642e09f7fa377cfbcda3edf06fe37b47fb139ce2
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2014 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, see <http://www.gnu.org/licenses/>.
17
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
20
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/bitops.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/netdevice.h>
36 #include <linux/ipv6.h>
37 #include <linux/slab.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #include <linux/net_tstamp.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if.h>
44 #include <linux/if_vlan.h>
45 #include <linux/pci.h>
46 #include <linux/pci-aspm.h>
47 #include <linux/delay.h>
48 #include <linux/interrupt.h>
49 #include <linux/ip.h>
50 #include <linux/tcp.h>
51 #include <linux/sctp.h>
52 #include <linux/if_ether.h>
53 #include <linux/aer.h>
54 #include <linux/prefetch.h>
55 #include <linux/pm_runtime.h>
56 #ifdef CONFIG_IGB_DCA
57 #include <linux/dca.h>
58 #endif
59 #include <linux/i2c.h>
60 #include "igb.h"
61
62 #define MAJ 5
63 #define MIN 0
64 #define BUILD 5
65 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66 __stringify(BUILD) "-k"
67 char igb_driver_name[] = "igb";
68 char igb_driver_version[] = DRV_VERSION;
69 static const char igb_driver_string[] =
70 "Intel(R) Gigabit Ethernet Network Driver";
71 static const char igb_copyright[] =
72 "Copyright (c) 2007-2014 Intel Corporation.";
73
74 static const struct e1000_info *igb_info_tbl[] = {
75 [board_82575] = &e1000_82575_info,
76 };
77
78 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
114 /* required last entry */
115 {0, }
116 };
117
118 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
119
120 void igb_reset(struct igb_adapter *);
121 static int igb_setup_all_tx_resources(struct igb_adapter *);
122 static int igb_setup_all_rx_resources(struct igb_adapter *);
123 static void igb_free_all_tx_resources(struct igb_adapter *);
124 static void igb_free_all_rx_resources(struct igb_adapter *);
125 static void igb_setup_mrqc(struct igb_adapter *);
126 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
127 static void igb_remove(struct pci_dev *pdev);
128 static int igb_sw_init(struct igb_adapter *);
129 static int igb_open(struct net_device *);
130 static int igb_close(struct net_device *);
131 static void igb_configure(struct igb_adapter *);
132 static void igb_configure_tx(struct igb_adapter *);
133 static void igb_configure_rx(struct igb_adapter *);
134 static void igb_clean_all_tx_rings(struct igb_adapter *);
135 static void igb_clean_all_rx_rings(struct igb_adapter *);
136 static void igb_clean_tx_ring(struct igb_ring *);
137 static void igb_clean_rx_ring(struct igb_ring *);
138 static void igb_set_rx_mode(struct net_device *);
139 static void igb_update_phy_info(unsigned long);
140 static void igb_watchdog(unsigned long);
141 static void igb_watchdog_task(struct work_struct *);
142 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
143 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
144 struct rtnl_link_stats64 *stats);
145 static int igb_change_mtu(struct net_device *, int);
146 static int igb_set_mac(struct net_device *, void *);
147 static void igb_set_uta(struct igb_adapter *adapter);
148 static irqreturn_t igb_intr(int irq, void *);
149 static irqreturn_t igb_intr_msi(int irq, void *);
150 static irqreturn_t igb_msix_other(int irq, void *);
151 static irqreturn_t igb_msix_ring(int irq, void *);
152 #ifdef CONFIG_IGB_DCA
153 static void igb_update_dca(struct igb_q_vector *);
154 static void igb_setup_dca(struct igb_adapter *);
155 #endif /* CONFIG_IGB_DCA */
156 static int igb_poll(struct napi_struct *, int);
157 static bool igb_clean_tx_irq(struct igb_q_vector *);
158 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
159 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
160 static void igb_tx_timeout(struct net_device *);
161 static void igb_reset_task(struct work_struct *);
162 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
163 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
164 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
165 static void igb_restore_vlan(struct igb_adapter *);
166 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
167 static void igb_ping_all_vfs(struct igb_adapter *);
168 static void igb_msg_task(struct igb_adapter *);
169 static void igb_vmm_control(struct igb_adapter *);
170 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
171 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
172 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
173 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
174 int vf, u16 vlan, u8 qos);
175 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
176 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
177 bool setting);
178 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
179 struct ifla_vf_info *ivi);
180 static void igb_check_vf_rate_limit(struct igb_adapter *);
181
182 #ifdef CONFIG_PCI_IOV
183 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185 #endif
186
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 #ifdef CONFIG_PM_RUNTIME
193 static int igb_runtime_suspend(struct device *dev);
194 static int igb_runtime_resume(struct device *dev);
195 static int igb_runtime_idle(struct device *dev);
196 #endif
197 static const struct dev_pm_ops igb_pm_ops = {
198 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200 igb_runtime_idle)
201 };
202 #endif
203 static void igb_shutdown(struct pci_dev *);
204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205 #ifdef CONFIG_IGB_DCA
206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207 static struct notifier_block dca_notifier = {
208 .notifier_call = igb_notify_dca,
209 .next = NULL,
210 .priority = 0
211 };
212 #endif
213 #ifdef CONFIG_NET_POLL_CONTROLLER
214 /* for netdump / net console */
215 static void igb_netpoll(struct net_device *);
216 #endif
217 #ifdef CONFIG_PCI_IOV
218 static unsigned int max_vfs = 0;
219 module_param(max_vfs, uint, 0);
220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
221 #endif /* CONFIG_PCI_IOV */
222
223 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224 pci_channel_state_t);
225 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226 static void igb_io_resume(struct pci_dev *);
227
228 static const struct pci_error_handlers igb_err_handler = {
229 .error_detected = igb_io_error_detected,
230 .slot_reset = igb_io_slot_reset,
231 .resume = igb_io_resume,
232 };
233
234 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
235
236 static struct pci_driver igb_driver = {
237 .name = igb_driver_name,
238 .id_table = igb_pci_tbl,
239 .probe = igb_probe,
240 .remove = igb_remove,
241 #ifdef CONFIG_PM
242 .driver.pm = &igb_pm_ops,
243 #endif
244 .shutdown = igb_shutdown,
245 .sriov_configure = igb_pci_sriov_configure,
246 .err_handler = &igb_err_handler
247 };
248
249 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251 MODULE_LICENSE("GPL");
252 MODULE_VERSION(DRV_VERSION);
253
254 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255 static int debug = -1;
256 module_param(debug, int, 0);
257 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258
259 struct igb_reg_info {
260 u32 ofs;
261 char *name;
262 };
263
264 static const struct igb_reg_info igb_reg_info_tbl[] = {
265
266 /* General Registers */
267 {E1000_CTRL, "CTRL"},
268 {E1000_STATUS, "STATUS"},
269 {E1000_CTRL_EXT, "CTRL_EXT"},
270
271 /* Interrupt Registers */
272 {E1000_ICR, "ICR"},
273
274 /* RX Registers */
275 {E1000_RCTL, "RCTL"},
276 {E1000_RDLEN(0), "RDLEN"},
277 {E1000_RDH(0), "RDH"},
278 {E1000_RDT(0), "RDT"},
279 {E1000_RXDCTL(0), "RXDCTL"},
280 {E1000_RDBAL(0), "RDBAL"},
281 {E1000_RDBAH(0), "RDBAH"},
282
283 /* TX Registers */
284 {E1000_TCTL, "TCTL"},
285 {E1000_TDBAL(0), "TDBAL"},
286 {E1000_TDBAH(0), "TDBAH"},
287 {E1000_TDLEN(0), "TDLEN"},
288 {E1000_TDH(0), "TDH"},
289 {E1000_TDT(0), "TDT"},
290 {E1000_TXDCTL(0), "TXDCTL"},
291 {E1000_TDFH, "TDFH"},
292 {E1000_TDFT, "TDFT"},
293 {E1000_TDFHS, "TDFHS"},
294 {E1000_TDFPC, "TDFPC"},
295
296 /* List Terminator */
297 {}
298 };
299
300 /* igb_regdump - register printout routine */
301 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302 {
303 int n = 0;
304 char rname[16];
305 u32 regs[8];
306
307 switch (reginfo->ofs) {
308 case E1000_RDLEN(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_RDLEN(n));
311 break;
312 case E1000_RDH(0):
313 for (n = 0; n < 4; n++)
314 regs[n] = rd32(E1000_RDH(n));
315 break;
316 case E1000_RDT(0):
317 for (n = 0; n < 4; n++)
318 regs[n] = rd32(E1000_RDT(n));
319 break;
320 case E1000_RXDCTL(0):
321 for (n = 0; n < 4; n++)
322 regs[n] = rd32(E1000_RXDCTL(n));
323 break;
324 case E1000_RDBAL(0):
325 for (n = 0; n < 4; n++)
326 regs[n] = rd32(E1000_RDBAL(n));
327 break;
328 case E1000_RDBAH(0):
329 for (n = 0; n < 4; n++)
330 regs[n] = rd32(E1000_RDBAH(n));
331 break;
332 case E1000_TDBAL(0):
333 for (n = 0; n < 4; n++)
334 regs[n] = rd32(E1000_RDBAL(n));
335 break;
336 case E1000_TDBAH(0):
337 for (n = 0; n < 4; n++)
338 regs[n] = rd32(E1000_TDBAH(n));
339 break;
340 case E1000_TDLEN(0):
341 for (n = 0; n < 4; n++)
342 regs[n] = rd32(E1000_TDLEN(n));
343 break;
344 case E1000_TDH(0):
345 for (n = 0; n < 4; n++)
346 regs[n] = rd32(E1000_TDH(n));
347 break;
348 case E1000_TDT(0):
349 for (n = 0; n < 4; n++)
350 regs[n] = rd32(E1000_TDT(n));
351 break;
352 case E1000_TXDCTL(0):
353 for (n = 0; n < 4; n++)
354 regs[n] = rd32(E1000_TXDCTL(n));
355 break;
356 default:
357 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
358 return;
359 }
360
361 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
362 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363 regs[2], regs[3]);
364 }
365
366 /* igb_dump - Print registers, Tx-rings and Rx-rings */
367 static void igb_dump(struct igb_adapter *adapter)
368 {
369 struct net_device *netdev = adapter->netdev;
370 struct e1000_hw *hw = &adapter->hw;
371 struct igb_reg_info *reginfo;
372 struct igb_ring *tx_ring;
373 union e1000_adv_tx_desc *tx_desc;
374 struct my_u0 { u64 a; u64 b; } *u0;
375 struct igb_ring *rx_ring;
376 union e1000_adv_rx_desc *rx_desc;
377 u32 staterr;
378 u16 i, n;
379
380 if (!netif_msg_hw(adapter))
381 return;
382
383 /* Print netdevice Info */
384 if (netdev) {
385 dev_info(&adapter->pdev->dev, "Net device Info\n");
386 pr_info("Device Name state trans_start last_rx\n");
387 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388 netdev->state, netdev->trans_start, netdev->last_rx);
389 }
390
391 /* Print Registers */
392 dev_info(&adapter->pdev->dev, "Register Dump\n");
393 pr_info(" Register Name Value\n");
394 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 reginfo->name; reginfo++) {
396 igb_regdump(hw, reginfo);
397 }
398
399 /* Print TX Ring Summary */
400 if (!netdev || !netif_running(netdev))
401 goto exit;
402
403 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
405 for (n = 0; n < adapter->num_tx_queues; n++) {
406 struct igb_tx_buffer *buffer_info;
407 tx_ring = adapter->tx_ring[n];
408 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 (u64)dma_unmap_addr(buffer_info, dma),
412 dma_unmap_len(buffer_info, len),
413 buffer_info->next_to_watch,
414 (u64)buffer_info->time_stamp);
415 }
416
417 /* Print TX Rings */
418 if (!netif_msg_tx_done(adapter))
419 goto rx_ring_summary;
420
421 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423 /* Transmit Descriptor Formats
424 *
425 * Advanced Transmit Descriptor
426 * +--------------------------------------------------------------+
427 * 0 | Buffer Address [63:0] |
428 * +--------------------------------------------------------------+
429 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
430 * +--------------------------------------------------------------+
431 * 63 46 45 40 39 38 36 35 32 31 24 15 0
432 */
433
434 for (n = 0; n < adapter->num_tx_queues; n++) {
435 tx_ring = adapter->tx_ring[n];
436 pr_info("------------------------------------\n");
437 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 pr_info("------------------------------------\n");
439 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
440
441 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
442 const char *next_desc;
443 struct igb_tx_buffer *buffer_info;
444 tx_desc = IGB_TX_DESC(tx_ring, i);
445 buffer_info = &tx_ring->tx_buffer_info[i];
446 u0 = (struct my_u0 *)tx_desc;
447 if (i == tx_ring->next_to_use &&
448 i == tx_ring->next_to_clean)
449 next_desc = " NTC/U";
450 else if (i == tx_ring->next_to_use)
451 next_desc = " NTU";
452 else if (i == tx_ring->next_to_clean)
453 next_desc = " NTC";
454 else
455 next_desc = "";
456
457 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
458 i, le64_to_cpu(u0->a),
459 le64_to_cpu(u0->b),
460 (u64)dma_unmap_addr(buffer_info, dma),
461 dma_unmap_len(buffer_info, len),
462 buffer_info->next_to_watch,
463 (u64)buffer_info->time_stamp,
464 buffer_info->skb, next_desc);
465
466 if (netif_msg_pktdata(adapter) && buffer_info->skb)
467 print_hex_dump(KERN_INFO, "",
468 DUMP_PREFIX_ADDRESS,
469 16, 1, buffer_info->skb->data,
470 dma_unmap_len(buffer_info, len),
471 true);
472 }
473 }
474
475 /* Print RX Rings Summary */
476 rx_ring_summary:
477 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
478 pr_info("Queue [NTU] [NTC]\n");
479 for (n = 0; n < adapter->num_rx_queues; n++) {
480 rx_ring = adapter->rx_ring[n];
481 pr_info(" %5d %5X %5X\n",
482 n, rx_ring->next_to_use, rx_ring->next_to_clean);
483 }
484
485 /* Print RX Rings */
486 if (!netif_msg_rx_status(adapter))
487 goto exit;
488
489 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
490
491 /* Advanced Receive Descriptor (Read) Format
492 * 63 1 0
493 * +-----------------------------------------------------+
494 * 0 | Packet Buffer Address [63:1] |A0/NSE|
495 * +----------------------------------------------+------+
496 * 8 | Header Buffer Address [63:1] | DD |
497 * +-----------------------------------------------------+
498 *
499 *
500 * Advanced Receive Descriptor (Write-Back) Format
501 *
502 * 63 48 47 32 31 30 21 20 17 16 4 3 0
503 * +------------------------------------------------------+
504 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
505 * | Checksum Ident | | | | Type | Type |
506 * +------------------------------------------------------+
507 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
508 * +------------------------------------------------------+
509 * 63 48 47 32 31 20 19 0
510 */
511
512 for (n = 0; n < adapter->num_rx_queues; n++) {
513 rx_ring = adapter->rx_ring[n];
514 pr_info("------------------------------------\n");
515 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
516 pr_info("------------------------------------\n");
517 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
518 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
519
520 for (i = 0; i < rx_ring->count; i++) {
521 const char *next_desc;
522 struct igb_rx_buffer *buffer_info;
523 buffer_info = &rx_ring->rx_buffer_info[i];
524 rx_desc = IGB_RX_DESC(rx_ring, i);
525 u0 = (struct my_u0 *)rx_desc;
526 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527
528 if (i == rx_ring->next_to_use)
529 next_desc = " NTU";
530 else if (i == rx_ring->next_to_clean)
531 next_desc = " NTC";
532 else
533 next_desc = "";
534
535 if (staterr & E1000_RXD_STAT_DD) {
536 /* Descriptor Done */
537 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
538 "RWB", i,
539 le64_to_cpu(u0->a),
540 le64_to_cpu(u0->b),
541 next_desc);
542 } else {
543 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
544 "R ", i,
545 le64_to_cpu(u0->a),
546 le64_to_cpu(u0->b),
547 (u64)buffer_info->dma,
548 next_desc);
549
550 if (netif_msg_pktdata(adapter) &&
551 buffer_info->dma && buffer_info->page) {
552 print_hex_dump(KERN_INFO, "",
553 DUMP_PREFIX_ADDRESS,
554 16, 1,
555 page_address(buffer_info->page) +
556 buffer_info->page_offset,
557 IGB_RX_BUFSZ, true);
558 }
559 }
560 }
561 }
562
563 exit:
564 return;
565 }
566
567 /**
568 * igb_get_i2c_data - Reads the I2C SDA data bit
569 * @hw: pointer to hardware structure
570 * @i2cctl: Current value of I2CCTL register
571 *
572 * Returns the I2C data bit value
573 **/
574 static int igb_get_i2c_data(void *data)
575 {
576 struct igb_adapter *adapter = (struct igb_adapter *)data;
577 struct e1000_hw *hw = &adapter->hw;
578 s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
581 }
582
583 /**
584 * igb_set_i2c_data - Sets the I2C data bit
585 * @data: pointer to hardware structure
586 * @state: I2C data value (0 or 1) to set
587 *
588 * Sets the I2C data bit
589 **/
590 static void igb_set_i2c_data(void *data, int state)
591 {
592 struct igb_adapter *adapter = (struct igb_adapter *)data;
593 struct e1000_hw *hw = &adapter->hw;
594 s32 i2cctl = rd32(E1000_I2CPARAMS);
595
596 if (state)
597 i2cctl |= E1000_I2C_DATA_OUT;
598 else
599 i2cctl &= ~E1000_I2C_DATA_OUT;
600
601 i2cctl &= ~E1000_I2C_DATA_OE_N;
602 i2cctl |= E1000_I2C_CLK_OE_N;
603 wr32(E1000_I2CPARAMS, i2cctl);
604 wrfl();
605
606 }
607
608 /**
609 * igb_set_i2c_clk - Sets the I2C SCL clock
610 * @data: pointer to hardware structure
611 * @state: state to set clock
612 *
613 * Sets the I2C clock line to state
614 **/
615 static void igb_set_i2c_clk(void *data, int state)
616 {
617 struct igb_adapter *adapter = (struct igb_adapter *)data;
618 struct e1000_hw *hw = &adapter->hw;
619 s32 i2cctl = rd32(E1000_I2CPARAMS);
620
621 if (state) {
622 i2cctl |= E1000_I2C_CLK_OUT;
623 i2cctl &= ~E1000_I2C_CLK_OE_N;
624 } else {
625 i2cctl &= ~E1000_I2C_CLK_OUT;
626 i2cctl &= ~E1000_I2C_CLK_OE_N;
627 }
628 wr32(E1000_I2CPARAMS, i2cctl);
629 wrfl();
630 }
631
632 /**
633 * igb_get_i2c_clk - Gets the I2C SCL clock state
634 * @data: pointer to hardware structure
635 *
636 * Gets the I2C clock state
637 **/
638 static int igb_get_i2c_clk(void *data)
639 {
640 struct igb_adapter *adapter = (struct igb_adapter *)data;
641 struct e1000_hw *hw = &adapter->hw;
642 s32 i2cctl = rd32(E1000_I2CPARAMS);
643
644 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
645 }
646
647 static const struct i2c_algo_bit_data igb_i2c_algo = {
648 .setsda = igb_set_i2c_data,
649 .setscl = igb_set_i2c_clk,
650 .getsda = igb_get_i2c_data,
651 .getscl = igb_get_i2c_clk,
652 .udelay = 5,
653 .timeout = 20,
654 };
655
656 /**
657 * igb_get_hw_dev - return device
658 * @hw: pointer to hardware structure
659 *
660 * used by hardware layer to print debugging information
661 **/
662 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
663 {
664 struct igb_adapter *adapter = hw->back;
665 return adapter->netdev;
666 }
667
668 /**
669 * igb_init_module - Driver Registration Routine
670 *
671 * igb_init_module is the first routine called when the driver is
672 * loaded. All it does is register with the PCI subsystem.
673 **/
674 static int __init igb_init_module(void)
675 {
676 int ret;
677
678 pr_info("%s - version %s\n",
679 igb_driver_string, igb_driver_version);
680 pr_info("%s\n", igb_copyright);
681
682 #ifdef CONFIG_IGB_DCA
683 dca_register_notify(&dca_notifier);
684 #endif
685 ret = pci_register_driver(&igb_driver);
686 return ret;
687 }
688
689 module_init(igb_init_module);
690
691 /**
692 * igb_exit_module - Driver Exit Cleanup Routine
693 *
694 * igb_exit_module is called just before the driver is removed
695 * from memory.
696 **/
697 static void __exit igb_exit_module(void)
698 {
699 #ifdef CONFIG_IGB_DCA
700 dca_unregister_notify(&dca_notifier);
701 #endif
702 pci_unregister_driver(&igb_driver);
703 }
704
705 module_exit(igb_exit_module);
706
707 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
708 /**
709 * igb_cache_ring_register - Descriptor ring to register mapping
710 * @adapter: board private structure to initialize
711 *
712 * Once we know the feature-set enabled for the device, we'll cache
713 * the register offset the descriptor ring is assigned to.
714 **/
715 static void igb_cache_ring_register(struct igb_adapter *adapter)
716 {
717 int i = 0, j = 0;
718 u32 rbase_offset = adapter->vfs_allocated_count;
719
720 switch (adapter->hw.mac.type) {
721 case e1000_82576:
722 /* The queues are allocated for virtualization such that VF 0
723 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
724 * In order to avoid collision we start at the first free queue
725 * and continue consuming queues in the same sequence
726 */
727 if (adapter->vfs_allocated_count) {
728 for (; i < adapter->rss_queues; i++)
729 adapter->rx_ring[i]->reg_idx = rbase_offset +
730 Q_IDX_82576(i);
731 }
732 case e1000_82575:
733 case e1000_82580:
734 case e1000_i350:
735 case e1000_i354:
736 case e1000_i210:
737 case e1000_i211:
738 default:
739 for (; i < adapter->num_rx_queues; i++)
740 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
741 for (; j < adapter->num_tx_queues; j++)
742 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
743 break;
744 }
745 }
746
747 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
748 {
749 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
750 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
751 u32 value = 0;
752
753 if (E1000_REMOVED(hw_addr))
754 return ~value;
755
756 value = readl(&hw_addr[reg]);
757
758 /* reads should not return all F's */
759 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
760 struct net_device *netdev = igb->netdev;
761 hw->hw_addr = NULL;
762 netif_device_detach(netdev);
763 netdev_err(netdev, "PCIe link lost, device now detached\n");
764 }
765
766 return value;
767 }
768
769 /**
770 * igb_write_ivar - configure ivar for given MSI-X vector
771 * @hw: pointer to the HW structure
772 * @msix_vector: vector number we are allocating to a given ring
773 * @index: row index of IVAR register to write within IVAR table
774 * @offset: column offset of in IVAR, should be multiple of 8
775 *
776 * This function is intended to handle the writing of the IVAR register
777 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
778 * each containing an cause allocation for an Rx and Tx ring, and a
779 * variable number of rows depending on the number of queues supported.
780 **/
781 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
782 int index, int offset)
783 {
784 u32 ivar = array_rd32(E1000_IVAR0, index);
785
786 /* clear any bits that are currently set */
787 ivar &= ~((u32)0xFF << offset);
788
789 /* write vector and valid bit */
790 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
791
792 array_wr32(E1000_IVAR0, index, ivar);
793 }
794
795 #define IGB_N0_QUEUE -1
796 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
797 {
798 struct igb_adapter *adapter = q_vector->adapter;
799 struct e1000_hw *hw = &adapter->hw;
800 int rx_queue = IGB_N0_QUEUE;
801 int tx_queue = IGB_N0_QUEUE;
802 u32 msixbm = 0;
803
804 if (q_vector->rx.ring)
805 rx_queue = q_vector->rx.ring->reg_idx;
806 if (q_vector->tx.ring)
807 tx_queue = q_vector->tx.ring->reg_idx;
808
809 switch (hw->mac.type) {
810 case e1000_82575:
811 /* The 82575 assigns vectors using a bitmask, which matches the
812 * bitmask for the EICR/EIMS/EIMC registers. To assign one
813 * or more queues to a vector, we write the appropriate bits
814 * into the MSIXBM register for that vector.
815 */
816 if (rx_queue > IGB_N0_QUEUE)
817 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
818 if (tx_queue > IGB_N0_QUEUE)
819 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
820 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
821 msixbm |= E1000_EIMS_OTHER;
822 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
823 q_vector->eims_value = msixbm;
824 break;
825 case e1000_82576:
826 /* 82576 uses a table that essentially consists of 2 columns
827 * with 8 rows. The ordering is column-major so we use the
828 * lower 3 bits as the row index, and the 4th bit as the
829 * column offset.
830 */
831 if (rx_queue > IGB_N0_QUEUE)
832 igb_write_ivar(hw, msix_vector,
833 rx_queue & 0x7,
834 (rx_queue & 0x8) << 1);
835 if (tx_queue > IGB_N0_QUEUE)
836 igb_write_ivar(hw, msix_vector,
837 tx_queue & 0x7,
838 ((tx_queue & 0x8) << 1) + 8);
839 q_vector->eims_value = 1 << msix_vector;
840 break;
841 case e1000_82580:
842 case e1000_i350:
843 case e1000_i354:
844 case e1000_i210:
845 case e1000_i211:
846 /* On 82580 and newer adapters the scheme is similar to 82576
847 * however instead of ordering column-major we have things
848 * ordered row-major. So we traverse the table by using
849 * bit 0 as the column offset, and the remaining bits as the
850 * row index.
851 */
852 if (rx_queue > IGB_N0_QUEUE)
853 igb_write_ivar(hw, msix_vector,
854 rx_queue >> 1,
855 (rx_queue & 0x1) << 4);
856 if (tx_queue > IGB_N0_QUEUE)
857 igb_write_ivar(hw, msix_vector,
858 tx_queue >> 1,
859 ((tx_queue & 0x1) << 4) + 8);
860 q_vector->eims_value = 1 << msix_vector;
861 break;
862 default:
863 BUG();
864 break;
865 }
866
867 /* add q_vector eims value to global eims_enable_mask */
868 adapter->eims_enable_mask |= q_vector->eims_value;
869
870 /* configure q_vector to set itr on first interrupt */
871 q_vector->set_itr = 1;
872 }
873
874 /**
875 * igb_configure_msix - Configure MSI-X hardware
876 * @adapter: board private structure to initialize
877 *
878 * igb_configure_msix sets up the hardware to properly
879 * generate MSI-X interrupts.
880 **/
881 static void igb_configure_msix(struct igb_adapter *adapter)
882 {
883 u32 tmp;
884 int i, vector = 0;
885 struct e1000_hw *hw = &adapter->hw;
886
887 adapter->eims_enable_mask = 0;
888
889 /* set vector for other causes, i.e. link changes */
890 switch (hw->mac.type) {
891 case e1000_82575:
892 tmp = rd32(E1000_CTRL_EXT);
893 /* enable MSI-X PBA support*/
894 tmp |= E1000_CTRL_EXT_PBA_CLR;
895
896 /* Auto-Mask interrupts upon ICR read. */
897 tmp |= E1000_CTRL_EXT_EIAME;
898 tmp |= E1000_CTRL_EXT_IRCA;
899
900 wr32(E1000_CTRL_EXT, tmp);
901
902 /* enable msix_other interrupt */
903 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
904 adapter->eims_other = E1000_EIMS_OTHER;
905
906 break;
907
908 case e1000_82576:
909 case e1000_82580:
910 case e1000_i350:
911 case e1000_i354:
912 case e1000_i210:
913 case e1000_i211:
914 /* Turn on MSI-X capability first, or our settings
915 * won't stick. And it will take days to debug.
916 */
917 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
918 E1000_GPIE_PBA | E1000_GPIE_EIAME |
919 E1000_GPIE_NSICR);
920
921 /* enable msix_other interrupt */
922 adapter->eims_other = 1 << vector;
923 tmp = (vector++ | E1000_IVAR_VALID) << 8;
924
925 wr32(E1000_IVAR_MISC, tmp);
926 break;
927 default:
928 /* do nothing, since nothing else supports MSI-X */
929 break;
930 } /* switch (hw->mac.type) */
931
932 adapter->eims_enable_mask |= adapter->eims_other;
933
934 for (i = 0; i < adapter->num_q_vectors; i++)
935 igb_assign_vector(adapter->q_vector[i], vector++);
936
937 wrfl();
938 }
939
940 /**
941 * igb_request_msix - Initialize MSI-X interrupts
942 * @adapter: board private structure to initialize
943 *
944 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
945 * kernel.
946 **/
947 static int igb_request_msix(struct igb_adapter *adapter)
948 {
949 struct net_device *netdev = adapter->netdev;
950 struct e1000_hw *hw = &adapter->hw;
951 int i, err = 0, vector = 0, free_vector = 0;
952
953 err = request_irq(adapter->msix_entries[vector].vector,
954 igb_msix_other, 0, netdev->name, adapter);
955 if (err)
956 goto err_out;
957
958 for (i = 0; i < adapter->num_q_vectors; i++) {
959 struct igb_q_vector *q_vector = adapter->q_vector[i];
960
961 vector++;
962
963 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
964
965 if (q_vector->rx.ring && q_vector->tx.ring)
966 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
967 q_vector->rx.ring->queue_index);
968 else if (q_vector->tx.ring)
969 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
970 q_vector->tx.ring->queue_index);
971 else if (q_vector->rx.ring)
972 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
973 q_vector->rx.ring->queue_index);
974 else
975 sprintf(q_vector->name, "%s-unused", netdev->name);
976
977 err = request_irq(adapter->msix_entries[vector].vector,
978 igb_msix_ring, 0, q_vector->name,
979 q_vector);
980 if (err)
981 goto err_free;
982 }
983
984 igb_configure_msix(adapter);
985 return 0;
986
987 err_free:
988 /* free already assigned IRQs */
989 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
990
991 vector--;
992 for (i = 0; i < vector; i++) {
993 free_irq(adapter->msix_entries[free_vector++].vector,
994 adapter->q_vector[i]);
995 }
996 err_out:
997 return err;
998 }
999
1000 /**
1001 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1002 * @adapter: board private structure to initialize
1003 * @v_idx: Index of vector to be freed
1004 *
1005 * This function frees the memory allocated to the q_vector.
1006 **/
1007 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1008 {
1009 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1010
1011 adapter->q_vector[v_idx] = NULL;
1012
1013 /* igb_get_stats64() might access the rings on this vector,
1014 * we must wait a grace period before freeing it.
1015 */
1016 kfree_rcu(q_vector, rcu);
1017 }
1018
1019 /**
1020 * igb_reset_q_vector - Reset config for interrupt vector
1021 * @adapter: board private structure to initialize
1022 * @v_idx: Index of vector to be reset
1023 *
1024 * If NAPI is enabled it will delete any references to the
1025 * NAPI struct. This is preparation for igb_free_q_vector.
1026 **/
1027 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028 {
1029 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1032 * allocated. So, q_vector is NULL so we should stop here.
1033 */
1034 if (!q_vector)
1035 return;
1036
1037 if (q_vector->tx.ring)
1038 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040 if (q_vector->rx.ring)
1041 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043 netif_napi_del(&q_vector->napi);
1044
1045 }
1046
1047 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048 {
1049 int v_idx = adapter->num_q_vectors;
1050
1051 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052 pci_disable_msix(adapter->pdev);
1053 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054 pci_disable_msi(adapter->pdev);
1055
1056 while (v_idx--)
1057 igb_reset_q_vector(adapter, v_idx);
1058 }
1059
1060 /**
1061 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1062 * @adapter: board private structure to initialize
1063 *
1064 * This function frees the memory allocated to the q_vectors. In addition if
1065 * NAPI is enabled it will delete any references to the NAPI struct prior
1066 * to freeing the q_vector.
