown,
246 .sriov_configure = igb_pci_sriov_configure,
247 .err_handler = &igb_err_handler
248 };
249
250 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
251 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
252 MODULE_LICENSE("GPL");
253 MODULE_VERSION(DRV_VERSION);
254
255 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
256 static int debug = -1;
257 module_param(debug, int, 0);
258 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
259
260 struct igb_reg_info {
261 u32 ofs;
262 char *name;
263 };
264
265 static const struct igb_reg_info igb_reg_info_tbl[] = {
266
267 /* General Registers */
268 {E1000_CTRL, "CTRL"},
269 {E1000_STATUS, "STATUS"},
270 {E1000_CTRL_EXT, "CTRL_EXT"},
271
272 /* Interrupt Registers */
273 {E1000_ICR, "ICR"},
274
275 /* RX Registers */
276 {E1000_RCTL, "RCTL"},
277 {E1000_RDLEN(0), "RDLEN"},
278 {E1000_RDH(0), "RDH"},
279 {E1000_RDT(0), "RDT"},
280 {E1000_RXDCTL(0), "RXDCTL"},
281 {E1000_RDBAL(0), "RDBAL"},
282 {E1000_RDBAH(0), "RDBAH"},
283
284 /* TX Registers */
285 {E1000_TCTL, "TCTL"},
286 {E1000_TDBAL(0), "TDBAL"},
287 {E1000_TDBAH(0), "TDBAH"},
288 {E1000_TDLEN(0), "TDLEN"},
289 {E1000_TDH(0), "TDH"},
290 {E1000_TDT(0), "TDT"},
291 {E1000_TXDCTL(0), "TXDCTL"},
292 {E1000_TDFH, "TDFH"},
293 {E1000_TDFT, "TDFT"},
294 {E1000_TDFHS, "TDFHS"},
295 {E1000_TDFPC, "TDFPC"},
296
297 /* List Terminator */
298 {}
299 };
300
301 /* igb_regdump - register printout routine */
302 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
303 {
304 int n = 0;
305 char rname[16];
306 u32 regs[8];
307
308 switch (reginfo->ofs) {
309 case E1000_RDLEN(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDLEN(n));
312 break;
313 case E1000_RDH(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDH(n));
316 break;
317 case E1000_RDT(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RDT(n));
320 break;
321 case E1000_RXDCTL(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RXDCTL(n));
324 break;
325 case E1000_RDBAL(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAL(n));
328 break;
329 case E1000_RDBAH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDBAH(n));
332 break;
333 case E1000_TDBAL(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_RDBAL(n));
336 break;
337 case E1000_TDBAH(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDBAH(n));
340 break;
341 case E1000_TDLEN(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDLEN(n));
344 break;
345 case E1000_TDH(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TDH(n));
348 break;
349 case E1000_TDT(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TDT(n));
352 break;
353 case E1000_TXDCTL(0):
354 for (n = 0; n < 4; n++)
355 regs[n] = rd32(E1000_TXDCTL(n));
356 break;
357 default:
358 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359 return;
360 }
361
362 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
363 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
364 regs[2], regs[3]);
365 }
366
367 /* igb_dump - Print registers, Tx-rings and Rx-rings */
368 static void igb_dump(struct igb_adapter *adapter)
369 {
370 struct net_device *netdev = adapter->netdev;
371 struct e1000_hw *hw = &adapter->hw;
372 struct igb_reg_info *reginfo;
373 struct igb_ring *tx_ring;
374 union e1000_adv_tx_desc *tx_desc;
375 struct my_u0 { u64 a; u64 b; } *u0;
376 struct igb_ring *rx_ring;
377 union e1000_adv_rx_desc *rx_desc;
378 u32 staterr;
379 u16 i, n;
380
381 if (!netif_msg_hw(adapter))
382 return;
383
384 /* Print netdevice Info */
385 if (netdev) {
386 dev_info(&adapter->pdev->dev, "Net device Info\n");
387 pr_info("Device Name state trans_start "
388 "last_rx\n");
389 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
390 netdev->state, netdev->trans_start, netdev->last_rx);
391 }
392
393 /* Print Registers */
394 dev_info(&adapter->pdev->dev, "Register Dump\n");
395 pr_info(" Register Name Value\n");
396 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
397 reginfo->name; reginfo++) {
398 igb_regdump(hw, reginfo);
399 }
400
401 /* Print TX Ring Summary */
402 if (!netdev || !netif_running(netdev))
403 goto exit;
404
405 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
406 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
407 for (n = 0; n < adapter->num_tx_queues; n++) {
408 struct igb_tx_buffer *buffer_info;
409 tx_ring = adapter->tx_ring[n];
410 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
411 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
412 n, tx_ring->next_to_use, tx_ring->next_to_clean,
413 (u64)dma_unmap_addr(buffer_info, dma),
414 dma_unmap_len(buffer_info, len),
415 buffer_info->next_to_watch,
416 (u64)buffer_info->time_stamp);
417 }
418
419 /* Print TX Rings */
420 if (!netif_msg_tx_done(adapter))
421 goto rx_ring_summary;
422
423 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
424
425 /* Transmit Descriptor Formats
426 *
427 * Advanced Transmit Descriptor
428 * +--------------------------------------------------------------+
429 * 0 | Buffer Address [63:0] |
430 * +--------------------------------------------------------------+
431 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
432 * +--------------------------------------------------------------+
433 * 63 46 45 40 39 38 36 35 32 31 24 15 0
434 */
435
436 for (n = 0; n < adapter->num_tx_queues; n++) {
437 tx_ring = adapter->tx_ring[n];
438 pr_info("------------------------------------\n");
439 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
440 pr_info("------------------------------------\n");
441 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
442 "[bi->dma ] leng ntw timestamp "
443 "bi->skb\n");
444
445 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
446 const char *next_desc;
447 struct igb_tx_buffer *buffer_info;
448 tx_desc = IGB_TX_DESC(tx_ring, i);
449 buffer_info = &tx_ring->tx_buffer_info[i];
450 u0 = (struct my_u0 *)tx_desc;
451 if (i == tx_ring->next_to_use &&
452 i == tx_ring->next_to_clean)
453 next_desc = " NTC/U";
454 else if (i == tx_ring->next_to_use)
455 next_desc = " NTU";
456 else if (i == tx_ring->next_to_clean)
457 next_desc = " NTC";
458 else
459 next_desc = "";
460
461 pr_info("T [0x%03X] %016llX %016llX %016llX"
462 " %04X %p %016llX %p%s\n", i,
463 le64_to_cpu(u0->a),
464 le64_to_cpu(u0->b),
465 (u64)dma_unmap_addr(buffer_info, dma),
466 dma_unmap_len(buffer_info, len),
467 buffer_info->next_to_watch,
468 (u64)buffer_info->time_stamp,
469 buffer_info->skb, next_desc);
470
471 if (netif_msg_pktdata(adapter) && buffer_info->skb)
472 print_hex_dump(KERN_INFO, "",
473 DUMP_PREFIX_ADDRESS,
474 16, 1, buffer_info->skb->data,
475 dma_unmap_len(buffer_info, len),
476 true);
477 }
478 }
479
480 /* Print RX Rings Summary */
481 rx_ring_summary:
482 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
483 pr_info("Queue [NTU] [NTC]\n");
484 for (n = 0; n < adapter->num_rx_queues; n++) {
485 rx_ring = adapter->rx_ring[n];
486 pr_info(" %5d %5X %5X\n",
487 n, rx_ring->next_to_use, rx_ring->next_to_clean);
488 }
489
490 /* Print RX Rings */
491 if (!netif_msg_rx_status(adapter))
492 goto exit;
493
494 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
495
496 /* Advanced Receive Descriptor (Read) Format
497 * 63 1 0
498 * +-----------------------------------------------------+
499 * 0 | Packet Buffer Address [63:1] |A0/NSE|
500 * +----------------------------------------------+------+
501 * 8 | Header Buffer Address [63:1] | DD |
502 * +-----------------------------------------------------+
503 *
504 *
505 * Advanced Receive Descriptor (Write-Back) Format
506 *
507 * 63 48 47 32 31 30 21 20 17 16 4 3 0
508 * +------------------------------------------------------+
509 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
510 * | Checksum Ident | | | | Type | Type |
511 * +------------------------------------------------------+
512 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
513 * +------------------------------------------------------+
514 * 63 48 47 32 31 20 19 0
515 */
516
517 for (n = 0; n < adapter->num_rx_queues; n++) {
518 rx_ring = adapter->rx_ring[n];
519 pr_info("------------------------------------\n");
520 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
521 pr_info("------------------------------------\n");
522 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
523 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
524 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
525 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
526
527 for (i = 0; i < rx_ring->count; i++) {
528 const char *next_desc;
529 struct igb_rx_buffer *buffer_info;
530 buffer_info = &rx_ring->rx_buffer_info[i];
531 rx_desc = IGB_RX_DESC(rx_ring, i);
532 u0 = (struct my_u0 *)rx_desc;
533 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
534
535 if (i == rx_ring->next_to_use)
536 next_desc = " NTU";
537 else if (i == rx_ring->next_to_clean)
538 next_desc = " NTC";
539 else
540 next_desc = "";
541
542 if (staterr & E1000_RXD_STAT_DD) {
543 /* Descriptor Done */
544 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
545 "RWB", i,
546 le64_to_cpu(u0->a),
547 le64_to_cpu(u0->b),
548 next_desc);
549 } else {
550 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
551 "R ", i,
552 le64_to_cpu(u0->a),
553 le64_to_cpu(u0->b),
554 (u64)buffer_info->dma,
555 next_desc);
556
557 if (netif_msg_pktdata(adapter) &&
558 buffer_info->dma && buffer_info->page) {
559 print_hex_dump(KERN_INFO, "",
560 DUMP_PREFIX_ADDRESS,
561 16, 1,
562 page_address(buffer_info->page) +
563 buffer_info->page_offset,
564 IGB_RX_BUFSZ, true);
565 }
566 }
567 }
568 }
569
570 exit:
571 return;
572 }
573
574 /**
575 * igb_get_i2c_data - Reads the I2C SDA data bit
576 * @hw: pointer to hardware structure
577 * @i2cctl: Current value of I2CCTL register
578 *
579 * Returns the I2C data bit value
580 **/
581 static int igb_get_i2c_data(void *data)
582 {
583 struct igb_adapter *adapter = (struct igb_adapter *)data;
584 struct e1000_hw *hw = &adapter->hw;
585 s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
588 }
589
590 /**
591 * igb_set_i2c_data - Sets the I2C data bit
592 * @data: pointer to hardware structure
593 * @state: I2C data value (0 or 1) to set
594 *
595 * Sets the I2C data bit
596 **/
597 static void igb_set_i2c_data(void *data, int state)
598 {
599 struct igb_adapter *adapter = (struct igb_adapter *)data;
600 struct e1000_hw *hw = &adapter->hw;
601 s32 i2cctl = rd32(E1000_I2CPARAMS);
602
603 if (state)
604 i2cctl |= E1000_I2C_DATA_OUT;
605 else
606 i2cctl &= ~E1000_I2C_DATA_OUT;
607
608 i2cctl &= ~E1000_I2C_DATA_OE_N;
609 i2cctl |= E1000_I2C_CLK_OE_N;
610 wr32(E1000_I2CPARAMS, i2cctl);
611 wrfl();
612
613 }
614
615 /**
616 * igb_set_i2c_clk - Sets the I2C SCL clock
617 * @data: pointer to hardware structure
618 * @state: state to set clock
619 *
620 * Sets the I2C clock line to state
621 **/
622 static void igb_set_i2c_clk(void *data, int state)
623 {
624 struct igb_adapter *adapter = (struct igb_adapter *)data;
625 struct e1000_hw *hw = &adapter->hw;
626 s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628 if (state) {
629 i2cctl |= E1000_I2C_CLK_OUT;
630 i2cctl &= ~E1000_I2C_CLK_OE_N;
631 } else {
632 i2cctl &= ~E1000_I2C_CLK_OUT;
633 i2cctl &= ~E1000_I2C_CLK_OE_N;
634 }
635 wr32(E1000_I2CPARAMS, i2cctl);
636 wrfl();
637 }
638
639 /**
640 * igb_get_i2c_clk - Gets the I2C SCL clock state
641 * @data: pointer to hardware structure
642 *
643 * Gets the I2C clock state
644 **/
645 static int igb_get_i2c_clk(void *data)
646 {
647 struct igb_adapter *adapter = (struct igb_adapter *)data;
648 struct e1000_hw *hw = &adapter->hw;
649 s32 i2cctl = rd32(E1000_I2CPARAMS);
650
651 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
652 }
653
654 static const struct i2c_algo_bit_data igb_i2c_algo = {
655 .setsda = igb_set_i2c_data,
656 .setscl = igb_set_i2c_clk,
657 .getsda = igb_get_i2c_data,
658 .getscl = igb_get_i2c_clk,
659 .udelay = 5,
660 .timeout = 20,
661 };
662
663 /**
664 * igb_get_hw_dev - return device
665 * @hw: pointer to hardware structure
666 *
667 * used by hardware layer to print debugging information
668 **/
669 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
670 {
671 struct igb_adapter *adapter = hw->back;
672 return adapter->netdev;
673 }
674
675 /**
676 * igb_init_module - Driver Registration Routine
677 *
678 * igb_init_module is the first routine called when the driver is
679 * loaded. All it does is register with the PCI subsystem.
680 **/
681 static int __init igb_init_module(void)
682 {
683 int ret;
684 pr_info("%s - version %s\n",
685 igb_driver_string, igb_driver_version);
686
687 pr_info("%s\n", igb_copyright);
688
689 #ifdef CONFIG_IGB_DCA
690 dca_register_notify(&dca_notifier);
691 #endif
692 ret = pci_register_driver(&igb_driver);
693 return ret;
694 }
695
696 module_init(igb_init_module);
697
698 /**
699 * igb_exit_module - Driver Exit Cleanup Routine
700 *
701 * igb_exit_module is called just before the driver is removed
702 * from memory.
703 **/
704 static void __exit igb_exit_module(void)
705 {
706 #ifdef CONFIG_IGB_DCA
707 dca_unregister_notify(&dca_notifier);
708 #endif
709 pci_unregister_driver(&igb_driver);
710 }
711
712 module_exit(igb_exit_module);
713
714 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
715 /**
716 * igb_cache_ring_register - Descriptor ring to register mapping
717 * @adapter: board private structure to initialize
718 *
719 * Once we know the feature-set enabled for the device, we'll cache
720 * the register offset the descriptor ring is assigned to.
721 **/
722 static void igb_cache_ring_register(struct igb_adapter *adapter)
723 {
724 int i = 0, j = 0;
725 u32 rbase_offset = adapter->vfs_allocated_count;
726
727 switch (adapter->hw.mac.type) {
728 case e1000_82576:
729 /* The queues are allocated for virtualization such that VF 0
730 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
731 * In order to avoid collision we start at the first free queue
732 * and continue consuming queues in the same sequence
733 */
734 if (adapter->vfs_allocated_count) {
735 for (; i < adapter->rss_queues; i++)
736 adapter->rx_ring[i]->reg_idx = rbase_offset +
737 Q_IDX_82576(i);
738 }
739 case e1000_82575:
740 case e1000_82580:
741 case e1000_i350:
742 case e1000_i354:
743 case e1000_i210:
744 case e1000_i211:
745 default:
746 for (; i < adapter->num_rx_queues; i++)
747 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
748 for (; j < adapter->num_tx_queues; j++)
749 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
750 break;
751 }
752 }
753
754 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
755 {
756 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
757 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
758 u32 value = 0;
759
760 if (E1000_REMOVED(hw_addr))
761 return ~value;
762
763 value = readl(&hw_addr[reg]);
764
765 /* reads should not return all F's */
766 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
767 struct net_device *netdev = igb->netdev;
768 hw->hw_addr = NULL;
769 netif_device_detach(netdev);
770 netdev_err(netdev, "PCIe link lost, device now detached\n");
771 }
772
773 return value;
774 }
775
776 /**
777 * igb_write_ivar - configure ivar for given MSI-X vector
778 * @hw: pointer to the HW structure
779 * @msix_vector: vector number we are allocating to a given ring
780 * @index: row index of IVAR register to write within IVAR table
781 * @offset: column offset of in IVAR, should be multiple of 8
782 *
783 * This function is intended to handle the writing of the IVAR register
784 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
785 * each containing an cause allocation for an Rx and Tx ring, and a
786 * variable number of rows depending on the number of queues supported.
787 **/
788 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
789 int index, int offset)
790 {
791 u32 ivar = array_rd32(E1000_IVAR0, index);
792
793 /* clear any bits that are currently set */
794 ivar &= ~((u32)0xFF << offset);
795
796 /* write vector and valid bit */
797 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
798
799 array_wr32(E1000_IVAR0, index, ivar);
800 }
801
802 #define IGB_N0_QUEUE -1
803 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
804 {
805 struct igb_adapter *adapter = q_vector->adapter;
806 struct e1000_hw *hw = &adapter->hw;
807 int rx_queue = IGB_N0_QUEUE;
808 int tx_queue = IGB_N0_QUEUE;
809 u32 msixbm = 0;
810
811 if (q_vector->rx.ring)
812 rx_queue = q_vector->rx.ring->reg_idx;
813 if (q_vector->tx.ring)
814 tx_queue = q_vector->tx.ring->reg_idx;
815
816 switch (hw->mac.type) {
817 case e1000_82575:
818 /* The 82575 assigns vectors using a bitmask, which matches the
819 * bitmask for the EICR/EIMS/EIMC registers. To assign one
820 * or more queues to a vector, we write the appropriate bits
821 * into the MSIXBM register for that vector.
822 */
823 if (rx_queue > IGB_N0_QUEUE)
824 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
825 if (tx_queue > IGB_N0_QUEUE)
826 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
827 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
828 msixbm |= E1000_EIMS_OTHER;
829 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
830 q_vector->eims_value = msixbm;
831 break;
832 case e1000_82576:
833 /* 82576 uses a table that essentially consists of 2 columns
834 * with 8 rows. The ordering is column-major so we use the
835 * lower 3 bits as the row index, and the 4th bit as the
836 * column offset.
837 */
838 if (rx_queue > IGB_N0_QUEUE)
839 igb_write_ivar(hw, msix_vector,
840 rx_queue & 0x7,
841 (rx_queue & 0x8) << 1);
842 if (tx_queue > IGB_N0_QUEUE)
843 igb_write_ivar(hw, msix_vector,
844 tx_queue & 0x7,
845 ((tx_queue & 0x8) << 1) + 8);
846 q_vector->eims_value = 1 << msix_vector;
847 break;
848 case e1000_82580:
849 case e1000_i350:
850 case e1000_i354:
851 case e1000_i210:
852 case e1000_i211:
853 /* On 82580 and newer adapters the scheme is similar to 82576
854 * however instead of ordering column-major we have things
855 * ordered row-major. So we traverse the table by using
856 * bit 0 as the column offset, and the remaining bits as the
857 * row index.
858 */
859 if (rx_queue > IGB_N0_QUEUE)
860 igb_write_ivar(hw, msix_vector,
861 rx_queue >> 1,
862 (rx_queue & 0x1) << 4);
863 if (tx_queue > IGB_N0_QUEUE)
864 igb_write_ivar(hw, msix_vector,
865 tx_queue >> 1,
866 ((tx_queue & 0x1) << 4) + 8);
867 q_vector->eims_value = 1 << msix_vector;
868 break;
869 default:
870 BUG();
871 break;
872 }
873
874 /* add q_vector eims value to global eims_enable_mask */
875 adapter->eims_enable_mask |= q_vector->eims_value;
876
877 /* configure q_vector to set itr on first interrupt */
878 q_vector->set_itr = 1;
879 }
880
881 /**
882 * igb_configure_msix - Configure MSI-X hardware
883 * @adapter: board private structure to initialize
884 *
885 * igb_configure_msix sets up the hardware to properly
886 * generate MSI-X interrupts.
887 **/
888 static void igb_configure_msix(struct igb_adapter *adapter)
889 {
890 u32 tmp;
891 int i, vector = 0;
892 struct e1000_hw *hw = &adapter->hw;
893
894 adapter->eims_enable_mask = 0;
895
896 /* set vector for other causes, i.e. link changes */
897 switch (hw->mac.type) {
898 case e1000_82575:
899 tmp = rd32(E1000_CTRL_EXT);
900 /* enable MSI-X PBA support*/
901 tmp |= E1000_CTRL_EXT_PBA_CLR;
902
903 /* Auto-Mask interrupts upon ICR read. */
904 tmp |= E1000_CTRL_EXT_EIAME;
905 tmp |= E1000_CTRL_EXT_IRCA;
906
907 wr32(E1000_CTRL_EXT, tmp);
908
909 /* enable msix_other interrupt */
910 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
911 adapter->eims_other = E1000_EIMS_OTHER;
912
913 break;
914
915 case e1000_82576:
916 case e1000_82580:
917 case e1000_i350:
918 case e1000_i354:
919 case e1000_i210:
920 case e1000_i211:
921 /* Turn on MSI-X capability first, or our settings
922 * won't stick. And it will take days to debug.
923 */
924 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
925 E1000_GPIE_PBA | E1000_GPIE_EIAME |
926 E1000_GPIE_NSICR);
927
928 /* enable msix_other interrupt */
929 adapter->eims_other = 1 << vector;
930 tmp = (vector++ | E1000_IVAR_VALID) << 8;
931
932 wr32(E1000_IVAR_MISC, tmp);
933 break;
934 default:
935 /* do nothing, since nothing else supports MSI-X */
936 break;
937 } /* switch (hw->mac.type) */
938
939 adapter->eims_enable_mask |= adapter->eims_other;
940
941 for (i = 0; i < adapter->num_q_vectors; i++)
942 igb_assign_vector(adapter->q_vector[i], vector++);
943
944 wrfl();
945 }
946
947 /**
948 * igb_request_msix - Initialize MSI-X interrupts
949 * @adapter: board private structure to initialize
950 *
951 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
952 * kernel.
953 **/
954 static int igb_request_msix(struct igb_adapter *adapter)
955 {
956 struct net_device *netdev = adapter->netdev;
957 struct e1000_hw *hw = &adapter->hw;
958 int i, err = 0, vector = 0, free_vector = 0;
959
960 err = request_irq(adapter->msix_entries[vector].vector,
961 igb_msix_other, 0, netdev->name, adapter);
962 if (err)
963 goto err_out;
964
965 for (i = 0; i < adapter->num_q_vectors; i++) {
966 struct igb_q_vector *q_vector = adapter->q_vector[i];
967
968 vector++;
969
970 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
971
972 if (q_vector->rx.ring && q_vector->tx.ring)
973 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
974 q_vector->rx.ring->queue_index);
975 else if (q_vector->tx.ring)
976 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
977 q_vector->tx.ring->queue_index);
978 else if (q_vector->rx.ring)
979 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
980 q_vector->rx.ring->queue_index);
981 else
982 sprintf(q_vector->name, "%s-unused", netdev->name);
983
984 err = request_irq(adapter->msix_entries[vector].vector,
985 igb_msix_ring, 0, q_vector->name,
986 q_vector);
987 if (err)
988 goto err_free;
989 }
990
991 igb_configure_msix(adapter);
992 return 0;
993
994 err_free:
995 /* free already assigned IRQs */
996 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
997
998 vector--;
999 for (i = 0; i < vector; i++) {
1000 free_irq(adapter->msix_entries[free_vector++].vector,
1001 adapter->q_vector[i]);
1002 }
1003 err_out:
1004 return err;
1005 }
1006
1007 /**
1008 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1009 * @adapter: board private structure to initialize
1010 * @v_idx: Index of vector to be freed
1011 *
1012 * This function frees the memory allocated to the q_vector.
1013 **/
1014 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1015 {
1016 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1017
1018 adapter->q_vector[v_idx] = NULL;
1019
1020 /* igb_get_stats64() might access the rings on this vector,
1021 * we must wait a grace period before freeing it.
1022 */
1023 kfree_rcu(q_vector, rcu);
1024 }
1025
1026 /**
1027 * igb_reset_q_vector - Reset config for interrupt vector
1028 * @adapter: board private structure to initialize
1029 * @v_idx: Index of vector to be reset
1030 *
1031 * If NAPI is enabled it will delete any references to the
1032 * NAPI struct. This is preparation for igb_free_q_vector.
1033 **/
1034 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1035 {
1036 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1037
1038 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1039 * allocated. So, q_vector is NULL so we should stop here.
1040 */
1041 if (!q_vector)
1042 return;
1043
1044 if (q_vector->tx.ring)
1045 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1046
1047 if (q_vector->rx.ring)
1048 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1049
1050 netif_napi_del(&q_vector->napi);
1051
1052 }
1053
1054 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1055 {
1056 int v_idx = adapter->num_q_vectors;
1057
1058 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1059 pci_disable_msix(adapter->pdev);
1060 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1061 pci_disable_msi(adapter->pdev);
1062
1063 while (v_idx--)
1064 igb_reset_q_vector(adapter, v_idx);
1065 }
1066
1067 /**
1068 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1069 * @adapter: board private structure to initialize
1070 *
1071 * This function frees the memory allocated to the q_vectors. In addition if
1072 * NAPI is enabled it will delete any references to the NAPI struct prior
1073 * to freeing the q_vector.
1074 **/
1075 static void igb_free_q_vectors(struct igb_adapter *adapter)
1076 {
1077 int v_idx = adapter->num_q_vectors;
1078
1079 adapter->num_tx_queues = 0;
1080 adapter->num_rx_queues = 0;
1081 adapter->num_q_vectors = 0;
1082
1083 while (v_idx--) {
1084 igb_reset_q_vector(adapter, v_idx);
1085 igb_free_q_vector(adapter, v_idx);
1086 }
1087 }
1088
1089 /**
1090 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1091 * @adapter: board private structure to initialize
1092 *
1093 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1094 * MSI-X interrupts allocated.
1095 */
1096 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1097 {
1098 igb_free_q_vectors(adapter);
1099 igb_reset_interrupt_capability(adapter);
1100 }
1101
1102 /**
1103 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1104 * @adapter: board private structure to initialize
1105 * @msix: boolean value of MSIX capability
1106 *
1107 * Attempt to configure interrupts using the best available
1108 * capabilities of the hardware and kernel.
1109 **/
1110 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1111 {
1112 int err;
1113 int numvecs, i;
1114
1115 if (!msix)
1116 goto msi_only;
1117 adapter->flags |= IGB_FLAG_HAS_MSIX;
1118
1119 /* Number of supported queues. */
1120 adapter->num_rx_queues = adapter->rss_queues;
1121 if (adapter->vfs_allocated_count)
1122 adapter->num_tx_queues = 1;
1123 else
1124 adapter->num_tx_queues = adapter->rss_queues;
1125
1126 /* start with one vector for every Rx queue */
1127 numvecs = adapter->num_rx_queues;
1128
1129 /* if Tx handler is separate add 1 for every Tx queue */
1130 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1131 numvecs += adapter->num_tx_queues;
1132
1133 /* store the number of vectors reserved for queues */
1134 adapter->num_q_vectors = numvecs;
1135
1136 /* add 1 vector for link status interrupts */
1137 numvecs++;
1138 for (i = 0; i < numvecs; i++)
1139 adapter->msix_entries[i].entry = i;
1140
1141 err = pci_enable_msix_range(adapter->pdev,
1142 adapter->msix_entries,
1143 numvecs,
1144 numvecs);
1145 if (err > 0)
1146 return;
1147
1148 igb_reset_interrupt_capability(adapter);
1149
1150 /* If we can't do MSI-X, try MSI */
1151 msi_only:
1152 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1153 #ifdef CONFIG_PCI_IOV
1154 /* disable SR-IOV for non MSI-X configurations */
1155 if (adapter->vf_data) {
1156 struct e1000_hw *hw = &adapter->hw;
1157 /* disable iov and allow time for transactions to clear */
1158 pci_disable_sriov(adapter->pdev);
1159 msleep(500);
1160
1161 kfree(adapter->vf_data);
1162 adapter->vf_data = NULL;
1163 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1164 wrfl();
1165 msleep(100);
1166 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1167 }
1168 #endif
1169 adapter->vfs_allocated_count = 0;
1170 adapter->rss_queues = 1;
1171 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1172 adapter->num_rx_queues = 1;
1173 adapter->num_tx_queues = 1;
1174 adapter->num_q_vectors = 1;
1175 if (!pci_enable_msi(adapter->pdev))
1176 adapter->flags |= IGB_FLAG_HAS_MSI;
1177 }
1178
1179 static void igb_add_ring(struct igb_ring *ring,
1180 struct igb_ring_container *head)
1181 {
1182 head->ring = ring;
1183 head->count++;
1184 }
1185
1186 /**
1187 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1188 * @adapter: board private structure to initialize
1189 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1190 * @v_idx: index of vector in adapter struct
1191 * @txr_count: total number of Tx rings to allocate
1192 * @txr_idx: index of first Tx ring to allocate
1193 * @rxr_count: total number of Rx rings to allocate
1194 * @rxr_idx: index of first Rx ring to allocate
1195 *
1196 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1197 **/
1198 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1199 int v_count, int v_idx,
1200 int txr_count, int txr_idx,
1201 int rxr_count, int rxr_idx)
1202 {
1203 struct igb_q_vector *q_vector;
1204 struct igb_ring *ring;
1205 int ring_count, size;
1206
1207 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1208 if (txr_count > 1 || rxr_count > 1)
1209 return -ENOMEM;
1210
1211 ring_count = txr_count + rxr_count;
1212 size = sizeof(struct igb_q_vector) +
1213 (sizeof(struct igb_ring) * ring_count);
1214
1215 /* allocate q_vector and rings */
1216 q_vector = adapter->q_vector[v_idx];
1217 if (!q_vector)
1218 q_vector = kzalloc(size, GFP_KERNEL);
1219 if (!q_vector)
1220 return -ENOMEM;
1221
1222 /* initialize NAPI */
1223 netif_napi_add(adapter->netdev, &q_vector->napi,
1224 igb_poll, 64);
1225
1226 /* tie q_vector and adapter together */
1227 adapter->q_vector[v_idx] = q_vector;
1228 q_vector->adapter = adapter;
1229
1230 /* initialize work limits */
1231 q_vector->tx.work_limit = adapter->tx_work_limit;
1232
1233 /* initialize ITR configuration */
1234 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1235 q_vector->itr_val = IGB_START_ITR;
1236
1237 /* initialize pointer to rings */
1238 ring = q_vector->ring;
1239
1240 /* intialize ITR */
1241 if (rxr_count) {
1242 /* rx or rx/tx vector */
1243 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1244 q_vector->itr_val = adapter->rx_itr_setting;
1245 } else {
1246 /* tx only vector */
1247 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1248 q_vector->itr_val = adapter->tx_itr_setting;
1249 }
1250
1251 if (txr_count) {
1252 /* assign generic ring traits */
1253 ring->dev = &adapter->pdev->dev;
1254 ring->netdev = adapter->netdev;
1255
1256 /* configure backlink on ring */
1257 ring->q_vector = q_vector;
1258
1259 /* update q_vector Tx values */
1260 igb_add_ring(ring, &q_vector->tx);
1261
1262 /* For 82575, context index must be unique per ring. */
1263 if (adapter->hw.mac.type == e1000_82575)
1264 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1265
1266 /* apply Tx specific ring traits */
1267 ring->count = adapter->tx_ring_count;
1268 ring->queue_index = txr_idx;
1269
1270 u64_stats_init(&ring->tx_syncp);
1271 u64_stats_init(&ring->tx_syncp2);
1272
1273 /* assign ring to adapter */
1274 adapter->tx_ring[txr_idx] = ring;
1275
1276 /* push pointer to next ring */
1277 ring++;
1278 }
1279
1280 if (rxr_count) {
1281 /* assign generic ring traits */
1282 ring->dev = &adapter->pdev->dev;
1283 ring->netdev = adapter->netdev;
1284
1285 /* configure backlink on ring */
1286 ring->q_vector = q_vector;
1287
1288 /* update q_vector Rx values */
1289 igb_add_ring(ring, &q_vector->rx);
1290
1291 /* set flag indicating ring supports SCTP checksum offload */
1292 if (adapter->hw.mac.type >= e1000_82576)
1293 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1294
1295 /*
1296 * On i350, i354, i210, and i211, loopback VLAN packets
1297 * have the tag byte-swapped.
