igb: Cleanups to fix assignment in if error
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58
59 #define MAJ 5
60 #define MIN 0
61 #define BUILD 5
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69 "Copyright (c) 2007-2014 Intel Corporation.";
70
71 static const struct e1000_info *igb_info_tbl[] = {
72 [board_82575] = &e1000_82575_info,
73 };
74
75 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111 /* required last entry */
112 {0, }
113 };
114
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117 void igb_reset(struct igb_adapter *);
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 static int igb_open(struct net_device *);
127 static int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141 struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *);
155 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171 int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174 bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 #endif
183
184 #ifdef CONFIG_PM
185 #ifdef CONFIG_PM_SLEEP
186 static int igb_suspend(struct device *);
187 #endif
188 static int igb_resume(struct device *);
189 #ifdef CONFIG_PM_RUNTIME
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 #endif
194 static const struct dev_pm_ops igb_pm_ops = {
195 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197 igb_runtime_idle)
198 };
199 #endif
200 static void igb_shutdown(struct pci_dev *);
201 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202 #ifdef CONFIG_IGB_DCA
203 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204 static struct notifier_block dca_notifier = {
205 .notifier_call = igb_notify_dca,
206 .next = NULL,
207 .priority = 0
208 };
209 #endif
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void igb_netpoll(struct net_device *);
213 #endif
214 #ifdef CONFIG_PCI_IOV
215 static unsigned int max_vfs = 0;
216 module_param(max_vfs, uint, 0);
217 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218 #endif /* CONFIG_PCI_IOV */
219
220 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221 pci_channel_state_t);
222 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223 static void igb_io_resume(struct pci_dev *);
224
225 static const struct pci_error_handlers igb_err_handler = {
226 .error_detected = igb_io_error_detected,
227 .slot_reset = igb_io_slot_reset,
228 .resume = igb_io_resume,
229 };
230
231 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232
233 static struct pci_driver igb_driver = {
234 .name = igb_driver_name,
235 .id_table = igb_pci_tbl,
236 .probe = igb_probe,
237 .remove = igb_remove,
238 #ifdef CONFIG_PM
239 .driver.pm = &igb_pm_ops,
240 #endif
241 .shutdown = igb_shutdown,
242 .sriov_configure = igb_pci_sriov_configure,
243 .err_handler = &igb_err_handler
244 };
245
246 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION);
250
251 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252 static int debug = -1;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256 struct igb_reg_info {
257 u32 ofs;
258 char *name;
259 };
260
261 static const struct igb_reg_info igb_reg_info_tbl[] = {
262
263 /* General Registers */
264 {E1000_CTRL, "CTRL"},
265 {E1000_STATUS, "STATUS"},
266 {E1000_CTRL_EXT, "CTRL_EXT"},
267
268 /* Interrupt Registers */
269 {E1000_ICR, "ICR"},
270
271 /* RX Registers */
272 {E1000_RCTL, "RCTL"},
273 {E1000_RDLEN(0), "RDLEN"},
274 {E1000_RDH(0), "RDH"},
275 {E1000_RDT(0), "RDT"},
276 {E1000_RXDCTL(0), "RXDCTL"},
277 {E1000_RDBAL(0), "RDBAL"},
278 {E1000_RDBAH(0), "RDBAH"},
279
280 /* TX Registers */
281 {E1000_TCTL, "TCTL"},
282 {E1000_TDBAL(0), "TDBAL"},
283 {E1000_TDBAH(0), "TDBAH"},
284 {E1000_TDLEN(0), "TDLEN"},
285 {E1000_TDH(0), "TDH"},
286 {E1000_TDT(0), "TDT"},
287 {E1000_TXDCTL(0), "TXDCTL"},
288 {E1000_TDFH, "TDFH"},
289 {E1000_TDFT, "TDFT"},
290 {E1000_TDFHS, "TDFHS"},
291 {E1000_TDFPC, "TDFPC"},
292
293 /* List Terminator */
294 {}
295 };
296
297 /* igb_regdump - register printout routine */
298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299 {
300 int n = 0;
301 char rname[16];
302 u32 regs[8];
303
304 switch (reginfo->ofs) {
305 case E1000_RDLEN(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RDLEN(n));
308 break;
309 case E1000_RDH(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDH(n));
312 break;
313 case E1000_RDT(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDT(n));
316 break;
317 case E1000_RXDCTL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RXDCTL(n));
320 break;
321 case E1000_RDBAL(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RDBAL(n));
324 break;
325 case E1000_RDBAH(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAH(n));
328 break;
329 case E1000_TDBAL(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDBAL(n));
332 break;
333 case E1000_TDBAH(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDBAH(n));
336 break;
337 case E1000_TDLEN(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDLEN(n));
340 break;
341 case E1000_TDH(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDH(n));
344 break;
345 case E1000_TDT(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TDT(n));
348 break;
349 case E1000_TXDCTL(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TXDCTL(n));
352 break;
353 default:
354 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 return;
356 }
357
358 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360 regs[2], regs[3]);
361 }
362
363 /* igb_dump - Print registers, Tx-rings and Rx-rings */
364 static void igb_dump(struct igb_adapter *adapter)
365 {
366 struct net_device *netdev = adapter->netdev;
367 struct e1000_hw *hw = &adapter->hw;
368 struct igb_reg_info *reginfo;
369 struct igb_ring *tx_ring;
370 union e1000_adv_tx_desc *tx_desc;
371 struct my_u0 { u64 a; u64 b; } *u0;
372 struct igb_ring *rx_ring;
373 union e1000_adv_rx_desc *rx_desc;
374 u32 staterr;
375 u16 i, n;
376
377 if (!netif_msg_hw(adapter))
378 return;
379
380 /* Print netdevice Info */
381 if (netdev) {
382 dev_info(&adapter->pdev->dev, "Net device Info\n");
383 pr_info("Device Name state trans_start last_rx\n");
384 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385 netdev->state, netdev->trans_start, netdev->last_rx);
386 }
387
388 /* Print Registers */
389 dev_info(&adapter->pdev->dev, "Register Dump\n");
390 pr_info(" Register Name Value\n");
391 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392 reginfo->name; reginfo++) {
393 igb_regdump(hw, reginfo);
394 }
395
396 /* Print TX Ring Summary */
397 if (!netdev || !netif_running(netdev))
398 goto exit;
399
400 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
402 for (n = 0; n < adapter->num_tx_queues; n++) {
403 struct igb_tx_buffer *buffer_info;
404 tx_ring = adapter->tx_ring[n];
405 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407 n, tx_ring->next_to_use, tx_ring->next_to_clean,
408 (u64)dma_unmap_addr(buffer_info, dma),
409 dma_unmap_len(buffer_info, len),
410 buffer_info->next_to_watch,
411 (u64)buffer_info->time_stamp);
412 }
413
414 /* Print TX Rings */
415 if (!netif_msg_tx_done(adapter))
416 goto rx_ring_summary;
417
418 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419
420 /* Transmit Descriptor Formats
421 *
422 * Advanced Transmit Descriptor
423 * +--------------------------------------------------------------+
424 * 0 | Buffer Address [63:0] |
425 * +--------------------------------------------------------------+
426 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
427 * +--------------------------------------------------------------+
428 * 63 46 45 40 39 38 36 35 32 31 24 15 0
429 */
430
431 for (n = 0; n < adapter->num_tx_queues; n++) {
432 tx_ring = adapter->tx_ring[n];
433 pr_info("------------------------------------\n");
434 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435 pr_info("------------------------------------\n");
436 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
437
438 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439 const char *next_desc;
440 struct igb_tx_buffer *buffer_info;
441 tx_desc = IGB_TX_DESC(tx_ring, i);
442 buffer_info = &tx_ring->tx_buffer_info[i];
443 u0 = (struct my_u0 *)tx_desc;
444 if (i == tx_ring->next_to_use &&
445 i == tx_ring->next_to_clean)
446 next_desc = " NTC/U";
447 else if (i == tx_ring->next_to_use)
448 next_desc = " NTU";
449 else if (i == tx_ring->next_to_clean)
450 next_desc = " NTC";
451 else
452 next_desc = "";
453
454 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
455 i, le64_to_cpu(u0->a),
456 le64_to_cpu(u0->b),
457 (u64)dma_unmap_addr(buffer_info, dma),
458 dma_unmap_len(buffer_info, len),
459 buffer_info->next_to_watch,
460 (u64)buffer_info->time_stamp,
461 buffer_info->skb, next_desc);
462
463 if (netif_msg_pktdata(adapter) && buffer_info->skb)
464 print_hex_dump(KERN_INFO, "",
465 DUMP_PREFIX_ADDRESS,
466 16, 1, buffer_info->skb->data,
467 dma_unmap_len(buffer_info, len),
468 true);
469 }
470 }
471
472 /* Print RX Rings Summary */
473 rx_ring_summary:
474 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475 pr_info("Queue [NTU] [NTC]\n");
476 for (n = 0; n < adapter->num_rx_queues; n++) {
477 rx_ring = adapter->rx_ring[n];
478 pr_info(" %5d %5X %5X\n",
479 n, rx_ring->next_to_use, rx_ring->next_to_clean);
480 }
481
482 /* Print RX Rings */
483 if (!netif_msg_rx_status(adapter))
484 goto exit;
485
486 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487
488 /* Advanced Receive Descriptor (Read) Format
489 * 63 1 0
490 * +-----------------------------------------------------+
491 * 0 | Packet Buffer Address [63:1] |A0/NSE|
492 * +----------------------------------------------+------+
493 * 8 | Header Buffer Address [63:1] | DD |
494 * +-----------------------------------------------------+
495 *
496 *
497 * Advanced Receive Descriptor (Write-Back) Format
498 *
499 * 63 48 47 32 31 30 21 20 17 16 4 3 0
500 * +------------------------------------------------------+
501 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
502 * | Checksum Ident | | | | Type | Type |
503 * +------------------------------------------------------+
504 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505 * +------------------------------------------------------+
506 * 63 48 47 32 31 20 19 0
507 */
508
509 for (n = 0; n < adapter->num_rx_queues; n++) {
510 rx_ring = adapter->rx_ring[n];
511 pr_info("------------------------------------\n");
512 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513 pr_info("------------------------------------\n");
514 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
515 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516
517 for (i = 0; i < rx_ring->count; i++) {
518 const char *next_desc;
519 struct igb_rx_buffer *buffer_info;
520 buffer_info = &rx_ring->rx_buffer_info[i];
521 rx_desc = IGB_RX_DESC(rx_ring, i);
522 u0 = (struct my_u0 *)rx_desc;
523 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
524
525 if (i == rx_ring->next_to_use)
526 next_desc = " NTU";
527 else if (i == rx_ring->next_to_clean)
528 next_desc = " NTC";
529 else
530 next_desc = "";
531
532 if (staterr & E1000_RXD_STAT_DD) {
533 /* Descriptor Done */
534 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
535 "RWB", i,
536 le64_to_cpu(u0->a),
537 le64_to_cpu(u0->b),
538 next_desc);
539 } else {
540 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
541 "R ", i,
542 le64_to_cpu(u0->a),
543 le64_to_cpu(u0->b),
544 (u64)buffer_info->dma,
545 next_desc);
546
547 if (netif_msg_pktdata(adapter) &&
548 buffer_info->dma && buffer_info->page) {
549 print_hex_dump(KERN_INFO, "",
550 DUMP_PREFIX_ADDRESS,
551 16, 1,
552 page_address(buffer_info->page) +
553 buffer_info->page_offset,
554 IGB_RX_BUFSZ, true);
555 }
556 }
557 }
558 }
559
560 exit:
561 return;
562 }
563
564 /**
565 * igb_get_i2c_data - Reads the I2C SDA data bit
566 * @hw: pointer to hardware structure
567 * @i2cctl: Current value of I2CCTL register
568 *
569 * Returns the I2C data bit value
570 **/
571 static int igb_get_i2c_data(void *data)
572 {
573 struct igb_adapter *adapter = (struct igb_adapter *)data;
574 struct e1000_hw *hw = &adapter->hw;
575 s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
578 }
579
580 /**
581 * igb_set_i2c_data - Sets the I2C data bit
582 * @data: pointer to hardware structure
583 * @state: I2C data value (0 or 1) to set
584 *
585 * Sets the I2C data bit
586 **/
587 static void igb_set_i2c_data(void *data, int state)
588 {
589 struct igb_adapter *adapter = (struct igb_adapter *)data;
590 struct e1000_hw *hw = &adapter->hw;
591 s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593 if (state)
594 i2cctl |= E1000_I2C_DATA_OUT;
595 else
596 i2cctl &= ~E1000_I2C_DATA_OUT;
597
598 i2cctl &= ~E1000_I2C_DATA_OE_N;
599 i2cctl |= E1000_I2C_CLK_OE_N;
600 wr32(E1000_I2CPARAMS, i2cctl);
601 wrfl();
602
603 }
604
605 /**
606 * igb_set_i2c_clk - Sets the I2C SCL clock
607 * @data: pointer to hardware structure
608 * @state: state to set clock
609 *
610 * Sets the I2C clock line to state
611 **/
612 static void igb_set_i2c_clk(void *data, int state)
613 {
614 struct igb_adapter *adapter = (struct igb_adapter *)data;
615 struct e1000_hw *hw = &adapter->hw;
616 s32 i2cctl = rd32(E1000_I2CPARAMS);
617
618 if (state) {
619 i2cctl |= E1000_I2C_CLK_OUT;
620 i2cctl &= ~E1000_I2C_CLK_OE_N;
621 } else {
622 i2cctl &= ~E1000_I2C_CLK_OUT;
623 i2cctl &= ~E1000_I2C_CLK_OE_N;
624 }
625 wr32(E1000_I2CPARAMS, i2cctl);
626 wrfl();
627 }
628
629 /**
630 * igb_get_i2c_clk - Gets the I2C SCL clock state
631 * @data: pointer to hardware structure
632 *
633 * Gets the I2C clock state
634 **/
635 static int igb_get_i2c_clk(void *data)
636 {
637 struct igb_adapter *adapter = (struct igb_adapter *)data;
638 struct e1000_hw *hw = &adapter->hw;
639 s32 i2cctl = rd32(E1000_I2CPARAMS);
640
641 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
642 }
643
644 static const struct i2c_algo_bit_data igb_i2c_algo = {
645 .setsda = igb_set_i2c_data,
646 .setscl = igb_set_i2c_clk,
647 .getsda = igb_get_i2c_data,
648 .getscl = igb_get_i2c_clk,
649 .udelay = 5,
650 .timeout = 20,
651 };
652
653 /**
654 * igb_get_hw_dev - return device
655 * @hw: pointer to hardware structure
656 *
657 * used by hardware layer to print debugging information
658 **/
659 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660 {
661 struct igb_adapter *adapter = hw->back;
662 return adapter->netdev;
663 }
664
665 /**
666 * igb_init_module - Driver Registration Routine
667 *
668 * igb_init_module is the first routine called when the driver is
669 * loaded. All it does is register with the PCI subsystem.
670 **/
671 static int __init igb_init_module(void)
672 {
673 int ret;
674
675 pr_info("%s - version %s\n",
676 igb_driver_string, igb_driver_version);
677 pr_info("%s\n", igb_copyright);
678
679 #ifdef CONFIG_IGB_DCA
680 dca_register_notify(&dca_notifier);
681 #endif
682 ret = pci_register_driver(&igb_driver);
683 return ret;
684 }
685
686 module_init(igb_init_module);
687
688 /**
689 * igb_exit_module - Driver Exit Cleanup Routine
690 *
691 * igb_exit_module is called just before the driver is removed
692 * from memory.
693 **/
694 static void __exit igb_exit_module(void)
695 {
696 #ifdef CONFIG_IGB_DCA
697 dca_unregister_notify(&dca_notifier);
698 #endif
699 pci_unregister_driver(&igb_driver);
700 }
701
702 module_exit(igb_exit_module);
703
704 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705 /**
706 * igb_cache_ring_register - Descriptor ring to register mapping
707 * @adapter: board private structure to initialize
708 *
709 * Once we know the feature-set enabled for the device, we'll cache
710 * the register offset the descriptor ring is assigned to.
711 **/
712 static void igb_cache_ring_register(struct igb_adapter *adapter)
713 {
714 int i = 0, j = 0;
715 u32 rbase_offset = adapter->vfs_allocated_count;
716
717 switch (adapter->hw.mac.type) {
718 case e1000_82576:
719 /* The queues are allocated for virtualization such that VF 0
720 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721 * In order to avoid collision we start at the first free queue
722 * and continue consuming queues in the same sequence
723 */
724 if (adapter->vfs_allocated_count) {
725 for (; i < adapter->rss_queues; i++)
726 adapter->rx_ring[i]->reg_idx = rbase_offset +
727 Q_IDX_82576(i);
728 }
729 case e1000_82575:
730 case e1000_82580:
731 case e1000_i350:
732 case e1000_i354:
733 case e1000_i210:
734 case e1000_i211:
735 default:
736 for (; i < adapter->num_rx_queues; i++)
737 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
738 for (; j < adapter->num_tx_queues; j++)
739 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
740 break;
741 }
742 }
743
744 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
745 {
746 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
747 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
748 u32 value = 0;
749
750 if (E1000_REMOVED(hw_addr))
751 return ~value;
752
753 value = readl(&hw_addr[reg]);
754
755 /* reads should not return all F's */
756 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
757 struct net_device *netdev = igb->netdev;
758 hw->hw_addr = NULL;
759 netif_device_detach(netdev);
760 netdev_err(netdev, "PCIe link lost, device now detached\n");
761 }
762
763 return value;
764 }
765
766 /**
767 * igb_write_ivar - configure ivar for given MSI-X vector
768 * @hw: pointer to the HW structure
769 * @msix_vector: vector number we are allocating to a given ring
770 * @index: row index of IVAR register to write within IVAR table
771 * @offset: column offset of in IVAR, should be multiple of 8
772 *
773 * This function is intended to handle the writing of the IVAR register
774 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
775 * each containing an cause allocation for an Rx and Tx ring, and a
776 * variable number of rows depending on the number of queues supported.
777 **/
778 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
779 int index, int offset)
780 {
781 u32 ivar = array_rd32(E1000_IVAR0, index);
782
783 /* clear any bits that are currently set */
784 ivar &= ~((u32)0xFF << offset);
785
786 /* write vector and valid bit */
787 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
788
789 array_wr32(E1000_IVAR0, index, ivar);
790 }
791
792 #define IGB_N0_QUEUE -1
793 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
794 {
795 struct igb_adapter *adapter = q_vector->adapter;
796 struct e1000_hw *hw = &adapter->hw;
797 int rx_queue = IGB_N0_QUEUE;
798 int tx_queue = IGB_N0_QUEUE;
799 u32 msixbm = 0;
800
801 if (q_vector->rx.ring)
802 rx_queue = q_vector->rx.ring->reg_idx;
803 if (q_vector->tx.ring)
804 tx_queue = q_vector->tx.ring->reg_idx;
805
806 switch (hw->mac.type) {
807 case e1000_82575:
808 /* The 82575 assigns vectors using a bitmask, which matches the
809 * bitmask for the EICR/EIMS/EIMC registers. To assign one
810 * or more queues to a vector, we write the appropriate bits
811 * into the MSIXBM register for that vector.
812 */
813 if (rx_queue > IGB_N0_QUEUE)
814 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
815 if (tx_queue > IGB_N0_QUEUE)
816 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
817 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
818 msixbm |= E1000_EIMS_OTHER;
819 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
820 q_vector->eims_value = msixbm;
821 break;
822 case e1000_82576:
823 /* 82576 uses a table that essentially consists of 2 columns
824 * with 8 rows. The ordering is column-major so we use the
825 * lower 3 bits as the row index, and the 4th bit as the
826 * column offset.
827 */
828 if (rx_queue > IGB_N0_QUEUE)
829 igb_write_ivar(hw, msix_vector,
830 rx_queue & 0x7,
831 (rx_queue & 0x8) << 1);
832 if (tx_queue > IGB_N0_QUEUE)
833 igb_write_ivar(hw, msix_vector,
834 tx_queue & 0x7,
835 ((tx_queue & 0x8) << 1) + 8);
836 q_vector->eims_value = 1 << msix_vector;
837 break;
838 case e1000_82580:
839 case e1000_i350:
840 case e1000_i354:
841 case e1000_i210:
842 case e1000_i211:
843 /* On 82580 and newer adapters the scheme is similar to 82576
844 * however instead of ordering column-major we have things
845 * ordered row-major. So we traverse the table by using
846 * bit 0 as the column offset, and the remaining bits as the
847 * row index.
848 */
849 if (rx_queue > IGB_N0_QUEUE)
850 igb_write_ivar(hw, msix_vector,
851 rx_queue >> 1,
852 (rx_queue & 0x1) << 4);
853 if (tx_queue > IGB_N0_QUEUE)
854 igb_write_ivar(hw, msix_vector,
855 tx_queue >> 1,
856 ((tx_queue & 0x1) << 4) + 8);
857 q_vector->eims_value = 1 << msix_vector;
858 break;
859 default:
860 BUG();
861 break;
862 }
863
864 /* add q_vector eims value to global eims_enable_mask */
865 adapter->eims_enable_mask |= q_vector->eims_value;
866
867 /* configure q_vector to set itr on first interrupt */
868 q_vector->set_itr = 1;
869 }
870
871 /**
872 * igb_configure_msix - Configure MSI-X hardware
873 * @adapter: board private structure to initialize
874 *
875 * igb_configure_msix sets up the hardware to properly
876 * generate MSI-X interrupts.
877 **/
878 static void igb_configure_msix(struct igb_adapter *adapter)
879 {
880 u32 tmp;
881 int i, vector = 0;
882 struct e1000_hw *hw = &adapter->hw;
883
884 adapter->eims_enable_mask = 0;
885
886 /* set vector for other causes, i.e. link changes */
887 switch (hw->mac.type) {
888 case e1000_82575:
889 tmp = rd32(E1000_CTRL_EXT);
890 /* enable MSI-X PBA support*/
891 tmp |= E1000_CTRL_EXT_PBA_CLR;
892
893 /* Auto-Mask interrupts upon ICR read. */
894 tmp |= E1000_CTRL_EXT_EIAME;
895 tmp |= E1000_CTRL_EXT_IRCA;
896
897 wr32(E1000_CTRL_EXT, tmp);
898
899 /* enable msix_other interrupt */
900 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
901 adapter->eims_other = E1000_EIMS_OTHER;
902
903 break;
904
905 case e1000_82576:
906 case e1000_82580:
907 case e1000_i350:
908 case e1000_i354:
909 case e1000_i210:
910 case e1000_i211:
911 /* Turn on MSI-X capability first, or our settings
912 * won't stick. And it will take days to debug.
913 */
914 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
915 E1000_GPIE_PBA | E1000_GPIE_EIAME |
916 E1000_GPIE_NSICR);
917
918 /* enable msix_other interrupt */
919 adapter->eims_other = 1 << vector;
920 tmp = (vector++ | E1000_IVAR_VALID) << 8;
921
922 wr32(E1000_IVAR_MISC, tmp);
923 break;
924 default:
925 /* do nothing, since nothing else supports MSI-X */
926 break;
927 } /* switch (hw->mac.type) */
928
929 adapter->eims_enable_mask |= adapter->eims_other;
930
931 for (i = 0; i < adapter->num_q_vectors; i++)
932 igb_assign_vector(adapter->q_vector[i], vector++);
933
934 wrfl();
935 }
936
937 /**
938 * igb_request_msix - Initialize MSI-X interrupts
939 * @adapter: board private structure to initialize
940 *
941 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
942 * kernel.
943 **/
944 static int igb_request_msix(struct igb_adapter *adapter)
945 {
946 struct net_device *netdev = adapter->netdev;
947 struct e1000_hw *hw = &adapter->hw;
948 int i, err = 0, vector = 0, free_vector = 0;
949
950 err = request_irq(adapter->msix_entries[vector].vector,
951 igb_msix_other, 0, netdev->name, adapter);
952 if (err)
953 goto err_out;
954
955 for (i = 0; i < adapter->num_q_vectors; i++) {
956 struct igb_q_vector *q_vector = adapter->q_vector[i];
957
958 vector++;
959
960 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
961
962 if (q_vector->rx.ring && q_vector->tx.ring)
963 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
964 q_vector->rx.ring->queue_index);
965 else if (q_vector->tx.ring)
966 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
967 q_vector->tx.ring->queue_index);
968 else if (q_vector->rx.ring)
969 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
970 q_vector->rx.ring->queue_index);
971 else
972 sprintf(q_vector->name, "%s-unused", netdev->name);
973
974 err = request_irq(adapter->msix_entries[vector].vector,
975 igb_msix_ring, 0, q_vector->name,
976 q_vector);
977 if (err)
978 goto err_free;
979 }
980
981 igb_configure_msix(adapter);
982 return 0;
983
984 err_free:
985 /* free already assigned IRQs */
986 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
987
988 vector--;
989 for (i = 0; i < vector; i++) {
990 free_irq(adapter->msix_entries[free_vector++].vector,
991 adapter->q_vector[i]);
992 }
993 err_out:
994 return err;
995 }
996
997 /**
998 * igb_free_q_vector - Free memory allocated for specific interrupt vector
999 * @adapter: board private structure to initialize
1000 * @v_idx: Index of vector to be freed
1001 *
1002 * This function frees the memory allocated to the q_vector.
1003 **/
1004 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1005 {
1006 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1007
1008 adapter->q_vector[v_idx] = NULL;
1009
1010 /* igb_get_stats64() might access the rings on this vector,
1011 * we must wait a grace period before freeing it.
1012 */
1013 kfree_rcu(q_vector, rcu);
1014 }
1015
1016 /**
1017 * igb_reset_q_vector - Reset config for interrupt vector
1018 * @adapter: board private structure to initialize
1019 * @v_idx: Index of vector to be reset
1020 *
1021 * If NAPI is enabled it will delete any references to the
1022 * NAPI struct. This is preparation for igb_free_q_vector.
1023 **/
1024 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1025 {
1026 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1027
1028 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1029 * allocated. So, q_vector is NULL so we should stop here.
1030 */
1031 if (!q_vector)
1032 return;
1033
1034 if (q_vector->tx.ring)
1035 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1036
1037 if (q_vector->rx.ring)
1038 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1039
1040 netif_napi_del(&q_vector->napi);
1041
1042 }
1043
1044 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1045 {
1046 int v_idx = adapter->num_q_vectors;
1047
1048 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1049 pci_disable_msix(adapter->pdev);
1050 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1051 pci_disable_msi(adapter->pdev);
1052
1053 while (v_idx--)
1054 igb_reset_q_vector(adapter, v_idx);
1055 }
1056
1057 /**
1058 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1059 * @adapter: board private structure to initialize
1060 *
1061 * This function frees the memory allocated to the q_vectors. In addition if
1062 * NAPI is enabled it will delete any references to the NAPI struct prior
1063 * to freeing the q_vector.
1064 **/
1065 static void igb_free_q_vectors(struct igb_adapter *adapter)
1066 {
1067 int v_idx = adapter->num_q_vectors;
1068
1069 adapter->num_tx_queues = 0;
1070 adapter->num_rx_queues = 0;
1071 adapter->num_q_vectors = 0;
1072
1073 while (v_idx--) {
1074 igb_reset_q_vector(adapter, v_idx);
1075 igb_free_q_vector(adapter, v_idx);
1076 }
1077 }
1078
1079 /**
1080 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1081 * @adapter: board private structure to initialize
1082 *
1083 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1084 * MSI-X interrupts allocated.
1085 */
1086 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1087 {
1088 igb_free_q_vectors(adapter);
1089 igb_reset_interrupt_capability(adapter);
1090 }
1091
1092 /**
1093 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1094 * @adapter: board private structure to initialize
1095 * @msix: boolean value of MSIX capability
1096 *
1097 * Attempt to configure interrupts using the best available
1098 * capabilities of the hardware and kernel.