1067 **/
1068 static void igb_free_q_vectors(struct igb_adapter *adapter)
1069 {
1070 int v_idx = adapter->num_q_vectors;
1071
1072 adapter->num_tx_queues = 0;
1073 adapter->num_rx_queues = 0;
1074 adapter->num_q_vectors = 0;
1075
1076 while (v_idx--) {
1077 igb_reset_q_vector(adapter, v_idx);
1078 igb_free_q_vector(adapter, v_idx);
1079 }
1080 }
1081
1082 /**
1083 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084 * @adapter: board private structure to initialize
1085 *
1086 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1087 * MSI-X interrupts allocated.
1088 */
1089 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090 {
1091 igb_free_q_vectors(adapter);
1092 igb_reset_interrupt_capability(adapter);
1093 }
1094
1095 /**
1096 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1097 * @adapter: board private structure to initialize
1098 * @msix: boolean value of MSIX capability
1099 *
1100 * Attempt to configure interrupts using the best available
1101 * capabilities of the hardware and kernel.
1102 **/
1103 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104 {
1105 int err;
1106 int numvecs, i;
1107
1108 if (!msix)
1109 goto msi_only;
1110 adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112 /* Number of supported queues. */
1113 adapter->num_rx_queues = adapter->rss_queues;
1114 if (adapter->vfs_allocated_count)
1115 adapter->num_tx_queues = 1;
1116 else
1117 adapter->num_tx_queues = adapter->rss_queues;
1118
1119 /* start with one vector for every Rx queue */
1120 numvecs = adapter->num_rx_queues;
1121
1122 /* if Tx handler is separate add 1 for every Tx queue */
1123 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124 numvecs += adapter->num_tx_queues;
1125
1126 /* store the number of vectors reserved for queues */
1127 adapter->num_q_vectors = numvecs;
1128
1129 /* add 1 vector for link status interrupts */
1130 numvecs++;
1131 for (i = 0; i < numvecs; i++)
1132 adapter->msix_entries[i].entry = i;
1133
1134 err = pci_enable_msix_range(adapter->pdev,
1135 adapter->msix_entries,
1136 numvecs,
1137 numvecs);
1138 if (err > 0)
1139 return;
1140
1141 igb_reset_interrupt_capability(adapter);
1142
1143 /* If we can't do MSI-X, try MSI */
1144 msi_only:
1145 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146 #ifdef CONFIG_PCI_IOV
1147 /* disable SR-IOV for non MSI-X configurations */
1148 if (adapter->vf_data) {
1149 struct e1000_hw *hw = &adapter->hw;
1150 /* disable iov and allow time for transactions to clear */
1151 pci_disable_sriov(adapter->pdev);
1152 msleep(500);
1153
1154 kfree(adapter->vf_data);
1155 adapter->vf_data = NULL;
1156 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157 wrfl();
1158 msleep(100);
1159 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160 }
1161 #endif
1162 adapter->vfs_allocated_count = 0;
1163 adapter->rss_queues = 1;
1164 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165 adapter->num_rx_queues = 1;
1166 adapter->num_tx_queues = 1;
1167 adapter->num_q_vectors = 1;
1168 if (!pci_enable_msi(adapter->pdev))
1169 adapter->flags |= IGB_FLAG_HAS_MSI;
1170 }
1171
1172 static void igb_add_ring(struct igb_ring *ring,
1173 struct igb_ring_container *head)
1174 {
1175 head->ring = ring;
1176 head->count++;
1177 }
1178
1179 /**
1180 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181 * @adapter: board private structure to initialize
1182 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1183 * @v_idx: index of vector in adapter struct
1184 * @txr_count: total number of Tx rings to allocate
1185 * @txr_idx: index of first Tx ring to allocate
1186 * @rxr_count: total number of Rx rings to allocate
1187 * @rxr_idx: index of first Rx ring to allocate
1188 *
1189 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1190 **/
1191 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192 int v_count, int v_idx,
1193 int txr_count, int txr_idx,
1194 int rxr_count, int rxr_idx)
1195 {
1196 struct igb_q_vector *q_vector;
1197 struct igb_ring *ring;
1198 int ring_count, size;
1199
1200 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201 if (txr_count > 1 || rxr_count > 1)
1202 return -ENOMEM;
1203
1204 ring_count = txr_count + rxr_count;
1205 size = sizeof(struct igb_q_vector) +
1206 (sizeof(struct igb_ring) * ring_count);
1207
1208 /* allocate q_vector and rings */
1209 q_vector = adapter->q_vector[v_idx];
1210 if (!q_vector)
1211 q_vector = kzalloc(size, GFP_KERNEL);
1212 if (!q_vector)
1213 return -ENOMEM;
1214
1215 /* initialize NAPI */
1216 netif_napi_add(adapter->netdev, &q_vector->napi,
1217 igb_poll, 64);
1218
1219 /* tie q_vector and adapter together */
1220 adapter->q_vector[v_idx] = q_vector;
1221 q_vector->adapter = adapter;
1222
1223 /* initialize work limits */
1224 q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226 /* initialize ITR configuration */
1227 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1228 q_vector->itr_val = IGB_START_ITR;
1229
1230 /* initialize pointer to rings */
1231 ring = q_vector->ring;
1232
1233 /* intialize ITR */
1234 if (rxr_count) {
1235 /* rx or rx/tx vector */
1236 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 q_vector->itr_val = adapter->rx_itr_setting;
1238 } else {
1239 /* tx only vector */
1240 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 q_vector->itr_val = adapter->tx_itr_setting;
1242 }
1243
1244 if (txr_count) {
1245 /* assign generic ring traits */
1246 ring->dev = &adapter->pdev->dev;
1247 ring->netdev = adapter->netdev;
1248
1249 /* configure backlink on ring */
1250 ring->q_vector = q_vector;
1251
1252 /* update q_vector Tx values */
1253 igb_add_ring(ring, &q_vector->tx);
1254
1255 /* For 82575, context index must be unique per ring. */
1256 if (adapter->hw.mac.type == e1000_82575)
1257 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259 /* apply Tx specific ring traits */
1260 ring->count = adapter->tx_ring_count;
1261 ring->queue_index = txr_idx;
1262
1263 u64_stats_init(&ring->tx_syncp);
1264 u64_stats_init(&ring->tx_syncp2);
1265
1266 /* assign ring to adapter */
1267 adapter->tx_ring[txr_idx] = ring;
1268
1269 /* push pointer to next ring */
1270 ring++;
1271 }
1272
1273 if (rxr_count) {
1274 /* assign generic ring traits */
1275 ring->dev = &adapter->pdev->dev;
1276 ring->netdev = adapter->netdev;
1277
1278 /* configure backlink on ring */
1279 ring->q_vector = q_vector;
1280
1281 /* update q_vector Rx values */
1282 igb_add_ring(ring, &q_vector->rx);
1283
1284 /* set flag indicating ring supports SCTP checksum offload */
1285 if (adapter->hw.mac.type >= e1000_82576)
1286 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1287
1288 /*
1289 * On i350, i354, i210, and i211, loopback VLAN packets
1290 * have the tag byte-swapped.
1291 */
1292 if (adapter->hw.mac.type >= e1000_i350)
1293 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1294
1295 /* apply Rx specific ring traits */
1296 ring->count = adapter->rx_ring_count;
1297 ring->queue_index = rxr_idx;
1298
1299 u64_stats_init(&ring->rx_syncp);
1300
1301 /* assign ring to adapter */
1302 adapter->rx_ring[rxr_idx] = ring;
1303 }
1304
1305 return 0;
1306 }
1307
1308
1309 /**
1310 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1311 * @adapter: board private structure to initialize
1312 *
1313 * We allocate one q_vector per queue interrupt. If allocation fails we
1314 * return -ENOMEM.
1315 **/
1316 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1317 {
1318 int q_vectors = adapter->num_q_vectors;
1319 int rxr_remaining = adapter->num_rx_queues;
1320 int txr_remaining = adapter->num_tx_queues;
1321 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1322 int err;
1323
1324 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1325 for (; rxr_remaining; v_idx++) {
1326 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1327 0, 0, 1, rxr_idx);
1328
1329 if (err)
1330 goto err_out;
1331
1332 /* update counts and index */
1333 rxr_remaining--;
1334 rxr_idx++;
1335 }
1336 }
1337
1338 for (; v_idx < q_vectors; v_idx++) {
1339 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1340 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1341
1342 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1343 tqpv, txr_idx, rqpv, rxr_idx);
1344
1345 if (err)
1346 goto err_out;
1347
1348 /* update counts and index */
1349 rxr_remaining -= rqpv;
1350 txr_remaining -= tqpv;
1351 rxr_idx++;
1352 txr_idx++;
1353 }
1354
1355 return 0;
1356
1357 err_out:
1358 adapter->num_tx_queues = 0;
1359 adapter->num_rx_queues = 0;
1360 adapter->num_q_vectors = 0;
1361
1362 while (v_idx--)
1363 igb_free_q_vector(adapter, v_idx);
1364
1365 return -ENOMEM;
1366 }
1367
1368 /**
1369 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1370 * @adapter: board private structure to initialize
1371 * @msix: boolean value of MSIX capability
1372 *
1373 * This function initializes the interrupts and allocates all of the queues.
1374 **/
1375 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1376 {
1377 struct pci_dev *pdev = adapter->pdev;
1378 int err;
1379
1380 igb_set_interrupt_capability(adapter, msix);
1381
1382 err = igb_alloc_q_vectors(adapter);
1383 if (err) {
1384 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1385 goto err_alloc_q_vectors;
1386 }
1387
1388 igb_cache_ring_register(adapter);
1389
1390 return 0;
1391
1392 err_alloc_q_vectors:
1393 igb_reset_interrupt_capability(adapter);
1394 return err;
1395 }
1396
1397 /**
1398 * igb_request_irq - initialize interrupts
1399 * @adapter: board private structure to initialize
1400 *
1401 * Attempts to configure interrupts using the best available
1402 * capabilities of the hardware and kernel.
1403 **/
1404 static int igb_request_irq(struct igb_adapter *adapter)
1405 {
1406 struct net_device *netdev = adapter->netdev;
1407 struct pci_dev *pdev = adapter->pdev;
1408 int err = 0;
1409
1410 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1411 err = igb_request_msix(adapter);
1412 if (!err)
1413 goto request_done;
1414 /* fall back to MSI */
1415 igb_free_all_tx_resources(adapter);
1416 igb_free_all_rx_resources(adapter);
1417
1418 igb_clear_interrupt_scheme(adapter);
1419 err = igb_init_interrupt_scheme(adapter, false);
1420 if (err)
1421 goto request_done;
1422
1423 igb_setup_all_tx_resources(adapter);
1424 igb_setup_all_rx_resources(adapter);
1425 igb_configure(adapter);
1426 }
1427
1428 igb_assign_vector(adapter->q_vector[0], 0);
1429
1430 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1431 err = request_irq(pdev->irq, igb_intr_msi, 0,
1432 netdev->name, adapter);
1433 if (!err)
1434 goto request_done;
1435
1436 /* fall back to legacy interrupts */
1437 igb_reset_interrupt_capability(adapter);
1438 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1439 }
1440
1441 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1442 netdev->name, adapter);
1443
1444 if (err)
1445 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1446 err);
1447
1448 request_done:
1449 return err;
1450 }
1451
1452 static void igb_free_irq(struct igb_adapter *adapter)
1453 {
1454 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1455 int vector = 0, i;
1456
1457 free_irq(adapter->msix_entries[vector++].vector, adapter);
1458
1459 for (i = 0; i < adapter->num_q_vectors; i++)
1460 free_irq(adapter->msix_entries[vector++].vector,
1461 adapter->q_vector[i]);
1462 } else {
1463 free_irq(adapter->pdev->irq, adapter);
1464 }
1465 }
1466
1467 /**
1468 * igb_irq_disable - Mask off interrupt generation on the NIC
1469 * @adapter: board private structure
1470 **/
1471 static void igb_irq_disable(struct igb_adapter *adapter)
1472 {
1473 struct e1000_hw *hw = &adapter->hw;
1474
1475 /* we need to be careful when disabling interrupts. The VFs are also
1476 * mapped into these registers and so clearing the bits can cause
1477 * issues on the VF drivers so we only need to clear what we set
1478 */
1479 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1480 u32 regval = rd32(E1000_EIAM);
1481
1482 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1483 wr32(E1000_EIMC, adapter->eims_enable_mask);
1484 regval = rd32(E1000_EIAC);
1485 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1486 }
1487
1488 wr32(E1000_IAM, 0);
1489 wr32(E1000_IMC, ~0);
1490 wrfl();
1491 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1492 int i;
1493
1494 for (i = 0; i < adapter->num_q_vectors; i++)
1495 synchronize_irq(adapter->msix_entries[i].vector);
1496 } else {
1497 synchronize_irq(adapter->pdev->irq);
1498 }
1499 }
1500
1501 /**
1502 * igb_irq_enable - Enable default interrupt generation settings
1503 * @adapter: board private structure
1504 **/
1505 static void igb_irq_enable(struct igb_adapter *adapter)
1506 {
1507 struct e1000_hw *hw = &adapter->hw;
1508
1509 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1510 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1511 u32 regval = rd32(E1000_EIAC);
1512
1513 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1514 regval = rd32(E1000_EIAM);
1515 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1516 wr32(E1000_EIMS, adapter->eims_enable_mask);
1517 if (adapter->vfs_allocated_count) {
1518 wr32(E1000_MBVFIMR, 0xFF);
1519 ims |= E1000_IMS_VMMB;
1520 }
1521 wr32(E1000_IMS, ims);
1522 } else {
1523 wr32(E1000_IMS, IMS_ENABLE_MASK |
1524 E1000_IMS_DRSTA);
1525 wr32(E1000_IAM, IMS_ENABLE_MASK |
1526 E1000_IMS_DRSTA);
1527 }
1528 }
1529
1530 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1531 {
1532 struct e1000_hw *hw = &adapter->hw;
1533 u16 vid = adapter->hw.mng_cookie.vlan_id;
1534 u16 old_vid = adapter->mng_vlan_id;
1535
1536 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1537 /* add VID to filter table */
1538 igb_vfta_set(hw, vid, true);
1539 adapter->mng_vlan_id = vid;
1540 } else {
1541 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1542 }
1543
1544 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1545 (vid != old_vid) &&
1546 !test_bit(old_vid, adapter->active_vlans)) {
1547 /* remove VID from filter table */
1548 igb_vfta_set(hw, old_vid, false);
1549 }
1550 }
1551
1552 /**
1553 * igb_release_hw_control - release control of the h/w to f/w
1554 * @adapter: address of board private structure
1555 *
1556 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1557 * For ASF and Pass Through versions of f/w this means that the
1558 * driver is no longer loaded.
1559 **/
1560 static void igb_release_hw_control(struct igb_adapter *adapter)
1561 {
1562 struct e1000_hw *hw = &adapter->hw;
1563 u32 ctrl_ext;
1564
1565 /* Let firmware take over control of h/w */
1566 ctrl_ext = rd32(E1000_CTRL_EXT);
1567 wr32(E1000_CTRL_EXT,
1568 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1569 }
1570
1571 /**
1572 * igb_get_hw_control - get control of the h/w from f/w
1573 * @adapter: address of board private structure
1574 *
1575 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1576 * For ASF and Pass Through versions of f/w this means that
1577 * the driver is loaded.
1578 **/
1579 static void igb_get_hw_control(struct igb_adapter *adapter)
1580 {
1581 struct e1000_hw *hw = &adapter->hw;
1582 u32 ctrl_ext;
1583
1584 /* Let firmware know the driver has taken over */
1585 ctrl_ext = rd32(E1000_CTRL_EXT);
1586 wr32(E1000_CTRL_EXT,
1587 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1588 }
1589
1590 /**
1591 * igb_configure - configure the hardware for RX and TX
1592 * @adapter: private board structure
1593 **/
1594 static void igb_configure(struct igb_adapter *adapter)
1595 {
1596 struct net_device *netdev = adapter->netdev;
1597 int i;
1598
1599 igb_get_hw_control(adapter);
1600 igb_set_rx_mode(netdev);
1601
1602 igb_restore_vlan(adapter);
1603
1604 igb_setup_tctl(adapter);
1605 igb_setup_mrqc(adapter);
1606 igb_setup_rctl(adapter);
1607
1608 igb_configure_tx(adapter);
1609 igb_configure_rx(adapter);
1610
1611 igb_rx_fifo_flush_82575(&adapter->hw);
1612
1613 /* call igb_desc_unused which always leaves
1614 * at least 1 descriptor unused to make sure
1615 * next_to_use != next_to_clean
1616 */
1617 for (i = 0; i < adapter->num_rx_queues; i++) {
1618 struct igb_ring *ring = adapter->rx_ring[i];
1619 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1620 }
1621 }
1622
1623 /**
1624 * igb_power_up_link - Power up the phy/serdes link
1625 * @adapter: address of board private structure
1626 **/
1627 void igb_power_up_link(struct igb_adapter *adapter)
1628 {
1629 igb_reset_phy(&adapter->hw);
1630
1631 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1632 igb_power_up_phy_copper(&adapter->hw);
1633 else
1634 igb_power_up_serdes_link_82575(&adapter->hw);
1635 }
1636
1637 /**
1638 * igb_power_down_link - Power down the phy/serdes link
1639 * @adapter: address of board private structure
1640 */
1641 static void igb_power_down_link(struct igb_adapter *adapter)
1642 {
1643 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1644 igb_power_down_phy_copper_82575(&adapter->hw);
1645 else
1646 igb_shutdown_serdes_link_82575(&adapter->hw);
1647 }
1648
1649 /**
1650 * Detect and switch function for Media Auto Sense
1651 * @adapter: address of the board private structure
1652 **/
1653 static void igb_check_swap_media(struct igb_adapter *adapter)
1654 {
1655 struct e1000_hw *hw = &adapter->hw;
1656 u32 ctrl_ext, connsw;
1657 bool swap_now = false;
1658
1659 ctrl_ext = rd32(E1000_CTRL_EXT);
1660 connsw = rd32(E1000_CONNSW);
1661
1662 /* need to live swap if current media is copper and we have fiber/serdes
1663 * to go to.
1664 */
1665
1666 if ((hw->phy.media_type == e1000_media_type_copper) &&
1667 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1668 swap_now = true;
1669 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1670 /* copper signal takes time to appear */
1671 if (adapter->copper_tries < 4) {
1672 adapter->copper_tries++;
1673 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1674 wr32(E1000_CONNSW, connsw);
1675 return;
1676 } else {
1677 adapter->copper_tries = 0;
1678 if ((connsw & E1000_CONNSW_PHYSD) &&
1679 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1680 swap_now = true;
1681 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1682 wr32(E1000_CONNSW, connsw);
1683 }
1684 }
1685 }
1686
1687 if (!swap_now)
1688 return;
1689
1690 switch (hw->phy.media_type) {
1691 case e1000_media_type_copper:
1692 netdev_info(adapter->netdev,
1693 "MAS: changing media to fiber/serdes\n");
1694 ctrl_ext |=
1695 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1696 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1697 adapter->copper_tries = 0;
1698 break;
1699 case e1000_media_type_internal_serdes:
1700 case e1000_media_type_fiber:
1701 netdev_info(adapter->netdev,
1702 "MAS: changing media to copper\n");
1703 ctrl_ext &=
1704 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1705 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1706 break;
1707 default:
1708 /* shouldn't get here during regular operation */
1709 netdev_err(adapter->netdev,
1710 "AMS: Invalid media type found, returning\n");
1711 break;
1712 }
1713 wr32(E1000_CTRL_EXT, ctrl_ext);
1714 }
1715
1716 /**
1717 * igb_up - Open the interface and prepare it to handle traffic
1718 * @adapter: board private structure
1719 **/
1720 int igb_up(struct igb_adapter *adapter)
1721 {
1722 struct e1000_hw *hw = &adapter->hw;
1723 int i;
1724
1725 /* hardware has been reset, we need to reload some things */
1726 igb_configure(adapter);
1727
1728 clear_bit(__IGB_DOWN, &adapter->state);
1729
1730 for (i = 0; i < adapter->num_q_vectors; i++)
1731 napi_enable(&(adapter->q_vector[i]->napi));
1732
1733 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1734 igb_configure_msix(adapter);
1735 else
1736 igb_assign_vector(adapter->q_vector[0], 0);
1737
1738 /* Clear any pending interrupts. */
1739 rd32(E1000_ICR);
1740 igb_irq_enable(adapter);
1741
1742 /* notify VFs that reset has been completed */
1743 if (adapter->vfs_allocated_count) {
1744 u32 reg_data = rd32(E1000_CTRL_EXT);
1745
1746 reg_data |= E1000_CTRL_EXT_PFRSTD;
1747 wr32(E1000_CTRL_EXT, reg_data);
1748 }
1749
1750 netif_tx_start_all_queues(adapter->netdev);
1751
1752 /* start the watchdog. */
1753 hw->mac.get_link_status = 1;
1754 schedule_work(&adapter->watchdog_task);
1755
1756 if ((adapter->flags & IGB_FLAG_EEE) &&
1757 (!hw->dev_spec._82575.eee_disable))
1758 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1759
1760 return 0;
1761 }
1762
1763 void igb_down(struct igb_adapter *adapter)
1764 {
1765 struct net_device *netdev = adapter->netdev;
1766 struct e1000_hw *hw = &adapter->hw;
1767 u32 tctl, rctl;
1768 int i;
1769
1770 /* signal that we're down so the interrupt handler does not
1771 * reschedule our watchdog timer
1772 */
1773 set_bit(__IGB_DOWN, &adapter->state);
1774
1775 /* disable receives in the hardware */
1776 rctl = rd32(E1000_RCTL);
1777 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1778 /* flush and sleep below */
1779
1780 netif_tx_stop_all_queues(netdev);
1781
1782 /* disable transmits in the hardware */
1783 tctl = rd32(E1000_TCTL);
1784 tctl &= ~E1000_TCTL_EN;
1785 wr32(E1000_TCTL, tctl);
1786 /* flush both disables and wait for them to finish */
1787 wrfl();
1788 msleep(10);
1789
1790 igb_irq_disable(adapter);
1791
1792 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1793
1794 for (i = 0; i < adapter->num_q_vectors; i++) {
1795 napi_synchronize(&(adapter->q_vector[i]->napi));
1796 napi_disable(&(adapter->q_vector[i]->napi));
1797 }
1798
1799
1800 del_timer_sync(&adapter->watchdog_timer);
1801 del_timer_sync(&adapter->phy_info_timer);
1802
1803 netif_carrier_off(netdev);
1804
1805 /* record the stats before reset*/
1806 spin_lock(&adapter->stats64_lock);
1807 igb_update_stats(adapter, &adapter->stats64);
1808 spin_unlock(&adapter->stats64_lock);
1809
1810 adapter->link_speed = 0;
1811 adapter->link_duplex = 0;
1812
1813 if (!pci_channel_offline(adapter->pdev))
1814 igb_reset(adapter);
1815 igb_clean_all_tx_rings(adapter);
1816 igb_clean_all_rx_rings(adapter);
1817 #ifdef CONFIG_IGB_DCA
1818
1819 /* since we reset the hardware DCA settings were cleared */
1820 igb_setup_dca(adapter);
1821 #endif
1822 }
1823
1824 void igb_reinit_locked(struct igb_adapter *adapter)
1825 {
1826 WARN_ON(in_interrupt());
1827 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1828 msleep(1);
1829 igb_down(adapter);
1830 igb_up(adapter);
1831 clear_bit(__IGB_RESETTING, &adapter->state);
1832 }
1833
1834 /** igb_enable_mas - Media Autosense re-enable after swap
1835 *
1836 * @adapter: adapter struct
1837 **/
1838 static s32 igb_enable_mas(struct igb_adapter *adapter)
1839 {
1840 struct e1000_hw *hw = &adapter->hw;
1841 u32 connsw;
1842 s32 ret_val = 0;
1843
1844 connsw = rd32(E1000_CONNSW);
1845 if (!(hw->phy.media_type == e1000_media_type_copper))
1846 return ret_val;
1847
1848 /* configure for SerDes media detect */
1849 if (!(connsw & E1000_CONNSW_SERDESD)) {
1850 connsw |= E1000_CONNSW_ENRGSRC;
1851 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1852 wr32(E1000_CONNSW, connsw);
1853 wrfl();
1854 } else if (connsw & E1000_CONNSW_SERDESD) {
1855 /* already SerDes, no need to enable anything */
1856 return ret_val;
1857 } else {
1858 netdev_info(adapter->netdev,
1859 "MAS: Unable to configure feature, disabling..\n");
1860 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1861 }
1862 return ret_val;
1863 }
1864
1865 void igb_reset(struct igb_adapter *adapter)
1866 {
1867 struct pci_dev *pdev = adapter->pdev;
1868 struct e1000_hw *hw = &adapter->hw;
1869 struct e1000_mac_info *mac = &hw->mac;
1870 struct e1000_fc_info *fc = &hw->fc;
1871 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1872
1873 /* Repartition Pba for greater than 9k mtu
1874 * To take effect CTRL.RST is required.
1875 */
1876 switch (mac->type) {
1877 case e1000_i350:
1878 case e1000_i354:
1879 case e1000_82580:
1880 pba = rd32(E1000_RXPBS);
1881 pba = igb_rxpbs_adjust_82580(pba);
1882 break;
1883 case e1000_82576:
1884 pba = rd32(E1000_RXPBS);
1885 pba &= E1000_RXPBS_SIZE_MASK_82576;
1886 break;
1887 case e1000_82575:
1888 case e1000_i210:
1889 case e1000_i211:
1890 default:
1891 pba = E1000_PBA_34K;
1892 break;
1893 }
1894
1895 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1896 (mac->type < e1000_82576)) {
1897 /* adjust PBA for jumbo frames */
1898 wr32(E1000_PBA, pba);
1899
1900 /* To maintain wire speed transmits, the Tx FIFO should be
1901 * large enough to accommodate two full transmit packets,
1902 * rounded up to the next 1KB and expressed in KB. Likewise,
1903 * the Rx FIFO should be large enough to accommodate at least
1904 * one full receive packet and is similarly rounded up and
1905 * expressed in KB.
1906 */
1907 pba = rd32(E1000_PBA);
1908 /* upper 16 bits has Tx packet buffer allocation size in KB */
1909 tx_space = pba >> 16;
1910 /* lower 16 bits has Rx packet buffer allocation size in KB */
1911 pba &= 0xffff;
1912 /* the Tx fifo also stores 16 bytes of information about the Tx
1913 * but don't include ethernet FCS because hardware appends it
1914 */
1915 min_tx_space = (adapter->max_frame_size +
1916 sizeof(union e1000_adv_tx_desc) -
1917 ETH_FCS_LEN) * 2;
1918 min_tx_space = ALIGN(min_tx_space, 1024);
1919 min_tx_space >>= 10;
1920 /* software strips receive CRC, so leave room for it */
1921 min_rx_space = adapter->max_frame_size;
1922 min_rx_space = ALIGN(min_rx_space, 1024);
1923 min_rx_space >>= 10;
1924
1925 /* If current Tx allocation is less than the min Tx FIFO size,
1926 * and the min Tx FIFO size is less than the current Rx FIFO
1927 * allocation, take space away from current Rx allocation
1928 */
1929 if (tx_space < min_tx_space &&
1930 ((min_tx_space - tx_space) < pba)) {
1931 pba = pba - (min_tx_space - tx_space);
1932
1933 /* if short on Rx space, Rx wins and must trump Tx
1934 * adjustment
1935 */
1936 if (pba < min_rx_space)
1937 pba = min_rx_space;
1938 }
1939 wr32(E1000_PBA, pba);
1940 }
1941
1942 /* flow control settings */
1943 /* The high water mark must be low enough to fit one full frame
1944 * (or the size used for early receive) above it in the Rx FIFO.
1945 * Set it to the lower of:
1946 * - 90% of the Rx FIFO size, or
1947 * - the full Rx FIFO size minus one full frame
1948 */
1949 hwm = min(((pba << 10) * 9 / 10),
1950 ((pba << 10) - 2 * adapter->max_frame_size));
1951
1952 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1953 fc->low_water = fc->high_water - 16;
1954 fc->pause_time = 0xFFFF;
1955 fc->send_xon = 1;
1956 fc->current_mode = fc->requested_mode;
1957
1958 /* disable receive for all VFs and wait one second */
1959 if (adapter->vfs_allocated_count) {
1960 int i;
1961
1962 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1963 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1964
1965 /* ping all the active vfs to let them know we are going down */
1966 igb_ping_all_vfs(adapter);
1967
1968 /* disable transmits and receives */
1969 wr32(E1000_VFRE, 0);
1970 wr32(E1000_VFTE, 0);
1971 }
1972
1973 /* Allow time for pending master requests to run */
1974 hw->mac.ops.reset_hw(hw);
1975 wr32(E1000_WUC, 0);
1976
1977 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1978 /* need to resetup here after media swap */
1979 adapter->ei.get_invariants(hw);
1980 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1981 }
1982 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1983 if (igb_enable_mas(adapter))
1984 dev_err(&pdev->dev,
1985 "Error enabling Media Auto Sense\n");
1986 }
1987 if (hw->mac.ops.init_hw(hw))
1988 dev_err(&pdev->dev, "Hardware Error\n");
1989
1990 /* Flow control settings reset on hardware reset, so guarantee flow
1991 * control is off when forcing speed.
1992 */
1993 if (!hw->mac.autoneg)
1994 igb_force_mac_fc(hw);
1995
1996 igb_init_dmac(adapter, pba);
1997 #ifdef CONFIG_IGB_HWMON
1998 /* Re-initialize the thermal sensor on i350 devices. */
1999 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2000 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2001 /* If present, re-initialize the external thermal sensor
2002 * interface.
2003 */
2004 if (adapter->ets)
2005 mac->ops.init_thermal_sensor_thresh(hw);
2006 }
2007 }
2008 #endif
2009 /* Re-establish EEE setting */
2010 if (hw->phy.media_type == e1000_media_type_copper) {
2011 switch (mac->type) {
2012 case e1000_i350:
2013 case e1000_i210:
2014 case e1000_i211:
2015 igb_set_eee_i350(hw);
2016 break;
2017 case e1000_i354:
2018 igb_set_eee_i354(hw);
2019 break;
2020 default:
2021 break;
2022 }
2023 }
2024 if (!netif_running(adapter->netdev))
2025 igb_power_down_link(adapter);
2026
2027 igb_update_mng_vlan(adapter);
2028
2029 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2030 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2031
2032 /* Re-enable PTP, where applicable. */
2033 igb_ptp_reset(adapter);
2034
2035 igb_get_phy_info(hw);
2036 }
2037
2038 static netdev_features_t igb_fix_features(struct net_device *netdev,
2039 netdev_features_t features)
2040 {
2041 /* Since there is no support for separate Rx/Tx vlan accel
2042 * enable/disable make sure Tx flag is always in same state as Rx.