1298 */
1299 if (adapter->hw.mac.type >= e1000_i350)
1300 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1301
1302 /* apply Rx specific ring traits */
1303 ring->count = adapter->rx_ring_count;
1304 ring->queue_index = rxr_idx;
1305
1306 u64_stats_init(&ring->rx_syncp);
1307
1308 /* assign ring to adapter */
1309 adapter->rx_ring[rxr_idx] = ring;
1310 }
1311
1312 return 0;
1313 }
1314
1315
1316 /**
1317 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318 * @adapter: board private structure to initialize
1319 *
1320 * We allocate one q_vector per queue interrupt. If allocation fails we
1321 * return -ENOMEM.
1322 **/
1323 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1324 {
1325 int q_vectors = adapter->num_q_vectors;
1326 int rxr_remaining = adapter->num_rx_queues;
1327 int txr_remaining = adapter->num_tx_queues;
1328 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329 int err;
1330
1331 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332 for (; rxr_remaining; v_idx++) {
1333 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334 0, 0, 1, rxr_idx);
1335
1336 if (err)
1337 goto err_out;
1338
1339 /* update counts and index */
1340 rxr_remaining--;
1341 rxr_idx++;
1342 }
1343 }
1344
1345 for (; v_idx < q_vectors; v_idx++) {
1346 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1349 tqpv, txr_idx, rqpv, rxr_idx);
1350
1351 if (err)
1352 goto err_out;
1353
1354 /* update counts and index */
1355 rxr_remaining -= rqpv;
1356 txr_remaining -= tqpv;
1357 rxr_idx++;
1358 txr_idx++;
1359 }
1360
1361 return 0;
1362
1363 err_out:
1364 adapter->num_tx_queues = 0;
1365 adapter->num_rx_queues = 0;
1366 adapter->num_q_vectors = 0;
1367
1368 while (v_idx--)
1369 igb_free_q_vector(adapter, v_idx);
1370
1371 return -ENOMEM;
1372 }
1373
1374 /**
1375 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1376 * @adapter: board private structure to initialize
1377 * @msix: boolean value of MSIX capability
1378 *
1379 * This function initializes the interrupts and allocates all of the queues.
1380 **/
1381 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1382 {
1383 struct pci_dev *pdev = adapter->pdev;
1384 int err;
1385
1386 igb_set_interrupt_capability(adapter, msix);
1387
1388 err = igb_alloc_q_vectors(adapter);
1389 if (err) {
1390 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1391 goto err_alloc_q_vectors;
1392 }
1393
1394 igb_cache_ring_register(adapter);
1395
1396 return 0;
1397
1398 err_alloc_q_vectors:
1399 igb_reset_interrupt_capability(adapter);
1400 return err;
1401 }
1402
1403 /**
1404 * igb_request_irq - initialize interrupts
1405 * @adapter: board private structure to initialize
1406 *
1407 * Attempts to configure interrupts using the best available
1408 * capabilities of the hardware and kernel.
1409 **/
1410 static int igb_request_irq(struct igb_adapter *adapter)
1411 {
1412 struct net_device *netdev = adapter->netdev;
1413 struct pci_dev *pdev = adapter->pdev;
1414 int err = 0;
1415
1416 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417 err = igb_request_msix(adapter);
1418 if (!err)
1419 goto request_done;
1420 /* fall back to MSI */
1421 igb_free_all_tx_resources(adapter);
1422 igb_free_all_rx_resources(adapter);
1423
1424 igb_clear_interrupt_scheme(adapter);
1425 err = igb_init_interrupt_scheme(adapter, false);
1426 if (err)
1427 goto request_done;
1428
1429 igb_setup_all_tx_resources(adapter);
1430 igb_setup_all_rx_resources(adapter);
1431 igb_configure(adapter);
1432 }
1433
1434 igb_assign_vector(adapter->q_vector[0], 0);
1435
1436 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1437 err = request_irq(pdev->irq, igb_intr_msi, 0,
1438 netdev->name, adapter);
1439 if (!err)
1440 goto request_done;
1441
1442 /* fall back to legacy interrupts */
1443 igb_reset_interrupt_capability(adapter);
1444 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1445 }
1446
1447 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1448 netdev->name, adapter);
1449
1450 if (err)
1451 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1452 err);
1453
1454 request_done:
1455 return err;
1456 }
1457
1458 static void igb_free_irq(struct igb_adapter *adapter)
1459 {
1460 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1461 int vector = 0, i;
1462
1463 free_irq(adapter->msix_entries[vector++].vector, adapter);
1464
1465 for (i = 0; i < adapter->num_q_vectors; i++)
1466 free_irq(adapter->msix_entries[vector++].vector,
1467 adapter->q_vector[i]);
1468 } else {
1469 free_irq(adapter->pdev->irq, adapter);
1470 }
1471 }
1472
1473 /**
1474 * igb_irq_disable - Mask off interrupt generation on the NIC
1475 * @adapter: board private structure
1476 **/
1477 static void igb_irq_disable(struct igb_adapter *adapter)
1478 {
1479 struct e1000_hw *hw = &adapter->hw;
1480
1481 /* we need to be careful when disabling interrupts. The VFs are also
1482 * mapped into these registers and so clearing the bits can cause
1483 * issues on the VF drivers so we only need to clear what we set
1484 */
1485 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1486 u32 regval = rd32(E1000_EIAM);
1487 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 regval = rd32(E1000_EIAC);
1490 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 }
1492
1493 wr32(E1000_IAM, 0);
1494 wr32(E1000_IMC, ~0);
1495 wrfl();
1496 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 int i;
1498 for (i = 0; i < adapter->num_q_vectors; i++)
1499 synchronize_irq(adapter->msix_entries[i].vector);
1500 } else {
1501 synchronize_irq(adapter->pdev->irq);
1502 }
1503 }
1504
1505 /**
1506 * igb_irq_enable - Enable default interrupt generation settings
1507 * @adapter: board private structure
1508 **/
1509 static void igb_irq_enable(struct igb_adapter *adapter)
1510 {
1511 struct e1000_hw *hw = &adapter->hw;
1512
1513 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1514 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1515 u32 regval = rd32(E1000_EIAC);
1516 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1517 regval = rd32(E1000_EIAM);
1518 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1519 wr32(E1000_EIMS, adapter->eims_enable_mask);
1520 if (adapter->vfs_allocated_count) {
1521 wr32(E1000_MBVFIMR, 0xFF);
1522 ims |= E1000_IMS_VMMB;
1523 }
1524 wr32(E1000_IMS, ims);
1525 } else {
1526 wr32(E1000_IMS, IMS_ENABLE_MASK |
1527 E1000_IMS_DRSTA);
1528 wr32(E1000_IAM, IMS_ENABLE_MASK |
1529 E1000_IMS_DRSTA);
1530 }
1531 }
1532
1533 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1534 {
1535 struct e1000_hw *hw = &adapter->hw;
1536 u16 vid = adapter->hw.mng_cookie.vlan_id;
1537 u16 old_vid = adapter->mng_vlan_id;
1538
1539 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1540 /* add VID to filter table */
1541 igb_vfta_set(hw, vid, true);
1542 adapter->mng_vlan_id = vid;
1543 } else {
1544 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1545 }
1546
1547 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1548 (vid != old_vid) &&
1549 !test_bit(old_vid, adapter->active_vlans)) {
1550 /* remove VID from filter table */
1551 igb_vfta_set(hw, old_vid, false);
1552 }
1553 }
1554
1555 /**
1556 * igb_release_hw_control - release control of the h/w to f/w
1557 * @adapter: address of board private structure
1558 *
1559 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1560 * For ASF and Pass Through versions of f/w this means that the
1561 * driver is no longer loaded.
1562 **/
1563 static void igb_release_hw_control(struct igb_adapter *adapter)
1564 {
1565 struct e1000_hw *hw = &adapter->hw;
1566 u32 ctrl_ext;
1567
1568 /* Let firmware take over control of h/w */
1569 ctrl_ext = rd32(E1000_CTRL_EXT);
1570 wr32(E1000_CTRL_EXT,
1571 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1572 }
1573
1574 /**
1575 * igb_get_hw_control - get control of the h/w from f/w
1576 * @adapter: address of board private structure
1577 *
1578 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1579 * For ASF and Pass Through versions of f/w this means that
1580 * the driver is loaded.
1581 **/
1582 static void igb_get_hw_control(struct igb_adapter *adapter)
1583 {
1584 struct e1000_hw *hw = &adapter->hw;
1585 u32 ctrl_ext;
1586
1587 /* Let firmware know the driver has taken over */
1588 ctrl_ext = rd32(E1000_CTRL_EXT);
1589 wr32(E1000_CTRL_EXT,
1590 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1591 }
1592
1593 /**
1594 * igb_configure - configure the hardware for RX and TX
1595 * @adapter: private board structure
1596 **/
1597 static void igb_configure(struct igb_adapter *adapter)
1598 {
1599 struct net_device *netdev = adapter->netdev;
1600 int i;
1601
1602 igb_get_hw_control(adapter);
1603 igb_set_rx_mode(netdev);
1604
1605 igb_restore_vlan(adapter);
1606
1607 igb_setup_tctl(adapter);
1608 igb_setup_mrqc(adapter);
1609 igb_setup_rctl(adapter);
1610
1611 igb_configure_tx(adapter);
1612 igb_configure_rx(adapter);
1613
1614 igb_rx_fifo_flush_82575(&adapter->hw);
1615
1616 /* call igb_desc_unused which always leaves
1617 * at least 1 descriptor unused to make sure
1618 * next_to_use != next_to_clean
1619 */
1620 for (i = 0; i < adapter->num_rx_queues; i++) {
1621 struct igb_ring *ring = adapter->rx_ring[i];
1622 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1623 }
1624 }
1625
1626 /**
1627 * igb_power_up_link - Power up the phy/serdes link
1628 * @adapter: address of board private structure
1629 **/
1630 void igb_power_up_link(struct igb_adapter *adapter)
1631 {
1632 igb_reset_phy(&adapter->hw);
1633
1634 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1635 igb_power_up_phy_copper(&adapter->hw);
1636 else
1637 igb_power_up_serdes_link_82575(&adapter->hw);
1638 }
1639
1640 /**
1641 * igb_power_down_link - Power down the phy/serdes link
1642 * @adapter: address of board private structure
1643 */
1644 static void igb_power_down_link(struct igb_adapter *adapter)
1645 {
1646 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1647 igb_power_down_phy_copper_82575(&adapter->hw);
1648 else
1649 igb_shutdown_serdes_link_82575(&adapter->hw);
1650 }
1651
1652 /**
1653 * Detect and switch function for Media Auto Sense
1654 * @adapter: address of the board private structure
1655 **/
1656 static void igb_check_swap_media(struct igb_adapter *adapter)
1657 {
1658 struct e1000_hw *hw = &adapter->hw;
1659 u32 ctrl_ext, connsw;
1660 bool swap_now = false;
1661
1662 ctrl_ext = rd32(E1000_CTRL_EXT);
1663 connsw = rd32(E1000_CONNSW);
1664
1665 /* need to live swap if current media is copper and we have fiber/serdes
1666 * to go to.
1667 */
1668
1669 if ((hw->phy.media_type == e1000_media_type_copper) &&
1670 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1671 swap_now = true;
1672 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1673 /* copper signal takes time to appear */
1674 if (adapter->copper_tries < 4) {
1675 adapter->copper_tries++;
1676 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1677 wr32(E1000_CONNSW, connsw);
1678 return;
1679 } else {
1680 adapter->copper_tries = 0;
1681 if ((connsw & E1000_CONNSW_PHYSD) &&
1682 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1683 swap_now = true;
1684 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1685 wr32(E1000_CONNSW, connsw);
1686 }
1687 }
1688 }
1689
1690 if (!swap_now)
1691 return;
1692
1693 switch (hw->phy.media_type) {
1694 case e1000_media_type_copper:
1695 netdev_info(adapter->netdev,
1696 "MAS: changing media to fiber/serdes\n");
1697 ctrl_ext |=
1698 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1699 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1700 adapter->copper_tries = 0;
1701 break;
1702 case e1000_media_type_internal_serdes:
1703 case e1000_media_type_fiber:
1704 netdev_info(adapter->netdev,
1705 "MAS: changing media to copper\n");
1706 ctrl_ext &=
1707 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1708 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1709 break;
1710 default:
1711 /* shouldn't get here during regular operation */
1712 netdev_err(adapter->netdev,
1713 "AMS: Invalid media type found, returning\n");
1714 break;
1715 }
1716 wr32(E1000_CTRL_EXT, ctrl_ext);
1717 }
1718
1719 /**
1720 * igb_up - Open the interface and prepare it to handle traffic
1721 * @adapter: board private structure
1722 **/
1723 int igb_up(struct igb_adapter *adapter)
1724 {
1725 struct e1000_hw *hw = &adapter->hw;
1726 int i;
1727
1728 /* hardware has been reset, we need to reload some things */
1729 igb_configure(adapter);
1730
1731 clear_bit(__IGB_DOWN, &adapter->state);
1732
1733 for (i = 0; i < adapter->num_q_vectors; i++)
1734 napi_enable(&(adapter->q_vector[i]->napi));
1735
1736 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1737 igb_configure_msix(adapter);
1738 else
1739 igb_assign_vector(adapter->q_vector[0], 0);
1740
1741 /* Clear any pending interrupts. */
1742 rd32(E1000_ICR);
1743 igb_irq_enable(adapter);
1744
1745 /* notify VFs that reset has been completed */
1746 if (adapter->vfs_allocated_count) {
1747 u32 reg_data = rd32(E1000_CTRL_EXT);
1748 reg_data |= E1000_CTRL_EXT_PFRSTD;
1749 wr32(E1000_CTRL_EXT, reg_data);
1750 }
1751
1752 netif_tx_start_all_queues(adapter->netdev);
1753
1754 /* start the watchdog. */
1755 hw->mac.get_link_status = 1;
1756 schedule_work(&adapter->watchdog_task);
1757
1758 if ((adapter->flags & IGB_FLAG_EEE) &&
1759 (!hw->dev_spec._82575.eee_disable))
1760 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1761
1762 return 0;
1763 }
1764
1765 void igb_down(struct igb_adapter *adapter)
1766 {
1767 struct net_device *netdev = adapter->netdev;
1768 struct e1000_hw *hw = &adapter->hw;
1769 u32 tctl, rctl;
1770 int i;
1771
1772 /* signal that we're down so the interrupt handler does not
1773 * reschedule our watchdog timer
1774 */
1775 set_bit(__IGB_DOWN, &adapter->state);
1776
1777 /* disable receives in the hardware */
1778 rctl = rd32(E1000_RCTL);
1779 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1780 /* flush and sleep below */
1781
1782 netif_tx_stop_all_queues(netdev);
1783
1784 /* disable transmits in the hardware */
1785 tctl = rd32(E1000_TCTL);
1786 tctl &= ~E1000_TCTL_EN;
1787 wr32(E1000_TCTL, tctl);
1788 /* flush both disables and wait for them to finish */
1789 wrfl();
1790 msleep(10);
1791
1792 igb_irq_disable(adapter);
1793
1794 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1795
1796 for (i = 0; i < adapter->num_q_vectors; i++) {
1797 napi_synchronize(&(adapter->q_vector[i]->napi));
1798 napi_disable(&(adapter->q_vector[i]->napi));
1799 }
1800
1801
1802 del_timer_sync(&adapter->watchdog_timer);
1803 del_timer_sync(&adapter->phy_info_timer);
1804
1805 netif_carrier_off(netdev);
1806
1807 /* record the stats before reset*/
1808 spin_lock(&adapter->stats64_lock);
1809 igb_update_stats(adapter, &adapter->stats64);
1810 spin_unlock(&adapter->stats64_lock);
1811
1812 adapter->link_speed = 0;
1813 adapter->link_duplex = 0;
1814
1815 if (!pci_channel_offline(adapter->pdev))
1816 igb_reset(adapter);
1817 igb_clean_all_tx_rings(adapter);
1818 igb_clean_all_rx_rings(adapter);
1819 #ifdef CONFIG_IGB_DCA
1820
1821 /* since we reset the hardware DCA settings were cleared */
1822 igb_setup_dca(adapter);
1823 #endif
1824 }
1825
1826 void igb_reinit_locked(struct igb_adapter *adapter)
1827 {
1828 WARN_ON(in_interrupt());
1829 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1830 msleep(1);
1831 igb_down(adapter);
1832 igb_up(adapter);
1833 clear_bit(__IGB_RESETTING, &adapter->state);
1834 }
1835
1836 /** igb_enable_mas - Media Autosense re-enable after swap
1837 *
1838 * @adapter: adapter struct
1839 **/
1840 static s32 igb_enable_mas(struct igb_adapter *adapter)
1841 {
1842 struct e1000_hw *hw = &adapter->hw;
1843 u32 connsw;
1844 s32 ret_val = 0;
1845
1846 connsw = rd32(E1000_CONNSW);
1847 if (!(hw->phy.media_type == e1000_media_type_copper))
1848 return ret_val;
1849
1850 /* configure for SerDes media detect */
1851 if (!(connsw & E1000_CONNSW_SERDESD)) {
1852 connsw |= E1000_CONNSW_ENRGSRC;
1853 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1854 wr32(E1000_CONNSW, connsw);
1855 wrfl();
1856 } else if (connsw & E1000_CONNSW_SERDESD) {
1857 /* already SerDes, no need to enable anything */
1858 return ret_val;
1859 } else {
1860 netdev_info(adapter->netdev,
1861 "MAS: Unable to configure feature, disabling..\n");
1862 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1863 }
1864 return ret_val;
1865 }
1866
1867 void igb_reset(struct igb_adapter *adapter)
1868 {
1869 struct pci_dev *pdev = adapter->pdev;
1870 struct e1000_hw *hw = &adapter->hw;
1871 struct e1000_mac_info *mac = &hw->mac;
1872 struct e1000_fc_info *fc = &hw->fc;
1873 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1874
1875 /* Repartition Pba for greater than 9k mtu
1876 * To take effect CTRL.RST is required.
1877 */
1878 switch (mac->type) {
1879 case e1000_i350:
1880 case e1000_i354:
1881 case e1000_82580:
1882 pba = rd32(E1000_RXPBS);
1883 pba = igb_rxpbs_adjust_82580(pba);
1884 break;
1885 case e1000_82576:
1886 pba = rd32(E1000_RXPBS);
1887 pba &= E1000_RXPBS_SIZE_MASK_82576;
1888 break;
1889 case e1000_82575:
1890 case e1000_i210:
1891 case e1000_i211:
1892 default:
1893 pba = E1000_PBA_34K;
1894 break;
1895 }
1896
1897 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1898 (mac->type < e1000_82576)) {
1899 /* adjust PBA for jumbo frames */
1900 wr32(E1000_PBA, pba);
1901
1902 /* To maintain wire speed transmits, the Tx FIFO should be
1903 * large enough to accommodate two full transmit packets,
1904 * rounded up to the next 1KB and expressed in KB. Likewise,
1905 * the Rx FIFO should be large enough to accommodate at least
1906 * one full receive packet and is similarly rounded up and
1907 * expressed in KB.
1908 */
1909 pba = rd32(E1000_PBA);
1910 /* upper 16 bits has Tx packet buffer allocation size in KB */
1911 tx_space = pba >> 16;
1912 /* lower 16 bits has Rx packet buffer allocation size in KB */
1913 pba &= 0xffff;
1914 /* the Tx fifo also stores 16 bytes of information about the Tx
1915 * but don't include ethernet FCS because hardware appends it
1916 */
1917 min_tx_space = (adapter->max_frame_size +
1918 sizeof(union e1000_adv_tx_desc) -
1919 ETH_FCS_LEN) * 2;
1920 min_tx_space = ALIGN(min_tx_space, 1024);
1921 min_tx_space >>= 10;
1922 /* software strips receive CRC, so leave room for it */
1923 min_rx_space = adapter->max_frame_size;
1924 min_rx_space = ALIGN(min_rx_space, 1024);
1925 min_rx_space >>= 10;
1926
1927 /* If current Tx allocation is less than the min Tx FIFO size,
1928 * and the min Tx FIFO size is less than the current Rx FIFO
1929 * allocation, take space away from current Rx allocation
1930 */
1931 if (tx_space < min_tx_space &&
1932 ((min_tx_space - tx_space) < pba)) {
1933 pba = pba - (min_tx_space - tx_space);
1934
1935 /* if short on Rx space, Rx wins and must trump Tx
1936 * adjustment
1937 */
1938 if (pba < min_rx_space)
1939 pba = min_rx_space;
1940 }
1941 wr32(E1000_PBA, pba);
1942 }
1943
1944 /* flow control settings */
1945 /* The high water mark must be low enough to fit one full frame
1946 * (or the size used for early receive) above it in the Rx FIFO.
1947 * Set it to the lower of:
1948 * - 90% of the Rx FIFO size, or
1949 * - the full Rx FIFO size minus one full frame
1950 */
1951 hwm = min(((pba << 10) * 9 / 10),
1952 ((pba << 10) - 2 * adapter->max_frame_size));
1953
1954 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1955 fc->low_water = fc->high_water - 16;
1956 fc->pause_time = 0xFFFF;
1957 fc->send_xon = 1;
1958 fc->current_mode = fc->requested_mode;
1959
1960 /* disable receive for all VFs and wait one second */
1961 if (adapter->vfs_allocated_count) {
1962 int i;
1963 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1964 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1965
1966 /* ping all the active vfs to let them know we are going down */
1967 igb_ping_all_vfs(adapter);
1968
1969 /* disable transmits and receives */
1970 wr32(E1000_VFRE, 0);
1971 wr32(E1000_VFTE, 0);
1972 }
1973
1974 /* Allow time for pending master requests to run */
1975 hw->mac.ops.reset_hw(hw);
1976 wr32(E1000_WUC, 0);
1977
1978 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1979 /* need to resetup here after media swap */
1980 adapter->ei.get_invariants(hw);
1981 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1982 }
1983 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1984 if (igb_enable_mas(adapter))
1985 dev_err(&pdev->dev,
1986 "Error enabling Media Auto Sense\n");
1987 }
1988 if (hw->mac.ops.init_hw(hw))
1989 dev_err(&pdev->dev, "Hardware Error\n");
1990
1991 /* Flow control settings reset on hardware reset, so guarantee flow
1992 * control is off when forcing speed.
1993 */
1994 if (!hw->mac.autoneg)
1995 igb_force_mac_fc(hw);
1996
1997 igb_init_dmac(adapter, pba);
1998 #ifdef CONFIG_IGB_HWMON
1999 /* Re-initialize the thermal sensor on i350 devices. */
2000 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2001 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2002 /* If present, re-initialize the external thermal sensor
2003 * interface.
2004 */
2005 if (adapter->ets)
2006 mac->ops.init_thermal_sensor_thresh(hw);
2007 }
2008 }
2009 #endif
2010 /* Re-establish EEE setting */
2011 if (hw->phy.media_type == e1000_media_type_copper) {
2012 switch (mac->type) {
2013 case e1000_i350:
2014 case e1000_i210:
2015 case e1000_i211:
2016 igb_set_eee_i350(hw);
2017 break;
2018 case e1000_i354:
2019 igb_set_eee_i354(hw);
2020 break;
2021 default:
2022 break;
2023 }
2024 }
2025 if (!netif_running(adapter->netdev))
2026 igb_power_down_link(adapter);
2027
2028 igb_update_mng_vlan(adapter);
2029
2030 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2031 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2032
2033 /* Re-enable PTP, where applicable. */
2034 igb_ptp_reset(adapter);
2035
2036 igb_get_phy_info(hw);
2037 }
2038
2039 static netdev_features_t igb_fix_features(struct net_device *netdev,
2040 netdev_features_t features)
2041 {
2042 /* Since there is no support for separate Rx/Tx vlan accel
2043 * enable/disable make sure Tx flag is always in same state as Rx.
2044 */
2045 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2046 features |= NETIF_F_HW_VLAN_CTAG_TX;
2047 else
2048 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2049
2050 return features;
2051 }
2052
2053 static int igb_set_features(struct net_device *netdev,
2054 netdev_features_t features)
2055 {
2056 netdev_features_t changed = netdev->features ^ features;
2057 struct igb_adapter *adapter = netdev_priv(netdev);
2058
2059 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2060 igb_vlan_mode(netdev, features);
2061
2062 if (!(changed & NETIF_F_RXALL))
2063 return 0;
2064
2065 netdev->features = features;
2066
2067 if (netif_running(netdev))
2068 igb_reinit_locked(adapter);
2069 else
2070 igb_reset(adapter);
2071
2072 return 0;
2073 }
2074
2075 static const struct net_device_ops igb_netdev_ops = {
2076 .ndo_open = igb_open,
2077 .ndo_stop = igb_close,
2078 .ndo_start_xmit = igb_xmit_frame,
2079 .ndo_get_stats64 = igb_get_stats64,
2080 .ndo_set_rx_mode = igb_set_rx_mode,
2081 .ndo_set_mac_address = igb_set_mac,
2082 .ndo_change_mtu = igb_change_mtu,
2083 .ndo_do_ioctl = igb_ioctl,
2084 .ndo_tx_timeout = igb_tx_timeout,
2085 .ndo_validate_addr = eth_validate_addr,
2086 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2087 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2088 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2089 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2090 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
2091 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2092 .ndo_get_vf_config = igb_ndo_get_vf_config,
2093 #ifdef CONFIG_NET_POLL_CONTROLLER
2094 .ndo_poll_controller = igb_netpoll,
2095 #endif
2096 .ndo_fix_features = igb_fix_features,
2097 .ndo_set_features = igb_set_features,
2098 };
2099
2100 /**
2101 * igb_set_fw_version - Configure version string for ethtool
2102 * @adapter: adapter struct
2103 **/
2104 void igb_set_fw_version(struct igb_adapter *adapter)
2105 {
2106 struct e1000_hw *hw = &adapter->hw;
2107 struct e1000_fw_version fw;
2108
2109 igb_get_fw_version(hw, &fw);
2110
2111 switch (hw->mac.type) {
2112 case e1000_i210:
2113 case e1000_i211:
2114 if (!(igb_get_flash_presence_i210(hw))) {
2115 snprintf(adapter->fw_version,
2116 sizeof(adapter->fw_version),
2117 "%2d.%2d-%d",
2118 fw.invm_major, fw.invm_minor,
2119 fw.invm_img_type);
2120 break;
2121 }
2122 /* fall through */
2123 default:
2124 /* if option is rom valid, display its version too */
2125 if (fw.or_valid) {
2126 snprintf(adapter->fw_version,
2127 sizeof(adapter->fw_version),
2128 "%d.%d, 0x%08x, %d.%d.%d",
2129 fw.eep_major, fw.eep_minor, fw.etrack_id,
2130 fw.or_major, fw.or_build, fw.or_patch);
2131 /* no option rom */
2132 } else if (fw.etrack_id != 0X0000) {
2133 snprintf(adapter->fw_version,
2134 sizeof(adapter->fw_version),
2135 "%d.%d, 0x%08x",
2136 fw.eep_major, fw.eep_minor, fw.etrack_id);
2137 } else {
2138 snprintf(adapter->fw_version,
2139 sizeof(adapter->fw_version),
2140 "%d.%d.%d",
2141 fw.eep_major, fw.eep_minor, fw.eep_build);
2142 }
2143 break;
2144 }
2145 return;
2146 }
2147
2148 /**
2149 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2150 *
2151 * @adapter: adapter struct
2152 **/
2153 static void igb_init_mas(struct igb_adapter *adapter)
2154 {
2155 struct e1000_hw *hw = &adapter->hw;
2156 u16 eeprom_data;
2157
2158 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2159 switch (hw->bus.func) {
2160 case E1000_FUNC_0:
2161 if (eeprom_data & IGB_MAS_ENABLE_0) {
2162 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2163 netdev_info(adapter->netdev,
2164 "MAS: Enabling Media Autosense for port %d\n",
2165 hw->bus.func);
2166 }
2167 break;
2168 case E1000_FUNC_1:
2169 if (eeprom_data & IGB_MAS_ENABLE_1) {
2170 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2171 netdev_info(adapter->netdev,
2172 "MAS: Enabling Media Autosense for port %d\n",
2173 hw->bus.func);
2174 }
2175 break;
2176 case E1000_FUNC_2:
2177 if (eeprom_data & IGB_MAS_ENABLE_2) {
2178 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2179 netdev_info(adapter->netdev,
2180 "MAS: Enabling Media Autosense for port %d\n",
2181 hw->bus.func);
2182 }
2183 break;
2184 case E1000_FUNC_3:
2185 if (eeprom_data & IGB_MAS_ENABLE_3) {
2186 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2187 netdev_info(adapter->netdev,
2188 "MAS: Enabling Media Autosense for port %d\n",
2189 hw->bus.func);
2190 }
2191 break;
2192 default:
2193 /* Shouldn't get here */
2194 netdev_err(adapter->netdev,
2195 "MAS: Invalid port configuration, returning\n");
2196 break;
2197 }
2198 }
2199
2200 /**
2201 * igb_init_i2c - Init I2C interface
2202 * @adapter: pointer to adapter structure
2203 **/
2204 static s32 igb_init_i2c(struct igb_adapter *adapter)
2205 {
2206 s32 status = E1000_SUCCESS;
2207
2208 /* I2C interface supported on i350 devices */
2209 if (adapter->hw.mac.type != e1000_i350)
2210 return E1000_SUCCESS;
2211
2212 /* Initialize the i2c bus which is controlled by the registers.