1099 **/
1100 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1101 {
1102 int err;
1103 int numvecs, i;
1104
1105 if (!msix)
1106 goto msi_only;
1107 adapter->flags |= IGB_FLAG_HAS_MSIX;
1108
1109 /* Number of supported queues. */
1110 adapter->num_rx_queues = adapter->rss_queues;
1111 if (adapter->vfs_allocated_count)
1112 adapter->num_tx_queues = 1;
1113 else
1114 adapter->num_tx_queues = adapter->rss_queues;
1115
1116 /* start with one vector for every Rx queue */
1117 numvecs = adapter->num_rx_queues;
1118
1119 /* if Tx handler is separate add 1 for every Tx queue */
1120 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1121 numvecs += adapter->num_tx_queues;
1122
1123 /* store the number of vectors reserved for queues */
1124 adapter->num_q_vectors = numvecs;
1125
1126 /* add 1 vector for link status interrupts */
1127 numvecs++;
1128 for (i = 0; i < numvecs; i++)
1129 adapter->msix_entries[i].entry = i;
1130
1131 err = pci_enable_msix_range(adapter->pdev,
1132 adapter->msix_entries,
1133 numvecs,
1134 numvecs);
1135 if (err > 0)
1136 return;
1137
1138 igb_reset_interrupt_capability(adapter);
1139
1140 /* If we can't do MSI-X, try MSI */
1141 msi_only:
1142 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1143 #ifdef CONFIG_PCI_IOV
1144 /* disable SR-IOV for non MSI-X configurations */
1145 if (adapter->vf_data) {
1146 struct e1000_hw *hw = &adapter->hw;
1147 /* disable iov and allow time for transactions to clear */
1148 pci_disable_sriov(adapter->pdev);
1149 msleep(500);
1150
1151 kfree(adapter->vf_data);
1152 adapter->vf_data = NULL;
1153 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1154 wrfl();
1155 msleep(100);
1156 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1157 }
1158 #endif
1159 adapter->vfs_allocated_count = 0;
1160 adapter->rss_queues = 1;
1161 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1162 adapter->num_rx_queues = 1;
1163 adapter->num_tx_queues = 1;
1164 adapter->num_q_vectors = 1;
1165 if (!pci_enable_msi(adapter->pdev))
1166 adapter->flags |= IGB_FLAG_HAS_MSI;
1167 }
1168
1169 static void igb_add_ring(struct igb_ring *ring,
1170 struct igb_ring_container *head)
1171 {
1172 head->ring = ring;
1173 head->count++;
1174 }
1175
1176 /**
1177 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1178 * @adapter: board private structure to initialize
1179 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1180 * @v_idx: index of vector in adapter struct
1181 * @txr_count: total number of Tx rings to allocate
1182 * @txr_idx: index of first Tx ring to allocate
1183 * @rxr_count: total number of Rx rings to allocate
1184 * @rxr_idx: index of first Rx ring to allocate
1185 *
1186 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1187 **/
1188 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1189 int v_count, int v_idx,
1190 int txr_count, int txr_idx,
1191 int rxr_count, int rxr_idx)
1192 {
1193 struct igb_q_vector *q_vector;
1194 struct igb_ring *ring;
1195 int ring_count, size;
1196
1197 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1198 if (txr_count > 1 || rxr_count > 1)
1199 return -ENOMEM;
1200
1201 ring_count = txr_count + rxr_count;
1202 size = sizeof(struct igb_q_vector) +
1203 (sizeof(struct igb_ring) * ring_count);
1204
1205 /* allocate q_vector and rings */
1206 q_vector = adapter->q_vector[v_idx];
1207 if (!q_vector)
1208 q_vector = kzalloc(size, GFP_KERNEL);
1209 if (!q_vector)
1210 return -ENOMEM;
1211
1212 /* initialize NAPI */
1213 netif_napi_add(adapter->netdev, &q_vector->napi,
1214 igb_poll, 64);
1215
1216 /* tie q_vector and adapter together */
1217 adapter->q_vector[v_idx] = q_vector;
1218 q_vector->adapter = adapter;
1219
1220 /* initialize work limits */
1221 q_vector->tx.work_limit = adapter->tx_work_limit;
1222
1223 /* initialize ITR configuration */
1224 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1225 q_vector->itr_val = IGB_START_ITR;
1226
1227 /* initialize pointer to rings */
1228 ring = q_vector->ring;
1229
1230 /* intialize ITR */
1231 if (rxr_count) {
1232 /* rx or rx/tx vector */
1233 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1234 q_vector->itr_val = adapter->rx_itr_setting;
1235 } else {
1236 /* tx only vector */
1237 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1238 q_vector->itr_val = adapter->tx_itr_setting;
1239 }
1240
1241 if (txr_count) {
1242 /* assign generic ring traits */
1243 ring->dev = &adapter->pdev->dev;
1244 ring->netdev = adapter->netdev;
1245
1246 /* configure backlink on ring */
1247 ring->q_vector = q_vector;
1248
1249 /* update q_vector Tx values */
1250 igb_add_ring(ring, &q_vector->tx);
1251
1252 /* For 82575, context index must be unique per ring. */
1253 if (adapter->hw.mac.type == e1000_82575)
1254 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1255
1256 /* apply Tx specific ring traits */
1257 ring->count = adapter->tx_ring_count;
1258 ring->queue_index = txr_idx;
1259
1260 u64_stats_init(&ring->tx_syncp);
1261 u64_stats_init(&ring->tx_syncp2);
1262
1263 /* assign ring to adapter */
1264 adapter->tx_ring[txr_idx] = ring;
1265
1266 /* push pointer to next ring */
1267 ring++;
1268 }
1269
1270 if (rxr_count) {
1271 /* assign generic ring traits */
1272 ring->dev = &adapter->pdev->dev;
1273 ring->netdev = adapter->netdev;
1274
1275 /* configure backlink on ring */
1276 ring->q_vector = q_vector;
1277
1278 /* update q_vector Rx values */
1279 igb_add_ring(ring, &q_vector->rx);
1280
1281 /* set flag indicating ring supports SCTP checksum offload */
1282 if (adapter->hw.mac.type >= e1000_82576)
1283 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1284
1285 /* On i350, i354, i210, and i211, loopback VLAN packets
1286 * have the tag byte-swapped.
1287 */
1288 if (adapter->hw.mac.type >= e1000_i350)
1289 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1290
1291 /* apply Rx specific ring traits */
1292 ring->count = adapter->rx_ring_count;
1293 ring->queue_index = rxr_idx;
1294
1295 u64_stats_init(&ring->rx_syncp);
1296
1297 /* assign ring to adapter */
1298 adapter->rx_ring[rxr_idx] = ring;
1299 }
1300
1301 return 0;
1302 }
1303
1304
1305 /**
1306 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1307 * @adapter: board private structure to initialize
1308 *
1309 * We allocate one q_vector per queue interrupt. If allocation fails we
1310 * return -ENOMEM.
1311 **/
1312 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1313 {
1314 int q_vectors = adapter->num_q_vectors;
1315 int rxr_remaining = adapter->num_rx_queues;
1316 int txr_remaining = adapter->num_tx_queues;
1317 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1318 int err;
1319
1320 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1321 for (; rxr_remaining; v_idx++) {
1322 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1323 0, 0, 1, rxr_idx);
1324
1325 if (err)
1326 goto err_out;
1327
1328 /* update counts and index */
1329 rxr_remaining--;
1330 rxr_idx++;
1331 }
1332 }
1333
1334 for (; v_idx < q_vectors; v_idx++) {
1335 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1336 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1337
1338 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1339 tqpv, txr_idx, rqpv, rxr_idx);
1340
1341 if (err)
1342 goto err_out;
1343
1344 /* update counts and index */
1345 rxr_remaining -= rqpv;
1346 txr_remaining -= tqpv;
1347 rxr_idx++;
1348 txr_idx++;
1349 }
1350
1351 return 0;
1352
1353 err_out:
1354 adapter->num_tx_queues = 0;
1355 adapter->num_rx_queues = 0;
1356 adapter->num_q_vectors = 0;
1357
1358 while (v_idx--)
1359 igb_free_q_vector(adapter, v_idx);
1360
1361 return -ENOMEM;
1362 }
1363
1364 /**
1365 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1366 * @adapter: board private structure to initialize
1367 * @msix: boolean value of MSIX capability
1368 *
1369 * This function initializes the interrupts and allocates all of the queues.
1370 **/
1371 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1372 {
1373 struct pci_dev *pdev = adapter->pdev;
1374 int err;
1375
1376 igb_set_interrupt_capability(adapter, msix);
1377
1378 err = igb_alloc_q_vectors(adapter);
1379 if (err) {
1380 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1381 goto err_alloc_q_vectors;
1382 }
1383
1384 igb_cache_ring_register(adapter);
1385
1386 return 0;
1387
1388 err_alloc_q_vectors:
1389 igb_reset_interrupt_capability(adapter);
1390 return err;
1391 }
1392
1393 /**
1394 * igb_request_irq - initialize interrupts
1395 * @adapter: board private structure to initialize
1396 *
1397 * Attempts to configure interrupts using the best available
1398 * capabilities of the hardware and kernel.
1399 **/
1400 static int igb_request_irq(struct igb_adapter *adapter)
1401 {
1402 struct net_device *netdev = adapter->netdev;
1403 struct pci_dev *pdev = adapter->pdev;
1404 int err = 0;
1405
1406 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1407 err = igb_request_msix(adapter);
1408 if (!err)
1409 goto request_done;
1410 /* fall back to MSI */
1411 igb_free_all_tx_resources(adapter);
1412 igb_free_all_rx_resources(adapter);
1413
1414 igb_clear_interrupt_scheme(adapter);
1415 err = igb_init_interrupt_scheme(adapter, false);
1416 if (err)
1417 goto request_done;
1418
1419 igb_setup_all_tx_resources(adapter);
1420 igb_setup_all_rx_resources(adapter);
1421 igb_configure(adapter);
1422 }
1423
1424 igb_assign_vector(adapter->q_vector[0], 0);
1425
1426 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1427 err = request_irq(pdev->irq, igb_intr_msi, 0,
1428 netdev->name, adapter);
1429 if (!err)
1430 goto request_done;
1431
1432 /* fall back to legacy interrupts */
1433 igb_reset_interrupt_capability(adapter);
1434 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1435 }
1436
1437 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1438 netdev->name, adapter);
1439
1440 if (err)
1441 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1442 err);
1443
1444 request_done:
1445 return err;
1446 }
1447
1448 static void igb_free_irq(struct igb_adapter *adapter)
1449 {
1450 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1451 int vector = 0, i;
1452
1453 free_irq(adapter->msix_entries[vector++].vector, adapter);
1454
1455 for (i = 0; i < adapter->num_q_vectors; i++)
1456 free_irq(adapter->msix_entries[vector++].vector,
1457 adapter->q_vector[i]);
1458 } else {
1459 free_irq(adapter->pdev->irq, adapter);
1460 }
1461 }
1462
1463 /**
1464 * igb_irq_disable - Mask off interrupt generation on the NIC
1465 * @adapter: board private structure
1466 **/
1467 static void igb_irq_disable(struct igb_adapter *adapter)
1468 {
1469 struct e1000_hw *hw = &adapter->hw;
1470
1471 /* we need to be careful when disabling interrupts. The VFs are also
1472 * mapped into these registers and so clearing the bits can cause
1473 * issues on the VF drivers so we only need to clear what we set
1474 */
1475 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1476 u32 regval = rd32(E1000_EIAM);
1477
1478 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1479 wr32(E1000_EIMC, adapter->eims_enable_mask);
1480 regval = rd32(E1000_EIAC);
1481 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1482 }
1483
1484 wr32(E1000_IAM, 0);
1485 wr32(E1000_IMC, ~0);
1486 wrfl();
1487 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1488 int i;
1489
1490 for (i = 0; i < adapter->num_q_vectors; i++)
1491 synchronize_irq(adapter->msix_entries[i].vector);
1492 } else {
1493 synchronize_irq(adapter->pdev->irq);
1494 }
1495 }
1496
1497 /**
1498 * igb_irq_enable - Enable default interrupt generation settings
1499 * @adapter: board private structure
1500 **/
1501 static void igb_irq_enable(struct igb_adapter *adapter)
1502 {
1503 struct e1000_hw *hw = &adapter->hw;
1504
1505 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1506 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1507 u32 regval = rd32(E1000_EIAC);
1508
1509 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1510 regval = rd32(E1000_EIAM);
1511 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1512 wr32(E1000_EIMS, adapter->eims_enable_mask);
1513 if (adapter->vfs_allocated_count) {
1514 wr32(E1000_MBVFIMR, 0xFF);
1515 ims |= E1000_IMS_VMMB;
1516 }
1517 wr32(E1000_IMS, ims);
1518 } else {
1519 wr32(E1000_IMS, IMS_ENABLE_MASK |
1520 E1000_IMS_DRSTA);
1521 wr32(E1000_IAM, IMS_ENABLE_MASK |
1522 E1000_IMS_DRSTA);
1523 }
1524 }
1525
1526 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1527 {
1528 struct e1000_hw *hw = &adapter->hw;
1529 u16 vid = adapter->hw.mng_cookie.vlan_id;
1530 u16 old_vid = adapter->mng_vlan_id;
1531
1532 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1533 /* add VID to filter table */
1534 igb_vfta_set(hw, vid, true);
1535 adapter->mng_vlan_id = vid;
1536 } else {
1537 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1538 }
1539
1540 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1541 (vid != old_vid) &&
1542 !test_bit(old_vid, adapter->active_vlans)) {
1543 /* remove VID from filter table */
1544 igb_vfta_set(hw, old_vid, false);
1545 }
1546 }
1547
1548 /**
1549 * igb_release_hw_control - release control of the h/w to f/w
1550 * @adapter: address of board private structure
1551 *
1552 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1553 * For ASF and Pass Through versions of f/w this means that the
1554 * driver is no longer loaded.
1555 **/
1556 static void igb_release_hw_control(struct igb_adapter *adapter)
1557 {
1558 struct e1000_hw *hw = &adapter->hw;
1559 u32 ctrl_ext;
1560
1561 /* Let firmware take over control of h/w */
1562 ctrl_ext = rd32(E1000_CTRL_EXT);
1563 wr32(E1000_CTRL_EXT,
1564 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1565 }
1566
1567 /**
1568 * igb_get_hw_control - get control of the h/w from f/w
1569 * @adapter: address of board private structure
1570 *
1571 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1572 * For ASF and Pass Through versions of f/w this means that
1573 * the driver is loaded.
1574 **/
1575 static void igb_get_hw_control(struct igb_adapter *adapter)
1576 {
1577 struct e1000_hw *hw = &adapter->hw;
1578 u32 ctrl_ext;
1579
1580 /* Let firmware know the driver has taken over */
1581 ctrl_ext = rd32(E1000_CTRL_EXT);
1582 wr32(E1000_CTRL_EXT,
1583 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1584 }
1585
1586 /**
1587 * igb_configure - configure the hardware for RX and TX
1588 * @adapter: private board structure
1589 **/
1590 static void igb_configure(struct igb_adapter *adapter)
1591 {
1592 struct net_device *netdev = adapter->netdev;
1593 int i;
1594
1595 igb_get_hw_control(adapter);
1596 igb_set_rx_mode(netdev);
1597
1598 igb_restore_vlan(adapter);
1599
1600 igb_setup_tctl(adapter);
1601 igb_setup_mrqc(adapter);
1602 igb_setup_rctl(adapter);
1603
1604 igb_configure_tx(adapter);
1605 igb_configure_rx(adapter);
1606
1607 igb_rx_fifo_flush_82575(&adapter->hw);
1608
1609 /* call igb_desc_unused which always leaves
1610 * at least 1 descriptor unused to make sure
1611 * next_to_use != next_to_clean
1612 */
1613 for (i = 0; i < adapter->num_rx_queues; i++) {
1614 struct igb_ring *ring = adapter->rx_ring[i];
1615 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1616 }
1617 }
1618
1619 /**
1620 * igb_power_up_link - Power up the phy/serdes link
1621 * @adapter: address of board private structure
1622 **/
1623 void igb_power_up_link(struct igb_adapter *adapter)
1624 {
1625 igb_reset_phy(&adapter->hw);
1626
1627 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1628 igb_power_up_phy_copper(&adapter->hw);
1629 else
1630 igb_power_up_serdes_link_82575(&adapter->hw);
1631 }
1632
1633 /**
1634 * igb_power_down_link - Power down the phy/serdes link
1635 * @adapter: address of board private structure
1636 */
1637 static void igb_power_down_link(struct igb_adapter *adapter)
1638 {
1639 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1640 igb_power_down_phy_copper_82575(&adapter->hw);
1641 else
1642 igb_shutdown_serdes_link_82575(&adapter->hw);
1643 }
1644
1645 /**
1646 * Detect and switch function for Media Auto Sense
1647 * @adapter: address of the board private structure
1648 **/
1649 static void igb_check_swap_media(struct igb_adapter *adapter)
1650 {
1651 struct e1000_hw *hw = &adapter->hw;
1652 u32 ctrl_ext, connsw;
1653 bool swap_now = false;
1654
1655 ctrl_ext = rd32(E1000_CTRL_EXT);
1656 connsw = rd32(E1000_CONNSW);
1657
1658 /* need to live swap if current media is copper and we have fiber/serdes
1659 * to go to.
1660 */
1661
1662 if ((hw->phy.media_type == e1000_media_type_copper) &&
1663 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1664 swap_now = true;
1665 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1666 /* copper signal takes time to appear */
1667 if (adapter->copper_tries < 4) {
1668 adapter->copper_tries++;
1669 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1670 wr32(E1000_CONNSW, connsw);
1671 return;
1672 } else {
1673 adapter->copper_tries = 0;
1674 if ((connsw & E1000_CONNSW_PHYSD) &&
1675 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1676 swap_now = true;
1677 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1678 wr32(E1000_CONNSW, connsw);
1679 }
1680 }
1681 }
1682
1683 if (!swap_now)
1684 return;
1685
1686 switch (hw->phy.media_type) {
1687 case e1000_media_type_copper:
1688 netdev_info(adapter->netdev,
1689 "MAS: changing media to fiber/serdes\n");
1690 ctrl_ext |=
1691 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1692 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1693 adapter->copper_tries = 0;
1694 break;
1695 case e1000_media_type_internal_serdes:
1696 case e1000_media_type_fiber:
1697 netdev_info(adapter->netdev,
1698 "MAS: changing media to copper\n");
1699 ctrl_ext &=
1700 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1701 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1702 break;
1703 default:
1704 /* shouldn't get here during regular operation */
1705 netdev_err(adapter->netdev,
1706 "AMS: Invalid media type found, returning\n");
1707 break;
1708 }
1709 wr32(E1000_CTRL_EXT, ctrl_ext);
1710 }
1711
1712 /**
1713 * igb_up - Open the interface and prepare it to handle traffic
1714 * @adapter: board private structure
1715 **/
1716 int igb_up(struct igb_adapter *adapter)
1717 {
1718 struct e1000_hw *hw = &adapter->hw;
1719 int i;
1720
1721 /* hardware has been reset, we need to reload some things */
1722 igb_configure(adapter);
1723
1724 clear_bit(__IGB_DOWN, &adapter->state);
1725
1726 for (i = 0; i < adapter->num_q_vectors; i++)
1727 napi_enable(&(adapter->q_vector[i]->napi));
1728
1729 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1730 igb_configure_msix(adapter);
1731 else
1732 igb_assign_vector(adapter->q_vector[0], 0);
1733
1734 /* Clear any pending interrupts. */
1735 rd32(E1000_ICR);
1736 igb_irq_enable(adapter);
1737
1738 /* notify VFs that reset has been completed */
1739 if (adapter->vfs_allocated_count) {
1740 u32 reg_data = rd32(E1000_CTRL_EXT);
1741
1742 reg_data |= E1000_CTRL_EXT_PFRSTD;
1743 wr32(E1000_CTRL_EXT, reg_data);
1744 }
1745
1746 netif_tx_start_all_queues(adapter->netdev);
1747
1748 /* start the watchdog. */
1749 hw->mac.get_link_status = 1;
1750 schedule_work(&adapter->watchdog_task);
1751
1752 if ((adapter->flags & IGB_FLAG_EEE) &&
1753 (!hw->dev_spec._82575.eee_disable))
1754 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1755
1756 return 0;
1757 }
1758
1759 void igb_down(struct igb_adapter *adapter)
1760 {
1761 struct net_device *netdev = adapter->netdev;
1762 struct e1000_hw *hw = &adapter->hw;
1763 u32 tctl, rctl;
1764 int i;
1765
1766 /* signal that we're down so the interrupt handler does not
1767 * reschedule our watchdog timer
1768 */
1769 set_bit(__IGB_DOWN, &adapter->state);
1770
1771 /* disable receives in the hardware */
1772 rctl = rd32(E1000_RCTL);
1773 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1774 /* flush and sleep below */
1775
1776 netif_tx_stop_all_queues(netdev);
1777
1778 /* disable transmits in the hardware */
1779 tctl = rd32(E1000_TCTL);
1780 tctl &= ~E1000_TCTL_EN;
1781 wr32(E1000_TCTL, tctl);
1782 /* flush both disables and wait for them to finish */
1783 wrfl();
1784 msleep(10);
1785
1786 igb_irq_disable(adapter);
1787
1788 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1789
1790 for (i = 0; i < adapter->num_q_vectors; i++) {
1791 napi_synchronize(&(adapter->q_vector[i]->napi));
1792 napi_disable(&(adapter->q_vector[i]->napi));
1793 }
1794
1795
1796 del_timer_sync(&adapter->watchdog_timer);
1797 del_timer_sync(&adapter->phy_info_timer);
1798
1799 netif_carrier_off(netdev);
1800
1801 /* record the stats before reset*/
1802 spin_lock(&adapter->stats64_lock);
1803 igb_update_stats(adapter, &adapter->stats64);
1804 spin_unlock(&adapter->stats64_lock);
1805
1806 adapter->link_speed = 0;
1807 adapter->link_duplex = 0;
1808
1809 if (!pci_channel_offline(adapter->pdev))
1810 igb_reset(adapter);
1811 igb_clean_all_tx_rings(adapter);
1812 igb_clean_all_rx_rings(adapter);
1813 #ifdef CONFIG_IGB_DCA
1814
1815 /* since we reset the hardware DCA settings were cleared */
1816 igb_setup_dca(adapter);
1817 #endif
1818 }
1819
1820 void igb_reinit_locked(struct igb_adapter *adapter)
1821 {
1822 WARN_ON(in_interrupt());
1823 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1824 msleep(1);
1825 igb_down(adapter);
1826 igb_up(adapter);
1827 clear_bit(__IGB_RESETTING, &adapter->state);
1828 }
1829
1830 /** igb_enable_mas - Media Autosense re-enable after swap
1831 *
1832 * @adapter: adapter struct
1833 **/
1834 static s32 igb_enable_mas(struct igb_adapter *adapter)
1835 {
1836 struct e1000_hw *hw = &adapter->hw;
1837 u32 connsw;
1838 s32 ret_val = 0;
1839
1840 connsw = rd32(E1000_CONNSW);
1841 if (!(hw->phy.media_type == e1000_media_type_copper))
1842 return ret_val;
1843
1844 /* configure for SerDes media detect */
1845 if (!(connsw & E1000_CONNSW_SERDESD)) {
1846 connsw |= E1000_CONNSW_ENRGSRC;
1847 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1848 wr32(E1000_CONNSW, connsw);
1849 wrfl();
1850 } else if (connsw & E1000_CONNSW_SERDESD) {
1851 /* already SerDes, no need to enable anything */
1852 return ret_val;
1853 } else {
1854 netdev_info(adapter->netdev,
1855 "MAS: Unable to configure feature, disabling..\n");
1856 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1857 }
1858 return ret_val;
1859 }
1860
1861 void igb_reset(struct igb_adapter *adapter)
1862 {
1863 struct pci_dev *pdev = adapter->pdev;
1864 struct e1000_hw *hw = &adapter->hw;
1865 struct e1000_mac_info *mac = &hw->mac;
1866 struct e1000_fc_info *fc = &hw->fc;
1867 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1868
1869 /* Repartition Pba for greater than 9k mtu
1870 * To take effect CTRL.RST is required.
1871 */
1872 switch (mac->type) {
1873 case e1000_i350:
1874 case e1000_i354:
1875 case e1000_82580:
1876 pba = rd32(E1000_RXPBS);
1877 pba = igb_rxpbs_adjust_82580(pba);
1878 break;
1879 case e1000_82576:
1880 pba = rd32(E1000_RXPBS);
1881 pba &= E1000_RXPBS_SIZE_MASK_82576;
1882 break;
1883 case e1000_82575:
1884 case e1000_i210:
1885 case e1000_i211:
1886 default:
1887 pba = E1000_PBA_34K;
1888 break;
1889 }
1890
1891 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1892 (mac->type < e1000_82576)) {
1893 /* adjust PBA for jumbo frames */
1894 wr32(E1000_PBA, pba);
1895
1896 /* To maintain wire speed transmits, the Tx FIFO should be
1897 * large enough to accommodate two full transmit packets,
1898 * rounded up to the next 1KB and expressed in KB. Likewise,
1899 * the Rx FIFO should be large enough to accommodate at least
1900 * one full receive packet and is similarly rounded up and
1901 * expressed in KB.
1902 */
1903 pba = rd32(E1000_PBA);
1904 /* upper 16 bits has Tx packet buffer allocation size in KB */
1905 tx_space = pba >> 16;
1906 /* lower 16 bits has Rx packet buffer allocation size in KB */
1907 pba &= 0xffff;
1908 /* the Tx fifo also stores 16 bytes of information about the Tx
1909 * but don't include ethernet FCS because hardware appends it
1910 */
1911 min_tx_space = (adapter->max_frame_size +
1912 sizeof(union e1000_adv_tx_desc) -
1913 ETH_FCS_LEN) * 2;
1914 min_tx_space = ALIGN(min_tx_space, 1024);
1915 min_tx_space >>= 10;
1916 /* software strips receive CRC, so leave room for it */
1917 min_rx_space = adapter->max_frame_size;
1918 min_rx_space = ALIGN(min_rx_space, 1024);
1919 min_rx_space >>= 10;
1920
1921 /* If current Tx allocation is less than the min Tx FIFO size,
1922 * and the min Tx FIFO size is less than the current Rx FIFO
1923 * allocation, take space away from current Rx allocation
1924 */
1925 if (tx_space < min_tx_space &&
1926 ((min_tx_space - tx_space) < pba)) {
1927 pba = pba - (min_tx_space - tx_space);
1928
1929 /* if short on Rx space, Rx wins and must trump Tx
1930 * adjustment
1931 */
1932 if (pba < min_rx_space)
1933 pba = min_rx_space;
1934 }
1935 wr32(E1000_PBA, pba);
1936 }
1937
1938 /* flow control settings */
1939 /* The high water mark must be low enough to fit one full frame
1940 * (or the size used for early receive) above it in the Rx FIFO.
1941 * Set it to the lower of:
1942 * - 90% of the Rx FIFO size, or
1943 * - the full Rx FIFO size minus one full frame
1944 */
1945 hwm = min(((pba << 10) * 9 / 10),
1946 ((pba << 10) - 2 * adapter->max_frame_size));
1947
1948 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1949 fc->low_water = fc->high_water - 16;
1950 fc->pause_time = 0xFFFF;
1951 fc->send_xon = 1;
1952 fc->current_mode = fc->requested_mode;
1953
1954 /* disable receive for all VFs and wait one second */
1955 if (adapter->vfs_allocated_count) {
1956 int i;
1957
1958 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1959 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1960
1961 /* ping all the active vfs to let them know we are going down */
1962 igb_ping_all_vfs(adapter);
1963
1964 /* disable transmits and receives */
1965 wr32(E1000_VFRE, 0);
1966 wr32(E1000_VFTE, 0);
1967 }
1968
1969 /* Allow time for pending master requests to run */
1970 hw->mac.ops.reset_hw(hw);
1971 wr32(E1000_WUC, 0);
1972
1973 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1974 /* need to resetup here after media swap */
1975 adapter->ei.get_invariants(hw);
1976 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1977 }
1978 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1979 if (igb_enable_mas(adapter))
1980 dev_err(&pdev->dev,
1981 "Error enabling Media Auto Sense\n");
1982 }
1983 if (hw->mac.ops.init_hw(hw))
1984 dev_err(&pdev->dev, "Hardware Error\n");
1985
1986 /* Flow control settings reset on hardware reset, so guarantee flow
1987 * control is off when forcing speed.
1988 */
1989 if (!hw->mac.autoneg)
1990 igb_force_mac_fc(hw);
1991
1992 igb_init_dmac(adapter, pba);
1993 #ifdef CONFIG_IGB_HWMON
1994 /* Re-initialize the thermal sensor on i350 devices. */
1995 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1996 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1997 /* If present, re-initialize the external thermal sensor
1998 * interface.