2043 */
2044 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2045 features |= NETIF_F_HW_VLAN_CTAG_TX;
2046 else
2047 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2048
2049 return features;
2050 }
2051
2052 static int igb_set_features(struct net_device *netdev,
2053 netdev_features_t features)
2054 {
2055 netdev_features_t changed = netdev->features ^ features;
2056 struct igb_adapter *adapter = netdev_priv(netdev);
2057
2058 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2059 igb_vlan_mode(netdev, features);
2060
2061 if (!(changed & NETIF_F_RXALL))
2062 return 0;
2063
2064 netdev->features = features;
2065
2066 if (netif_running(netdev))
2067 igb_reinit_locked(adapter);
2068 else
2069 igb_reset(adapter);
2070
2071 return 0;
2072 }
2073
2074 static const struct net_device_ops igb_netdev_ops = {
2075 .ndo_open = igb_open,
2076 .ndo_stop = igb_close,
2077 .ndo_start_xmit = igb_xmit_frame,
2078 .ndo_get_stats64 = igb_get_stats64,
2079 .ndo_set_rx_mode = igb_set_rx_mode,
2080 .ndo_set_mac_address = igb_set_mac,
2081 .ndo_change_mtu = igb_change_mtu,
2082 .ndo_do_ioctl = igb_ioctl,
2083 .ndo_tx_timeout = igb_tx_timeout,
2084 .ndo_validate_addr = eth_validate_addr,
2085 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2086 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2087 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2088 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2089 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
2090 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2091 .ndo_get_vf_config = igb_ndo_get_vf_config,
2092 #ifdef CONFIG_NET_POLL_CONTROLLER
2093 .ndo_poll_controller = igb_netpoll,
2094 #endif
2095 .ndo_fix_features = igb_fix_features,
2096 .ndo_set_features = igb_set_features,
2097 };
2098
2099 /**
2100 * igb_set_fw_version - Configure version string for ethtool
2101 * @adapter: adapter struct
2102 **/
2103 void igb_set_fw_version(struct igb_adapter *adapter)
2104 {
2105 struct e1000_hw *hw = &adapter->hw;
2106 struct e1000_fw_version fw;
2107
2108 igb_get_fw_version(hw, &fw);
2109
2110 switch (hw->mac.type) {
2111 case e1000_i210:
2112 case e1000_i211:
2113 if (!(igb_get_flash_presence_i210(hw))) {
2114 snprintf(adapter->fw_version,
2115 sizeof(adapter->fw_version),
2116 "%2d.%2d-%d",
2117 fw.invm_major, fw.invm_minor,
2118 fw.invm_img_type);
2119 break;
2120 }
2121 /* fall through */
2122 default:
2123 /* if option is rom valid, display its version too */
2124 if (fw.or_valid) {
2125 snprintf(adapter->fw_version,
2126 sizeof(adapter->fw_version),
2127 "%d.%d, 0x%08x, %d.%d.%d",
2128 fw.eep_major, fw.eep_minor, fw.etrack_id,
2129 fw.or_major, fw.or_build, fw.or_patch);
2130 /* no option rom */
2131 } else if (fw.etrack_id != 0X0000) {
2132 snprintf(adapter->fw_version,
2133 sizeof(adapter->fw_version),
2134 "%d.%d, 0x%08x",
2135 fw.eep_major, fw.eep_minor, fw.etrack_id);
2136 } else {
2137 snprintf(adapter->fw_version,
2138 sizeof(adapter->fw_version),
2139 "%d.%d.%d",
2140 fw.eep_major, fw.eep_minor, fw.eep_build);
2141 }
2142 break;
2143 }
2144 return;
2145 }
2146
2147 /**
2148 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2149 *
2150 * @adapter: adapter struct
2151 **/
2152 static void igb_init_mas(struct igb_adapter *adapter)
2153 {
2154 struct e1000_hw *hw = &adapter->hw;
2155 u16 eeprom_data;
2156
2157 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2158 switch (hw->bus.func) {
2159 case E1000_FUNC_0:
2160 if (eeprom_data & IGB_MAS_ENABLE_0) {
2161 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2162 netdev_info(adapter->netdev,
2163 "MAS: Enabling Media Autosense for port %d\n",
2164 hw->bus.func);
2165 }
2166 break;
2167 case E1000_FUNC_1:
2168 if (eeprom_data & IGB_MAS_ENABLE_1) {
2169 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2170 netdev_info(adapter->netdev,
2171 "MAS: Enabling Media Autosense for port %d\n",
2172 hw->bus.func);
2173 }
2174 break;
2175 case E1000_FUNC_2:
2176 if (eeprom_data & IGB_MAS_ENABLE_2) {
2177 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2178 netdev_info(adapter->netdev,
2179 "MAS: Enabling Media Autosense for port %d\n",
2180 hw->bus.func);
2181 }
2182 break;
2183 case E1000_FUNC_3:
2184 if (eeprom_data & IGB_MAS_ENABLE_3) {
2185 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2186 netdev_info(adapter->netdev,
2187 "MAS: Enabling Media Autosense for port %d\n",
2188 hw->bus.func);
2189 }
2190 break;
2191 default:
2192 /* Shouldn't get here */
2193 netdev_err(adapter->netdev,
2194 "MAS: Invalid port configuration, returning\n");
2195 break;
2196 }
2197 }
2198
2199 /**
2200 * igb_init_i2c - Init I2C interface
2201 * @adapter: pointer to adapter structure
2202 **/
2203 static s32 igb_init_i2c(struct igb_adapter *adapter)
2204 {
2205 s32 status = E1000_SUCCESS;
2206
2207 /* I2C interface supported on i350 devices */
2208 if (adapter->hw.mac.type != e1000_i350)
2209 return E1000_SUCCESS;
2210
2211 /* Initialize the i2c bus which is controlled by the registers.
2212 * This bus will use the i2c_algo_bit structue that implements
2213 * the protocol through toggling of the 4 bits in the register.
2214 */
2215 adapter->i2c_adap.owner = THIS_MODULE;
2216 adapter->i2c_algo = igb_i2c_algo;
2217 adapter->i2c_algo.data = adapter;
2218 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2219 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2220 strlcpy(adapter->i2c_adap.name, "igb BB",
2221 sizeof(adapter->i2c_adap.name));
2222 status = i2c_bit_add_bus(&adapter->i2c_adap);
2223 return status;
2224 }
2225
2226 /**
2227 * igb_probe - Device Initialization Routine
2228 * @pdev: PCI device information struct
2229 * @ent: entry in igb_pci_tbl
2230 *
2231 * Returns 0 on success, negative on failure
2232 *
2233 * igb_probe initializes an adapter identified by a pci_dev structure.
2234 * The OS initialization, configuring of the adapter private structure,
2235 * and a hardware reset occur.
2236 **/
2237 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2238 {
2239 struct net_device *netdev;
2240 struct igb_adapter *adapter;
2241 struct e1000_hw *hw;
2242 u16 eeprom_data = 0;
2243 s32 ret_val;
2244 static int global_quad_port_a; /* global quad port a indication */
2245 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2246 int err, pci_using_dac;
2247 u8 part_str[E1000_PBANUM_LENGTH];
2248
2249 /* Catch broken hardware that put the wrong VF device ID in
2250 * the PCIe SR-IOV capability.
2251 */
2252 if (pdev->is_virtfn) {
2253 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2254 pci_name(pdev), pdev->vendor, pdev->device);
2255 return -EINVAL;
2256 }
2257
2258 err = pci_enable_device_mem(pdev);
2259 if (err)
2260 return err;
2261
2262 pci_using_dac = 0;
2263 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2264 if (!err) {
2265 pci_using_dac = 1;
2266 } else {
2267 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2268 if (err) {
2269 dev_err(&pdev->dev,
2270 "No usable DMA configuration, aborting\n");
2271 goto err_dma;
2272 }
2273 }
2274
2275 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2276 IORESOURCE_MEM),
2277 igb_driver_name);
2278 if (err)
2279 goto err_pci_reg;
2280
2281 pci_enable_pcie_error_reporting(pdev);
2282
2283 pci_set_master(pdev);
2284 pci_save_state(pdev);
2285
2286 err = -ENOMEM;
2287 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2288 IGB_MAX_TX_QUEUES);
2289 if (!netdev)
2290 goto err_alloc_etherdev;
2291
2292 SET_NETDEV_DEV(netdev, &pdev->dev);
2293
2294 pci_set_drvdata(pdev, netdev);
2295 adapter = netdev_priv(netdev);
2296 adapter->netdev = netdev;
2297 adapter->pdev = pdev;
2298 hw = &adapter->hw;
2299 hw->back = adapter;
2300 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2301
2302 err = -EIO;
2303 hw->hw_addr = pci_iomap(pdev, 0, 0);
2304 if (!hw->hw_addr)
2305 goto err_ioremap;
2306
2307 netdev->netdev_ops = &igb_netdev_ops;
2308 igb_set_ethtool_ops(netdev);
2309 netdev->watchdog_timeo = 5 * HZ;
2310
2311 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2312
2313 netdev->mem_start = pci_resource_start(pdev, 0);
2314 netdev->mem_end = pci_resource_end(pdev, 0);
2315
2316 /* PCI config space info */
2317 hw->vendor_id = pdev->vendor;
2318 hw->device_id = pdev->device;
2319 hw->revision_id = pdev->revision;
2320 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2321 hw->subsystem_device_id = pdev->subsystem_device;
2322
2323 /* Copy the default MAC, PHY and NVM function pointers */
2324 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2325 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2326 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2327 /* Initialize skew-specific constants */
2328 err = ei->get_invariants(hw);
2329 if (err)
2330 goto err_sw_init;
2331
2332 /* setup the private structure */
2333 err = igb_sw_init(adapter);
2334 if (err)
2335 goto err_sw_init;
2336
2337 igb_get_bus_info_pcie(hw);
2338
2339 hw->phy.autoneg_wait_to_complete = false;
2340
2341 /* Copper options */
2342 if (hw->phy.media_type == e1000_media_type_copper) {
2343 hw->phy.mdix = AUTO_ALL_MODES;
2344 hw->phy.disable_polarity_correction = false;
2345 hw->phy.ms_type = e1000_ms_hw_default;
2346 }
2347
2348 if (igb_check_reset_block(hw))
2349 dev_info(&pdev->dev,
2350 "PHY reset is blocked due to SOL/IDER session.\n");
2351
2352 /* features is initialized to 0 in allocation, it might have bits
2353 * set by igb_sw_init so we should use an or instead of an
2354 * assignment.
2355 */
2356 netdev->features |= NETIF_F_SG |
2357 NETIF_F_IP_CSUM |
2358 NETIF_F_IPV6_CSUM |
2359 NETIF_F_TSO |
2360 NETIF_F_TSO6 |
2361 NETIF_F_RXHASH |
2362 NETIF_F_RXCSUM |
2363 NETIF_F_HW_VLAN_CTAG_RX |
2364 NETIF_F_HW_VLAN_CTAG_TX;
2365
2366 /* copy netdev features into list of user selectable features */
2367 netdev->hw_features |= netdev->features;
2368 netdev->hw_features |= NETIF_F_RXALL;
2369
2370 /* set this bit last since it cannot be part of hw_features */
2371 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2372
2373 netdev->vlan_features |= NETIF_F_TSO |
2374 NETIF_F_TSO6 |
2375 NETIF_F_IP_CSUM |
2376 NETIF_F_IPV6_CSUM |
2377 NETIF_F_SG;
2378
2379 netdev->priv_flags |= IFF_SUPP_NOFCS;
2380
2381 if (pci_using_dac) {
2382 netdev->features |= NETIF_F_HIGHDMA;
2383 netdev->vlan_features |= NETIF_F_HIGHDMA;
2384 }
2385
2386 if (hw->mac.type >= e1000_82576) {
2387 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2388 netdev->features |= NETIF_F_SCTP_CSUM;
2389 }
2390
2391 netdev->priv_flags |= IFF_UNICAST_FLT;
2392
2393 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2394
2395 /* before reading the NVM, reset the controller to put the device in a
2396 * known good starting state
2397 */
2398 hw->mac.ops.reset_hw(hw);
2399
2400 /* make sure the NVM is good , i211/i210 parts can have special NVM
2401 * that doesn't contain a checksum
2402 */
2403 switch (hw->mac.type) {
2404 case e1000_i210:
2405 case e1000_i211:
2406 if (igb_get_flash_presence_i210(hw)) {
2407 if (hw->nvm.ops.validate(hw) < 0) {
2408 dev_err(&pdev->dev,
2409 "The NVM Checksum Is Not Valid\n");
2410 err = -EIO;
2411 goto err_eeprom;
2412 }
2413 }
2414 break;
2415 default:
2416 if (hw->nvm.ops.validate(hw) < 0) {
2417 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2418 err = -EIO;
2419 goto err_eeprom;
2420 }
2421 break;
2422 }
2423
2424 /* copy the MAC address out of the NVM */
2425 if (hw->mac.ops.read_mac_addr(hw))
2426 dev_err(&pdev->dev, "NVM Read Error\n");
2427
2428 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2429
2430 if (!is_valid_ether_addr(netdev->dev_addr)) {
2431 dev_err(&pdev->dev, "Invalid MAC Address\n");
2432 err = -EIO;
2433 goto err_eeprom;
2434 }
2435
2436 /* get firmware version for ethtool -i */
2437 igb_set_fw_version(adapter);
2438
2439 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2440 (unsigned long) adapter);
2441 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2442 (unsigned long) adapter);
2443
2444 INIT_WORK(&adapter->reset_task, igb_reset_task);
2445 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2446
2447 /* Initialize link properties that are user-changeable */
2448 adapter->fc_autoneg = true;
2449 hw->mac.autoneg = true;
2450 hw->phy.autoneg_advertised = 0x2f;
2451
2452 hw->fc.requested_mode = e1000_fc_default;
2453 hw->fc.current_mode = e1000_fc_default;
2454
2455 igb_validate_mdi_setting(hw);
2456
2457 /* By default, support wake on port A */
2458 if (hw->bus.func == 0)
2459 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2460
2461 /* Check the NVM for wake support on non-port A ports */
2462 if (hw->mac.type >= e1000_82580)
2463 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2464 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2465 &eeprom_data);
2466 else if (hw->bus.func == 1)
2467 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2468
2469 if (eeprom_data & IGB_EEPROM_APME)
2470 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2471
2472 /* now that we have the eeprom settings, apply the special cases where
2473 * the eeprom may be wrong or the board simply won't support wake on
2474 * lan on a particular port
2475 */
2476 switch (pdev->device) {
2477 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2478 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2479 break;
2480 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2481 case E1000_DEV_ID_82576_FIBER:
2482 case E1000_DEV_ID_82576_SERDES:
2483 /* Wake events only supported on port A for dual fiber
2484 * regardless of eeprom setting
2485 */
2486 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2487 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2488 break;
2489 case E1000_DEV_ID_82576_QUAD_COPPER:
2490 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2491 /* if quad port adapter, disable WoL on all but port A */
2492 if (global_quad_port_a != 0)
2493 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2494 else
2495 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2496 /* Reset for multiple quad port adapters */
2497 if (++global_quad_port_a == 4)
2498 global_quad_port_a = 0;
2499 break;
2500 default:
2501 /* If the device can't wake, don't set software support */
2502 if (!device_can_wakeup(&adapter->pdev->dev))
2503 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2504 }
2505
2506 /* initialize the wol settings based on the eeprom settings */
2507 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2508 adapter->wol |= E1000_WUFC_MAG;
2509
2510 /* Some vendors want WoL disabled by default, but still supported */
2511 if ((hw->mac.type == e1000_i350) &&
2512 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2513 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2514 adapter->wol = 0;
2515 }
2516
2517 device_set_wakeup_enable(&adapter->pdev->dev,
2518 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2519
2520 /* reset the hardware with the new settings */
2521 igb_reset(adapter);
2522
2523 /* Init the I2C interface */
2524 err = igb_init_i2c(adapter);
2525 if (err) {
2526 dev_err(&pdev->dev, "failed to init i2c interface\n");
2527 goto err_eeprom;
2528 }
2529
2530 /* let the f/w know that the h/w is now under the control of the
2531 * driver. */
2532 igb_get_hw_control(adapter);
2533
2534 strcpy(netdev->name, "eth%d");
2535 err = register_netdev(netdev);
2536 if (err)
2537 goto err_register;
2538
2539 /* carrier off reporting is important to ethtool even BEFORE open */
2540 netif_carrier_off(netdev);
2541
2542 #ifdef CONFIG_IGB_DCA
2543 if (dca_add_requester(&pdev->dev) == 0) {
2544 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2545 dev_info(&pdev->dev, "DCA enabled\n");
2546 igb_setup_dca(adapter);
2547 }
2548
2549 #endif
2550 #ifdef CONFIG_IGB_HWMON
2551 /* Initialize the thermal sensor on i350 devices. */
2552 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2553 u16 ets_word;
2554
2555 /* Read the NVM to determine if this i350 device supports an
2556 * external thermal sensor.
2557 */
2558 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2559 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2560 adapter->ets = true;
2561 else
2562 adapter->ets = false;
2563 if (igb_sysfs_init(adapter))
2564 dev_err(&pdev->dev,
2565 "failed to allocate sysfs resources\n");
2566 } else {
2567 adapter->ets = false;
2568 }
2569 #endif
2570 /* Check if Media Autosense is enabled */
2571 adapter->ei = *ei;
2572 if (hw->dev_spec._82575.mas_capable)
2573 igb_init_mas(adapter);
2574
2575 /* do hw tstamp init after resetting */
2576 igb_ptp_init(adapter);
2577
2578 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2579 /* print bus type/speed/width info, not applicable to i354 */
2580 if (hw->mac.type != e1000_i354) {
2581 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2582 netdev->name,
2583 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2584 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2585 "unknown"),
2586 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2587 "Width x4" :
2588 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2589 "Width x2" :
2590 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2591 "Width x1" : "unknown"), netdev->dev_addr);
2592 }
2593
2594 if ((hw->mac.type >= e1000_i210 ||
2595 igb_get_flash_presence_i210(hw))) {
2596 ret_val = igb_read_part_string(hw, part_str,
2597 E1000_PBANUM_LENGTH);
2598 } else {
2599 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2600 }
2601
2602 if (ret_val)
2603 strcpy(part_str, "Unknown");
2604 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2605 dev_info(&pdev->dev,
2606 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2607 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2608 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2609 adapter->num_rx_queues, adapter->num_tx_queues);
2610 if (hw->phy.media_type == e1000_media_type_copper) {
2611 switch (hw->mac.type) {
2612 case e1000_i350:
2613 case e1000_i210:
2614 case e1000_i211:
2615 /* Enable EEE for internal copper PHY devices */
2616 err = igb_set_eee_i350(hw);
2617 if ((!err) &&
2618 (!hw->dev_spec._82575.eee_disable)) {
2619 adapter->eee_advert =
2620 MDIO_EEE_100TX | MDIO_EEE_1000T;
2621 adapter->flags |= IGB_FLAG_EEE;
2622 }
2623 break;
2624 case e1000_i354:
2625 if ((rd32(E1000_CTRL_EXT) &
2626 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2627 err = igb_set_eee_i354(hw);
2628 if ((!err) &&
2629 (!hw->dev_spec._82575.eee_disable)) {
2630 adapter->eee_advert =
2631 MDIO_EEE_100TX | MDIO_EEE_1000T;
2632 adapter->flags |= IGB_FLAG_EEE;
2633 }
2634 }
2635 break;
2636 default:
2637 break;
2638 }
2639 }
2640 pm_runtime_put_noidle(&pdev->dev);
2641 return 0;
2642
2643 err_register:
2644 igb_release_hw_control(adapter);
2645 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2646 err_eeprom:
2647 if (!igb_check_reset_block(hw))
2648 igb_reset_phy(hw);
2649
2650 if (hw->flash_address)
2651 iounmap(hw->flash_address);
2652 err_sw_init:
2653 igb_clear_interrupt_scheme(adapter);
2654 pci_iounmap(pdev, hw->hw_addr);
2655 err_ioremap:
2656 free_netdev(netdev);
2657 err_alloc_etherdev:
2658 pci_release_selected_regions(pdev,
2659 pci_select_bars(pdev, IORESOURCE_MEM));
2660 err_pci_reg:
2661 err_dma:
2662 pci_disable_device(pdev);
2663 return err;
2664 }
2665
2666 #ifdef CONFIG_PCI_IOV
2667 static int igb_disable_sriov(struct pci_dev *pdev)
2668 {
2669 struct net_device *netdev = pci_get_drvdata(pdev);
2670 struct igb_adapter *adapter = netdev_priv(netdev);
2671 struct e1000_hw *hw = &adapter->hw;
2672
2673 /* reclaim resources allocated to VFs */
2674 if (adapter->vf_data) {
2675 /* disable iov and allow time for transactions to clear */
2676 if (pci_vfs_assigned(pdev)) {
2677 dev_warn(&pdev->dev,
2678 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2679 return -EPERM;
2680 } else {
2681 pci_disable_sriov(pdev);
2682 msleep(500);
2683 }
2684
2685 kfree(adapter->vf_data);
2686 adapter->vf_data = NULL;
2687 adapter->vfs_allocated_count = 0;
2688 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2689 wrfl();
2690 msleep(100);
2691 dev_info(&pdev->dev, "IOV Disabled\n");
2692
2693 /* Re-enable DMA Coalescing flag since IOV is turned off */
2694 adapter->flags |= IGB_FLAG_DMAC;
2695 }
2696
2697 return 0;
2698 }
2699
2700 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2701 {
2702 struct net_device *netdev = pci_get_drvdata(pdev);
2703 struct igb_adapter *adapter = netdev_priv(netdev);
2704 int old_vfs = pci_num_vf(pdev);
2705 int err = 0;
2706 int i;
2707
2708 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2709 err = -EPERM;
2710 goto out;
2711 }
2712 if (!num_vfs)
2713 goto out;
2714
2715 if (old_vfs) {
2716 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2717 old_vfs, max_vfs);
2718 adapter->vfs_allocated_count = old_vfs;
2719 } else
2720 adapter->vfs_allocated_count = num_vfs;
2721
2722 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2723 sizeof(struct vf_data_storage), GFP_KERNEL);
2724
2725 /* if allocation failed then we do not support SR-IOV */
2726 if (!adapter->vf_data) {
2727 adapter->vfs_allocated_count = 0;
2728 dev_err(&pdev->dev,
2729 "Unable to allocate memory for VF Data Storage\n");
2730 err = -ENOMEM;
2731 goto out;
2732 }
2733
2734 /* only call pci_enable_sriov() if no VFs are allocated already */
2735 if (!old_vfs) {
2736 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2737 if (err)
2738 goto err_out;
2739 }
2740 dev_info(&pdev->dev, "%d VFs allocated\n",
2741 adapter->vfs_allocated_count);
2742 for (i = 0; i < adapter->vfs_allocated_count; i++)
2743 igb_vf_configure(adapter, i);
2744
2745 /* DMA Coalescing is not supported in IOV mode. */
2746 adapter->flags &= ~IGB_FLAG_DMAC;
2747 goto out;
2748
2749 err_out:
2750 kfree(adapter->vf_data);
2751 adapter->vf_data = NULL;
2752 adapter->vfs_allocated_count = 0;
2753 out:
2754 return err;
2755 }
2756
2757 #endif
2758 /**
2759 * igb_remove_i2c - Cleanup I2C interface
2760 * @adapter: pointer to adapter structure
2761 **/
2762 static void igb_remove_i2c(struct igb_adapter *adapter)
2763 {
2764 /* free the adapter bus structure */
2765 i2c_del_adapter(&adapter->i2c_adap);
2766 }
2767
2768 /**
2769 * igb_remove - Device Removal Routine
2770 * @pdev: PCI device information struct
2771 *
2772 * igb_remove is called by the PCI subsystem to alert the driver
2773 * that it should release a PCI device. The could be caused by a
2774 * Hot-Plug event, or because the driver is going to be removed from
2775 * memory.
2776 **/
2777 static void igb_remove(struct pci_dev *pdev)
2778 {
2779 struct net_device *netdev = pci_get_drvdata(pdev);
2780 struct igb_adapter *adapter = netdev_priv(netdev);
2781 struct e1000_hw *hw = &adapter->hw;
2782
2783 pm_runtime_get_noresume(&pdev->dev);
2784 #ifdef CONFIG_IGB_HWMON
2785 igb_sysfs_exit(adapter);
2786 #endif
2787 igb_remove_i2c(adapter);
2788 igb_ptp_stop(adapter);
2789 /* The watchdog timer may be rescheduled, so explicitly
2790 * disable watchdog from being rescheduled.
2791 */
2792 set_bit(__IGB_DOWN, &adapter->state);
2793 del_timer_sync(&adapter->watchdog_timer);
2794 del_timer_sync(&adapter->phy_info_timer);
2795
2796 cancel_work_sync(&adapter->reset_task);
2797 cancel_work_sync(&adapter->watchdog_task);
2798
2799 #ifdef CONFIG_IGB_DCA
2800 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2801 dev_info(&pdev->dev, "DCA disabled\n");
2802 dca_remove_requester(&pdev->dev);
2803 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2804 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2805 }
2806 #endif
2807
2808 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2809 * would have already happened in close and is redundant.
2810 */
2811 igb_release_hw_control(adapter);
2812
2813 unregister_netdev(netdev);
2814
2815 igb_clear_interrupt_scheme(adapter);
2816
2817 #ifdef CONFIG_PCI_IOV
2818 igb_disable_sriov(pdev);
2819 #endif
2820
2821 pci_iounmap(pdev, hw->hw_addr);
2822 if (hw->flash_address)
2823 iounmap(hw->flash_address);
2824 pci_release_selected_regions(pdev,
2825 pci_select_bars(pdev, IORESOURCE_MEM));
2826
2827 kfree(adapter->shadow_vfta);
2828 free_netdev(netdev);
2829
2830 pci_disable_pcie_error_reporting(pdev);
2831
2832 pci_disable_device(pdev);
2833 }
2834
2835 /**
2836 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2837 * @adapter: board private structure to initialize
2838 *
2839 * This function initializes the vf specific data storage and then attempts to
2840 * allocate the VFs. The reason for ordering it this way is because it is much
2841 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2842 * the memory for the VFs.
2843 **/
2844 static void igb_probe_vfs(struct igb_adapter *adapter)
2845 {
2846 #ifdef CONFIG_PCI_IOV
2847 struct pci_dev *pdev = adapter->pdev;
2848 struct e1000_hw *hw = &adapter->hw;
2849
2850 /* Virtualization features not supported on i210 family. */
2851 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2852 return;
2853
2854 pci_sriov_set_totalvfs(pdev, 7);
2855 igb_pci_enable_sriov(pdev, max_vfs);
2856
2857 #endif /* CONFIG_PCI_IOV */
2858 }
2859
2860 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2861 {
2862 struct e1000_hw *hw = &adapter->hw;
2863 u32 max_rss_queues;
2864
2865 /* Determine the maximum number of RSS queues supported. */
2866 switch (hw->mac.type) {
2867 case e1000_i211:
2868 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2869 break;
2870 case e1000_82575:
2871 case e1000_i210:
2872 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2873 break;
2874 case e1000_i350:
2875 /* I350 cannot do RSS and SR-IOV at the same time */
2876 if (!!adapter->vfs_allocated_count) {
2877 max_rss_queues = 1;
2878 break;
2879 }
2880 /* fall through */
2881 case e1000_82576:
2882 if (!!adapter->vfs_allocated_count) {
2883 max_rss_queues = 2;
2884 break;
2885 }
2886 /* fall through */
2887 case e1000_82580:
2888 case e1000_i354:
2889 default:
2890 max_rss_queues = IGB_MAX_RX_QUEUES;
2891 break;
2892 }
2893
2894 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2895
2896 /* Determine if we need to pair queues. */
2897 switch (hw->mac.type) {
2898 case e1000_82575:
2899 case e1000_i211:
2900 /* Device supports enough interrupts without queue pairing. */
2901 break;
2902 case e1000_82576:
2903 /* If VFs are going to be allocated with RSS queues then we
2904 * should pair the queues in order to conserve interrupts due
2905 * to limited supply.
2906 */
2907 if ((adapter->rss_queues > 1) &&
2908 (adapter->vfs_allocated_count > 6))
2909 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2910 /* fall through */
2911 case e1000_82580:
2912 case e1000_i350:
2913 case e1000_i354:
2914 case e1000_i210:
2915 default:
2916 /* If rss_queues > half of max_rss_queues, pair the queues in
2917 * order to conserve interrupts due to limited supply.
2918 */
2919 if (adapter->rss_queues > (max_rss_queues / 2))
2920 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2921 break;
2922 }
2923 }
2924
2925 /**
2926 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2927 * @adapter: board private structure to initialize
2928 *
2929 * igb_sw_init initializes the Adapter private data structure.
2930 * Fields are initialized based on PCI device information and
2931 * OS network device settings (MTU size).
2932 **/
2933 static int igb_sw_init(struct igb_adapter *adapter)
2934 {
2935 struct e1000_hw *hw = &adapter->hw;
2936 struct net_device *netdev = adapter->netdev;
2937 struct pci_dev *pdev = adapter->pdev;
2938
2939 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2940
2941 /* set default ring sizes */
2942 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2943 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2944
2945 /* set default ITR values */
2946 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2947 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2948
2949 /* set default work limits */
2950 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2951
2952 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2953 VLAN_HLEN;
2954 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2955
2956 spin_lock_init(&adapter->stats64_lock);
2957 #ifdef CONFIG_PCI_IOV
2958 switch (hw->mac.type) {
2959 case e1000_82576:
2960 case e1000_i350:
2961 if (max_vfs > 7) {
2962 dev_warn(&pdev->dev,
2963 "Maximum of 7 VFs per PF, using max\n");
2964 max_vfs = adapter->vfs_allocated_count = 7;
2965 } else
2966 adapter->vfs_allocated_count = max_vfs;
2967 if (adapter->vfs_allocated_count)
2968 dev_warn(&pdev->dev,
2969 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2970 break;
2971 default:
2972 break;
2973 }
2974 #endif /* CONFIG_PCI_IOV */
2975
2976 igb_init_queue_configuration(adapter);
2977
2978 /* Setup and initialize a copy of the hw vlan table array */
2979 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2980 GFP_ATOMIC);
2981
2982 /* This call may decrease the number of queues */
2983 if (igb_init_interrupt_scheme(adapter, true)) {
2984 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2985 return -ENOMEM;
2986 }
2987
2988 igb_probe_vfs(adapter);
2989
2990 /* Explicitly disable IRQ since the NIC can be in any state. */
2991 igb_irq_disable(adapter);
2992
2993 if (hw->mac.type >= e1000_i350)
2994 adapter->flags &= ~IGB_FLAG_DMAC;
2995
2996 set_bit(__IGB_DOWN, &adapter->state);
2997 return 0;
2998 }
2999
3000 /**
3001 * igb_open - Called when a network interface is made active
3002 * @netdev: network interface device structure
3003 *
3004 * Returns 0 on success, negative value on failure
3005 *
3006 * The open entry point is called when a network interface is made
3007 * active by the system (IFF_UP). At this point all resources needed
3008 * for transmit and receive operations are allocated, the interrupt
3009 * handler is registered with the OS, the watchdog timer is started,
3010 * and the stack is notified that the interface is ready.
3011 **/
3012 static int __igb_open(struct net_device *netdev, bool resuming)
3013 {
3014 struct igb_adapter *adapter = netdev_priv(netdev);
3015 struct e1000_hw *hw = &adapter->hw;
3016 struct pci_dev *pdev = adapter->pdev;
3017 int err;
3018 int i;
3019
3020 /* disallow open during test */
3021 if (test_bit(__IGB_TESTING, &adapter->state)) {
3022 WARN_ON(resuming);
3023 return -EBUSY;
3024 }
3025
3026 if (!resuming)
3027 pm_runtime_get_sync(&pdev->dev);
3028
3029 netif_carrier_off(netdev);
3030
3031 /* allocate transmit descriptors */
3032 err = igb_setup_all_tx_resources(adapter);
3033 if (err)
3034 goto err_setup_tx;
3035
3036 /* allocate receive descriptors */
3037 err = igb_setup_all_rx_resources(adapter);
3038 if (err)
3039 goto err_setup_rx;
3040
3041 igb_power_up_link(adapter);
3042
3043 /* before we allocate an interrupt, we must be ready to handle it.