2213 * This bus will use the i2c_algo_bit structue that implements
2214 * the protocol through toggling of the 4 bits in the register.
2215 */
2216 adapter->i2c_adap.owner = THIS_MODULE;
2217 adapter->i2c_algo = igb_i2c_algo;
2218 adapter->i2c_algo.data = adapter;
2219 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2220 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2221 strlcpy(adapter->i2c_adap.name, "igb BB",
2222 sizeof(adapter->i2c_adap.name));
2223 status = i2c_bit_add_bus(&adapter->i2c_adap);
2224 return status;
2225 }
2226
2227 /**
2228 * igb_probe - Device Initialization Routine
2229 * @pdev: PCI device information struct
2230 * @ent: entry in igb_pci_tbl
2231 *
2232 * Returns 0 on success, negative on failure
2233 *
2234 * igb_probe initializes an adapter identified by a pci_dev structure.
2235 * The OS initialization, configuring of the adapter private structure,
2236 * and a hardware reset occur.
2237 **/
2238 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2239 {
2240 struct net_device *netdev;
2241 struct igb_adapter *adapter;
2242 struct e1000_hw *hw;
2243 u16 eeprom_data = 0;
2244 s32 ret_val;
2245 static int global_quad_port_a; /* global quad port a indication */
2246 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2247 int err, pci_using_dac;
2248 u8 part_str[E1000_PBANUM_LENGTH];
2249
2250 /* Catch broken hardware that put the wrong VF device ID in
2251 * the PCIe SR-IOV capability.
2252 */
2253 if (pdev->is_virtfn) {
2254 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2255 pci_name(pdev), pdev->vendor, pdev->device);
2256 return -EINVAL;
2257 }
2258
2259 err = pci_enable_device_mem(pdev);
2260 if (err)
2261 return err;
2262
2263 pci_using_dac = 0;
2264 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2265 if (!err) {
2266 pci_using_dac = 1;
2267 } else {
2268 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2269 if (err) {
2270 dev_err(&pdev->dev,
2271 "No usable DMA configuration, aborting\n");
2272 goto err_dma;
2273 }
2274 }
2275
2276 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2277 IORESOURCE_MEM),
2278 igb_driver_name);
2279 if (err)
2280 goto err_pci_reg;
2281
2282 pci_enable_pcie_error_reporting(pdev);
2283
2284 pci_set_master(pdev);
2285 pci_save_state(pdev);
2286
2287 err = -ENOMEM;
2288 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2289 IGB_MAX_TX_QUEUES);
2290 if (!netdev)
2291 goto err_alloc_etherdev;
2292
2293 SET_NETDEV_DEV(netdev, &pdev->dev);
2294
2295 pci_set_drvdata(pdev, netdev);
2296 adapter = netdev_priv(netdev);
2297 adapter->netdev = netdev;
2298 adapter->pdev = pdev;
2299 hw = &adapter->hw;
2300 hw->back = adapter;
2301 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2302
2303 err = -EIO;
2304 hw->hw_addr = pci_iomap(pdev, 0, 0);
2305 if (!hw->hw_addr)
2306 goto err_ioremap;
2307
2308 netdev->netdev_ops = &igb_netdev_ops;
2309 igb_set_ethtool_ops(netdev);
2310 netdev->watchdog_timeo = 5 * HZ;
2311
2312 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2313
2314 netdev->mem_start = pci_resource_start(pdev, 0);
2315 netdev->mem_end = pci_resource_end(pdev, 0);
2316
2317 /* PCI config space info */
2318 hw->vendor_id = pdev->vendor;
2319 hw->device_id = pdev->device;
2320 hw->revision_id = pdev->revision;
2321 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2322 hw->subsystem_device_id = pdev->subsystem_device;
2323
2324 /* Copy the default MAC, PHY and NVM function pointers */
2325 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2326 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2327 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2328 /* Initialize skew-specific constants */
2329 err = ei->get_invariants(hw);
2330 if (err)
2331 goto err_sw_init;
2332
2333 /* setup the private structure */
2334 err = igb_sw_init(adapter);
2335 if (err)
2336 goto err_sw_init;
2337
2338 igb_get_bus_info_pcie(hw);
2339
2340 hw->phy.autoneg_wait_to_complete = false;
2341
2342 /* Copper options */
2343 if (hw->phy.media_type == e1000_media_type_copper) {
2344 hw->phy.mdix = AUTO_ALL_MODES;
2345 hw->phy.disable_polarity_correction = false;
2346 hw->phy.ms_type = e1000_ms_hw_default;
2347 }
2348
2349 if (igb_check_reset_block(hw))
2350 dev_info(&pdev->dev,
2351 "PHY reset is blocked due to SOL/IDER session.\n");
2352
2353 /* features is initialized to 0 in allocation, it might have bits
2354 * set by igb_sw_init so we should use an or instead of an
2355 * assignment.
2356 */
2357 netdev->features |= NETIF_F_SG |
2358 NETIF_F_IP_CSUM |
2359 NETIF_F_IPV6_CSUM |
2360 NETIF_F_TSO |
2361 NETIF_F_TSO6 |
2362 NETIF_F_RXHASH |
2363 NETIF_F_RXCSUM |
2364 NETIF_F_HW_VLAN_CTAG_RX |
2365 NETIF_F_HW_VLAN_CTAG_TX;
2366
2367 /* copy netdev features into list of user selectable features */
2368 netdev->hw_features |= netdev->features;
2369 netdev->hw_features |= NETIF_F_RXALL;
2370
2371 /* set this bit last since it cannot be part of hw_features */
2372 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2373
2374 netdev->vlan_features |= NETIF_F_TSO |
2375 NETIF_F_TSO6 |
2376 NETIF_F_IP_CSUM |
2377 NETIF_F_IPV6_CSUM |
2378 NETIF_F_SG;
2379
2380 netdev->priv_flags |= IFF_SUPP_NOFCS;
2381
2382 if (pci_using_dac) {
2383 netdev->features |= NETIF_F_HIGHDMA;
2384 netdev->vlan_features |= NETIF_F_HIGHDMA;
2385 }
2386
2387 if (hw->mac.type >= e1000_82576) {
2388 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2389 netdev->features |= NETIF_F_SCTP_CSUM;
2390 }
2391
2392 netdev->priv_flags |= IFF_UNICAST_FLT;
2393
2394 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2395
2396 /* before reading the NVM, reset the controller to put the device in a
2397 * known good starting state
2398 */
2399 hw->mac.ops.reset_hw(hw);
2400
2401 /* make sure the NVM is good , i211/i210 parts can have special NVM
2402 * that doesn't contain a checksum
2403 */
2404 switch (hw->mac.type) {
2405 case e1000_i210:
2406 case e1000_i211:
2407 if (igb_get_flash_presence_i210(hw)) {
2408 if (hw->nvm.ops.validate(hw) < 0) {
2409 dev_err(&pdev->dev,
2410 "The NVM Checksum Is Not Valid\n");
2411 err = -EIO;
2412 goto err_eeprom;
2413 }
2414 }
2415 break;
2416 default:
2417 if (hw->nvm.ops.validate(hw) < 0) {
2418 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2419 err = -EIO;
2420 goto err_eeprom;
2421 }
2422 break;
2423 }
2424
2425 /* copy the MAC address out of the NVM */
2426 if (hw->mac.ops.read_mac_addr(hw))
2427 dev_err(&pdev->dev, "NVM Read Error\n");
2428
2429 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2430
2431 if (!is_valid_ether_addr(netdev->dev_addr)) {
2432 dev_err(&pdev->dev, "Invalid MAC Address\n");
2433 err = -EIO;
2434 goto err_eeprom;
2435 }
2436
2437 /* get firmware version for ethtool -i */
2438 igb_set_fw_version(adapter);
2439
2440 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2441 (unsigned long) adapter);
2442 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2443 (unsigned long) adapter);
2444
2445 INIT_WORK(&adapter->reset_task, igb_reset_task);
2446 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2447
2448 /* Initialize link properties that are user-changeable */
2449 adapter->fc_autoneg = true;
2450 hw->mac.autoneg = true;
2451 hw->phy.autoneg_advertised = 0x2f;
2452
2453 hw->fc.requested_mode = e1000_fc_default;
2454 hw->fc.current_mode = e1000_fc_default;
2455
2456 igb_validate_mdi_setting(hw);
2457
2458 /* By default, support wake on port A */
2459 if (hw->bus.func == 0)
2460 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2461
2462 /* Check the NVM for wake support on non-port A ports */
2463 if (hw->mac.type >= e1000_82580)
2464 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2465 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2466 &eeprom_data);
2467 else if (hw->bus.func == 1)
2468 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2469
2470 if (eeprom_data & IGB_EEPROM_APME)
2471 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2472
2473 /* now that we have the eeprom settings, apply the special cases where
2474 * the eeprom may be wrong or the board simply won't support wake on
2475 * lan on a particular port
2476 */
2477 switch (pdev->device) {
2478 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2479 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2480 break;
2481 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2482 case E1000_DEV_ID_82576_FIBER:
2483 case E1000_DEV_ID_82576_SERDES:
2484 /* Wake events only supported on port A for dual fiber
2485 * regardless of eeprom setting
2486 */
2487 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2488 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2489 break;
2490 case E1000_DEV_ID_82576_QUAD_COPPER:
2491 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2492 /* if quad port adapter, disable WoL on all but port A */
2493 if (global_quad_port_a != 0)
2494 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2495 else
2496 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2497 /* Reset for multiple quad port adapters */
2498 if (++global_quad_port_a == 4)
2499 global_quad_port_a = 0;
2500 break;
2501 default:
2502 /* If the device can't wake, don't set software support */
2503 if (!device_can_wakeup(&adapter->pdev->dev))
2504 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2505 }
2506
2507 /* initialize the wol settings based on the eeprom settings */
2508 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2509 adapter->wol |= E1000_WUFC_MAG;
2510
2511 /* Some vendors want WoL disabled by default, but still supported */
2512 if ((hw->mac.type == e1000_i350) &&
2513 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2514 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2515 adapter->wol = 0;
2516 }
2517
2518 device_set_wakeup_enable(&adapter->pdev->dev,
2519 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2520
2521 /* reset the hardware with the new settings */
2522 igb_reset(adapter);
2523
2524 /* Init the I2C interface */
2525 err = igb_init_i2c(adapter);
2526 if (err) {
2527 dev_err(&pdev->dev, "failed to init i2c interface\n");
2528 goto err_eeprom;
2529 }
2530
2531 /* let the f/w know that the h/w is now under the control of the
2532 * driver. */
2533 igb_get_hw_control(adapter);
2534
2535 strcpy(netdev->name, "eth%d");
2536 err = register_netdev(netdev);
2537 if (err)
2538 goto err_register;
2539
2540 /* carrier off reporting is important to ethtool even BEFORE open */
2541 netif_carrier_off(netdev);
2542
2543 #ifdef CONFIG_IGB_DCA
2544 if (dca_add_requester(&pdev->dev) == 0) {
2545 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2546 dev_info(&pdev->dev, "DCA enabled\n");
2547 igb_setup_dca(adapter);
2548 }
2549
2550 #endif
2551 #ifdef CONFIG_IGB_HWMON
2552 /* Initialize the thermal sensor on i350 devices. */
2553 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2554 u16 ets_word;
2555
2556 /* Read the NVM to determine if this i350 device supports an
2557 * external thermal sensor.
2558 */
2559 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2560 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2561 adapter->ets = true;
2562 else
2563 adapter->ets = false;
2564 if (igb_sysfs_init(adapter))
2565 dev_err(&pdev->dev,
2566 "failed to allocate sysfs resources\n");
2567 } else {
2568 adapter->ets = false;
2569 }
2570 #endif
2571 /* Check if Media Autosense is enabled */
2572 adapter->ei = *ei;
2573 if (hw->dev_spec._82575.mas_capable)
2574 igb_init_mas(adapter);
2575
2576 /* do hw tstamp init after resetting */
2577 igb_ptp_init(adapter);
2578
2579 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2580 /* print bus type/speed/width info, not applicable to i354 */
2581 if (hw->mac.type != e1000_i354) {
2582 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2583 netdev->name,
2584 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2585 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2586 "unknown"),
2587 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2588 "Width x4" :
2589 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2590 "Width x2" :
2591 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2592 "Width x1" : "unknown"), netdev->dev_addr);
2593 }
2594
2595 if ((hw->mac.type >= e1000_i210 ||
2596 igb_get_flash_presence_i210(hw))) {
2597 ret_val = igb_read_part_string(hw, part_str,
2598 E1000_PBANUM_LENGTH);
2599 } else {
2600 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2601 }
2602
2603 if (ret_val)
2604 strcpy(part_str, "Unknown");
2605 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2606 dev_info(&pdev->dev,
2607 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2608 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2609 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2610 adapter->num_rx_queues, adapter->num_tx_queues);
2611 if (hw->phy.media_type == e1000_media_type_copper) {
2612 switch (hw->mac.type) {
2613 case e1000_i350:
2614 case e1000_i210:
2615 case e1000_i211:
2616 /* Enable EEE for internal copper PHY devices */
2617 err = igb_set_eee_i350(hw);
2618 if ((!err) &&
2619 (!hw->dev_spec._82575.eee_disable)) {
2620 adapter->eee_advert =
2621 MDIO_EEE_100TX | MDIO_EEE_1000T;
2622 adapter->flags |= IGB_FLAG_EEE;
2623 }
2624 break;
2625 case e1000_i354:
2626 if ((rd32(E1000_CTRL_EXT) &
2627 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2628 err = igb_set_eee_i354(hw);
2629 if ((!err) &&
2630 (!hw->dev_spec._82575.eee_disable)) {
2631 adapter->eee_advert =
2632 MDIO_EEE_100TX | MDIO_EEE_1000T;
2633 adapter->flags |= IGB_FLAG_EEE;
2634 }
2635 }
2636 break;
2637 default:
2638 break;
2639 }
2640 }
2641 pm_runtime_put_noidle(&pdev->dev);
2642 return 0;
2643
2644 err_register:
2645 igb_release_hw_control(adapter);
2646 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2647 err_eeprom:
2648 if (!igb_check_reset_block(hw))
2649 igb_reset_phy(hw);
2650
2651 if (hw->flash_address)
2652 iounmap(hw->flash_address);
2653 err_sw_init:
2654 igb_clear_interrupt_scheme(adapter);
2655 iounmap(hw->hw_addr);
2656 err_ioremap:
2657 free_netdev(netdev);
2658 err_alloc_etherdev:
2659 pci_release_selected_regions(pdev,
2660 pci_select_bars(pdev, IORESOURCE_MEM));
2661 err_pci_reg:
2662 err_dma:
2663 pci_disable_device(pdev);
2664 return err;
2665 }
2666
2667 #ifdef CONFIG_PCI_IOV
2668 static int igb_disable_sriov(struct pci_dev *pdev)
2669 {
2670 struct net_device *netdev = pci_get_drvdata(pdev);
2671 struct igb_adapter *adapter = netdev_priv(netdev);
2672 struct e1000_hw *hw = &adapter->hw;
2673
2674 /* reclaim resources allocated to VFs */
2675 if (adapter->vf_data) {
2676 /* disable iov and allow time for transactions to clear */
2677 if (pci_vfs_assigned(pdev)) {
2678 dev_warn(&pdev->dev,
2679 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2680 return -EPERM;
2681 } else {
2682 pci_disable_sriov(pdev);
2683 msleep(500);
2684 }
2685
2686 kfree(adapter->vf_data);
2687 adapter->vf_data = NULL;
2688 adapter->vfs_allocated_count = 0;
2689 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2690 wrfl();
2691 msleep(100);
2692 dev_info(&pdev->dev, "IOV Disabled\n");
2693
2694 /* Re-enable DMA Coalescing flag since IOV is turned off */
2695 adapter->flags |= IGB_FLAG_DMAC;
2696 }
2697
2698 return 0;
2699 }
2700
2701 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2702 {
2703 struct net_device *netdev = pci_get_drvdata(pdev);
2704 struct igb_adapter *adapter = netdev_priv(netdev);
2705 int old_vfs = pci_num_vf(pdev);
2706 int err = 0;
2707 int i;
2708
2709 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2710 err = -EPERM;
2711 goto out;
2712 }
2713 if (!num_vfs)
2714 goto out;
2715
2716 if (old_vfs) {
2717 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2718 old_vfs, max_vfs);
2719 adapter->vfs_allocated_count = old_vfs;
2720 } else
2721 adapter->vfs_allocated_count = num_vfs;
2722
2723 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2724 sizeof(struct vf_data_storage), GFP_KERNEL);
2725
2726 /* if allocation failed then we do not support SR-IOV */
2727 if (!adapter->vf_data) {
2728 adapter->vfs_allocated_count = 0;
2729 dev_err(&pdev->dev,
2730 "Unable to allocate memory for VF Data Storage\n");
2731 err = -ENOMEM;
2732 goto out;
2733 }
2734
2735 /* only call pci_enable_sriov() if no VFs are allocated already */
2736 if (!old_vfs) {
2737 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2738 if (err)
2739 goto err_out;
2740 }
2741 dev_info(&pdev->dev, "%d VFs allocated\n",
2742 adapter->vfs_allocated_count);
2743 for (i = 0; i < adapter->vfs_allocated_count; i++)
2744 igb_vf_configure(adapter, i);
2745
2746 /* DMA Coalescing is not supported in IOV mode. */
2747 adapter->flags &= ~IGB_FLAG_DMAC;
2748 goto out;
2749
2750 err_out:
2751 kfree(adapter->vf_data);
2752 adapter->vf_data = NULL;
2753 adapter->vfs_allocated_count = 0;
2754 out:
2755 return err;
2756 }
2757
2758 #endif
2759 /**
2760 * igb_remove_i2c - Cleanup I2C interface
2761 * @adapter: pointer to adapter structure
2762 **/
2763 static void igb_remove_i2c(struct igb_adapter *adapter)
2764 {
2765 /* free the adapter bus structure */
2766 i2c_del_adapter(&adapter->i2c_adap);
2767 }
2768
2769 /**
2770 * igb_remove - Device Removal Routine
2771 * @pdev: PCI device information struct
2772 *
2773 * igb_remove is called by the PCI subsystem to alert the driver
2774 * that it should release a PCI device. The could be caused by a
2775 * Hot-Plug event, or because the driver is going to be removed from
2776 * memory.
2777 **/
2778 static void igb_remove(struct pci_dev *pdev)
2779 {
2780 struct net_device *netdev = pci_get_drvdata(pdev);
2781 struct igb_adapter *adapter = netdev_priv(netdev);
2782 struct e1000_hw *hw = &adapter->hw;
2783
2784 pm_runtime_get_noresume(&pdev->dev);
2785 #ifdef CONFIG_IGB_HWMON
2786 igb_sysfs_exit(adapter);
2787 #endif
2788 igb_remove_i2c(adapter);
2789 igb_ptp_stop(adapter);
2790 /* The watchdog timer may be rescheduled, so explicitly
2791 * disable watchdog from being rescheduled.
2792 */
2793 set_bit(__IGB_DOWN, &adapter->state);
2794 del_timer_sync(&adapter->watchdog_timer);
2795 del_timer_sync(&adapter->phy_info_timer);
2796
2797 cancel_work_sync(&adapter->reset_task);
2798 cancel_work_sync(&adapter->watchdog_task);
2799
2800 #ifdef CONFIG_IGB_DCA
2801 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2802 dev_info(&pdev->dev, "DCA disabled\n");
2803 dca_remove_requester(&pdev->dev);
2804 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2805 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2806 }
2807 #endif
2808
2809 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2810 * would have already happened in close and is redundant.
2811 */
2812 igb_release_hw_control(adapter);
2813
2814 unregister_netdev(netdev);
2815
2816 igb_clear_interrupt_scheme(adapter);
2817
2818 #ifdef CONFIG_PCI_IOV
2819 igb_disable_sriov(pdev);
2820 #endif
2821
2822 iounmap(hw->hw_addr);
2823 if (hw->flash_address)
2824 iounmap(hw->flash_address);
2825 pci_release_selected_regions(pdev,
2826 pci_select_bars(pdev, IORESOURCE_MEM));
2827
2828 kfree(adapter->shadow_vfta);
2829 free_netdev(netdev);
2830
2831 pci_disable_pcie_error_reporting(pdev);
2832
2833 pci_disable_device(pdev);
2834 }
2835
2836 /**
2837 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2838 * @adapter: board private structure to initialize
2839 *
2840 * This function initializes the vf specific data storage and then attempts to
2841 * allocate the VFs. The reason for ordering it this way is because it is much
2842 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2843 * the memory for the VFs.
2844 **/
2845 static void igb_probe_vfs(struct igb_adapter *adapter)
2846 {
2847 #ifdef CONFIG_PCI_IOV
2848 struct pci_dev *pdev = adapter->pdev;
2849 struct e1000_hw *hw = &adapter->hw;
2850
2851 /* Virtualization features not supported on i210 family. */
2852 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2853 return;
2854
2855 pci_sriov_set_totalvfs(pdev, 7);
2856 igb_pci_enable_sriov(pdev, max_vfs);
2857
2858 #endif /* CONFIG_PCI_IOV */
2859 }
2860
2861 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2862 {
2863 struct e1000_hw *hw = &adapter->hw;
2864 u32 max_rss_queues;
2865
2866 /* Determine the maximum number of RSS queues supported. */
2867 switch (hw->mac.type) {
2868 case e1000_i211:
2869 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2870 break;
2871 case e1000_82575:
2872 case e1000_i210:
2873 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2874 break;
2875 case e1000_i350:
2876 /* I350 cannot do RSS and SR-IOV at the same time */
2877 if (!!adapter->vfs_allocated_count) {
2878 max_rss_queues = 1;
2879 break;
2880 }
2881 /* fall through */
2882 case e1000_82576:
2883 if (!!adapter->vfs_allocated_count) {
2884 max_rss_queues = 2;
2885 break;
2886 }
2887 /* fall through */
2888 case e1000_82580:
2889 case e1000_i354:
2890 default:
2891 max_rss_queues = IGB_MAX_RX_QUEUES;
2892 break;
2893 }
2894
2895 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2896
2897 /* Determine if we need to pair queues. */
2898 switch (hw->mac.type) {
2899 case e1000_82575:
2900 case e1000_i211:
2901 /* Device supports enough interrupts without queue pairing. */
2902 break;
2903 case e1000_82576:
2904 /* If VFs are going to be allocated with RSS queues then we
2905 * should pair the queues in order to conserve interrupts due
2906 * to limited supply.
2907 */
2908 if ((adapter->rss_queues > 1) &&
2909 (adapter->vfs_allocated_count > 6))
2910 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2911 /* fall through */
2912 case e1000_82580:
2913 case e1000_i350:
2914 case e1000_i354:
2915 case e1000_i210:
2916 default:
2917 /* If rss_queues > half of max_rss_queues, pair the queues in
2918 * order to conserve interrupts due to limited supply.
2919 */
2920 if (adapter->rss_queues > (max_rss_queues / 2))
2921 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2922 break;
2923 }
2924 }
2925
2926 /**
2927 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2928 * @adapter: board private structure to initialize
2929 *
2930 * igb_sw_init initializes the Adapter private data structure.
2931 * Fields are initialized based on PCI device information and
2932 * OS network device settings (MTU size).
2933 **/
2934 static int igb_sw_init(struct igb_adapter *adapter)
2935 {
2936 struct e1000_hw *hw = &adapter->hw;
2937 struct net_device *netdev = adapter->netdev;
2938 struct pci_dev *pdev = adapter->pdev;
2939
2940 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2941
2942 /* set default ring sizes */
2943 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2944 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2945
2946 /* set default ITR values */
2947 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2948 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2949
2950 /* set default work limits */
2951 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2952
2953 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2954 VLAN_HLEN;
2955 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2956
2957 spin_lock_init(&adapter->stats64_lock);
2958 #ifdef CONFIG_PCI_IOV
2959 switch (hw->mac.type) {
2960 case e1000_82576:
2961 case e1000_i350:
2962 if (max_vfs > 7) {
2963 dev_warn(&pdev->dev,
2964 "Maximum of 7 VFs per PF, using max\n");
2965 max_vfs = adapter->vfs_allocated_count = 7;
2966 } else
2967 adapter->vfs_allocated_count = max_vfs;
2968 if (adapter->vfs_allocated_count)
2969 dev_warn(&pdev->dev,
2970 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2971 break;
2972 default:
2973 break;
2974 }
2975 #endif /* CONFIG_PCI_IOV */
2976
2977 igb_init_queue_configuration(adapter);
2978
2979 /* Setup and initialize a copy of the hw vlan table array */
2980 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2981 GFP_ATOMIC);
2982
2983 /* This call may decrease the number of queues */
2984 if (igb_init_interrupt_scheme(adapter, true)) {
2985 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2986 return -ENOMEM;
2987 }
2988
2989 igb_probe_vfs(adapter);
2990
2991 /* Explicitly disable IRQ since the NIC can be in any state. */
2992 igb_irq_disable(adapter);
2993
2994 if (hw->mac.type >= e1000_i350)
2995 adapter->flags &= ~IGB_FLAG_DMAC;
2996
2997 set_bit(__IGB_DOWN, &adapter->state);
2998 return 0;
2999 }
3000
3001 /**
3002 * igb_open - Called when a network interface is made active
3003 * @netdev: network interface device structure
3004 *
3005 * Returns 0 on success, negative value on failure
3006 *
3007 * The open entry point is called when a network interface is made
3008 * active by the system (IFF_UP). At this point all resources needed
3009 * for transmit and receive operations are allocated, the interrupt
3010 * handler is registered with the OS, the watchdog timer is started,
3011 * and the stack is notified that the interface is ready.
3012 **/
3013 static int __igb_open(struct net_device *netdev, bool resuming)
3014 {
3015 struct igb_adapter *adapter = netdev_priv(netdev);
3016 struct e1000_hw *hw = &adapter->hw;
3017 struct pci_dev *pdev = adapter->pdev;
3018 int err;
3019 int i;
3020
3021 /* disallow open during test */
3022 if (test_bit(__IGB_TESTING, &adapter->state)) {
3023 WARN_ON(resuming);
3024 return -EBUSY;
3025 }
3026
3027 if (!resuming)
3028 pm_runtime_get_sync(&pdev->dev);
3029
3030 netif_carrier_off(netdev);
3031
3032 /* allocate transmit descriptors */
3033 err = igb_setup_all_tx_resources(adapter);
3034 if (err)
3035 goto err_setup_tx;
3036
3037 /* allocate receive descriptors */
3038 err = igb_setup_all_rx_resources(adapter);
3039 if (err)
3040 goto err_setup_rx;
3041
3042 igb_power_up_link(adapter);
3043
3044 /* before we allocate an interrupt, we must be ready to handle it.
3045 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3046 * as soon as we call pci_request_irq, so we have to setup our
3047 * clean_rx handler before we do so.
3048 */
3049 igb_configure(adapter);
3050
3051 err = igb_request_irq(adapter);
3052 if (err)
3053 goto err_req_irq;
3054
3055 /* Notify the stack of the actual queue counts. */
3056 err = netif_set_real_num_tx_queues(adapter->netdev,
3057 adapter->num_tx_queues);
3058 if (err)
3059 goto err_set_queues;
3060
3061 err = netif_set_real_num_rx_queues(adapter->netdev,
3062 adapter->num_rx_queues);
3063 if (err)
3064 goto err_set_queues;
3065
3066 /* From here on the code is the same as igb_up() */
3067 clear_bit(__IGB_DOWN, &adapter->state);
3068
3069 for (i = 0; i < adapter->num_q_vectors; i++)
3070 napi_enable(&(adapter->q_vector[i]->napi));
3071
3072 /* Clear any pending interrupts. */
3073 rd32(E1000_ICR);
3074
3075 igb_irq_enable(adapter);
3076
3077 /* notify VFs that reset has been completed */
3078 if (adapter->vfs_allocated_count) {
3079 u32 reg_data = rd32(E1000_CTRL_EXT);
3080 reg_data |= E1000_CTRL_EXT_PFRSTD;
3081 wr32(E1000_CTRL_EXT, reg_data);
3082 }
3083
3084 netif_tx_start_all_queues(netdev);
3085
3086 if (!resuming)
3087 pm_runtime_put(&pdev->dev);
3088
3089 /* start the watchdog. */
3090 hw->mac.get_link_status = 1;
3091 schedule_work(&adapter->watchdog_task);
3092
3093 return 0;
3094
3095 err_set_queues:
3096 igb_free_irq(adapter);
3097 err_req_irq:
3098 igb_release_hw_control(adapter);
3099 igb_power_down_link(adapter);
3100 igb_free_all_rx_resources(adapter);
3101 err_setup_rx:
3102 igb_free_all_tx_resources(adapter);
3103 err_setup_tx:
3104 igb_reset(adapter);
3105 if (!resuming)
3106 pm_runtime_put(&pdev->dev);
3107
3108 return err;
3109 }
3110
3111 static int igb_open(struct net_device *netdev)
3112 {
3113 return __igb_open(netdev, false);
3114 }
3115
3116 /**
3117 * igb_close - Disables a network interface
3118 * @netdev: network interface device structure
3119 *
3120 * Returns 0, this is not allowed to fail
3121 *
3122 * The close entry point is called when an interface is de-activated
3123 * by the OS. The hardware is still under the driver's control, but
3124 * needs to be disabled. A global MAC reset is issued to stop the
3125 * hardware, and all transmit and receive resources are freed.