1999 */
2000 if (adapter->ets)
2001 mac->ops.init_thermal_sensor_thresh(hw);
2002 }
2003 }
2004 #endif
2005 /* Re-establish EEE setting */
2006 if (hw->phy.media_type == e1000_media_type_copper) {
2007 switch (mac->type) {
2008 case e1000_i350:
2009 case e1000_i210:
2010 case e1000_i211:
2011 igb_set_eee_i350(hw);
2012 break;
2013 case e1000_i354:
2014 igb_set_eee_i354(hw);
2015 break;
2016 default:
2017 break;
2018 }
2019 }
2020 if (!netif_running(adapter->netdev))
2021 igb_power_down_link(adapter);
2022
2023 igb_update_mng_vlan(adapter);
2024
2025 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2026 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2027
2028 /* Re-enable PTP, where applicable. */
2029 igb_ptp_reset(adapter);
2030
2031 igb_get_phy_info(hw);
2032 }
2033
2034 static netdev_features_t igb_fix_features(struct net_device *netdev,
2035 netdev_features_t features)
2036 {
2037 /* Since there is no support for separate Rx/Tx vlan accel
2038 * enable/disable make sure Tx flag is always in same state as Rx.
2039 */
2040 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2041 features |= NETIF_F_HW_VLAN_CTAG_TX;
2042 else
2043 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2044
2045 return features;
2046 }
2047
2048 static int igb_set_features(struct net_device *netdev,
2049 netdev_features_t features)
2050 {
2051 netdev_features_t changed = netdev->features ^ features;
2052 struct igb_adapter *adapter = netdev_priv(netdev);
2053
2054 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2055 igb_vlan_mode(netdev, features);
2056
2057 if (!(changed & NETIF_F_RXALL))
2058 return 0;
2059
2060 netdev->features = features;
2061
2062 if (netif_running(netdev))
2063 igb_reinit_locked(adapter);
2064 else
2065 igb_reset(adapter);
2066
2067 return 0;
2068 }
2069
2070 static const struct net_device_ops igb_netdev_ops = {
2071 .ndo_open = igb_open,
2072 .ndo_stop = igb_close,
2073 .ndo_start_xmit = igb_xmit_frame,
2074 .ndo_get_stats64 = igb_get_stats64,
2075 .ndo_set_rx_mode = igb_set_rx_mode,
2076 .ndo_set_mac_address = igb_set_mac,
2077 .ndo_change_mtu = igb_change_mtu,
2078 .ndo_do_ioctl = igb_ioctl,
2079 .ndo_tx_timeout = igb_tx_timeout,
2080 .ndo_validate_addr = eth_validate_addr,
2081 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2082 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2083 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2084 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2085 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
2086 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2087 .ndo_get_vf_config = igb_ndo_get_vf_config,
2088 #ifdef CONFIG_NET_POLL_CONTROLLER
2089 .ndo_poll_controller = igb_netpoll,
2090 #endif
2091 .ndo_fix_features = igb_fix_features,
2092 .ndo_set_features = igb_set_features,
2093 };
2094
2095 /**
2096 * igb_set_fw_version - Configure version string for ethtool
2097 * @adapter: adapter struct
2098 **/
2099 void igb_set_fw_version(struct igb_adapter *adapter)
2100 {
2101 struct e1000_hw *hw = &adapter->hw;
2102 struct e1000_fw_version fw;
2103
2104 igb_get_fw_version(hw, &fw);
2105
2106 switch (hw->mac.type) {
2107 case e1000_i210:
2108 case e1000_i211:
2109 if (!(igb_get_flash_presence_i210(hw))) {
2110 snprintf(adapter->fw_version,
2111 sizeof(adapter->fw_version),
2112 "%2d.%2d-%d",
2113 fw.invm_major, fw.invm_minor,
2114 fw.invm_img_type);
2115 break;
2116 }
2117 /* fall through */
2118 default:
2119 /* if option is rom valid, display its version too */
2120 if (fw.or_valid) {
2121 snprintf(adapter->fw_version,
2122 sizeof(adapter->fw_version),
2123 "%d.%d, 0x%08x, %d.%d.%d",
2124 fw.eep_major, fw.eep_minor, fw.etrack_id,
2125 fw.or_major, fw.or_build, fw.or_patch);
2126 /* no option rom */
2127 } else if (fw.etrack_id != 0X0000) {
2128 snprintf(adapter->fw_version,
2129 sizeof(adapter->fw_version),
2130 "%d.%d, 0x%08x",
2131 fw.eep_major, fw.eep_minor, fw.etrack_id);
2132 } else {
2133 snprintf(adapter->fw_version,
2134 sizeof(adapter->fw_version),
2135 "%d.%d.%d",
2136 fw.eep_major, fw.eep_minor, fw.eep_build);
2137 }
2138 break;
2139 }
2140 return;
2141 }
2142
2143 /**
2144 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2145 *
2146 * @adapter: adapter struct
2147 **/
2148 static void igb_init_mas(struct igb_adapter *adapter)
2149 {
2150 struct e1000_hw *hw = &adapter->hw;
2151 u16 eeprom_data;
2152
2153 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2154 switch (hw->bus.func) {
2155 case E1000_FUNC_0:
2156 if (eeprom_data & IGB_MAS_ENABLE_0) {
2157 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2158 netdev_info(adapter->netdev,
2159 "MAS: Enabling Media Autosense for port %d\n",
2160 hw->bus.func);
2161 }
2162 break;
2163 case E1000_FUNC_1:
2164 if (eeprom_data & IGB_MAS_ENABLE_1) {
2165 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2166 netdev_info(adapter->netdev,
2167 "MAS: Enabling Media Autosense for port %d\n",
2168 hw->bus.func);
2169 }
2170 break;
2171 case E1000_FUNC_2:
2172 if (eeprom_data & IGB_MAS_ENABLE_2) {
2173 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2174 netdev_info(adapter->netdev,
2175 "MAS: Enabling Media Autosense for port %d\n",
2176 hw->bus.func);
2177 }
2178 break;
2179 case E1000_FUNC_3:
2180 if (eeprom_data & IGB_MAS_ENABLE_3) {
2181 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2182 netdev_info(adapter->netdev,
2183 "MAS: Enabling Media Autosense for port %d\n",
2184 hw->bus.func);
2185 }
2186 break;
2187 default:
2188 /* Shouldn't get here */
2189 netdev_err(adapter->netdev,
2190 "MAS: Invalid port configuration, returning\n");
2191 break;
2192 }
2193 }
2194
2195 /**
2196 * igb_init_i2c - Init I2C interface
2197 * @adapter: pointer to adapter structure
2198 **/
2199 static s32 igb_init_i2c(struct igb_adapter *adapter)
2200 {
2201 s32 status = E1000_SUCCESS;
2202
2203 /* I2C interface supported on i350 devices */
2204 if (adapter->hw.mac.type != e1000_i350)
2205 return E1000_SUCCESS;
2206
2207 /* Initialize the i2c bus which is controlled by the registers.
2208 * This bus will use the i2c_algo_bit structue that implements
2209 * the protocol through toggling of the 4 bits in the register.
2210 */
2211 adapter->i2c_adap.owner = THIS_MODULE;
2212 adapter->i2c_algo = igb_i2c_algo;
2213 adapter->i2c_algo.data = adapter;
2214 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2215 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2216 strlcpy(adapter->i2c_adap.name, "igb BB",
2217 sizeof(adapter->i2c_adap.name));
2218 status = i2c_bit_add_bus(&adapter->i2c_adap);
2219 return status;
2220 }
2221
2222 /**
2223 * igb_probe - Device Initialization Routine
2224 * @pdev: PCI device information struct
2225 * @ent: entry in igb_pci_tbl
2226 *
2227 * Returns 0 on success, negative on failure
2228 *
2229 * igb_probe initializes an adapter identified by a pci_dev structure.
2230 * The OS initialization, configuring of the adapter private structure,
2231 * and a hardware reset occur.
2232 **/
2233 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2234 {
2235 struct net_device *netdev;
2236 struct igb_adapter *adapter;
2237 struct e1000_hw *hw;
2238 u16 eeprom_data = 0;
2239 s32 ret_val;
2240 static int global_quad_port_a; /* global quad port a indication */
2241 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2242 int err, pci_using_dac;
2243 u8 part_str[E1000_PBANUM_LENGTH];
2244
2245 /* Catch broken hardware that put the wrong VF device ID in
2246 * the PCIe SR-IOV capability.
2247 */
2248 if (pdev->is_virtfn) {
2249 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2250 pci_name(pdev), pdev->vendor, pdev->device);
2251 return -EINVAL;
2252 }
2253
2254 err = pci_enable_device_mem(pdev);
2255 if (err)
2256 return err;
2257
2258 pci_using_dac = 0;
2259 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2260 if (!err) {
2261 pci_using_dac = 1;
2262 } else {
2263 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2264 if (err) {
2265 dev_err(&pdev->dev,
2266 "No usable DMA configuration, aborting\n");
2267 goto err_dma;
2268 }
2269 }
2270
2271 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2272 IORESOURCE_MEM),
2273 igb_driver_name);
2274 if (err)
2275 goto err_pci_reg;
2276
2277 pci_enable_pcie_error_reporting(pdev);
2278
2279 pci_set_master(pdev);
2280 pci_save_state(pdev);
2281
2282 err = -ENOMEM;
2283 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2284 IGB_MAX_TX_QUEUES);
2285 if (!netdev)
2286 goto err_alloc_etherdev;
2287
2288 SET_NETDEV_DEV(netdev, &pdev->dev);
2289
2290 pci_set_drvdata(pdev, netdev);
2291 adapter = netdev_priv(netdev);
2292 adapter->netdev = netdev;
2293 adapter->pdev = pdev;
2294 hw = &adapter->hw;
2295 hw->back = adapter;
2296 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2297
2298 err = -EIO;
2299 hw->hw_addr = pci_iomap(pdev, 0, 0);
2300 if (!hw->hw_addr)
2301 goto err_ioremap;
2302
2303 netdev->netdev_ops = &igb_netdev_ops;
2304 igb_set_ethtool_ops(netdev);
2305 netdev->watchdog_timeo = 5 * HZ;
2306
2307 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2308
2309 netdev->mem_start = pci_resource_start(pdev, 0);
2310 netdev->mem_end = pci_resource_end(pdev, 0);
2311
2312 /* PCI config space info */
2313 hw->vendor_id = pdev->vendor;
2314 hw->device_id = pdev->device;
2315 hw->revision_id = pdev->revision;
2316 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2317 hw->subsystem_device_id = pdev->subsystem_device;
2318
2319 /* Copy the default MAC, PHY and NVM function pointers */
2320 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2321 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2322 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2323 /* Initialize skew-specific constants */
2324 err = ei->get_invariants(hw);
2325 if (err)
2326 goto err_sw_init;
2327
2328 /* setup the private structure */
2329 err = igb_sw_init(adapter);
2330 if (err)
2331 goto err_sw_init;
2332
2333 igb_get_bus_info_pcie(hw);
2334
2335 hw->phy.autoneg_wait_to_complete = false;
2336
2337 /* Copper options */
2338 if (hw->phy.media_type == e1000_media_type_copper) {
2339 hw->phy.mdix = AUTO_ALL_MODES;
2340 hw->phy.disable_polarity_correction = false;
2341 hw->phy.ms_type = e1000_ms_hw_default;
2342 }
2343
2344 if (igb_check_reset_block(hw))
2345 dev_info(&pdev->dev,
2346 "PHY reset is blocked due to SOL/IDER session.\n");
2347
2348 /* features is initialized to 0 in allocation, it might have bits
2349 * set by igb_sw_init so we should use an or instead of an
2350 * assignment.
2351 */
2352 netdev->features |= NETIF_F_SG |
2353 NETIF_F_IP_CSUM |
2354 NETIF_F_IPV6_CSUM |
2355 NETIF_F_TSO |
2356 NETIF_F_TSO6 |
2357 NETIF_F_RXHASH |
2358 NETIF_F_RXCSUM |
2359 NETIF_F_HW_VLAN_CTAG_RX |
2360 NETIF_F_HW_VLAN_CTAG_TX;
2361
2362 /* copy netdev features into list of user selectable features */
2363 netdev->hw_features |= netdev->features;
2364 netdev->hw_features |= NETIF_F_RXALL;
2365
2366 /* set this bit last since it cannot be part of hw_features */
2367 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2368
2369 netdev->vlan_features |= NETIF_F_TSO |
2370 NETIF_F_TSO6 |
2371 NETIF_F_IP_CSUM |
2372 NETIF_F_IPV6_CSUM |
2373 NETIF_F_SG;
2374
2375 netdev->priv_flags |= IFF_SUPP_NOFCS;
2376
2377 if (pci_using_dac) {
2378 netdev->features |= NETIF_F_HIGHDMA;
2379 netdev->vlan_features |= NETIF_F_HIGHDMA;
2380 }
2381
2382 if (hw->mac.type >= e1000_82576) {
2383 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2384 netdev->features |= NETIF_F_SCTP_CSUM;
2385 }
2386
2387 netdev->priv_flags |= IFF_UNICAST_FLT;
2388
2389 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2390
2391 /* before reading the NVM, reset the controller to put the device in a
2392 * known good starting state
2393 */
2394 hw->mac.ops.reset_hw(hw);
2395
2396 /* make sure the NVM is good , i211/i210 parts can have special NVM
2397 * that doesn't contain a checksum
2398 */
2399 switch (hw->mac.type) {
2400 case e1000_i210:
2401 case e1000_i211:
2402 if (igb_get_flash_presence_i210(hw)) {
2403 if (hw->nvm.ops.validate(hw) < 0) {
2404 dev_err(&pdev->dev,
2405 "The NVM Checksum Is Not Valid\n");
2406 err = -EIO;
2407 goto err_eeprom;
2408 }
2409 }
2410 break;
2411 default:
2412 if (hw->nvm.ops.validate(hw) < 0) {
2413 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2414 err = -EIO;
2415 goto err_eeprom;
2416 }
2417 break;
2418 }
2419
2420 /* copy the MAC address out of the NVM */
2421 if (hw->mac.ops.read_mac_addr(hw))
2422 dev_err(&pdev->dev, "NVM Read Error\n");
2423
2424 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2425
2426 if (!is_valid_ether_addr(netdev->dev_addr)) {
2427 dev_err(&pdev->dev, "Invalid MAC Address\n");
2428 err = -EIO;
2429 goto err_eeprom;
2430 }
2431
2432 /* get firmware version for ethtool -i */
2433 igb_set_fw_version(adapter);
2434
2435 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2436 (unsigned long) adapter);
2437 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2438 (unsigned long) adapter);
2439
2440 INIT_WORK(&adapter->reset_task, igb_reset_task);
2441 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2442
2443 /* Initialize link properties that are user-changeable */
2444 adapter->fc_autoneg = true;
2445 hw->mac.autoneg = true;
2446 hw->phy.autoneg_advertised = 0x2f;
2447
2448 hw->fc.requested_mode = e1000_fc_default;
2449 hw->fc.current_mode = e1000_fc_default;
2450
2451 igb_validate_mdi_setting(hw);
2452
2453 /* By default, support wake on port A */
2454 if (hw->bus.func == 0)
2455 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2456
2457 /* Check the NVM for wake support on non-port A ports */
2458 if (hw->mac.type >= e1000_82580)
2459 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2460 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2461 &eeprom_data);
2462 else if (hw->bus.func == 1)
2463 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2464
2465 if (eeprom_data & IGB_EEPROM_APME)
2466 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2467
2468 /* now that we have the eeprom settings, apply the special cases where
2469 * the eeprom may be wrong or the board simply won't support wake on
2470 * lan on a particular port
2471 */
2472 switch (pdev->device) {
2473 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2474 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2475 break;
2476 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2477 case E1000_DEV_ID_82576_FIBER:
2478 case E1000_DEV_ID_82576_SERDES:
2479 /* Wake events only supported on port A for dual fiber
2480 * regardless of eeprom setting
2481 */
2482 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2483 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2484 break;
2485 case E1000_DEV_ID_82576_QUAD_COPPER:
2486 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2487 /* if quad port adapter, disable WoL on all but port A */
2488 if (global_quad_port_a != 0)
2489 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2490 else
2491 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2492 /* Reset for multiple quad port adapters */
2493 if (++global_quad_port_a == 4)
2494 global_quad_port_a = 0;
2495 break;
2496 default:
2497 /* If the device can't wake, don't set software support */
2498 if (!device_can_wakeup(&adapter->pdev->dev))
2499 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2500 }
2501
2502 /* initialize the wol settings based on the eeprom settings */
2503 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2504 adapter->wol |= E1000_WUFC_MAG;
2505
2506 /* Some vendors want WoL disabled by default, but still supported */
2507 if ((hw->mac.type == e1000_i350) &&
2508 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2509 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2510 adapter->wol = 0;
2511 }
2512
2513 device_set_wakeup_enable(&adapter->pdev->dev,
2514 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2515
2516 /* reset the hardware with the new settings */
2517 igb_reset(adapter);
2518
2519 /* Init the I2C interface */
2520 err = igb_init_i2c(adapter);
2521 if (err) {
2522 dev_err(&pdev->dev, "failed to init i2c interface\n");
2523 goto err_eeprom;
2524 }
2525
2526 /* let the f/w know that the h/w is now under the control of the
2527 * driver.
2528 */
2529 igb_get_hw_control(adapter);
2530
2531 strcpy(netdev->name, "eth%d");
2532 err = register_netdev(netdev);
2533 if (err)
2534 goto err_register;
2535
2536 /* carrier off reporting is important to ethtool even BEFORE open */
2537 netif_carrier_off(netdev);
2538
2539 #ifdef CONFIG_IGB_DCA
2540 if (dca_add_requester(&pdev->dev) == 0) {
2541 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2542 dev_info(&pdev->dev, "DCA enabled\n");
2543 igb_setup_dca(adapter);
2544 }
2545
2546 #endif
2547 #ifdef CONFIG_IGB_HWMON
2548 /* Initialize the thermal sensor on i350 devices. */
2549 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2550 u16 ets_word;
2551
2552 /* Read the NVM to determine if this i350 device supports an
2553 * external thermal sensor.
2554 */
2555 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2556 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2557 adapter->ets = true;
2558 else
2559 adapter->ets = false;
2560 if (igb_sysfs_init(adapter))
2561 dev_err(&pdev->dev,
2562 "failed to allocate sysfs resources\n");
2563 } else {
2564 adapter->ets = false;
2565 }
2566 #endif
2567 /* Check if Media Autosense is enabled */
2568 adapter->ei = *ei;
2569 if (hw->dev_spec._82575.mas_capable)
2570 igb_init_mas(adapter);
2571
2572 /* do hw tstamp init after resetting */
2573 igb_ptp_init(adapter);
2574
2575 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2576 /* print bus type/speed/width info, not applicable to i354 */
2577 if (hw->mac.type != e1000_i354) {
2578 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2579 netdev->name,
2580 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2581 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2582 "unknown"),
2583 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2584 "Width x4" :
2585 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2586 "Width x2" :
2587 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2588 "Width x1" : "unknown"), netdev->dev_addr);
2589 }
2590
2591 if ((hw->mac.type >= e1000_i210 ||
2592 igb_get_flash_presence_i210(hw))) {
2593 ret_val = igb_read_part_string(hw, part_str,
2594 E1000_PBANUM_LENGTH);
2595 } else {
2596 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2597 }
2598
2599 if (ret_val)
2600 strcpy(part_str, "Unknown");
2601 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2602 dev_info(&pdev->dev,
2603 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2604 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2605 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2606 adapter->num_rx_queues, adapter->num_tx_queues);
2607 if (hw->phy.media_type == e1000_media_type_copper) {
2608 switch (hw->mac.type) {
2609 case e1000_i350:
2610 case e1000_i210:
2611 case e1000_i211:
2612 /* Enable EEE for internal copper PHY devices */
2613 err = igb_set_eee_i350(hw);
2614 if ((!err) &&
2615 (!hw->dev_spec._82575.eee_disable)) {
2616 adapter->eee_advert =
2617 MDIO_EEE_100TX | MDIO_EEE_1000T;
2618 adapter->flags |= IGB_FLAG_EEE;
2619 }
2620 break;
2621 case e1000_i354:
2622 if ((rd32(E1000_CTRL_EXT) &
2623 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2624 err = igb_set_eee_i354(hw);
2625 if ((!err) &&
2626 (!hw->dev_spec._82575.eee_disable)) {
2627 adapter->eee_advert =
2628 MDIO_EEE_100TX | MDIO_EEE_1000T;
2629 adapter->flags |= IGB_FLAG_EEE;
2630 }
2631 }
2632 break;
2633 default:
2634 break;
2635 }
2636 }
2637 pm_runtime_put_noidle(&pdev->dev);
2638 return 0;
2639
2640 err_register:
2641 igb_release_hw_control(adapter);
2642 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2643 err_eeprom:
2644 if (!igb_check_reset_block(hw))
2645 igb_reset_phy(hw);
2646
2647 if (hw->flash_address)
2648 iounmap(hw->flash_address);
2649 err_sw_init:
2650 igb_clear_interrupt_scheme(adapter);
2651 pci_iounmap(pdev, hw->hw_addr);
2652 err_ioremap:
2653 free_netdev(netdev);
2654 err_alloc_etherdev:
2655 pci_release_selected_regions(pdev,
2656 pci_select_bars(pdev, IORESOURCE_MEM));
2657 err_pci_reg:
2658 err_dma:
2659 pci_disable_device(pdev);
2660 return err;
2661 }
2662
2663 #ifdef CONFIG_PCI_IOV
2664 static int igb_disable_sriov(struct pci_dev *pdev)
2665 {
2666 struct net_device *netdev = pci_get_drvdata(pdev);
2667 struct igb_adapter *adapter = netdev_priv(netdev);
2668 struct e1000_hw *hw = &adapter->hw;
2669
2670 /* reclaim resources allocated to VFs */
2671 if (adapter->vf_data) {
2672 /* disable iov and allow time for transactions to clear */
2673 if (pci_vfs_assigned(pdev)) {
2674 dev_warn(&pdev->dev,
2675 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2676 return -EPERM;
2677 } else {
2678 pci_disable_sriov(pdev);
2679 msleep(500);
2680 }
2681
2682 kfree(adapter->vf_data);
2683 adapter->vf_data = NULL;
2684 adapter->vfs_allocated_count = 0;
2685 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2686 wrfl();
2687 msleep(100);
2688 dev_info(&pdev->dev, "IOV Disabled\n");
2689
2690 /* Re-enable DMA Coalescing flag since IOV is turned off */
2691 adapter->flags |= IGB_FLAG_DMAC;
2692 }
2693
2694 return 0;
2695 }
2696
2697 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2698 {
2699 struct net_device *netdev = pci_get_drvdata(pdev);
2700 struct igb_adapter *adapter = netdev_priv(netdev);
2701 int old_vfs = pci_num_vf(pdev);
2702 int err = 0;
2703 int i;
2704
2705 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2706 err = -EPERM;
2707 goto out;
2708 }
2709 if (!num_vfs)
2710 goto out;
2711
2712 if (old_vfs) {
2713 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2714 old_vfs, max_vfs);
2715 adapter->vfs_allocated_count = old_vfs;
2716 } else
2717 adapter->vfs_allocated_count = num_vfs;
2718
2719 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2720 sizeof(struct vf_data_storage), GFP_KERNEL);
2721
2722 /* if allocation failed then we do not support SR-IOV */
2723 if (!adapter->vf_data) {
2724 adapter->vfs_allocated_count = 0;
2725 dev_err(&pdev->dev,
2726 "Unable to allocate memory for VF Data Storage\n");
2727 err = -ENOMEM;
2728 goto out;
2729 }
2730
2731 /* only call pci_enable_sriov() if no VFs are allocated already */
2732 if (!old_vfs) {
2733 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2734 if (err)
2735 goto err_out;
2736 }
2737 dev_info(&pdev->dev, "%d VFs allocated\n",
2738 adapter->vfs_allocated_count);
2739 for (i = 0; i < adapter->vfs_allocated_count; i++)
2740 igb_vf_configure(adapter, i);
2741
2742 /* DMA Coalescing is not supported in IOV mode. */
2743 adapter->flags &= ~IGB_FLAG_DMAC;
2744 goto out;
2745
2746 err_out:
2747 kfree(adapter->vf_data);
2748 adapter->vf_data = NULL;
2749 adapter->vfs_allocated_count = 0;
2750 out:
2751 return err;
2752 }
2753
2754 #endif
2755 /**
2756 * igb_remove_i2c - Cleanup I2C interface
2757 * @adapter: pointer to adapter structure
2758 **/
2759 static void igb_remove_i2c(struct igb_adapter *adapter)
2760 {
2761 /* free the adapter bus structure */
2762 i2c_del_adapter(&adapter->i2c_adap);
2763 }
2764
2765 /**
2766 * igb_remove - Device Removal Routine
2767 * @pdev: PCI device information struct
2768 *
2769 * igb_remove is called by the PCI subsystem to alert the driver
2770 * that it should release a PCI device. The could be caused by a
2771 * Hot-Plug event, or because the driver is going to be removed from
2772 * memory.
2773 **/
2774 static void igb_remove(struct pci_dev *pdev)
2775 {
2776 struct net_device *netdev = pci_get_drvdata(pdev);
2777 struct igb_adapter *adapter = netdev_priv(netdev);
2778 struct e1000_hw *hw = &adapter->hw;
2779
2780 pm_runtime_get_noresume(&pdev->dev);
2781 #ifdef CONFIG_IGB_HWMON
2782 igb_sysfs_exit(adapter);
2783 #endif
2784 igb_remove_i2c(adapter);
2785 igb_ptp_stop(adapter);
2786 /* The watchdog timer may be rescheduled, so explicitly
2787 * disable watchdog from being rescheduled.
2788 */
2789 set_bit(__IGB_DOWN, &adapter->state);
2790 del_timer_sync(&adapter->watchdog_timer);
2791 del_timer_sync(&adapter->phy_info_timer);
2792
2793 cancel_work_sync(&adapter->reset_task);
2794 cancel_work_sync(&adapter->watchdog_task);
2795
2796 #ifdef CONFIG_IGB_DCA
2797 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2798 dev_info(&pdev->dev, "DCA disabled\n");
2799 dca_remove_requester(&pdev->dev);
2800 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2801 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2802 }
2803 #endif
2804
2805 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2806 * would have already happened in close and is redundant.
2807 */
2808 igb_release_hw_control(adapter);
2809
2810 unregister_netdev(netdev);
2811
2812 igb_clear_interrupt_scheme(adapter);
2813
2814 #ifdef CONFIG_PCI_IOV
2815 igb_disable_sriov(pdev);
2816 #endif
2817
2818 pci_iounmap(pdev, hw->hw_addr);
2819 if (hw->flash_address)
2820 iounmap(hw->flash_address);
2821 pci_release_selected_regions(pdev,
2822 pci_select_bars(pdev, IORESOURCE_MEM));
2823
2824 kfree(adapter->shadow_vfta);
2825 free_netdev(netdev);
2826
2827 pci_disable_pcie_error_reporting(pdev);
2828
2829 pci_disable_device(pdev);
2830 }
2831
2832 /**
2833 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2834 * @adapter: board private structure to initialize
2835 *
2836 * This function initializes the vf specific data storage and then attempts to
2837 * allocate the VFs. The reason for ordering it this way is because it is much
2838 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2839 * the memory for the VFs.