3044 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3045 * as soon as we call pci_request_irq, so we have to setup our
3046 * clean_rx handler before we do so.
3047 */
3048 igb_configure(adapter);
3049
3050 err = igb_request_irq(adapter);
3051 if (err)
3052 goto err_req_irq;
3053
3054 /* Notify the stack of the actual queue counts. */
3055 err = netif_set_real_num_tx_queues(adapter->netdev,
3056 adapter->num_tx_queues);
3057 if (err)
3058 goto err_set_queues;
3059
3060 err = netif_set_real_num_rx_queues(adapter->netdev,
3061 adapter->num_rx_queues);
3062 if (err)
3063 goto err_set_queues;
3064
3065 /* From here on the code is the same as igb_up() */
3066 clear_bit(__IGB_DOWN, &adapter->state);
3067
3068 for (i = 0; i < adapter->num_q_vectors; i++)
3069 napi_enable(&(adapter->q_vector[i]->napi));
3070
3071 /* Clear any pending interrupts. */
3072 rd32(E1000_ICR);
3073
3074 igb_irq_enable(adapter);
3075
3076 /* notify VFs that reset has been completed */
3077 if (adapter->vfs_allocated_count) {
3078 u32 reg_data = rd32(E1000_CTRL_EXT);
3079
3080 reg_data |= E1000_CTRL_EXT_PFRSTD;
3081 wr32(E1000_CTRL_EXT, reg_data);
3082 }
3083
3084 netif_tx_start_all_queues(netdev);
3085
3086 if (!resuming)
3087 pm_runtime_put(&pdev->dev);
3088
3089 /* start the watchdog. */
3090 hw->mac.get_link_status = 1;
3091 schedule_work(&adapter->watchdog_task);
3092
3093 return 0;
3094
3095 err_set_queues:
3096 igb_free_irq(adapter);
3097 err_req_irq:
3098 igb_release_hw_control(adapter);
3099 igb_power_down_link(adapter);
3100 igb_free_all_rx_resources(adapter);
3101 err_setup_rx:
3102 igb_free_all_tx_resources(adapter);
3103 err_setup_tx:
3104 igb_reset(adapter);
3105 if (!resuming)
3106 pm_runtime_put(&pdev->dev);
3107
3108 return err;
3109 }
3110
3111 static int igb_open(struct net_device *netdev)
3112 {
3113 return __igb_open(netdev, false);
3114 }
3115
3116 /**
3117 * igb_close - Disables a network interface
3118 * @netdev: network interface device structure
3119 *
3120 * Returns 0, this is not allowed to fail
3121 *
3122 * The close entry point is called when an interface is de-activated
3123 * by the OS. The hardware is still under the driver's control, but
3124 * needs to be disabled. A global MAC reset is issued to stop the
3125 * hardware, and all transmit and receive resources are freed.
3126 **/
3127 static int __igb_close(struct net_device *netdev, bool suspending)
3128 {
3129 struct igb_adapter *adapter = netdev_priv(netdev);
3130 struct pci_dev *pdev = adapter->pdev;
3131
3132 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3133
3134 if (!suspending)
3135 pm_runtime_get_sync(&pdev->dev);
3136
3137 igb_down(adapter);
3138 igb_free_irq(adapter);
3139
3140 igb_free_all_tx_resources(adapter);
3141 igb_free_all_rx_resources(adapter);
3142
3143 if (!suspending)
3144 pm_runtime_put_sync(&pdev->dev);
3145 return 0;
3146 }
3147
3148 static int igb_close(struct net_device *netdev)
3149 {
3150 return __igb_close(netdev, false);
3151 }
3152
3153 /**
3154 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3155 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3156 *
3157 * Return 0 on success, negative on failure
3158 **/
3159 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3160 {
3161 struct device *dev = tx_ring->dev;
3162 int size;
3163
3164 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3165
3166 tx_ring->tx_buffer_info = vzalloc(size);
3167 if (!tx_ring->tx_buffer_info)
3168 goto err;
3169
3170 /* round up to nearest 4K */
3171 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3172 tx_ring->size = ALIGN(tx_ring->size, 4096);
3173
3174 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3175 &tx_ring->dma, GFP_KERNEL);
3176 if (!tx_ring->desc)
3177 goto err;
3178
3179 tx_ring->next_to_use = 0;
3180 tx_ring->next_to_clean = 0;
3181
3182 return 0;
3183
3184 err:
3185 vfree(tx_ring->tx_buffer_info);
3186 tx_ring->tx_buffer_info = NULL;
3187 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3188 return -ENOMEM;
3189 }
3190
3191 /**
3192 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3193 * (Descriptors) for all queues
3194 * @adapter: board private structure
3195 *
3196 * Return 0 on success, negative on failure
3197 **/
3198 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3199 {
3200 struct pci_dev *pdev = adapter->pdev;
3201 int i, err = 0;
3202
3203 for (i = 0; i < adapter->num_tx_queues; i++) {
3204 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3205 if (err) {
3206 dev_err(&pdev->dev,
3207 "Allocation for Tx Queue %u failed\n", i);
3208 for (i--; i >= 0; i--)
3209 igb_free_tx_resources(adapter->tx_ring[i]);
3210 break;
3211 }
3212 }
3213
3214 return err;
3215 }
3216
3217 /**
3218 * igb_setup_tctl - configure the transmit control registers
3219 * @adapter: Board private structure
3220 **/
3221 void igb_setup_tctl(struct igb_adapter *adapter)
3222 {
3223 struct e1000_hw *hw = &adapter->hw;
3224 u32 tctl;
3225
3226 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3227 wr32(E1000_TXDCTL(0), 0);
3228
3229 /* Program the Transmit Control Register */
3230 tctl = rd32(E1000_TCTL);
3231 tctl &= ~E1000_TCTL_CT;
3232 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3233 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3234
3235 igb_config_collision_dist(hw);
3236
3237 /* Enable transmits */
3238 tctl |= E1000_TCTL_EN;
3239
3240 wr32(E1000_TCTL, tctl);
3241 }
3242
3243 /**
3244 * igb_configure_tx_ring - Configure transmit ring after Reset
3245 * @adapter: board private structure
3246 * @ring: tx ring to configure
3247 *
3248 * Configure a transmit ring after a reset.
3249 **/
3250 void igb_configure_tx_ring(struct igb_adapter *adapter,
3251 struct igb_ring *ring)
3252 {
3253 struct e1000_hw *hw = &adapter->hw;
3254 u32 txdctl = 0;
3255 u64 tdba = ring->dma;
3256 int reg_idx = ring->reg_idx;
3257
3258 /* disable the queue */
3259 wr32(E1000_TXDCTL(reg_idx), 0);
3260 wrfl();
3261 mdelay(10);
3262
3263 wr32(E1000_TDLEN(reg_idx),
3264 ring->count * sizeof(union e1000_adv_tx_desc));
3265 wr32(E1000_TDBAL(reg_idx),
3266 tdba & 0x00000000ffffffffULL);
3267 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3268
3269 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3270 wr32(E1000_TDH(reg_idx), 0);
3271 writel(0, ring->tail);
3272
3273 txdctl |= IGB_TX_PTHRESH;
3274 txdctl |= IGB_TX_HTHRESH << 8;
3275 txdctl |= IGB_TX_WTHRESH << 16;
3276
3277 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3278 wr32(E1000_TXDCTL(reg_idx), txdctl);
3279 }
3280
3281 /**
3282 * igb_configure_tx - Configure transmit Unit after Reset
3283 * @adapter: board private structure
3284 *
3285 * Configure the Tx unit of the MAC after a reset.
3286 **/
3287 static void igb_configure_tx(struct igb_adapter *adapter)
3288 {
3289 int i;
3290
3291 for (i = 0; i < adapter->num_tx_queues; i++)
3292 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3293 }
3294
3295 /**
3296 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3297 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3298 *
3299 * Returns 0 on success, negative on failure
3300 **/
3301 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3302 {
3303 struct device *dev = rx_ring->dev;
3304 int size;
3305
3306 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3307
3308 rx_ring->rx_buffer_info = vzalloc(size);
3309 if (!rx_ring->rx_buffer_info)
3310 goto err;
3311
3312 /* Round up to nearest 4K */
3313 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3314 rx_ring->size = ALIGN(rx_ring->size, 4096);
3315
3316 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3317 &rx_ring->dma, GFP_KERNEL);
3318 if (!rx_ring->desc)
3319 goto err;
3320
3321 rx_ring->next_to_alloc = 0;
3322 rx_ring->next_to_clean = 0;
3323 rx_ring->next_to_use = 0;
3324
3325 return 0;
3326
3327 err:
3328 vfree(rx_ring->rx_buffer_info);
3329 rx_ring->rx_buffer_info = NULL;
3330 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3331 return -ENOMEM;
3332 }
3333
3334 /**
3335 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3336 * (Descriptors) for all queues
3337 * @adapter: board private structure
3338 *
3339 * Return 0 on success, negative on failure
3340 **/
3341 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3342 {
3343 struct pci_dev *pdev = adapter->pdev;
3344 int i, err = 0;
3345
3346 for (i = 0; i < adapter->num_rx_queues; i++) {
3347 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3348 if (err) {
3349 dev_err(&pdev->dev,
3350 "Allocation for Rx Queue %u failed\n", i);
3351 for (i--; i >= 0; i--)
3352 igb_free_rx_resources(adapter->rx_ring[i]);
3353 break;
3354 }
3355 }
3356
3357 return err;
3358 }
3359
3360 /**
3361 * igb_setup_mrqc - configure the multiple receive queue control registers
3362 * @adapter: Board private structure
3363 **/
3364 static void igb_setup_mrqc(struct igb_adapter *adapter)
3365 {
3366 struct e1000_hw *hw = &adapter->hw;
3367 u32 mrqc, rxcsum;
3368 u32 j, num_rx_queues;
3369 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3370 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3371 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3372 0xFA01ACBE };
3373
3374 /* Fill out hash function seeds */
3375 for (j = 0; j < 10; j++)
3376 wr32(E1000_RSSRK(j), rsskey[j]);
3377
3378 num_rx_queues = adapter->rss_queues;
3379
3380 switch (hw->mac.type) {
3381 case e1000_82576:
3382 /* 82576 supports 2 RSS queues for SR-IOV */
3383 if (adapter->vfs_allocated_count)
3384 num_rx_queues = 2;
3385 break;
3386 default:
3387 break;
3388 }
3389
3390 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3391 for (j = 0; j < IGB_RETA_SIZE; j++)
3392 adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3393 adapter->rss_indir_tbl_init = num_rx_queues;
3394 }
3395 igb_write_rss_indir_tbl(adapter);
3396
3397 /* Disable raw packet checksumming so that RSS hash is placed in
3398 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3399 * offloads as they are enabled by default
3400 */
3401 rxcsum = rd32(E1000_RXCSUM);
3402 rxcsum |= E1000_RXCSUM_PCSD;
3403
3404 if (adapter->hw.mac.type >= e1000_82576)
3405 /* Enable Receive Checksum Offload for SCTP */
3406 rxcsum |= E1000_RXCSUM_CRCOFL;
3407
3408 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3409 wr32(E1000_RXCSUM, rxcsum);
3410
3411 /* Generate RSS hash based on packet types, TCP/UDP
3412 * port numbers and/or IPv4/v6 src and dst addresses
3413 */
3414 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3415 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3416 E1000_MRQC_RSS_FIELD_IPV6 |
3417 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3418 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3419
3420 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3421 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3422 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3423 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3424
3425 /* If VMDq is enabled then we set the appropriate mode for that, else
3426 * we default to RSS so that an RSS hash is calculated per packet even
3427 * if we are only using one queue
3428 */
3429 if (adapter->vfs_allocated_count) {
3430 if (hw->mac.type > e1000_82575) {
3431 /* Set the default pool for the PF's first queue */
3432 u32 vtctl = rd32(E1000_VT_CTL);
3433
3434 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3435 E1000_VT_CTL_DISABLE_DEF_POOL);
3436 vtctl |= adapter->vfs_allocated_count <<
3437 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3438 wr32(E1000_VT_CTL, vtctl);
3439 }
3440 if (adapter->rss_queues > 1)
3441 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3442 else
3443 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3444 } else {
3445 if (hw->mac.type != e1000_i211)
3446 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3447 }
3448 igb_vmm_control(adapter);
3449
3450 wr32(E1000_MRQC, mrqc);
3451 }
3452
3453 /**
3454 * igb_setup_rctl - configure the receive control registers
3455 * @adapter: Board private structure
3456 **/
3457 void igb_setup_rctl(struct igb_adapter *adapter)
3458 {
3459 struct e1000_hw *hw = &adapter->hw;
3460 u32 rctl;
3461
3462 rctl = rd32(E1000_RCTL);
3463
3464 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3465 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3466
3467 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3468 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3469
3470 /* enable stripping of CRC. It's unlikely this will break BMC
3471 * redirection as it did with e1000. Newer features require
3472 * that the HW strips the CRC.
3473 */
3474 rctl |= E1000_RCTL_SECRC;
3475
3476 /* disable store bad packets and clear size bits. */
3477 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3478
3479 /* enable LPE to prevent packets larger than max_frame_size */
3480 rctl |= E1000_RCTL_LPE;
3481
3482 /* disable queue 0 to prevent tail write w/o re-config */
3483 wr32(E1000_RXDCTL(0), 0);
3484
3485 /* Attention!!! For SR-IOV PF driver operations you must enable
3486 * queue drop for all VF and PF queues to prevent head of line blocking
3487 * if an un-trusted VF does not provide descriptors to hardware.
3488 */
3489 if (adapter->vfs_allocated_count) {
3490 /* set all queue drop enable bits */
3491 wr32(E1000_QDE, ALL_QUEUES);
3492 }
3493
3494 /* This is useful for sniffing bad packets. */
3495 if (adapter->netdev->features & NETIF_F_RXALL) {
3496 /* UPE and MPE will be handled by normal PROMISC logic
3497 * in e1000e_set_rx_mode
3498 */
3499 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3500 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3501 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3502
3503 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3504 E1000_RCTL_DPF | /* Allow filtered pause */
3505 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3506 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3507 * and that breaks VLANs.
3508 */
3509 }
3510
3511 wr32(E1000_RCTL, rctl);
3512 }
3513
3514 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3515 int vfn)
3516 {
3517 struct e1000_hw *hw = &adapter->hw;
3518 u32 vmolr;
3519
3520 /* if it isn't the PF check to see if VFs are enabled and
3521 * increase the size to support vlan tags
3522 */
3523 if (vfn < adapter->vfs_allocated_count &&
3524 adapter->vf_data[vfn].vlans_enabled)
3525 size += VLAN_TAG_SIZE;
3526
3527 vmolr = rd32(E1000_VMOLR(vfn));
3528 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3529 vmolr |= size | E1000_VMOLR_LPE;
3530 wr32(E1000_VMOLR(vfn), vmolr);
3531
3532 return 0;
3533 }
3534
3535 /**
3536 * igb_rlpml_set - set maximum receive packet size
3537 * @adapter: board private structure
3538 *
3539 * Configure maximum receivable packet size.
3540 **/
3541 static void igb_rlpml_set(struct igb_adapter *adapter)
3542 {
3543 u32 max_frame_size = adapter->max_frame_size;
3544 struct e1000_hw *hw = &adapter->hw;
3545 u16 pf_id = adapter->vfs_allocated_count;
3546
3547 if (pf_id) {
3548 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3549 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3550 * to our max jumbo frame size, in case we need to enable
3551 * jumbo frames on one of the rings later.
3552 * This will not pass over-length frames into the default
3553 * queue because it's gated by the VMOLR.RLPML.
3554 */
3555 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3556 }
3557
3558 wr32(E1000_RLPML, max_frame_size);
3559 }
3560
3561 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3562 int vfn, bool aupe)
3563 {
3564 struct e1000_hw *hw = &adapter->hw;
3565 u32 vmolr;
3566
3567 /* This register exists only on 82576 and newer so if we are older then
3568 * we should exit and do nothing
3569 */
3570 if (hw->mac.type < e1000_82576)
3571 return;
3572
3573 vmolr = rd32(E1000_VMOLR(vfn));
3574 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3575 if (hw->mac.type == e1000_i350) {
3576 u32 dvmolr;
3577
3578 dvmolr = rd32(E1000_DVMOLR(vfn));
3579 dvmolr |= E1000_DVMOLR_STRVLAN;
3580 wr32(E1000_DVMOLR(vfn), dvmolr);
3581 }
3582 if (aupe)
3583 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3584 else
3585 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3586
3587 /* clear all bits that might not be set */
3588 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3589
3590 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3591 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3592 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3593 * multicast packets
3594 */
3595 if (vfn <= adapter->vfs_allocated_count)
3596 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3597
3598 wr32(E1000_VMOLR(vfn), vmolr);
3599 }
3600
3601 /**
3602 * igb_configure_rx_ring - Configure a receive ring after Reset
3603 * @adapter: board private structure
3604 * @ring: receive ring to be configured
3605 *
3606 * Configure the Rx unit of the MAC after a reset.
3607 **/
3608 void igb_configure_rx_ring(struct igb_adapter *adapter,
3609 struct igb_ring *ring)
3610 {
3611 struct e1000_hw *hw = &adapter->hw;
3612 u64 rdba = ring->dma;
3613 int reg_idx = ring->reg_idx;
3614 u32 srrctl = 0, rxdctl = 0;
3615
3616 /* disable the queue */
3617 wr32(E1000_RXDCTL(reg_idx), 0);
3618
3619 /* Set DMA base address registers */
3620 wr32(E1000_RDBAL(reg_idx),
3621 rdba & 0x00000000ffffffffULL);
3622 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3623 wr32(E1000_RDLEN(reg_idx),
3624 ring->count * sizeof(union e1000_adv_rx_desc));
3625
3626 /* initialize head and tail */
3627 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3628 wr32(E1000_RDH(reg_idx), 0);
3629 writel(0, ring->tail);
3630
3631 /* set descriptor configuration */
3632 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3633 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3634 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3635 if (hw->mac.type >= e1000_82580)
3636 srrctl |= E1000_SRRCTL_TIMESTAMP;
3637 /* Only set Drop Enable if we are supporting multiple queues */
3638 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3639 srrctl |= E1000_SRRCTL_DROP_EN;
3640
3641 wr32(E1000_SRRCTL(reg_idx), srrctl);
3642
3643 /* set filtering for VMDQ pools */
3644 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3645
3646 rxdctl |= IGB_RX_PTHRESH;
3647 rxdctl |= IGB_RX_HTHRESH << 8;
3648 rxdctl |= IGB_RX_WTHRESH << 16;
3649
3650 /* enable receive descriptor fetching */
3651 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3652 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3653 }
3654
3655 /**
3656 * igb_configure_rx - Configure receive Unit after Reset
3657 * @adapter: board private structure
3658 *
3659 * Configure the Rx unit of the MAC after a reset.
3660 **/
3661 static void igb_configure_rx(struct igb_adapter *adapter)
3662 {
3663 int i;
3664
3665 /* set UTA to appropriate mode */
3666 igb_set_uta(adapter);
3667
3668 /* set the correct pool for the PF default MAC address in entry 0 */
3669 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3670 adapter->vfs_allocated_count);
3671
3672 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3673 * the Base and Length of the Rx Descriptor Ring
3674 */
3675 for (i = 0; i < adapter->num_rx_queues; i++)
3676 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3677 }
3678
3679 /**
3680 * igb_free_tx_resources - Free Tx Resources per Queue
3681 * @tx_ring: Tx descriptor ring for a specific queue
3682 *
3683 * Free all transmit software resources
3684 **/
3685 void igb_free_tx_resources(struct igb_ring *tx_ring)
3686 {
3687 igb_clean_tx_ring(tx_ring);
3688
3689 vfree(tx_ring->tx_buffer_info);
3690 tx_ring->tx_buffer_info = NULL;
3691
3692 /* if not set, then don't free */
3693 if (!tx_ring->desc)
3694 return;
3695
3696 dma_free_coherent(tx_ring->dev, tx_ring->size,
3697 tx_ring->desc, tx_ring->dma);
3698
3699 tx_ring->desc = NULL;
3700 }
3701
3702 /**
3703 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3704 * @adapter: board private structure
3705 *
3706 * Free all transmit software resources
3707 **/
3708 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3709 {
3710 int i;
3711
3712 for (i = 0; i < adapter->num_tx_queues; i++)
3713 igb_free_tx_resources(adapter->tx_ring[i]);
3714 }
3715
3716 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3717 struct igb_tx_buffer *tx_buffer)
3718 {
3719 if (tx_buffer->skb) {
3720 dev_kfree_skb_any(tx_buffer->skb);
3721 if (dma_unmap_len(tx_buffer, len))
3722 dma_unmap_single(ring->dev,
3723 dma_unmap_addr(tx_buffer, dma),
3724 dma_unmap_len(tx_buffer, len),
3725 DMA_TO_DEVICE);
3726 } else if (dma_unmap_len(tx_buffer, len)) {
3727 dma_unmap_page(ring->dev,
3728 dma_unmap_addr(tx_buffer, dma),
3729 dma_unmap_len(tx_buffer, len),
3730 DMA_TO_DEVICE);
3731 }
3732 tx_buffer->next_to_watch = NULL;
3733 tx_buffer->skb = NULL;
3734 dma_unmap_len_set(tx_buffer, len, 0);
3735 /* buffer_info must be completely set up in the transmit path */
3736 }
3737
3738 /**
3739 * igb_clean_tx_ring - Free Tx Buffers
3740 * @tx_ring: ring to be cleaned
3741 **/
3742 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3743 {
3744 struct igb_tx_buffer *buffer_info;
3745 unsigned long size;
3746 u16 i;
3747
3748 if (!tx_ring->tx_buffer_info)
3749 return;
3750 /* Free all the Tx ring sk_buffs */
3751
3752 for (i = 0; i < tx_ring->count; i++) {
3753 buffer_info = &tx_ring->tx_buffer_info[i];
3754 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3755 }
3756
3757 netdev_tx_reset_queue(txring_txq(tx_ring));
3758
3759 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3760 memset(tx_ring->tx_buffer_info, 0, size);
3761
3762 /* Zero out the descriptor ring */
3763 memset(tx_ring->desc, 0, tx_ring->size);
3764
3765 tx_ring->next_to_use = 0;
3766 tx_ring->next_to_clean = 0;
3767 }
3768
3769 /**
3770 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3771 * @adapter: board private structure
3772 **/
3773 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3774 {
3775 int i;
3776
3777 for (i = 0; i < adapter->num_tx_queues; i++)
3778 igb_clean_tx_ring(adapter->tx_ring[i]);
3779 }
3780
3781 /**
3782 * igb_free_rx_resources - Free Rx Resources
3783 * @rx_ring: ring to clean the resources from
3784 *
3785 * Free all receive software resources
3786 **/
3787 void igb_free_rx_resources(struct igb_ring *rx_ring)
3788 {
3789 igb_clean_rx_ring(rx_ring);
3790
3791 vfree(rx_ring->rx_buffer_info);
3792 rx_ring->rx_buffer_info = NULL;
3793
3794 /* if not set, then don't free */
3795 if (!rx_ring->desc)
3796 return;
3797
3798 dma_free_coherent(rx_ring->dev, rx_ring->size,
3799 rx_ring->desc, rx_ring->dma);
3800
3801 rx_ring->desc = NULL;
3802 }
3803
3804 /**
3805 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3806 * @adapter: board private structure
3807 *
3808 * Free all receive software resources
3809 **/
3810 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3811 {
3812 int i;
3813
3814 for (i = 0; i < adapter->num_rx_queues; i++)
3815 igb_free_rx_resources(adapter->rx_ring[i]);
3816 }
3817
3818 /**
3819 * igb_clean_rx_ring - Free Rx Buffers per Queue
3820 * @rx_ring: ring to free buffers from
3821 **/
3822 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3823 {
3824 unsigned long size;
3825 u16 i;
3826
3827 if (rx_ring->skb)
3828 dev_kfree_skb(rx_ring->skb);
3829 rx_ring->skb = NULL;
3830
3831 if (!rx_ring->rx_buffer_info)
3832 return;
3833
3834 /* Free all the Rx ring sk_buffs */
3835 for (i = 0; i < rx_ring->count; i++) {
3836 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3837
3838 if (!buffer_info->page)
3839 continue;
3840
3841 dma_unmap_page(rx_ring->dev,
3842 buffer_info->dma,
3843 PAGE_SIZE,
3844 DMA_FROM_DEVICE);
3845 __free_page(buffer_info->page);
3846
3847 buffer_info->page = NULL;
3848 }
3849
3850 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3851 memset(rx_ring->rx_buffer_info, 0, size);
3852
3853 /* Zero out the descriptor ring */
3854 memset(rx_ring->desc, 0, rx_ring->size);
3855
3856 rx_ring->next_to_alloc = 0;
3857 rx_ring->next_to_clean = 0;
3858 rx_ring->next_to_use = 0;
3859 }
3860
3861 /**
3862 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3863 * @adapter: board private structure
3864 **/
3865 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3866 {
3867 int i;
3868
3869 for (i = 0; i < adapter->num_rx_queues; i++)
3870 igb_clean_rx_ring(adapter->rx_ring[i]);
3871 }
3872
3873 /**
3874 * igb_set_mac - Change the Ethernet Address of the NIC
3875 * @netdev: network interface device structure
3876 * @p: pointer to an address structure
3877 *
3878 * Returns 0 on success, negative on failure
3879 **/
3880 static int igb_set_mac(struct net_device *netdev, void *p)
3881 {
3882 struct igb_adapter *adapter = netdev_priv(netdev);
3883 struct e1000_hw *hw = &adapter->hw;
3884 struct sockaddr *addr = p;
3885
3886 if (!is_valid_ether_addr(addr->sa_data))
3887 return -EADDRNOTAVAIL;
3888
3889 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3890 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3891
3892 /* set the correct pool for the new PF MAC address in entry 0 */
3893 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3894 adapter->vfs_allocated_count);
3895
3896 return 0;
3897 }
3898
3899 /**
3900 * igb_write_mc_addr_list - write multicast addresses to MTA
3901 * @netdev: network interface device structure
3902 *
3903 * Writes multicast address list to the MTA hash table.
3904 * Returns: -ENOMEM on failure
3905 * 0 on no addresses written
3906 * X on writing X addresses to MTA
3907 **/
3908 static int igb_write_mc_addr_list(struct net_device *netdev)
3909 {
3910 struct igb_adapter *adapter = netdev_priv(netdev);
3911 struct e1000_hw *hw = &adapter->hw;
3912 struct netdev_hw_addr *ha;
3913 u8 *mta_list;
3914 int i;
3915
3916 if (netdev_mc_empty(netdev)) {
3917 /* nothing to program, so clear mc list */
3918 igb_update_mc_addr_list(hw, NULL, 0);
3919 igb_restore_vf_multicasts(adapter);
3920 return 0;
3921 }
3922
3923 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3924 if (!mta_list)
3925 return -ENOMEM;
3926
3927 /* The shared function expects a packed array of only addresses. */
3928 i = 0;
3929 netdev_for_each_mc_addr(ha, netdev)
3930 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3931
3932 igb_update_mc_addr_list(hw, mta_list, i);
3933 kfree(mta_list);
3934
3935 return netdev_mc_count(netdev);
3936 }
3937
3938 /**
3939 * igb_write_uc_addr_list - write unicast addresses to RAR table
3940 * @netdev: network interface device structure
3941 *
3942 * Writes unicast address list to the RAR table.
3943 * Returns: -ENOMEM on failure/insufficient address space
3944 * 0 on no addresses written
3945 * X on writing X addresses to the RAR table
3946 **/
3947 static int igb_write_uc_addr_list(struct net_device *netdev)
3948 {
3949 struct igb_adapter *adapter = netdev_priv(netdev);
3950 struct e1000_hw *hw = &adapter->hw;
3951 unsigned int vfn = adapter->vfs_allocated_count;
3952 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3953 int count = 0;
3954
3955 /* return ENOMEM indicating insufficient memory for addresses */
3956 if (netdev_uc_count(netdev) > rar_entries)
3957 return -ENOMEM;
3958
3959 if (!netdev_uc_empty(netdev) && rar_entries) {
3960 struct netdev_hw_addr *ha;
3961
3962 netdev_for_each_uc_addr(ha, netdev) {
3963 if (!rar_entries)
3964 break;
3965 igb_rar_set_qsel(adapter, ha->addr,
3966 rar_entries--,
3967 vfn);
3968 count++;
3969 }
3970 }
3971 /* write the addresses in reverse order to avoid write combining */
3972 for (; rar_entries > 0 ; rar_entries--) {
3973 wr32(E1000_RAH(rar_entries), 0);
3974 wr32(E1000_RAL(rar_entries), 0);
3975 }
3976 wrfl();
3977
3978 return count;
3979 }
3980
3981 /**
3982 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3983 * @netdev: network interface device structure
3984 *
3985 * The set_rx_mode entry point is called whenever the unicast or multicast
3986 * address lists or the network interface flags are updated. This routine is
3987 * responsible for configuring the hardware for proper unicast, multicast,
3988 * promiscuous mode, and all-multi behavior.