3126 **/
3127 static int __igb_close(struct net_device *netdev, bool suspending)
3128 {
3129 struct igb_adapter *adapter = netdev_priv(netdev);
3130 struct pci_dev *pdev = adapter->pdev;
3131
3132 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3133
3134 if (!suspending)
3135 pm_runtime_get_sync(&pdev->dev);
3136
3137 igb_down(adapter);
3138 igb_free_irq(adapter);
3139
3140 igb_free_all_tx_resources(adapter);
3141 igb_free_all_rx_resources(adapter);
3142
3143 if (!suspending)
3144 pm_runtime_put_sync(&pdev->dev);
3145 return 0;
3146 }
3147
3148 static int igb_close(struct net_device *netdev)
3149 {
3150 return __igb_close(netdev, false);
3151 }
3152
3153 /**
3154 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3155 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3156 *
3157 * Return 0 on success, negative on failure
3158 **/
3159 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3160 {
3161 struct device *dev = tx_ring->dev;
3162 int size;
3163
3164 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3165
3166 tx_ring->tx_buffer_info = vzalloc(size);
3167 if (!tx_ring->tx_buffer_info)
3168 goto err;
3169
3170 /* round up to nearest 4K */
3171 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3172 tx_ring->size = ALIGN(tx_ring->size, 4096);
3173
3174 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3175 &tx_ring->dma, GFP_KERNEL);
3176 if (!tx_ring->desc)
3177 goto err;
3178
3179 tx_ring->next_to_use = 0;
3180 tx_ring->next_to_clean = 0;
3181
3182 return 0;
3183
3184 err:
3185 vfree(tx_ring->tx_buffer_info);
3186 tx_ring->tx_buffer_info = NULL;
3187 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3188 return -ENOMEM;
3189 }
3190
3191 /**
3192 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3193 * (Descriptors) for all queues
3194 * @adapter: board private structure
3195 *
3196 * Return 0 on success, negative on failure
3197 **/
3198 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3199 {
3200 struct pci_dev *pdev = adapter->pdev;
3201 int i, err = 0;
3202
3203 for (i = 0; i < adapter->num_tx_queues; i++) {
3204 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3205 if (err) {
3206 dev_err(&pdev->dev,
3207 "Allocation for Tx Queue %u failed\n", i);
3208 for (i--; i >= 0; i--)
3209 igb_free_tx_resources(adapter->tx_ring[i]);
3210 break;
3211 }
3212 }
3213
3214 return err;
3215 }
3216
3217 /**
3218 * igb_setup_tctl - configure the transmit control registers
3219 * @adapter: Board private structure
3220 **/
3221 void igb_setup_tctl(struct igb_adapter *adapter)
3222 {
3223 struct e1000_hw *hw = &adapter->hw;
3224 u32 tctl;
3225
3226 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3227 wr32(E1000_TXDCTL(0), 0);
3228
3229 /* Program the Transmit Control Register */
3230 tctl = rd32(E1000_TCTL);
3231 tctl &= ~E1000_TCTL_CT;
3232 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3233 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3234
3235 igb_config_collision_dist(hw);
3236
3237 /* Enable transmits */
3238 tctl |= E1000_TCTL_EN;
3239
3240 wr32(E1000_TCTL, tctl);
3241 }
3242
3243 /**
3244 * igb_configure_tx_ring - Configure transmit ring after Reset
3245 * @adapter: board private structure
3246 * @ring: tx ring to configure
3247 *
3248 * Configure a transmit ring after a reset.
3249 **/
3250 void igb_configure_tx_ring(struct igb_adapter *adapter,
3251 struct igb_ring *ring)
3252 {
3253 struct e1000_hw *hw = &adapter->hw;
3254 u32 txdctl = 0;
3255 u64 tdba = ring->dma;
3256 int reg_idx = ring->reg_idx;
3257
3258 /* disable the queue */
3259 wr32(E1000_TXDCTL(reg_idx), 0);
3260 wrfl();
3261 mdelay(10);
3262
3263 wr32(E1000_TDLEN(reg_idx),
3264 ring->count * sizeof(union e1000_adv_tx_desc));
3265 wr32(E1000_TDBAL(reg_idx),
3266 tdba & 0x00000000ffffffffULL);
3267 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3268
3269 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3270 wr32(E1000_TDH(reg_idx), 0);
3271 writel(0, ring->tail);
3272
3273 txdctl |= IGB_TX_PTHRESH;
3274 txdctl |= IGB_TX_HTHRESH << 8;
3275 txdctl |= IGB_TX_WTHRESH << 16;
3276
3277 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3278 wr32(E1000_TXDCTL(reg_idx), txdctl);
3279 }
3280
3281 /**
3282 * igb_configure_tx - Configure transmit Unit after Reset
3283 * @adapter: board private structure
3284 *
3285 * Configure the Tx unit of the MAC after a reset.
3286 **/
3287 static void igb_configure_tx(struct igb_adapter *adapter)
3288 {
3289 int i;
3290
3291 for (i = 0; i < adapter->num_tx_queues; i++)
3292 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3293 }
3294
3295 /**
3296 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3297 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3298 *
3299 * Returns 0 on success, negative on failure
3300 **/
3301 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3302 {
3303 struct device *dev = rx_ring->dev;
3304 int size;
3305
3306 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3307
3308 rx_ring->rx_buffer_info = vzalloc(size);
3309 if (!rx_ring->rx_buffer_info)
3310 goto err;
3311
3312 /* Round up to nearest 4K */
3313 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3314 rx_ring->size = ALIGN(rx_ring->size, 4096);
3315
3316 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3317 &rx_ring->dma, GFP_KERNEL);
3318 if (!rx_ring->desc)
3319 goto err;
3320
3321 rx_ring->next_to_alloc = 0;
3322 rx_ring->next_to_clean = 0;
3323 rx_ring->next_to_use = 0;
3324
3325 return 0;
3326
3327 err:
3328 vfree(rx_ring->rx_buffer_info);
3329 rx_ring->rx_buffer_info = NULL;
3330 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3331 return -ENOMEM;
3332 }
3333
3334 /**
3335 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3336 * (Descriptors) for all queues
3337 * @adapter: board private structure
3338 *
3339 * Return 0 on success, negative on failure
3340 **/
3341 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3342 {
3343 struct pci_dev *pdev = adapter->pdev;
3344 int i, err = 0;
3345
3346 for (i = 0; i < adapter->num_rx_queues; i++) {
3347 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3348 if (err) {
3349 dev_err(&pdev->dev,
3350 "Allocation for Rx Queue %u failed\n", i);
3351 for (i--; i >= 0; i--)
3352 igb_free_rx_resources(adapter->rx_ring[i]);
3353 break;
3354 }
3355 }
3356
3357 return err;
3358 }
3359
3360 /**
3361 * igb_setup_mrqc - configure the multiple receive queue control registers
3362 * @adapter: Board private structure
3363 **/
3364 static void igb_setup_mrqc(struct igb_adapter *adapter)
3365 {
3366 struct e1000_hw *hw = &adapter->hw;
3367 u32 mrqc, rxcsum;
3368 u32 j, num_rx_queues;
3369 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3370 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3371 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3372 0xFA01ACBE };
3373
3374 /* Fill out hash function seeds */
3375 for (j = 0; j < 10; j++)
3376 wr32(E1000_RSSRK(j), rsskey[j]);
3377
3378 num_rx_queues = adapter->rss_queues;
3379
3380 switch (hw->mac.type) {
3381 case e1000_82576:
3382 /* 82576 supports 2 RSS queues for SR-IOV */
3383 if (adapter->vfs_allocated_count)
3384 num_rx_queues = 2;
3385 break;
3386 default:
3387 break;
3388 }
3389
3390 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3391 for (j = 0; j < IGB_RETA_SIZE; j++)
3392 adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3393 adapter->rss_indir_tbl_init = num_rx_queues;
3394 }
3395 igb_write_rss_indir_tbl(adapter);
3396
3397 /* Disable raw packet checksumming so that RSS hash is placed in
3398 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3399 * offloads as they are enabled by default
3400 */
3401 rxcsum = rd32(E1000_RXCSUM);
3402 rxcsum |= E1000_RXCSUM_PCSD;
3403
3404 if (adapter->hw.mac.type >= e1000_82576)
3405 /* Enable Receive Checksum Offload for SCTP */
3406 rxcsum |= E1000_RXCSUM_CRCOFL;
3407
3408 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3409 wr32(E1000_RXCSUM, rxcsum);
3410
3411 /* Generate RSS hash based on packet types, TCP/UDP
3412 * port numbers and/or IPv4/v6 src and dst addresses
3413 */
3414 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3415 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3416 E1000_MRQC_RSS_FIELD_IPV6 |
3417 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3418 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3419
3420 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3421 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3422 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3423 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3424
3425 /* If VMDq is enabled then we set the appropriate mode for that, else
3426 * we default to RSS so that an RSS hash is calculated per packet even
3427 * if we are only using one queue
3428 */
3429 if (adapter->vfs_allocated_count) {
3430 if (hw->mac.type > e1000_82575) {
3431 /* Set the default pool for the PF's first queue */
3432 u32 vtctl = rd32(E1000_VT_CTL);
3433 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3434 E1000_VT_CTL_DISABLE_DEF_POOL);
3435 vtctl |= adapter->vfs_allocated_count <<
3436 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3437 wr32(E1000_VT_CTL, vtctl);
3438 }
3439 if (adapter->rss_queues > 1)
3440 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3441 else
3442 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3443 } else {
3444 if (hw->mac.type != e1000_i211)
3445 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3446 }
3447 igb_vmm_control(adapter);
3448
3449 wr32(E1000_MRQC, mrqc);
3450 }
3451
3452 /**
3453 * igb_setup_rctl - configure the receive control registers
3454 * @adapter: Board private structure
3455 **/
3456 void igb_setup_rctl(struct igb_adapter *adapter)
3457 {
3458 struct e1000_hw *hw = &adapter->hw;
3459 u32 rctl;
3460
3461 rctl = rd32(E1000_RCTL);
3462
3463 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3464 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3465
3466 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3467 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3468
3469 /* enable stripping of CRC. It's unlikely this will break BMC
3470 * redirection as it did with e1000. Newer features require
3471 * that the HW strips the CRC.
3472 */
3473 rctl |= E1000_RCTL_SECRC;
3474
3475 /* disable store bad packets and clear size bits. */
3476 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3477
3478 /* enable LPE to prevent packets larger than max_frame_size */
3479 rctl |= E1000_RCTL_LPE;
3480
3481 /* disable queue 0 to prevent tail write w/o re-config */
3482 wr32(E1000_RXDCTL(0), 0);
3483
3484 /* Attention!!! For SR-IOV PF driver operations you must enable
3485 * queue drop for all VF and PF queues to prevent head of line blocking
3486 * if an un-trusted VF does not provide descriptors to hardware.
3487 */
3488 if (adapter->vfs_allocated_count) {
3489 /* set all queue drop enable bits */
3490 wr32(E1000_QDE, ALL_QUEUES);
3491 }
3492
3493 /* This is useful for sniffing bad packets. */
3494 if (adapter->netdev->features & NETIF_F_RXALL) {
3495 /* UPE and MPE will be handled by normal PROMISC logic
3496 * in e1000e_set_rx_mode
3497 */
3498 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3499 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3500 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3501
3502 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3503 E1000_RCTL_DPF | /* Allow filtered pause */
3504 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3505 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3506 * and that breaks VLANs.
3507 */
3508 }
3509
3510 wr32(E1000_RCTL, rctl);
3511 }
3512
3513 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3514 int vfn)
3515 {
3516 struct e1000_hw *hw = &adapter->hw;
3517 u32 vmolr;
3518
3519 /* if it isn't the PF check to see if VFs are enabled and
3520 * increase the size to support vlan tags
3521 */
3522 if (vfn < adapter->vfs_allocated_count &&
3523 adapter->vf_data[vfn].vlans_enabled)
3524 size += VLAN_TAG_SIZE;
3525
3526 vmolr = rd32(E1000_VMOLR(vfn));
3527 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3528 vmolr |= size | E1000_VMOLR_LPE;
3529 wr32(E1000_VMOLR(vfn), vmolr);
3530
3531 return 0;
3532 }
3533
3534 /**
3535 * igb_rlpml_set - set maximum receive packet size
3536 * @adapter: board private structure
3537 *
3538 * Configure maximum receivable packet size.
3539 **/
3540 static void igb_rlpml_set(struct igb_adapter *adapter)
3541 {
3542 u32 max_frame_size = adapter->max_frame_size;
3543 struct e1000_hw *hw = &adapter->hw;
3544 u16 pf_id = adapter->vfs_allocated_count;
3545
3546 if (pf_id) {
3547 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3548 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3549 * to our max jumbo frame size, in case we need to enable
3550 * jumbo frames on one of the rings later.
3551 * This will not pass over-length frames into the default
3552 * queue because it's gated by the VMOLR.RLPML.
3553 */
3554 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3555 }
3556
3557 wr32(E1000_RLPML, max_frame_size);
3558 }
3559
3560 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3561 int vfn, bool aupe)
3562 {
3563 struct e1000_hw *hw = &adapter->hw;
3564 u32 vmolr;
3565
3566 /* This register exists only on 82576 and newer so if we are older then
3567 * we should exit and do nothing
3568 */
3569 if (hw->mac.type < e1000_82576)
3570 return;
3571
3572 vmolr = rd32(E1000_VMOLR(vfn));
3573 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3574 if (hw->mac.type == e1000_i350) {
3575 u32 dvmolr;
3576
3577 dvmolr = rd32(E1000_DVMOLR(vfn));
3578 dvmolr |= E1000_DVMOLR_STRVLAN;
3579 wr32(E1000_DVMOLR(vfn), dvmolr);
3580 }
3581 if (aupe)
3582 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3583 else
3584 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3585
3586 /* clear all bits that might not be set */
3587 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3588
3589 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3590 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3591 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3592 * multicast packets
3593 */
3594 if (vfn <= adapter->vfs_allocated_count)
3595 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3596
3597 wr32(E1000_VMOLR(vfn), vmolr);
3598 }
3599
3600 /**
3601 * igb_configure_rx_ring - Configure a receive ring after Reset
3602 * @adapter: board private structure
3603 * @ring: receive ring to be configured
3604 *
3605 * Configure the Rx unit of the MAC after a reset.
3606 **/
3607 void igb_configure_rx_ring(struct igb_adapter *adapter,
3608 struct igb_ring *ring)
3609 {
3610 struct e1000_hw *hw = &adapter->hw;
3611 u64 rdba = ring->dma;
3612 int reg_idx = ring->reg_idx;
3613 u32 srrctl = 0, rxdctl = 0;
3614
3615 /* disable the queue */
3616 wr32(E1000_RXDCTL(reg_idx), 0);
3617
3618 /* Set DMA base address registers */
3619 wr32(E1000_RDBAL(reg_idx),
3620 rdba & 0x00000000ffffffffULL);
3621 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3622 wr32(E1000_RDLEN(reg_idx),
3623 ring->count * sizeof(union e1000_adv_rx_desc));
3624
3625 /* initialize head and tail */
3626 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3627 wr32(E1000_RDH(reg_idx), 0);
3628 writel(0, ring->tail);
3629
3630 /* set descriptor configuration */
3631 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3632 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3633 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3634 if (hw->mac.type >= e1000_82580)
3635 srrctl |= E1000_SRRCTL_TIMESTAMP;
3636 /* Only set Drop Enable if we are supporting multiple queues */
3637 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3638 srrctl |= E1000_SRRCTL_DROP_EN;
3639
3640 wr32(E1000_SRRCTL(reg_idx), srrctl);
3641
3642 /* set filtering for VMDQ pools */
3643 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3644
3645 rxdctl |= IGB_RX_PTHRESH;
3646 rxdctl |= IGB_RX_HTHRESH << 8;
3647 rxdctl |= IGB_RX_WTHRESH << 16;
3648
3649 /* enable receive descriptor fetching */
3650 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3651 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3652 }
3653
3654 /**
3655 * igb_configure_rx - Configure receive Unit after Reset
3656 * @adapter: board private structure
3657 *
3658 * Configure the Rx unit of the MAC after a reset.
3659 **/
3660 static void igb_configure_rx(struct igb_adapter *adapter)
3661 {
3662 int i;
3663
3664 /* set UTA to appropriate mode */
3665 igb_set_uta(adapter);
3666
3667 /* set the correct pool for the PF default MAC address in entry 0 */
3668 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3669 adapter->vfs_allocated_count);
3670
3671 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3672 * the Base and Length of the Rx Descriptor Ring
3673 */
3674 for (i = 0; i < adapter->num_rx_queues; i++)
3675 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3676 }
3677
3678 /**
3679 * igb_free_tx_resources - Free Tx Resources per Queue
3680 * @tx_ring: Tx descriptor ring for a specific queue
3681 *
3682 * Free all transmit software resources
3683 **/
3684 void igb_free_tx_resources(struct igb_ring *tx_ring)
3685 {
3686 igb_clean_tx_ring(tx_ring);
3687
3688 vfree(tx_ring->tx_buffer_info);
3689 tx_ring->tx_buffer_info = NULL;
3690
3691 /* if not set, then don't free */
3692 if (!tx_ring->desc)
3693 return;
3694
3695 dma_free_coherent(tx_ring->dev, tx_ring->size,
3696 tx_ring->desc, tx_ring->dma);
3697
3698 tx_ring->desc = NULL;
3699 }
3700
3701 /**
3702 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3703 * @adapter: board private structure
3704 *
3705 * Free all transmit software resources
3706 **/
3707 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3708 {
3709 int i;
3710
3711 for (i = 0; i < adapter->num_tx_queues; i++)
3712 igb_free_tx_resources(adapter->tx_ring[i]);
3713 }
3714
3715 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3716 struct igb_tx_buffer *tx_buffer)
3717 {
3718 if (tx_buffer->skb) {
3719 dev_kfree_skb_any(tx_buffer->skb);
3720 if (dma_unmap_len(tx_buffer, len))
3721 dma_unmap_single(ring->dev,
3722 dma_unmap_addr(tx_buffer, dma),
3723 dma_unmap_len(tx_buffer, len),
3724 DMA_TO_DEVICE);
3725 } else if (dma_unmap_len(tx_buffer, len)) {
3726 dma_unmap_page(ring->dev,
3727 dma_unmap_addr(tx_buffer, dma),
3728 dma_unmap_len(tx_buffer, len),
3729 DMA_TO_DEVICE);
3730 }
3731 tx_buffer->next_to_watch = NULL;
3732 tx_buffer->skb = NULL;
3733 dma_unmap_len_set(tx_buffer, len, 0);
3734 /* buffer_info must be completely set up in the transmit path */
3735 }
3736
3737 /**
3738 * igb_clean_tx_ring - Free Tx Buffers
3739 * @tx_ring: ring to be cleaned
3740 **/
3741 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3742 {
3743 struct igb_tx_buffer *buffer_info;
3744 unsigned long size;
3745 u16 i;
3746
3747 if (!tx_ring->tx_buffer_info)
3748 return;
3749 /* Free all the Tx ring sk_buffs */
3750
3751 for (i = 0; i < tx_ring->count; i++) {
3752 buffer_info = &tx_ring->tx_buffer_info[i];
3753 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3754 }
3755
3756 netdev_tx_reset_queue(txring_txq(tx_ring));
3757
3758 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3759 memset(tx_ring->tx_buffer_info, 0, size);
3760
3761 /* Zero out the descriptor ring */
3762 memset(tx_ring->desc, 0, tx_ring->size);
3763
3764 tx_ring->next_to_use = 0;
3765 tx_ring->next_to_clean = 0;
3766 }
3767
3768 /**
3769 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3770 * @adapter: board private structure
3771 **/
3772 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3773 {
3774 int i;
3775
3776 for (i = 0; i < adapter->num_tx_queues; i++)
3777 igb_clean_tx_ring(adapter->tx_ring[i]);
3778 }
3779
3780 /**
3781 * igb_free_rx_resources - Free Rx Resources
3782 * @rx_ring: ring to clean the resources from
3783 *
3784 * Free all receive software resources
3785 **/
3786 void igb_free_rx_resources(struct igb_ring *rx_ring)
3787 {
3788 igb_clean_rx_ring(rx_ring);
3789
3790 vfree(rx_ring->rx_buffer_info);
3791 rx_ring->rx_buffer_info = NULL;
3792
3793 /* if not set, then don't free */
3794 if (!rx_ring->desc)
3795 return;
3796
3797 dma_free_coherent(rx_ring->dev, rx_ring->size,
3798 rx_ring->desc, rx_ring->dma);
3799
3800 rx_ring->desc = NULL;
3801 }
3802
3803 /**
3804 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3805 * @adapter: board private structure
3806 *
3807 * Free all receive software resources
3808 **/
3809 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3810 {
3811 int i;
3812
3813 for (i = 0; i < adapter->num_rx_queues; i++)
3814 igb_free_rx_resources(adapter->rx_ring[i]);
3815 }
3816
3817 /**
3818 * igb_clean_rx_ring - Free Rx Buffers per Queue
3819 * @rx_ring: ring to free buffers from
3820 **/
3821 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3822 {
3823 unsigned long size;
3824 u16 i;
3825
3826 if (rx_ring->skb)
3827 dev_kfree_skb(rx_ring->skb);
3828 rx_ring->skb = NULL;
3829
3830 if (!rx_ring->rx_buffer_info)
3831 return;
3832
3833 /* Free all the Rx ring sk_buffs */
3834 for (i = 0; i < rx_ring->count; i++) {
3835 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3836
3837 if (!buffer_info->page)
3838 continue;
3839
3840 dma_unmap_page(rx_ring->dev,
3841 buffer_info->dma,
3842 PAGE_SIZE,
3843 DMA_FROM_DEVICE);
3844 __free_page(buffer_info->page);
3845
3846 buffer_info->page = NULL;
3847 }
3848
3849 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3850 memset(rx_ring->rx_buffer_info, 0, size);
3851
3852 /* Zero out the descriptor ring */
3853 memset(rx_ring->desc, 0, rx_ring->size);
3854
3855 rx_ring->next_to_alloc = 0;
3856 rx_ring->next_to_clean = 0;
3857 rx_ring->next_to_use = 0;
3858 }
3859
3860 /**
3861 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3862 * @adapter: board private structure
3863 **/
3864 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3865 {
3866 int i;
3867
3868 for (i = 0; i < adapter->num_rx_queues; i++)
3869 igb_clean_rx_ring(adapter->rx_ring[i]);
3870 }
3871
3872 /**
3873 * igb_set_mac - Change the Ethernet Address of the NIC
3874 * @netdev: network interface device structure
3875 * @p: pointer to an address structure
3876 *
3877 * Returns 0 on success, negative on failure
3878 **/
3879 static int igb_set_mac(struct net_device *netdev, void *p)
3880 {
3881 struct igb_adapter *adapter = netdev_priv(netdev);
3882 struct e1000_hw *hw = &adapter->hw;
3883 struct sockaddr *addr = p;
3884
3885 if (!is_valid_ether_addr(addr->sa_data))
3886 return -EADDRNOTAVAIL;
3887
3888 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3889 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3890
3891 /* set the correct pool for the new PF MAC address in entry 0 */
3892 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3893 adapter->vfs_allocated_count);
3894
3895 return 0;
3896 }
3897
3898 /**
3899 * igb_write_mc_addr_list - write multicast addresses to MTA
3900 * @netdev: network interface device structure
3901 *
3902 * Writes multicast address list to the MTA hash table.
3903 * Returns: -ENOMEM on failure
3904 * 0 on no addresses written
3905 * X on writing X addresses to MTA
3906 **/
3907 static int igb_write_mc_addr_list(struct net_device *netdev)
3908 {
3909 struct igb_adapter *adapter = netdev_priv(netdev);
3910 struct e1000_hw *hw = &adapter->hw;
3911 struct netdev_hw_addr *ha;
3912 u8 *mta_list;
3913 int i;
3914
3915 if (netdev_mc_empty(netdev)) {
3916 /* nothing to program, so clear mc list */
3917 igb_update_mc_addr_list(hw, NULL, 0);
3918 igb_restore_vf_multicasts(adapter);
3919 return 0;
3920 }
3921
3922 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3923 if (!mta_list)
3924 return -ENOMEM;
3925
3926 /* The shared function expects a packed array of only addresses. */
3927 i = 0;
3928 netdev_for_each_mc_addr(ha, netdev)
3929 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3930
3931 igb_update_mc_addr_list(hw, mta_list, i);
3932 kfree(mta_list);
3933
3934 return netdev_mc_count(netdev);
3935 }
3936
3937 /**
3938 * igb_write_uc_addr_list - write unicast addresses to RAR table
3939 * @netdev: network interface device structure
3940 *
3941 * Writes unicast address list to the RAR table.
3942 * Returns: -ENOMEM on failure/insufficient address space
3943 * 0 on no addresses written
3944 * X on writing X addresses to the RAR table
3945 **/
3946 static int igb_write_uc_addr_list(struct net_device *netdev)
3947 {
3948 struct igb_adapter *adapter = netdev_priv(netdev);
3949 struct e1000_hw *hw = &adapter->hw;
3950 unsigned int vfn = adapter->vfs_allocated_count;
3951 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3952 int count = 0;
3953
3954 /* return ENOMEM indicating insufficient memory for addresses */
3955 if (netdev_uc_count(netdev) > rar_entries)
3956 return -ENOMEM;
3957
3958 if (!netdev_uc_empty(netdev) && rar_entries) {
3959 struct netdev_hw_addr *ha;
3960
3961 netdev_for_each_uc_addr(ha, netdev) {
3962 if (!rar_entries)
3963 break;
3964 igb_rar_set_qsel(adapter, ha->addr,
3965 rar_entries--,
3966 vfn);
3967 count++;
3968 }
3969 }
3970 /* write the addresses in reverse order to avoid write combining */
3971 for (; rar_entries > 0 ; rar_entries--) {
3972 wr32(E1000_RAH(rar_entries), 0);
3973 wr32(E1000_RAL(rar_entries), 0);
3974 }
3975 wrfl();
3976
3977 return count;
3978 }
3979
3980 /**
3981 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3982 * @netdev: network interface device structure
3983 *
3984 * The set_rx_mode entry point is called whenever the unicast or multicast
3985 * address lists or the network interface flags are updated. This routine is
3986 * responsible for configuring the hardware for proper unicast, multicast,
3987 * promiscuous mode, and all-multi behavior.
3988 **/
3989 static void igb_set_rx_mode(struct net_device *netdev)
3990 {
3991 struct igb_adapter *adapter = netdev_priv(netdev);
3992 struct e1000_hw *hw = &adapter->hw;
3993 unsigned int vfn = adapter->vfs_allocated_count;
3994 u32 rctl, vmolr = 0;
3995 int count;
3996
3997 /* Check for Promiscuous and All Multicast modes */
3998 rctl = rd32(E1000_RCTL);
3999
4000 /* clear the effected bits */
4001 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4002
4003 if (netdev->flags & IFF_PROMISC) {
4004 /* retain VLAN HW filtering if in VT mode */
4005 if (adapter->vfs_allocated_count)
4006 rctl |= E1000_RCTL_VFE;
4007 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4008 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4009 } else {
4010 if (netdev->flags & IFF_ALLMULTI) {
4011 rctl |= E1000_RCTL_MPE;
4012 vmolr |= E1000_VMOLR_MPME;
4013 } else {
4014 /* Write addresses to the MTA, if the attempt fails
4015 * then we should just turn on promiscuous mode so
4016 * that we can at least receive multicast traffic
4017 */
4018 count = igb_write_mc_addr_list(netdev);
4019 if (count < 0) {
4020 rctl |= E1000_RCTL_MPE;
4021 vmolr |= E1000_VMOLR_MPME;
4022 } else if (count) {
4023 vmolr |= E1000_VMOLR_ROMPE;
4024 }
4025 }
4026 /* Write addresses to available RAR registers, if there is not
4027 * sufficient space to store all the addresses then enable
4028 * unicast promiscuous mode
4029 */
4030 count = igb_write_uc_addr_list(netdev);
4031 if (count < 0) {
4032 rctl |= E1000_RCTL_UPE;
4033 vmolr |= E1000_VMOLR_ROPE;
4034 }
4035 rctl |= E1000_RCTL_VFE;
4036 }
4037 wr32(E1000_RCTL, rctl);
4038
4039 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4040 * the VMOLR to enable the appropriate modes. Without this workaround
4041 * we will have issues with VLAN tag stripping not being done for frames
4042 * that are only arriving because we are the default pool
4043 */
4044 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4045 return;
4046
4047 vmolr |= rd32(E1000_VMOLR(vfn)) &
4048 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4049 wr32(E1000_VMOLR(vfn), vmolr);
4050 igb_restore_vf_multicasts(adapter);
4051 }
4052
4053 static void igb_check_wvbr(struct igb_adapter *adapter)
4054 {
4055 struct e1000_hw *hw = &adapter->hw;
4056 u32 wvbr = 0;
4057
4058 switch (hw->mac.type) {
4059 case e1000_82576:
4060 case e1000_i350:
4061 if (!(wvbr = rd32(E1000_WVBR)))
4062 return;
4063 break;
4064 default:
4065 break;
4066 }
4067
4068 adapter->wvbr |= wvbr;
4069 }
4070
4071 #define IGB_STAGGERED_QUEUE_OFFSET 8
4072
4073 static void igb_spoof_check(struct igb_adapter *adapter)
4074 {
4075 int j;
4076
4077 if (!adapter->wvbr)
4078 return;
4079
4080 for(j = 0; j < adapter->vfs_allocated_count; j++) {
4081 if (adapter->wvbr & (1 << j) ||
4082 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4083 dev_warn(&adapter->pdev->dev,
4084 "Spoof event(s) detected on VF %d\n", j);
4085 adapter->wvbr &=
4086 ~((1 << j) |
4087 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4088 }
4089 }
4090 }
4091
4092 /* Need to wait a few seconds after link up to get diagnostic information from
4093 * the phy
4094 */
4095 static void igb_update_phy_info(unsigned long data)
4096 {
4097 struct igb_adapter *adapter = (struct igb_adapter *) data;
4098 igb_get_phy_info(&adapter->hw);
4099 }
4100
4101 /**
4102 * igb_has_link - check shared code for link and determine up/down
4103 * @adapter: pointer to driver private info
4104 **/
4105 bool igb_has_link(struct igb_adapter *adapter)
4106 {
4107 struct e1000_hw *hw = &adapter->hw;
4108 bool link_active = false;
4109
4110 /* get_link_status is set on LSC (link status) interrupt or
4111 * rx sequence error interrupt. get_link_status will stay
4112 * false until the e1000_check_for_link establishes link
4113 * for copper adapters ONLY
4114 */
4115 switch (hw->phy.media_type) {
4116 case e1000_media_type_copper:
4117 if (!hw->mac.get_link_status)
4118 return true;
4119 case e1000_media_type_internal_serdes:
4120 hw->mac.ops.check_for_link(hw);
4121 link_active = !hw->mac.get_link_status;
4122 break;
4123 default:
4124 case e1000_media_type_unknown:
4125 break;
4126 }
4127
4128 if (((hw->mac.type == e1000_i210) ||
4129 (hw->mac.type == e1000_i211)) &&
4130 (hw->phy.id == I210_I_PHY_ID)) {
4131 if (!netif_carrier_ok(adapter->netdev)) {
4132 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4133 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4134 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4135 adapter->link_check_timeout = jiffies;
4136 }
4137 }
4138
4139 return link_active;
4140 }
4141
4142 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4143 {
4144 bool ret = false;
4145 u32 ctrl_ext, thstat;
4146
4147 /* check for thermal sensor event on i350 copper only */
4148 if (hw->mac.type == e1000_i350) {
4149 thstat = rd32(E1000_THSTAT);
4150 ctrl_ext = rd32(E1000_CTRL_EXT);
4151
4152 if ((hw->phy.media_type == e1000_media_type_copper) &&
4153 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4154 ret = !!(thstat & event);
4155 }
4156
4157 return ret;
4158 }
4159
4160 /**
4161 * igb_watchdog - Timer Call-back
4162 * @data: pointer to adapter cast into an unsigned long
4163 **/
4164 static void igb_watchdog(unsigned long data)
4165 {
4166 struct igb_adapter *adapter = (struct igb_adapter *)data;
4167 /* Do the rest outside of interrupt context */
4168 schedule_work(&adapter->watchdog_task);
4169 }
4170
4171 static void igb_watchdog_task(struct work_struct *work)
4172 {
4173 struct igb_adapter *adapter = container_of(work,
4174 struct igb_adapter,
4175 watchdog_task);
4176 struct e1000_hw *hw = &adapter->hw;
4177 struct e1000_phy_info *phy = &hw->phy;
4178 struct net_device *netdev = adapter->netdev;
4179 u32 link;
4180 int i;
4181 u32 connsw;
4182
4183 link = igb_has_link(adapter);
4184
4185 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4186 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4187 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4188 else
4189 link = false;
4190 }
4191
4192 /* Force link down if we have fiber to swap to */
4193 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4194 if (hw->phy.media_type == e1000_media_type_copper) {
4195 connsw = rd32(E1000_CONNSW);
4196 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4197 link = 0;
4198 }
4199 }
4200 if (link) {
4201 /* Perform a reset if the media type changed. */
4202 if (hw->dev_spec._82575.media_changed) {
4203 hw->dev_spec._82575.media_changed = false;
4204 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4205 igb_reset(adapter);
4206 }
4207 /* Cancel scheduled suspend requests. */
4208 pm_runtime_resume(netdev->dev.parent);
4209
4210 if (!netif_carrier_ok(netdev)) {
4211 u32 ctrl;
4212 hw->mac.ops.get_speed_and_duplex(hw,
4213 &adapter->link_speed,
4214 &adapter->link_duplex);
4215
4216 ctrl = rd32(E1000_CTRL);
4217 /* Links status message must follow this format */
4218 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
4219 "Duplex, Flow Control: %s\n",
4220 netdev->name,
4221 adapter->link_speed,
4222 adapter->link_duplex == FULL_DUPLEX ?