2840 **/
2841 static void igb_probe_vfs(struct igb_adapter *adapter)
2842 {
2843 #ifdef CONFIG_PCI_IOV
2844 struct pci_dev *pdev = adapter->pdev;
2845 struct e1000_hw *hw = &adapter->hw;
2846
2847 /* Virtualization features not supported on i210 family. */
2848 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2849 return;
2850
2851 pci_sriov_set_totalvfs(pdev, 7);
2852 igb_pci_enable_sriov(pdev, max_vfs);
2853
2854 #endif /* CONFIG_PCI_IOV */
2855 }
2856
2857 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2858 {
2859 struct e1000_hw *hw = &adapter->hw;
2860 u32 max_rss_queues;
2861
2862 /* Determine the maximum number of RSS queues supported. */
2863 switch (hw->mac.type) {
2864 case e1000_i211:
2865 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2866 break;
2867 case e1000_82575:
2868 case e1000_i210:
2869 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2870 break;
2871 case e1000_i350:
2872 /* I350 cannot do RSS and SR-IOV at the same time */
2873 if (!!adapter->vfs_allocated_count) {
2874 max_rss_queues = 1;
2875 break;
2876 }
2877 /* fall through */
2878 case e1000_82576:
2879 if (!!adapter->vfs_allocated_count) {
2880 max_rss_queues = 2;
2881 break;
2882 }
2883 /* fall through */
2884 case e1000_82580:
2885 case e1000_i354:
2886 default:
2887 max_rss_queues = IGB_MAX_RX_QUEUES;
2888 break;
2889 }
2890
2891 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2892
2893 /* Determine if we need to pair queues. */
2894 switch (hw->mac.type) {
2895 case e1000_82575:
2896 case e1000_i211:
2897 /* Device supports enough interrupts without queue pairing. */
2898 break;
2899 case e1000_82576:
2900 /* If VFs are going to be allocated with RSS queues then we
2901 * should pair the queues in order to conserve interrupts due
2902 * to limited supply.
2903 */
2904 if ((adapter->rss_queues > 1) &&
2905 (adapter->vfs_allocated_count > 6))
2906 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2907 /* fall through */
2908 case e1000_82580:
2909 case e1000_i350:
2910 case e1000_i354:
2911 case e1000_i210:
2912 default:
2913 /* If rss_queues > half of max_rss_queues, pair the queues in
2914 * order to conserve interrupts due to limited supply.
2915 */
2916 if (adapter->rss_queues > (max_rss_queues / 2))
2917 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2918 break;
2919 }
2920 }
2921
2922 /**
2923 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2924 * @adapter: board private structure to initialize
2925 *
2926 * igb_sw_init initializes the Adapter private data structure.
2927 * Fields are initialized based on PCI device information and
2928 * OS network device settings (MTU size).
2929 **/
2930 static int igb_sw_init(struct igb_adapter *adapter)
2931 {
2932 struct e1000_hw *hw = &adapter->hw;
2933 struct net_device *netdev = adapter->netdev;
2934 struct pci_dev *pdev = adapter->pdev;
2935
2936 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2937
2938 /* set default ring sizes */
2939 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2940 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2941
2942 /* set default ITR values */
2943 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2944 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2945
2946 /* set default work limits */
2947 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2948
2949 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2950 VLAN_HLEN;
2951 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2952
2953 spin_lock_init(&adapter->stats64_lock);
2954 #ifdef CONFIG_PCI_IOV
2955 switch (hw->mac.type) {
2956 case e1000_82576:
2957 case e1000_i350:
2958 if (max_vfs > 7) {
2959 dev_warn(&pdev->dev,
2960 "Maximum of 7 VFs per PF, using max\n");
2961 max_vfs = adapter->vfs_allocated_count = 7;
2962 } else
2963 adapter->vfs_allocated_count = max_vfs;
2964 if (adapter->vfs_allocated_count)
2965 dev_warn(&pdev->dev,
2966 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2967 break;
2968 default:
2969 break;
2970 }
2971 #endif /* CONFIG_PCI_IOV */
2972
2973 igb_init_queue_configuration(adapter);
2974
2975 /* Setup and initialize a copy of the hw vlan table array */
2976 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2977 GFP_ATOMIC);
2978
2979 /* This call may decrease the number of queues */
2980 if (igb_init_interrupt_scheme(adapter, true)) {
2981 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2982 return -ENOMEM;
2983 }
2984
2985 igb_probe_vfs(adapter);
2986
2987 /* Explicitly disable IRQ since the NIC can be in any state. */
2988 igb_irq_disable(adapter);
2989
2990 if (hw->mac.type >= e1000_i350)
2991 adapter->flags &= ~IGB_FLAG_DMAC;
2992
2993 set_bit(__IGB_DOWN, &adapter->state);
2994 return 0;
2995 }
2996
2997 /**
2998 * igb_open - Called when a network interface is made active
2999 * @netdev: network interface device structure
3000 *
3001 * Returns 0 on success, negative value on failure
3002 *
3003 * The open entry point is called when a network interface is made
3004 * active by the system (IFF_UP). At this point all resources needed
3005 * for transmit and receive operations are allocated, the interrupt
3006 * handler is registered with the OS, the watchdog timer is started,
3007 * and the stack is notified that the interface is ready.
3008 **/
3009 static int __igb_open(struct net_device *netdev, bool resuming)
3010 {
3011 struct igb_adapter *adapter = netdev_priv(netdev);
3012 struct e1000_hw *hw = &adapter->hw;
3013 struct pci_dev *pdev = adapter->pdev;
3014 int err;
3015 int i;
3016
3017 /* disallow open during test */
3018 if (test_bit(__IGB_TESTING, &adapter->state)) {
3019 WARN_ON(resuming);
3020 return -EBUSY;
3021 }
3022
3023 if (!resuming)
3024 pm_runtime_get_sync(&pdev->dev);
3025
3026 netif_carrier_off(netdev);
3027
3028 /* allocate transmit descriptors */
3029 err = igb_setup_all_tx_resources(adapter);
3030 if (err)
3031 goto err_setup_tx;
3032
3033 /* allocate receive descriptors */
3034 err = igb_setup_all_rx_resources(adapter);
3035 if (err)
3036 goto err_setup_rx;
3037
3038 igb_power_up_link(adapter);
3039
3040 /* before we allocate an interrupt, we must be ready to handle it.
3041 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3042 * as soon as we call pci_request_irq, so we have to setup our
3043 * clean_rx handler before we do so.
3044 */
3045 igb_configure(adapter);
3046
3047 err = igb_request_irq(adapter);
3048 if (err)
3049 goto err_req_irq;
3050
3051 /* Notify the stack of the actual queue counts. */
3052 err = netif_set_real_num_tx_queues(adapter->netdev,
3053 adapter->num_tx_queues);
3054 if (err)
3055 goto err_set_queues;
3056
3057 err = netif_set_real_num_rx_queues(adapter->netdev,
3058 adapter->num_rx_queues);
3059 if (err)
3060 goto err_set_queues;
3061
3062 /* From here on the code is the same as igb_up() */
3063 clear_bit(__IGB_DOWN, &adapter->state);
3064
3065 for (i = 0; i < adapter->num_q_vectors; i++)
3066 napi_enable(&(adapter->q_vector[i]->napi));
3067
3068 /* Clear any pending interrupts. */
3069 rd32(E1000_ICR);
3070
3071 igb_irq_enable(adapter);
3072
3073 /* notify VFs that reset has been completed */
3074 if (adapter->vfs_allocated_count) {
3075 u32 reg_data = rd32(E1000_CTRL_EXT);
3076
3077 reg_data |= E1000_CTRL_EXT_PFRSTD;
3078 wr32(E1000_CTRL_EXT, reg_data);
3079 }
3080
3081 netif_tx_start_all_queues(netdev);
3082
3083 if (!resuming)
3084 pm_runtime_put(&pdev->dev);
3085
3086 /* start the watchdog. */
3087 hw->mac.get_link_status = 1;
3088 schedule_work(&adapter->watchdog_task);
3089
3090 return 0;
3091
3092 err_set_queues:
3093 igb_free_irq(adapter);
3094 err_req_irq:
3095 igb_release_hw_control(adapter);
3096 igb_power_down_link(adapter);
3097 igb_free_all_rx_resources(adapter);
3098 err_setup_rx:
3099 igb_free_all_tx_resources(adapter);
3100 err_setup_tx:
3101 igb_reset(adapter);
3102 if (!resuming)
3103 pm_runtime_put(&pdev->dev);
3104
3105 return err;
3106 }
3107
3108 static int igb_open(struct net_device *netdev)
3109 {
3110 return __igb_open(netdev, false);
3111 }
3112
3113 /**
3114 * igb_close - Disables a network interface
3115 * @netdev: network interface device structure
3116 *
3117 * Returns 0, this is not allowed to fail
3118 *
3119 * The close entry point is called when an interface is de-activated
3120 * by the OS. The hardware is still under the driver's control, but
3121 * needs to be disabled. A global MAC reset is issued to stop the
3122 * hardware, and all transmit and receive resources are freed.
3123 **/
3124 static int __igb_close(struct net_device *netdev, bool suspending)
3125 {
3126 struct igb_adapter *adapter = netdev_priv(netdev);
3127 struct pci_dev *pdev = adapter->pdev;
3128
3129 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3130
3131 if (!suspending)
3132 pm_runtime_get_sync(&pdev->dev);
3133
3134 igb_down(adapter);
3135 igb_free_irq(adapter);
3136
3137 igb_free_all_tx_resources(adapter);
3138 igb_free_all_rx_resources(adapter);
3139
3140 if (!suspending)
3141 pm_runtime_put_sync(&pdev->dev);
3142 return 0;
3143 }
3144
3145 static int igb_close(struct net_device *netdev)
3146 {
3147 return __igb_close(netdev, false);
3148 }
3149
3150 /**
3151 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3152 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3153 *
3154 * Return 0 on success, negative on failure
3155 **/
3156 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3157 {
3158 struct device *dev = tx_ring->dev;
3159 int size;
3160
3161 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3162
3163 tx_ring->tx_buffer_info = vzalloc(size);
3164 if (!tx_ring->tx_buffer_info)
3165 goto err;
3166
3167 /* round up to nearest 4K */
3168 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3169 tx_ring->size = ALIGN(tx_ring->size, 4096);
3170
3171 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3172 &tx_ring->dma, GFP_KERNEL);
3173 if (!tx_ring->desc)
3174 goto err;
3175
3176 tx_ring->next_to_use = 0;
3177 tx_ring->next_to_clean = 0;
3178
3179 return 0;
3180
3181 err:
3182 vfree(tx_ring->tx_buffer_info);
3183 tx_ring->tx_buffer_info = NULL;
3184 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3185 return -ENOMEM;
3186 }
3187
3188 /**
3189 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3190 * (Descriptors) for all queues
3191 * @adapter: board private structure
3192 *
3193 * Return 0 on success, negative on failure
3194 **/
3195 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3196 {
3197 struct pci_dev *pdev = adapter->pdev;
3198 int i, err = 0;
3199
3200 for (i = 0; i < adapter->num_tx_queues; i++) {
3201 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3202 if (err) {
3203 dev_err(&pdev->dev,
3204 "Allocation for Tx Queue %u failed\n", i);
3205 for (i--; i >= 0; i--)
3206 igb_free_tx_resources(adapter->tx_ring[i]);
3207 break;
3208 }
3209 }
3210
3211 return err;
3212 }
3213
3214 /**
3215 * igb_setup_tctl - configure the transmit control registers
3216 * @adapter: Board private structure
3217 **/
3218 void igb_setup_tctl(struct igb_adapter *adapter)
3219 {
3220 struct e1000_hw *hw = &adapter->hw;
3221 u32 tctl;
3222
3223 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3224 wr32(E1000_TXDCTL(0), 0);
3225
3226 /* Program the Transmit Control Register */
3227 tctl = rd32(E1000_TCTL);
3228 tctl &= ~E1000_TCTL_CT;
3229 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3230 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3231
3232 igb_config_collision_dist(hw);
3233
3234 /* Enable transmits */
3235 tctl |= E1000_TCTL_EN;
3236
3237 wr32(E1000_TCTL, tctl);
3238 }
3239
3240 /**
3241 * igb_configure_tx_ring - Configure transmit ring after Reset
3242 * @adapter: board private structure
3243 * @ring: tx ring to configure
3244 *
3245 * Configure a transmit ring after a reset.
3246 **/
3247 void igb_configure_tx_ring(struct igb_adapter *adapter,
3248 struct igb_ring *ring)
3249 {
3250 struct e1000_hw *hw = &adapter->hw;
3251 u32 txdctl = 0;
3252 u64 tdba = ring->dma;
3253 int reg_idx = ring->reg_idx;
3254
3255 /* disable the queue */
3256 wr32(E1000_TXDCTL(reg_idx), 0);
3257 wrfl();
3258 mdelay(10);
3259
3260 wr32(E1000_TDLEN(reg_idx),
3261 ring->count * sizeof(union e1000_adv_tx_desc));
3262 wr32(E1000_TDBAL(reg_idx),
3263 tdba & 0x00000000ffffffffULL);
3264 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3265
3266 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3267 wr32(E1000_TDH(reg_idx), 0);
3268 writel(0, ring->tail);
3269
3270 txdctl |= IGB_TX_PTHRESH;
3271 txdctl |= IGB_TX_HTHRESH << 8;
3272 txdctl |= IGB_TX_WTHRESH << 16;
3273
3274 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3275 wr32(E1000_TXDCTL(reg_idx), txdctl);
3276 }
3277
3278 /**
3279 * igb_configure_tx - Configure transmit Unit after Reset
3280 * @adapter: board private structure
3281 *
3282 * Configure the Tx unit of the MAC after a reset.
3283 **/
3284 static void igb_configure_tx(struct igb_adapter *adapter)
3285 {
3286 int i;
3287
3288 for (i = 0; i < adapter->num_tx_queues; i++)
3289 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3290 }
3291
3292 /**
3293 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3294 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3295 *
3296 * Returns 0 on success, negative on failure
3297 **/
3298 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3299 {
3300 struct device *dev = rx_ring->dev;
3301 int size;
3302
3303 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3304
3305 rx_ring->rx_buffer_info = vzalloc(size);
3306 if (!rx_ring->rx_buffer_info)
3307 goto err;
3308
3309 /* Round up to nearest 4K */
3310 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3311 rx_ring->size = ALIGN(rx_ring->size, 4096);
3312
3313 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3314 &rx_ring->dma, GFP_KERNEL);
3315 if (!rx_ring->desc)
3316 goto err;
3317
3318 rx_ring->next_to_alloc = 0;
3319 rx_ring->next_to_clean = 0;
3320 rx_ring->next_to_use = 0;
3321
3322 return 0;
3323
3324 err:
3325 vfree(rx_ring->rx_buffer_info);
3326 rx_ring->rx_buffer_info = NULL;
3327 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3328 return -ENOMEM;
3329 }
3330
3331 /**
3332 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3333 * (Descriptors) for all queues
3334 * @adapter: board private structure
3335 *
3336 * Return 0 on success, negative on failure
3337 **/
3338 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3339 {
3340 struct pci_dev *pdev = adapter->pdev;
3341 int i, err = 0;
3342
3343 for (i = 0; i < adapter->num_rx_queues; i++) {
3344 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3345 if (err) {
3346 dev_err(&pdev->dev,
3347 "Allocation for Rx Queue %u failed\n", i);
3348 for (i--; i >= 0; i--)
3349 igb_free_rx_resources(adapter->rx_ring[i]);
3350 break;
3351 }
3352 }
3353
3354 return err;
3355 }
3356
3357 /**
3358 * igb_setup_mrqc - configure the multiple receive queue control registers
3359 * @adapter: Board private structure
3360 **/
3361 static void igb_setup_mrqc(struct igb_adapter *adapter)
3362 {
3363 struct e1000_hw *hw = &adapter->hw;
3364 u32 mrqc, rxcsum;
3365 u32 j, num_rx_queues;
3366 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3367 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3368 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3369 0xFA01ACBE };
3370
3371 /* Fill out hash function seeds */
3372 for (j = 0; j < 10; j++)
3373 wr32(E1000_RSSRK(j), rsskey[j]);
3374
3375 num_rx_queues = adapter->rss_queues;
3376
3377 switch (hw->mac.type) {
3378 case e1000_82576:
3379 /* 82576 supports 2 RSS queues for SR-IOV */
3380 if (adapter->vfs_allocated_count)
3381 num_rx_queues = 2;
3382 break;
3383 default:
3384 break;
3385 }
3386
3387 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3388 for (j = 0; j < IGB_RETA_SIZE; j++)
3389 adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3390 adapter->rss_indir_tbl_init = num_rx_queues;
3391 }
3392 igb_write_rss_indir_tbl(adapter);
3393
3394 /* Disable raw packet checksumming so that RSS hash is placed in
3395 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3396 * offloads as they are enabled by default
3397 */
3398 rxcsum = rd32(E1000_RXCSUM);
3399 rxcsum |= E1000_RXCSUM_PCSD;
3400
3401 if (adapter->hw.mac.type >= e1000_82576)
3402 /* Enable Receive Checksum Offload for SCTP */
3403 rxcsum |= E1000_RXCSUM_CRCOFL;
3404
3405 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3406 wr32(E1000_RXCSUM, rxcsum);
3407
3408 /* Generate RSS hash based on packet types, TCP/UDP
3409 * port numbers and/or IPv4/v6 src and dst addresses
3410 */
3411 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3412 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3413 E1000_MRQC_RSS_FIELD_IPV6 |
3414 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3415 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3416
3417 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3418 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3419 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3420 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3421
3422 /* If VMDq is enabled then we set the appropriate mode for that, else
3423 * we default to RSS so that an RSS hash is calculated per packet even
3424 * if we are only using one queue
3425 */
3426 if (adapter->vfs_allocated_count) {
3427 if (hw->mac.type > e1000_82575) {
3428 /* Set the default pool for the PF's first queue */
3429 u32 vtctl = rd32(E1000_VT_CTL);
3430
3431 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3432 E1000_VT_CTL_DISABLE_DEF_POOL);
3433 vtctl |= adapter->vfs_allocated_count <<
3434 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3435 wr32(E1000_VT_CTL, vtctl);
3436 }
3437 if (adapter->rss_queues > 1)
3438 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3439 else
3440 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3441 } else {
3442 if (hw->mac.type != e1000_i211)
3443 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3444 }
3445 igb_vmm_control(adapter);
3446
3447 wr32(E1000_MRQC, mrqc);
3448 }
3449
3450 /**
3451 * igb_setup_rctl - configure the receive control registers
3452 * @adapter: Board private structure
3453 **/
3454 void igb_setup_rctl(struct igb_adapter *adapter)
3455 {
3456 struct e1000_hw *hw = &adapter->hw;
3457 u32 rctl;
3458
3459 rctl = rd32(E1000_RCTL);
3460
3461 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3462 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3463
3464 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3465 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3466
3467 /* enable stripping of CRC. It's unlikely this will break BMC
3468 * redirection as it did with e1000. Newer features require
3469 * that the HW strips the CRC.
3470 */
3471 rctl |= E1000_RCTL_SECRC;
3472
3473 /* disable store bad packets and clear size bits. */
3474 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3475
3476 /* enable LPE to prevent packets larger than max_frame_size */
3477 rctl |= E1000_RCTL_LPE;
3478
3479 /* disable queue 0 to prevent tail write w/o re-config */
3480 wr32(E1000_RXDCTL(0), 0);
3481
3482 /* Attention!!! For SR-IOV PF driver operations you must enable
3483 * queue drop for all VF and PF queues to prevent head of line blocking
3484 * if an un-trusted VF does not provide descriptors to hardware.
3485 */
3486 if (adapter->vfs_allocated_count) {
3487 /* set all queue drop enable bits */
3488 wr32(E1000_QDE, ALL_QUEUES);
3489 }
3490
3491 /* This is useful for sniffing bad packets. */
3492 if (adapter->netdev->features & NETIF_F_RXALL) {
3493 /* UPE and MPE will be handled by normal PROMISC logic
3494 * in e1000e_set_rx_mode
3495 */
3496 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3497 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3498 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3499
3500 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3501 E1000_RCTL_DPF | /* Allow filtered pause */
3502 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3503 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3504 * and that breaks VLANs.
3505 */
3506 }
3507
3508 wr32(E1000_RCTL, rctl);
3509 }
3510
3511 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3512 int vfn)
3513 {
3514 struct e1000_hw *hw = &adapter->hw;
3515 u32 vmolr;
3516
3517 /* if it isn't the PF check to see if VFs are enabled and
3518 * increase the size to support vlan tags
3519 */
3520 if (vfn < adapter->vfs_allocated_count &&
3521 adapter->vf_data[vfn].vlans_enabled)
3522 size += VLAN_TAG_SIZE;
3523
3524 vmolr = rd32(E1000_VMOLR(vfn));
3525 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3526 vmolr |= size | E1000_VMOLR_LPE;
3527 wr32(E1000_VMOLR(vfn), vmolr);
3528
3529 return 0;
3530 }
3531
3532 /**
3533 * igb_rlpml_set - set maximum receive packet size
3534 * @adapter: board private structure
3535 *
3536 * Configure maximum receivable packet size.
3537 **/
3538 static void igb_rlpml_set(struct igb_adapter *adapter)
3539 {
3540 u32 max_frame_size = adapter->max_frame_size;
3541 struct e1000_hw *hw = &adapter->hw;
3542 u16 pf_id = adapter->vfs_allocated_count;
3543
3544 if (pf_id) {
3545 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3546 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3547 * to our max jumbo frame size, in case we need to enable
3548 * jumbo frames on one of the rings later.
3549 * This will not pass over-length frames into the default
3550 * queue because it's gated by the VMOLR.RLPML.
3551 */
3552 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3553 }
3554
3555 wr32(E1000_RLPML, max_frame_size);
3556 }
3557
3558 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3559 int vfn, bool aupe)
3560 {
3561 struct e1000_hw *hw = &adapter->hw;
3562 u32 vmolr;
3563
3564 /* This register exists only on 82576 and newer so if we are older then
3565 * we should exit and do nothing
3566 */
3567 if (hw->mac.type < e1000_82576)
3568 return;
3569
3570 vmolr = rd32(E1000_VMOLR(vfn));
3571 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3572 if (hw->mac.type == e1000_i350) {
3573 u32 dvmolr;
3574
3575 dvmolr = rd32(E1000_DVMOLR(vfn));
3576 dvmolr |= E1000_DVMOLR_STRVLAN;
3577 wr32(E1000_DVMOLR(vfn), dvmolr);
3578 }
3579 if (aupe)
3580 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3581 else
3582 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3583
3584 /* clear all bits that might not be set */
3585 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3586
3587 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3588 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3589 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3590 * multicast packets
3591 */
3592 if (vfn <= adapter->vfs_allocated_count)
3593 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3594
3595 wr32(E1000_VMOLR(vfn), vmolr);
3596 }
3597
3598 /**
3599 * igb_configure_rx_ring - Configure a receive ring after Reset
3600 * @adapter: board private structure
3601 * @ring: receive ring to be configured
3602 *
3603 * Configure the Rx unit of the MAC after a reset.
3604 **/
3605 void igb_configure_rx_ring(struct igb_adapter *adapter,
3606 struct igb_ring *ring)
3607 {
3608 struct e1000_hw *hw = &adapter->hw;
3609 u64 rdba = ring->dma;
3610 int reg_idx = ring->reg_idx;
3611 u32 srrctl = 0, rxdctl = 0;
3612
3613 /* disable the queue */
3614 wr32(E1000_RXDCTL(reg_idx), 0);
3615
3616 /* Set DMA base address registers */
3617 wr32(E1000_RDBAL(reg_idx),
3618 rdba & 0x00000000ffffffffULL);
3619 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3620 wr32(E1000_RDLEN(reg_idx),
3621 ring->count * sizeof(union e1000_adv_rx_desc));
3622
3623 /* initialize head and tail */
3624 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3625 wr32(E1000_RDH(reg_idx), 0);
3626 writel(0, ring->tail);
3627
3628 /* set descriptor configuration */
3629 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3630 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3631 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3632 if (hw->mac.type >= e1000_82580)
3633 srrctl |= E1000_SRRCTL_TIMESTAMP;
3634 /* Only set Drop Enable if we are supporting multiple queues */
3635 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3636 srrctl |= E1000_SRRCTL_DROP_EN;
3637
3638 wr32(E1000_SRRCTL(reg_idx), srrctl);
3639
3640 /* set filtering for VMDQ pools */
3641 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3642
3643 rxdctl |= IGB_RX_PTHRESH;
3644 rxdctl |= IGB_RX_HTHRESH << 8;
3645 rxdctl |= IGB_RX_WTHRESH << 16;
3646
3647 /* enable receive descriptor fetching */
3648 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3649 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3650 }
3651
3652 /**
3653 * igb_configure_rx - Configure receive Unit after Reset
3654 * @adapter: board private structure
3655 *
3656 * Configure the Rx unit of the MAC after a reset.
3657 **/
3658 static void igb_configure_rx(struct igb_adapter *adapter)
3659 {
3660 int i;
3661
3662 /* set UTA to appropriate mode */
3663 igb_set_uta(adapter);
3664
3665 /* set the correct pool for the PF default MAC address in entry 0 */
3666 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3667 adapter->vfs_allocated_count);
3668
3669 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3670 * the Base and Length of the Rx Descriptor Ring
3671 */
3672 for (i = 0; i < adapter->num_rx_queues; i++)
3673 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3674 }
3675
3676 /**
3677 * igb_free_tx_resources - Free Tx Resources per Queue
3678 * @tx_ring: Tx descriptor ring for a specific queue
3679 *
3680 * Free all transmit software resources
3681 **/
3682 void igb_free_tx_resources(struct igb_ring *tx_ring)
3683 {
3684 igb_clean_tx_ring(tx_ring);
3685
3686 vfree(tx_ring->tx_buffer_info);
3687 tx_ring->tx_buffer_info = NULL;
3688
3689 /* if not set, then don't free */
3690 if (!tx_ring->desc)
3691 return;
3692
3693 dma_free_coherent(tx_ring->dev, tx_ring->size,
3694 tx_ring->desc, tx_ring->dma);
3695
3696 tx_ring->desc = NULL;
3697 }
3698
3699 /**
3700 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3701 * @adapter: board private structure
3702 *
3703 * Free all transmit software resources
3704 **/
3705 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3706 {
3707 int i;
3708
3709 for (i = 0; i < adapter->num_tx_queues; i++)
3710 igb_free_tx_resources(adapter->tx_ring[i]);
3711 }
3712
3713 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3714 struct igb_tx_buffer *tx_buffer)
3715 {
3716 if (tx_buffer->skb) {
3717 dev_kfree_skb_any(tx_buffer->skb);
3718 if (dma_unmap_len(tx_buffer, len))
3719 dma_unmap_single(ring->dev,
3720 dma_unmap_addr(tx_buffer, dma),
3721 dma_unmap_len(tx_buffer, len),
3722 DMA_TO_DEVICE);
3723 } else if (dma_unmap_len(tx_buffer, len)) {
3724 dma_unmap_page(ring->dev,
3725 dma_unmap_addr(tx_buffer, dma),
3726 dma_unmap_len(tx_buffer, len),
3727 DMA_TO_DEVICE);
3728 }
3729 tx_buffer->next_to_watch = NULL;
3730 tx_buffer->skb = NULL;
3731 dma_unmap_len_set(tx_buffer, len, 0);
3732 /* buffer_info must be completely set up in the transmit path */
3733 }
3734
3735 /**
3736 * igb_clean_tx_ring - Free Tx Buffers
3737 * @tx_ring: ring to be cleaned
3738 **/
3739 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3740 {
3741 struct igb_tx_buffer *buffer_info;
3742 unsigned long size;
3743 u16 i;
3744
3745 if (!tx_ring->tx_buffer_info)
3746 return;
3747 /* Free all the Tx ring sk_buffs */
3748
3749 for (i = 0; i < tx_ring->count; i++) {
3750 buffer_info = &tx_ring->tx_buffer_info[i];
3751 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3752 }
3753
3754 netdev_tx_reset_queue(txring_txq(tx_ring));
3755
3756 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3757 memset(tx_ring->tx_buffer_info, 0, size);
3758
3759 /* Zero out the descriptor ring */
3760 memset(tx_ring->desc, 0, tx_ring->size);
3761
3762 tx_ring->next_to_use = 0;
3763 tx_ring->next_to_clean = 0;
3764 }
3765
3766 /**
3767 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3768 * @adapter: board private structure
3769 **/
3770 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3771 {
3772 int i;
3773
3774 for (i = 0; i < adapter->num_tx_queues; i++)
3775 igb_clean_tx_ring(adapter->tx_ring[i]);
3776 }
3777
3778 /**
3779 * igb_free_rx_resources - Free Rx Resources
3780 * @rx_ring: ring to clean the resources from
3781 *
3782 * Free all receive software resources
3783 **/
3784 void igb_free_rx_resources(struct igb_ring *rx_ring)
3785 {
3786 igb_clean_rx_ring(rx_ring);
3787
3788 vfree(rx_ring->rx_buffer_info);
3789 rx_ring->rx_buffer_info = NULL;
3790
3791 /* if not set, then don't free */
3792 if (!rx_ring->desc)
3793 return;
3794
3795 dma_free_coherent(rx_ring->dev, rx_ring->size,
3796 rx_ring->desc, rx_ring->dma);
3797
3798 rx_ring->desc = NULL;
3799 }
3800
3801 /**
3802 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3803 * @adapter: board private structure
3804 *
3805 * Free all receive software resources
3806 **/
3807 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3808 {
3809 int i;
3810
3811 for (i = 0; i < adapter->num_rx_queues; i++)
3812 igb_free_rx_resources(adapter->rx_ring[i]);
3813 }
3814
3815 /**
3816 * igb_clean_rx_ring - Free Rx Buffers per Queue
3817 * @rx_ring: ring to free buffers from
3818 **/
3819 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3820 {
3821 unsigned long size;
3822 u16 i;
3823
3824 if (rx_ring->skb)
3825 dev_kfree_skb(rx_ring->skb);
3826 rx_ring->skb = NULL;
3827
3828 if (!rx_ring->rx_buffer_info)
3829 return;
3830
3831 /* Free all the Rx ring sk_buffs */
3832 for (i = 0; i < rx_ring->count; i++) {
3833 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3834
3835 if (!buffer_info->page)
3836 continue;
3837
3838 dma_unmap_page(rx_ring->dev,
3839 buffer_info->dma,
3840 PAGE_SIZE,
3841 DMA_FROM_DEVICE);
3842 __free_page(buffer_info->page);
3843
3844 buffer_info->page = NULL;
3845 }
3846
3847 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3848 memset(rx_ring->rx_buffer_info, 0, size);
3849
3850 /* Zero out the descriptor ring */
3851 memset(rx_ring->desc, 0, rx_ring->size);
3852
3853 rx_ring->next_to_alloc = 0;
3854 rx_ring->next_to_clean = 0;
3855 rx_ring->next_to_use = 0;
3856 }
3857
3858 /**
3859 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3860 * @adapter: board private structure
3861 **/
3862 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3863 {
3864 int i;
3865
3866 for (i = 0; i < adapter->num_rx_queues; i++)
3867 igb_clean_rx_ring(adapter->rx_ring[i]);
3868 }
3869
3870 /**
3871 * igb_set_mac - Change the Ethernet Address of the NIC
3872 * @netdev: network interface device structure
3873 * @p: pointer to an address structure
3874 *
3875 * Returns 0 on success, negative on failure
3876 **/
3877 static int igb_set_mac(struct net_device *netdev, void *p)
3878 {
3879 struct igb_adapter *adapter = netdev_priv(netdev);
3880 struct e1000_hw *hw = &adapter->hw;
3881 struct sockaddr *addr = p;
3882
3883 if (!is_valid_ether_addr(addr->sa_data))
3884 return -EADDRNOTAVAIL;
3885
3886 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3887 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3888
3889 /* set the correct pool for the new PF MAC address in entry 0 */
3890 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3891 adapter->vfs_allocated_count);
3892
3893 return 0;
3894 }
3895
3896 /**
3897 * igb_write_mc_addr_list - write multicast addresses to MTA
3898 * @netdev: network interface device structure
3899 *
3900 * Writes multicast address list to the MTA hash table.