3989 **/
3990 static void igb_set_rx_mode(struct net_device *netdev)
3991 {
3992 struct igb_adapter *adapter = netdev_priv(netdev);
3993 struct e1000_hw *hw = &adapter->hw;
3994 unsigned int vfn = adapter->vfs_allocated_count;
3995 u32 rctl, vmolr = 0;
3996 int count;
3997
3998 /* Check for Promiscuous and All Multicast modes */
3999 rctl = rd32(E1000_RCTL);
4000
4001 /* clear the effected bits */
4002 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4003
4004 if (netdev->flags & IFF_PROMISC) {
4005 /* retain VLAN HW filtering if in VT mode */
4006 if (adapter->vfs_allocated_count)
4007 rctl |= E1000_RCTL_VFE;
4008 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4009 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4010 } else {
4011 if (netdev->flags & IFF_ALLMULTI) {
4012 rctl |= E1000_RCTL_MPE;
4013 vmolr |= E1000_VMOLR_MPME;
4014 } else {
4015 /* Write addresses to the MTA, if the attempt fails
4016 * then we should just turn on promiscuous mode so
4017 * that we can at least receive multicast traffic
4018 */
4019 count = igb_write_mc_addr_list(netdev);
4020 if (count < 0) {
4021 rctl |= E1000_RCTL_MPE;
4022 vmolr |= E1000_VMOLR_MPME;
4023 } else if (count) {
4024 vmolr |= E1000_VMOLR_ROMPE;
4025 }
4026 }
4027 /* Write addresses to available RAR registers, if there is not
4028 * sufficient space to store all the addresses then enable
4029 * unicast promiscuous mode
4030 */
4031 count = igb_write_uc_addr_list(netdev);
4032 if (count < 0) {
4033 rctl |= E1000_RCTL_UPE;
4034 vmolr |= E1000_VMOLR_ROPE;
4035 }
4036 rctl |= E1000_RCTL_VFE;
4037 }
4038 wr32(E1000_RCTL, rctl);
4039
4040 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4041 * the VMOLR to enable the appropriate modes. Without this workaround
4042 * we will have issues with VLAN tag stripping not being done for frames
4043 * that are only arriving because we are the default pool
4044 */
4045 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4046 return;
4047
4048 vmolr |= rd32(E1000_VMOLR(vfn)) &
4049 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4050 wr32(E1000_VMOLR(vfn), vmolr);
4051 igb_restore_vf_multicasts(adapter);
4052 }
4053
4054 static void igb_check_wvbr(struct igb_adapter *adapter)
4055 {
4056 struct e1000_hw *hw = &adapter->hw;
4057 u32 wvbr = 0;
4058
4059 switch (hw->mac.type) {
4060 case e1000_82576:
4061 case e1000_i350:
4062 if (!(wvbr = rd32(E1000_WVBR)))
4063 return;
4064 break;
4065 default:
4066 break;
4067 }
4068
4069 adapter->wvbr |= wvbr;
4070 }
4071
4072 #define IGB_STAGGERED_QUEUE_OFFSET 8
4073
4074 static void igb_spoof_check(struct igb_adapter *adapter)
4075 {
4076 int j;
4077
4078 if (!adapter->wvbr)
4079 return;
4080
4081 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4082 if (adapter->wvbr & (1 << j) ||
4083 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4084 dev_warn(&adapter->pdev->dev,
4085 "Spoof event(s) detected on VF %d\n", j);
4086 adapter->wvbr &=
4087 ~((1 << j) |
4088 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4089 }
4090 }
4091 }
4092
4093 /* Need to wait a few seconds after link up to get diagnostic information from
4094 * the phy
4095 */
4096 static void igb_update_phy_info(unsigned long data)
4097 {
4098 struct igb_adapter *adapter = (struct igb_adapter *) data;
4099 igb_get_phy_info(&adapter->hw);
4100 }
4101
4102 /**
4103 * igb_has_link - check shared code for link and determine up/down
4104 * @adapter: pointer to driver private info
4105 **/
4106 bool igb_has_link(struct igb_adapter *adapter)
4107 {
4108 struct e1000_hw *hw = &adapter->hw;
4109 bool link_active = false;
4110
4111 /* get_link_status is set on LSC (link status) interrupt or
4112 * rx sequence error interrupt. get_link_status will stay
4113 * false until the e1000_check_for_link establishes link
4114 * for copper adapters ONLY
4115 */
4116 switch (hw->phy.media_type) {
4117 case e1000_media_type_copper:
4118 if (!hw->mac.get_link_status)
4119 return true;
4120 case e1000_media_type_internal_serdes:
4121 hw->mac.ops.check_for_link(hw);
4122 link_active = !hw->mac.get_link_status;
4123 break;
4124 default:
4125 case e1000_media_type_unknown:
4126 break;
4127 }
4128
4129 if (((hw->mac.type == e1000_i210) ||
4130 (hw->mac.type == e1000_i211)) &&
4131 (hw->phy.id == I210_I_PHY_ID)) {
4132 if (!netif_carrier_ok(adapter->netdev)) {
4133 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4134 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4135 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4136 adapter->link_check_timeout = jiffies;
4137 }
4138 }
4139
4140 return link_active;
4141 }
4142
4143 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4144 {
4145 bool ret = false;
4146 u32 ctrl_ext, thstat;
4147
4148 /* check for thermal sensor event on i350 copper only */
4149 if (hw->mac.type == e1000_i350) {
4150 thstat = rd32(E1000_THSTAT);
4151 ctrl_ext = rd32(E1000_CTRL_EXT);
4152
4153 if ((hw->phy.media_type == e1000_media_type_copper) &&
4154 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4155 ret = !!(thstat & event);
4156 }
4157
4158 return ret;
4159 }
4160
4161 /**
4162 * igb_watchdog - Timer Call-back
4163 * @data: pointer to adapter cast into an unsigned long
4164 **/
4165 static void igb_watchdog(unsigned long data)
4166 {
4167 struct igb_adapter *adapter = (struct igb_adapter *)data;
4168 /* Do the rest outside of interrupt context */
4169 schedule_work(&adapter->watchdog_task);
4170 }
4171
4172 static void igb_watchdog_task(struct work_struct *work)
4173 {
4174 struct igb_adapter *adapter = container_of(work,
4175 struct igb_adapter,
4176 watchdog_task);
4177 struct e1000_hw *hw = &adapter->hw;
4178 struct e1000_phy_info *phy = &hw->phy;
4179 struct net_device *netdev = adapter->netdev;
4180 u32 link;
4181 int i;
4182 u32 connsw;
4183
4184 link = igb_has_link(adapter);
4185
4186 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4187 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4188 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4189 else
4190 link = false;
4191 }
4192
4193 /* Force link down if we have fiber to swap to */
4194 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4195 if (hw->phy.media_type == e1000_media_type_copper) {
4196 connsw = rd32(E1000_CONNSW);
4197 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4198 link = 0;
4199 }
4200 }
4201 if (link) {
4202 /* Perform a reset if the media type changed. */
4203 if (hw->dev_spec._82575.media_changed) {
4204 hw->dev_spec._82575.media_changed = false;
4205 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4206 igb_reset(adapter);
4207 }
4208 /* Cancel scheduled suspend requests. */
4209 pm_runtime_resume(netdev->dev.parent);
4210
4211 if (!netif_carrier_ok(netdev)) {
4212 u32 ctrl;
4213
4214 hw->mac.ops.get_speed_and_duplex(hw,
4215 &adapter->link_speed,
4216 &adapter->link_duplex);
4217
4218 ctrl = rd32(E1000_CTRL);
4219 /* Links status message must follow this format */
4220 netdev_info(netdev,
4221 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4222 netdev->name,
4223 adapter->link_speed,
4224 adapter->link_duplex == FULL_DUPLEX ?
4225 "Full" : "Half",
4226 (ctrl & E1000_CTRL_TFCE) &&
4227 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4228 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4229 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4230
4231 /* disable EEE if enabled */
4232 if ((adapter->flags & IGB_FLAG_EEE) &&
4233 (adapter->link_duplex == HALF_DUPLEX)) {
4234 dev_info(&adapter->pdev->dev,
4235 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4236 adapter->hw.dev_spec._82575.eee_disable = true;
4237 adapter->flags &= ~IGB_FLAG_EEE;
4238 }
4239
4240 /* check if SmartSpeed worked */
4241 igb_check_downshift(hw);
4242 if (phy->speed_downgraded)
4243 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4244
4245 /* check for thermal sensor event */
4246 if (igb_thermal_sensor_event(hw,
4247 E1000_THSTAT_LINK_THROTTLE))
4248 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4249
4250 /* adjust timeout factor according to speed/duplex */
4251 adapter->tx_timeout_factor = 1;
4252 switch (adapter->link_speed) {
4253 case SPEED_10:
4254 adapter->tx_timeout_factor = 14;
4255 break;
4256 case SPEED_100:
4257 /* maybe add some timeout factor ? */
4258 break;
4259 }
4260
4261 netif_carrier_on(netdev);
4262
4263 igb_ping_all_vfs(adapter);
4264 igb_check_vf_rate_limit(adapter);
4265
4266 /* link state has changed, schedule phy info update */
4267 if (!test_bit(__IGB_DOWN, &adapter->state))
4268 mod_timer(&adapter->phy_info_timer,
4269 round_jiffies(jiffies + 2 * HZ));
4270 }
4271 } else {
4272 if (netif_carrier_ok(netdev)) {
4273 adapter->link_speed = 0;
4274 adapter->link_duplex = 0;
4275
4276 /* check for thermal sensor event */
4277 if (igb_thermal_sensor_event(hw,
4278 E1000_THSTAT_PWR_DOWN)) {
4279 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4280 }
4281
4282 /* Links status message must follow this format */
4283 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4284 netdev->name);
4285 netif_carrier_off(netdev);
4286
4287 igb_ping_all_vfs(adapter);
4288
4289 /* link state has changed, schedule phy info update */
4290 if (!test_bit(__IGB_DOWN, &adapter->state))
4291 mod_timer(&adapter->phy_info_timer,
4292 round_jiffies(jiffies + 2 * HZ));
4293
4294 /* link is down, time to check for alternate media */
4295 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4296 igb_check_swap_media(adapter);
4297 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4298 schedule_work(&adapter->reset_task);
4299 /* return immediately */
4300 return;
4301 }
4302 }
4303 pm_schedule_suspend(netdev->dev.parent,
4304 MSEC_PER_SEC * 5);
4305
4306 /* also check for alternate media here */
4307 } else if (!netif_carrier_ok(netdev) &&
4308 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4309 igb_check_swap_media(adapter);
4310 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4311 schedule_work(&adapter->reset_task);
4312 /* return immediately */
4313 return;
4314 }
4315 }
4316 }
4317
4318 spin_lock(&adapter->stats64_lock);
4319 igb_update_stats(adapter, &adapter->stats64);
4320 spin_unlock(&adapter->stats64_lock);
4321
4322 for (i = 0; i < adapter->num_tx_queues; i++) {
4323 struct igb_ring *tx_ring = adapter->tx_ring[i];
4324 if (!netif_carrier_ok(netdev)) {
4325 /* We've lost link, so the controller stops DMA,
4326 * but we've got queued Tx work that's never going
4327 * to get done, so reset controller to flush Tx.
4328 * (Do the reset outside of interrupt context).
4329 */
4330 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4331 adapter->tx_timeout_count++;
4332 schedule_work(&adapter->reset_task);
4333 /* return immediately since reset is imminent */
4334 return;
4335 }
4336 }
4337
4338 /* Force detection of hung controller every watchdog period */
4339 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4340 }
4341
4342 /* Cause software interrupt to ensure Rx ring is cleaned */
4343 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4344 u32 eics = 0;
4345
4346 for (i = 0; i < adapter->num_q_vectors; i++)
4347 eics |= adapter->q_vector[i]->eims_value;
4348 wr32(E1000_EICS, eics);
4349 } else {
4350 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4351 }
4352
4353 igb_spoof_check(adapter);
4354 igb_ptp_rx_hang(adapter);
4355
4356 /* Reset the timer */
4357 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4358 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4359 mod_timer(&adapter->watchdog_timer,
4360 round_jiffies(jiffies + HZ));
4361 else
4362 mod_timer(&adapter->watchdog_timer,
4363 round_jiffies(jiffies + 2 * HZ));
4364 }
4365 }
4366
4367 enum latency_range {
4368 lowest_latency = 0,
4369 low_latency = 1,
4370 bulk_latency = 2,
4371 latency_invalid = 255
4372 };
4373
4374 /**
4375 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4376 * @q_vector: pointer to q_vector
4377 *
4378 * Stores a new ITR value based on strictly on packet size. This
4379 * algorithm is less sophisticated than that used in igb_update_itr,
4380 * due to the difficulty of synchronizing statistics across multiple
4381 * receive rings. The divisors and thresholds used by this function
4382 * were determined based on theoretical maximum wire speed and testing
4383 * data, in order to minimize response time while increasing bulk
4384 * throughput.
4385 * This functionality is controlled by ethtool's coalescing settings.
4386 * NOTE: This function is called only when operating in a multiqueue
4387 * receive environment.
4388 **/
4389 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4390 {
4391 int new_val = q_vector->itr_val;
4392 int avg_wire_size = 0;
4393 struct igb_adapter *adapter = q_vector->adapter;
4394 unsigned int packets;
4395
4396 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4397 * ints/sec - ITR timer value of 120 ticks.
4398 */
4399 if (adapter->link_speed != SPEED_1000) {
4400 new_val = IGB_4K_ITR;
4401 goto set_itr_val;
4402 }
4403
4404 packets = q_vector->rx.total_packets;
4405 if (packets)
4406 avg_wire_size = q_vector->rx.total_bytes / packets;
4407
4408 packets = q_vector->tx.total_packets;
4409 if (packets)
4410 avg_wire_size = max_t(u32, avg_wire_size,
4411 q_vector->tx.total_bytes / packets);
4412
4413 /* if avg_wire_size isn't set no work was done */
4414 if (!avg_wire_size)
4415 goto clear_counts;
4416
4417 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4418 avg_wire_size += 24;
4419
4420 /* Don't starve jumbo frames */
4421 avg_wire_size = min(avg_wire_size, 3000);
4422
4423 /* Give a little boost to mid-size frames */
4424 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4425 new_val = avg_wire_size / 3;
4426 else
4427 new_val = avg_wire_size / 2;
4428
4429 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4430 if (new_val < IGB_20K_ITR &&
4431 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4432 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4433 new_val = IGB_20K_ITR;
4434
4435 set_itr_val:
4436 if (new_val != q_vector->itr_val) {
4437 q_vector->itr_val = new_val;
4438 q_vector->set_itr = 1;
4439 }
4440 clear_counts:
4441 q_vector->rx.total_bytes = 0;
4442 q_vector->rx.total_packets = 0;
4443 q_vector->tx.total_bytes = 0;
4444 q_vector->tx.total_packets = 0;
4445 }
4446
4447 /**
4448 * igb_update_itr - update the dynamic ITR value based on statistics
4449 * @q_vector: pointer to q_vector
4450 * @ring_container: ring info to update the itr for
4451 *
4452 * Stores a new ITR value based on packets and byte
4453 * counts during the last interrupt. The advantage of per interrupt
4454 * computation is faster updates and more accurate ITR for the current
4455 * traffic pattern. Constants in this function were computed
4456 * based on theoretical maximum wire speed and thresholds were set based
4457 * on testing data as well as attempting to minimize response time
4458 * while increasing bulk throughput.
4459 * This functionality is controlled by ethtool's coalescing settings.
4460 * NOTE: These calculations are only valid when operating in a single-
4461 * queue environment.
4462 **/
4463 static void igb_update_itr(struct igb_q_vector *q_vector,
4464 struct igb_ring_container *ring_container)
4465 {
4466 unsigned int packets = ring_container->total_packets;
4467 unsigned int bytes = ring_container->total_bytes;
4468 u8 itrval = ring_container->itr;
4469
4470 /* no packets, exit with status unchanged */
4471 if (packets == 0)
4472 return;
4473
4474 switch (itrval) {
4475 case lowest_latency:
4476 /* handle TSO and jumbo frames */
4477 if (bytes/packets > 8000)
4478 itrval = bulk_latency;
4479 else if ((packets < 5) && (bytes > 512))
4480 itrval = low_latency;
4481 break;
4482 case low_latency: /* 50 usec aka 20000 ints/s */
4483 if (bytes > 10000) {
4484 /* this if handles the TSO accounting */
4485 if (bytes/packets > 8000)
4486 itrval = bulk_latency;
4487 else if ((packets < 10) || ((bytes/packets) > 1200))
4488 itrval = bulk_latency;
4489 else if ((packets > 35))
4490 itrval = lowest_latency;
4491 } else if (bytes/packets > 2000) {
4492 itrval = bulk_latency;
4493 } else if (packets <= 2 && bytes < 512) {
4494 itrval = lowest_latency;
4495 }
4496 break;
4497 case bulk_latency: /* 250 usec aka 4000 ints/s */
4498 if (bytes > 25000) {
4499 if (packets > 35)
4500 itrval = low_latency;
4501 } else if (bytes < 1500) {
4502 itrval = low_latency;
4503 }
4504 break;
4505 }
4506
4507 /* clear work counters since we have the values we need */
4508 ring_container->total_bytes = 0;
4509 ring_container->total_packets = 0;
4510
4511 /* write updated itr to ring container */
4512 ring_container->itr = itrval;
4513 }
4514
4515 static void igb_set_itr(struct igb_q_vector *q_vector)
4516 {
4517 struct igb_adapter *adapter = q_vector->adapter;
4518 u32 new_itr = q_vector->itr_val;
4519 u8 current_itr = 0;
4520
4521 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4522 if (adapter->link_speed != SPEED_1000) {
4523 current_itr = 0;
4524 new_itr = IGB_4K_ITR;
4525 goto set_itr_now;
4526 }
4527
4528 igb_update_itr(q_vector, &q_vector->tx);
4529 igb_update_itr(q_vector, &q_vector->rx);
4530
4531 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4532
4533 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4534 if (current_itr == lowest_latency &&
4535 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4536 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4537 current_itr = low_latency;
4538
4539 switch (current_itr) {
4540 /* counts and packets in update_itr are dependent on these numbers */
4541 case lowest_latency:
4542 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4543 break;
4544 case low_latency:
4545 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4546 break;
4547 case bulk_latency:
4548 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4549 break;
4550 default:
4551 break;
4552 }
4553
4554 set_itr_now:
4555 if (new_itr != q_vector->itr_val) {
4556 /* this attempts to bias the interrupt rate towards Bulk
4557 * by adding intermediate steps when interrupt rate is
4558 * increasing
4559 */
4560 new_itr = new_itr > q_vector->itr_val ?
4561 max((new_itr * q_vector->itr_val) /
4562 (new_itr + (q_vector->itr_val >> 2)),
4563 new_itr) : new_itr;
4564 /* Don't write the value here; it resets the adapter's
4565 * internal timer, and causes us to delay far longer than
4566 * we should between interrupts. Instead, we write the ITR
4567 * value at the beginning of the next interrupt so the timing
4568 * ends up being correct.
4569 */
4570 q_vector->itr_val = new_itr;
4571 q_vector->set_itr = 1;
4572 }
4573 }
4574
4575 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4576 u32 type_tucmd, u32 mss_l4len_idx)
4577 {
4578 struct e1000_adv_tx_context_desc *context_desc;
4579 u16 i = tx_ring->next_to_use;
4580
4581 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4582
4583 i++;
4584 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4585
4586 /* set bits to identify this as an advanced context descriptor */
4587 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4588
4589 /* For 82575, context index must be unique per ring. */
4590 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4591 mss_l4len_idx |= tx_ring->reg_idx << 4;
4592
4593 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4594 context_desc->seqnum_seed = 0;
4595 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4596 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4597 }
4598
4599 static int igb_tso(struct igb_ring *tx_ring,
4600 struct igb_tx_buffer *first,
4601 u8 *hdr_len)
4602 {
4603 struct sk_buff *skb = first->skb;
4604 u32 vlan_macip_lens, type_tucmd;
4605 u32 mss_l4len_idx, l4len;
4606 int err;
4607
4608 if (skb->ip_summed != CHECKSUM_PARTIAL)
4609 return 0;
4610
4611 if (!skb_is_gso(skb))
4612 return 0;
4613
4614 err = skb_cow_head(skb, 0);
4615 if (err < 0)
4616 return err;
4617
4618 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4619 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4620
4621 if (first->protocol == htons(ETH_P_IP)) {
4622 struct iphdr *iph = ip_hdr(skb);
4623 iph->tot_len = 0;
4624 iph->check = 0;
4625 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4626 iph->daddr, 0,
4627 IPPROTO_TCP,
4628 0);
4629 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4630 first->tx_flags |= IGB_TX_FLAGS_TSO |
4631 IGB_TX_FLAGS_CSUM |
4632 IGB_TX_FLAGS_IPV4;
4633 } else if (skb_is_gso_v6(skb)) {
4634 ipv6_hdr(skb)->payload_len = 0;
4635 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4636 &ipv6_hdr(skb)->daddr,
4637 0, IPPROTO_TCP, 0);
4638 first->tx_flags |= IGB_TX_FLAGS_TSO |
4639 IGB_TX_FLAGS_CSUM;
4640 }
4641
4642 /* compute header lengths */
4643 l4len = tcp_hdrlen(skb);
4644 *hdr_len = skb_transport_offset(skb) + l4len;
4645
4646 /* update gso size and bytecount with header size */
4647 first->gso_segs = skb_shinfo(skb)->gso_segs;
4648 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4649
4650 /* MSS L4LEN IDX */
4651 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4652 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4653
4654 /* VLAN MACLEN IPLEN */
4655 vlan_macip_lens = skb_network_header_len(skb);
4656 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4657 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4658
4659 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4660
4661 return 1;
4662 }
4663
4664 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4665 {
4666 struct sk_buff *skb = first->skb;
4667 u32 vlan_macip_lens = 0;
4668 u32 mss_l4len_idx = 0;
4669 u32 type_tucmd = 0;
4670
4671 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4672 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4673 return;
4674 } else {
4675 u8 l4_hdr = 0;
4676
4677 switch (first->protocol) {
4678 case htons(ETH_P_IP):
4679 vlan_macip_lens |= skb_network_header_len(skb);
4680 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4681 l4_hdr = ip_hdr(skb)->protocol;
4682 break;
4683 case htons(ETH_P_IPV6):
4684 vlan_macip_lens |= skb_network_header_len(skb);
4685 l4_hdr = ipv6_hdr(skb)->nexthdr;
4686 break;
4687 default:
4688 if (unlikely(net_ratelimit())) {
4689 dev_warn(tx_ring->dev,
4690 "partial checksum but proto=%x!\n",
4691 first->protocol);
4692 }
4693 break;
4694 }
4695
4696 switch (l4_hdr) {
4697 case IPPROTO_TCP:
4698 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4699 mss_l4len_idx = tcp_hdrlen(skb) <<
4700 E1000_ADVTXD_L4LEN_SHIFT;
4701 break;
4702 case IPPROTO_SCTP:
4703 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4704 mss_l4len_idx = sizeof(struct sctphdr) <<
4705 E1000_ADVTXD_L4LEN_SHIFT;
4706 break;
4707 case IPPROTO_UDP:
4708 mss_l4len_idx = sizeof(struct udphdr) <<
4709 E1000_ADVTXD_L4LEN_SHIFT;
4710 break;
4711 default:
4712 if (unlikely(net_ratelimit())) {
4713 dev_warn(tx_ring->dev,
4714 "partial checksum but l4 proto=%x!\n",
4715 l4_hdr);
4716 }
4717 break;
4718 }
4719
4720 /* update TX checksum flag */
4721 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4722 }
4723
4724 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4725 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4726
4727 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4728 }
4729
4730 #define IGB_SET_FLAG(_input, _flag, _result) \
4731 ((_flag <= _result) ? \
4732 ((u32)(_input & _flag) * (_result / _flag)) : \
4733 ((u32)(_input & _flag) / (_flag / _result)))
4734
4735 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4736 {
4737 /* set type for advanced descriptor with frame checksum insertion */
4738 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4739 E1000_ADVTXD_DCMD_DEXT |
4740 E1000_ADVTXD_DCMD_IFCS;
4741
4742 /* set HW vlan bit if vlan is present */
4743 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4744 (E1000_ADVTXD_DCMD_VLE));
4745
4746 /* set segmentation bits for TSO */
4747 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4748 (E1000_ADVTXD_DCMD_TSE));
4749
4750 /* set timestamp bit if present */
4751 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4752 (E1000_ADVTXD_MAC_TSTAMP));
4753
4754 /* insert frame checksum */
4755 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4756
4757 return cmd_type;
4758 }
4759
4760 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4761 union e1000_adv_tx_desc *tx_desc,
4762 u32 tx_flags, unsigned int paylen)
4763 {
4764 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4765
4766 /* 82575 requires a unique index per ring */
4767 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4768 olinfo_status |= tx_ring->reg_idx << 4;
4769
4770 /* insert L4 checksum */
4771 olinfo_status |= IGB_SET_FLAG(tx_flags,
4772 IGB_TX_FLAGS_CSUM,
4773 (E1000_TXD_POPTS_TXSM << 8));
4774
4775 /* insert IPv4 checksum */
4776 olinfo_status |= IGB_SET_FLAG(tx_flags,
4777 IGB_TX_FLAGS_IPV4,
4778 (E1000_TXD_POPTS_IXSM << 8));
4779
4780 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4781 }
4782
4783 static void igb_tx_map(struct igb_ring *tx_ring,
4784 struct igb_tx_buffer *first,
4785 const u8 hdr_len)
4786 {
4787 struct sk_buff *skb = first->skb;
4788 struct igb_tx_buffer *tx_buffer;
4789 union e1000_adv_tx_desc *tx_desc;
4790 struct skb_frag_struct *frag;
4791 dma_addr_t dma;
4792 unsigned int data_len, size;
4793 u32 tx_flags = first->tx_flags;
4794 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4795 u16 i = tx_ring->next_to_use;
4796
4797 tx_desc = IGB_TX_DESC(tx_ring, i);
4798
4799 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4800
4801 size = skb_headlen(skb);
4802 data_len = skb->data_len;
4803
4804 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4805
4806 tx_buffer = first;
4807
4808 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4809 if (dma_mapping_error(tx_ring->dev, dma))
4810 goto dma_error;
4811
4812 /* record length, and DMA address */
4813 dma_unmap_len_set(tx_buffer, len, size);
4814 dma_unmap_addr_set(tx_buffer, dma, dma);
4815
4816 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4817
4818 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4819 tx_desc->read.cmd_type_len =
4820 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4821
4822 i++;
4823 tx_desc++;
4824 if (i == tx_ring->count) {
4825 tx_desc = IGB_TX_DESC(tx_ring, 0);
4826 i = 0;
4827 }
4828 tx_desc->read.olinfo_status = 0;
4829
4830 dma += IGB_MAX_DATA_PER_TXD;
4831 size -= IGB_MAX_DATA_PER_TXD;
4832
4833 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4834 }
4835
4836 if (likely(!data_len))
4837 break;
4838
4839 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4840
4841 i++;
4842 tx_desc++;
4843 if (i == tx_ring->count) {
4844 tx_desc = IGB_TX_DESC(tx_ring, 0);
4845 i = 0;
4846 }
4847 tx_desc->read.olinfo_status = 0;
4848
4849 size = skb_frag_size(frag);
4850 data_len -= size;
4851
4852 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4853 size, DMA_TO_DEVICE);
4854
4855 tx_buffer = &tx_ring->tx_buffer_info[i];
4856 }
4857
4858 /* write last descriptor with RS and EOP bits */
4859 cmd_type |= size | IGB_TXD_DCMD;
4860 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4861
4862 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4863
4864 /* set the timestamp */
4865 first->time_stamp = jiffies;
4866
4867 /* Force memory writes to complete before letting h/w know there
4868 * are new descriptors to fetch. (Only applicable for weak-ordered
4869 * memory model archs, such as IA-64).
4870 *
4871 * We also need this memory barrier to make certain all of the
4872 * status bits have been updated before next_to_watch is written.
4873 */
4874 wmb();
4875
4876 /* set next_to_watch value indicating a packet is present */
4877 first->next_to_watch = tx_desc;
4878
4879 i++;
4880 if (i == tx_ring->count)
4881 i = 0;
4882
4883 tx_ring->next_to_use = i;
4884
4885 writel(i, tx_ring->tail);
4886
4887 /* we need this if more than one processor can write to our tail
4888 * at a time, it synchronizes IO on IA64/Altix systems
4889 */
4890 mmiowb();
4891
4892 return;
4893
4894 dma_error:
4895 dev_err(tx_ring->dev, "TX DMA map failed\n");
4896
4897 /* clear dma mappings for failed tx_buffer_info map */
4898 for (;;) {
4899 tx_buffer = &tx_ring->tx_buffer_info[i];
4900 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4901 if (tx_buffer == first)
4902 break;
4903 if (i == 0)
4904 i = tx_ring->count;
4905 i--;
4906 }
4907
4908 tx_ring->next_to_use = i;
4909 }
4910
4911 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4912 {
4913 struct net_device *netdev = tx_ring->netdev;
4914
4915 netif_stop_subqueue(netdev, tx_ring->queue_index);
4916
4917 /* Herbert's original patch had:
4918 * smp_mb__after_netif_stop_queue();
4919 * but since that doesn't exist yet, just open code it.
4920 */
4921 smp_mb();
4922
4923 /* We need to check again in a case another CPU has just
4924 * made room available.
4925 */
4926 if (igb_desc_unused(tx_ring) < size)
4927 return -EBUSY;
4928
4929 /* A reprieve! */
4930 netif_wake_subqueue(netdev, tx_ring->queue_index);
4931
4932 u64_stats_update_begin(&tx_ring->tx_syncp2);
4933 tx_ring->tx_stats.restart_queue2++;
4934 u64_stats_update_end(&tx_ring->tx_syncp2);
4935
4936 return 0;
4937 }
4938
4939 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4940 {
4941 if (igb_desc_unused(tx_ring) >= size)
4942 return 0;
4943 return __igb_maybe_stop_tx(tx_ring, size);
4944 }
4945
4946 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4947 struct igb_ring *tx_ring)
4948 {
4949 struct igb_tx_buffer *first;
4950 int tso;
4951 u32 tx_flags = 0;
4952 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4953 __be16 protocol = vlan_get_protocol(skb);
4954 u8 hdr_len = 0;
4955
4956 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4957 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4958 * + 2 desc gap to keep tail from touching head,
4959 * + 1 desc for context descriptor,
4960 * otherwise try next time
4961 */
4962 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4963 unsigned short f;
4964
4965 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4966 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4967 } else {
4968 count += skb_shinfo(skb)->nr_frags;
4969 }
4970
4971 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4972 /* this is a hard error */
4973 return NETDEV_TX_BUSY;
4974 }
4975
4976 /* record the location of the first descriptor for this packet */
4977 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4978 first->skb = skb;
4979 first->bytecount = skb->len;
4980 first->gso_segs = 1;
4981
4982 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4983 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4984
4985 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4986 &adapter->state)) {
4987 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4988 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4989
4990 adapter->ptp_tx_skb = skb_get(skb);
4991 adapter->ptp_tx_start = jiffies;
4992 if (adapter->hw.mac.type == e1000_82576)
4993 schedule_work(&adapter->ptp_tx_work);
4994 }
4995 }
4996
4997 skb_tx_timestamp(skb);
4998
4999 if (vlan_tx_tag_present(skb)) {
5000 tx_flags |= IGB_TX_FLAGS_VLAN;
5001 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5002 }
5003
5004 /* record initial flags and protocol */
5005 first->tx_flags = tx_flags;
5006 first->protocol = protocol;
5007
5008 tso = igb_tso(tx_ring, first, &hdr_len);
5009 if (tso < 0)
5010 goto out_drop;
5011 else if (!tso)
5012 igb_tx_csum(tx_ring, first);
5013
5014 igb_tx_map(tx_ring, first, hdr_len);
5015
5016 /* Make sure there is space in the ring for the next send. */
5017 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5018
5019 return NETDEV_TX_OK;
5020
5021 out_drop:
5022 igb_unmap_and_free_tx_resource(tx_ring, first);
5023
5024 return NETDEV_TX_OK;
5025 }
5026
5027 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5028 struct sk_buff *skb)
5029 {
5030 unsigned int r_idx = skb->queue_mapping;
5031
5032 if (r_idx >= adapter->num_tx_queues)
5033 r_idx = r_idx % adapter->num_tx_queues;
5034
5035 return adapter->tx_ring[r_idx];
5036 }
5037
5038 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5039 struct net_device *netdev)
5040 {
5041 struct igb_adapter *adapter = netdev_priv(netdev);
5042
5043 if (test_bit(__IGB_DOWN, &adapter->state)) {
5044 dev_kfree_skb_any(skb);
5045 return NETDEV_TX_OK;
5046 }
5047
5048 if (skb->len <= 0) {
5049 dev_kfree_skb_any(skb);
5050 return NETDEV_TX_OK;
5051 }
5052
5053 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5054 * in order to meet this minimum size requirement.