4223 "Full" : "Half",
4224 (ctrl & E1000_CTRL_TFCE) &&
4225 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4226 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4227 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4228
4229 /* disable EEE if enabled */
4230 if ((adapter->flags & IGB_FLAG_EEE) &&
4231 (adapter->link_duplex == HALF_DUPLEX)) {
4232 dev_info(&adapter->pdev->dev,
4233 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4234 adapter->hw.dev_spec._82575.eee_disable = true;
4235 adapter->flags &= ~IGB_FLAG_EEE;
4236 }
4237
4238 /* check if SmartSpeed worked */
4239 igb_check_downshift(hw);
4240 if (phy->speed_downgraded)
4241 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4242
4243 /* check for thermal sensor event */
4244 if (igb_thermal_sensor_event(hw,
4245 E1000_THSTAT_LINK_THROTTLE)) {
4246 netdev_info(netdev, "The network adapter link "
4247 "speed was downshifted because it "
4248 "overheated\n");
4249 }
4250
4251 /* adjust timeout factor according to speed/duplex */
4252 adapter->tx_timeout_factor = 1;
4253 switch (adapter->link_speed) {
4254 case SPEED_10:
4255 adapter->tx_timeout_factor = 14;
4256 break;
4257 case SPEED_100:
4258 /* maybe add some timeout factor ? */
4259 break;
4260 }
4261
4262 netif_carrier_on(netdev);
4263
4264 igb_ping_all_vfs(adapter);
4265 igb_check_vf_rate_limit(adapter);
4266
4267 /* link state has changed, schedule phy info update */
4268 if (!test_bit(__IGB_DOWN, &adapter->state))
4269 mod_timer(&adapter->phy_info_timer,
4270 round_jiffies(jiffies + 2 * HZ));
4271 }
4272 } else {
4273 if (netif_carrier_ok(netdev)) {
4274 adapter->link_speed = 0;
4275 adapter->link_duplex = 0;
4276
4277 /* check for thermal sensor event */
4278 if (igb_thermal_sensor_event(hw,
4279 E1000_THSTAT_PWR_DOWN)) {
4280 netdev_err(netdev, "The network adapter was "
4281 "stopped because it overheated\n");
4282 }
4283
4284 /* Links status message must follow this format */
4285 printk(KERN_INFO "igb: %s NIC Link is Down\n",
4286 netdev->name);
4287 netif_carrier_off(netdev);
4288
4289 igb_ping_all_vfs(adapter);
4290
4291 /* link state has changed, schedule phy info update */
4292 if (!test_bit(__IGB_DOWN, &adapter->state))
4293 mod_timer(&adapter->phy_info_timer,
4294 round_jiffies(jiffies + 2 * HZ));
4295
4296 /* link is down, time to check for alternate media */
4297 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4298 igb_check_swap_media(adapter);
4299 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4300 schedule_work(&adapter->reset_task);
4301 /* return immediately */
4302 return;
4303 }
4304 }
4305 pm_schedule_suspend(netdev->dev.parent,
4306 MSEC_PER_SEC * 5);
4307
4308 /* also check for alternate media here */
4309 } else if (!netif_carrier_ok(netdev) &&
4310 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4311 igb_check_swap_media(adapter);
4312 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4313 schedule_work(&adapter->reset_task);
4314 /* return immediately */
4315 return;
4316 }
4317 }
4318 }
4319
4320 spin_lock(&adapter->stats64_lock);
4321 igb_update_stats(adapter, &adapter->stats64);
4322 spin_unlock(&adapter->stats64_lock);
4323
4324 for (i = 0; i < adapter->num_tx_queues; i++) {
4325 struct igb_ring *tx_ring = adapter->tx_ring[i];
4326 if (!netif_carrier_ok(netdev)) {
4327 /* We've lost link, so the controller stops DMA,
4328 * but we've got queued Tx work that's never going
4329 * to get done, so reset controller to flush Tx.
4330 * (Do the reset outside of interrupt context).
4331 */
4332 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4333 adapter->tx_timeout_count++;
4334 schedule_work(&adapter->reset_task);
4335 /* return immediately since reset is imminent */
4336 return;
4337 }
4338 }
4339
4340 /* Force detection of hung controller every watchdog period */
4341 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4342 }
4343
4344 /* Cause software interrupt to ensure Rx ring is cleaned */
4345 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4346 u32 eics = 0;
4347 for (i = 0; i < adapter->num_q_vectors; i++)
4348 eics |= adapter->q_vector[i]->eims_value;
4349 wr32(E1000_EICS, eics);
4350 } else {
4351 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4352 }
4353
4354 igb_spoof_check(adapter);
4355 igb_ptp_rx_hang(adapter);
4356
4357 /* Reset the timer */
4358 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4359 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4360 mod_timer(&adapter->watchdog_timer,
4361 round_jiffies(jiffies + HZ));
4362 else
4363 mod_timer(&adapter->watchdog_timer,
4364 round_jiffies(jiffies + 2 * HZ));
4365 }
4366 }
4367
4368 enum latency_range {
4369 lowest_latency = 0,
4370 low_latency = 1,
4371 bulk_latency = 2,
4372 latency_invalid = 255
4373 };
4374
4375 /**
4376 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4377 * @q_vector: pointer to q_vector
4378 *
4379 * Stores a new ITR value based on strictly on packet size. This
4380 * algorithm is less sophisticated than that used in igb_update_itr,
4381 * due to the difficulty of synchronizing statistics across multiple
4382 * receive rings. The divisors and thresholds used by this function
4383 * were determined based on theoretical maximum wire speed and testing
4384 * data, in order to minimize response time while increasing bulk
4385 * throughput.
4386 * This functionality is controlled by ethtool's coalescing settings.
4387 * NOTE: This function is called only when operating in a multiqueue
4388 * receive environment.
4389 **/
4390 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4391 {
4392 int new_val = q_vector->itr_val;
4393 int avg_wire_size = 0;
4394 struct igb_adapter *adapter = q_vector->adapter;
4395 unsigned int packets;
4396
4397 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4398 * ints/sec - ITR timer value of 120 ticks.
4399 */
4400 if (adapter->link_speed != SPEED_1000) {
4401 new_val = IGB_4K_ITR;
4402 goto set_itr_val;
4403 }
4404
4405 packets = q_vector->rx.total_packets;
4406 if (packets)
4407 avg_wire_size = q_vector->rx.total_bytes / packets;
4408
4409 packets = q_vector->tx.total_packets;
4410 if (packets)
4411 avg_wire_size = max_t(u32, avg_wire_size,
4412 q_vector->tx.total_bytes / packets);
4413
4414 /* if avg_wire_size isn't set no work was done */
4415 if (!avg_wire_size)
4416 goto clear_counts;
4417
4418 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4419 avg_wire_size += 24;
4420
4421 /* Don't starve jumbo frames */
4422 avg_wire_size = min(avg_wire_size, 3000);
4423
4424 /* Give a little boost to mid-size frames */
4425 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4426 new_val = avg_wire_size / 3;
4427 else
4428 new_val = avg_wire_size / 2;
4429
4430 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4431 if (new_val < IGB_20K_ITR &&
4432 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4433 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4434 new_val = IGB_20K_ITR;
4435
4436 set_itr_val:
4437 if (new_val != q_vector->itr_val) {
4438 q_vector->itr_val = new_val;
4439 q_vector->set_itr = 1;
4440 }
4441 clear_counts:
4442 q_vector->rx.total_bytes = 0;
4443 q_vector->rx.total_packets = 0;
4444 q_vector->tx.total_bytes = 0;
4445 q_vector->tx.total_packets = 0;
4446 }
4447
4448 /**
4449 * igb_update_itr - update the dynamic ITR value based on statistics
4450 * @q_vector: pointer to q_vector
4451 * @ring_container: ring info to update the itr for
4452 *
4453 * Stores a new ITR value based on packets and byte
4454 * counts during the last interrupt. The advantage of per interrupt
4455 * computation is faster updates and more accurate ITR for the current
4456 * traffic pattern. Constants in this function were computed
4457 * based on theoretical maximum wire speed and thresholds were set based
4458 * on testing data as well as attempting to minimize response time
4459 * while increasing bulk throughput.
4460 * This functionality is controlled by ethtool's coalescing settings.
4461 * NOTE: These calculations are only valid when operating in a single-
4462 * queue environment.
4463 **/
4464 static void igb_update_itr(struct igb_q_vector *q_vector,
4465 struct igb_ring_container *ring_container)
4466 {
4467 unsigned int packets = ring_container->total_packets;
4468 unsigned int bytes = ring_container->total_bytes;
4469 u8 itrval = ring_container->itr;
4470
4471 /* no packets, exit with status unchanged */
4472 if (packets == 0)
4473 return;
4474
4475 switch (itrval) {
4476 case lowest_latency:
4477 /* handle TSO and jumbo frames */
4478 if (bytes/packets > 8000)
4479 itrval = bulk_latency;
4480 else if ((packets < 5) && (bytes > 512))
4481 itrval = low_latency;
4482 break;
4483 case low_latency: /* 50 usec aka 20000 ints/s */
4484 if (bytes > 10000) {
4485 /* this if handles the TSO accounting */
4486 if (bytes/packets > 8000) {
4487 itrval = bulk_latency;
4488 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4489 itrval = bulk_latency;
4490 } else if ((packets > 35)) {
4491 itrval = lowest_latency;
4492 }
4493 } else if (bytes/packets > 2000) {
4494 itrval = bulk_latency;
4495 } else if (packets <= 2 && bytes < 512) {
4496 itrval = lowest_latency;
4497 }
4498 break;
4499 case bulk_latency: /* 250 usec aka 4000 ints/s */
4500 if (bytes > 25000) {
4501 if (packets > 35)
4502 itrval = low_latency;
4503 } else if (bytes < 1500) {
4504 itrval = low_latency;
4505 }
4506 break;
4507 }
4508
4509 /* clear work counters since we have the values we need */
4510 ring_container->total_bytes = 0;
4511 ring_container->total_packets = 0;
4512
4513 /* write updated itr to ring container */
4514 ring_container->itr = itrval;
4515 }
4516
4517 static void igb_set_itr(struct igb_q_vector *q_vector)
4518 {
4519 struct igb_adapter *adapter = q_vector->adapter;
4520 u32 new_itr = q_vector->itr_val;
4521 u8 current_itr = 0;
4522
4523 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4524 if (adapter->link_speed != SPEED_1000) {
4525 current_itr = 0;
4526 new_itr = IGB_4K_ITR;
4527 goto set_itr_now;
4528 }
4529
4530 igb_update_itr(q_vector, &q_vector->tx);
4531 igb_update_itr(q_vector, &q_vector->rx);
4532
4533 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4534
4535 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4536 if (current_itr == lowest_latency &&
4537 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4538 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4539 current_itr = low_latency;
4540
4541 switch (current_itr) {
4542 /* counts and packets in update_itr are dependent on these numbers */
4543 case lowest_latency:
4544 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4545 break;
4546 case low_latency:
4547 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4548 break;
4549 case bulk_latency:
4550 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4551 break;
4552 default:
4553 break;
4554 }
4555
4556 set_itr_now:
4557 if (new_itr != q_vector->itr_val) {
4558 /* this attempts to bias the interrupt rate towards Bulk
4559 * by adding intermediate steps when interrupt rate is
4560 * increasing
4561 */
4562 new_itr = new_itr > q_vector->itr_val ?
4563 max((new_itr * q_vector->itr_val) /
4564 (new_itr + (q_vector->itr_val >> 2)),
4565 new_itr) : new_itr;
4566 /* Don't write the value here; it resets the adapter's
4567 * internal timer, and causes us to delay far longer than
4568 * we should between interrupts. Instead, we write the ITR
4569 * value at the beginning of the next interrupt so the timing
4570 * ends up being correct.
4571 */
4572 q_vector->itr_val = new_itr;
4573 q_vector->set_itr = 1;
4574 }
4575 }
4576
4577 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4578 u32 type_tucmd, u32 mss_l4len_idx)
4579 {
4580 struct e1000_adv_tx_context_desc *context_desc;
4581 u16 i = tx_ring->next_to_use;
4582
4583 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4584
4585 i++;
4586 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4587
4588 /* set bits to identify this as an advanced context descriptor */
4589 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4590
4591 /* For 82575, context index must be unique per ring. */
4592 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4593 mss_l4len_idx |= tx_ring->reg_idx << 4;
4594
4595 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4596 context_desc->seqnum_seed = 0;
4597 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4598 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4599 }
4600
4601 static int igb_tso(struct igb_ring *tx_ring,
4602 struct igb_tx_buffer *first,
4603 u8 *hdr_len)
4604 {
4605 struct sk_buff *skb = first->skb;
4606 u32 vlan_macip_lens, type_tucmd;
4607 u32 mss_l4len_idx, l4len;
4608
4609 if (skb->ip_summed != CHECKSUM_PARTIAL)
4610 return 0;
4611
4612 if (!skb_is_gso(skb))
4613 return 0;
4614
4615 if (skb_header_cloned(skb)) {
4616 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4617 if (err)
4618 return err;
4619 }
4620
4621 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4622 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4623
4624 if (first->protocol == htons(ETH_P_IP)) {
4625 struct iphdr *iph = ip_hdr(skb);
4626 iph->tot_len = 0;
4627 iph->check = 0;
4628 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4629 iph->daddr, 0,
4630 IPPROTO_TCP,
4631 0);
4632 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4633 first->tx_flags |= IGB_TX_FLAGS_TSO |
4634 IGB_TX_FLAGS_CSUM |
4635 IGB_TX_FLAGS_IPV4;
4636 } else if (skb_is_gso_v6(skb)) {
4637 ipv6_hdr(skb)->payload_len = 0;
4638 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4639 &ipv6_hdr(skb)->daddr,
4640 0, IPPROTO_TCP, 0);
4641 first->tx_flags |= IGB_TX_FLAGS_TSO |
4642 IGB_TX_FLAGS_CSUM;
4643 }
4644
4645 /* compute header lengths */
4646 l4len = tcp_hdrlen(skb);
4647 *hdr_len = skb_transport_offset(skb) + l4len;
4648
4649 /* update gso size and bytecount with header size */
4650 first->gso_segs = skb_shinfo(skb)->gso_segs;
4651 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4652
4653 /* MSS L4LEN IDX */
4654 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4655 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4656
4657 /* VLAN MACLEN IPLEN */
4658 vlan_macip_lens = skb_network_header_len(skb);
4659 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4660 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4661
4662 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4663
4664 return 1;
4665 }
4666
4667 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4668 {
4669 struct sk_buff *skb = first->skb;
4670 u32 vlan_macip_lens = 0;
4671 u32 mss_l4len_idx = 0;
4672 u32 type_tucmd = 0;
4673
4674 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4675 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4676 return;
4677 } else {
4678 u8 l4_hdr = 0;
4679 switch (first->protocol) {
4680 case htons(ETH_P_IP):
4681 vlan_macip_lens |= skb_network_header_len(skb);
4682 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4683 l4_hdr = ip_hdr(skb)->protocol;
4684 break;
4685 case htons(ETH_P_IPV6):
4686 vlan_macip_lens |= skb_network_header_len(skb);
4687 l4_hdr = ipv6_hdr(skb)->nexthdr;
4688 break;
4689 default:
4690 if (unlikely(net_ratelimit())) {
4691 dev_warn(tx_ring->dev,
4692 "partial checksum but proto=%x!\n",
4693 first->protocol);
4694 }
4695 break;
4696 }
4697
4698 switch (l4_hdr) {
4699 case IPPROTO_TCP:
4700 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4701 mss_l4len_idx = tcp_hdrlen(skb) <<
4702 E1000_ADVTXD_L4LEN_SHIFT;
4703 break;
4704 case IPPROTO_SCTP:
4705 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4706 mss_l4len_idx = sizeof(struct sctphdr) <<
4707 E1000_ADVTXD_L4LEN_SHIFT;
4708 break;
4709 case IPPROTO_UDP:
4710 mss_l4len_idx = sizeof(struct udphdr) <<
4711 E1000_ADVTXD_L4LEN_SHIFT;
4712 break;
4713 default:
4714 if (unlikely(net_ratelimit())) {
4715 dev_warn(tx_ring->dev,
4716 "partial checksum but l4 proto=%x!\n",
4717 l4_hdr);
4718 }
4719 break;
4720 }
4721
4722 /* update TX checksum flag */
4723 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4724 }
4725
4726 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4727 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4728
4729 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4730 }
4731
4732 #define IGB_SET_FLAG(_input, _flag, _result) \
4733 ((_flag <= _result) ? \
4734 ((u32)(_input & _flag) * (_result / _flag)) : \
4735 ((u32)(_input & _flag) / (_flag / _result)))
4736
4737 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4738 {
4739 /* set type for advanced descriptor with frame checksum insertion */
4740 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4741 E1000_ADVTXD_DCMD_DEXT |
4742 E1000_ADVTXD_DCMD_IFCS;
4743
4744 /* set HW vlan bit if vlan is present */
4745 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4746 (E1000_ADVTXD_DCMD_VLE));
4747
4748 /* set segmentation bits for TSO */
4749 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4750 (E1000_ADVTXD_DCMD_TSE));
4751
4752 /* set timestamp bit if present */
4753 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4754 (E1000_ADVTXD_MAC_TSTAMP));
4755
4756 /* insert frame checksum */
4757 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4758
4759 return cmd_type;
4760 }
4761
4762 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4763 union e1000_adv_tx_desc *tx_desc,
4764 u32 tx_flags, unsigned int paylen)
4765 {
4766 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4767
4768 /* 82575 requires a unique index per ring */
4769 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4770 olinfo_status |= tx_ring->reg_idx << 4;
4771
4772 /* insert L4 checksum */
4773 olinfo_status |= IGB_SET_FLAG(tx_flags,
4774 IGB_TX_FLAGS_CSUM,
4775 (E1000_TXD_POPTS_TXSM << 8));
4776
4777 /* insert IPv4 checksum */
4778 olinfo_status |= IGB_SET_FLAG(tx_flags,
4779 IGB_TX_FLAGS_IPV4,
4780 (E1000_TXD_POPTS_IXSM << 8));
4781
4782 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4783 }
4784
4785 static void igb_tx_map(struct igb_ring *tx_ring,
4786 struct igb_tx_buffer *first,
4787 const u8 hdr_len)
4788 {
4789 struct sk_buff *skb = first->skb;
4790 struct igb_tx_buffer *tx_buffer;
4791 union e1000_adv_tx_desc *tx_desc;
4792 struct skb_frag_struct *frag;
4793 dma_addr_t dma;
4794 unsigned int data_len, size;
4795 u32 tx_flags = first->tx_flags;
4796 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4797 u16 i = tx_ring->next_to_use;
4798
4799 tx_desc = IGB_TX_DESC(tx_ring, i);
4800
4801 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4802
4803 size = skb_headlen(skb);
4804 data_len = skb->data_len;
4805
4806 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4807
4808 tx_buffer = first;
4809
4810 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4811 if (dma_mapping_error(tx_ring->dev, dma))
4812 goto dma_error;
4813
4814 /* record length, and DMA address */
4815 dma_unmap_len_set(tx_buffer, len, size);
4816 dma_unmap_addr_set(tx_buffer, dma, dma);
4817
4818 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4819
4820 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4821 tx_desc->read.cmd_type_len =
4822 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4823
4824 i++;
4825 tx_desc++;
4826 if (i == tx_ring->count) {
4827 tx_desc = IGB_TX_DESC(tx_ring, 0);
4828 i = 0;
4829 }
4830 tx_desc->read.olinfo_status = 0;
4831
4832 dma += IGB_MAX_DATA_PER_TXD;
4833 size -= IGB_MAX_DATA_PER_TXD;
4834
4835 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4836 }
4837
4838 if (likely(!data_len))
4839 break;
4840
4841 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4842
4843 i++;
4844 tx_desc++;
4845 if (i == tx_ring->count) {
4846 tx_desc = IGB_TX_DESC(tx_ring, 0);
4847 i = 0;
4848 }
4849 tx_desc->read.olinfo_status = 0;
4850
4851 size = skb_frag_size(frag);
4852 data_len -= size;
4853
4854 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4855 size, DMA_TO_DEVICE);
4856
4857 tx_buffer = &tx_ring->tx_buffer_info[i];
4858 }
4859
4860 /* write last descriptor with RS and EOP bits */
4861 cmd_type |= size | IGB_TXD_DCMD;
4862 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4863
4864 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4865
4866 /* set the timestamp */
4867 first->time_stamp = jiffies;
4868
4869 /* Force memory writes to complete before letting h/w know there
4870 * are new descriptors to fetch. (Only applicable for weak-ordered
4871 * memory model archs, such as IA-64).
4872 *
4873 * We also need this memory barrier to make certain all of the
4874 * status bits have been updated before next_to_watch is written.
4875 */
4876 wmb();
4877
4878 /* set next_to_watch value indicating a packet is present */
4879 first->next_to_watch = tx_desc;
4880
4881 i++;
4882 if (i == tx_ring->count)
4883 i = 0;
4884
4885 tx_ring->next_to_use = i;
4886
4887 writel(i, tx_ring->tail);
4888
4889 /* we need this if more than one processor can write to our tail
4890 * at a time, it synchronizes IO on IA64/Altix systems
4891 */
4892 mmiowb();
4893
4894 return;
4895
4896 dma_error:
4897 dev_err(tx_ring->dev, "TX DMA map failed\n");
4898
4899 /* clear dma mappings for failed tx_buffer_info map */
4900 for (;;) {
4901 tx_buffer = &tx_ring->tx_buffer_info[i];
4902 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4903 if (tx_buffer == first)
4904 break;
4905 if (i == 0)
4906 i = tx_ring->count;
4907 i--;
4908 }
4909
4910 tx_ring->next_to_use = i;
4911 }
4912
4913 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4914 {
4915 struct net_device *netdev = tx_ring->netdev;
4916
4917 netif_stop_subqueue(netdev, tx_ring->queue_index);
4918
4919 /* Herbert's original patch had:
4920 * smp_mb__after_netif_stop_queue();
4921 * but since that doesn't exist yet, just open code it.
4922 */
4923 smp_mb();
4924
4925 /* We need to check again in a case another CPU has just
4926 * made room available.
4927 */
4928 if (igb_desc_unused(tx_ring) < size)
4929 return -EBUSY;
4930
4931 /* A reprieve! */
4932 netif_wake_subqueue(netdev, tx_ring->queue_index);
4933
4934 u64_stats_update_begin(&tx_ring->tx_syncp2);
4935 tx_ring->tx_stats.restart_queue2++;
4936 u64_stats_update_end(&tx_ring->tx_syncp2);
4937
4938 return 0;
4939 }
4940
4941 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4942 {
4943 if (igb_desc_unused(tx_ring) >= size)
4944 return 0;
4945 return __igb_maybe_stop_tx(tx_ring, size);
4946 }
4947
4948 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4949 struct igb_ring *tx_ring)
4950 {
4951 struct igb_tx_buffer *first;
4952 int tso;
4953 u32 tx_flags = 0;
4954 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4955 __be16 protocol = vlan_get_protocol(skb);
4956 u8 hdr_len = 0;
4957
4958 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4959 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4960 * + 2 desc gap to keep tail from touching head,
4961 * + 1 desc for context descriptor,
4962 * otherwise try next time
4963 */
4964 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4965 unsigned short f;
4966 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4967 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4968 } else {
4969 count += skb_shinfo(skb)->nr_frags;
4970 }
4971
4972 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4973 /* this is a hard error */
4974 return NETDEV_TX_BUSY;
4975 }
4976
4977 /* record the location of the first descriptor for this packet */
4978 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4979 first->skb = skb;
4980 first->bytecount = skb->len;
4981 first->gso_segs = 1;
4982
4983 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4984 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4985
4986 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4987 &adapter->state)) {
4988 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4989 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4990
4991 adapter->ptp_tx_skb = skb_get(skb);
4992 adapter->ptp_tx_start = jiffies;
4993 if (adapter->hw.mac.type == e1000_82576)
4994 schedule_work(&adapter->ptp_tx_work);
4995 }
4996 }
4997
4998 skb_tx_timestamp(skb);
4999
5000 if (vlan_tx_tag_present(skb)) {
5001 tx_flags |= IGB_TX_FLAGS_VLAN;
5002 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5003 }
5004
5005 /* record initial flags and protocol */
5006 first->tx_flags = tx_flags;
5007 first->protocol = protocol;
5008
5009 tso = igb_tso(tx_ring, first, &hdr_len);
5010 if (tso < 0)
5011 goto out_drop;
5012 else if (!tso)
5013 igb_tx_csum(tx_ring, first);
5014
5015 igb_tx_map(tx_ring, first, hdr_len);
5016
5017 /* Make sure there is space in the ring for the next send. */
5018 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5019
5020 return NETDEV_TX_OK;
5021
5022 out_drop:
5023 igb_unmap_and_free_tx_resource(tx_ring, first);
5024
5025 return NETDEV_TX_OK;
5026 }
5027
5028 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5029 struct sk_buff *skb)
5030 {
5031 unsigned int r_idx = skb->queue_mapping;
5032
5033 if (r_idx >= adapter->num_tx_queues)
5034 r_idx = r_idx % adapter->num_tx_queues;
5035
5036 return adapter->tx_ring[r_idx];
5037 }
5038
5039 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5040 struct net_device *netdev)
5041 {
5042 struct igb_adapter *adapter = netdev_priv(netdev);
5043
5044 if (test_bit(__IGB_DOWN, &adapter->state)) {
5045 dev_kfree_skb_any(skb);
5046 return NETDEV_TX_OK;
5047 }
5048
5049 if (skb->len <= 0) {
5050 dev_kfree_skb_any(skb);
5051 return NETDEV_TX_OK;
5052 }
5053
5054 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5055 * in order to meet this minimum size requirement.
5056 */
5057 if (unlikely(skb->len < 17)) {
5058 if (skb_pad(skb, 17 - skb->len))
5059 return NETDEV_TX_OK;
5060 skb->len = 17;
5061 skb_set_tail_pointer(skb, 17);
5062 }
5063
5064 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5065 }
5066
5067 /**
5068 * igb_tx_timeout - Respond to a Tx Hang
5069 * @netdev: network interface device structure
5070 **/
5071 static void igb_tx_timeout(struct net_device *netdev)
5072 {
5073 struct igb_adapter *adapter = netdev_priv(netdev);
5074 struct e1000_hw *hw = &adapter->hw;
5075
5076 /* Do the reset outside of interrupt context */
5077 adapter->tx_timeout_count++;
5078
5079 if (hw->mac.type >= e1000_82580)
5080 hw->dev_spec._82575.global_device_reset = true;
5081
5082 schedule_work(&adapter->reset_task);
5083 wr32(E1000_EICS,
5084 (adapter->eims_enable_mask & ~adapter->eims_other));
5085 }
5086
5087 static void igb_reset_task(struct work_struct *work)
5088 {
5089 struct igb_adapter *adapter;
5090 adapter = container_of(work, struct igb_adapter, reset_task);
5091
5092 igb_dump(adapter);
5093 netdev_err(adapter->netdev, "Reset adapter\n");
5094 igb_reinit_locked(adapter);
5095 }
5096
5097 /**
5098 * igb_get_stats64 - Get System Network Statistics
5099 * @netdev: network interface device structure
5100 * @stats: rtnl_link_stats64 pointer
5101 **/
5102 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5103 struct rtnl_link_stats64 *stats)
5104 {
5105 struct igb_adapter *adapter = netdev_priv(netdev);
5106
5107 spin_lock(&adapter->stats64_lock);
5108 igb_update_stats(adapter, &adapter->stats64);
5109 memcpy(stats, &adapter->stats64, sizeof(*stats));
5110 spin_unlock(&adapter->stats64_lock);
5111
5112 return stats;
5113 }
5114
5115 /**
5116 * igb_change_mtu - Change the Maximum Transfer Unit
5117 * @netdev: network interface device structure
5118 * @new_mtu: new value for maximum frame size
5119 *
5120 * Returns 0 on success, negative on failure
5121 **/
5122 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5123 {
5124 struct igb_adapter *adapter = netdev_priv(netdev);
5125 struct pci_dev *pdev = adapter->pdev;
5126 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5127
5128 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5129 dev_err(&pdev->dev, "Invalid MTU setting\n");
5130 return -EINVAL;
5131 }
5132
5133 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5134 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5135 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5136 return -EINVAL;
5137 }
5138
5139 /* adjust max frame to be at least the size of a standard frame */
5140 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5141 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5142
5143 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5144 msleep(1);
5145
5146 /* igb_down has a dependency on max_frame_size */
5147 adapter->max_frame_size = max_frame;
5148
5149 if (netif_running(netdev))
5150 igb_down(adapter);
5151
5152 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5153 netdev->mtu, new_mtu);
5154 netdev->mtu = new_mtu;
5155
5156 if (netif_running(netdev))
5157 igb_up(adapter);
5158 else
5159 igb_reset(adapter);
5160
5161 clear_bit(__IGB_RESETTING, &adapter->state);
5162
5163 return 0;
5164 }
5165
5166 /**
5167 * igb_update_stats - Update the board statistics counters
5168 * @adapter: board private structure
5169 **/
5170 void igb_update_stats(struct igb_adapter *adapter,
5171 struct rtnl_link_stats64 *net_stats)
5172 {
5173 struct e1000_hw *hw = &adapter->hw;
5174 struct pci_dev *pdev = adapter->pdev;
5175 u32 reg, mpc;
5176 u16 phy_tmp;
5177 int i;
5178 u64 bytes, packets;
5179 unsigned int start;
5180 u64 _bytes, _packets;
5181
5182 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5183
5184 /* Prevent stats update while adapter is being reset, or if the pci
5185 * connection is down.