3901 * Returns: -ENOMEM on failure
3902 * 0 on no addresses written
3903 * X on writing X addresses to MTA
3904 **/
3905 static int igb_write_mc_addr_list(struct net_device *netdev)
3906 {
3907 struct igb_adapter *adapter = netdev_priv(netdev);
3908 struct e1000_hw *hw = &adapter->hw;
3909 struct netdev_hw_addr *ha;
3910 u8 *mta_list;
3911 int i;
3912
3913 if (netdev_mc_empty(netdev)) {
3914 /* nothing to program, so clear mc list */
3915 igb_update_mc_addr_list(hw, NULL, 0);
3916 igb_restore_vf_multicasts(adapter);
3917 return 0;
3918 }
3919
3920 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3921 if (!mta_list)
3922 return -ENOMEM;
3923
3924 /* The shared function expects a packed array of only addresses. */
3925 i = 0;
3926 netdev_for_each_mc_addr(ha, netdev)
3927 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3928
3929 igb_update_mc_addr_list(hw, mta_list, i);
3930 kfree(mta_list);
3931
3932 return netdev_mc_count(netdev);
3933 }
3934
3935 /**
3936 * igb_write_uc_addr_list - write unicast addresses to RAR table
3937 * @netdev: network interface device structure
3938 *
3939 * Writes unicast address list to the RAR table.
3940 * Returns: -ENOMEM on failure/insufficient address space
3941 * 0 on no addresses written
3942 * X on writing X addresses to the RAR table
3943 **/
3944 static int igb_write_uc_addr_list(struct net_device *netdev)
3945 {
3946 struct igb_adapter *adapter = netdev_priv(netdev);
3947 struct e1000_hw *hw = &adapter->hw;
3948 unsigned int vfn = adapter->vfs_allocated_count;
3949 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3950 int count = 0;
3951
3952 /* return ENOMEM indicating insufficient memory for addresses */
3953 if (netdev_uc_count(netdev) > rar_entries)
3954 return -ENOMEM;
3955
3956 if (!netdev_uc_empty(netdev) && rar_entries) {
3957 struct netdev_hw_addr *ha;
3958
3959 netdev_for_each_uc_addr(ha, netdev) {
3960 if (!rar_entries)
3961 break;
3962 igb_rar_set_qsel(adapter, ha->addr,
3963 rar_entries--,
3964 vfn);
3965 count++;
3966 }
3967 }
3968 /* write the addresses in reverse order to avoid write combining */
3969 for (; rar_entries > 0 ; rar_entries--) {
3970 wr32(E1000_RAH(rar_entries), 0);
3971 wr32(E1000_RAL(rar_entries), 0);
3972 }
3973 wrfl();
3974
3975 return count;
3976 }
3977
3978 /**
3979 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3980 * @netdev: network interface device structure
3981 *
3982 * The set_rx_mode entry point is called whenever the unicast or multicast
3983 * address lists or the network interface flags are updated. This routine is
3984 * responsible for configuring the hardware for proper unicast, multicast,
3985 * promiscuous mode, and all-multi behavior.
3986 **/
3987 static void igb_set_rx_mode(struct net_device *netdev)
3988 {
3989 struct igb_adapter *adapter = netdev_priv(netdev);
3990 struct e1000_hw *hw = &adapter->hw;
3991 unsigned int vfn = adapter->vfs_allocated_count;
3992 u32 rctl, vmolr = 0;
3993 int count;
3994
3995 /* Check for Promiscuous and All Multicast modes */
3996 rctl = rd32(E1000_RCTL);
3997
3998 /* clear the effected bits */
3999 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4000
4001 if (netdev->flags & IFF_PROMISC) {
4002 /* retain VLAN HW filtering if in VT mode */
4003 if (adapter->vfs_allocated_count)
4004 rctl |= E1000_RCTL_VFE;
4005 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4006 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4007 } else {
4008 if (netdev->flags & IFF_ALLMULTI) {
4009 rctl |= E1000_RCTL_MPE;
4010 vmolr |= E1000_VMOLR_MPME;
4011 } else {
4012 /* Write addresses to the MTA, if the attempt fails
4013 * then we should just turn on promiscuous mode so
4014 * that we can at least receive multicast traffic
4015 */
4016 count = igb_write_mc_addr_list(netdev);
4017 if (count < 0) {
4018 rctl |= E1000_RCTL_MPE;
4019 vmolr |= E1000_VMOLR_MPME;
4020 } else if (count) {
4021 vmolr |= E1000_VMOLR_ROMPE;
4022 }
4023 }
4024 /* Write addresses to available RAR registers, if there is not
4025 * sufficient space to store all the addresses then enable
4026 * unicast promiscuous mode
4027 */
4028 count = igb_write_uc_addr_list(netdev);
4029 if (count < 0) {
4030 rctl |= E1000_RCTL_UPE;
4031 vmolr |= E1000_VMOLR_ROPE;
4032 }
4033 rctl |= E1000_RCTL_VFE;
4034 }
4035 wr32(E1000_RCTL, rctl);
4036
4037 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4038 * the VMOLR to enable the appropriate modes. Without this workaround
4039 * we will have issues with VLAN tag stripping not being done for frames
4040 * that are only arriving because we are the default pool
4041 */
4042 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4043 return;
4044
4045 vmolr |= rd32(E1000_VMOLR(vfn)) &
4046 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4047 wr32(E1000_VMOLR(vfn), vmolr);
4048 igb_restore_vf_multicasts(adapter);
4049 }
4050
4051 static void igb_check_wvbr(struct igb_adapter *adapter)
4052 {
4053 struct e1000_hw *hw = &adapter->hw;
4054 u32 wvbr = 0;
4055
4056 switch (hw->mac.type) {
4057 case e1000_82576:
4058 case e1000_i350:
4059 wvbr = rd32(E1000_WVBR);
4060 if (!wvbr)
4061 return;
4062 break;
4063 default:
4064 break;
4065 }
4066
4067 adapter->wvbr |= wvbr;
4068 }
4069
4070 #define IGB_STAGGERED_QUEUE_OFFSET 8
4071
4072 static void igb_spoof_check(struct igb_adapter *adapter)
4073 {
4074 int j;
4075
4076 if (!adapter->wvbr)
4077 return;
4078
4079 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4080 if (adapter->wvbr & (1 << j) ||
4081 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4082 dev_warn(&adapter->pdev->dev,
4083 "Spoof event(s) detected on VF %d\n", j);
4084 adapter->wvbr &=
4085 ~((1 << j) |
4086 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4087 }
4088 }
4089 }
4090
4091 /* Need to wait a few seconds after link up to get diagnostic information from
4092 * the phy
4093 */
4094 static void igb_update_phy_info(unsigned long data)
4095 {
4096 struct igb_adapter *adapter = (struct igb_adapter *) data;
4097 igb_get_phy_info(&adapter->hw);
4098 }
4099
4100 /**
4101 * igb_has_link - check shared code for link and determine up/down
4102 * @adapter: pointer to driver private info
4103 **/
4104 bool igb_has_link(struct igb_adapter *adapter)
4105 {
4106 struct e1000_hw *hw = &adapter->hw;
4107 bool link_active = false;
4108
4109 /* get_link_status is set on LSC (link status) interrupt or
4110 * rx sequence error interrupt. get_link_status will stay
4111 * false until the e1000_check_for_link establishes link
4112 * for copper adapters ONLY
4113 */
4114 switch (hw->phy.media_type) {
4115 case e1000_media_type_copper:
4116 if (!hw->mac.get_link_status)
4117 return true;
4118 case e1000_media_type_internal_serdes:
4119 hw->mac.ops.check_for_link(hw);
4120 link_active = !hw->mac.get_link_status;
4121 break;
4122 default:
4123 case e1000_media_type_unknown:
4124 break;
4125 }
4126
4127 if (((hw->mac.type == e1000_i210) ||
4128 (hw->mac.type == e1000_i211)) &&
4129 (hw->phy.id == I210_I_PHY_ID)) {
4130 if (!netif_carrier_ok(adapter->netdev)) {
4131 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4132 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4133 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4134 adapter->link_check_timeout = jiffies;
4135 }
4136 }
4137
4138 return link_active;
4139 }
4140
4141 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4142 {
4143 bool ret = false;
4144 u32 ctrl_ext, thstat;
4145
4146 /* check for thermal sensor event on i350 copper only */
4147 if (hw->mac.type == e1000_i350) {
4148 thstat = rd32(E1000_THSTAT);
4149 ctrl_ext = rd32(E1000_CTRL_EXT);
4150
4151 if ((hw->phy.media_type == e1000_media_type_copper) &&
4152 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4153 ret = !!(thstat & event);
4154 }
4155
4156 return ret;
4157 }
4158
4159 /**
4160 * igb_watchdog - Timer Call-back
4161 * @data: pointer to adapter cast into an unsigned long
4162 **/
4163 static void igb_watchdog(unsigned long data)
4164 {
4165 struct igb_adapter *adapter = (struct igb_adapter *)data;
4166 /* Do the rest outside of interrupt context */
4167 schedule_work(&adapter->watchdog_task);
4168 }
4169
4170 static void igb_watchdog_task(struct work_struct *work)
4171 {
4172 struct igb_adapter *adapter = container_of(work,
4173 struct igb_adapter,
4174 watchdog_task);
4175 struct e1000_hw *hw = &adapter->hw;
4176 struct e1000_phy_info *phy = &hw->phy;
4177 struct net_device *netdev = adapter->netdev;
4178 u32 link;
4179 int i;
4180 u32 connsw;
4181
4182 link = igb_has_link(adapter);
4183
4184 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4185 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4186 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4187 else
4188 link = false;
4189 }
4190
4191 /* Force link down if we have fiber to swap to */
4192 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4193 if (hw->phy.media_type == e1000_media_type_copper) {
4194 connsw = rd32(E1000_CONNSW);
4195 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4196 link = 0;
4197 }
4198 }
4199 if (link) {
4200 /* Perform a reset if the media type changed. */
4201 if (hw->dev_spec._82575.media_changed) {
4202 hw->dev_spec._82575.media_changed = false;
4203 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4204 igb_reset(adapter);
4205 }
4206 /* Cancel scheduled suspend requests. */
4207 pm_runtime_resume(netdev->dev.parent);
4208
4209 if (!netif_carrier_ok(netdev)) {
4210 u32 ctrl;
4211
4212 hw->mac.ops.get_speed_and_duplex(hw,
4213 &adapter->link_speed,
4214 &adapter->link_duplex);
4215
4216 ctrl = rd32(E1000_CTRL);
4217 /* Links status message must follow this format */
4218 netdev_info(netdev,
4219 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4220 netdev->name,
4221 adapter->link_speed,
4222 adapter->link_duplex == FULL_DUPLEX ?
4223 "Full" : "Half",
4224 (ctrl & E1000_CTRL_TFCE) &&
4225 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4226 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4227 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4228
4229 /* disable EEE if enabled */
4230 if ((adapter->flags & IGB_FLAG_EEE) &&
4231 (adapter->link_duplex == HALF_DUPLEX)) {
4232 dev_info(&adapter->pdev->dev,
4233 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4234 adapter->hw.dev_spec._82575.eee_disable = true;
4235 adapter->flags &= ~IGB_FLAG_EEE;
4236 }
4237
4238 /* check if SmartSpeed worked */
4239 igb_check_downshift(hw);
4240 if (phy->speed_downgraded)
4241 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4242
4243 /* check for thermal sensor event */
4244 if (igb_thermal_sensor_event(hw,
4245 E1000_THSTAT_LINK_THROTTLE))
4246 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4247
4248 /* adjust timeout factor according to speed/duplex */
4249 adapter->tx_timeout_factor = 1;
4250 switch (adapter->link_speed) {
4251 case SPEED_10:
4252 adapter->tx_timeout_factor = 14;
4253 break;
4254 case SPEED_100:
4255 /* maybe add some timeout factor ? */
4256 break;
4257 }
4258
4259 netif_carrier_on(netdev);
4260
4261 igb_ping_all_vfs(adapter);
4262 igb_check_vf_rate_limit(adapter);
4263
4264 /* link state has changed, schedule phy info update */
4265 if (!test_bit(__IGB_DOWN, &adapter->state))
4266 mod_timer(&adapter->phy_info_timer,
4267 round_jiffies(jiffies + 2 * HZ));
4268 }
4269 } else {
4270 if (netif_carrier_ok(netdev)) {
4271 adapter->link_speed = 0;
4272 adapter->link_duplex = 0;
4273
4274 /* check for thermal sensor event */
4275 if (igb_thermal_sensor_event(hw,
4276 E1000_THSTAT_PWR_DOWN)) {
4277 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4278 }
4279
4280 /* Links status message must follow this format */
4281 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4282 netdev->name);
4283 netif_carrier_off(netdev);
4284
4285 igb_ping_all_vfs(adapter);
4286
4287 /* link state has changed, schedule phy info update */
4288 if (!test_bit(__IGB_DOWN, &adapter->state))
4289 mod_timer(&adapter->phy_info_timer,
4290 round_jiffies(jiffies + 2 * HZ));
4291
4292 /* link is down, time to check for alternate media */
4293 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4294 igb_check_swap_media(adapter);
4295 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4296 schedule_work(&adapter->reset_task);
4297 /* return immediately */
4298 return;
4299 }
4300 }
4301 pm_schedule_suspend(netdev->dev.parent,
4302 MSEC_PER_SEC * 5);
4303
4304 /* also check for alternate media here */
4305 } else if (!netif_carrier_ok(netdev) &&
4306 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4307 igb_check_swap_media(adapter);
4308 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4309 schedule_work(&adapter->reset_task);
4310 /* return immediately */
4311 return;
4312 }
4313 }
4314 }
4315
4316 spin_lock(&adapter->stats64_lock);
4317 igb_update_stats(adapter, &adapter->stats64);
4318 spin_unlock(&adapter->stats64_lock);
4319
4320 for (i = 0; i < adapter->num_tx_queues; i++) {
4321 struct igb_ring *tx_ring = adapter->tx_ring[i];
4322 if (!netif_carrier_ok(netdev)) {
4323 /* We've lost link, so the controller stops DMA,
4324 * but we've got queued Tx work that's never going
4325 * to get done, so reset controller to flush Tx.
4326 * (Do the reset outside of interrupt context).
4327 */
4328 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4329 adapter->tx_timeout_count++;
4330 schedule_work(&adapter->reset_task);
4331 /* return immediately since reset is imminent */
4332 return;
4333 }
4334 }
4335
4336 /* Force detection of hung controller every watchdog period */
4337 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4338 }
4339
4340 /* Cause software interrupt to ensure Rx ring is cleaned */
4341 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4342 u32 eics = 0;
4343
4344 for (i = 0; i < adapter->num_q_vectors; i++)
4345 eics |= adapter->q_vector[i]->eims_value;
4346 wr32(E1000_EICS, eics);
4347 } else {
4348 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4349 }
4350
4351 igb_spoof_check(adapter);
4352 igb_ptp_rx_hang(adapter);
4353
4354 /* Reset the timer */
4355 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4356 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4357 mod_timer(&adapter->watchdog_timer,
4358 round_jiffies(jiffies + HZ));
4359 else
4360 mod_timer(&adapter->watchdog_timer,
4361 round_jiffies(jiffies + 2 * HZ));
4362 }
4363 }
4364
4365 enum latency_range {
4366 lowest_latency = 0,
4367 low_latency = 1,
4368 bulk_latency = 2,
4369 latency_invalid = 255
4370 };
4371
4372 /**
4373 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4374 * @q_vector: pointer to q_vector
4375 *
4376 * Stores a new ITR value based on strictly on packet size. This
4377 * algorithm is less sophisticated than that used in igb_update_itr,
4378 * due to the difficulty of synchronizing statistics across multiple
4379 * receive rings. The divisors and thresholds used by this function
4380 * were determined based on theoretical maximum wire speed and testing
4381 * data, in order to minimize response time while increasing bulk
4382 * throughput.
4383 * This functionality is controlled by ethtool's coalescing settings.
4384 * NOTE: This function is called only when operating in a multiqueue
4385 * receive environment.
4386 **/
4387 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4388 {
4389 int new_val = q_vector->itr_val;
4390 int avg_wire_size = 0;
4391 struct igb_adapter *adapter = q_vector->adapter;
4392 unsigned int packets;
4393
4394 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4395 * ints/sec - ITR timer value of 120 ticks.
4396 */
4397 if (adapter->link_speed != SPEED_1000) {
4398 new_val = IGB_4K_ITR;
4399 goto set_itr_val;
4400 }
4401
4402 packets = q_vector->rx.total_packets;
4403 if (packets)
4404 avg_wire_size = q_vector->rx.total_bytes / packets;
4405
4406 packets = q_vector->tx.total_packets;
4407 if (packets)
4408 avg_wire_size = max_t(u32, avg_wire_size,
4409 q_vector->tx.total_bytes / packets);
4410
4411 /* if avg_wire_size isn't set no work was done */
4412 if (!avg_wire_size)
4413 goto clear_counts;
4414
4415 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4416 avg_wire_size += 24;
4417
4418 /* Don't starve jumbo frames */
4419 avg_wire_size = min(avg_wire_size, 3000);
4420
4421 /* Give a little boost to mid-size frames */
4422 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4423 new_val = avg_wire_size / 3;
4424 else
4425 new_val = avg_wire_size / 2;
4426
4427 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4428 if (new_val < IGB_20K_ITR &&
4429 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4430 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4431 new_val = IGB_20K_ITR;
4432
4433 set_itr_val:
4434 if (new_val != q_vector->itr_val) {
4435 q_vector->itr_val = new_val;
4436 q_vector->set_itr = 1;
4437 }
4438 clear_counts:
4439 q_vector->rx.total_bytes = 0;
4440 q_vector->rx.total_packets = 0;
4441 q_vector->tx.total_bytes = 0;
4442 q_vector->tx.total_packets = 0;
4443 }
4444
4445 /**
4446 * igb_update_itr - update the dynamic ITR value based on statistics
4447 * @q_vector: pointer to q_vector
4448 * @ring_container: ring info to update the itr for
4449 *
4450 * Stores a new ITR value based on packets and byte
4451 * counts during the last interrupt. The advantage of per interrupt
4452 * computation is faster updates and more accurate ITR for the current
4453 * traffic pattern. Constants in this function were computed
4454 * based on theoretical maximum wire speed and thresholds were set based
4455 * on testing data as well as attempting to minimize response time
4456 * while increasing bulk throughput.
4457 * This functionality is controlled by ethtool's coalescing settings.
4458 * NOTE: These calculations are only valid when operating in a single-
4459 * queue environment.
4460 **/
4461 static void igb_update_itr(struct igb_q_vector *q_vector,
4462 struct igb_ring_container *ring_container)
4463 {
4464 unsigned int packets = ring_container->total_packets;
4465 unsigned int bytes = ring_container->total_bytes;
4466 u8 itrval = ring_container->itr;
4467
4468 /* no packets, exit with status unchanged */
4469 if (packets == 0)
4470 return;
4471
4472 switch (itrval) {
4473 case lowest_latency:
4474 /* handle TSO and jumbo frames */
4475 if (bytes/packets > 8000)
4476 itrval = bulk_latency;
4477 else if ((packets < 5) && (bytes > 512))
4478 itrval = low_latency;
4479 break;
4480 case low_latency: /* 50 usec aka 20000 ints/s */
4481 if (bytes > 10000) {
4482 /* this if handles the TSO accounting */
4483 if (bytes/packets > 8000)
4484 itrval = bulk_latency;
4485 else if ((packets < 10) || ((bytes/packets) > 1200))
4486 itrval = bulk_latency;
4487 else if ((packets > 35))
4488 itrval = lowest_latency;
4489 } else if (bytes/packets > 2000) {
4490 itrval = bulk_latency;
4491 } else if (packets <= 2 && bytes < 512) {
4492 itrval = lowest_latency;
4493 }
4494 break;
4495 case bulk_latency: /* 250 usec aka 4000 ints/s */
4496 if (bytes > 25000) {
4497 if (packets > 35)
4498 itrval = low_latency;
4499 } else if (bytes < 1500) {
4500 itrval = low_latency;
4501 }
4502 break;
4503 }
4504
4505 /* clear work counters since we have the values we need */
4506 ring_container->total_bytes = 0;
4507 ring_container->total_packets = 0;
4508
4509 /* write updated itr to ring container */
4510 ring_container->itr = itrval;
4511 }
4512
4513 static void igb_set_itr(struct igb_q_vector *q_vector)
4514 {
4515 struct igb_adapter *adapter = q_vector->adapter;
4516 u32 new_itr = q_vector->itr_val;
4517 u8 current_itr = 0;
4518
4519 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4520 if (adapter->link_speed != SPEED_1000) {
4521 current_itr = 0;
4522 new_itr = IGB_4K_ITR;
4523 goto set_itr_now;
4524 }
4525
4526 igb_update_itr(q_vector, &q_vector->tx);
4527 igb_update_itr(q_vector, &q_vector->rx);
4528
4529 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4530
4531 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4532 if (current_itr == lowest_latency &&
4533 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4534 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4535 current_itr = low_latency;
4536
4537 switch (current_itr) {
4538 /* counts and packets in update_itr are dependent on these numbers */
4539 case lowest_latency:
4540 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4541 break;
4542 case low_latency:
4543 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4544 break;
4545 case bulk_latency:
4546 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4547 break;
4548 default:
4549 break;
4550 }
4551
4552 set_itr_now:
4553 if (new_itr != q_vector->itr_val) {
4554 /* this attempts to bias the interrupt rate towards Bulk
4555 * by adding intermediate steps when interrupt rate is
4556 * increasing
4557 */
4558 new_itr = new_itr > q_vector->itr_val ?
4559 max((new_itr * q_vector->itr_val) /
4560 (new_itr + (q_vector->itr_val >> 2)),
4561 new_itr) : new_itr;
4562 /* Don't write the value here; it resets the adapter's
4563 * internal timer, and causes us to delay far longer than
4564 * we should between interrupts. Instead, we write the ITR
4565 * value at the beginning of the next interrupt so the timing
4566 * ends up being correct.