5055 */
5056 if (unlikely(skb->len < 17)) {
5057 if (skb_pad(skb, 17 - skb->len))
5058 return NETDEV_TX_OK;
5059 skb->len = 17;
5060 skb_set_tail_pointer(skb, 17);
5061 }
5062
5063 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5064 }
5065
5066 /**
5067 * igb_tx_timeout - Respond to a Tx Hang
5068 * @netdev: network interface device structure
5069 **/
5070 static void igb_tx_timeout(struct net_device *netdev)
5071 {
5072 struct igb_adapter *adapter = netdev_priv(netdev);
5073 struct e1000_hw *hw = &adapter->hw;
5074
5075 /* Do the reset outside of interrupt context */
5076 adapter->tx_timeout_count++;
5077
5078 if (hw->mac.type >= e1000_82580)
5079 hw->dev_spec._82575.global_device_reset = true;
5080
5081 schedule_work(&adapter->reset_task);
5082 wr32(E1000_EICS,
5083 (adapter->eims_enable_mask & ~adapter->eims_other));
5084 }
5085
5086 static void igb_reset_task(struct work_struct *work)
5087 {
5088 struct igb_adapter *adapter;
5089 adapter = container_of(work, struct igb_adapter, reset_task);
5090
5091 igb_dump(adapter);
5092 netdev_err(adapter->netdev, "Reset adapter\n");
5093 igb_reinit_locked(adapter);
5094 }
5095
5096 /**
5097 * igb_get_stats64 - Get System Network Statistics
5098 * @netdev: network interface device structure
5099 * @stats: rtnl_link_stats64 pointer
5100 **/
5101 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5102 struct rtnl_link_stats64 *stats)
5103 {
5104 struct igb_adapter *adapter = netdev_priv(netdev);
5105
5106 spin_lock(&adapter->stats64_lock);
5107 igb_update_stats(adapter, &adapter->stats64);
5108 memcpy(stats, &adapter->stats64, sizeof(*stats));
5109 spin_unlock(&adapter->stats64_lock);
5110
5111 return stats;
5112 }
5113
5114 /**
5115 * igb_change_mtu - Change the Maximum Transfer Unit
5116 * @netdev: network interface device structure
5117 * @new_mtu: new value for maximum frame size
5118 *
5119 * Returns 0 on success, negative on failure
5120 **/
5121 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5122 {
5123 struct igb_adapter *adapter = netdev_priv(netdev);
5124 struct pci_dev *pdev = adapter->pdev;
5125 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5126
5127 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5128 dev_err(&pdev->dev, "Invalid MTU setting\n");
5129 return -EINVAL;
5130 }
5131
5132 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5133 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5134 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5135 return -EINVAL;
5136 }
5137
5138 /* adjust max frame to be at least the size of a standard frame */
5139 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5140 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5141
5142 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5143 msleep(1);
5144
5145 /* igb_down has a dependency on max_frame_size */
5146 adapter->max_frame_size = max_frame;
5147
5148 if (netif_running(netdev))
5149 igb_down(adapter);
5150
5151 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5152 netdev->mtu, new_mtu);
5153 netdev->mtu = new_mtu;
5154
5155 if (netif_running(netdev))
5156 igb_up(adapter);
5157 else
5158 igb_reset(adapter);
5159
5160 clear_bit(__IGB_RESETTING, &adapter->state);
5161
5162 return 0;
5163 }
5164
5165 /**
5166 * igb_update_stats - Update the board statistics counters
5167 * @adapter: board private structure
5168 **/
5169 void igb_update_stats(struct igb_adapter *adapter,
5170 struct rtnl_link_stats64 *net_stats)
5171 {
5172 struct e1000_hw *hw = &adapter->hw;
5173 struct pci_dev *pdev = adapter->pdev;
5174 u32 reg, mpc;
5175 u16 phy_tmp;
5176 int i;
5177 u64 bytes, packets;
5178 unsigned int start;
5179 u64 _bytes, _packets;
5180
5181 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5182
5183 /* Prevent stats update while adapter is being reset, or if the pci
5184 * connection is down.
5185 */
5186 if (adapter->link_speed == 0)
5187 return;
5188 if (pci_channel_offline(pdev))
5189 return;
5190
5191 bytes = 0;
5192 packets = 0;
5193
5194 rcu_read_lock();
5195 for (i = 0; i < adapter->num_rx_queues; i++) {
5196 u32 rqdpc = rd32(E1000_RQDPC(i));
5197 struct igb_ring *ring = adapter->rx_ring[i];
5198
5199 if (rqdpc) {
5200 ring->rx_stats.drops += rqdpc;
5201 net_stats->rx_fifo_errors += rqdpc;
5202 }
5203
5204 do {
5205 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5206 _bytes = ring->rx_stats.bytes;
5207 _packets = ring->rx_stats.packets;
5208 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5209 bytes += _bytes;
5210 packets += _packets;
5211 }
5212
5213 net_stats->rx_bytes = bytes;
5214 net_stats->rx_packets = packets;
5215
5216 bytes = 0;
5217 packets = 0;
5218 for (i = 0; i < adapter->num_tx_queues; i++) {
5219 struct igb_ring *ring = adapter->tx_ring[i];
5220 do {
5221 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5222 _bytes = ring->tx_stats.bytes;
5223 _packets = ring->tx_stats.packets;
5224 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5225 bytes += _bytes;
5226 packets += _packets;
5227 }
5228 net_stats->tx_bytes = bytes;
5229 net_stats->tx_packets = packets;
5230 rcu_read_unlock();
5231
5232 /* read stats registers */
5233 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5234 adapter->stats.gprc += rd32(E1000_GPRC);
5235 adapter->stats.gorc += rd32(E1000_GORCL);
5236 rd32(E1000_GORCH); /* clear GORCL */
5237 adapter->stats.bprc += rd32(E1000_BPRC);
5238 adapter->stats.mprc += rd32(E1000_MPRC);
5239 adapter->stats.roc += rd32(E1000_ROC);
5240
5241 adapter->stats.prc64 += rd32(E1000_PRC64);
5242 adapter->stats.prc127 += rd32(E1000_PRC127);
5243 adapter->stats.prc255 += rd32(E1000_PRC255);
5244 adapter->stats.prc511 += rd32(E1000_PRC511);
5245 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5246 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5247 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5248 adapter->stats.sec += rd32(E1000_SEC);
5249
5250 mpc = rd32(E1000_MPC);
5251 adapter->stats.mpc += mpc;
5252 net_stats->rx_fifo_errors += mpc;
5253 adapter->stats.scc += rd32(E1000_SCC);
5254 adapter->stats.ecol += rd32(E1000_ECOL);
5255 adapter->stats.mcc += rd32(E1000_MCC);
5256 adapter->stats.latecol += rd32(E1000_LATECOL);
5257 adapter->stats.dc += rd32(E1000_DC);
5258 adapter->stats.rlec += rd32(E1000_RLEC);
5259 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5260 adapter->stats.xontxc += rd32(E1000_XONTXC);
5261 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5262 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5263 adapter->stats.fcruc += rd32(E1000_FCRUC);
5264 adapter->stats.gptc += rd32(E1000_GPTC);
5265 adapter->stats.gotc += rd32(E1000_GOTCL);
5266 rd32(E1000_GOTCH); /* clear GOTCL */
5267 adapter->stats.rnbc += rd32(E1000_RNBC);
5268 adapter->stats.ruc += rd32(E1000_RUC);
5269 adapter->stats.rfc += rd32(E1000_RFC);
5270 adapter->stats.rjc += rd32(E1000_RJC);
5271 adapter->stats.tor += rd32(E1000_TORH);
5272 adapter->stats.tot += rd32(E1000_TOTH);
5273 adapter->stats.tpr += rd32(E1000_TPR);
5274
5275 adapter->stats.ptc64 += rd32(E1000_PTC64);
5276 adapter->stats.ptc127 += rd32(E1000_PTC127);
5277 adapter->stats.ptc255 += rd32(E1000_PTC255);
5278 adapter->stats.ptc511 += rd32(E1000_PTC511);
5279 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5280 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5281
5282 adapter->stats.mptc += rd32(E1000_MPTC);
5283 adapter->stats.bptc += rd32(E1000_BPTC);
5284
5285 adapter->stats.tpt += rd32(E1000_TPT);
5286 adapter->stats.colc += rd32(E1000_COLC);
5287
5288 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5289 /* read internal phy specific stats */
5290 reg = rd32(E1000_CTRL_EXT);
5291 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5292 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5293
5294 /* this stat has invalid values on i210/i211 */
5295 if ((hw->mac.type != e1000_i210) &&
5296 (hw->mac.type != e1000_i211))
5297 adapter->stats.tncrs += rd32(E1000_TNCRS);
5298 }
5299
5300 adapter->stats.tsctc += rd32(E1000_TSCTC);
5301 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5302
5303 adapter->stats.iac += rd32(E1000_IAC);
5304 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5305 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5306 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5307 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5308 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5309 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5310 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5311 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5312
5313 /* Fill out the OS statistics structure */
5314 net_stats->multicast = adapter->stats.mprc;
5315 net_stats->collisions = adapter->stats.colc;
5316
5317 /* Rx Errors */
5318
5319 /* RLEC on some newer hardware can be incorrect so build
5320 * our own version based on RUC and ROC
5321 */
5322 net_stats->rx_errors = adapter->stats.rxerrc +
5323 adapter->stats.crcerrs + adapter->stats.algnerrc +
5324 adapter->stats.ruc + adapter->stats.roc +
5325 adapter->stats.cexterr;
5326 net_stats->rx_length_errors = adapter->stats.ruc +
5327 adapter->stats.roc;
5328 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5329 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5330 net_stats->rx_missed_errors = adapter->stats.mpc;
5331
5332 /* Tx Errors */
5333 net_stats->tx_errors = adapter->stats.ecol +
5334 adapter->stats.latecol;
5335 net_stats->tx_aborted_errors = adapter->stats.ecol;
5336 net_stats->tx_window_errors = adapter->stats.latecol;
5337 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5338
5339 /* Tx Dropped needs to be maintained elsewhere */
5340
5341 /* Phy Stats */
5342 if (hw->phy.media_type == e1000_media_type_copper) {
5343 if ((adapter->link_speed == SPEED_1000) &&
5344 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5345 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5346 adapter->phy_stats.idle_errors += phy_tmp;
5347 }
5348 }
5349
5350 /* Management Stats */
5351 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5352 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5353 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5354
5355 /* OS2BMC Stats */
5356 reg = rd32(E1000_MANC);
5357 if (reg & E1000_MANC_EN_BMC2OS) {
5358 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5359 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5360 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5361 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5362 }
5363 }
5364
5365 static irqreturn_t igb_msix_other(int irq, void *data)
5366 {
5367 struct igb_adapter *adapter = data;
5368 struct e1000_hw *hw = &adapter->hw;
5369 u32 icr = rd32(E1000_ICR);
5370 /* reading ICR causes bit 31 of EICR to be cleared */
5371
5372 if (icr & E1000_ICR_DRSTA)
5373 schedule_work(&adapter->reset_task);
5374
5375 if (icr & E1000_ICR_DOUTSYNC) {
5376 /* HW is reporting DMA is out of sync */
5377 adapter->stats.doosync++;
5378 /* The DMA Out of Sync is also indication of a spoof event
5379 * in IOV mode. Check the Wrong VM Behavior register to
5380 * see if it is really a spoof event.
5381 */
5382 igb_check_wvbr(adapter);
5383 }
5384
5385 /* Check for a mailbox event */
5386 if (icr & E1000_ICR_VMMB)
5387 igb_msg_task(adapter);
5388
5389 if (icr & E1000_ICR_LSC) {
5390 hw->mac.get_link_status = 1;
5391 /* guard against interrupt when we're going down */
5392 if (!test_bit(__IGB_DOWN, &adapter->state))
5393 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5394 }
5395
5396 if (icr & E1000_ICR_TS) {
5397 u32 tsicr = rd32(E1000_TSICR);
5398
5399 if (tsicr & E1000_TSICR_TXTS) {
5400 /* acknowledge the interrupt */
5401 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5402 /* retrieve hardware timestamp */
5403 schedule_work(&adapter->ptp_tx_work);
5404 }
5405 }
5406
5407 wr32(E1000_EIMS, adapter->eims_other);
5408
5409 return IRQ_HANDLED;
5410 }
5411
5412 static void igb_write_itr(struct igb_q_vector *q_vector)
5413 {
5414 struct igb_adapter *adapter = q_vector->adapter;
5415 u32 itr_val = q_vector->itr_val & 0x7FFC;
5416
5417 if (!q_vector->set_itr)
5418 return;
5419
5420 if (!itr_val)
5421 itr_val = 0x4;
5422
5423 if (adapter->hw.mac.type == e1000_82575)
5424 itr_val |= itr_val << 16;
5425 else
5426 itr_val |= E1000_EITR_CNT_IGNR;
5427
5428 writel(itr_val, q_vector->itr_register);
5429 q_vector->set_itr = 0;
5430 }
5431
5432 static irqreturn_t igb_msix_ring(int irq, void *data)
5433 {
5434 struct igb_q_vector *q_vector = data;
5435
5436 /* Write the ITR value calculated from the previous interrupt. */
5437 igb_write_itr(q_vector);
5438
5439 napi_schedule(&q_vector->napi);
5440
5441 return IRQ_HANDLED;
5442 }
5443
5444 #ifdef CONFIG_IGB_DCA
5445 static void igb_update_tx_dca(struct igb_adapter *adapter,
5446 struct igb_ring *tx_ring,
5447 int cpu)
5448 {
5449 struct e1000_hw *hw = &adapter->hw;
5450 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5451
5452 if (hw->mac.type != e1000_82575)
5453 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5454
5455 /* We can enable relaxed ordering for reads, but not writes when
5456 * DCA is enabled. This is due to a known issue in some chipsets
5457 * which will cause the DCA tag to be cleared.
5458 */
5459 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5460 E1000_DCA_TXCTRL_DATA_RRO_EN |
5461 E1000_DCA_TXCTRL_DESC_DCA_EN;
5462
5463 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5464 }
5465
5466 static void igb_update_rx_dca(struct igb_adapter *adapter,
5467 struct igb_ring *rx_ring,
5468 int cpu)
5469 {
5470 struct e1000_hw *hw = &adapter->hw;
5471 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5472
5473 if (hw->mac.type != e1000_82575)
5474 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5475
5476 /* We can enable relaxed ordering for reads, but not writes when
5477 * DCA is enabled. This is due to a known issue in some chipsets
5478 * which will cause the DCA tag to be cleared.
5479 */
5480 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5481 E1000_DCA_RXCTRL_DESC_DCA_EN;
5482
5483 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5484 }
5485
5486 static void igb_update_dca(struct igb_q_vector *q_vector)
5487 {
5488 struct igb_adapter *adapter = q_vector->adapter;
5489 int cpu = get_cpu();
5490
5491 if (q_vector->cpu == cpu)
5492 goto out_no_update;
5493
5494 if (q_vector->tx.ring)
5495 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5496
5497 if (q_vector->rx.ring)
5498 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5499
5500 q_vector->cpu = cpu;
5501 out_no_update:
5502 put_cpu();
5503 }
5504
5505 static void igb_setup_dca(struct igb_adapter *adapter)
5506 {
5507 struct e1000_hw *hw = &adapter->hw;
5508 int i;
5509
5510 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5511 return;
5512
5513 /* Always use CB2 mode, difference is masked in the CB driver. */
5514 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5515
5516 for (i = 0; i < adapter->num_q_vectors; i++) {
5517 adapter->q_vector[i]->cpu = -1;
5518 igb_update_dca(adapter->q_vector[i]);
5519 }
5520 }
5521
5522 static int __igb_notify_dca(struct device *dev, void *data)
5523 {
5524 struct net_device *netdev = dev_get_drvdata(dev);
5525 struct igb_adapter *adapter = netdev_priv(netdev);
5526 struct pci_dev *pdev = adapter->pdev;
5527 struct e1000_hw *hw = &adapter->hw;
5528 unsigned long event = *(unsigned long *)data;
5529
5530 switch (event) {
5531 case DCA_PROVIDER_ADD:
5532 /* if already enabled, don't do it again */
5533 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5534 break;
5535 if (dca_add_requester(dev) == 0) {
5536 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5537 dev_info(&pdev->dev, "DCA enabled\n");
5538 igb_setup_dca(adapter);
5539 break;
5540 }
5541 /* Fall Through since DCA is disabled. */
5542 case DCA_PROVIDER_REMOVE:
5543 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5544 /* without this a class_device is left
5545 * hanging around in the sysfs model
5546 */
5547 dca_remove_requester(dev);
5548 dev_info(&pdev->dev, "DCA disabled\n");
5549 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5550 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5551 }
5552 break;
5553 }
5554
5555 return 0;
5556 }
5557
5558 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5559 void *p)
5560 {
5561 int ret_val;
5562
5563 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5564 __igb_notify_dca);
5565
5566 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5567 }
5568 #endif /* CONFIG_IGB_DCA */
5569
5570 #ifdef CONFIG_PCI_IOV
5571 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5572 {
5573 unsigned char mac_addr[ETH_ALEN];
5574
5575 eth_zero_addr(mac_addr);
5576 igb_set_vf_mac(adapter, vf, mac_addr);
5577
5578 /* By default spoof check is enabled for all VFs */
5579 adapter->vf_data[vf].spoofchk_enabled = true;
5580
5581 return 0;
5582 }
5583
5584 #endif
5585 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5586 {
5587 struct e1000_hw *hw = &adapter->hw;
5588 u32 ping;
5589 int i;
5590
5591 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5592 ping = E1000_PF_CONTROL_MSG;
5593 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5594 ping |= E1000_VT_MSGTYPE_CTS;
5595 igb_write_mbx(hw, &ping, 1, i);
5596 }
5597 }
5598
5599 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5600 {
5601 struct e1000_hw *hw = &adapter->hw;
5602 u32 vmolr = rd32(E1000_VMOLR(vf));
5603 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5604
5605 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5606 IGB_VF_FLAG_MULTI_PROMISC);
5607 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5608
5609 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5610 vmolr |= E1000_VMOLR_MPME;
5611 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5612 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5613 } else {
5614 /* if we have hashes and we are clearing a multicast promisc
5615 * flag we need to write the hashes to the MTA as this step
5616 * was previously skipped
5617 */
5618 if (vf_data->num_vf_mc_hashes > 30) {
5619 vmolr |= E1000_VMOLR_MPME;
5620 } else if (vf_data->num_vf_mc_hashes) {
5621 int j;
5622
5623 vmolr |= E1000_VMOLR_ROMPE;
5624 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5625 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5626 }
5627 }
5628
5629 wr32(E1000_VMOLR(vf), vmolr);
5630
5631 /* there are flags left unprocessed, likely not supported */
5632 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5633 return -EINVAL;
5634
5635 return 0;
5636 }
5637
5638 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5639 u32 *msgbuf, u32 vf)
5640 {
5641 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5642 u16 *hash_list = (u16 *)&msgbuf[1];
5643 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5644 int i;
5645
5646 /* salt away the number of multicast addresses assigned
5647 * to this VF for later use to restore when the PF multi cast
5648 * list changes
5649 */
5650 vf_data->num_vf_mc_hashes = n;
5651
5652 /* only up to 30 hash values supported */
5653 if (n > 30)
5654 n = 30;
5655
5656 /* store the hashes for later use */
5657 for (i = 0; i < n; i++)
5658 vf_data->vf_mc_hashes[i] = hash_list[i];
5659
5660 /* Flush and reset the mta with the new values */
5661 igb_set_rx_mode(adapter->netdev);
5662
5663 return 0;
5664 }
5665
5666 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5667 {
5668 struct e1000_hw *hw = &adapter->hw;
5669 struct vf_data_storage *vf_data;
5670 int i, j;
5671
5672 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5673 u32 vmolr = rd32(E1000_VMOLR(i));
5674
5675 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5676
5677 vf_data = &adapter->vf_data[i];
5678
5679 if ((vf_data->num_vf_mc_hashes > 30) ||
5680 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5681 vmolr |= E1000_VMOLR_MPME;
5682 } else if (vf_data->num_vf_mc_hashes) {
5683 vmolr |= E1000_VMOLR_ROMPE;
5684 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5685 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5686 }
5687 wr32(E1000_VMOLR(i), vmolr);
5688 }
5689 }
5690
5691 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5692 {
5693 struct e1000_hw *hw = &adapter->hw;
5694 u32 pool_mask, reg, vid;
5695 int i;
5696
5697 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5698
5699 /* Find the vlan filter for this id */
5700 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5701 reg = rd32(E1000_VLVF(i));
5702
5703 /* remove the vf from the pool */
5704 reg &= ~pool_mask;
5705
5706 /* if pool is empty then remove entry from vfta */
5707 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5708 (reg & E1000_VLVF_VLANID_ENABLE)) {
5709 reg = 0;
5710 vid = reg & E1000_VLVF_VLANID_MASK;
5711 igb_vfta_set(hw, vid, false);
5712 }
5713
5714 wr32(E1000_VLVF(i), reg);
5715 }
5716
5717 adapter->vf_data[vf].vlans_enabled = 0;
5718 }
5719
5720 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5721 {
5722 struct e1000_hw *hw = &adapter->hw;
5723 u32 reg, i;
5724
5725 /* The vlvf table only exists on 82576 hardware and newer */
5726 if (hw->mac.type < e1000_82576)
5727 return -1;
5728
5729 /* we only need to do this if VMDq is enabled */
5730 if (!adapter->vfs_allocated_count)
5731 return -1;
5732
5733 /* Find the vlan filter for this id */
5734 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5735 reg = rd32(E1000_VLVF(i));
5736 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5737 vid == (reg & E1000_VLVF_VLANID_MASK))
5738 break;
5739 }
5740
5741 if (add) {
5742 if (i == E1000_VLVF_ARRAY_SIZE) {
5743 /* Did not find a matching VLAN ID entry that was
5744 * enabled. Search for a free filter entry, i.e.
5745 * one without the enable bit set
5746 */
5747 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5748 reg = rd32(E1000_VLVF(i));
5749 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5750 break;
5751 }
5752 }
5753 if (i < E1000_VLVF_ARRAY_SIZE) {
5754 /* Found an enabled/available entry */
5755 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5756
5757 /* if !enabled we need to set this up in vfta */
5758 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5759 /* add VID to filter table */
5760 igb_vfta_set(hw, vid, true);
5761 reg |= E1000_VLVF_VLANID_ENABLE;
5762 }
5763 reg &= ~E1000_VLVF_VLANID_MASK;
5764 reg |= vid;
5765 wr32(E1000_VLVF(i), reg);
5766
5767 /* do not modify RLPML for PF devices */
5768 if (vf >= adapter->vfs_allocated_count)
5769 return 0;
5770
5771 if (!adapter->vf_data[vf].vlans_enabled) {
5772 u32 size;
5773
5774 reg = rd32(E1000_VMOLR(vf));
5775 size = reg & E1000_VMOLR_RLPML_MASK;
5776 size += 4;
5777 reg &= ~E1000_VMOLR_RLPML_MASK;
5778 reg |= size;
5779 wr32(E1000_VMOLR(vf), reg);
5780 }
5781
5782 adapter->vf_data[vf].vlans_enabled++;
5783 }
5784 } else {
5785 if (i < E1000_VLVF_ARRAY_SIZE) {
5786 /* remove vf from the pool */
5787 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5788 /* if pool is empty then remove entry from vfta */
5789 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5790 reg = 0;
5791 igb_vfta_set(hw, vid, false);
5792 }
5793 wr32(E1000_VLVF(i), reg);
5794
5795 /* do not modify RLPML for PF devices */
5796 if (vf >= adapter->vfs_allocated_count)
5797 return 0;
5798
5799 adapter->vf_data[vf].vlans_enabled--;
5800 if (!adapter->vf_data[vf].vlans_enabled) {
5801 u32 size;
5802
5803 reg = rd32(E1000_VMOLR(vf));
5804 size = reg & E1000_VMOLR_RLPML_MASK;
5805 size -= 4;
5806 reg &= ~E1000_VMOLR_RLPML_MASK;
5807 reg |= size;
5808 wr32(E1000_VMOLR(vf), reg);
5809 }
5810 }
5811 }
5812 return 0;
5813 }
5814
5815 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5816 {
5817 struct e1000_hw *hw = &adapter->hw;
5818
5819 if (vid)
5820 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5821 else
5822 wr32(E1000_VMVIR(vf), 0);
5823 }
5824
5825 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5826 int vf, u16 vlan, u8 qos)
5827 {
5828 int err = 0;
5829 struct igb_adapter *adapter = netdev_priv(netdev);
5830
5831 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5832 return -EINVAL;
5833 if (vlan || qos) {
5834 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5835 if (err)
5836 goto out;
5837 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5838 igb_set_vmolr(adapter, vf, !vlan);
5839 adapter->vf_data[vf].pf_vlan = vlan;
5840 adapter->vf_data[vf].pf_qos = qos;
5841 dev_info(&adapter->pdev->dev,
5842 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5843 if (test_bit(__IGB_DOWN, &adapter->state)) {
5844 dev_warn(&adapter->pdev->dev,
5845 "The VF VLAN has been set, but the PF device is not up.\n");
5846 dev_warn(&adapter->pdev->dev,
5847 "Bring the PF device up before attempting to use the VF device.\n");
5848 }
5849 } else {
5850 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5851 false, vf);
5852 igb_set_vmvir(adapter, vlan, vf);
5853 igb_set_vmolr(adapter, vf, true);
5854 adapter->vf_data[vf].pf_vlan = 0;
5855 adapter->vf_data[vf].pf_qos = 0;
5856 }
5857 out:
5858 return err;
5859 }
5860
5861 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5862 {
5863 struct e1000_hw *hw = &adapter->hw;
5864 int i;
5865 u32 reg;
5866
5867 /* Find the vlan filter for this id */
5868 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5869 reg = rd32(E1000_VLVF(i));
5870 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5871 vid == (reg & E1000_VLVF_VLANID_MASK))
5872 break;
5873 }
5874
5875 if (i >= E1000_VLVF_ARRAY_SIZE)
5876 i = -1;
5877
5878 return i;
5879 }
5880
5881 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5882 {
5883 struct e1000_hw *hw = &adapter->hw;
5884 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5885 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5886 int err = 0;
5887
5888 /* If in promiscuous mode we need to make sure the PF also has
5889 * the VLAN filter set.
5890 */
5891 if (add && (adapter->netdev->flags & IFF_PROMISC))
5892 err = igb_vlvf_set(adapter, vid, add,
5893 adapter->vfs_allocated_count);
5894 if (err)
5895 goto out;
5896
5897 err = igb_vlvf_set(adapter, vid, add, vf);
5898
5899 if (err)
5900 goto out;
5901
5902 /* Go through all the checks to see if the VLAN filter should
5903 * be wiped completely.
5904 */
5905 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5906 u32 vlvf, bits;
5907 int regndx = igb_find_vlvf_entry(adapter, vid);
5908
5909 if (regndx < 0)
5910 goto out;
5911 /* See if any other pools are set for this VLAN filter
5912 * entry other than the PF.
5913 */
5914 vlvf = bits = rd32(E1000_VLVF(regndx));
5915 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5916 adapter->vfs_allocated_count);
5917 /* If the filter was removed then ensure PF pool bit
5918 * is cleared if the PF only added itself to the pool
5919 * because the PF is in promiscuous mode.
5920 */
5921 if ((vlvf & VLAN_VID_MASK) == vid &&
5922 !test_bit(vid, adapter->active_vlans) &&
5923 !bits)
5924 igb_vlvf_set(adapter, vid, add,
5925 adapter->vfs_allocated_count);
5926 }
5927
5928 out:
5929 return err;
5930 }
5931
5932 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5933 {
5934 /* clear flags - except flag that indicates PF has set the MAC */
5935 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5936 adapter->vf_data[vf].last_nack = jiffies;
5937
5938 /* reset offloads to defaults */
5939 igb_set_vmolr(adapter, vf, true);
5940
5941 /* reset vlans for device */
5942 igb_clear_vf_vfta(adapter, vf);
5943 if (adapter->vf_data[vf].pf_vlan)
5944 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5945 adapter->vf_data[vf].pf_vlan,
5946 adapter->vf_data[vf].pf_qos);
5947 else
5948 igb_clear_vf_vfta(adapter, vf);
5949
5950 /* reset multicast table array for vf */
5951 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5952
5953 /* Flush and reset the mta with the new values */
5954 igb_set_rx_mode(adapter->netdev);
5955 }
5956
5957 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5958 {
5959 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5960
5961 /* clear mac address as we were hotplug removed/added */
5962 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5963 eth_zero_addr(vf_mac);
5964
5965 /* process remaining reset events */
5966 igb_vf_reset(adapter, vf);
5967 }
5968
5969 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5970 {
5971 struct e1000_hw *hw = &adapter->hw;
5972 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5973 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5974 u32 reg, msgbuf[3];
5975 u8 *addr = (u8 *)(&msgbuf[1]);
5976
5977 /* process all the same items cleared in a function level reset */
5978 igb_vf_reset(adapter, vf);
5979
5980 /* set vf mac address */
5981 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5982
5983 /* enable transmit and receive for vf */
5984 reg = rd32(E1000_VFTE);
5985 wr32(E1000_VFTE, reg | (1 << vf));
5986 reg = rd32(E1000_VFRE);
5987 wr32(E1000_VFRE, reg | (1 << vf));
5988
5989 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5990
5991 /* reply to reset with ack and vf mac address */
5992 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5993 memcpy(addr, vf_mac, ETH_ALEN);
5994 igb_write_mbx(hw, msgbuf, 3, vf);
5995 }
5996
5997 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5998 {
5999 /* The VF MAC Address is stored in a packed array of bytes
6000 * starting at the second 32 bit word of the msg array
6001 */
6002 unsigned char *addr = (char *)&msg[1];
6003 int err = -1;
6004
6005 if (is_valid_ether_addr(addr))
6006 err = igb_set_vf_mac(adapter, vf, addr);
6007
6008 return err;
6009 }
6010
6011 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6012 {
6013 struct e1000_hw *hw = &adapter->hw;
6014 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6015 u32 msg = E1000_VT_MSGTYPE_NACK;
6016
6017 /* if device isn't clear to send it shouldn't be reading either */
6018 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6019 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6020 igb_write_mbx(hw, &msg, 1, vf);
6021 vf_data->last_nack = jiffies;
6022 }
6023 }
6024
6025 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6026 {
6027 struct pci_dev *pdev = adapter->pdev;
6028 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6029 struct e1000_hw *hw = &adapter->hw;
6030 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6031 s32 retval;
6032
6033 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6034
6035 if (retval) {
6036 /* if receive failed revoke VF CTS stats and restart init */
6037 dev_err(&pdev->dev, "Error receiving message from VF\n");
6038 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6039 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6040 return;
6041 goto out;
6042 }
6043
6044 /* this is a message we already processed, do nothing */
6045 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6046 return;
6047
6048 /* until the vf completes a reset it should not be
6049 * allowed to start any configuration.
6050 */
6051 if (msgbuf[0] == E1000_VF_RESET) {
6052 igb_vf_reset_msg(adapter, vf);
6053 return;
6054 }
6055
6056 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6057 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6058 return;
6059 retval = -1;
6060 goto out;
6061 }
6062
6063 switch ((msgbuf[0] & 0xFFFF)) {
6064 case E1000_VF_SET_MAC_ADDR:
6065 retval = -EINVAL;
6066 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6067 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6068 else
6069 dev_warn(&pdev->dev,
6070 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6071 vf);
6072 break;
6073 case E1000_VF_SET_PROMISC:
6074 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6075 break;
6076 case E1000_VF_SET_MULTICAST:
6077 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6078 break;
6079 case E1000_VF_SET_LPE:
6080 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6081 break;
6082 case E1000_VF_SET_VLAN:
6083 retval = -1;
6084 if (vf_data->pf_vlan)
6085 dev_warn(&pdev->dev,
6086 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6087 vf);
6088 else
6089 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6090 break;
6091 default:
6092 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6093 retval = -1;
6094 break;
6095 }
6096
6097 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6098 out:
6099 /* notify the VF of the results of what it sent us */
6100 if (retval)
6101 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6102 else
6103 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6104
6105 igb_write_mbx(hw, msgbuf, 1, vf);
6106 }
6107
6108 static void igb_msg_task(struct igb_adapter *adapter)
6109 {
6110 struct e1000_hw *hw = &adapter->hw;
6111 u32 vf;
6112
6113 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6114 /* process any reset requests */
6115 if (!igb_check_for_rst(hw, vf))
6116 igb_vf_reset_event(adapter, vf);
6117
6118 /* process any messages pending */
6119 if (!igb_check_for_msg(hw, vf))
6120 igb_rcv_msg_from_vf(adapter, vf);
6121
6122 /* process any acks */
6123 if (!igb_check_for_ack(hw, vf))
6124 igb_rcv_ack_from_vf(adapter, vf);
6125 }
6126 }
6127
6128 /**
6129 * igb_set_uta - Set unicast filter table address
6130 * @adapter: board private structure
6131 *
6132 * The unicast table address is a register array of 32-bit registers.