5186 */
5187 if (adapter->link_speed == 0)
5188 return;
5189 if (pci_channel_offline(pdev))
5190 return;
5191
5192 bytes = 0;
5193 packets = 0;
5194
5195 rcu_read_lock();
5196 for (i = 0; i < adapter->num_rx_queues; i++) {
5197 u32 rqdpc = rd32(E1000_RQDPC(i));
5198 struct igb_ring *ring = adapter->rx_ring[i];
5199
5200 if (rqdpc) {
5201 ring->rx_stats.drops += rqdpc;
5202 net_stats->rx_fifo_errors += rqdpc;
5203 }
5204
5205 do {
5206 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5207 _bytes = ring->rx_stats.bytes;
5208 _packets = ring->rx_stats.packets;
5209 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5210 bytes += _bytes;
5211 packets += _packets;
5212 }
5213
5214 net_stats->rx_bytes = bytes;
5215 net_stats->rx_packets = packets;
5216
5217 bytes = 0;
5218 packets = 0;
5219 for (i = 0; i < adapter->num_tx_queues; i++) {
5220 struct igb_ring *ring = adapter->tx_ring[i];
5221 do {
5222 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5223 _bytes = ring->tx_stats.bytes;
5224 _packets = ring->tx_stats.packets;
5225 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5226 bytes += _bytes;
5227 packets += _packets;
5228 }
5229 net_stats->tx_bytes = bytes;
5230 net_stats->tx_packets = packets;
5231 rcu_read_unlock();
5232
5233 /* read stats registers */
5234 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5235 adapter->stats.gprc += rd32(E1000_GPRC);
5236 adapter->stats.gorc += rd32(E1000_GORCL);
5237 rd32(E1000_GORCH); /* clear GORCL */
5238 adapter->stats.bprc += rd32(E1000_BPRC);
5239 adapter->stats.mprc += rd32(E1000_MPRC);
5240 adapter->stats.roc += rd32(E1000_ROC);
5241
5242 adapter->stats.prc64 += rd32(E1000_PRC64);
5243 adapter->stats.prc127 += rd32(E1000_PRC127);
5244 adapter->stats.prc255 += rd32(E1000_PRC255);
5245 adapter->stats.prc511 += rd32(E1000_PRC511);
5246 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5247 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5248 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5249 adapter->stats.sec += rd32(E1000_SEC);
5250
5251 mpc = rd32(E1000_MPC);
5252 adapter->stats.mpc += mpc;
5253 net_stats->rx_fifo_errors += mpc;
5254 adapter->stats.scc += rd32(E1000_SCC);
5255 adapter->stats.ecol += rd32(E1000_ECOL);
5256 adapter->stats.mcc += rd32(E1000_MCC);
5257 adapter->stats.latecol += rd32(E1000_LATECOL);
5258 adapter->stats.dc += rd32(E1000_DC);
5259 adapter->stats.rlec += rd32(E1000_RLEC);
5260 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5261 adapter->stats.xontxc += rd32(E1000_XONTXC);
5262 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5263 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5264 adapter->stats.fcruc += rd32(E1000_FCRUC);
5265 adapter->stats.gptc += rd32(E1000_GPTC);
5266 adapter->stats.gotc += rd32(E1000_GOTCL);
5267 rd32(E1000_GOTCH); /* clear GOTCL */
5268 adapter->stats.rnbc += rd32(E1000_RNBC);
5269 adapter->stats.ruc += rd32(E1000_RUC);
5270 adapter->stats.rfc += rd32(E1000_RFC);
5271 adapter->stats.rjc += rd32(E1000_RJC);
5272 adapter->stats.tor += rd32(E1000_TORH);
5273 adapter->stats.tot += rd32(E1000_TOTH);
5274 adapter->stats.tpr += rd32(E1000_TPR);
5275
5276 adapter->stats.ptc64 += rd32(E1000_PTC64);
5277 adapter->stats.ptc127 += rd32(E1000_PTC127);
5278 adapter->stats.ptc255 += rd32(E1000_PTC255);
5279 adapter->stats.ptc511 += rd32(E1000_PTC511);
5280 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5281 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5282
5283 adapter->stats.mptc += rd32(E1000_MPTC);
5284 adapter->stats.bptc += rd32(E1000_BPTC);
5285
5286 adapter->stats.tpt += rd32(E1000_TPT);
5287 adapter->stats.colc += rd32(E1000_COLC);
5288
5289 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5290 /* read internal phy specific stats */
5291 reg = rd32(E1000_CTRL_EXT);
5292 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5293 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5294
5295 /* this stat has invalid values on i210/i211 */
5296 if ((hw->mac.type != e1000_i210) &&
5297 (hw->mac.type != e1000_i211))
5298 adapter->stats.tncrs += rd32(E1000_TNCRS);
5299 }
5300
5301 adapter->stats.tsctc += rd32(E1000_TSCTC);
5302 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5303
5304 adapter->stats.iac += rd32(E1000_IAC);
5305 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5306 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5307 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5308 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5309 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5310 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5311 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5312 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5313
5314 /* Fill out the OS statistics structure */
5315 net_stats->multicast = adapter->stats.mprc;
5316 net_stats->collisions = adapter->stats.colc;
5317
5318 /* Rx Errors */
5319
5320 /* RLEC on some newer hardware can be incorrect so build
5321 * our own version based on RUC and ROC
5322 */
5323 net_stats->rx_errors = adapter->stats.rxerrc +
5324 adapter->stats.crcerrs + adapter->stats.algnerrc +
5325 adapter->stats.ruc + adapter->stats.roc +
5326 adapter->stats.cexterr;
5327 net_stats->rx_length_errors = adapter->stats.ruc +
5328 adapter->stats.roc;
5329 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5330 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5331 net_stats->rx_missed_errors = adapter->stats.mpc;
5332
5333 /* Tx Errors */
5334 net_stats->tx_errors = adapter->stats.ecol +
5335 adapter->stats.latecol;
5336 net_stats->tx_aborted_errors = adapter->stats.ecol;
5337 net_stats->tx_window_errors = adapter->stats.latecol;
5338 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5339
5340 /* Tx Dropped needs to be maintained elsewhere */
5341
5342 /* Phy Stats */
5343 if (hw->phy.media_type == e1000_media_type_copper) {
5344 if ((adapter->link_speed == SPEED_1000) &&
5345 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5346 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5347 adapter->phy_stats.idle_errors += phy_tmp;
5348 }
5349 }
5350
5351 /* Management Stats */
5352 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5353 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5354 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5355
5356 /* OS2BMC Stats */
5357 reg = rd32(E1000_MANC);
5358 if (reg & E1000_MANC_EN_BMC2OS) {
5359 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5360 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5361 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5362 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5363 }
5364 }
5365
5366 static irqreturn_t igb_msix_other(int irq, void *data)
5367 {
5368 struct igb_adapter *adapter = data;
5369 struct e1000_hw *hw = &adapter->hw;
5370 u32 icr = rd32(E1000_ICR);
5371 /* reading ICR causes bit 31 of EICR to be cleared */
5372
5373 if (icr & E1000_ICR_DRSTA)
5374 schedule_work(&adapter->reset_task);
5375
5376 if (icr & E1000_ICR_DOUTSYNC) {
5377 /* HW is reporting DMA is out of sync */
5378 adapter->stats.doosync++;
5379 /* The DMA Out of Sync is also indication of a spoof event
5380 * in IOV mode. Check the Wrong VM Behavior register to
5381 * see if it is really a spoof event.
5382 */
5383 igb_check_wvbr(adapter);
5384 }
5385
5386 /* Check for a mailbox event */
5387 if (icr & E1000_ICR_VMMB)
5388 igb_msg_task(adapter);
5389
5390 if (icr & E1000_ICR_LSC) {
5391 hw->mac.get_link_status = 1;
5392 /* guard against interrupt when we're going down */
5393 if (!test_bit(__IGB_DOWN, &adapter->state))
5394 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5395 }
5396
5397 if (icr & E1000_ICR_TS) {
5398 u32 tsicr = rd32(E1000_TSICR);
5399
5400 if (tsicr & E1000_TSICR_TXTS) {
5401 /* acknowledge the interrupt */
5402 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5403 /* retrieve hardware timestamp */
5404 schedule_work(&adapter->ptp_tx_work);
5405 }
5406 }
5407
5408 wr32(E1000_EIMS, adapter->eims_other);
5409
5410 return IRQ_HANDLED;
5411 }
5412
5413 static void igb_write_itr(struct igb_q_vector *q_vector)
5414 {
5415 struct igb_adapter *adapter = q_vector->adapter;
5416 u32 itr_val = q_vector->itr_val & 0x7FFC;
5417
5418 if (!q_vector->set_itr)
5419 return;
5420
5421 if (!itr_val)
5422 itr_val = 0x4;
5423
5424 if (adapter->hw.mac.type == e1000_82575)
5425 itr_val |= itr_val << 16;
5426 else
5427 itr_val |= E1000_EITR_CNT_IGNR;
5428
5429 writel(itr_val, q_vector->itr_register);
5430 q_vector->set_itr = 0;
5431 }
5432
5433 static irqreturn_t igb_msix_ring(int irq, void *data)
5434 {
5435 struct igb_q_vector *q_vector = data;
5436
5437 /* Write the ITR value calculated from the previous interrupt. */
5438 igb_write_itr(q_vector);
5439
5440 napi_schedule(&q_vector->napi);
5441
5442 return IRQ_HANDLED;
5443 }
5444
5445 #ifdef CONFIG_IGB_DCA
5446 static void igb_update_tx_dca(struct igb_adapter *adapter,
5447 struct igb_ring *tx_ring,
5448 int cpu)
5449 {
5450 struct e1000_hw *hw = &adapter->hw;
5451 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5452
5453 if (hw->mac.type != e1000_82575)
5454 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5455
5456 /* We can enable relaxed ordering for reads, but not writes when
5457 * DCA is enabled. This is due to a known issue in some chipsets
5458 * which will cause the DCA tag to be cleared.
5459 */
5460 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5461 E1000_DCA_TXCTRL_DATA_RRO_EN |
5462 E1000_DCA_TXCTRL_DESC_DCA_EN;
5463
5464 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5465 }
5466
5467 static void igb_update_rx_dca(struct igb_adapter *adapter,
5468 struct igb_ring *rx_ring,
5469 int cpu)
5470 {
5471 struct e1000_hw *hw = &adapter->hw;
5472 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5473
5474 if (hw->mac.type != e1000_82575)
5475 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5476
5477 /* We can enable relaxed ordering for reads, but not writes when
5478 * DCA is enabled. This is due to a known issue in some chipsets
5479 * which will cause the DCA tag to be cleared.
5480 */
5481 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5482 E1000_DCA_RXCTRL_DESC_DCA_EN;
5483
5484 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5485 }
5486
5487 static void igb_update_dca(struct igb_q_vector *q_vector)
5488 {
5489 struct igb_adapter *adapter = q_vector->adapter;
5490 int cpu = get_cpu();
5491
5492 if (q_vector->cpu == cpu)
5493 goto out_no_update;
5494
5495 if (q_vector->tx.ring)
5496 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5497
5498 if (q_vector->rx.ring)
5499 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5500
5501 q_vector->cpu = cpu;
5502 out_no_update:
5503 put_cpu();
5504 }
5505
5506 static void igb_setup_dca(struct igb_adapter *adapter)
5507 {
5508 struct e1000_hw *hw = &adapter->hw;
5509 int i;
5510
5511 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5512 return;
5513
5514 /* Always use CB2 mode, difference is masked in the CB driver. */
5515 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5516
5517 for (i = 0; i < adapter->num_q_vectors; i++) {
5518 adapter->q_vector[i]->cpu = -1;
5519 igb_update_dca(adapter->q_vector[i]);
5520 }
5521 }
5522
5523 static int __igb_notify_dca(struct device *dev, void *data)
5524 {
5525 struct net_device *netdev = dev_get_drvdata(dev);
5526 struct igb_adapter *adapter = netdev_priv(netdev);
5527 struct pci_dev *pdev = adapter->pdev;
5528 struct e1000_hw *hw = &adapter->hw;
5529 unsigned long event = *(unsigned long *)data;
5530
5531 switch (event) {
5532 case DCA_PROVIDER_ADD:
5533 /* if already enabled, don't do it again */
5534 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5535 break;
5536 if (dca_add_requester(dev) == 0) {
5537 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5538 dev_info(&pdev->dev, "DCA enabled\n");
5539 igb_setup_dca(adapter);
5540 break;
5541 }
5542 /* Fall Through since DCA is disabled. */
5543 case DCA_PROVIDER_REMOVE:
5544 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5545 /* without this a class_device is left
5546 * hanging around in the sysfs model
5547 */
5548 dca_remove_requester(dev);
5549 dev_info(&pdev->dev, "DCA disabled\n");
5550 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5551 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5552 }
5553 break;
5554 }
5555
5556 return 0;
5557 }
5558
5559 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5560 void *p)
5561 {
5562 int ret_val;
5563
5564 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5565 __igb_notify_dca);
5566
5567 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5568 }
5569 #endif /* CONFIG_IGB_DCA */
5570
5571 #ifdef CONFIG_PCI_IOV
5572 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5573 {
5574 unsigned char mac_addr[ETH_ALEN];
5575
5576 eth_zero_addr(mac_addr);
5577 igb_set_vf_mac(adapter, vf, mac_addr);
5578
5579 /* By default spoof check is enabled for all VFs */
5580 adapter->vf_data[vf].spoofchk_enabled = true;
5581
5582 return 0;
5583 }
5584
5585 #endif
5586 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5587 {
5588 struct e1000_hw *hw = &adapter->hw;
5589 u32 ping;
5590 int i;
5591
5592 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5593 ping = E1000_PF_CONTROL_MSG;
5594 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5595 ping |= E1000_VT_MSGTYPE_CTS;
5596 igb_write_mbx(hw, &ping, 1, i);
5597 }
5598 }
5599
5600 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5601 {
5602 struct e1000_hw *hw = &adapter->hw;
5603 u32 vmolr = rd32(E1000_VMOLR(vf));
5604 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5605
5606 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5607 IGB_VF_FLAG_MULTI_PROMISC);
5608 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5609
5610 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5611 vmolr |= E1000_VMOLR_MPME;
5612 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5613 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5614 } else {
5615 /* if we have hashes and we are clearing a multicast promisc
5616 * flag we need to write the hashes to the MTA as this step
5617 * was previously skipped
5618 */
5619 if (vf_data->num_vf_mc_hashes > 30) {
5620 vmolr |= E1000_VMOLR_MPME;
5621 } else if (vf_data->num_vf_mc_hashes) {
5622 int j;
5623 vmolr |= E1000_VMOLR_ROMPE;
5624 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5625 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5626 }
5627 }
5628
5629 wr32(E1000_VMOLR(vf), vmolr);
5630
5631 /* there are flags left unprocessed, likely not supported */
5632 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5633 return -EINVAL;
5634
5635 return 0;
5636 }
5637
5638 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5639 u32 *msgbuf, u32 vf)
5640 {
5641 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5642 u16 *hash_list = (u16 *)&msgbuf[1];
5643 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5644 int i;
5645
5646 /* salt away the number of multicast addresses assigned
5647 * to this VF for later use to restore when the PF multi cast
5648 * list changes
5649 */
5650 vf_data->num_vf_mc_hashes = n;
5651
5652 /* only up to 30 hash values supported */
5653 if (n > 30)
5654 n = 30;
5655
5656 /* store the hashes for later use */
5657 for (i = 0; i < n; i++)
5658 vf_data->vf_mc_hashes[i] = hash_list[i];
5659
5660 /* Flush and reset the mta with the new values */
5661 igb_set_rx_mode(adapter->netdev);
5662
5663 return 0;
5664 }
5665
5666 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5667 {
5668 struct e1000_hw *hw = &adapter->hw;
5669 struct vf_data_storage *vf_data;
5670 int i, j;
5671
5672 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5673 u32 vmolr = rd32(E1000_VMOLR(i));
5674 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5675
5676 vf_data = &adapter->vf_data[i];
5677
5678 if ((vf_data->num_vf_mc_hashes > 30) ||
5679 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5680 vmolr |= E1000_VMOLR_MPME;
5681 } else if (vf_data->num_vf_mc_hashes) {
5682 vmolr |= E1000_VMOLR_ROMPE;
5683 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5684 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5685 }
5686 wr32(E1000_VMOLR(i), vmolr);
5687 }
5688 }
5689
5690 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5691 {
5692 struct e1000_hw *hw = &adapter->hw;
5693 u32 pool_mask, reg, vid;
5694 int i;
5695
5696 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5697
5698 /* Find the vlan filter for this id */
5699 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5700 reg = rd32(E1000_VLVF(i));
5701
5702 /* remove the vf from the pool */
5703 reg &= ~pool_mask;
5704
5705 /* if pool is empty then remove entry from vfta */
5706 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5707 (reg & E1000_VLVF_VLANID_ENABLE)) {
5708 reg = 0;
5709 vid = reg & E1000_VLVF_VLANID_MASK;
5710 igb_vfta_set(hw, vid, false);
5711 }
5712
5713 wr32(E1000_VLVF(i), reg);
5714 }
5715
5716 adapter->vf_data[vf].vlans_enabled = 0;
5717 }
5718
5719 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5720 {
5721 struct e1000_hw *hw = &adapter->hw;
5722 u32 reg, i;
5723
5724 /* The vlvf table only exists on 82576 hardware and newer */
5725 if (hw->mac.type < e1000_82576)
5726 return -1;
5727
5728 /* we only need to do this if VMDq is enabled */
5729 if (!adapter->vfs_allocated_count)
5730 return -1;
5731
5732 /* Find the vlan filter for this id */
5733 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5734 reg = rd32(E1000_VLVF(i));
5735 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5736 vid == (reg & E1000_VLVF_VLANID_MASK))
5737 break;
5738 }
5739
5740 if (add) {
5741 if (i == E1000_VLVF_ARRAY_SIZE) {
5742 /* Did not find a matching VLAN ID entry that was
5743 * enabled. Search for a free filter entry, i.e.
5744 * one without the enable bit set
5745 */
5746 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5747 reg = rd32(E1000_VLVF(i));
5748 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5749 break;
5750 }
5751 }
5752 if (i < E1000_VLVF_ARRAY_SIZE) {
5753 /* Found an enabled/available entry */
5754 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5755
5756 /* if !enabled we need to set this up in vfta */
5757 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5758 /* add VID to filter table */
5759 igb_vfta_set(hw, vid, true);
5760 reg |= E1000_VLVF_VLANID_ENABLE;
5761 }
5762 reg &= ~E1000_VLVF_VLANID_MASK;
5763 reg |= vid;
5764 wr32(E1000_VLVF(i), reg);
5765
5766 /* do not modify RLPML for PF devices */
5767 if (vf >= adapter->vfs_allocated_count)
5768 return 0;
5769
5770 if (!adapter->vf_data[vf].vlans_enabled) {
5771 u32 size;
5772 reg = rd32(E1000_VMOLR(vf));
5773 size = reg & E1000_VMOLR_RLPML_MASK;
5774 size += 4;
5775 reg &= ~E1000_VMOLR_RLPML_MASK;
5776 reg |= size;
5777 wr32(E1000_VMOLR(vf), reg);
5778 }
5779
5780 adapter->vf_data[vf].vlans_enabled++;
5781 }
5782 } else {
5783 if (i < E1000_VLVF_ARRAY_SIZE) {
5784 /* remove vf from the pool */
5785 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5786 /* if pool is empty then remove entry from vfta */
5787 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5788 reg = 0;
5789 igb_vfta_set(hw, vid, false);
5790 }
5791 wr32(E1000_VLVF(i), reg);
5792
5793 /* do not modify RLPML for PF devices */
5794 if (vf >= adapter->vfs_allocated_count)
5795 return 0;
5796
5797 adapter->vf_data[vf].vlans_enabled--;
5798 if (!adapter->vf_data[vf].vlans_enabled) {
5799 u32 size;
5800 reg = rd32(E1000_VMOLR(vf));
5801 size = reg & E1000_VMOLR_RLPML_MASK;
5802 size -= 4;
5803 reg &= ~E1000_VMOLR_RLPML_MASK;
5804 reg |= size;
5805 wr32(E1000_VMOLR(vf), reg);
5806 }
5807 }
5808 }
5809 return 0;
5810 }
5811
5812 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5813 {
5814 struct e1000_hw *hw = &adapter->hw;
5815
5816 if (vid)
5817 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5818 else
5819 wr32(E1000_VMVIR(vf), 0);
5820 }
5821
5822 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5823 int vf, u16 vlan, u8 qos)
5824 {
5825 int err = 0;
5826 struct igb_adapter *adapter = netdev_priv(netdev);
5827
5828 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5829 return -EINVAL;
5830 if (vlan || qos) {
5831 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5832 if (err)
5833 goto out;
5834 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5835 igb_set_vmolr(adapter, vf, !vlan);
5836 adapter->vf_data[vf].pf_vlan = vlan;
5837 adapter->vf_data[vf].pf_qos = qos;
5838 dev_info(&adapter->pdev->dev,
5839 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5840 if (test_bit(__IGB_DOWN, &adapter->state)) {
5841 dev_warn(&adapter->pdev->dev,
5842 "The VF VLAN has been set, but the PF device is not up.\n");
5843 dev_warn(&adapter->pdev->dev,
5844 "Bring the PF device up before attempting to use the VF device.\n");
5845 }
5846 } else {
5847 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5848 false, vf);
5849 igb_set_vmvir(adapter, vlan, vf);
5850 igb_set_vmolr(adapter, vf, true);
5851 adapter->vf_data[vf].pf_vlan = 0;
5852 adapter->vf_data[vf].pf_qos = 0;
5853 }
5854 out:
5855 return err;
5856 }
5857
5858 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5859 {
5860 struct e1000_hw *hw = &adapter->hw;
5861 int i;
5862 u32 reg;
5863
5864 /* Find the vlan filter for this id */
5865 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5866 reg = rd32(E1000_VLVF(i));
5867 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5868 vid == (reg & E1000_VLVF_VLANID_MASK))
5869 break;
5870 }
5871
5872 if (i >= E1000_VLVF_ARRAY_SIZE)
5873 i = -1;
5874
5875 return i;
5876 }
5877
5878 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5879 {
5880 struct e1000_hw *hw = &adapter->hw;
5881 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5882 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5883 int err = 0;
5884
5885 /* If in promiscuous mode we need to make sure the PF also has
5886 * the VLAN filter set.
5887 */
5888 if (add && (adapter->netdev->flags & IFF_PROMISC))
5889 err = igb_vlvf_set(adapter, vid, add,
5890 adapter->vfs_allocated_count);
5891 if (err)
5892 goto out;
5893
5894 err = igb_vlvf_set(adapter, vid, add, vf);
5895
5896 if (err)
5897 goto out;
5898
5899 /* Go through all the checks to see if the VLAN filter should
5900 * be wiped completely.
5901 */
5902 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5903 u32 vlvf, bits;
5904
5905 int regndx = igb_find_vlvf_entry(adapter, vid);
5906 if (regndx < 0)
5907 goto out;
5908 /* See if any other pools are set for this VLAN filter
5909 * entry other than the PF.
5910 */
5911 vlvf = bits = rd32(E1000_VLVF(regndx));
5912 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5913 adapter->vfs_allocated_count);
5914 /* If the filter was removed then ensure PF pool bit
5915 * is cleared if the PF only added itself to the pool
5916 * because the PF is in promiscuous mode.
5917 */
5918 if ((vlvf & VLAN_VID_MASK) == vid &&
5919 !test_bit(vid, adapter->active_vlans) &&
5920 !bits)
5921 igb_vlvf_set(adapter, vid, add,
5922 adapter->vfs_allocated_count);
5923 }
5924
5925 out:
5926 return err;
5927 }
5928
5929 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5930 {
5931 /* clear flags - except flag that indicates PF has set the MAC */
5932 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5933 adapter->vf_data[vf].last_nack = jiffies;
5934
5935 /* reset offloads to defaults */
5936 igb_set_vmolr(adapter, vf, true);
5937
5938 /* reset vlans for device */
5939 igb_clear_vf_vfta(adapter, vf);
5940 if (adapter->vf_data[vf].pf_vlan)
5941 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5942 adapter->vf_data[vf].pf_vlan,
5943 adapter->vf_data[vf].pf_qos);
5944 else
5945 igb_clear_vf_vfta(adapter, vf);
5946
5947 /* reset multicast table array for vf */
5948 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5949
5950 /* Flush and reset the mta with the new values */
5951 igb_set_rx_mode(adapter->netdev);
5952 }
5953
5954 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5955 {
5956 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5957
5958 /* clear mac address as we were hotplug removed/added */
5959 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5960 eth_zero_addr(vf_mac);
5961
5962 /* process remaining reset events */
5963 igb_vf_reset(adapter, vf);
5964 }
5965
5966 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5967 {
5968 struct e1000_hw *hw = &adapter->hw;
5969 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5970 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5971 u32 reg, msgbuf[3];
5972 u8 *addr = (u8 *)(&msgbuf[1]);
5973
5974 /* process all the same items cleared in a function level reset */
5975 igb_vf_reset(adapter, vf);
5976
5977 /* set vf mac address */
5978 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5979
5980 /* enable transmit and receive for vf */
5981 reg = rd32(E1000_VFTE);
5982 wr32(E1000_VFTE, reg | (1 << vf));
5983 reg = rd32(E1000_VFRE);
5984 wr32(E1000_VFRE, reg | (1 << vf));
5985
5986 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5987
5988 /* reply to reset with ack and vf mac address */
5989 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5990 memcpy(addr, vf_mac, ETH_ALEN);
5991 igb_write_mbx(hw, msgbuf, 3, vf);
5992 }
5993
5994 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5995 {
5996 /* The VF MAC Address is stored in a packed array of bytes
5997 * starting at the second 32 bit word of the msg array
5998 */
5999 unsigned char *addr = (char *)&msg[1];
6000 int err = -1;
6001
6002 if (is_valid_ether_addr(addr))
6003 err = igb_set_vf_mac(adapter, vf, addr);
6004
6005 return err;
6006 }
6007
6008 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6009 {
6010 struct e1000_hw *hw = &adapter->hw;
6011 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6012 u32 msg = E1000_VT_MSGTYPE_NACK;
6013
6014 /* if device isn't clear to send it shouldn't be reading either */
6015 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6016 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6017 igb_write_mbx(hw, &msg, 1, vf);
6018 vf_data->last_nack = jiffies;
6019 }
6020 }
6021
6022 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6023 {
6024 struct pci_dev *pdev = adapter->pdev;
6025 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6026 struct e1000_hw *hw = &adapter->hw;
6027 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6028 s32 retval;
6029
6030 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6031
6032 if (retval) {
6033 /* if receive failed revoke VF CTS stats and restart init */
6034 dev_err(&pdev->dev, "Error receiving message from VF\n");
6035 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6036 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6037 return;
6038 goto out;
6039 }
6040
6041 /* this is a message we already processed, do nothing */
6042 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6043 return;
6044
6045 /* until the vf completes a reset it should not be
6046 * allowed to start any configuration.
6047 */
6048 if (msgbuf[0] == E1000_VF_RESET) {
6049 igb_vf_reset_msg(adapter, vf);
6050 return;
6051 }
6052
6053 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6054 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6055 return;
6056 retval = -1;
6057 goto out;
6058 }
6059
6060 switch ((msgbuf[0] & 0xFFFF)) {
6061 case E1000_VF_SET_MAC_ADDR:
6062 retval = -EINVAL;
6063 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6064 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6065 else
6066 dev_warn(&pdev->dev,
6067 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6068 vf);
6069 break;
6070 case E1000_VF_SET_PROMISC:
6071 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6072 break;
6073 case E1000_VF_SET_MULTICAST:
6074 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6075 break;
6076 case E1000_VF_SET_LPE:
6077 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6078 break;
6079 case E1000_VF_SET_VLAN:
6080 retval = -1;
6081 if (vf_data->pf_vlan)
6082 dev_warn(&pdev->dev,
6083 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6084 vf);
6085 else
6086 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6087 break;
6088 default:
6089 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6090 retval = -1;
6091 break;
6092 }
6093
6094 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6095 out:
6096 /* notify the VF of the results of what it sent us */
6097 if (retval)
6098 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6099 else
6100 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6101
6102 igb_write_mbx(hw, msgbuf, 1, vf);
6103 }
6104
6105 static void igb_msg_task(struct igb_adapter *adapter)
6106 {
6107 struct e1000_hw *hw = &adapter->hw;
6108 u32 vf;
6109
6110 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6111 /* process any reset requests */
6112 if (!igb_check_for_rst(hw, vf))
6113 igb_vf_reset_event(adapter, vf);
6114
6115 /* process any messages pending */
6116 if (!igb_check_for_msg(hw, vf))
6117 igb_rcv_msg_from_vf(adapter, vf);
6118
6119 /* process any acks */
6120 if (!igb_check_for_ack(hw, vf))
6121 igb_rcv_ack_from_vf(adapter, vf);
6122 }
6123 }
6124
6125 /**
6126 * igb_set_uta - Set unicast filter table address
6127 * @adapter: board private structure
6128 *
6129 * The unicast table address is a register array of 32-bit registers.