4567 */
4568 q_vector->itr_val = new_itr;
4569 q_vector->set_itr = 1;
4570 }
4571 }
4572
4573 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4574 u32 type_tucmd, u32 mss_l4len_idx)
4575 {
4576 struct e1000_adv_tx_context_desc *context_desc;
4577 u16 i = tx_ring->next_to_use;
4578
4579 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4580
4581 i++;
4582 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4583
4584 /* set bits to identify this as an advanced context descriptor */
4585 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4586
4587 /* For 82575, context index must be unique per ring. */
4588 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4589 mss_l4len_idx |= tx_ring->reg_idx << 4;
4590
4591 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4592 context_desc->seqnum_seed = 0;
4593 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4594 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4595 }
4596
4597 static int igb_tso(struct igb_ring *tx_ring,
4598 struct igb_tx_buffer *first,
4599 u8 *hdr_len)
4600 {
4601 struct sk_buff *skb = first->skb;
4602 u32 vlan_macip_lens, type_tucmd;
4603 u32 mss_l4len_idx, l4len;
4604 int err;
4605
4606 if (skb->ip_summed != CHECKSUM_PARTIAL)
4607 return 0;
4608
4609 if (!skb_is_gso(skb))
4610 return 0;
4611
4612 err = skb_cow_head(skb, 0);
4613 if (err < 0)
4614 return err;
4615
4616 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4617 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4618
4619 if (first->protocol == htons(ETH_P_IP)) {
4620 struct iphdr *iph = ip_hdr(skb);
4621 iph->tot_len = 0;
4622 iph->check = 0;
4623 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4624 iph->daddr, 0,
4625 IPPROTO_TCP,
4626 0);
4627 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4628 first->tx_flags |= IGB_TX_FLAGS_TSO |
4629 IGB_TX_FLAGS_CSUM |
4630 IGB_TX_FLAGS_IPV4;
4631 } else if (skb_is_gso_v6(skb)) {
4632 ipv6_hdr(skb)->payload_len = 0;
4633 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4634 &ipv6_hdr(skb)->daddr,
4635 0, IPPROTO_TCP, 0);
4636 first->tx_flags |= IGB_TX_FLAGS_TSO |
4637 IGB_TX_FLAGS_CSUM;
4638 }
4639
4640 /* compute header lengths */
4641 l4len = tcp_hdrlen(skb);
4642 *hdr_len = skb_transport_offset(skb) + l4len;
4643
4644 /* update gso size and bytecount with header size */
4645 first->gso_segs = skb_shinfo(skb)->gso_segs;
4646 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4647
4648 /* MSS L4LEN IDX */
4649 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4650 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4651
4652 /* VLAN MACLEN IPLEN */
4653 vlan_macip_lens = skb_network_header_len(skb);
4654 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4655 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4656
4657 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4658
4659 return 1;
4660 }
4661
4662 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4663 {
4664 struct sk_buff *skb = first->skb;
4665 u32 vlan_macip_lens = 0;
4666 u32 mss_l4len_idx = 0;
4667 u32 type_tucmd = 0;
4668
4669 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4670 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4671 return;
4672 } else {
4673 u8 l4_hdr = 0;
4674
4675 switch (first->protocol) {
4676 case htons(ETH_P_IP):
4677 vlan_macip_lens |= skb_network_header_len(skb);
4678 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4679 l4_hdr = ip_hdr(skb)->protocol;
4680 break;
4681 case htons(ETH_P_IPV6):
4682 vlan_macip_lens |= skb_network_header_len(skb);
4683 l4_hdr = ipv6_hdr(skb)->nexthdr;
4684 break;
4685 default:
4686 if (unlikely(net_ratelimit())) {
4687 dev_warn(tx_ring->dev,
4688 "partial checksum but proto=%x!\n",
4689 first->protocol);
4690 }
4691 break;
4692 }
4693
4694 switch (l4_hdr) {
4695 case IPPROTO_TCP:
4696 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4697 mss_l4len_idx = tcp_hdrlen(skb) <<
4698 E1000_ADVTXD_L4LEN_SHIFT;
4699 break;
4700 case IPPROTO_SCTP:
4701 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4702 mss_l4len_idx = sizeof(struct sctphdr) <<
4703 E1000_ADVTXD_L4LEN_SHIFT;
4704 break;
4705 case IPPROTO_UDP:
4706 mss_l4len_idx = sizeof(struct udphdr) <<
4707 E1000_ADVTXD_L4LEN_SHIFT;
4708 break;
4709 default:
4710 if (unlikely(net_ratelimit())) {
4711 dev_warn(tx_ring->dev,
4712 "partial checksum but l4 proto=%x!\n",
4713 l4_hdr);
4714 }
4715 break;
4716 }
4717
4718 /* update TX checksum flag */
4719 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4720 }
4721
4722 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4723 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4724
4725 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4726 }
4727
4728 #define IGB_SET_FLAG(_input, _flag, _result) \
4729 ((_flag <= _result) ? \
4730 ((u32)(_input & _flag) * (_result / _flag)) : \
4731 ((u32)(_input & _flag) / (_flag / _result)))
4732
4733 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4734 {
4735 /* set type for advanced descriptor with frame checksum insertion */
4736 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4737 E1000_ADVTXD_DCMD_DEXT |
4738 E1000_ADVTXD_DCMD_IFCS;
4739
4740 /* set HW vlan bit if vlan is present */
4741 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4742 (E1000_ADVTXD_DCMD_VLE));
4743
4744 /* set segmentation bits for TSO */
4745 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4746 (E1000_ADVTXD_DCMD_TSE));
4747
4748 /* set timestamp bit if present */
4749 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4750 (E1000_ADVTXD_MAC_TSTAMP));
4751
4752 /* insert frame checksum */
4753 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4754
4755 return cmd_type;
4756 }
4757
4758 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4759 union e1000_adv_tx_desc *tx_desc,
4760 u32 tx_flags, unsigned int paylen)
4761 {
4762 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4763
4764 /* 82575 requires a unique index per ring */
4765 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4766 olinfo_status |= tx_ring->reg_idx << 4;
4767
4768 /* insert L4 checksum */
4769 olinfo_status |= IGB_SET_FLAG(tx_flags,
4770 IGB_TX_FLAGS_CSUM,
4771 (E1000_TXD_POPTS_TXSM << 8));
4772
4773 /* insert IPv4 checksum */
4774 olinfo_status |= IGB_SET_FLAG(tx_flags,
4775 IGB_TX_FLAGS_IPV4,
4776 (E1000_TXD_POPTS_IXSM << 8));
4777
4778 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4779 }
4780
4781 static void igb_tx_map(struct igb_ring *tx_ring,
4782 struct igb_tx_buffer *first,
4783 const u8 hdr_len)
4784 {
4785 struct sk_buff *skb = first->skb;
4786 struct igb_tx_buffer *tx_buffer;
4787 union e1000_adv_tx_desc *tx_desc;
4788 struct skb_frag_struct *frag;
4789 dma_addr_t dma;
4790 unsigned int data_len, size;
4791 u32 tx_flags = first->tx_flags;
4792 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4793 u16 i = tx_ring->next_to_use;
4794
4795 tx_desc = IGB_TX_DESC(tx_ring, i);
4796
4797 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4798
4799 size = skb_headlen(skb);
4800 data_len = skb->data_len;
4801
4802 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4803
4804 tx_buffer = first;
4805
4806 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4807 if (dma_mapping_error(tx_ring->dev, dma))
4808 goto dma_error;
4809
4810 /* record length, and DMA address */
4811 dma_unmap_len_set(tx_buffer, len, size);
4812 dma_unmap_addr_set(tx_buffer, dma, dma);
4813
4814 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4815
4816 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4817 tx_desc->read.cmd_type_len =
4818 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4819
4820 i++;
4821 tx_desc++;
4822 if (i == tx_ring->count) {
4823 tx_desc = IGB_TX_DESC(tx_ring, 0);
4824 i = 0;
4825 }
4826 tx_desc->read.olinfo_status = 0;
4827
4828 dma += IGB_MAX_DATA_PER_TXD;
4829 size -= IGB_MAX_DATA_PER_TXD;
4830
4831 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4832 }
4833
4834 if (likely(!data_len))
4835 break;
4836
4837 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4838
4839 i++;
4840 tx_desc++;
4841 if (i == tx_ring->count) {
4842 tx_desc = IGB_TX_DESC(tx_ring, 0);
4843 i = 0;
4844 }
4845 tx_desc->read.olinfo_status = 0;
4846
4847 size = skb_frag_size(frag);
4848 data_len -= size;
4849
4850 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4851 size, DMA_TO_DEVICE);
4852
4853 tx_buffer = &tx_ring->tx_buffer_info[i];
4854 }
4855
4856 /* write last descriptor with RS and EOP bits */
4857 cmd_type |= size | IGB_TXD_DCMD;
4858 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4859
4860 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4861
4862 /* set the timestamp */
4863 first->time_stamp = jiffies;
4864
4865 /* Force memory writes to complete before letting h/w know there
4866 * are new descriptors to fetch. (Only applicable for weak-ordered
4867 * memory model archs, such as IA-64).
4868 *
4869 * We also need this memory barrier to make certain all of the
4870 * status bits have been updated before next_to_watch is written.
4871 */
4872 wmb();
4873
4874 /* set next_to_watch value indicating a packet is present */
4875 first->next_to_watch = tx_desc;
4876
4877 i++;
4878 if (i == tx_ring->count)
4879 i = 0;
4880
4881 tx_ring->next_to_use = i;
4882
4883 writel(i, tx_ring->tail);
4884
4885 /* we need this if more than one processor can write to our tail
4886 * at a time, it synchronizes IO on IA64/Altix systems
4887 */
4888 mmiowb();
4889
4890 return;
4891
4892 dma_error:
4893 dev_err(tx_ring->dev, "TX DMA map failed\n");
4894
4895 /* clear dma mappings for failed tx_buffer_info map */
4896 for (;;) {
4897 tx_buffer = &tx_ring->tx_buffer_info[i];
4898 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4899 if (tx_buffer == first)
4900 break;
4901 if (i == 0)
4902 i = tx_ring->count;
4903 i--;
4904 }
4905
4906 tx_ring->next_to_use = i;
4907 }
4908
4909 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4910 {
4911 struct net_device *netdev = tx_ring->netdev;
4912
4913 netif_stop_subqueue(netdev, tx_ring->queue_index);
4914
4915 /* Herbert's original patch had:
4916 * smp_mb__after_netif_stop_queue();
4917 * but since that doesn't exist yet, just open code it.
4918 */
4919 smp_mb();
4920
4921 /* We need to check again in a case another CPU has just
4922 * made room available.
4923 */
4924 if (igb_desc_unused(tx_ring) < size)
4925 return -EBUSY;
4926
4927 /* A reprieve! */
4928 netif_wake_subqueue(netdev, tx_ring->queue_index);
4929
4930 u64_stats_update_begin(&tx_ring->tx_syncp2);
4931 tx_ring->tx_stats.restart_queue2++;
4932 u64_stats_update_end(&tx_ring->tx_syncp2);
4933
4934 return 0;
4935 }
4936
4937 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4938 {
4939 if (igb_desc_unused(tx_ring) >= size)
4940 return 0;
4941 return __igb_maybe_stop_tx(tx_ring, size);
4942 }
4943
4944 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4945 struct igb_ring *tx_ring)
4946 {
4947 struct igb_tx_buffer *first;
4948 int tso;
4949 u32 tx_flags = 0;
4950 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4951 __be16 protocol = vlan_get_protocol(skb);
4952 u8 hdr_len = 0;
4953
4954 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4955 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4956 * + 2 desc gap to keep tail from touching head,
4957 * + 1 desc for context descriptor,
4958 * otherwise try next time
4959 */
4960 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4961 unsigned short f;
4962
4963 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4964 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4965 } else {
4966 count += skb_shinfo(skb)->nr_frags;
4967 }
4968
4969 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4970 /* this is a hard error */
4971 return NETDEV_TX_BUSY;
4972 }
4973
4974 /* record the location of the first descriptor for this packet */
4975 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4976 first->skb = skb;
4977 first->bytecount = skb->len;
4978 first->gso_segs = 1;
4979
4980 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4981 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4982
4983 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4984 &adapter->state)) {
4985 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4986 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4987
4988 adapter->ptp_tx_skb = skb_get(skb);
4989 adapter->ptp_tx_start = jiffies;
4990 if (adapter->hw.mac.type == e1000_82576)
4991 schedule_work(&adapter->ptp_tx_work);
4992 }
4993 }
4994
4995 skb_tx_timestamp(skb);
4996
4997 if (vlan_tx_tag_present(skb)) {
4998 tx_flags |= IGB_TX_FLAGS_VLAN;
4999 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5000 }
5001
5002 /* record initial flags and protocol */
5003 first->tx_flags = tx_flags;
5004 first->protocol = protocol;
5005
5006 tso = igb_tso(tx_ring, first, &hdr_len);
5007 if (tso < 0)
5008 goto out_drop;
5009 else if (!tso)
5010 igb_tx_csum(tx_ring, first);
5011
5012 igb_tx_map(tx_ring, first, hdr_len);
5013
5014 /* Make sure there is space in the ring for the next send. */
5015 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5016
5017 return NETDEV_TX_OK;
5018
5019 out_drop:
5020 igb_unmap_and_free_tx_resource(tx_ring, first);
5021
5022 return NETDEV_TX_OK;
5023 }
5024
5025 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5026 struct sk_buff *skb)
5027 {
5028 unsigned int r_idx = skb->queue_mapping;
5029
5030 if (r_idx >= adapter->num_tx_queues)
5031 r_idx = r_idx % adapter->num_tx_queues;
5032
5033 return adapter->tx_ring[r_idx];
5034 }
5035
5036 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5037 struct net_device *netdev)
5038 {
5039 struct igb_adapter *adapter = netdev_priv(netdev);
5040
5041 if (test_bit(__IGB_DOWN, &adapter->state)) {
5042 dev_kfree_skb_any(skb);
5043 return NETDEV_TX_OK;
5044 }
5045
5046 if (skb->len <= 0) {
5047 dev_kfree_skb_any(skb);
5048 return NETDEV_TX_OK;
5049 }
5050
5051 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5052 * in order to meet this minimum size requirement.
5053 */
5054 if (unlikely(skb->len < 17)) {
5055 if (skb_pad(skb, 17 - skb->len))
5056 return NETDEV_TX_OK;
5057 skb->len = 17;
5058 skb_set_tail_pointer(skb, 17);
5059 }
5060
5061 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5062 }
5063
5064 /**
5065 * igb_tx_timeout - Respond to a Tx Hang
5066 * @netdev: network interface device structure
5067 **/
5068 static void igb_tx_timeout(struct net_device *netdev)
5069 {
5070 struct igb_adapter *adapter = netdev_priv(netdev);
5071 struct e1000_hw *hw = &adapter->hw;
5072
5073 /* Do the reset outside of interrupt context */
5074 adapter->tx_timeout_count++;
5075
5076 if (hw->mac.type >= e1000_82580)
5077 hw->dev_spec._82575.global_device_reset = true;
5078
5079 schedule_work(&adapter->reset_task);
5080 wr32(E1000_EICS,
5081 (adapter->eims_enable_mask & ~adapter->eims_other));
5082 }
5083
5084 static void igb_reset_task(struct work_struct *work)
5085 {
5086 struct igb_adapter *adapter;
5087 adapter = container_of(work, struct igb_adapter, reset_task);
5088
5089 igb_dump(adapter);
5090 netdev_err(adapter->netdev, "Reset adapter\n");
5091 igb_reinit_locked(adapter);
5092 }
5093
5094 /**
5095 * igb_get_stats64 - Get System Network Statistics
5096 * @netdev: network interface device structure
5097 * @stats: rtnl_link_stats64 pointer
5098 **/
5099 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5100 struct rtnl_link_stats64 *stats)
5101 {
5102 struct igb_adapter *adapter = netdev_priv(netdev);
5103
5104 spin_lock(&adapter->stats64_lock);
5105 igb_update_stats(adapter, &adapter->stats64);
5106 memcpy(stats, &adapter->stats64, sizeof(*stats));
5107 spin_unlock(&adapter->stats64_lock);
5108
5109 return stats;
5110 }
5111
5112 /**
5113 * igb_change_mtu - Change the Maximum Transfer Unit
5114 * @netdev: network interface device structure
5115 * @new_mtu: new value for maximum frame size
5116 *
5117 * Returns 0 on success, negative on failure
5118 **/
5119 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5120 {
5121 struct igb_adapter *adapter = netdev_priv(netdev);
5122 struct pci_dev *pdev = adapter->pdev;
5123 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5124
5125 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5126 dev_err(&pdev->dev, "Invalid MTU setting\n");
5127 return -EINVAL;
5128 }
5129
5130 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5131 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5132 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5133 return -EINVAL;
5134 }
5135
5136 /* adjust max frame to be at least the size of a standard frame */
5137 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5138 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5139
5140 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5141 msleep(1);
5142
5143 /* igb_down has a dependency on max_frame_size */
5144 adapter->max_frame_size = max_frame;
5145
5146 if (netif_running(netdev))
5147 igb_down(adapter);
5148
5149 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5150 netdev->mtu, new_mtu);
5151 netdev->mtu = new_mtu;
5152
5153 if (netif_running(netdev))
5154 igb_up(adapter);
5155 else
5156 igb_reset(adapter);
5157
5158 clear_bit(__IGB_RESETTING, &adapter->state);
5159
5160 return 0;
5161 }
5162
5163 /**
5164 * igb_update_stats - Update the board statistics counters
5165 * @adapter: board private structure
5166 **/
5167 void igb_update_stats(struct igb_adapter *adapter,
5168 struct rtnl_link_stats64 *net_stats)
5169 {
5170 struct e1000_hw *hw = &adapter->hw;
5171 struct pci_dev *pdev = adapter->pdev;
5172 u32 reg, mpc;
5173 u16 phy_tmp;
5174 int i;
5175 u64 bytes, packets;
5176 unsigned int start;
5177 u64 _bytes, _packets;
5178
5179 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5180
5181 /* Prevent stats update while adapter is being reset, or if the pci
5182 * connection is down.
5183 */
5184 if (adapter->link_speed == 0)
5185 return;
5186 if (pci_channel_offline(pdev))
5187 return;
5188
5189 bytes = 0;
5190 packets = 0;
5191
5192 rcu_read_lock();
5193 for (i = 0; i < adapter->num_rx_queues; i++) {
5194 struct igb_ring *ring = adapter->rx_ring[i];
5195 u32 rqdpc = rd32(E1000_RQDPC(i));
5196 if (hw->mac.type >= e1000_i210)
5197 wr32(E1000_RQDPC(i), 0);
5198
5199 if (rqdpc) {
5200 ring->rx_stats.drops += rqdpc;
5201 net_stats->rx_fifo_errors += rqdpc;
5202 }
5203
5204 do {
5205 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5206 _bytes = ring->rx_stats.bytes;
5207 _packets = ring->rx_stats.packets;
5208 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5209 bytes += _bytes;
5210 packets += _packets;
5211 }
5212
5213 net_stats->rx_bytes = bytes;
5214 net_stats->rx_packets = packets;
5215
5216 bytes = 0;
5217 packets = 0;
5218 for (i = 0; i < adapter->num_tx_queues; i++) {
5219 struct igb_ring *ring = adapter->tx_ring[i];
5220 do {
5221 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5222 _bytes = ring->tx_stats.bytes;
5223 _packets = ring->tx_stats.packets;
5224 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5225 bytes += _bytes;
5226 packets += _packets;
5227 }
5228 net_stats->tx_bytes = bytes;
5229 net_stats->tx_packets = packets;
5230 rcu_read_unlock();
5231
5232 /* read stats registers */
5233 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5234 adapter->stats.gprc += rd32(E1000_GPRC);
5235 adapter->stats.gorc += rd32(E1000_GORCL);
5236 rd32(E1000_GORCH); /* clear GORCL */
5237 adapter->stats.bprc += rd32(E1000_BPRC);
5238 adapter->stats.mprc += rd32(E1000_MPRC);
5239 adapter->stats.roc += rd32(E1000_ROC);
5240
5241 adapter->stats.prc64 += rd32(E1000_PRC64);
5242 adapter->stats.prc127 += rd32(E1000_PRC127);
5243 adapter->stats.prc255 += rd32(E1000_PRC255);
5244 adapter->stats.prc511 += rd32(E1000_PRC511);
5245 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5246 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5247 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5248 adapter->stats.sec += rd32(E1000_SEC);
5249
5250 mpc = rd32(E1000_MPC);
5251 adapter->stats.mpc += mpc;
5252 net_stats->rx_fifo_errors += mpc;
5253 adapter->stats.scc += rd32(E1000_SCC);
5254 adapter->stats.ecol += rd32(E1000_ECOL);
5255 adapter->stats.mcc += rd32(E1000_MCC);
5256 adapter->stats.latecol += rd32(E1000_LATECOL);
5257 adapter->stats.dc += rd32(E1000_DC);
5258 adapter->stats.rlec += rd32(E1000_RLEC);
5259 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5260 adapter->stats.xontxc += rd32(E1000_XONTXC);
5261 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5262 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5263 adapter->stats.fcruc += rd32(E1000_FCRUC);
5264 adapter->stats.gptc += rd32(E1000_GPTC);
5265 adapter->stats.gotc += rd32(E1000_GOTCL);
5266 rd32(E1000_GOTCH); /* clear GOTCL */
5267 adapter->stats.rnbc += rd32(E1000_RNBC);
5268 adapter->stats.ruc += rd32(E1000_RUC);
5269 adapter->stats.rfc += rd32(E1000_RFC);
5270 adapter->stats.rjc += rd32(E1000_RJC);
5271 adapter->stats.tor += rd32(E1000_TORH);
5272 adapter->stats.tot += rd32(E1000_TOTH);
5273 adapter->stats.tpr += rd32(E1000_TPR);
5274
5275 adapter->stats.ptc64 += rd32(E1000_PTC64);
5276 adapter->stats.ptc127 += rd32(E1000_PTC127);
5277 adapter->stats.ptc255 += rd32(E1000_PTC255);
5278 adapter->stats.ptc511 += rd32(E1000_PTC511);
5279 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5280 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5281
5282 adapter->stats.mptc += rd32(E1000_MPTC);
5283 adapter->stats.bptc += rd32(E1000_BPTC);
5284
5285 adapter->stats.tpt += rd32(E1000_TPT);
5286 adapter->stats.colc += rd32(E1000_COLC);
5287
5288 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5289 /* read internal phy specific stats */
5290 reg = rd32(E1000_CTRL_EXT);
5291 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5292 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5293
5294 /* this stat has invalid values on i210/i211 */
5295 if ((hw->mac.type != e1000_i210) &&
5296 (hw->mac.type != e1000_i211))
5297 adapter->stats.tncrs += rd32(E1000_TNCRS);
5298 }
5299
5300 adapter->stats.tsctc += rd32(E1000_TSCTC);
5301 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5302
5303 adapter->stats.iac += rd32(E1000_IAC);
5304 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5305 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5306 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5307 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5308 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5309 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5310 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5311 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5312
5313 /* Fill out the OS statistics structure */
5314 net_stats->multicast = adapter->stats.mprc;
5315 net_stats->collisions = adapter->stats.colc;
5316
5317 /* Rx Errors */
5318
5319 /* RLEC on some newer hardware can be incorrect so build
5320 * our own version based on RUC and ROC
5321 */
5322 net_stats->rx_errors = adapter->stats.rxerrc +
5323 adapter->stats.crcerrs + adapter->stats.algnerrc +
5324 adapter->stats.ruc + adapter->stats.roc +
5325 adapter->stats.cexterr;
5326 net_stats->rx_length_errors = adapter->stats.ruc +
5327 adapter->stats.roc;
5328 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5329 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5330 net_stats->rx_missed_errors = adapter->stats.mpc;
5331
5332 /* Tx Errors */
5333 net_stats->tx_errors = adapter->stats.ecol +
5334 adapter->stats.latecol;
5335 net_stats->tx_aborted_errors = adapter->stats.ecol;
5336 net_stats->tx_window_errors = adapter->stats.latecol;
5337 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5338
5339 /* Tx Dropped needs to be maintained elsewhere */
5340
5341 /* Phy Stats */
5342 if (hw->phy.media_type == e1000_media_type_copper) {
5343 if ((adapter->link_speed == SPEED_1000) &&
5344 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5345 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5346 adapter->phy_stats.idle_errors += phy_tmp;
5347 }
5348 }
5349
5350 /* Management Stats */
5351 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5352 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5353 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5354
5355 /* OS2BMC Stats */
5356 reg = rd32(E1000_MANC);
5357 if (reg & E1000_MANC_EN_BMC2OS) {
5358 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5359 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5360 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5361 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5362 }
5363 }
5364
5365 static irqreturn_t igb_msix_other(int irq, void *data)
5366 {
5367 struct igb_adapter *adapter = data;
5368 struct e1000_hw *hw = &adapter->hw;
5369 u32 icr = rd32(E1000_ICR);
5370 /* reading ICR causes bit 31 of EICR to be cleared */
5371
5372 if (icr & E1000_ICR_DRSTA)
5373 schedule_work(&adapter->reset_task);
5374
5375 if (icr & E1000_ICR_DOUTSYNC) {
5376 /* HW is reporting DMA is out of sync */
5377 adapter->stats.doosync++;
5378 /* The DMA Out of Sync is also indication of a spoof event
5379 * in IOV mode. Check the Wrong VM Behavior register to
5380 * see if it is really a spoof event.
5381 */
5382 igb_check_wvbr(adapter);
5383 }
5384
5385 /* Check for a mailbox event */
5386 if (icr & E1000_ICR_VMMB)
5387 igb_msg_task(adapter);
5388
5389 if (icr & E1000_ICR_LSC) {
5390 hw->mac.get_link_status = 1;
5391 /* guard against interrupt when we're going down */
5392 if (!test_bit(__IGB_DOWN, &adapter->state))
5393 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5394 }
5395
5396 if (icr & E1000_ICR_TS) {
5397 u32 tsicr = rd32(E1000_TSICR);
5398
5399 if (tsicr & E1000_TSICR_TXTS) {
5400 /* acknowledge the interrupt */
5401 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5402 /* retrieve hardware timestamp */
5403 schedule_work(&adapter->ptp_tx_work);
5404 }
5405 }
5406
5407 wr32(E1000_EIMS, adapter->eims_other);
5408
5409 return IRQ_HANDLED;
5410 }
5411
5412 static void igb_write_itr(struct igb_q_vector *q_vector)
5413 {
5414 struct igb_adapter *adapter = q_vector->adapter;
5415 u32 itr_val = q_vector->itr_val & 0x7FFC;
5416
5417 if (!q_vector->set_itr)
5418 return;
5419
5420 if (!itr_val)
5421 itr_val = 0x4;
5422
5423 if (adapter->hw.mac.type == e1000_82575)
5424 itr_val |= itr_val << 16;
5425 else
5426 itr_val |= E1000_EITR_CNT_IGNR;
5427
5428 writel(itr_val, q_vector->itr_register);
5429 q_vector->set_itr = 0;
5430 }
5431
5432 static irqreturn_t igb_msix_ring(int irq, void *data)
5433 {
5434 struct igb_q_vector *q_vector = data;
5435
5436 /* Write the ITR value calculated from the previous interrupt. */
5437 igb_write_itr(q_vector);
5438
5439 napi_schedule(&q_vector->napi);
5440
5441 return IRQ_HANDLED;
5442 }
5443
5444 #ifdef CONFIG_IGB_DCA
5445 static void igb_update_tx_dca(struct igb_adapter *adapter,
5446 struct igb_ring *tx_ring,
5447 int cpu)
5448 {
5449 struct e1000_hw *hw = &adapter->hw;
5450 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5451
5452 if (hw->mac.type != e1000_82575)
5453 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5454
5455 /* We can enable relaxed ordering for reads, but not writes when
5456 * DCA is enabled. This is due to a known issue in some chipsets
5457 * which will cause the DCA tag to be cleared.
5458 */
5459 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5460 E1000_DCA_TXCTRL_DATA_RRO_EN |
5461 E1000_DCA_TXCTRL_DESC_DCA_EN;
5462
5463 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5464 }
5465
5466 static void igb_update_rx_dca(struct igb_adapter *adapter,
5467 struct igb_ring *rx_ring,
5468 int cpu)
5469 {
5470 struct e1000_hw *hw = &adapter->hw;
5471 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5472
5473 if (hw->mac.type != e1000_82575)
5474 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5475
5476 /* We can enable relaxed ordering for reads, but not writes when
5477 * DCA is enabled. This is due to a known issue in some chipsets
5478 * which will cause the DCA tag to be cleared.