6133 * The table is meant to be used in a way similar to how the MTA is used
6134 * however due to certain limitations in the hardware it is necessary to
6135 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6136 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6137 **/
6138 static void igb_set_uta(struct igb_adapter *adapter)
6139 {
6140 struct e1000_hw *hw = &adapter->hw;
6141 int i;
6142
6143 /* The UTA table only exists on 82576 hardware and newer */
6144 if (hw->mac.type < e1000_82576)
6145 return;
6146
6147 /* we only need to do this if VMDq is enabled */
6148 if (!adapter->vfs_allocated_count)
6149 return;
6150
6151 for (i = 0; i < hw->mac.uta_reg_count; i++)
6152 array_wr32(E1000_UTA, i, ~0);
6153 }
6154
6155 /**
6156 * igb_intr_msi - Interrupt Handler
6157 * @irq: interrupt number
6158 * @data: pointer to a network interface device structure
6159 **/
6160 static irqreturn_t igb_intr_msi(int irq, void *data)
6161 {
6162 struct igb_adapter *adapter = data;
6163 struct igb_q_vector *q_vector = adapter->q_vector[0];
6164 struct e1000_hw *hw = &adapter->hw;
6165 /* read ICR disables interrupts using IAM */
6166 u32 icr = rd32(E1000_ICR);
6167
6168 igb_write_itr(q_vector);
6169
6170 if (icr & E1000_ICR_DRSTA)
6171 schedule_work(&adapter->reset_task);
6172
6173 if (icr & E1000_ICR_DOUTSYNC) {
6174 /* HW is reporting DMA is out of sync */
6175 adapter->stats.doosync++;
6176 }
6177
6178 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6179 hw->mac.get_link_status = 1;
6180 if (!test_bit(__IGB_DOWN, &adapter->state))
6181 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6182 }
6183
6184 if (icr & E1000_ICR_TS) {
6185 u32 tsicr = rd32(E1000_TSICR);
6186
6187 if (tsicr & E1000_TSICR_TXTS) {
6188 /* acknowledge the interrupt */
6189 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6190 /* retrieve hardware timestamp */
6191 schedule_work(&adapter->ptp_tx_work);
6192 }
6193 }
6194
6195 napi_schedule(&q_vector->napi);
6196
6197 return IRQ_HANDLED;
6198 }
6199
6200 /**
6201 * igb_intr - Legacy Interrupt Handler
6202 * @irq: interrupt number
6203 * @data: pointer to a network interface device structure
6204 **/
6205 static irqreturn_t igb_intr(int irq, void *data)
6206 {
6207 struct igb_adapter *adapter = data;
6208 struct igb_q_vector *q_vector = adapter->q_vector[0];
6209 struct e1000_hw *hw = &adapter->hw;
6210 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6211 * need for the IMC write
6212 */
6213 u32 icr = rd32(E1000_ICR);
6214
6215 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6216 * not set, then the adapter didn't send an interrupt
6217 */
6218 if (!(icr & E1000_ICR_INT_ASSERTED))
6219 return IRQ_NONE;
6220
6221 igb_write_itr(q_vector);
6222
6223 if (icr & E1000_ICR_DRSTA)
6224 schedule_work(&adapter->reset_task);
6225
6226 if (icr & E1000_ICR_DOUTSYNC) {
6227 /* HW is reporting DMA is out of sync */
6228 adapter->stats.doosync++;
6229 }
6230
6231 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6232 hw->mac.get_link_status = 1;
6233 /* guard against interrupt when we're going down */
6234 if (!test_bit(__IGB_DOWN, &adapter->state))
6235 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6236 }
6237
6238 if (icr & E1000_ICR_TS) {
6239 u32 tsicr = rd32(E1000_TSICR);
6240
6241 if (tsicr & E1000_TSICR_TXTS) {
6242 /* acknowledge the interrupt */
6243 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6244 /* retrieve hardware timestamp */
6245 schedule_work(&adapter->ptp_tx_work);
6246 }
6247 }
6248
6249 napi_schedule(&q_vector->napi);
6250
6251 return IRQ_HANDLED;
6252 }
6253
6254 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6255 {
6256 struct igb_adapter *adapter = q_vector->adapter;
6257 struct e1000_hw *hw = &adapter->hw;
6258
6259 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6260 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6261 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6262 igb_set_itr(q_vector);
6263 else
6264 igb_update_ring_itr(q_vector);
6265 }
6266
6267 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6268 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6269 wr32(E1000_EIMS, q_vector->eims_value);
6270 else
6271 igb_irq_enable(adapter);
6272 }
6273 }
6274
6275 /**
6276 * igb_poll - NAPI Rx polling callback
6277 * @napi: napi polling structure
6278 * @budget: count of how many packets we should handle
6279 **/
6280 static int igb_poll(struct napi_struct *napi, int budget)
6281 {
6282 struct igb_q_vector *q_vector = container_of(napi,
6283 struct igb_q_vector,
6284 napi);
6285 bool clean_complete = true;
6286
6287 #ifdef CONFIG_IGB_DCA
6288 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6289 igb_update_dca(q_vector);
6290 #endif
6291 if (q_vector->tx.ring)
6292 clean_complete = igb_clean_tx_irq(q_vector);
6293
6294 if (q_vector->rx.ring)
6295 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6296
6297 /* If all work not completed, return budget and keep polling */
6298 if (!clean_complete)
6299 return budget;
6300
6301 /* If not enough Rx work done, exit the polling mode */
6302 napi_complete(napi);
6303 igb_ring_irq_enable(q_vector);
6304
6305 return 0;
6306 }
6307
6308 /**
6309 * igb_clean_tx_irq - Reclaim resources after transmit completes
6310 * @q_vector: pointer to q_vector containing needed info
6311 *
6312 * returns true if ring is completely cleaned
6313 **/
6314 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6315 {
6316 struct igb_adapter *adapter = q_vector->adapter;
6317 struct igb_ring *tx_ring = q_vector->tx.ring;
6318 struct igb_tx_buffer *tx_buffer;
6319 union e1000_adv_tx_desc *tx_desc;
6320 unsigned int total_bytes = 0, total_packets = 0;
6321 unsigned int budget = q_vector->tx.work_limit;
6322 unsigned int i = tx_ring->next_to_clean;
6323
6324 if (test_bit(__IGB_DOWN, &adapter->state))
6325 return true;
6326
6327 tx_buffer = &tx_ring->tx_buffer_info[i];
6328 tx_desc = IGB_TX_DESC(tx_ring, i);
6329 i -= tx_ring->count;
6330
6331 do {
6332 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6333
6334 /* if next_to_watch is not set then there is no work pending */
6335 if (!eop_desc)
6336 break;
6337
6338 /* prevent any other reads prior to eop_desc */
6339 read_barrier_depends();
6340
6341 /* if DD is not set pending work has not been completed */
6342 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6343 break;
6344
6345 /* clear next_to_watch to prevent false hangs */
6346 tx_buffer->next_to_watch = NULL;
6347
6348 /* update the statistics for this packet */
6349 total_bytes += tx_buffer->bytecount;
6350 total_packets += tx_buffer->gso_segs;
6351
6352 /* free the skb */
6353 dev_kfree_skb_any(tx_buffer->skb);
6354
6355 /* unmap skb header data */
6356 dma_unmap_single(tx_ring->dev,
6357 dma_unmap_addr(tx_buffer, dma),
6358 dma_unmap_len(tx_buffer, len),
6359 DMA_TO_DEVICE);
6360
6361 /* clear tx_buffer data */
6362 tx_buffer->skb = NULL;
6363 dma_unmap_len_set(tx_buffer, len, 0);
6364
6365 /* clear last DMA location and unmap remaining buffers */
6366 while (tx_desc != eop_desc) {
6367 tx_buffer++;
6368 tx_desc++;
6369 i++;
6370 if (unlikely(!i)) {
6371 i -= tx_ring->count;
6372 tx_buffer = tx_ring->tx_buffer_info;
6373 tx_desc = IGB_TX_DESC(tx_ring, 0);
6374 }
6375
6376 /* unmap any remaining paged data */
6377 if (dma_unmap_len(tx_buffer, len)) {
6378 dma_unmap_page(tx_ring->dev,
6379 dma_unmap_addr(tx_buffer, dma),
6380 dma_unmap_len(tx_buffer, len),
6381 DMA_TO_DEVICE);
6382 dma_unmap_len_set(tx_buffer, len, 0);
6383 }
6384 }
6385
6386 /* move us one more past the eop_desc for start of next pkt */
6387 tx_buffer++;
6388 tx_desc++;
6389 i++;
6390 if (unlikely(!i)) {
6391 i -= tx_ring->count;
6392 tx_buffer = tx_ring->tx_buffer_info;
6393 tx_desc = IGB_TX_DESC(tx_ring, 0);
6394 }
6395
6396 /* issue prefetch for next Tx descriptor */
6397 prefetch(tx_desc);
6398
6399 /* update budget accounting */
6400 budget--;
6401 } while (likely(budget));
6402
6403 netdev_tx_completed_queue(txring_txq(tx_ring),
6404 total_packets, total_bytes);
6405 i += tx_ring->count;
6406 tx_ring->next_to_clean = i;
6407 u64_stats_update_begin(&tx_ring->tx_syncp);
6408 tx_ring->tx_stats.bytes += total_bytes;
6409 tx_ring->tx_stats.packets += total_packets;
6410 u64_stats_update_end(&tx_ring->tx_syncp);
6411 q_vector->tx.total_bytes += total_bytes;
6412 q_vector->tx.total_packets += total_packets;
6413
6414 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6415 struct e1000_hw *hw = &adapter->hw;
6416
6417 /* Detect a transmit hang in hardware, this serializes the
6418 * check with the clearing of time_stamp and movement of i
6419 */
6420 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6421 if (tx_buffer->next_to_watch &&
6422 time_after(jiffies, tx_buffer->time_stamp +
6423 (adapter->tx_timeout_factor * HZ)) &&
6424 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6425
6426 /* detected Tx unit hang */
6427 dev_err(tx_ring->dev,
6428 "Detected Tx Unit Hang\n"
6429 " Tx Queue <%d>\n"
6430 " TDH <%x>\n"
6431 " TDT <%x>\n"
6432 " next_to_use <%x>\n"
6433 " next_to_clean <%x>\n"
6434 "buffer_info[next_to_clean]\n"
6435 " time_stamp <%lx>\n"
6436 " next_to_watch <%p>\n"
6437 " jiffies <%lx>\n"
6438 " desc.status <%x>\n",
6439 tx_ring->queue_index,
6440 rd32(E1000_TDH(tx_ring->reg_idx)),
6441 readl(tx_ring->tail),
6442 tx_ring->next_to_use,
6443 tx_ring->next_to_clean,
6444 tx_buffer->time_stamp,
6445 tx_buffer->next_to_watch,
6446 jiffies,
6447 tx_buffer->next_to_watch->wb.status);
6448 netif_stop_subqueue(tx_ring->netdev,
6449 tx_ring->queue_index);
6450
6451 /* we are about to reset, no point in enabling stuff */
6452 return true;
6453 }
6454 }
6455
6456 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6457 if (unlikely(total_packets &&
6458 netif_carrier_ok(tx_ring->netdev) &&
6459 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6460 /* Make sure that anybody stopping the queue after this
6461 * sees the new next_to_clean.
6462 */
6463 smp_mb();
6464 if (__netif_subqueue_stopped(tx_ring->netdev,
6465 tx_ring->queue_index) &&
6466 !(test_bit(__IGB_DOWN, &adapter->state))) {
6467 netif_wake_subqueue(tx_ring->netdev,
6468 tx_ring->queue_index);
6469
6470 u64_stats_update_begin(&tx_ring->tx_syncp);
6471 tx_ring->tx_stats.restart_queue++;
6472 u64_stats_update_end(&tx_ring->tx_syncp);
6473 }
6474 }
6475
6476 return !!budget;
6477 }
6478
6479 /**
6480 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6481 * @rx_ring: rx descriptor ring to store buffers on
6482 * @old_buff: donor buffer to have page reused
6483 *
6484 * Synchronizes page for reuse by the adapter
6485 **/
6486 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6487 struct igb_rx_buffer *old_buff)
6488 {
6489 struct igb_rx_buffer *new_buff;
6490 u16 nta = rx_ring->next_to_alloc;
6491
6492 new_buff = &rx_ring->rx_buffer_info[nta];
6493
6494 /* update, and store next to alloc */
6495 nta++;
6496 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6497
6498 /* transfer page from old buffer to new buffer */
6499 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6500
6501 /* sync the buffer for use by the device */
6502 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6503 old_buff->page_offset,
6504 IGB_RX_BUFSZ,
6505 DMA_FROM_DEVICE);
6506 }
6507
6508 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6509 struct page *page,
6510 unsigned int truesize)
6511 {
6512 /* avoid re-using remote pages */
6513 if (unlikely(page_to_nid(page) != numa_node_id()))
6514 return false;
6515
6516 #if (PAGE_SIZE < 8192)
6517 /* if we are only owner of page we can reuse it */
6518 if (unlikely(page_count(page) != 1))
6519 return false;
6520
6521 /* flip page offset to other buffer */
6522 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6523
6524 /* since we are the only owner of the page and we need to
6525 * increment it, just set the value to 2 in order to avoid
6526 * an unnecessary locked operation
6527 */
6528 atomic_set(&page->_count, 2);
6529 #else
6530 /* move offset up to the next cache line */
6531 rx_buffer->page_offset += truesize;
6532
6533 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6534 return false;
6535
6536 /* bump ref count on page before it is given to the stack */
6537 get_page(page);
6538 #endif
6539
6540 return true;
6541 }
6542
6543 /**
6544 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6545 * @rx_ring: rx descriptor ring to transact packets on
6546 * @rx_buffer: buffer containing page to add
6547 * @rx_desc: descriptor containing length of buffer written by hardware
6548 * @skb: sk_buff to place the data into
6549 *
6550 * This function will add the data contained in rx_buffer->page to the skb.
6551 * This is done either through a direct copy if the data in the buffer is
6552 * less than the skb header size, otherwise it will just attach the page as
6553 * a frag to the skb.
6554 *
6555 * The function will then update the page offset if necessary and return
6556 * true if the buffer can be reused by the adapter.
6557 **/
6558 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6559 struct igb_rx_buffer *rx_buffer,
6560 union e1000_adv_rx_desc *rx_desc,
6561 struct sk_buff *skb)
6562 {
6563 struct page *page = rx_buffer->page;
6564 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6565 #if (PAGE_SIZE < 8192)
6566 unsigned int truesize = IGB_RX_BUFSZ;
6567 #else
6568 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6569 #endif
6570
6571 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6572 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6573
6574 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6575 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6576 va += IGB_TS_HDR_LEN;
6577 size -= IGB_TS_HDR_LEN;
6578 }
6579
6580 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6581
6582 /* we can reuse buffer as-is, just make sure it is local */
6583 if (likely(page_to_nid(page) == numa_node_id()))
6584 return true;
6585
6586 /* this page cannot be reused so discard it */
6587 put_page(page);
6588 return false;
6589 }
6590
6591 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6592 rx_buffer->page_offset, size, truesize);
6593
6594 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6595 }
6596
6597 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6598 union e1000_adv_rx_desc *rx_desc,
6599 struct sk_buff *skb)
6600 {
6601 struct igb_rx_buffer *rx_buffer;
6602 struct page *page;
6603
6604 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6605
6606 page = rx_buffer->page;
6607 prefetchw(page);
6608
6609 if (likely(!skb)) {
6610 void *page_addr = page_address(page) +
6611 rx_buffer->page_offset;
6612
6613 /* prefetch first cache line of first page */
6614 prefetch(page_addr);
6615 #if L1_CACHE_BYTES < 128
6616 prefetch(page_addr + L1_CACHE_BYTES);
6617 #endif
6618
6619 /* allocate a skb to store the frags */
6620 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6621 IGB_RX_HDR_LEN);
6622 if (unlikely(!skb)) {
6623 rx_ring->rx_stats.alloc_failed++;
6624 return NULL;
6625 }
6626
6627 /* we will be copying header into skb->data in
6628 * pskb_may_pull so it is in our interest to prefetch
6629 * it now to avoid a possible cache miss
6630 */
6631 prefetchw(skb->data);
6632 }
6633
6634 /* we are reusing so sync this buffer for CPU use */
6635 dma_sync_single_range_for_cpu(rx_ring->dev,
6636 rx_buffer->dma,
6637 rx_buffer->page_offset,
6638 IGB_RX_BUFSZ,
6639 DMA_FROM_DEVICE);
6640
6641 /* pull page into skb */
6642 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6643 /* hand second half of page back to the ring */
6644 igb_reuse_rx_page(rx_ring, rx_buffer);
6645 } else {
6646 /* we are not reusing the buffer so unmap it */
6647 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6648 PAGE_SIZE, DMA_FROM_DEVICE);
6649 }
6650
6651 /* clear contents of rx_buffer */
6652 rx_buffer->page = NULL;
6653
6654 return skb;
6655 }
6656
6657 static inline void igb_rx_checksum(struct igb_ring *ring,
6658 union e1000_adv_rx_desc *rx_desc,
6659 struct sk_buff *skb)
6660 {
6661 skb_checksum_none_assert(skb);
6662
6663 /* Ignore Checksum bit is set */
6664 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6665 return;
6666
6667 /* Rx checksum disabled via ethtool */
6668 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6669 return;
6670
6671 /* TCP/UDP checksum error bit is set */
6672 if (igb_test_staterr(rx_desc,
6673 E1000_RXDEXT_STATERR_TCPE |
6674 E1000_RXDEXT_STATERR_IPE)) {
6675 /* work around errata with sctp packets where the TCPE aka
6676 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6677 * packets, (aka let the stack check the crc32c)
6678 */
6679 if (!((skb->len == 60) &&
6680 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6681 u64_stats_update_begin(&ring->rx_syncp);
6682 ring->rx_stats.csum_err++;
6683 u64_stats_update_end(&ring->rx_syncp);
6684 }
6685 /* let the stack verify checksum errors */
6686 return;
6687 }
6688 /* It must be a TCP or UDP packet with a valid checksum */
6689 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6690 E1000_RXD_STAT_UDPCS))
6691 skb->ip_summed = CHECKSUM_UNNECESSARY;
6692
6693 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6694 le32_to_cpu(rx_desc->wb.upper.status_error));
6695 }
6696
6697 static inline void igb_rx_hash(struct igb_ring *ring,
6698 union e1000_adv_rx_desc *rx_desc,
6699 struct sk_buff *skb)
6700 {
6701 if (ring->netdev->features & NETIF_F_RXHASH)
6702 skb_set_hash(skb,
6703 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6704 PKT_HASH_TYPE_L3);
6705 }
6706
6707 /**
6708 * igb_is_non_eop - process handling of non-EOP buffers
6709 * @rx_ring: Rx ring being processed
6710 * @rx_desc: Rx descriptor for current buffer
6711 * @skb: current socket buffer containing buffer in progress
6712 *
6713 * This function updates next to clean. If the buffer is an EOP buffer
6714 * this function exits returning false, otherwise it will place the
6715 * sk_buff in the next buffer to be chained and return true indicating
6716 * that this is in fact a non-EOP buffer.
6717 **/
6718 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6719 union e1000_adv_rx_desc *rx_desc)
6720 {
6721 u32 ntc = rx_ring->next_to_clean + 1;
6722
6723 /* fetch, update, and store next to clean */
6724 ntc = (ntc < rx_ring->count) ? ntc : 0;
6725 rx_ring->next_to_clean = ntc;
6726
6727 prefetch(IGB_RX_DESC(rx_ring, ntc));
6728
6729 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6730 return false;
6731
6732 return true;
6733 }
6734
6735 /**
6736 * igb_get_headlen - determine size of header for LRO/GRO
6737 * @data: pointer to the start of the headers
6738 * @max_len: total length of section to find headers in
6739 *
6740 * This function is meant to determine the length of headers that will
6741 * be recognized by hardware for LRO, and GRO offloads. The main
6742 * motivation of doing this is to only perform one pull for IPv4 TCP
6743 * packets so that we can do basic things like calculating the gso_size
6744 * based on the average data per packet.
6745 **/
6746 static unsigned int igb_get_headlen(unsigned char *data,
6747 unsigned int max_len)
6748 {
6749 union {
6750 unsigned char *network;
6751 /* l2 headers */
6752 struct ethhdr *eth;
6753 struct vlan_hdr *vlan;
6754 /* l3 headers */
6755 struct iphdr *ipv4;
6756 struct ipv6hdr *ipv6;
6757 } hdr;
6758 __be16 protocol;
6759 u8 nexthdr = 0; /* default to not TCP */
6760 u8 hlen;
6761
6762 /* this should never happen, but better safe than sorry */
6763 if (max_len < ETH_HLEN)
6764 return max_len;
6765
6766 /* initialize network frame pointer */
6767 hdr.network = data;
6768
6769 /* set first protocol and move network header forward */
6770 protocol = hdr.eth->h_proto;
6771 hdr.network += ETH_HLEN;
6772
6773 /* handle any vlan tag if present */
6774 if (protocol == htons(ETH_P_8021Q)) {
6775 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6776 return max_len;
6777
6778 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6779 hdr.network += VLAN_HLEN;
6780 }
6781
6782 /* handle L3 protocols */
6783 if (protocol == htons(ETH_P_IP)) {
6784 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6785 return max_len;
6786
6787 /* access ihl as a u8 to avoid unaligned access on ia64 */
6788 hlen = (hdr.network[0] & 0x0F) << 2;
6789
6790 /* verify hlen meets minimum size requirements */
6791 if (hlen < sizeof(struct iphdr))
6792 return hdr.network - data;
6793
6794 /* record next protocol if header is present */
6795 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6796 nexthdr = hdr.ipv4->protocol;
6797 } else if (protocol == htons(ETH_P_IPV6)) {
6798 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6799 return max_len;
6800
6801 /* record next protocol */
6802 nexthdr = hdr.ipv6->nexthdr;
6803 hlen = sizeof(struct ipv6hdr);
6804 } else {
6805 return hdr.network - data;
6806 }
6807
6808 /* relocate pointer to start of L4 header */
6809 hdr.network += hlen;
6810
6811 /* finally sort out TCP */
6812 if (nexthdr == IPPROTO_TCP) {
6813 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6814 return max_len;
6815
6816 /* access doff as a u8 to avoid unaligned access on ia64 */
6817 hlen = (hdr.network[12] & 0xF0) >> 2;
6818
6819 /* verify hlen meets minimum size requirements */
6820 if (hlen < sizeof(struct tcphdr))
6821 return hdr.network - data;
6822
6823 hdr.network += hlen;
6824 } else if (nexthdr == IPPROTO_UDP) {
6825 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6826 return max_len;
6827
6828 hdr.network += sizeof(struct udphdr);
6829 }
6830
6831 /* If everything has gone correctly hdr.network should be the
6832 * data section of the packet and will be the end of the header.
6833 * If not then it probably represents the end of the last recognized
6834 * header.
6835 */
6836 if ((hdr.network - data) < max_len)
6837 return hdr.network - data;
6838 else
6839 return max_len;
6840 }
6841
6842 /**
6843 * igb_pull_tail - igb specific version of skb_pull_tail
6844 * @rx_ring: rx descriptor ring packet is being transacted on
6845 * @rx_desc: pointer to the EOP Rx descriptor
6846 * @skb: pointer to current skb being adjusted
6847 *
6848 * This function is an igb specific version of __pskb_pull_tail. The
6849 * main difference between this version and the original function is that
6850 * this function can make several assumptions about the state of things
6851 * that allow for significant optimizations versus the standard function.
6852 * As a result we can do things like drop a frag and maintain an accurate
6853 * truesize for the skb.
6854 */
6855 static void igb_pull_tail(struct igb_ring *rx_ring,
6856 union e1000_adv_rx_desc *rx_desc,
6857 struct sk_buff *skb)
6858 {
6859 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6860 unsigned char *va;
6861 unsigned int pull_len;
6862
6863 /* it is valid to use page_address instead of kmap since we are
6864 * working with pages allocated out of the lomem pool per
6865 * alloc_page(GFP_ATOMIC)
6866 */
6867 va = skb_frag_address(frag);
6868
6869 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6870 /* retrieve timestamp from buffer */
6871 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6872
6873 /* update pointers to remove timestamp header */
6874 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6875 frag->page_offset += IGB_TS_HDR_LEN;
6876 skb->data_len -= IGB_TS_HDR_LEN;
6877 skb->len -= IGB_TS_HDR_LEN;
6878
6879 /* move va to start of packet data */
6880 va += IGB_TS_HDR_LEN;
6881 }
6882
6883 /* we need the header to contain the greater of either ETH_HLEN or
6884 * 60 bytes if the skb->len is less than 60 for skb_pad.
6885 */
6886 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6887
6888 /* align pull length to size of long to optimize memcpy performance */
6889 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6890
6891 /* update all of the pointers */
6892 skb_frag_size_sub(frag, pull_len);
6893 frag->page_offset += pull_len;
6894 skb->data_len -= pull_len;
6895 skb->tail += pull_len;
6896 }
6897
6898 /**
6899 * igb_cleanup_headers - Correct corrupted or empty headers
6900 * @rx_ring: rx descriptor ring packet is being transacted on
6901 * @rx_desc: pointer to the EOP Rx descriptor
6902 * @skb: pointer to current skb being fixed
6903 *
6904 * Address the case where we are pulling data in on pages only
6905 * and as such no data is present in the skb header.
6906 *
6907 * In addition if skb is not at least 60 bytes we need to pad it so that
6908 * it is large enough to qualify as a valid Ethernet frame.
6909 *
6910 * Returns true if an error was encountered and skb was freed.
6911 **/
6912 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6913 union e1000_adv_rx_desc *rx_desc,
6914 struct sk_buff *skb)
6915 {
6916 if (unlikely((igb_test_staterr(rx_desc,
6917 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6918 struct net_device *netdev = rx_ring->netdev;
6919 if (!(netdev->features & NETIF_F_RXALL)) {
6920 dev_kfree_skb_any(skb);
6921 return true;
6922 }
6923 }
6924
6925 /* place header in linear portion of buffer */
6926 if (skb_is_nonlinear(skb))
6927 igb_pull_tail(rx_ring, rx_desc, skb);
6928
6929 /* if skb_pad returns an error the skb was freed */
6930 if (unlikely(skb->len < 60)) {
6931 int pad_len = 60 - skb->len;
6932
6933 if (skb_pad(skb, pad_len))
6934 return true;
6935 __skb_put(skb, pad_len);
6936 }
6937
6938 return false;
6939 }
6940
6941 /**
6942 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6943 * @rx_ring: rx descriptor ring packet is being transacted on
6944 * @rx_desc: pointer to the EOP Rx descriptor
6945 * @skb: pointer to current skb being populated
6946 *
6947 * This function checks the ring, descriptor, and packet information in
6948 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6949 * other fields within the skb.
6950 **/
6951 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6952 union e1000_adv_rx_desc *rx_desc,
6953 struct sk_buff *skb)
6954 {
6955 struct net_device *dev = rx_ring->netdev;
6956
6957 igb_rx_hash(rx_ring, rx_desc, skb);
6958
6959 igb_rx_checksum(rx_ring, rx_desc, skb);
6960
6961 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6962 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6963 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6964
6965 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6966 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6967 u16 vid;
6968
6969 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6970 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6971 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6972 else
6973 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6974
6975 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6976 }
6977
6978 skb_record_rx_queue(skb, rx_ring->queue_index);
6979
6980 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6981 }
6982
6983 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6984 {
6985 struct igb_ring *rx_ring = q_vector->rx.ring;
6986 struct sk_buff *skb = rx_ring->skb;
6987 unsigned int total_bytes = 0, total_packets = 0;
6988 u16 cleaned_count = igb_desc_unused(rx_ring);
6989
6990 while (likely(total_packets < budget)) {
6991 union e1000_adv_rx_desc *rx_desc;
6992
6993 /* return some buffers to hardware, one at a time is too slow */
6994 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6995 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6996 cleaned_count = 0;
6997 }
6998
6999 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7000
7001 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
7002 break;
7003
7004 /* This memory barrier is needed to keep us from reading
7005 * any other fields out of the rx_desc until we know the
7006 * RXD_STAT_DD bit is set
7007 */
7008 rmb();
7009
7010 /* retrieve a buffer from the ring */
7011 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7012
7013 /* exit if we failed to retrieve a buffer */
7014 if (!skb)
7015 break;
7016
7017 cleaned_count++;
7018
7019 /* fetch next buffer in frame if non-eop */
7020 if (igb_is_non_eop(rx_ring, rx_desc))
7021 continue;
7022
7023 /* verify the packet layout is correct */
7024 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7025 skb = NULL;
7026 continue;
7027 }
7028
7029 /* probably a little skewed due to removing CRC */
7030 total_bytes += skb->len;
7031
7032 /* populate checksum, timestamp, VLAN, and protocol */
7033 igb_process_skb_fields(rx_ring, rx_desc, skb);
7034
7035 napi_gro_receive(&q_vector->napi, skb);
7036
7037 /* reset skb pointer */
7038 skb = NULL;
7039
7040 /* update budget accounting */
7041 total_packets++;
7042 }
7043
7044 /* place incomplete frames back on ring for completion */
7045 rx_ring->skb = skb;
7046
7047 u64_stats_update_begin(&rx_ring->rx_syncp);
7048 rx_ring->rx_stats.packets += total_packets;
7049 rx_ring->rx_stats.bytes += total_bytes;
7050 u64_stats_update_end(&rx_ring->rx_syncp);
7051 q_vector->rx.total_packets += total_packets;
7052 q_vector->rx.total_bytes += total_bytes;
7053
7054 if (cleaned_count)
7055 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7056
7057 return (total_packets < budget);
7058 }
7059
7060 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7061 struct igb_rx_buffer *bi)
7062 {
7063 struct page *page = bi->page;
7064 dma_addr_t dma;
7065
7066 /* since we are recycling buffers we should seldom need to alloc */
7067 if (likely(page))
7068 return true;
7069
7070 /* alloc new page for storage */
7071 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7072 if (unlikely(!page)) {
7073 rx_ring->rx_stats.alloc_failed++;
7074 return false;
7075 }
7076
7077 /* map page for use */
7078 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7079
7080 /* if mapping failed free memory back to system since
7081 * there isn't much point in holding memory we can't use
7082 */
7083 if (dma_mapping_error(rx_ring->dev, dma)) {
7084 __free_page(page);
7085
7086 rx_ring->rx_stats.alloc_failed++;
7087 return false;
7088 }
7089
7090 bi->dma = dma;
7091 bi->page = page;
7092 bi->page_offset = 0;
7093
7094 return true;
7095 }
7096
7097 /**
7098 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7099 * @adapter: address of board private structure
7100 **/
7101 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7102 {
7103 union e1000_adv_rx_desc *rx_desc;
7104 struct igb_rx_buffer *bi;
7105 u16 i = rx_ring->next_to_use;
7106
7107 /* nothing to do */
7108 if (!cleaned_count)
7109 return;
7110
7111 rx_desc = IGB_RX_DESC(rx_ring, i);
7112 bi = &rx_ring->rx_buffer_info[i];
7113 i -= rx_ring->count;
7114
7115 do {
7116 if (!igb_alloc_mapped_page(rx_ring, bi))
7117 break;
7118
7119 /* Refresh the desc even if buffer_addrs didn't change
7120 * because each write-back erases this info.