6130 * The table is meant to be used in a way similar to how the MTA is used
6131 * however due to certain limitations in the hardware it is necessary to
6132 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6133 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6134 **/
6135 static void igb_set_uta(struct igb_adapter *adapter)
6136 {
6137 struct e1000_hw *hw = &adapter->hw;
6138 int i;
6139
6140 /* The UTA table only exists on 82576 hardware and newer */
6141 if (hw->mac.type < e1000_82576)
6142 return;
6143
6144 /* we only need to do this if VMDq is enabled */
6145 if (!adapter->vfs_allocated_count)
6146 return;
6147
6148 for (i = 0; i < hw->mac.uta_reg_count; i++)
6149 array_wr32(E1000_UTA, i, ~0);
6150 }
6151
6152 /**
6153 * igb_intr_msi - Interrupt Handler
6154 * @irq: interrupt number
6155 * @data: pointer to a network interface device structure
6156 **/
6157 static irqreturn_t igb_intr_msi(int irq, void *data)
6158 {
6159 struct igb_adapter *adapter = data;
6160 struct igb_q_vector *q_vector = adapter->q_vector[0];
6161 struct e1000_hw *hw = &adapter->hw;
6162 /* read ICR disables interrupts using IAM */
6163 u32 icr = rd32(E1000_ICR);
6164
6165 igb_write_itr(q_vector);
6166
6167 if (icr & E1000_ICR_DRSTA)
6168 schedule_work(&adapter->reset_task);
6169
6170 if (icr & E1000_ICR_DOUTSYNC) {
6171 /* HW is reporting DMA is out of sync */
6172 adapter->stats.doosync++;
6173 }
6174
6175 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6176 hw->mac.get_link_status = 1;
6177 if (!test_bit(__IGB_DOWN, &adapter->state))
6178 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6179 }
6180
6181 if (icr & E1000_ICR_TS) {
6182 u32 tsicr = rd32(E1000_TSICR);
6183
6184 if (tsicr & E1000_TSICR_TXTS) {
6185 /* acknowledge the interrupt */
6186 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6187 /* retrieve hardware timestamp */
6188 schedule_work(&adapter->ptp_tx_work);
6189 }
6190 }
6191
6192 napi_schedule(&q_vector->napi);
6193
6194 return IRQ_HANDLED;
6195 }
6196
6197 /**
6198 * igb_intr - Legacy Interrupt Handler
6199 * @irq: interrupt number
6200 * @data: pointer to a network interface device structure
6201 **/
6202 static irqreturn_t igb_intr(int irq, void *data)
6203 {
6204 struct igb_adapter *adapter = data;
6205 struct igb_q_vector *q_vector = adapter->q_vector[0];
6206 struct e1000_hw *hw = &adapter->hw;
6207 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6208 * need for the IMC write
6209 */
6210 u32 icr = rd32(E1000_ICR);
6211
6212 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6213 * not set, then the adapter didn't send an interrupt
6214 */
6215 if (!(icr & E1000_ICR_INT_ASSERTED))
6216 return IRQ_NONE;
6217
6218 igb_write_itr(q_vector);
6219
6220 if (icr & E1000_ICR_DRSTA)
6221 schedule_work(&adapter->reset_task);
6222
6223 if (icr & E1000_ICR_DOUTSYNC) {
6224 /* HW is reporting DMA is out of sync */
6225 adapter->stats.doosync++;
6226 }
6227
6228 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6229 hw->mac.get_link_status = 1;
6230 /* guard against interrupt when we're going down */
6231 if (!test_bit(__IGB_DOWN, &adapter->state))
6232 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6233 }
6234
6235 if (icr & E1000_ICR_TS) {
6236 u32 tsicr = rd32(E1000_TSICR);
6237
6238 if (tsicr & E1000_TSICR_TXTS) {
6239 /* acknowledge the interrupt */
6240 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6241 /* retrieve hardware timestamp */
6242 schedule_work(&adapter->ptp_tx_work);
6243 }
6244 }
6245
6246 napi_schedule(&q_vector->napi);
6247
6248 return IRQ_HANDLED;
6249 }
6250
6251 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6252 {
6253 struct igb_adapter *adapter = q_vector->adapter;
6254 struct e1000_hw *hw = &adapter->hw;
6255
6256 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6257 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6258 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6259 igb_set_itr(q_vector);
6260 else
6261 igb_update_ring_itr(q_vector);
6262 }
6263
6264 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6265 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6266 wr32(E1000_EIMS, q_vector->eims_value);
6267 else
6268 igb_irq_enable(adapter);
6269 }
6270 }
6271
6272 /**
6273 * igb_poll - NAPI Rx polling callback
6274 * @napi: napi polling structure
6275 * @budget: count of how many packets we should handle
6276 **/
6277 static int igb_poll(struct napi_struct *napi, int budget)
6278 {
6279 struct igb_q_vector *q_vector = container_of(napi,
6280 struct igb_q_vector,
6281 napi);
6282 bool clean_complete = true;
6283
6284 #ifdef CONFIG_IGB_DCA
6285 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6286 igb_update_dca(q_vector);
6287 #endif
6288 if (q_vector->tx.ring)
6289 clean_complete = igb_clean_tx_irq(q_vector);
6290
6291 if (q_vector->rx.ring)
6292 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6293
6294 /* If all work not completed, return budget and keep polling */
6295 if (!clean_complete)
6296 return budget;
6297
6298 /* If not enough Rx work done, exit the polling mode */
6299 napi_complete(napi);
6300 igb_ring_irq_enable(q_vector);
6301
6302 return 0;
6303 }
6304
6305 /**
6306 * igb_clean_tx_irq - Reclaim resources after transmit completes
6307 * @q_vector: pointer to q_vector containing needed info
6308 *
6309 * returns true if ring is completely cleaned
6310 **/
6311 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6312 {
6313 struct igb_adapter *adapter = q_vector->adapter;
6314 struct igb_ring *tx_ring = q_vector->tx.ring;
6315 struct igb_tx_buffer *tx_buffer;
6316 union e1000_adv_tx_desc *tx_desc;
6317 unsigned int total_bytes = 0, total_packets = 0;
6318 unsigned int budget = q_vector->tx.work_limit;
6319 unsigned int i = tx_ring->next_to_clean;
6320
6321 if (test_bit(__IGB_DOWN, &adapter->state))
6322 return true;
6323
6324 tx_buffer = &tx_ring->tx_buffer_info[i];
6325 tx_desc = IGB_TX_DESC(tx_ring, i);
6326 i -= tx_ring->count;
6327
6328 do {
6329 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6330
6331 /* if next_to_watch is not set then there is no work pending */
6332 if (!eop_desc)
6333 break;
6334
6335 /* prevent any other reads prior to eop_desc */
6336 read_barrier_depends();
6337
6338 /* if DD is not set pending work has not been completed */
6339 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6340 break;
6341
6342 /* clear next_to_watch to prevent false hangs */
6343 tx_buffer->next_to_watch = NULL;
6344
6345 /* update the statistics for this packet */
6346 total_bytes += tx_buffer->bytecount;
6347 total_packets += tx_buffer->gso_segs;
6348
6349 /* free the skb */
6350 dev_kfree_skb_any(tx_buffer->skb);
6351
6352 /* unmap skb header data */
6353 dma_unmap_single(tx_ring->dev,
6354 dma_unmap_addr(tx_buffer, dma),
6355 dma_unmap_len(tx_buffer, len),
6356 DMA_TO_DEVICE);
6357
6358 /* clear tx_buffer data */
6359 tx_buffer->skb = NULL;
6360 dma_unmap_len_set(tx_buffer, len, 0);
6361
6362 /* clear last DMA location and unmap remaining buffers */
6363 while (tx_desc != eop_desc) {
6364 tx_buffer++;
6365 tx_desc++;
6366 i++;
6367 if (unlikely(!i)) {
6368 i -= tx_ring->count;
6369 tx_buffer = tx_ring->tx_buffer_info;
6370 tx_desc = IGB_TX_DESC(tx_ring, 0);
6371 }
6372
6373 /* unmap any remaining paged data */
6374 if (dma_unmap_len(tx_buffer, len)) {
6375 dma_unmap_page(tx_ring->dev,
6376 dma_unmap_addr(tx_buffer, dma),
6377 dma_unmap_len(tx_buffer, len),
6378 DMA_TO_DEVICE);
6379 dma_unmap_len_set(tx_buffer, len, 0);
6380 }
6381 }
6382
6383 /* move us one more past the eop_desc for start of next pkt */
6384 tx_buffer++;
6385 tx_desc++;
6386 i++;
6387 if (unlikely(!i)) {
6388 i -= tx_ring->count;
6389 tx_buffer = tx_ring->tx_buffer_info;
6390 tx_desc = IGB_TX_DESC(tx_ring, 0);
6391 }
6392
6393 /* issue prefetch for next Tx descriptor */
6394 prefetch(tx_desc);
6395
6396 /* update budget accounting */
6397 budget--;
6398 } while (likely(budget));
6399
6400 netdev_tx_completed_queue(txring_txq(tx_ring),
6401 total_packets, total_bytes);
6402 i += tx_ring->count;
6403 tx_ring->next_to_clean = i;
6404 u64_stats_update_begin(&tx_ring->tx_syncp);
6405 tx_ring->tx_stats.bytes += total_bytes;
6406 tx_ring->tx_stats.packets += total_packets;
6407 u64_stats_update_end(&tx_ring->tx_syncp);
6408 q_vector->tx.total_bytes += total_bytes;
6409 q_vector->tx.total_packets += total_packets;
6410
6411 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6412 struct e1000_hw *hw = &adapter->hw;
6413
6414 /* Detect a transmit hang in hardware, this serializes the
6415 * check with the clearing of time_stamp and movement of i
6416 */
6417 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6418 if (tx_buffer->next_to_watch &&
6419 time_after(jiffies, tx_buffer->time_stamp +
6420 (adapter->tx_timeout_factor * HZ)) &&
6421 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6422
6423 /* detected Tx unit hang */
6424 dev_err(tx_ring->dev,
6425 "Detected Tx Unit Hang\n"
6426 " Tx Queue <%d>\n"
6427 " TDH <%x>\n"
6428 " TDT <%x>\n"
6429 " next_to_use <%x>\n"
6430 " next_to_clean <%x>\n"
6431 "buffer_info[next_to_clean]\n"
6432 " time_stamp <%lx>\n"
6433 " next_to_watch <%p>\n"
6434 " jiffies <%lx>\n"
6435 " desc.status <%x>\n",
6436 tx_ring->queue_index,
6437 rd32(E1000_TDH(tx_ring->reg_idx)),
6438 readl(tx_ring->tail),
6439 tx_ring->next_to_use,
6440 tx_ring->next_to_clean,
6441 tx_buffer->time_stamp,
6442 tx_buffer->next_to_watch,
6443 jiffies,
6444 tx_buffer->next_to_watch->wb.status);
6445 netif_stop_subqueue(tx_ring->netdev,
6446 tx_ring->queue_index);
6447
6448 /* we are about to reset, no point in enabling stuff */
6449 return true;
6450 }
6451 }
6452
6453 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6454 if (unlikely(total_packets &&
6455 netif_carrier_ok(tx_ring->netdev) &&
6456 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6457 /* Make sure that anybody stopping the queue after this
6458 * sees the new next_to_clean.
6459 */
6460 smp_mb();
6461 if (__netif_subqueue_stopped(tx_ring->netdev,
6462 tx_ring->queue_index) &&
6463 !(test_bit(__IGB_DOWN, &adapter->state))) {
6464 netif_wake_subqueue(tx_ring->netdev,
6465 tx_ring->queue_index);
6466
6467 u64_stats_update_begin(&tx_ring->tx_syncp);
6468 tx_ring->tx_stats.restart_queue++;
6469 u64_stats_update_end(&tx_ring->tx_syncp);
6470 }
6471 }
6472
6473 return !!budget;
6474 }
6475
6476 /**
6477 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6478 * @rx_ring: rx descriptor ring to store buffers on
6479 * @old_buff: donor buffer to have page reused
6480 *
6481 * Synchronizes page for reuse by the adapter
6482 **/
6483 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6484 struct igb_rx_buffer *old_buff)
6485 {
6486 struct igb_rx_buffer *new_buff;
6487 u16 nta = rx_ring->next_to_alloc;
6488
6489 new_buff = &rx_ring->rx_buffer_info[nta];
6490
6491 /* update, and store next to alloc */
6492 nta++;
6493 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6494
6495 /* transfer page from old buffer to new buffer */
6496 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6497
6498 /* sync the buffer for use by the device */
6499 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6500 old_buff->page_offset,
6501 IGB_RX_BUFSZ,
6502 DMA_FROM_DEVICE);
6503 }
6504
6505 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6506 struct page *page,
6507 unsigned int truesize)
6508 {
6509 /* avoid re-using remote pages */
6510 if (unlikely(page_to_nid(page) != numa_node_id()))
6511 return false;
6512
6513 #if (PAGE_SIZE < 8192)
6514 /* if we are only owner of page we can reuse it */
6515 if (unlikely(page_count(page) != 1))
6516 return false;
6517
6518 /* flip page offset to other buffer */
6519 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6520
6521 /* since we are the only owner of the page and we need to
6522 * increment it, just set the value to 2 in order to avoid
6523 * an unnecessary locked operation
6524 */
6525 atomic_set(&page->_count, 2);
6526 #else
6527 /* move offset up to the next cache line */
6528 rx_buffer->page_offset += truesize;
6529
6530 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6531 return false;
6532
6533 /* bump ref count on page before it is given to the stack */
6534 get_page(page);
6535 #endif
6536
6537 return true;
6538 }
6539
6540 /**
6541 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6542 * @rx_ring: rx descriptor ring to transact packets on
6543 * @rx_buffer: buffer containing page to add
6544 * @rx_desc: descriptor containing length of buffer written by hardware
6545 * @skb: sk_buff to place the data into
6546 *
6547 * This function will add the data contained in rx_buffer->page to the skb.
6548 * This is done either through a direct copy if the data in the buffer is
6549 * less than the skb header size, otherwise it will just attach the page as
6550 * a frag to the skb.
6551 *
6552 * The function will then update the page offset if necessary and return
6553 * true if the buffer can be reused by the adapter.
6554 **/
6555 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6556 struct igb_rx_buffer *rx_buffer,
6557 union e1000_adv_rx_desc *rx_desc,
6558 struct sk_buff *skb)
6559 {
6560 struct page *page = rx_buffer->page;
6561 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6562 #if (PAGE_SIZE < 8192)
6563 unsigned int truesize = IGB_RX_BUFSZ;
6564 #else
6565 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6566 #endif
6567
6568 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6569 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6570
6571 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6572 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6573 va += IGB_TS_HDR_LEN;
6574 size -= IGB_TS_HDR_LEN;
6575 }
6576
6577 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6578
6579 /* we can reuse buffer as-is, just make sure it is local */
6580 if (likely(page_to_nid(page) == numa_node_id()))
6581 return true;
6582
6583 /* this page cannot be reused so discard it */
6584 put_page(page);
6585 return false;
6586 }
6587
6588 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6589 rx_buffer->page_offset, size, truesize);
6590
6591 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6592 }
6593
6594 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6595 union e1000_adv_rx_desc *rx_desc,
6596 struct sk_buff *skb)
6597 {
6598 struct igb_rx_buffer *rx_buffer;
6599 struct page *page;
6600
6601 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6602
6603 page = rx_buffer->page;
6604 prefetchw(page);
6605
6606 if (likely(!skb)) {
6607 void *page_addr = page_address(page) +
6608 rx_buffer->page_offset;
6609
6610 /* prefetch first cache line of first page */
6611 prefetch(page_addr);
6612 #if L1_CACHE_BYTES < 128
6613 prefetch(page_addr + L1_CACHE_BYTES);
6614 #endif
6615
6616 /* allocate a skb to store the frags */
6617 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6618 IGB_RX_HDR_LEN);
6619 if (unlikely(!skb)) {
6620 rx_ring->rx_stats.alloc_failed++;
6621 return NULL;
6622 }
6623
6624 /* we will be copying header into skb->data in
6625 * pskb_may_pull so it is in our interest to prefetch
6626 * it now to avoid a possible cache miss
6627 */
6628 prefetchw(skb->data);
6629 }
6630
6631 /* we are reusing so sync this buffer for CPU use */
6632 dma_sync_single_range_for_cpu(rx_ring->dev,
6633 rx_buffer->dma,
6634 rx_buffer->page_offset,
6635 IGB_RX_BUFSZ,
6636 DMA_FROM_DEVICE);
6637
6638 /* pull page into skb */
6639 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6640 /* hand second half of page back to the ring */
6641 igb_reuse_rx_page(rx_ring, rx_buffer);
6642 } else {
6643 /* we are not reusing the buffer so unmap it */
6644 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6645 PAGE_SIZE, DMA_FROM_DEVICE);
6646 }
6647
6648 /* clear contents of rx_buffer */
6649 rx_buffer->page = NULL;
6650
6651 return skb;
6652 }
6653
6654 static inline void igb_rx_checksum(struct igb_ring *ring,
6655 union e1000_adv_rx_desc *rx_desc,
6656 struct sk_buff *skb)
6657 {
6658 skb_checksum_none_assert(skb);
6659
6660 /* Ignore Checksum bit is set */
6661 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6662 return;
6663
6664 /* Rx checksum disabled via ethtool */
6665 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6666 return;
6667
6668 /* TCP/UDP checksum error bit is set */
6669 if (igb_test_staterr(rx_desc,
6670 E1000_RXDEXT_STATERR_TCPE |
6671 E1000_RXDEXT_STATERR_IPE)) {
6672 /* work around errata with sctp packets where the TCPE aka
6673 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6674 * packets, (aka let the stack check the crc32c)
6675 */
6676 if (!((skb->len == 60) &&
6677 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6678 u64_stats_update_begin(&ring->rx_syncp);
6679 ring->rx_stats.csum_err++;
6680 u64_stats_update_end(&ring->rx_syncp);
6681 }
6682 /* let the stack verify checksum errors */
6683 return;
6684 }
6685 /* It must be a TCP or UDP packet with a valid checksum */
6686 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6687 E1000_RXD_STAT_UDPCS))
6688 skb->ip_summed = CHECKSUM_UNNECESSARY;
6689
6690 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6691 le32_to_cpu(rx_desc->wb.upper.status_error));
6692 }
6693
6694 static inline void igb_rx_hash(struct igb_ring *ring,
6695 union e1000_adv_rx_desc *rx_desc,
6696 struct sk_buff *skb)
6697 {
6698 if (ring->netdev->features & NETIF_F_RXHASH)
6699 skb_set_hash(skb,
6700 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6701 PKT_HASH_TYPE_L3);
6702 }
6703
6704 /**
6705 * igb_is_non_eop - process handling of non-EOP buffers
6706 * @rx_ring: Rx ring being processed
6707 * @rx_desc: Rx descriptor for current buffer
6708 * @skb: current socket buffer containing buffer in progress
6709 *
6710 * This function updates next to clean. If the buffer is an EOP buffer
6711 * this function exits returning false, otherwise it will place the
6712 * sk_buff in the next buffer to be chained and return true indicating
6713 * that this is in fact a non-EOP buffer.
6714 **/
6715 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6716 union e1000_adv_rx_desc *rx_desc)
6717 {
6718 u32 ntc = rx_ring->next_to_clean + 1;
6719
6720 /* fetch, update, and store next to clean */
6721 ntc = (ntc < rx_ring->count) ? ntc : 0;
6722 rx_ring->next_to_clean = ntc;
6723
6724 prefetch(IGB_RX_DESC(rx_ring, ntc));
6725
6726 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6727 return false;
6728
6729 return true;
6730 }
6731
6732 /**
6733 * igb_get_headlen - determine size of header for LRO/GRO
6734 * @data: pointer to the start of the headers
6735 * @max_len: total length of section to find headers in
6736 *
6737 * This function is meant to determine the length of headers that will
6738 * be recognized by hardware for LRO, and GRO offloads. The main
6739 * motivation of doing this is to only perform one pull for IPv4 TCP
6740 * packets so that we can do basic things like calculating the gso_size
6741 * based on the average data per packet.
6742 **/
6743 static unsigned int igb_get_headlen(unsigned char *data,
6744 unsigned int max_len)
6745 {
6746 union {
6747 unsigned char *network;
6748 /* l2 headers */
6749 struct ethhdr *eth;
6750 struct vlan_hdr *vlan;
6751 /* l3 headers */
6752 struct iphdr *ipv4;
6753 struct ipv6hdr *ipv6;
6754 } hdr;
6755 __be16 protocol;
6756 u8 nexthdr = 0; /* default to not TCP */
6757 u8 hlen;
6758
6759 /* this should never happen, but better safe than sorry */
6760 if (max_len < ETH_HLEN)
6761 return max_len;
6762
6763 /* initialize network frame pointer */
6764 hdr.network = data;
6765
6766 /* set first protocol and move network header forward */
6767 protocol = hdr.eth->h_proto;
6768 hdr.network += ETH_HLEN;
6769
6770 /* handle any vlan tag if present */
6771 if (protocol == htons(ETH_P_8021Q)) {
6772 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6773 return max_len;
6774
6775 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6776 hdr.network += VLAN_HLEN;
6777 }
6778
6779 /* handle L3 protocols */
6780 if (protocol == htons(ETH_P_IP)) {
6781 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6782 return max_len;
6783
6784 /* access ihl as a u8 to avoid unaligned access on ia64 */
6785 hlen = (hdr.network[0] & 0x0F) << 2;
6786
6787 /* verify hlen meets minimum size requirements */
6788 if (hlen < sizeof(struct iphdr))
6789 return hdr.network - data;
6790
6791 /* record next protocol if header is present */
6792 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6793 nexthdr = hdr.ipv4->protocol;
6794 } else if (protocol == htons(ETH_P_IPV6)) {
6795 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6796 return max_len;
6797
6798 /* record next protocol */
6799 nexthdr = hdr.ipv6->nexthdr;
6800 hlen = sizeof(struct ipv6hdr);
6801 } else {
6802 return hdr.network - data;
6803 }
6804
6805 /* relocate pointer to start of L4 header */
6806 hdr.network += hlen;
6807
6808 /* finally sort out TCP */
6809 if (nexthdr == IPPROTO_TCP) {
6810 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6811 return max_len;
6812
6813 /* access doff as a u8 to avoid unaligned access on ia64 */
6814 hlen = (hdr.network[12] & 0xF0) >> 2;
6815
6816 /* verify hlen meets minimum size requirements */
6817 if (hlen < sizeof(struct tcphdr))
6818 return hdr.network - data;
6819
6820 hdr.network += hlen;
6821 } else if (nexthdr == IPPROTO_UDP) {
6822 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6823 return max_len;
6824
6825 hdr.network += sizeof(struct udphdr);
6826 }
6827
6828 /* If everything has gone correctly hdr.network should be the
6829 * data section of the packet and will be the end of the header.
6830 * If not then it probably represents the end of the last recognized
6831 * header.
6832 */
6833 if ((hdr.network - data) < max_len)
6834 return hdr.network - data;
6835 else
6836 return max_len;
6837 }
6838
6839 /**
6840 * igb_pull_tail - igb specific version of skb_pull_tail
6841 * @rx_ring: rx descriptor ring packet is being transacted on
6842 * @rx_desc: pointer to the EOP Rx descriptor
6843 * @skb: pointer to current skb being adjusted
6844 *
6845 * This function is an igb specific version of __pskb_pull_tail. The
6846 * main difference between this version and the original function is that
6847 * this function can make several assumptions about the state of things
6848 * that allow for significant optimizations versus the standard function.
6849 * As a result we can do things like drop a frag and maintain an accurate
6850 * truesize for the skb.
6851 */
6852 static void igb_pull_tail(struct igb_ring *rx_ring,
6853 union e1000_adv_rx_desc *rx_desc,
6854 struct sk_buff *skb)
6855 {
6856 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6857 unsigned char *va;
6858 unsigned int pull_len;
6859
6860 /* it is valid to use page_address instead of kmap since we are
6861 * working with pages allocated out of the lomem pool per
6862 * alloc_page(GFP_ATOMIC)
6863 */
6864 va = skb_frag_address(frag);
6865
6866 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6867 /* retrieve timestamp from buffer */
6868 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6869
6870 /* update pointers to remove timestamp header */
6871 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6872 frag->page_offset += IGB_TS_HDR_LEN;
6873 skb->data_len -= IGB_TS_HDR_LEN;
6874 skb->len -= IGB_TS_HDR_LEN;
6875
6876 /* move va to start of packet data */
6877 va += IGB_TS_HDR_LEN;
6878 }
6879
6880 /* we need the header to contain the greater of either ETH_HLEN or
6881 * 60 bytes if the skb->len is less than 60 for skb_pad.
6882 */
6883 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6884
6885 /* align pull length to size of long to optimize memcpy performance */
6886 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6887
6888 /* update all of the pointers */
6889 skb_frag_size_sub(frag, pull_len);
6890 frag->page_offset += pull_len;
6891 skb->data_len -= pull_len;
6892 skb->tail += pull_len;
6893 }
6894
6895 /**
6896 * igb_cleanup_headers - Correct corrupted or empty headers
6897 * @rx_ring: rx descriptor ring packet is being transacted on
6898 * @rx_desc: pointer to the EOP Rx descriptor
6899 * @skb: pointer to current skb being fixed
6900 *
6901 * Address the case where we are pulling data in on pages only
6902 * and as such no data is present in the skb header.
6903 *
6904 * In addition if skb is not at least 60 bytes we need to pad it so that
6905 * it is large enough to qualify as a valid Ethernet frame.
6906 *
6907 * Returns true if an error was encountered and skb was freed.
6908 **/
6909 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6910 union e1000_adv_rx_desc *rx_desc,
6911 struct sk_buff *skb)
6912 {
6913 if (unlikely((igb_test_staterr(rx_desc,
6914 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6915 struct net_device *netdev = rx_ring->netdev;
6916 if (!(netdev->features & NETIF_F_RXALL)) {
6917 dev_kfree_skb_any(skb);
6918 return true;
6919 }
6920 }
6921
6922 /* place header in linear portion of buffer */
6923 if (skb_is_nonlinear(skb))
6924 igb_pull_tail(rx_ring, rx_desc, skb);
6925
6926 /* if skb_pad returns an error the skb was freed */
6927 if (unlikely(skb->len < 60)) {
6928 int pad_len = 60 - skb->len;
6929
6930 if (skb_pad(skb, pad_len))
6931 return true;
6932 __skb_put(skb, pad_len);
6933 }
6934
6935 return false;
6936 }
6937
6938 /**
6939 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6940 * @rx_ring: rx descriptor ring packet is being transacted on
6941 * @rx_desc: pointer to the EOP Rx descriptor
6942 * @skb: pointer to current skb being populated
6943 *
6944 * This function checks the ring, descriptor, and packet information in
6945 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6946 * other fields within the skb.
6947 **/
6948 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6949 union e1000_adv_rx_desc *rx_desc,
6950 struct sk_buff *skb)
6951 {
6952 struct net_device *dev = rx_ring->netdev;
6953
6954 igb_rx_hash(rx_ring, rx_desc, skb);
6955
6956 igb_rx_checksum(rx_ring, rx_desc, skb);
6957
6958 igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6959
6960 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6961 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6962 u16 vid;
6963 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6964 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6965 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6966 else
6967 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6968
6969 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6970 }
6971
6972 skb_record_rx_queue(skb, rx_ring->queue_index);
6973
6974 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6975 }
6976
6977 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6978 {
6979 struct igb_ring *rx_ring = q_vector->rx.ring;
6980 struct sk_buff *skb = rx_ring->skb;
6981 unsigned int total_bytes = 0, total_packets = 0;
6982 u16 cleaned_count = igb_desc_unused(rx_ring);
6983
6984 while (likely(total_packets < budget)) {
6985 union e1000_adv_rx_desc *rx_desc;
6986
6987 /* return some buffers to hardware, one at a time is too slow */
6988 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6989 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6990 cleaned_count = 0;
6991 }
6992
6993 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6994
6995 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6996 break;
6997
6998 /* This memory barrier is needed to keep us from reading
6999 * any other fields out of the rx_desc until we know the
7000 * RXD_STAT_DD bit is set
7001 */
7002 rmb();
7003
7004 /* retrieve a buffer from the ring */
7005 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7006
7007 /* exit if we failed to retrieve a buffer */
7008 if (!skb)
7009 break;
7010
7011 cleaned_count++;
7012
7013 /* fetch next buffer in frame if non-eop */
7014 if (igb_is_non_eop(rx_ring, rx_desc))
7015 continue;
7016
7017 /* verify the packet layout is correct */
7018 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7019 skb = NULL;
7020 continue;
7021 }
7022
7023 /* probably a little skewed due to removing CRC */
7024 total_bytes += skb->len;
7025
7026 /* populate checksum, timestamp, VLAN, and protocol */
7027 igb_process_skb_fields(rx_ring, rx_desc, skb);
7028
7029 napi_gro_receive(&q_vector->napi, skb);
7030
7031 /* reset skb pointer */
7032 skb = NULL;
7033
7034 /* update budget accounting */
7035 total_packets++;
7036 }
7037
7038 /* place incomplete frames back on ring for completion */
7039 rx_ring->skb = skb;
7040
7041 u64_stats_update_begin(&rx_ring->rx_syncp);
7042 rx_ring->rx_stats.packets += total_packets;
7043 rx_ring->rx_stats.bytes += total_bytes;
7044 u64_stats_update_end(&rx_ring->rx_syncp);
7045 q_vector->rx.total_packets += total_packets;
7046 q_vector->rx.total_bytes += total_bytes;
7047
7048 if (cleaned_count)
7049 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7050
7051 return (total_packets < budget);
7052 }
7053
7054 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7055 struct igb_rx_buffer *bi)
7056 {
7057 struct page *page = bi->page;
7058 dma_addr_t dma;
7059
7060 /* since we are recycling buffers we should seldom need to alloc */
7061 if (likely(page))
7062 return true;
7063
7064 /* alloc new page for storage */
7065 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7066 if (unlikely(!page)) {
7067 rx_ring->rx_stats.alloc_failed++;
7068 return false;
7069 }
7070
7071 /* map page for use */
7072 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7073
7074 /* if mapping failed free memory back to system since
7075 * there isn't much point in holding memory we can't use
7076 */
7077 if (dma_mapping_error(rx_ring->dev, dma)) {
7078 __free_page(page);
7079
7080 rx_ring->rx_stats.alloc_failed++;
7081 return false;
7082 }
7083
7084 bi->dma = dma;
7085 bi->page = page;
7086 bi->page_offset = 0;
7087
7088 return true;
7089 }
7090
7091 /**
7092 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7093 * @adapter: address of board private structure
7094 **/
7095 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7096 {
7097 union e1000_adv_rx_desc *rx_desc;
7098 struct igb_rx_buffer *bi;
7099 u16 i = rx_ring->next_to_use;
7100
7101 /* nothing to do */
7102 if (!cleaned_count)
7103 return;
7104
7105 rx_desc = IGB_RX_DESC(rx_ring, i);
7106 bi = &rx_ring->rx_buffer_info[i];
7107 i -= rx_ring->count;
7108
7109 do {
7110 if (!igb_alloc_mapped_page(rx_ring, bi))
7111 break;
7112
7113 /* Refresh the desc even if buffer_addrs didn't change
7114 * because each write-back erases this info.