5479 */
5480 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5481 E1000_DCA_RXCTRL_DESC_DCA_EN;
5482
5483 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5484 }
5485
5486 static void igb_update_dca(struct igb_q_vector *q_vector)
5487 {
5488 struct igb_adapter *adapter = q_vector->adapter;
5489 int cpu = get_cpu();
5490
5491 if (q_vector->cpu == cpu)
5492 goto out_no_update;
5493
5494 if (q_vector->tx.ring)
5495 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5496
5497 if (q_vector->rx.ring)
5498 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5499
5500 q_vector->cpu = cpu;
5501 out_no_update:
5502 put_cpu();
5503 }
5504
5505 static void igb_setup_dca(struct igb_adapter *adapter)
5506 {
5507 struct e1000_hw *hw = &adapter->hw;
5508 int i;
5509
5510 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5511 return;
5512
5513 /* Always use CB2 mode, difference is masked in the CB driver. */
5514 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5515
5516 for (i = 0; i < adapter->num_q_vectors; i++) {
5517 adapter->q_vector[i]->cpu = -1;
5518 igb_update_dca(adapter->q_vector[i]);
5519 }
5520 }
5521
5522 static int __igb_notify_dca(struct device *dev, void *data)
5523 {
5524 struct net_device *netdev = dev_get_drvdata(dev);
5525 struct igb_adapter *adapter = netdev_priv(netdev);
5526 struct pci_dev *pdev = adapter->pdev;
5527 struct e1000_hw *hw = &adapter->hw;
5528 unsigned long event = *(unsigned long *)data;
5529
5530 switch (event) {
5531 case DCA_PROVIDER_ADD:
5532 /* if already enabled, don't do it again */
5533 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5534 break;
5535 if (dca_add_requester(dev) == 0) {
5536 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5537 dev_info(&pdev->dev, "DCA enabled\n");
5538 igb_setup_dca(adapter);
5539 break;
5540 }
5541 /* Fall Through since DCA is disabled. */
5542 case DCA_PROVIDER_REMOVE:
5543 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5544 /* without this a class_device is left
5545 * hanging around in the sysfs model
5546 */
5547 dca_remove_requester(dev);
5548 dev_info(&pdev->dev, "DCA disabled\n");
5549 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5550 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5551 }
5552 break;
5553 }
5554
5555 return 0;
5556 }
5557
5558 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5559 void *p)
5560 {
5561 int ret_val;
5562
5563 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5564 __igb_notify_dca);
5565
5566 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5567 }
5568 #endif /* CONFIG_IGB_DCA */
5569
5570 #ifdef CONFIG_PCI_IOV
5571 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5572 {
5573 unsigned char mac_addr[ETH_ALEN];
5574
5575 eth_zero_addr(mac_addr);
5576 igb_set_vf_mac(adapter, vf, mac_addr);
5577
5578 /* By default spoof check is enabled for all VFs */
5579 adapter->vf_data[vf].spoofchk_enabled = true;
5580
5581 return 0;
5582 }
5583
5584 #endif
5585 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5586 {
5587 struct e1000_hw *hw = &adapter->hw;
5588 u32 ping;
5589 int i;
5590
5591 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5592 ping = E1000_PF_CONTROL_MSG;
5593 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5594 ping |= E1000_VT_MSGTYPE_CTS;
5595 igb_write_mbx(hw, &ping, 1, i);
5596 }
5597 }
5598
5599 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5600 {
5601 struct e1000_hw *hw = &adapter->hw;
5602 u32 vmolr = rd32(E1000_VMOLR(vf));
5603 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5604
5605 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5606 IGB_VF_FLAG_MULTI_PROMISC);
5607 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5608
5609 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5610 vmolr |= E1000_VMOLR_MPME;
5611 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5612 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5613 } else {
5614 /* if we have hashes and we are clearing a multicast promisc
5615 * flag we need to write the hashes to the MTA as this step
5616 * was previously skipped
5617 */
5618 if (vf_data->num_vf_mc_hashes > 30) {
5619 vmolr |= E1000_VMOLR_MPME;
5620 } else if (vf_data->num_vf_mc_hashes) {
5621 int j;
5622
5623 vmolr |= E1000_VMOLR_ROMPE;
5624 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5625 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5626 }
5627 }
5628
5629 wr32(E1000_VMOLR(vf), vmolr);
5630
5631 /* there are flags left unprocessed, likely not supported */
5632 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5633 return -EINVAL;
5634
5635 return 0;
5636 }
5637
5638 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5639 u32 *msgbuf, u32 vf)
5640 {
5641 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5642 u16 *hash_list = (u16 *)&msgbuf[1];
5643 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5644 int i;
5645
5646 /* salt away the number of multicast addresses assigned
5647 * to this VF for later use to restore when the PF multi cast
5648 * list changes
5649 */
5650 vf_data->num_vf_mc_hashes = n;
5651
5652 /* only up to 30 hash values supported */
5653 if (n > 30)
5654 n = 30;
5655
5656 /* store the hashes for later use */
5657 for (i = 0; i < n; i++)
5658 vf_data->vf_mc_hashes[i] = hash_list[i];
5659
5660 /* Flush and reset the mta with the new values */
5661 igb_set_rx_mode(adapter->netdev);
5662
5663 return 0;
5664 }
5665
5666 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5667 {
5668 struct e1000_hw *hw = &adapter->hw;
5669 struct vf_data_storage *vf_data;
5670 int i, j;
5671
5672 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5673 u32 vmolr = rd32(E1000_VMOLR(i));
5674
5675 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5676
5677 vf_data = &adapter->vf_data[i];
5678
5679 if ((vf_data->num_vf_mc_hashes > 30) ||
5680 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5681 vmolr |= E1000_VMOLR_MPME;
5682 } else if (vf_data->num_vf_mc_hashes) {
5683 vmolr |= E1000_VMOLR_ROMPE;
5684 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5685 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5686 }
5687 wr32(E1000_VMOLR(i), vmolr);
5688 }
5689 }
5690
5691 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5692 {
5693 struct e1000_hw *hw = &adapter->hw;
5694 u32 pool_mask, reg, vid;
5695 int i;
5696
5697 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5698
5699 /* Find the vlan filter for this id */
5700 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5701 reg = rd32(E1000_VLVF(i));
5702
5703 /* remove the vf from the pool */
5704 reg &= ~pool_mask;
5705
5706 /* if pool is empty then remove entry from vfta */
5707 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5708 (reg & E1000_VLVF_VLANID_ENABLE)) {
5709 reg = 0;
5710 vid = reg & E1000_VLVF_VLANID_MASK;
5711 igb_vfta_set(hw, vid, false);
5712 }
5713
5714 wr32(E1000_VLVF(i), reg);
5715 }
5716
5717 adapter->vf_data[vf].vlans_enabled = 0;
5718 }
5719
5720 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5721 {
5722 struct e1000_hw *hw = &adapter->hw;
5723 u32 reg, i;
5724
5725 /* The vlvf table only exists on 82576 hardware and newer */
5726 if (hw->mac.type < e1000_82576)
5727 return -1;
5728
5729 /* we only need to do this if VMDq is enabled */
5730 if (!adapter->vfs_allocated_count)
5731 return -1;
5732
5733 /* Find the vlan filter for this id */
5734 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5735 reg = rd32(E1000_VLVF(i));
5736 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5737 vid == (reg & E1000_VLVF_VLANID_MASK))
5738 break;
5739 }
5740
5741 if (add) {
5742 if (i == E1000_VLVF_ARRAY_SIZE) {
5743 /* Did not find a matching VLAN ID entry that was
5744 * enabled. Search for a free filter entry, i.e.
5745 * one without the enable bit set
5746 */
5747 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5748 reg = rd32(E1000_VLVF(i));
5749 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5750 break;
5751 }
5752 }
5753 if (i < E1000_VLVF_ARRAY_SIZE) {
5754 /* Found an enabled/available entry */
5755 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5756
5757 /* if !enabled we need to set this up in vfta */
5758 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5759 /* add VID to filter table */
5760 igb_vfta_set(hw, vid, true);
5761 reg |= E1000_VLVF_VLANID_ENABLE;
5762 }
5763 reg &= ~E1000_VLVF_VLANID_MASK;
5764 reg |= vid;
5765 wr32(E1000_VLVF(i), reg);
5766
5767 /* do not modify RLPML for PF devices */
5768 if (vf >= adapter->vfs_allocated_count)
5769 return 0;
5770
5771 if (!adapter->vf_data[vf].vlans_enabled) {
5772 u32 size;
5773
5774 reg = rd32(E1000_VMOLR(vf));
5775 size = reg & E1000_VMOLR_RLPML_MASK;
5776 size += 4;
5777 reg &= ~E1000_VMOLR_RLPML_MASK;
5778 reg |= size;
5779 wr32(E1000_VMOLR(vf), reg);
5780 }
5781
5782 adapter->vf_data[vf].vlans_enabled++;
5783 }
5784 } else {
5785 if (i < E1000_VLVF_ARRAY_SIZE) {
5786 /* remove vf from the pool */
5787 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5788 /* if pool is empty then remove entry from vfta */
5789 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5790 reg = 0;
5791 igb_vfta_set(hw, vid, false);
5792 }
5793 wr32(E1000_VLVF(i), reg);
5794
5795 /* do not modify RLPML for PF devices */
5796 if (vf >= adapter->vfs_allocated_count)
5797 return 0;
5798
5799 adapter->vf_data[vf].vlans_enabled--;
5800 if (!adapter->vf_data[vf].vlans_enabled) {
5801 u32 size;
5802
5803 reg = rd32(E1000_VMOLR(vf));
5804 size = reg & E1000_VMOLR_RLPML_MASK;
5805 size -= 4;
5806 reg &= ~E1000_VMOLR_RLPML_MASK;
5807 reg |= size;
5808 wr32(E1000_VMOLR(vf), reg);
5809 }
5810 }
5811 }
5812 return 0;
5813 }
5814
5815 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5816 {
5817 struct e1000_hw *hw = &adapter->hw;
5818
5819 if (vid)
5820 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5821 else
5822 wr32(E1000_VMVIR(vf), 0);
5823 }
5824
5825 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5826 int vf, u16 vlan, u8 qos)
5827 {
5828 int err = 0;
5829 struct igb_adapter *adapter = netdev_priv(netdev);
5830
5831 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5832 return -EINVAL;
5833 if (vlan || qos) {
5834 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5835 if (err)
5836 goto out;
5837 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5838 igb_set_vmolr(adapter, vf, !vlan);
5839 adapter->vf_data[vf].pf_vlan = vlan;
5840 adapter->vf_data[vf].pf_qos = qos;
5841 dev_info(&adapter->pdev->dev,
5842 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5843 if (test_bit(__IGB_DOWN, &adapter->state)) {
5844 dev_warn(&adapter->pdev->dev,
5845 "The VF VLAN has been set, but the PF device is not up.\n");
5846 dev_warn(&adapter->pdev->dev,
5847 "Bring the PF device up before attempting to use the VF device.\n");
5848 }
5849 } else {
5850 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5851 false, vf);
5852 igb_set_vmvir(adapter, vlan, vf);
5853 igb_set_vmolr(adapter, vf, true);
5854 adapter->vf_data[vf].pf_vlan = 0;
5855 adapter->vf_data[vf].pf_qos = 0;
5856 }
5857 out:
5858 return err;
5859 }
5860
5861 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5862 {
5863 struct e1000_hw *hw = &adapter->hw;
5864 int i;
5865 u32 reg;
5866
5867 /* Find the vlan filter for this id */
5868 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5869 reg = rd32(E1000_VLVF(i));
5870 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5871 vid == (reg & E1000_VLVF_VLANID_MASK))
5872 break;
5873 }
5874
5875 if (i >= E1000_VLVF_ARRAY_SIZE)
5876 i = -1;
5877
5878 return i;
5879 }
5880
5881 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5882 {
5883 struct e1000_hw *hw = &adapter->hw;
5884 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5885 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5886 int err = 0;
5887
5888 /* If in promiscuous mode we need to make sure the PF also has
5889 * the VLAN filter set.
5890 */
5891 if (add && (adapter->netdev->flags & IFF_PROMISC))
5892 err = igb_vlvf_set(adapter, vid, add,
5893 adapter->vfs_allocated_count);
5894 if (err)
5895 goto out;
5896
5897 err = igb_vlvf_set(adapter, vid, add, vf);
5898
5899 if (err)
5900 goto out;
5901
5902 /* Go through all the checks to see if the VLAN filter should
5903 * be wiped completely.
5904 */
5905 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5906 u32 vlvf, bits;
5907 int regndx = igb_find_vlvf_entry(adapter, vid);
5908
5909 if (regndx < 0)
5910 goto out;
5911 /* See if any other pools are set for this VLAN filter
5912 * entry other than the PF.
5913 */
5914 vlvf = bits = rd32(E1000_VLVF(regndx));
5915 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5916 adapter->vfs_allocated_count);
5917 /* If the filter was removed then ensure PF pool bit
5918 * is cleared if the PF only added itself to the pool
5919 * because the PF is in promiscuous mode.
5920 */
5921 if ((vlvf & VLAN_VID_MASK) == vid &&
5922 !test_bit(vid, adapter->active_vlans) &&
5923 !bits)
5924 igb_vlvf_set(adapter, vid, add,
5925 adapter->vfs_allocated_count);
5926 }
5927
5928 out:
5929 return err;
5930 }
5931
5932 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5933 {
5934 /* clear flags - except flag that indicates PF has set the MAC */
5935 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5936 adapter->vf_data[vf].last_nack = jiffies;
5937
5938 /* reset offloads to defaults */
5939 igb_set_vmolr(adapter, vf, true);
5940
5941 /* reset vlans for device */
5942 igb_clear_vf_vfta(adapter, vf);
5943 if (adapter->vf_data[vf].pf_vlan)
5944 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5945 adapter->vf_data[vf].pf_vlan,
5946 adapter->vf_data[vf].pf_qos);
5947 else
5948 igb_clear_vf_vfta(adapter, vf);
5949
5950 /* reset multicast table array for vf */
5951 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5952
5953 /* Flush and reset the mta with the new values */
5954 igb_set_rx_mode(adapter->netdev);
5955 }
5956
5957 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5958 {
5959 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5960
5961 /* clear mac address as we were hotplug removed/added */
5962 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5963 eth_zero_addr(vf_mac);
5964
5965 /* process remaining reset events */
5966 igb_vf_reset(adapter, vf);
5967 }
5968
5969 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5970 {
5971 struct e1000_hw *hw = &adapter->hw;
5972 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5973 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5974 u32 reg, msgbuf[3];
5975 u8 *addr = (u8 *)(&msgbuf[1]);
5976
5977 /* process all the same items cleared in a function level reset */
5978 igb_vf_reset(adapter, vf);
5979
5980 /* set vf mac address */
5981 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5982
5983 /* enable transmit and receive for vf */
5984 reg = rd32(E1000_VFTE);
5985 wr32(E1000_VFTE, reg | (1 << vf));
5986 reg = rd32(E1000_VFRE);
5987 wr32(E1000_VFRE, reg | (1 << vf));
5988
5989 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5990
5991 /* reply to reset with ack and vf mac address */
5992 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5993 memcpy(addr, vf_mac, ETH_ALEN);
5994 igb_write_mbx(hw, msgbuf, 3, vf);
5995 }
5996
5997 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5998 {
5999 /* The VF MAC Address is stored in a packed array of bytes
6000 * starting at the second 32 bit word of the msg array
6001 */
6002 unsigned char *addr = (char *)&msg[1];
6003 int err = -1;
6004
6005 if (is_valid_ether_addr(addr))
6006 err = igb_set_vf_mac(adapter, vf, addr);
6007
6008 return err;
6009 }
6010
6011 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6012 {
6013 struct e1000_hw *hw = &adapter->hw;
6014 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6015 u32 msg = E1000_VT_MSGTYPE_NACK;
6016
6017 /* if device isn't clear to send it shouldn't be reading either */
6018 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6019 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6020 igb_write_mbx(hw, &msg, 1, vf);
6021 vf_data->last_nack = jiffies;
6022 }
6023 }
6024
6025 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6026 {
6027 struct pci_dev *pdev = adapter->pdev;
6028 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6029 struct e1000_hw *hw = &adapter->hw;
6030 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6031 s32 retval;
6032
6033 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6034
6035 if (retval) {
6036 /* if receive failed revoke VF CTS stats and restart init */
6037 dev_err(&pdev->dev, "Error receiving message from VF\n");
6038 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6039 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6040 return;
6041 goto out;
6042 }
6043
6044 /* this is a message we already processed, do nothing */
6045 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6046 return;
6047
6048 /* until the vf completes a reset it should not be
6049 * allowed to start any configuration.
6050 */
6051 if (msgbuf[0] == E1000_VF_RESET) {
6052 igb_vf_reset_msg(adapter, vf);
6053 return;
6054 }
6055
6056 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6057 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6058 return;
6059 retval = -1;
6060 goto out;
6061 }
6062
6063 switch ((msgbuf[0] & 0xFFFF)) {
6064 case E1000_VF_SET_MAC_ADDR:
6065 retval = -EINVAL;
6066 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6067 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6068 else
6069 dev_warn(&pdev->dev,
6070 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6071 vf);
6072 break;
6073 case E1000_VF_SET_PROMISC:
6074 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6075 break;
6076 case E1000_VF_SET_MULTICAST:
6077 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6078 break;
6079 case E1000_VF_SET_LPE:
6080 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6081 break;
6082 case E1000_VF_SET_VLAN:
6083 retval = -1;
6084 if (vf_data->pf_vlan)
6085 dev_warn(&pdev->dev,
6086 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6087 vf);
6088 else
6089 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6090 break;
6091 default:
6092 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6093 retval = -1;
6094 break;
6095 }
6096
6097 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6098 out:
6099 /* notify the VF of the results of what it sent us */
6100 if (retval)
6101 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6102 else
6103 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6104
6105 igb_write_mbx(hw, msgbuf, 1, vf);
6106 }
6107
6108 static void igb_msg_task(struct igb_adapter *adapter)
6109 {
6110 struct e1000_hw *hw = &adapter->hw;
6111 u32 vf;
6112
6113 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6114 /* process any reset requests */
6115 if (!igb_check_for_rst(hw, vf))
6116 igb_vf_reset_event(adapter, vf);
6117
6118 /* process any messages pending */
6119 if (!igb_check_for_msg(hw, vf))
6120 igb_rcv_msg_from_vf(adapter, vf);
6121
6122 /* process any acks */
6123 if (!igb_check_for_ack(hw, vf))
6124 igb_rcv_ack_from_vf(adapter, vf);
6125 }
6126 }
6127
6128 /**
6129 * igb_set_uta - Set unicast filter table address
6130 * @adapter: board private structure
6131 *
6132 * The unicast table address is a register array of 32-bit registers.
6133 * The table is meant to be used in a way similar to how the MTA is used
6134 * however due to certain limitations in the hardware it is necessary to
6135 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6136 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6137 **/
6138 static void igb_set_uta(struct igb_adapter *adapter)
6139 {
6140 struct e1000_hw *hw = &adapter->hw;
6141 int i;
6142
6143 /* The UTA table only exists on 82576 hardware and newer */
6144 if (hw->mac.type < e1000_82576)
6145 return;
6146
6147 /* we only need to do this if VMDq is enabled */
6148 if (!adapter->vfs_allocated_count)
6149 return;
6150
6151 for (i = 0; i < hw->mac.uta_reg_count; i++)
6152 array_wr32(E1000_UTA, i, ~0);
6153 }
6154
6155 /**
6156 * igb_intr_msi - Interrupt Handler
6157 * @irq: interrupt number
6158 * @data: pointer to a network interface device structure
6159 **/
6160 static irqreturn_t igb_intr_msi(int irq, void *data)
6161 {
6162 struct igb_adapter *adapter = data;
6163 struct igb_q_vector *q_vector = adapter->q_vector[0];
6164 struct e1000_hw *hw = &adapter->hw;
6165 /* read ICR disables interrupts using IAM */
6166 u32 icr = rd32(E1000_ICR);
6167
6168 igb_write_itr(q_vector);
6169
6170 if (icr & E1000_ICR_DRSTA)
6171 schedule_work(&adapter->reset_task);
6172
6173 if (icr & E1000_ICR_DOUTSYNC) {
6174 /* HW is reporting DMA is out of sync */
6175 adapter->stats.doosync++;
6176 }
6177
6178 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6179 hw->mac.get_link_status = 1;
6180 if (!test_bit(__IGB_DOWN, &adapter->state))
6181 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6182 }
6183
6184 if (icr & E1000_ICR_TS) {
6185 u32 tsicr = rd32(E1000_TSICR);
6186
6187 if (tsicr & E1000_TSICR_TXTS) {
6188 /* acknowledge the interrupt */
6189 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6190 /* retrieve hardware timestamp */
6191 schedule_work(&adapter->ptp_tx_work);
6192 }
6193 }
6194
6195 napi_schedule(&q_vector->napi);
6196
6197 return IRQ_HANDLED;
6198 }
6199
6200 /**
6201 * igb_intr - Legacy Interrupt Handler
6202 * @irq: interrupt number
6203 * @data: pointer to a network interface device structure
6204 **/
6205 static irqreturn_t igb_intr(int irq, void *data)
6206 {
6207 struct igb_adapter *adapter = data;
6208 struct igb_q_vector *q_vector = adapter->q_vector[0];
6209 struct e1000_hw *hw = &adapter->hw;
6210 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6211 * need for the IMC write
6212 */
6213 u32 icr = rd32(E1000_ICR);
6214
6215 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6216 * not set, then the adapter didn't send an interrupt
6217 */
6218 if (!(icr & E1000_ICR_INT_ASSERTED))
6219 return IRQ_NONE;
6220
6221 igb_write_itr(q_vector);
6222
6223 if (icr & E1000_ICR_DRSTA)
6224 schedule_work(&adapter->reset_task);
6225
6226 if (icr & E1000_ICR_DOUTSYNC) {
6227 /* HW is reporting DMA is out of sync */
6228 adapter->stats.doosync++;
6229 }
6230
6231 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6232 hw->mac.get_link_status = 1;
6233 /* guard against interrupt when we're going down */
6234 if (!test_bit(__IGB_DOWN, &adapter->state))
6235 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6236 }
6237
6238 if (icr & E1000_ICR_TS) {
6239 u32 tsicr = rd32(E1000_TSICR);
6240
6241 if (tsicr & E1000_TSICR_TXTS) {
6242 /* acknowledge the interrupt */
6243 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6244 /* retrieve hardware timestamp */
6245 schedule_work(&adapter->ptp_tx_work);
6246 }
6247 }
6248
6249 napi_schedule(&q_vector->napi);
6250
6251 return IRQ_HANDLED;
6252 }
6253
6254 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6255 {
6256 struct igb_adapter *adapter = q_vector->adapter;
6257 struct e1000_hw *hw = &adapter->hw;
6258
6259 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6260 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6261 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6262 igb_set_itr(q_vector);
6263 else
6264 igb_update_ring_itr(q_vector);
6265 }
6266
6267 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6268 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6269 wr32(E1000_EIMS, q_vector->eims_value);
6270 else
6271 igb_irq_enable(adapter);
6272 }
6273 }
6274
6275 /**
6276 * igb_poll - NAPI Rx polling callback
6277 * @napi: napi polling structure
6278 * @budget: count of how many packets we should handle
6279 **/
6280 static int igb_poll(struct napi_struct *napi, int budget)
6281 {
6282 struct igb_q_vector *q_vector = container_of(napi,
6283 struct igb_q_vector,
6284 napi);
6285 bool clean_complete = true;
6286
6287 #ifdef CONFIG_IGB_DCA
6288 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6289 igb_update_dca(q_vector);
6290 #endif
6291 if (q_vector->tx.ring)
6292 clean_complete = igb_clean_tx_irq(q_vector);
6293
6294 if (q_vector->rx.ring)
6295 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6296
6297 /* If all work not completed, return budget and keep polling */
6298 if (!clean_complete)
6299 return budget;
6300
6301 /* If not enough Rx work done, exit the polling mode */
6302 napi_complete(napi);
6303 igb_ring_irq_enable(q_vector);
6304
6305 return 0;
6306 }
6307
6308 /**
6309 * igb_clean_tx_irq - Reclaim resources after transmit completes
6310 * @q_vector: pointer to q_vector containing needed info
6311 *
6312 * returns true if ring is completely cleaned
6313 **/
6314 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6315 {
6316 struct igb_adapter *adapter = q_vector->adapter;
6317 struct igb_ring *tx_ring = q_vector->tx.ring;
6318 struct igb_tx_buffer *tx_buffer;
6319 union e1000_adv_tx_desc *tx_desc;
6320 unsigned int total_bytes = 0, total_packets = 0;
6321 unsigned int budget = q_vector->tx.work_limit;
6322 unsigned int i = tx_ring->next_to_clean;
6323
6324 if (test_bit(__IGB_DOWN, &adapter->state))
6325 return true;
6326
6327 tx_buffer = &tx_ring->tx_buffer_info[i];
6328 tx_desc = IGB_TX_DESC(tx_ring, i);
6329 i -= tx_ring->count;
6330
6331 do {
6332 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6333
6334 /* if next_to_watch is not set then there is no work pending */
6335 if (!eop_desc)
6336 break;
6337
6338 /* prevent any other reads prior to eop_desc */
6339 read_barrier_depends();
6340
6341 /* if DD is not set pending work has not been completed */
6342 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6343 break;
6344
6345 /* clear next_to_watch to prevent false hangs */
6346 tx_buffer->next_to_watch = NULL;
6347
6348 /* update the statistics for this packet */
6349 total_bytes += tx_buffer->bytecount;
6350 total_packets += tx_buffer->gso_segs;
6351
6352 /* free the skb */
6353 dev_kfree_skb_any(tx_buffer->skb);
6354
6355 /* unmap skb header data */
6356 dma_unmap_single(tx_ring->dev,
6357 dma_unmap_addr(tx_buffer, dma),
6358 dma_unmap_len(tx_buffer, len),
6359 DMA_TO_DEVICE);
6360
6361 /* clear tx_buffer data */
6362 tx_buffer->skb = NULL;
6363 dma_unmap_len_set(tx_buffer, len, 0);
6364
6365 /* clear last DMA location and unmap remaining buffers */
6366 while (tx_desc != eop_desc) {
6367 tx_buffer++;
6368 tx_desc++;
6369 i++;
6370 if (unlikely(!i)) {
6371 i -= tx_ring->count;
6372 tx_buffer = tx_ring->tx_buffer_info;
6373 tx_desc = IGB_TX_DESC(tx_ring, 0);
6374 }
6375
6376 /* unmap any remaining paged data */
6377 if (dma_unmap_len(tx_buffer, len)) {
6378 dma_unmap_page(tx_ring->dev,
6379 dma_unmap_addr(tx_buffer, dma),
6380 dma_unmap_len(tx_buffer, len),
6381 DMA_TO_DEVICE);
6382 dma_unmap_len_set(tx_buffer, len, 0);
6383 }
6384 }
6385
6386 /* move us one more past the eop_desc for start of next pkt */
6387 tx_buffer++;
6388 tx_desc++;
6389 i++;
6390 if (unlikely(!i)) {
6391 i -= tx_ring->count;
6392 tx_buffer = tx_ring->tx_buffer_info;
6393 tx_desc = IGB_TX_DESC(tx_ring, 0);
6394 }
6395
6396 /* issue prefetch for next Tx descriptor */
6397 prefetch(tx_desc);
6398
6399 /* update budget accounting */
6400 budget--;
6401 } while (likely(budget));
6402
6403 netdev_tx_completed_queue(txring_txq(tx_ring),
6404 total_packets, total_bytes);
6405 i += tx_ring->count;
6406 tx_ring->next_to_clean = i;
6407 u64_stats_update_begin(&tx_ring->tx_syncp);
6408 tx_ring->tx_stats.bytes += total_bytes;
6409 tx_ring->tx_stats.packets += total_packets;
6410 u64_stats_update_end(&tx_ring->tx_syncp);
6411 q_vector->tx.total_bytes += total_bytes;
6412 q_vector->tx.total_packets += total_packets;
6413
6414 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6415 struct e1000_hw *hw = &adapter->hw;
6416
6417 /* Detect a transmit hang in hardware, this serializes the
6418 * check with the clearing of time_stamp and movement of i
6419 */
6420 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6421 if (tx_buffer->next_to_watch &&
6422 time_after(jiffies, tx_buffer->time_stamp +
6423 (adapter->tx_timeout_factor * HZ)) &&
6424 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6425
6426 /* detected Tx unit hang */
6427 dev_err(tx_ring->dev,
6428 "Detected Tx Unit Hang\n"
6429 " Tx Queue <%d>\n"
6430 " TDH <%x>\n"
6431 " TDT <%x>\n"
6432 " next_to_use <%x>\n"
6433 " next_to_clean <%x>\n"
6434 "buffer_info[next_to_clean]\n"
6435 " time_stamp <%lx>\n"
6436 " next_to_watch <%p>\n"
6437 " jiffies <%lx>\n"
6438 " desc.status <%x>\n",
6439 tx_ring->queue_index,
6440 rd32(E1000_TDH(tx_ring->reg_idx)),
6441 readl(tx_ring->tail),
6442 tx_ring->next_to_use,
6443 tx_ring->next_to_clean,
6444 tx_buffer->time_stamp,
6445 tx_buffer->next_to_watch,
6446 jiffies,
6447 tx_buffer->next_to_watch->wb.status);
6448 netif_stop_subqueue(tx_ring->netdev,
6449 tx_ring->queue_index);
6450
6451 /* we are about to reset, no point in enabling stuff */
6452 return true;
6453 }
6454 }
6455
6456 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6457 if (unlikely(total_packets &&
6458 netif_carrier_ok(tx_ring->netdev) &&
6459 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6460 /* Make sure that anybody stopping the queue after this
6461 * sees the new next_to_clean.
6462 */
6463 smp_mb();
6464 if (__netif_subqueue_stopped(tx_ring->netdev,
6465 tx_ring->queue_index) &&
6466 !(test_bit(__IGB_DOWN, &adapter->state))) {
6467 netif_wake_subqueue(tx_ring->netdev,
6468 tx_ring->queue_index);
6469
6470 u64_stats_update_begin(&tx_ring->tx_syncp);
6471 tx_ring->tx_stats.restart_queue++;
6472 u64_stats_update_end(&tx_ring->tx_syncp);
6473 }
6474 }
6475
6476 return !!budget;
6477 }
6478
6479 /**
6480 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6481 * @rx_ring: rx descriptor ring to store buffers on
6482 * @old_buff: donor buffer to have page reused
6483 *
6484 * Synchronizes page for reuse by the adapter
6485 **/
6486 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6487 struct igb_rx_buffer *old_buff)
6488 {
6489 struct igb_rx_buffer *new_buff;
6490 u16 nta = rx_ring->next_to_alloc;
6491
6492 new_buff = &rx_ring->rx_buffer_info[nta];
6493
6494 /* update, and store next to alloc */
6495 nta++;
6496 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6497
6498 /* transfer page from old buffer to new buffer */
6499 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6500
6501 /* sync the buffer for use by the device */
6502 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6503 old_buff->page_offset,
6504 IGB_RX_BUFSZ,
6505 DMA_FROM_DEVICE);
6506 }
6507
6508 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6509 struct page *page,
6510 unsigned int truesize)
6511 {
6512 /* avoid re-using remote pages */
6513 if (unlikely(page_to_nid(page) != numa_node_id()))
6514 return false;
6515
6516 #if (PAGE_SIZE < 8192)
6517 /* if we are only owner of page we can reuse it */
6518 if (unlikely(page_count(page) != 1))
6519 return false;
6520
6521 /* flip page offset to other buffer */
6522 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6523
6524 /* since we are the only owner of the page and we need to
6525 * increment it, just set the value to 2 in order to avoid
6526 * an unnecessary locked operation
6527 */
6528 atomic_set(&page->_count, 2);
6529 #else
6530 /* move offset up to the next cache line */
6531 rx_buffer->page_offset += truesize;
6532
6533 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6534 return false;
6535
6536 /* bump ref count on page before it is given to the stack */
6537 get_page(page);
6538 #endif
6539
6540 return true;
6541 }
6542
6543 /**
6544 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6545 * @rx_ring: rx descriptor ring to transact packets on
6546 * @rx_buffer: buffer containing page to add
6547 * @rx_desc: descriptor containing length of buffer written by hardware
6548 * @skb: sk_buff to place the data into
6549 *
6550 * This function will add the data contained in rx_buffer->page to the skb.