7121 */
7122 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7123
7124 rx_desc++;
7125 bi++;
7126 i++;
7127 if (unlikely(!i)) {
7128 rx_desc = IGB_RX_DESC(rx_ring, 0);
7129 bi = rx_ring->rx_buffer_info;
7130 i -= rx_ring->count;
7131 }
7132
7133 /* clear the hdr_addr for the next_to_use descriptor */
7134 rx_desc->read.hdr_addr = 0;
7135
7136 cleaned_count--;
7137 } while (cleaned_count);
7138
7139 i += rx_ring->count;
7140
7141 if (rx_ring->next_to_use != i) {
7142 /* record the next descriptor to use */
7143 rx_ring->next_to_use = i;
7144
7145 /* update next to alloc since we have filled the ring */
7146 rx_ring->next_to_alloc = i;
7147
7148 /* Force memory writes to complete before letting h/w
7149 * know there are new descriptors to fetch. (Only
7150 * applicable for weak-ordered memory model archs,
7151 * such as IA-64).
7152 */
7153 wmb();
7154 writel(i, rx_ring->tail);
7155 }
7156 }
7157
7158 /**
7159 * igb_mii_ioctl -
7160 * @netdev:
7161 * @ifreq:
7162 * @cmd:
7163 **/
7164 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7165 {
7166 struct igb_adapter *adapter = netdev_priv(netdev);
7167 struct mii_ioctl_data *data = if_mii(ifr);
7168
7169 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7170 return -EOPNOTSUPP;
7171
7172 switch (cmd) {
7173 case SIOCGMIIPHY:
7174 data->phy_id = adapter->hw.phy.addr;
7175 break;
7176 case SIOCGMIIREG:
7177 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7178 &data->val_out))
7179 return -EIO;
7180 break;
7181 case SIOCSMIIREG:
7182 default:
7183 return -EOPNOTSUPP;
7184 }
7185 return 0;
7186 }
7187
7188 /**
7189 * igb_ioctl -
7190 * @netdev:
7191 * @ifreq:
7192 * @cmd:
7193 **/
7194 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7195 {
7196 switch (cmd) {
7197 case SIOCGMIIPHY:
7198 case SIOCGMIIREG:
7199 case SIOCSMIIREG:
7200 return igb_mii_ioctl(netdev, ifr, cmd);
7201 case SIOCGHWTSTAMP:
7202 return igb_ptp_get_ts_config(netdev, ifr);
7203 case SIOCSHWTSTAMP:
7204 return igb_ptp_set_ts_config(netdev, ifr);
7205 default:
7206 return -EOPNOTSUPP;
7207 }
7208 }
7209
7210 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7211 {
7212 struct igb_adapter *adapter = hw->back;
7213
7214 if (pcie_capability_read_word(adapter->pdev, reg, value))
7215 return -E1000_ERR_CONFIG;
7216
7217 return 0;
7218 }
7219
7220 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7221 {
7222 struct igb_adapter *adapter = hw->back;
7223
7224 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7225 return -E1000_ERR_CONFIG;
7226
7227 return 0;
7228 }
7229
7230 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7231 {
7232 struct igb_adapter *adapter = netdev_priv(netdev);
7233 struct e1000_hw *hw = &adapter->hw;
7234 u32 ctrl, rctl;
7235 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7236
7237 if (enable) {
7238 /* enable VLAN tag insert/strip */
7239 ctrl = rd32(E1000_CTRL);
7240 ctrl |= E1000_CTRL_VME;
7241 wr32(E1000_CTRL, ctrl);
7242
7243 /* Disable CFI check */
7244 rctl = rd32(E1000_RCTL);
7245 rctl &= ~E1000_RCTL_CFIEN;
7246 wr32(E1000_RCTL, rctl);
7247 } else {
7248 /* disable VLAN tag insert/strip */
7249 ctrl = rd32(E1000_CTRL);
7250 ctrl &= ~E1000_CTRL_VME;
7251 wr32(E1000_CTRL, ctrl);
7252 }
7253
7254 igb_rlpml_set(adapter);
7255 }
7256
7257 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7258 __be16 proto, u16 vid)
7259 {
7260 struct igb_adapter *adapter = netdev_priv(netdev);
7261 struct e1000_hw *hw = &adapter->hw;
7262 int pf_id = adapter->vfs_allocated_count;
7263
7264 /* attempt to add filter to vlvf array */
7265 igb_vlvf_set(adapter, vid, true, pf_id);
7266
7267 /* add the filter since PF can receive vlans w/o entry in vlvf */
7268 igb_vfta_set(hw, vid, true);
7269
7270 set_bit(vid, adapter->active_vlans);
7271
7272 return 0;
7273 }
7274
7275 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7276 __be16 proto, u16 vid)
7277 {
7278 struct igb_adapter *adapter = netdev_priv(netdev);
7279 struct e1000_hw *hw = &adapter->hw;
7280 int pf_id = adapter->vfs_allocated_count;
7281 s32 err;
7282
7283 /* remove vlan from VLVF table array */
7284 err = igb_vlvf_set(adapter, vid, false, pf_id);
7285
7286 /* if vid was not present in VLVF just remove it from table */
7287 if (err)
7288 igb_vfta_set(hw, vid, false);
7289
7290 clear_bit(vid, adapter->active_vlans);
7291
7292 return 0;
7293 }
7294
7295 static void igb_restore_vlan(struct igb_adapter *adapter)
7296 {
7297 u16 vid;
7298
7299 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7300
7301 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7302 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7303 }
7304
7305 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7306 {
7307 struct pci_dev *pdev = adapter->pdev;
7308 struct e1000_mac_info *mac = &adapter->hw.mac;
7309
7310 mac->autoneg = 0;
7311
7312 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7313 * for the switch() below to work
7314 */
7315 if ((spd & 1) || (dplx & ~1))
7316 goto err_inval;
7317
7318 /* Fiber NIC's only allow 1000 gbps Full duplex
7319 * and 100Mbps Full duplex for 100baseFx sfp
7320 */
7321 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7322 switch (spd + dplx) {
7323 case SPEED_10 + DUPLEX_HALF:
7324 case SPEED_10 + DUPLEX_FULL:
7325 case SPEED_100 + DUPLEX_HALF:
7326 goto err_inval;
7327 default:
7328 break;
7329 }
7330 }
7331
7332 switch (spd + dplx) {
7333 case SPEED_10 + DUPLEX_HALF:
7334 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7335 break;
7336 case SPEED_10 + DUPLEX_FULL:
7337 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7338 break;
7339 case SPEED_100 + DUPLEX_HALF:
7340 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7341 break;
7342 case SPEED_100 + DUPLEX_FULL:
7343 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7344 break;
7345 case SPEED_1000 + DUPLEX_FULL:
7346 mac->autoneg = 1;
7347 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7348 break;
7349 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7350 default:
7351 goto err_inval;
7352 }
7353
7354 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7355 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7356
7357 return 0;
7358
7359 err_inval:
7360 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7361 return -EINVAL;
7362 }
7363
7364 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7365 bool runtime)
7366 {
7367 struct net_device *netdev = pci_get_drvdata(pdev);
7368 struct igb_adapter *adapter = netdev_priv(netdev);
7369 struct e1000_hw *hw = &adapter->hw;
7370 u32 ctrl, rctl, status;
7371 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7372 #ifdef CONFIG_PM
7373 int retval = 0;
7374 #endif
7375
7376 netif_device_detach(netdev);
7377
7378 if (netif_running(netdev))
7379 __igb_close(netdev, true);
7380
7381 igb_clear_interrupt_scheme(adapter);
7382
7383 #ifdef CONFIG_PM
7384 retval = pci_save_state(pdev);
7385 if (retval)
7386 return retval;
7387 #endif
7388
7389 status = rd32(E1000_STATUS);
7390 if (status & E1000_STATUS_LU)
7391 wufc &= ~E1000_WUFC_LNKC;
7392
7393 if (wufc) {
7394 igb_setup_rctl(adapter);
7395 igb_set_rx_mode(netdev);
7396
7397 /* turn on all-multi mode if wake on multicast is enabled */
7398 if (wufc & E1000_WUFC_MC) {
7399 rctl = rd32(E1000_RCTL);
7400 rctl |= E1000_RCTL_MPE;
7401 wr32(E1000_RCTL, rctl);
7402 }
7403
7404 ctrl = rd32(E1000_CTRL);
7405 /* advertise wake from D3Cold */
7406 #define E1000_CTRL_ADVD3WUC 0x00100000
7407 /* phy power management enable */
7408 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7409 ctrl |= E1000_CTRL_ADVD3WUC;
7410 wr32(E1000_CTRL, ctrl);
7411
7412 /* Allow time for pending master requests to run */
7413 igb_disable_pcie_master(hw);
7414
7415 wr32(E1000_WUC, E1000_WUC_PME_EN);
7416 wr32(E1000_WUFC, wufc);
7417 } else {
7418 wr32(E1000_WUC, 0);
7419 wr32(E1000_WUFC, 0);
7420 }
7421
7422 *enable_wake = wufc || adapter->en_mng_pt;
7423 if (!*enable_wake)
7424 igb_power_down_link(adapter);
7425 else
7426 igb_power_up_link(adapter);
7427
7428 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7429 * would have already happened in close and is redundant.
7430 */
7431 igb_release_hw_control(adapter);
7432
7433 pci_disable_device(pdev);
7434
7435 return 0;
7436 }
7437
7438 #ifdef CONFIG_PM
7439 #ifdef CONFIG_PM_SLEEP
7440 static int igb_suspend(struct device *dev)
7441 {
7442 int retval;
7443 bool wake;
7444 struct pci_dev *pdev = to_pci_dev(dev);
7445
7446 retval = __igb_shutdown(pdev, &wake, 0);
7447 if (retval)
7448 return retval;
7449
7450 if (wake) {
7451 pci_prepare_to_sleep(pdev);
7452 } else {
7453 pci_wake_from_d3(pdev, false);
7454 pci_set_power_state(pdev, PCI_D3hot);
7455 }
7456
7457 return 0;
7458 }
7459 #endif /* CONFIG_PM_SLEEP */
7460
7461 static int igb_resume(struct device *dev)
7462 {
7463 struct pci_dev *pdev = to_pci_dev(dev);
7464 struct net_device *netdev = pci_get_drvdata(pdev);
7465 struct igb_adapter *adapter = netdev_priv(netdev);
7466 struct e1000_hw *hw = &adapter->hw;
7467 u32 err;
7468
7469 pci_set_power_state(pdev, PCI_D0);
7470 pci_restore_state(pdev);
7471 pci_save_state(pdev);
7472
7473 err = pci_enable_device_mem(pdev);
7474 if (err) {
7475 dev_err(&pdev->dev,
7476 "igb: Cannot enable PCI device from suspend\n");
7477 return err;
7478 }
7479 pci_set_master(pdev);
7480
7481 pci_enable_wake(pdev, PCI_D3hot, 0);
7482 pci_enable_wake(pdev, PCI_D3cold, 0);
7483
7484 if (igb_init_interrupt_scheme(adapter, true)) {
7485 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7486 return -ENOMEM;
7487 }
7488
7489 igb_reset(adapter);
7490
7491 /* let the f/w know that the h/w is now under the control of the
7492 * driver.
7493 */
7494 igb_get_hw_control(adapter);
7495
7496 wr32(E1000_WUS, ~0);
7497
7498 if (netdev->flags & IFF_UP) {
7499 rtnl_lock();
7500 err = __igb_open(netdev, true);
7501 rtnl_unlock();
7502 if (err)
7503 return err;
7504 }
7505
7506 netif_device_attach(netdev);
7507 return 0;
7508 }
7509
7510 #ifdef CONFIG_PM_RUNTIME
7511 static int igb_runtime_idle(struct device *dev)
7512 {
7513 struct pci_dev *pdev = to_pci_dev(dev);
7514 struct net_device *netdev = pci_get_drvdata(pdev);
7515 struct igb_adapter *adapter = netdev_priv(netdev);
7516
7517 if (!igb_has_link(adapter))
7518 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7519
7520 return -EBUSY;
7521 }
7522
7523 static int igb_runtime_suspend(struct device *dev)
7524 {
7525 struct pci_dev *pdev = to_pci_dev(dev);
7526 int retval;
7527 bool wake;
7528
7529 retval = __igb_shutdown(pdev, &wake, 1);
7530 if (retval)
7531 return retval;
7532
7533 if (wake) {
7534 pci_prepare_to_sleep(pdev);
7535 } else {
7536 pci_wake_from_d3(pdev, false);
7537 pci_set_power_state(pdev, PCI_D3hot);
7538 }
7539
7540 return 0;
7541 }
7542
7543 static int igb_runtime_resume(struct device *dev)
7544 {
7545 return igb_resume(dev);
7546 }
7547 #endif /* CONFIG_PM_RUNTIME */
7548 #endif
7549
7550 static void igb_shutdown(struct pci_dev *pdev)
7551 {
7552 bool wake;
7553
7554 __igb_shutdown(pdev, &wake, 0);
7555
7556 if (system_state == SYSTEM_POWER_OFF) {
7557 pci_wake_from_d3(pdev, wake);
7558 pci_set_power_state(pdev, PCI_D3hot);
7559 }
7560 }
7561
7562 #ifdef CONFIG_PCI_IOV
7563 static int igb_sriov_reinit(struct pci_dev *dev)
7564 {
7565 struct net_device *netdev = pci_get_drvdata(dev);
7566 struct igb_adapter *adapter = netdev_priv(netdev);
7567 struct pci_dev *pdev = adapter->pdev;
7568
7569 rtnl_lock();
7570
7571 if (netif_running(netdev))
7572 igb_close(netdev);
7573
7574 igb_clear_interrupt_scheme(adapter);
7575
7576 igb_init_queue_configuration(adapter);
7577
7578 if (igb_init_interrupt_scheme(adapter, true)) {
7579 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7580 return -ENOMEM;
7581 }
7582
7583 if (netif_running(netdev))
7584 igb_open(netdev);
7585
7586 rtnl_unlock();
7587
7588 return 0;
7589 }
7590
7591 static int igb_pci_disable_sriov(struct pci_dev *dev)
7592 {
7593 int err = igb_disable_sriov(dev);
7594
7595 if (!err)
7596 err = igb_sriov_reinit(dev);
7597
7598 return err;
7599 }
7600
7601 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7602 {
7603 int err = igb_enable_sriov(dev, num_vfs);
7604
7605 if (err)
7606 goto out;
7607
7608 err = igb_sriov_reinit(dev);
7609 if (!err)
7610 return num_vfs;
7611
7612 out:
7613 return err;
7614 }
7615
7616 #endif
7617 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7618 {
7619 #ifdef CONFIG_PCI_IOV
7620 if (num_vfs == 0)
7621 return igb_pci_disable_sriov(dev);
7622 else
7623 return igb_pci_enable_sriov(dev, num_vfs);
7624 #endif
7625 return 0;
7626 }
7627
7628 #ifdef CONFIG_NET_POLL_CONTROLLER
7629 /* Polling 'interrupt' - used by things like netconsole to send skbs
7630 * without having to re-enable interrupts. It's not called while
7631 * the interrupt routine is executing.
7632 */
7633 static void igb_netpoll(struct net_device *netdev)
7634 {
7635 struct igb_adapter *adapter = netdev_priv(netdev);
7636 struct e1000_hw *hw = &adapter->hw;
7637 struct igb_q_vector *q_vector;
7638 int i;
7639
7640 for (i = 0; i < adapter->num_q_vectors; i++) {
7641 q_vector = adapter->q_vector[i];
7642 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7643 wr32(E1000_EIMC, q_vector->eims_value);
7644 else
7645 igb_irq_disable(adapter);
7646 napi_schedule(&q_vector->napi);
7647 }
7648 }
7649 #endif /* CONFIG_NET_POLL_CONTROLLER */
7650
7651 /**
7652 * igb_io_error_detected - called when PCI error is detected
7653 * @pdev: Pointer to PCI device
7654 * @state: The current pci connection state
7655 *
7656 * This function is called after a PCI bus error affecting
7657 * this device has been detected.
7658 **/
7659 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7660 pci_channel_state_t state)
7661 {
7662 struct net_device *netdev = pci_get_drvdata(pdev);
7663 struct igb_adapter *adapter = netdev_priv(netdev);
7664
7665 netif_device_detach(netdev);
7666
7667 if (state == pci_channel_io_perm_failure)
7668 return PCI_ERS_RESULT_DISCONNECT;
7669
7670 if (netif_running(netdev))
7671 igb_down(adapter);
7672 pci_disable_device(pdev);
7673
7674 /* Request a slot slot reset. */
7675 return PCI_ERS_RESULT_NEED_RESET;
7676 }
7677
7678 /**
7679 * igb_io_slot_reset - called after the pci bus has been reset.
7680 * @pdev: Pointer to PCI device
7681 *
7682 * Restart the card from scratch, as if from a cold-boot. Implementation
7683 * resembles the first-half of the igb_resume routine.
7684 **/
7685 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7686 {
7687 struct net_device *netdev = pci_get_drvdata(pdev);
7688 struct igb_adapter *adapter = netdev_priv(netdev);
7689 struct e1000_hw *hw = &adapter->hw;
7690 pci_ers_result_t result;
7691 int err;
7692
7693 if (pci_enable_device_mem(pdev)) {
7694 dev_err(&pdev->dev,
7695 "Cannot re-enable PCI device after reset.\n");
7696 result = PCI_ERS_RESULT_DISCONNECT;
7697 } else {
7698 pci_set_master(pdev);
7699 pci_restore_state(pdev);
7700 pci_save_state(pdev);
7701
7702 pci_enable_wake(pdev, PCI_D3hot, 0);
7703 pci_enable_wake(pdev, PCI_D3cold, 0);
7704
7705 igb_reset(adapter);
7706 wr32(E1000_WUS, ~0);
7707 result = PCI_ERS_RESULT_RECOVERED;
7708 }
7709
7710 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7711 if (err) {
7712 dev_err(&pdev->dev,
7713 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7714 err);
7715 /* non-fatal, continue */
7716 }
7717
7718 return result;
7719 }
7720
7721 /**
7722 * igb_io_resume - called when traffic can start flowing again.
7723 * @pdev: Pointer to PCI device
7724 *
7725 * This callback is called when the error recovery driver tells us that
7726 * its OK to resume normal operation. Implementation resembles the
7727 * second-half of the igb_resume routine.
7728 */
7729 static void igb_io_resume(struct pci_dev *pdev)
7730 {
7731 struct net_device *netdev = pci_get_drvdata(pdev);
7732 struct igb_adapter *adapter = netdev_priv(netdev);
7733
7734 if (netif_running(netdev)) {
7735 if (igb_up(adapter)) {
7736 dev_err(&pdev->dev, "igb_up failed after reset\n");
7737 return;
7738 }
7739 }
7740
7741 netif_device_attach(netdev);
7742
7743 /* let the f/w know that the h/w is now under the control of the
7744 * driver.
7745 */
7746 igb_get_hw_control(adapter);
7747 }
7748
7749 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7750 u8 qsel)
7751 {
7752 u32 rar_low, rar_high;
7753 struct e1000_hw *hw = &adapter->hw;
7754
7755 /* HW expects these in little endian so we reverse the byte order
7756 * from network order (big endian) to little endian
7757 */
7758 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7759 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7760 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7761
7762 /* Indicate to hardware the Address is Valid. */
7763 rar_high |= E1000_RAH_AV;
7764
7765 if (hw->mac.type == e1000_82575)
7766 rar_high |= E1000_RAH_POOL_1 * qsel;
7767 else
7768 rar_high |= E1000_RAH_POOL_1 << qsel;
7769
7770 wr32(E1000_RAL(index), rar_low);
7771 wrfl();
7772 wr32(E1000_RAH(index), rar_high);
7773 wrfl();
7774 }
7775
7776 static int igb_set_vf_mac(struct igb_adapter *adapter,
7777 int vf, unsigned char *mac_addr)
7778 {
7779 struct e1000_hw *hw = &adapter->hw;
7780 /* VF MAC addresses start at end of receive addresses and moves
7781 * towards the first, as a result a collision should not be possible
7782 */
7783 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7784
7785 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7786
7787 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7788
7789 return 0;
7790 }
7791
7792 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7793 {
7794 struct igb_adapter *adapter = netdev_priv(netdev);
7795 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7796 return -EINVAL;
7797 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7798 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7799 dev_info(&adapter->pdev->dev,
7800 "Reload the VF driver to make this change effective.");
7801 if (test_bit(__IGB_DOWN, &adapter->state)) {
7802 dev_warn(&adapter->pdev->dev,
7803 "The VF MAC address has been set, but the PF device is not up.\n");
7804 dev_warn(&adapter->pdev->dev,
7805 "Bring the PF device up before attempting to use the VF device.\n");
7806 }
7807 return igb_set_vf_mac(adapter, vf, mac);
7808 }
7809
7810 static int igb_link_mbps(int internal_link_speed)
7811 {
7812 switch (internal_link_speed) {
7813 case SPEED_100:
7814 return 100;
7815 case SPEED_1000:
7816 return 1000;
7817 default:
7818 return 0;
7819 }
7820 }
7821
7822 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7823 int link_speed)
7824 {
7825 int rf_dec, rf_int;
7826 u32 bcnrc_val;
7827
7828 if (tx_rate != 0) {
7829 /* Calculate the rate factor values to set */
7830 rf_int = link_speed / tx_rate;
7831 rf_dec = (link_speed - (rf_int * tx_rate));
7832 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7833 tx_rate;
7834
7835 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7836 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7837 E1000_RTTBCNRC_RF_INT_MASK);
7838 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7839 } else {
7840 bcnrc_val = 0;
7841 }
7842
7843 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7844 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7845 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7846 */
7847 wr32(E1000_RTTBCNRM, 0x14);
7848 wr32(E1000_RTTBCNRC, bcnrc_val);
7849 }
7850
7851 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7852 {
7853 int actual_link_speed, i;
7854 bool reset_rate = false;
7855
7856 /* VF TX rate limit was not set or not supported */
7857 if ((adapter->vf_rate_link_speed == 0) ||
7858 (adapter->hw.mac.type != e1000_82576))
7859 return;
7860
7861 actual_link_speed = igb_link_mbps(adapter->link_speed);
7862 if (actual_link_speed != adapter->vf_rate_link_speed) {
7863 reset_rate = true;
7864 adapter->vf_rate_link_speed = 0;
7865 dev_info(&adapter->pdev->dev,
7866 "Link speed has been changed. VF Transmit rate is disabled\n");
7867 }
7868
7869 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7870 if (reset_rate)
7871 adapter->vf_data[i].tx_rate = 0;
7872
7873 igb_set_vf_rate_limit(&adapter->hw, i,
7874 adapter->vf_data[i].tx_rate,
7875 actual_link_speed);
7876 }
7877 }
7878
7879 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7880 {
7881 struct igb_adapter *adapter = netdev_priv(netdev);
7882 struct e1000_hw *hw = &adapter->hw;
7883 int actual_link_speed;
7884
7885 if (hw->mac.type != e1000_82576)
7886 return -EOPNOTSUPP;
7887
7888 actual_link_speed = igb_link_mbps(adapter->link_speed);
7889 if ((vf >= adapter->vfs_allocated_count) ||
7890 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7891 (tx_rate < 0) || (tx_rate > actual_link_speed))
7892 return -EINVAL;
7893
7894 adapter->vf_rate_link_speed = actual_link_speed;
7895 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7896 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7897
7898 return 0;
7899 }
7900
7901 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7902 bool setting)
7903 {
7904 struct igb_adapter *adapter = netdev_priv(netdev);
7905 struct e1000_hw *hw = &adapter->hw;
7906 u32 reg_val, reg_offset;
7907
7908 if (!adapter->vfs_allocated_count)
7909 return -EOPNOTSUPP;
7910
7911 if (vf >= adapter->vfs_allocated_count)
7912 return -EINVAL;
7913
7914 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7915 reg_val = rd32(reg_offset);
7916 if (setting)
7917 reg_val |= ((1 << vf) |
7918 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7919 else
7920 reg_val &= ~((1 << vf) |
7921 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7922 wr32(reg_offset, reg_val);
7923
7924 adapter->vf_data[vf].spoofchk_enabled = setting;
7925 return E1000_SUCCESS;
7926 }
7927
7928 static int igb_ndo_get_vf_config(struct net_device *netdev,
7929 int vf, struct ifla_vf_info *ivi)
7930 {
7931 struct igb_adapter *adapter = netdev_priv(netdev);
7932 if (vf >= adapter->vfs_allocated_count)
7933 return -EINVAL;
7934 ivi->vf = vf;
7935 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7936 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7937 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7938 ivi->qos = adapter->vf_data[vf].pf_qos;
7939 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7940 return 0;
7941 }
7942
7943 static void igb_vmm_control(struct igb_adapter *adapter)
7944 {
7945 struct e1000_hw *hw = &adapter->hw;
7946 u32 reg;
7947
7948 switch (hw->mac.type) {
7949 case e1000_82575:
7950 case e1000_i210:
7951 case e1000_i211:
7952 case e1000_i354:
7953 default:
7954 /* replication is not supported for 82575 */
7955 return;
7956 case e1000_82576:
7957 /* notify HW that the MAC is adding vlan tags */
7958 reg = rd32(E1000_DTXCTL);
7959 reg |= E1000_DTXCTL_VLAN_ADDED;
7960 wr32(E1000_DTXCTL, reg);
7961 case e1000_82580:
7962 /* enable replication vlan tag stripping */
7963 reg = rd32(E1000_RPLOLR);
7964 reg |= E1000_RPLOLR_STRVLAN;
7965 wr32(E1000_RPLOLR, reg);
7966 case e1000_i350:
7967 /* none of the above registers are supported by i350 */
7968 break;
7969 }
7970
7971 if (adapter->vfs_allocated_count) {
7972 igb_vmdq_set_loopback_pf(hw, true);
7973 igb_vmdq_set_replication_pf(hw, true);
7974 igb_vmdq_set_anti_spoofing_pf(hw, true,
7975 adapter->vfs_allocated_count);
7976 } else {
7977 igb_vmdq_set_loopback_pf(hw, false);
7978 igb_vmdq_set_replication_pf(hw, false);
7979 }
7980 }
7981
7982 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7983 {
7984 struct e1000_hw *hw = &adapter->hw;
7985 u32 dmac_thr;
7986 u16 hwm;
7987
7988 if (hw->mac.type > e1000_82580) {
7989 if (adapter->flags & IGB_FLAG_DMAC) {
7990 u32 reg;
7991
7992 /* force threshold to 0. */
7993 wr32(E1000_DMCTXTH, 0);
7994
7995 /* DMA Coalescing high water mark needs to be greater
7996 * than the Rx threshold. Set hwm to PBA - max frame
7997 * size in 16B units, capping it at PBA - 6KB.
7998 */
7999 hwm = 64 * pba - adapter->max_frame_size / 16;
8000 if (hwm < 64 * (pba - 6))
8001 hwm = 64 * (pba - 6);
8002 reg = rd32(E1000_FCRTC);
8003 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8004 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8005 & E1000_FCRTC_RTH_COAL_MASK);
8006 wr32(E1000_FCRTC, reg);
8007
8008 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8009 * frame size, capping it at PBA - 10KB.
8010 */
8011 dmac_thr = pba - adapter->max_frame_size / 512;
8012 if (dmac_thr < pba - 10)
8013 dmac_thr = pba - 10;
8014 reg = rd32(E1000_DMACR);
8015 reg &= ~E1000_DMACR_DMACTHR_MASK;
8016 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8017 & E1000_DMACR_DMACTHR_MASK);
8018
8019 /* transition to L0x or L1 if available..*/
8020 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8021
8022 /* watchdog timer= +-1000 usec in 32usec intervals */
8023 reg |= (1000 >> 5);
8024
8025 /* Disable BMC-to-OS Watchdog Enable */
8026 if (hw->mac.type != e1000_i354)
8027 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8028
8029 wr32(E1000_DMACR, reg);
8030
8031 /* no lower threshold to disable
8032 * coalescing(smart fifb)-UTRESH=0
8033 */
8034 wr32(E1000_DMCRTRH, 0);
8035
8036 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8037
8038 wr32(E1000_DMCTLX, reg);
8039
8040 /* free space in tx packet buffer to wake from
8041 * DMA coal
8042 */
8043 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8044 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8045
8046 /* make low power state decision controlled
8047 * by DMA coal
8048 */
8049 reg = rd32(E1000_PCIEMISC);
8050 reg &= ~E1000_PCIEMISC_LX_DECISION;
8051 wr32(E1000_PCIEMISC, reg);
8052 } /* endif adapter->dmac is not disabled */
8053 } else if (hw->mac.type == e1000_82580) {
8054 u32 reg = rd32(E1000_PCIEMISC);
8055
8056 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8057 wr32(E1000_DMACR, 0);
8058 }
8059 }
8060
8061 /**
8062 * igb_read_i2c_byte - Reads 8 bit word over I2C
8063 * @hw: pointer to hardware structure
8064 * @byte_offset: byte offset to read
8065 * @dev_addr: device address
8066 * @data: value read
8067 *
8068 * Performs byte read operation over I2C interface at
8069 * a specified device address.
8070 **/
8071 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8072 u8 dev_addr, u8 *data)
8073 {
8074 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8075 struct i2c_client *this_client = adapter->i2c_client;
8076 s32 status;
8077 u16 swfw_mask = 0;
8078
8079 if (!this_client)
8080 return E1000_ERR_I2C;
8081
8082 swfw_mask = E1000_SWFW_PHY0_SM;
8083
8084 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8085 != E1000_SUCCESS)
8086 return E1000_ERR_SWFW_SYNC;
8087
8088 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8089 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8090
8091 if (status < 0)
8092 return E1000_ERR_I2C;
8093 else {
8094 *data = status;
8095 return E1000_SUCCESS;
8096 }
8097 }
8098
8099 /**
8100 * igb_write_i2c_byte - Writes 8 bit word over I2C
8101 * @hw: pointer to hardware structure
8102 * @byte_offset: byte offset to write
8103 * @dev_addr: device address
8104 * @data: value to write
8105 *
8106 * Performs byte write operation over I2C interface at
8107 * a specified device address.
8108 **/
8109 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8110 u8 dev_addr, u8 data)
8111 {
8112 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8113 struct i2c_client *this_client = adapter->i2c_client;
8114 s32 status;
8115 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8116
8117 if (!this_client)
8118 return E1000_ERR_I2C;
8119
8120 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8121 return E1000_ERR_SWFW_SYNC;
8122 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8123 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8124
8125 if (status)
8126 return E1000_ERR_I2C;
8127 else
8128 return E1000_SUCCESS;
8129
8130 }
8131
8132 int igb_reinit_queues(struct igb_adapter *adapter)
8133 {
8134 struct net_device *netdev = adapter->netdev;
8135 struct pci_dev *pdev = adapter->pdev;
8136 int err = 0;
8137
8138 if (netif_running(netdev))
8139 igb_close(netdev);
8140
8141 igb_reset_interrupt_capability(adapter);
8142
8143 if (igb_init_interrupt_scheme(adapter, true)) {
8144 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8145 return -ENOMEM;
8146 }
8147
8148 if (netif_running(netdev))
8149 err = igb_open(netdev);
8150
8151 return err;
8152 }
8153 /* igb_main.c */
This page took 0.204735 seconds and 5 git commands to generate.