7115 */
7116 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7117
7118 rx_desc++;
7119 bi++;
7120 i++;
7121 if (unlikely(!i)) {
7122 rx_desc = IGB_RX_DESC(rx_ring, 0);
7123 bi = rx_ring->rx_buffer_info;
7124 i -= rx_ring->count;
7125 }
7126
7127 /* clear the hdr_addr for the next_to_use descriptor */
7128 rx_desc->read.hdr_addr = 0;
7129
7130 cleaned_count--;
7131 } while (cleaned_count);
7132
7133 i += rx_ring->count;
7134
7135 if (rx_ring->next_to_use != i) {
7136 /* record the next descriptor to use */
7137 rx_ring->next_to_use = i;
7138
7139 /* update next to alloc since we have filled the ring */
7140 rx_ring->next_to_alloc = i;
7141
7142 /* Force memory writes to complete before letting h/w
7143 * know there are new descriptors to fetch. (Only
7144 * applicable for weak-ordered memory model archs,
7145 * such as IA-64).
7146 */
7147 wmb();
7148 writel(i, rx_ring->tail);
7149 }
7150 }
7151
7152 /**
7153 * igb_mii_ioctl -
7154 * @netdev:
7155 * @ifreq:
7156 * @cmd:
7157 **/
7158 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7159 {
7160 struct igb_adapter *adapter = netdev_priv(netdev);
7161 struct mii_ioctl_data *data = if_mii(ifr);
7162
7163 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7164 return -EOPNOTSUPP;
7165
7166 switch (cmd) {
7167 case SIOCGMIIPHY:
7168 data->phy_id = adapter->hw.phy.addr;
7169 break;
7170 case SIOCGMIIREG:
7171 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7172 &data->val_out))
7173 return -EIO;
7174 break;
7175 case SIOCSMIIREG:
7176 default:
7177 return -EOPNOTSUPP;
7178 }
7179 return 0;
7180 }
7181
7182 /**
7183 * igb_ioctl -
7184 * @netdev:
7185 * @ifreq:
7186 * @cmd:
7187 **/
7188 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7189 {
7190 switch (cmd) {
7191 case SIOCGMIIPHY:
7192 case SIOCGMIIREG:
7193 case SIOCSMIIREG:
7194 return igb_mii_ioctl(netdev, ifr, cmd);
7195 case SIOCGHWTSTAMP:
7196 return igb_ptp_get_ts_config(netdev, ifr);
7197 case SIOCSHWTSTAMP:
7198 return igb_ptp_set_ts_config(netdev, ifr);
7199 default:
7200 return -EOPNOTSUPP;
7201 }
7202 }
7203
7204 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7205 {
7206 struct igb_adapter *adapter = hw->back;
7207
7208 if (pcie_capability_read_word(adapter->pdev, reg, value))
7209 return -E1000_ERR_CONFIG;
7210
7211 return 0;
7212 }
7213
7214 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7215 {
7216 struct igb_adapter *adapter = hw->back;
7217
7218 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7219 return -E1000_ERR_CONFIG;
7220
7221 return 0;
7222 }
7223
7224 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7225 {
7226 struct igb_adapter *adapter = netdev_priv(netdev);
7227 struct e1000_hw *hw = &adapter->hw;
7228 u32 ctrl, rctl;
7229 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7230
7231 if (enable) {
7232 /* enable VLAN tag insert/strip */
7233 ctrl = rd32(E1000_CTRL);
7234 ctrl |= E1000_CTRL_VME;
7235 wr32(E1000_CTRL, ctrl);
7236
7237 /* Disable CFI check */
7238 rctl = rd32(E1000_RCTL);
7239 rctl &= ~E1000_RCTL_CFIEN;
7240 wr32(E1000_RCTL, rctl);
7241 } else {
7242 /* disable VLAN tag insert/strip */
7243 ctrl = rd32(E1000_CTRL);
7244 ctrl &= ~E1000_CTRL_VME;
7245 wr32(E1000_CTRL, ctrl);
7246 }
7247
7248 igb_rlpml_set(adapter);
7249 }
7250
7251 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7252 __be16 proto, u16 vid)
7253 {
7254 struct igb_adapter *adapter = netdev_priv(netdev);
7255 struct e1000_hw *hw = &adapter->hw;
7256 int pf_id = adapter->vfs_allocated_count;
7257
7258 /* attempt to add filter to vlvf array */
7259 igb_vlvf_set(adapter, vid, true, pf_id);
7260
7261 /* add the filter since PF can receive vlans w/o entry in vlvf */
7262 igb_vfta_set(hw, vid, true);
7263
7264 set_bit(vid, adapter->active_vlans);
7265
7266 return 0;
7267 }
7268
7269 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7270 __be16 proto, u16 vid)
7271 {
7272 struct igb_adapter *adapter = netdev_priv(netdev);
7273 struct e1000_hw *hw = &adapter->hw;
7274 int pf_id = adapter->vfs_allocated_count;
7275 s32 err;
7276
7277 /* remove vlan from VLVF table array */
7278 err = igb_vlvf_set(adapter, vid, false, pf_id);
7279
7280 /* if vid was not present in VLVF just remove it from table */
7281 if (err)
7282 igb_vfta_set(hw, vid, false);
7283
7284 clear_bit(vid, adapter->active_vlans);
7285
7286 return 0;
7287 }
7288
7289 static void igb_restore_vlan(struct igb_adapter *adapter)
7290 {
7291 u16 vid;
7292
7293 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7294
7295 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7296 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7297 }
7298
7299 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7300 {
7301 struct pci_dev *pdev = adapter->pdev;
7302 struct e1000_mac_info *mac = &adapter->hw.mac;
7303
7304 mac->autoneg = 0;
7305
7306 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7307 * for the switch() below to work
7308 */
7309 if ((spd & 1) || (dplx & ~1))
7310 goto err_inval;
7311
7312 /* Fiber NIC's only allow 1000 gbps Full duplex
7313 * and 100Mbps Full duplex for 100baseFx sfp
7314 */
7315 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7316 switch (spd + dplx) {
7317 case SPEED_10 + DUPLEX_HALF:
7318 case SPEED_10 + DUPLEX_FULL:
7319 case SPEED_100 + DUPLEX_HALF:
7320 goto err_inval;
7321 default:
7322 break;
7323 }
7324 }
7325
7326 switch (spd + dplx) {
7327 case SPEED_10 + DUPLEX_HALF:
7328 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7329 break;
7330 case SPEED_10 + DUPLEX_FULL:
7331 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7332 break;
7333 case SPEED_100 + DUPLEX_HALF:
7334 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7335 break;
7336 case SPEED_100 + DUPLEX_FULL:
7337 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7338 break;
7339 case SPEED_1000 + DUPLEX_FULL:
7340 mac->autoneg = 1;
7341 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7342 break;
7343 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7344 default:
7345 goto err_inval;
7346 }
7347
7348 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7349 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7350
7351 return 0;
7352
7353 err_inval:
7354 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7355 return -EINVAL;
7356 }
7357
7358 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7359 bool runtime)
7360 {
7361 struct net_device *netdev = pci_get_drvdata(pdev);
7362 struct igb_adapter *adapter = netdev_priv(netdev);
7363 struct e1000_hw *hw = &adapter->hw;
7364 u32 ctrl, rctl, status;
7365 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7366 #ifdef CONFIG_PM
7367 int retval = 0;
7368 #endif
7369
7370 netif_device_detach(netdev);
7371
7372 if (netif_running(netdev))
7373 __igb_close(netdev, true);
7374
7375 igb_clear_interrupt_scheme(adapter);
7376
7377 #ifdef CONFIG_PM
7378 retval = pci_save_state(pdev);
7379 if (retval)
7380 return retval;
7381 #endif
7382
7383 status = rd32(E1000_STATUS);
7384 if (status & E1000_STATUS_LU)
7385 wufc &= ~E1000_WUFC_LNKC;
7386
7387 if (wufc) {
7388 igb_setup_rctl(adapter);
7389 igb_set_rx_mode(netdev);
7390
7391 /* turn on all-multi mode if wake on multicast is enabled */
7392 if (wufc & E1000_WUFC_MC) {
7393 rctl = rd32(E1000_RCTL);
7394 rctl |= E1000_RCTL_MPE;
7395 wr32(E1000_RCTL, rctl);
7396 }
7397
7398 ctrl = rd32(E1000_CTRL);
7399 /* advertise wake from D3Cold */
7400 #define E1000_CTRL_ADVD3WUC 0x00100000
7401 /* phy power management enable */
7402 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7403 ctrl |= E1000_CTRL_ADVD3WUC;
7404 wr32(E1000_CTRL, ctrl);
7405
7406 /* Allow time for pending master requests to run */
7407 igb_disable_pcie_master(hw);
7408
7409 wr32(E1000_WUC, E1000_WUC_PME_EN);
7410 wr32(E1000_WUFC, wufc);
7411 } else {
7412 wr32(E1000_WUC, 0);
7413 wr32(E1000_WUFC, 0);
7414 }
7415
7416 *enable_wake = wufc || adapter->en_mng_pt;
7417 if (!*enable_wake)
7418 igb_power_down_link(adapter);
7419 else
7420 igb_power_up_link(adapter);
7421
7422 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7423 * would have already happened in close and is redundant.
7424 */
7425 igb_release_hw_control(adapter);
7426
7427 pci_disable_device(pdev);
7428
7429 return 0;
7430 }
7431
7432 #ifdef CONFIG_PM
7433 #ifdef CONFIG_PM_SLEEP
7434 static int igb_suspend(struct device *dev)
7435 {
7436 int retval;
7437 bool wake;
7438 struct pci_dev *pdev = to_pci_dev(dev);
7439
7440 retval = __igb_shutdown(pdev, &wake, 0);
7441 if (retval)
7442 return retval;
7443
7444 if (wake) {
7445 pci_prepare_to_sleep(pdev);
7446 } else {
7447 pci_wake_from_d3(pdev, false);
7448 pci_set_power_state(pdev, PCI_D3hot);
7449 }
7450
7451 return 0;
7452 }
7453 #endif /* CONFIG_PM_SLEEP */
7454
7455 static int igb_resume(struct device *dev)
7456 {
7457 struct pci_dev *pdev = to_pci_dev(dev);
7458 struct net_device *netdev = pci_get_drvdata(pdev);
7459 struct igb_adapter *adapter = netdev_priv(netdev);
7460 struct e1000_hw *hw = &adapter->hw;
7461 u32 err;
7462
7463 pci_set_power_state(pdev, PCI_D0);
7464 pci_restore_state(pdev);
7465 pci_save_state(pdev);
7466
7467 err = pci_enable_device_mem(pdev);
7468 if (err) {
7469 dev_err(&pdev->dev,
7470 "igb: Cannot enable PCI device from suspend\n");
7471 return err;
7472 }
7473 pci_set_master(pdev);
7474
7475 pci_enable_wake(pdev, PCI_D3hot, 0);
7476 pci_enable_wake(pdev, PCI_D3cold, 0);
7477
7478 if (igb_init_interrupt_scheme(adapter, true)) {
7479 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7480 return -ENOMEM;
7481 }
7482
7483 igb_reset(adapter);
7484
7485 /* let the f/w know that the h/w is now under the control of the
7486 * driver.
7487 */
7488 igb_get_hw_control(adapter);
7489
7490 wr32(E1000_WUS, ~0);
7491
7492 if (netdev->flags & IFF_UP) {
7493 rtnl_lock();
7494 err = __igb_open(netdev, true);
7495 rtnl_unlock();
7496 if (err)
7497 return err;
7498 }
7499
7500 netif_device_attach(netdev);
7501 return 0;
7502 }
7503
7504 #ifdef CONFIG_PM_RUNTIME
7505 static int igb_runtime_idle(struct device *dev)
7506 {
7507 struct pci_dev *pdev = to_pci_dev(dev);
7508 struct net_device *netdev = pci_get_drvdata(pdev);
7509 struct igb_adapter *adapter = netdev_priv(netdev);
7510
7511 if (!igb_has_link(adapter))
7512 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7513
7514 return -EBUSY;
7515 }
7516
7517 static int igb_runtime_suspend(struct device *dev)
7518 {
7519 struct pci_dev *pdev = to_pci_dev(dev);
7520 int retval;
7521 bool wake;
7522
7523 retval = __igb_shutdown(pdev, &wake, 1);
7524 if (retval)
7525 return retval;
7526
7527 if (wake) {
7528 pci_prepare_to_sleep(pdev);
7529 } else {
7530 pci_wake_from_d3(pdev, false);
7531 pci_set_power_state(pdev, PCI_D3hot);
7532 }
7533
7534 return 0;
7535 }
7536
7537 static int igb_runtime_resume(struct device *dev)
7538 {
7539 return igb_resume(dev);
7540 }
7541 #endif /* CONFIG_PM_RUNTIME */
7542 #endif
7543
7544 static void igb_shutdown(struct pci_dev *pdev)
7545 {
7546 bool wake;
7547
7548 __igb_shutdown(pdev, &wake, 0);
7549
7550 if (system_state == SYSTEM_POWER_OFF) {
7551 pci_wake_from_d3(pdev, wake);
7552 pci_set_power_state(pdev, PCI_D3hot);
7553 }
7554 }
7555
7556 #ifdef CONFIG_PCI_IOV
7557 static int igb_sriov_reinit(struct pci_dev *dev)
7558 {
7559 struct net_device *netdev = pci_get_drvdata(dev);
7560 struct igb_adapter *adapter = netdev_priv(netdev);
7561 struct pci_dev *pdev = adapter->pdev;
7562
7563 rtnl_lock();
7564
7565 if (netif_running(netdev))
7566 igb_close(netdev);
7567
7568 igb_clear_interrupt_scheme(adapter);
7569
7570 igb_init_queue_configuration(adapter);
7571
7572 if (igb_init_interrupt_scheme(adapter, true)) {
7573 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7574 return -ENOMEM;
7575 }
7576
7577 if (netif_running(netdev))
7578 igb_open(netdev);
7579
7580 rtnl_unlock();
7581
7582 return 0;
7583 }
7584
7585 static int igb_pci_disable_sriov(struct pci_dev *dev)
7586 {
7587 int err = igb_disable_sriov(dev);
7588
7589 if (!err)
7590 err = igb_sriov_reinit(dev);
7591
7592 return err;
7593 }
7594
7595 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7596 {
7597 int err = igb_enable_sriov(dev, num_vfs);
7598
7599 if (err)
7600 goto out;
7601
7602 err = igb_sriov_reinit(dev);
7603 if (!err)
7604 return num_vfs;
7605
7606 out:
7607 return err;
7608 }
7609
7610 #endif
7611 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7612 {
7613 #ifdef CONFIG_PCI_IOV
7614 if (num_vfs == 0)
7615 return igb_pci_disable_sriov(dev);
7616 else
7617 return igb_pci_enable_sriov(dev, num_vfs);
7618 #endif
7619 return 0;
7620 }
7621
7622 #ifdef CONFIG_NET_POLL_CONTROLLER
7623 /* Polling 'interrupt' - used by things like netconsole to send skbs
7624 * without having to re-enable interrupts. It's not called while
7625 * the interrupt routine is executing.
7626 */
7627 static void igb_netpoll(struct net_device *netdev)
7628 {
7629 struct igb_adapter *adapter = netdev_priv(netdev);
7630 struct e1000_hw *hw = &adapter->hw;
7631 struct igb_q_vector *q_vector;
7632 int i;
7633
7634 for (i = 0; i < adapter->num_q_vectors; i++) {
7635 q_vector = adapter->q_vector[i];
7636 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7637 wr32(E1000_EIMC, q_vector->eims_value);
7638 else
7639 igb_irq_disable(adapter);
7640 napi_schedule(&q_vector->napi);
7641 }
7642 }
7643 #endif /* CONFIG_NET_POLL_CONTROLLER */
7644
7645 /**
7646 * igb_io_error_detected - called when PCI error is detected
7647 * @pdev: Pointer to PCI device
7648 * @state: The current pci connection state
7649 *
7650 * This function is called after a PCI bus error affecting
7651 * this device has been detected.
7652 **/
7653 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7654 pci_channel_state_t state)
7655 {
7656 struct net_device *netdev = pci_get_drvdata(pdev);
7657 struct igb_adapter *adapter = netdev_priv(netdev);
7658
7659 netif_device_detach(netdev);
7660
7661 if (state == pci_channel_io_perm_failure)
7662 return PCI_ERS_RESULT_DISCONNECT;
7663
7664 if (netif_running(netdev))
7665 igb_down(adapter);
7666 pci_disable_device(pdev);
7667
7668 /* Request a slot slot reset. */
7669 return PCI_ERS_RESULT_NEED_RESET;
7670 }
7671
7672 /**
7673 * igb_io_slot_reset - called after the pci bus has been reset.
7674 * @pdev: Pointer to PCI device
7675 *
7676 * Restart the card from scratch, as if from a cold-boot. Implementation
7677 * resembles the first-half of the igb_resume routine.
7678 **/
7679 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7680 {
7681 struct net_device *netdev = pci_get_drvdata(pdev);
7682 struct igb_adapter *adapter = netdev_priv(netdev);
7683 struct e1000_hw *hw = &adapter->hw;
7684 pci_ers_result_t result;
7685 int err;
7686
7687 if (pci_enable_device_mem(pdev)) {
7688 dev_err(&pdev->dev,
7689 "Cannot re-enable PCI device after reset.\n");
7690 result = PCI_ERS_RESULT_DISCONNECT;
7691 } else {
7692 pci_set_master(pdev);
7693 pci_restore_state(pdev);
7694 pci_save_state(pdev);
7695
7696 pci_enable_wake(pdev, PCI_D3hot, 0);
7697 pci_enable_wake(pdev, PCI_D3cold, 0);
7698
7699 igb_reset(adapter);
7700 wr32(E1000_WUS, ~0);
7701 result = PCI_ERS_RESULT_RECOVERED;
7702 }
7703
7704 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7705 if (err) {
7706 dev_err(&pdev->dev,
7707 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7708 err);
7709 /* non-fatal, continue */
7710 }
7711
7712 return result;
7713 }
7714
7715 /**
7716 * igb_io_resume - called when traffic can start flowing again.
7717 * @pdev: Pointer to PCI device
7718 *
7719 * This callback is called when the error recovery driver tells us that
7720 * its OK to resume normal operation. Implementation resembles the
7721 * second-half of the igb_resume routine.
7722 */
7723 static void igb_io_resume(struct pci_dev *pdev)
7724 {
7725 struct net_device *netdev = pci_get_drvdata(pdev);
7726 struct igb_adapter *adapter = netdev_priv(netdev);
7727
7728 if (netif_running(netdev)) {
7729 if (igb_up(adapter)) {
7730 dev_err(&pdev->dev, "igb_up failed after reset\n");
7731 return;
7732 }
7733 }
7734
7735 netif_device_attach(netdev);
7736
7737 /* let the f/w know that the h/w is now under the control of the
7738 * driver.
7739 */
7740 igb_get_hw_control(adapter);
7741 }
7742
7743 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7744 u8 qsel)
7745 {
7746 u32 rar_low, rar_high;
7747 struct e1000_hw *hw = &adapter->hw;
7748
7749 /* HW expects these in little endian so we reverse the byte order
7750 * from network order (big endian) to little endian
7751 */
7752 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7753 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7754 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7755
7756 /* Indicate to hardware the Address is Valid. */
7757 rar_high |= E1000_RAH_AV;
7758
7759 if (hw->mac.type == e1000_82575)
7760 rar_high |= E1000_RAH_POOL_1 * qsel;
7761 else
7762 rar_high |= E1000_RAH_POOL_1 << qsel;
7763
7764 wr32(E1000_RAL(index), rar_low);
7765 wrfl();
7766 wr32(E1000_RAH(index), rar_high);
7767 wrfl();
7768 }
7769
7770 static int igb_set_vf_mac(struct igb_adapter *adapter,
7771 int vf, unsigned char *mac_addr)
7772 {
7773 struct e1000_hw *hw = &adapter->hw;
7774 /* VF MAC addresses start at end of receive addresses and moves
7775 * towards the first, as a result a collision should not be possible
7776 */
7777 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7778
7779 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7780
7781 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7782
7783 return 0;
7784 }
7785
7786 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7787 {
7788 struct igb_adapter *adapter = netdev_priv(netdev);
7789 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7790 return -EINVAL;
7791 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7792 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7793 dev_info(&adapter->pdev->dev,
7794 "Reload the VF driver to make this change effective.");
7795 if (test_bit(__IGB_DOWN, &adapter->state)) {
7796 dev_warn(&adapter->pdev->dev,
7797 "The VF MAC address has been set, but the PF device is not up.\n");
7798 dev_warn(&adapter->pdev->dev,
7799 "Bring the PF device up before attempting to use the VF device.\n");
7800 }
7801 return igb_set_vf_mac(adapter, vf, mac);
7802 }
7803
7804 static int igb_link_mbps(int internal_link_speed)
7805 {
7806 switch (internal_link_speed) {
7807 case SPEED_100:
7808 return 100;
7809 case SPEED_1000:
7810 return 1000;
7811 default:
7812 return 0;
7813 }
7814 }
7815
7816 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7817 int link_speed)
7818 {
7819 int rf_dec, rf_int;
7820 u32 bcnrc_val;
7821
7822 if (tx_rate != 0) {
7823 /* Calculate the rate factor values to set */
7824 rf_int = link_speed / tx_rate;
7825 rf_dec = (link_speed - (rf_int * tx_rate));
7826 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7827 tx_rate;
7828
7829 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7830 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7831 E1000_RTTBCNRC_RF_INT_MASK);
7832 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7833 } else {
7834 bcnrc_val = 0;
7835 }
7836
7837 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7838 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7839 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7840 */
7841 wr32(E1000_RTTBCNRM, 0x14);
7842 wr32(E1000_RTTBCNRC, bcnrc_val);
7843 }
7844
7845 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7846 {
7847 int actual_link_speed, i;
7848 bool reset_rate = false;
7849
7850 /* VF TX rate limit was not set or not supported */
7851 if ((adapter->vf_rate_link_speed == 0) ||
7852 (adapter->hw.mac.type != e1000_82576))
7853 return;
7854
7855 actual_link_speed = igb_link_mbps(adapter->link_speed);
7856 if (actual_link_speed != adapter->vf_rate_link_speed) {
7857 reset_rate = true;
7858 adapter->vf_rate_link_speed = 0;
7859 dev_info(&adapter->pdev->dev,
7860 "Link speed has been changed. VF Transmit rate is disabled\n");
7861 }
7862
7863 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7864 if (reset_rate)
7865 adapter->vf_data[i].tx_rate = 0;
7866
7867 igb_set_vf_rate_limit(&adapter->hw, i,
7868 adapter->vf_data[i].tx_rate,
7869 actual_link_speed);
7870 }
7871 }
7872
7873 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7874 {
7875 struct igb_adapter *adapter = netdev_priv(netdev);
7876 struct e1000_hw *hw = &adapter->hw;
7877 int actual_link_speed;
7878
7879 if (hw->mac.type != e1000_82576)
7880 return -EOPNOTSUPP;
7881
7882 actual_link_speed = igb_link_mbps(adapter->link_speed);
7883 if ((vf >= adapter->vfs_allocated_count) ||
7884 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7885 (tx_rate < 0) || (tx_rate > actual_link_speed))
7886 return -EINVAL;
7887
7888 adapter->vf_rate_link_speed = actual_link_speed;
7889 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7890 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7891
7892 return 0;
7893 }
7894
7895 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7896 bool setting)
7897 {
7898 struct igb_adapter *adapter = netdev_priv(netdev);
7899 struct e1000_hw *hw = &adapter->hw;
7900 u32 reg_val, reg_offset;
7901
7902 if (!adapter->vfs_allocated_count)
7903 return -EOPNOTSUPP;
7904
7905 if (vf >= adapter->vfs_allocated_count)
7906 return -EINVAL;
7907
7908 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7909 reg_val = rd32(reg_offset);
7910 if (setting)
7911 reg_val |= ((1 << vf) |
7912 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7913 else
7914 reg_val &= ~((1 << vf) |
7915 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7916 wr32(reg_offset, reg_val);
7917
7918 adapter->vf_data[vf].spoofchk_enabled = setting;
7919 return E1000_SUCCESS;
7920 }
7921
7922 static int igb_ndo_get_vf_config(struct net_device *netdev,
7923 int vf, struct ifla_vf_info *ivi)
7924 {
7925 struct igb_adapter *adapter = netdev_priv(netdev);
7926 if (vf >= adapter->vfs_allocated_count)
7927 return -EINVAL;
7928 ivi->vf = vf;
7929 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7930 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7931 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7932 ivi->qos = adapter->vf_data[vf].pf_qos;
7933 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7934 return 0;
7935 }
7936
7937 static void igb_vmm_control(struct igb_adapter *adapter)
7938 {
7939 struct e1000_hw *hw = &adapter->hw;
7940 u32 reg;
7941
7942 switch (hw->mac.type) {
7943 case e1000_82575:
7944 case e1000_i210:
7945 case e1000_i211:
7946 case e1000_i354:
7947 default:
7948 /* replication is not supported for 82575 */
7949 return;
7950 case e1000_82576:
7951 /* notify HW that the MAC is adding vlan tags */
7952 reg = rd32(E1000_DTXCTL);
7953 reg |= E1000_DTXCTL_VLAN_ADDED;
7954 wr32(E1000_DTXCTL, reg);
7955 case e1000_82580:
7956 /* enable replication vlan tag stripping */
7957 reg = rd32(E1000_RPLOLR);
7958 reg |= E1000_RPLOLR_STRVLAN;
7959 wr32(E1000_RPLOLR, reg);
7960 case e1000_i350:
7961 /* none of the above registers are supported by i350 */
7962 break;
7963 }
7964
7965 if (adapter->vfs_allocated_count) {
7966 igb_vmdq_set_loopback_pf(hw, true);
7967 igb_vmdq_set_replication_pf(hw, true);
7968 igb_vmdq_set_anti_spoofing_pf(hw, true,
7969 adapter->vfs_allocated_count);
7970 } else {
7971 igb_vmdq_set_loopback_pf(hw, false);
7972 igb_vmdq_set_replication_pf(hw, false);
7973 }
7974 }
7975
7976 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7977 {
7978 struct e1000_hw *hw = &adapter->hw;
7979 u32 dmac_thr;
7980 u16 hwm;
7981
7982 if (hw->mac.type > e1000_82580) {
7983 if (adapter->flags & IGB_FLAG_DMAC) {
7984 u32 reg;
7985
7986 /* force threshold to 0. */
7987 wr32(E1000_DMCTXTH, 0);
7988
7989 /* DMA Coalescing high water mark needs to be greater
7990 * than the Rx threshold. Set hwm to PBA - max frame
7991 * size in 16B units, capping it at PBA - 6KB.
7992 */
7993 hwm = 64 * pba - adapter->max_frame_size / 16;
7994 if (hwm < 64 * (pba - 6))
7995 hwm = 64 * (pba - 6);
7996 reg = rd32(E1000_FCRTC);
7997 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7998 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7999 & E1000_FCRTC_RTH_COAL_MASK);
8000 wr32(E1000_FCRTC, reg);
8001
8002 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8003 * frame size, capping it at PBA - 10KB.
8004 */
8005 dmac_thr = pba - adapter->max_frame_size / 512;
8006 if (dmac_thr < pba - 10)
8007 dmac_thr = pba - 10;
8008 reg = rd32(E1000_DMACR);
8009 reg &= ~E1000_DMACR_DMACTHR_MASK;
8010 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8011 & E1000_DMACR_DMACTHR_MASK);
8012
8013 /* transition to L0x or L1 if available..*/
8014 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8015
8016 /* watchdog timer= +-1000 usec in 32usec intervals */
8017 reg |= (1000 >> 5);
8018
8019 /* Disable BMC-to-OS Watchdog Enable */
8020 if (hw->mac.type != e1000_i354)
8021 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8022
8023 wr32(E1000_DMACR, reg);
8024
8025 /* no lower threshold to disable
8026 * coalescing(smart fifb)-UTRESH=0
8027 */
8028 wr32(E1000_DMCRTRH, 0);
8029
8030 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8031
8032 wr32(E1000_DMCTLX, reg);
8033
8034 /* free space in tx packet buffer to wake from
8035 * DMA coal
8036 */
8037 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8038 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8039
8040 /* make low power state decision controlled
8041 * by DMA coal
8042 */
8043 reg = rd32(E1000_PCIEMISC);
8044 reg &= ~E1000_PCIEMISC_LX_DECISION;
8045 wr32(E1000_PCIEMISC, reg);
8046 } /* endif adapter->dmac is not disabled */
8047 } else if (hw->mac.type == e1000_82580) {
8048 u32 reg = rd32(E1000_PCIEMISC);
8049 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8050 wr32(E1000_DMACR, 0);
8051 }
8052 }
8053
8054 /**
8055 * igb_read_i2c_byte - Reads 8 bit word over I2C
8056 * @hw: pointer to hardware structure
8057 * @byte_offset: byte offset to read
8058 * @dev_addr: device address
8059 * @data: value read
8060 *
8061 * Performs byte read operation over I2C interface at
8062 * a specified device address.
8063 **/
8064 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8065 u8 dev_addr, u8 *data)
8066 {
8067 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8068 struct i2c_client *this_client = adapter->i2c_client;
8069 s32 status;
8070 u16 swfw_mask = 0;
8071
8072 if (!this_client)
8073 return E1000_ERR_I2C;
8074
8075 swfw_mask = E1000_SWFW_PHY0_SM;
8076
8077 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8078 != E1000_SUCCESS)
8079 return E1000_ERR_SWFW_SYNC;
8080
8081 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8082 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8083
8084 if (status < 0)
8085 return E1000_ERR_I2C;
8086 else {
8087 *data = status;
8088 return E1000_SUCCESS;
8089 }
8090 }
8091
8092 /**
8093 * igb_write_i2c_byte - Writes 8 bit word over I2C
8094 * @hw: pointer to hardware structure
8095 * @byte_offset: byte offset to write
8096 * @dev_addr: device address
8097 * @data: value to write
8098 *
8099 * Performs byte write operation over I2C interface at
8100 * a specified device address.
8101 **/
8102 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8103 u8 dev_addr, u8 data)
8104 {
8105 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8106 struct i2c_client *this_client = adapter->i2c_client;
8107 s32 status;
8108 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8109
8110 if (!this_client)
8111 return E1000_ERR_I2C;
8112
8113 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8114 return E1000_ERR_SWFW_SYNC;
8115 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8116 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8117
8118 if (status)
8119 return E1000_ERR_I2C;
8120 else
8121 return E1000_SUCCESS;
8122
8123 }
8124
8125 int igb_reinit_queues(struct igb_adapter *adapter)
8126 {
8127 struct net_device *netdev = adapter->netdev;
8128 struct pci_dev *pdev = adapter->pdev;
8129 int err = 0;
8130
8131 if (netif_running(netdev))
8132 igb_close(netdev);
8133
8134 igb_reset_interrupt_capability(adapter);
8135
8136 if (igb_init_interrupt_scheme(adapter, true)) {
8137 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8138 return -ENOMEM;
8139 }
8140
8141 if (netif_running(netdev))
8142 err = igb_open(netdev);
8143
8144 return err;
8145 }
8146 /* igb_main.c */
This page took 0.651294 seconds and 5 git commands to generate.