6551 * This is done either through a direct copy if the data in the buffer is
6552 * less than the skb header size, otherwise it will just attach the page as
6553 * a frag to the skb.
6554 *
6555 * The function will then update the page offset if necessary and return
6556 * true if the buffer can be reused by the adapter.
6557 **/
6558 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6559 struct igb_rx_buffer *rx_buffer,
6560 union e1000_adv_rx_desc *rx_desc,
6561 struct sk_buff *skb)
6562 {
6563 struct page *page = rx_buffer->page;
6564 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6565 #if (PAGE_SIZE < 8192)
6566 unsigned int truesize = IGB_RX_BUFSZ;
6567 #else
6568 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6569 #endif
6570
6571 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6572 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6573
6574 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6575 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6576 va += IGB_TS_HDR_LEN;
6577 size -= IGB_TS_HDR_LEN;
6578 }
6579
6580 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6581
6582 /* we can reuse buffer as-is, just make sure it is local */
6583 if (likely(page_to_nid(page) == numa_node_id()))
6584 return true;
6585
6586 /* this page cannot be reused so discard it */
6587 put_page(page);
6588 return false;
6589 }
6590
6591 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6592 rx_buffer->page_offset, size, truesize);
6593
6594 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6595 }
6596
6597 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6598 union e1000_adv_rx_desc *rx_desc,
6599 struct sk_buff *skb)
6600 {
6601 struct igb_rx_buffer *rx_buffer;
6602 struct page *page;
6603
6604 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6605
6606 page = rx_buffer->page;
6607 prefetchw(page);
6608
6609 if (likely(!skb)) {
6610 void *page_addr = page_address(page) +
6611 rx_buffer->page_offset;
6612
6613 /* prefetch first cache line of first page */
6614 prefetch(page_addr);
6615 #if L1_CACHE_BYTES < 128
6616 prefetch(page_addr + L1_CACHE_BYTES);
6617 #endif
6618
6619 /* allocate a skb to store the frags */
6620 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6621 IGB_RX_HDR_LEN);
6622 if (unlikely(!skb)) {
6623 rx_ring->rx_stats.alloc_failed++;
6624 return NULL;
6625 }
6626
6627 /* we will be copying header into skb->data in
6628 * pskb_may_pull so it is in our interest to prefetch
6629 * it now to avoid a possible cache miss
6630 */
6631 prefetchw(skb->data);
6632 }
6633
6634 /* we are reusing so sync this buffer for CPU use */
6635 dma_sync_single_range_for_cpu(rx_ring->dev,
6636 rx_buffer->dma,
6637 rx_buffer->page_offset,
6638 IGB_RX_BUFSZ,
6639 DMA_FROM_DEVICE);
6640
6641 /* pull page into skb */
6642 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6643 /* hand second half of page back to the ring */
6644 igb_reuse_rx_page(rx_ring, rx_buffer);
6645 } else {
6646 /* we are not reusing the buffer so unmap it */
6647 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6648 PAGE_SIZE, DMA_FROM_DEVICE);
6649 }
6650
6651 /* clear contents of rx_buffer */
6652 rx_buffer->page = NULL;
6653
6654 return skb;
6655 }
6656
6657 static inline void igb_rx_checksum(struct igb_ring *ring,
6658 union e1000_adv_rx_desc *rx_desc,
6659 struct sk_buff *skb)
6660 {
6661 skb_checksum_none_assert(skb);
6662
6663 /* Ignore Checksum bit is set */
6664 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6665 return;
6666
6667 /* Rx checksum disabled via ethtool */
6668 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6669 return;
6670
6671 /* TCP/UDP checksum error bit is set */
6672 if (igb_test_staterr(rx_desc,
6673 E1000_RXDEXT_STATERR_TCPE |
6674 E1000_RXDEXT_STATERR_IPE)) {
6675 /* work around errata with sctp packets where the TCPE aka
6676 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6677 * packets, (aka let the stack check the crc32c)
6678 */
6679 if (!((skb->len == 60) &&
6680 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6681 u64_stats_update_begin(&ring->rx_syncp);
6682 ring->rx_stats.csum_err++;
6683 u64_stats_update_end(&ring->rx_syncp);
6684 }
6685 /* let the stack verify checksum errors */
6686 return;
6687 }
6688 /* It must be a TCP or UDP packet with a valid checksum */
6689 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6690 E1000_RXD_STAT_UDPCS))
6691 skb->ip_summed = CHECKSUM_UNNECESSARY;
6692
6693 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6694 le32_to_cpu(rx_desc->wb.upper.status_error));
6695 }
6696
6697 static inline void igb_rx_hash(struct igb_ring *ring,
6698 union e1000_adv_rx_desc *rx_desc,
6699 struct sk_buff *skb)
6700 {
6701 if (ring->netdev->features & NETIF_F_RXHASH)
6702 skb_set_hash(skb,
6703 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6704 PKT_HASH_TYPE_L3);
6705 }
6706
6707 /**
6708 * igb_is_non_eop - process handling of non-EOP buffers
6709 * @rx_ring: Rx ring being processed
6710 * @rx_desc: Rx descriptor for current buffer
6711 * @skb: current socket buffer containing buffer in progress
6712 *
6713 * This function updates next to clean. If the buffer is an EOP buffer
6714 * this function exits returning false, otherwise it will place the
6715 * sk_buff in the next buffer to be chained and return true indicating
6716 * that this is in fact a non-EOP buffer.
6717 **/
6718 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6719 union e1000_adv_rx_desc *rx_desc)
6720 {
6721 u32 ntc = rx_ring->next_to_clean + 1;
6722
6723 /* fetch, update, and store next to clean */
6724 ntc = (ntc < rx_ring->count) ? ntc : 0;
6725 rx_ring->next_to_clean = ntc;
6726
6727 prefetch(IGB_RX_DESC(rx_ring, ntc));
6728
6729 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6730 return false;
6731
6732 return true;
6733 }
6734
6735 /**
6736 * igb_get_headlen - determine size of header for LRO/GRO
6737 * @data: pointer to the start of the headers
6738 * @max_len: total length of section to find headers in
6739 *
6740 * This function is meant to determine the length of headers that will
6741 * be recognized by hardware for LRO, and GRO offloads. The main
6742 * motivation of doing this is to only perform one pull for IPv4 TCP
6743 * packets so that we can do basic things like calculating the gso_size
6744 * based on the average data per packet.
6745 **/
6746 static unsigned int igb_get_headlen(unsigned char *data,
6747 unsigned int max_len)
6748 {
6749 union {
6750 unsigned char *network;
6751 /* l2 headers */
6752 struct ethhdr *eth;
6753 struct vlan_hdr *vlan;
6754 /* l3 headers */
6755 struct iphdr *ipv4;
6756 struct ipv6hdr *ipv6;
6757 } hdr;
6758 __be16 protocol;
6759 u8 nexthdr = 0; /* default to not TCP */
6760 u8 hlen;
6761
6762 /* this should never happen, but better safe than sorry */
6763 if (max_len < ETH_HLEN)
6764 return max_len;
6765
6766 /* initialize network frame pointer */
6767 hdr.network = data;
6768
6769 /* set first protocol and move network header forward */
6770 protocol = hdr.eth->h_proto;
6771 hdr.network += ETH_HLEN;
6772
6773 /* handle any vlan tag if present */
6774 if (protocol == htons(ETH_P_8021Q)) {
6775 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6776 return max_len;
6777
6778 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6779 hdr.network += VLAN_HLEN;
6780 }
6781
6782 /* handle L3 protocols */
6783 if (protocol == htons(ETH_P_IP)) {
6784 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6785 return max_len;
6786
6787 /* access ihl as a u8 to avoid unaligned access on ia64 */
6788 hlen = (hdr.network[0] & 0x0F) << 2;
6789
6790 /* verify hlen meets minimum size requirements */
6791 if (hlen < sizeof(struct iphdr))
6792 return hdr.network - data;
6793
6794 /* record next protocol if header is present */
6795 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6796 nexthdr = hdr.ipv4->protocol;
6797 } else if (protocol == htons(ETH_P_IPV6)) {
6798 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6799 return max_len;
6800
6801 /* record next protocol */
6802 nexthdr = hdr.ipv6->nexthdr;
6803 hlen = sizeof(struct ipv6hdr);
6804 } else {
6805 return hdr.network - data;
6806 }
6807
6808 /* relocate pointer to start of L4 header */
6809 hdr.network += hlen;
6810
6811 /* finally sort out TCP */
6812 if (nexthdr == IPPROTO_TCP) {
6813 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6814 return max_len;
6815
6816 /* access doff as a u8 to avoid unaligned access on ia64 */
6817 hlen = (hdr.network[12] & 0xF0) >> 2;
6818
6819 /* verify hlen meets minimum size requirements */
6820 if (hlen < sizeof(struct tcphdr))
6821 return hdr.network - data;
6822
6823 hdr.network += hlen;
6824 } else if (nexthdr == IPPROTO_UDP) {
6825 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6826 return max_len;
6827
6828 hdr.network += sizeof(struct udphdr);
6829 }
6830
6831 /* If everything has gone correctly hdr.network should be the
6832 * data section of the packet and will be the end of the header.
6833 * If not then it probably represents the end of the last recognized
6834 * header.
6835 */
6836 if ((hdr.network - data) < max_len)
6837 return hdr.network - data;
6838 else
6839 return max_len;
6840 }
6841
6842 /**
6843 * igb_pull_tail - igb specific version of skb_pull_tail
6844 * @rx_ring: rx descriptor ring packet is being transacted on
6845 * @rx_desc: pointer to the EOP Rx descriptor
6846 * @skb: pointer to current skb being adjusted
6847 *
6848 * This function is an igb specific version of __pskb_pull_tail. The
6849 * main difference between this version and the original function is that
6850 * this function can make several assumptions about the state of things
6851 * that allow for significant optimizations versus the standard function.
6852 * As a result we can do things like drop a frag and maintain an accurate
6853 * truesize for the skb.
6854 */
6855 static void igb_pull_tail(struct igb_ring *rx_ring,
6856 union e1000_adv_rx_desc *rx_desc,
6857 struct sk_buff *skb)
6858 {
6859 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6860 unsigned char *va;
6861 unsigned int pull_len;
6862
6863 /* it is valid to use page_address instead of kmap since we are
6864 * working with pages allocated out of the lomem pool per
6865 * alloc_page(GFP_ATOMIC)
6866 */
6867 va = skb_frag_address(frag);
6868
6869 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6870 /* retrieve timestamp from buffer */
6871 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6872
6873 /* update pointers to remove timestamp header */
6874 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6875 frag->page_offset += IGB_TS_HDR_LEN;
6876 skb->data_len -= IGB_TS_HDR_LEN;
6877 skb->len -= IGB_TS_HDR_LEN;
6878
6879 /* move va to start of packet data */
6880 va += IGB_TS_HDR_LEN;
6881 }
6882
6883 /* we need the header to contain the greater of either ETH_HLEN or
6884 * 60 bytes if the skb->len is less than 60 for skb_pad.
6885 */
6886 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6887
6888 /* align pull length to size of long to optimize memcpy performance */
6889 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6890
6891 /* update all of the pointers */
6892 skb_frag_size_sub(frag, pull_len);
6893 frag->page_offset += pull_len;
6894 skb->data_len -= pull_len;
6895 skb->tail += pull_len;
6896 }
6897
6898 /**
6899 * igb_cleanup_headers - Correct corrupted or empty headers
6900 * @rx_ring: rx descriptor ring packet is being transacted on
6901 * @rx_desc: pointer to the EOP Rx descriptor
6902 * @skb: pointer to current skb being fixed
6903 *
6904 * Address the case where we are pulling data in on pages only
6905 * and as such no data is present in the skb header.
6906 *
6907 * In addition if skb is not at least 60 bytes we need to pad it so that
6908 * it is large enough to qualify as a valid Ethernet frame.
6909 *
6910 * Returns true if an error was encountered and skb was freed.
6911 **/
6912 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6913 union e1000_adv_rx_desc *rx_desc,
6914 struct sk_buff *skb)
6915 {
6916 if (unlikely((igb_test_staterr(rx_desc,
6917 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6918 struct net_device *netdev = rx_ring->netdev;
6919 if (!(netdev->features & NETIF_F_RXALL)) {
6920 dev_kfree_skb_any(skb);
6921 return true;
6922 }
6923 }
6924
6925 /* place header in linear portion of buffer */
6926 if (skb_is_nonlinear(skb))
6927 igb_pull_tail(rx_ring, rx_desc, skb);
6928
6929 /* if skb_pad returns an error the skb was freed */
6930 if (unlikely(skb->len < 60)) {
6931 int pad_len = 60 - skb->len;
6932
6933 if (skb_pad(skb, pad_len))
6934 return true;
6935 __skb_put(skb, pad_len);
6936 }
6937
6938 return false;
6939 }
6940
6941 /**
6942 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6943 * @rx_ring: rx descriptor ring packet is being transacted on
6944 * @rx_desc: pointer to the EOP Rx descriptor
6945 * @skb: pointer to current skb being populated
6946 *
6947 * This function checks the ring, descriptor, and packet information in
6948 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6949 * other fields within the skb.
6950 **/
6951 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6952 union e1000_adv_rx_desc *rx_desc,
6953 struct sk_buff *skb)
6954 {
6955 struct net_device *dev = rx_ring->netdev;
6956
6957 igb_rx_hash(rx_ring, rx_desc, skb);
6958
6959 igb_rx_checksum(rx_ring, rx_desc, skb);
6960
6961 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6962 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6963 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6964
6965 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6966 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6967 u16 vid;
6968
6969 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6970 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6971 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6972 else
6973 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6974
6975 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6976 }
6977
6978 skb_record_rx_queue(skb, rx_ring->queue_index);
6979
6980 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6981 }
6982
6983 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6984 {
6985 struct igb_ring *rx_ring = q_vector->rx.ring;
6986 struct sk_buff *skb = rx_ring->skb;
6987 unsigned int total_bytes = 0, total_packets = 0;
6988 u16 cleaned_count = igb_desc_unused(rx_ring);
6989
6990 while (likely(total_packets < budget)) {
6991 union e1000_adv_rx_desc *rx_desc;
6992
6993 /* return some buffers to hardware, one at a time is too slow */
6994 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6995 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6996 cleaned_count = 0;
6997 }
6998
6999 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7000
7001 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
7002 break;
7003
7004 /* This memory barrier is needed to keep us from reading
7005 * any other fields out of the rx_desc until we know the
7006 * RXD_STAT_DD bit is set
7007 */
7008 rmb();
7009
7010 /* retrieve a buffer from the ring */
7011 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7012
7013 /* exit if we failed to retrieve a buffer */
7014 if (!skb)
7015 break;
7016
7017 cleaned_count++;
7018
7019 /* fetch next buffer in frame if non-eop */
7020 if (igb_is_non_eop(rx_ring, rx_desc))
7021 continue;
7022
7023 /* verify the packet layout is correct */
7024 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7025 skb = NULL;
7026 continue;
7027 }
7028
7029 /* probably a little skewed due to removing CRC */
7030 total_bytes += skb->len;
7031
7032 /* populate checksum, timestamp, VLAN, and protocol */
7033 igb_process_skb_fields(rx_ring, rx_desc, skb);
7034
7035 napi_gro_receive(&q_vector->napi, skb);
7036
7037 /* reset skb pointer */
7038 skb = NULL;
7039
7040 /* update budget accounting */
7041 total_packets++;
7042 }
7043
7044 /* place incomplete frames back on ring for completion */
7045 rx_ring->skb = skb;
7046
7047 u64_stats_update_begin(&rx_ring->rx_syncp);
7048 rx_ring->rx_stats.packets += total_packets;
7049 rx_ring->rx_stats.bytes += total_bytes;
7050 u64_stats_update_end(&rx_ring->rx_syncp);
7051 q_vector->rx.total_packets += total_packets;
7052 q_vector->rx.total_bytes += total_bytes;
7053
7054 if (cleaned_count)
7055 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7056
7057 return (total_packets < budget);
7058 }
7059
7060 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7061 struct igb_rx_buffer *bi)
7062 {
7063 struct page *page = bi->page;
7064 dma_addr_t dma;
7065
7066 /* since we are recycling buffers we should seldom need to alloc */
7067 if (likely(page))
7068 return true;
7069
7070 /* alloc new page for storage */
7071 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7072 if (unlikely(!page)) {
7073 rx_ring->rx_stats.alloc_failed++;
7074 return false;
7075 }
7076
7077 /* map page for use */
7078 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7079
7080 /* if mapping failed free memory back to system since
7081 * there isn't much point in holding memory we can't use
7082 */
7083 if (dma_mapping_error(rx_ring->dev, dma)) {
7084 __free_page(page);
7085
7086 rx_ring->rx_stats.alloc_failed++;
7087 return false;
7088 }
7089
7090 bi->dma = dma;
7091 bi->page = page;
7092 bi->page_offset = 0;
7093
7094 return true;
7095 }
7096
7097 /**
7098 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7099 * @adapter: address of board private structure
7100 **/
7101 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7102 {
7103 union e1000_adv_rx_desc *rx_desc;
7104 struct igb_rx_buffer *bi;
7105 u16 i = rx_ring->next_to_use;
7106
7107 /* nothing to do */
7108 if (!cleaned_count)
7109 return;
7110
7111 rx_desc = IGB_RX_DESC(rx_ring, i);
7112 bi = &rx_ring->rx_buffer_info[i];
7113 i -= rx_ring->count;
7114
7115 do {
7116 if (!igb_alloc_mapped_page(rx_ring, bi))
7117 break;
7118
7119 /* Refresh the desc even if buffer_addrs didn't change
7120 * because each write-back erases this info.
7121 */
7122 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7123
7124 rx_desc++;
7125 bi++;
7126 i++;
7127 if (unlikely(!i)) {
7128 rx_desc = IGB_RX_DESC(rx_ring, 0);
7129 bi = rx_ring->rx_buffer_info;
7130 i -= rx_ring->count;
7131 }
7132
7133 /* clear the hdr_addr for the next_to_use descriptor */
7134 rx_desc->read.hdr_addr = 0;
7135
7136 cleaned_count--;
7137 } while (cleaned_count);
7138
7139 i += rx_ring->count;
7140
7141 if (rx_ring->next_to_use != i) {
7142 /* record the next descriptor to use */
7143 rx_ring->next_to_use = i;
7144
7145 /* update next to alloc since we have filled the ring */
7146 rx_ring->next_to_alloc = i;
7147
7148 /* Force memory writes to complete before letting h/w
7149 * know there are new descriptors to fetch. (Only
7150 * applicable for weak-ordered memory model archs,
7151 * such as IA-64).
7152 */
7153 wmb();
7154 writel(i, rx_ring->tail);
7155 }
7156 }
7157
7158 /**
7159 * igb_mii_ioctl -
7160 * @netdev:
7161 * @ifreq:
7162 * @cmd:
7163 **/
7164 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7165 {
7166 struct igb_adapter *adapter = netdev_priv(netdev);
7167 struct mii_ioctl_data *data = if_mii(ifr);
7168
7169 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7170 return -EOPNOTSUPP;
7171
7172 switch (cmd) {
7173 case SIOCGMIIPHY:
7174 data->phy_id = adapter->hw.phy.addr;
7175 break;
7176 case SIOCGMIIREG:
7177 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7178 &data->val_out))
7179 return -EIO;
7180 break;
7181 case SIOCSMIIREG:
7182 default:
7183 return -EOPNOTSUPP;
7184 }
7185 return 0;
7186 }
7187
7188 /**
7189 * igb_ioctl -
7190 * @netdev:
7191 * @ifreq:
7192 * @cmd:
7193 **/
7194 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7195 {
7196 switch (cmd) {
7197 case SIOCGMIIPHY:
7198 case SIOCGMIIREG:
7199 case SIOCSMIIREG:
7200 return igb_mii_ioctl(netdev, ifr, cmd);
7201 case SIOCGHWTSTAMP:
7202 return igb_ptp_get_ts_config(netdev, ifr);
7203 case SIOCSHWTSTAMP:
7204 return igb_ptp_set_ts_config(netdev, ifr);
7205 default:
7206 return -EOPNOTSUPP;
7207 }
7208 }
7209
7210 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7211 {
7212 struct igb_adapter *adapter = hw->back;
7213
7214 if (pcie_capability_read_word(adapter->pdev, reg, value))
7215 return -E1000_ERR_CONFIG;
7216
7217 return 0;
7218 }
7219
7220 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7221 {
7222 struct igb_adapter *adapter = hw->back;
7223
7224 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7225 return -E1000_ERR_CONFIG;
7226
7227 return 0;
7228 }
7229
7230 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7231 {
7232 struct igb_adapter *adapter = netdev_priv(netdev);
7233 struct e1000_hw *hw = &adapter->hw;
7234 u32 ctrl, rctl;
7235 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7236
7237 if (enable) {
7238 /* enable VLAN tag insert/strip */
7239 ctrl = rd32(E1000_CTRL);
7240 ctrl |= E1000_CTRL_VME;
7241 wr32(E1000_CTRL, ctrl);
7242
7243 /* Disable CFI check */
7244 rctl = rd32(E1000_RCTL);
7245 rctl &= ~E1000_RCTL_CFIEN;
7246 wr32(E1000_RCTL, rctl);
7247 } else {
7248 /* disable VLAN tag insert/strip */
7249 ctrl = rd32(E1000_CTRL);
7250 ctrl &= ~E1000_CTRL_VME;
7251 wr32(E1000_CTRL, ctrl);
7252 }
7253
7254 igb_rlpml_set(adapter);
7255 }
7256
7257 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7258 __be16 proto, u16 vid)
7259 {
7260 struct igb_adapter *adapter = netdev_priv(netdev);
7261 struct e1000_hw *hw = &adapter->hw;
7262 int pf_id = adapter->vfs_allocated_count;
7263
7264 /* attempt to add filter to vlvf array */
7265 igb_vlvf_set(adapter, vid, true, pf_id);
7266
7267 /* add the filter since PF can receive vlans w/o entry in vlvf */
7268 igb_vfta_set(hw, vid, true);
7269
7270 set_bit(vid, adapter->active_vlans);
7271
7272 return 0;
7273 }
7274
7275 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7276 __be16 proto, u16 vid)
7277 {
7278 struct igb_adapter *adapter = netdev_priv(netdev);
7279 struct e1000_hw *hw = &adapter->hw;
7280 int pf_id = adapter->vfs_allocated_count;
7281 s32 err;
7282
7283 /* remove vlan from VLVF table array */
7284 err = igb_vlvf_set(adapter, vid, false, pf_id);
7285
7286 /* if vid was not present in VLVF just remove it from table */
7287 if (err)
7288 igb_vfta_set(hw, vid, false);
7289
7290 clear_bit(vid, adapter->active_vlans);
7291
7292 return 0;
7293 }
7294
7295 static void igb_restore_vlan(struct igb_adapter *adapter)
7296 {
7297 u16 vid;
7298
7299 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7300
7301 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7302 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7303 }
7304
7305 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7306 {
7307 struct pci_dev *pdev = adapter->pdev;
7308 struct e1000_mac_info *mac = &adapter->hw.mac;
7309
7310 mac->autoneg = 0;
7311
7312 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7313 * for the switch() below to work
7314 */
7315 if ((spd & 1) || (dplx & ~1))
7316 goto err_inval;
7317
7318 /* Fiber NIC's only allow 1000 gbps Full duplex
7319 * and 100Mbps Full duplex for 100baseFx sfp
7320 */
7321 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7322 switch (spd + dplx) {
7323 case SPEED_10 + DUPLEX_HALF:
7324 case SPEED_10 + DUPLEX_FULL:
7325 case SPEED_100 + DUPLEX_HALF:
7326 goto err_inval;
7327 default:
7328 break;
7329 }
7330 }
7331
7332 switch (spd + dplx) {
7333 case SPEED_10 + DUPLEX_HALF:
7334 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7335 break;
7336 case SPEED_10 + DUPLEX_FULL:
7337 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7338 break;
7339 case SPEED_100 + DUPLEX_HALF:
7340 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7341 break;
7342 case SPEED_100 + DUPLEX_FULL:
7343 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7344 break;
7345 case SPEED_1000 + DUPLEX_FULL:
7346 mac->autoneg = 1;
7347 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7348 break;
7349 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7350 default:
7351 goto err_inval;
7352 }
7353
7354 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7355 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7356
7357 return 0;
7358
7359 err_inval:
7360 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7361 return -EINVAL;
7362 }
7363
7364 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7365 bool runtime)
7366 {
7367 struct net_device *netdev = pci_get_drvdata(pdev);
7368 struct igb_adapter *adapter = netdev_priv(netdev);
7369 struct e1000_hw *hw = &adapter->hw;
7370 u32 ctrl, rctl, status;
7371 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7372 #ifdef CONFIG_PM
7373 int retval = 0;
7374 #endif
7375
7376 netif_device_detach(netdev);
7377
7378 if (netif_running(netdev))
7379 __igb_close(netdev, true);
7380
7381 igb_clear_interrupt_scheme(adapter);
7382
7383 #ifdef CONFIG_PM
7384 retval = pci_save_state(pdev);
7385 if (retval)
7386 return retval;
7387 #endif
7388
7389 status = rd32(E1000_STATUS);
7390 if (status & E1000_STATUS_LU)
7391 wufc &= ~E1000_WUFC_LNKC;
7392
7393 if (wufc) {
7394 igb_setup_rctl(adapter);
7395 igb_set_rx_mode(netdev);
7396
7397 /* turn on all-multi mode if wake on multicast is enabled */
7398 if (wufc & E1000_WUFC_MC) {
7399 rctl = rd32(E1000_RCTL);
7400 rctl |= E1000_RCTL_MPE;
7401 wr32(E1000_RCTL, rctl);
7402 }
7403
7404 ctrl = rd32(E1000_CTRL);
7405 /* advertise wake from D3Cold */
7406 #define E1000_CTRL_ADVD3WUC 0x00100000
7407 /* phy power management enable */
7408 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7409 ctrl |= E1000_CTRL_ADVD3WUC;
7410 wr32(E1000_CTRL, ctrl);
7411
7412 /* Allow time for pending master requests to run */
7413 igb_disable_pcie_master(hw);
7414
7415 wr32(E1000_WUC, E1000_WUC_PME_EN);
7416 wr32(E1000_WUFC, wufc);
7417 } else {
7418 wr32(E1000_WUC, 0);
7419 wr32(E1000_WUFC, 0);
7420 }
7421
7422 *enable_wake = wufc || adapter->en_mng_pt;
7423 if (!*enable_wake)
7424 igb_power_down_link(adapter);
7425 else
7426 igb_power_up_link(adapter);
7427
7428 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7429 * would have already happened in close and is redundant.
7430 */
7431 igb_release_hw_control(adapter);
7432
7433 pci_disable_device(pdev);
7434
7435 return 0;
7436 }
7437
7438 #ifdef CONFIG_PM
7439 #ifdef CONFIG_PM_SLEEP
7440 static int igb_suspend(struct device *dev)
7441 {
7442 int retval;
7443 bool wake;
7444 struct pci_dev *pdev = to_pci_dev(dev);
7445
7446 retval = __igb_shutdown(pdev, &wake, 0);
7447 if (retval)
7448 return retval;
7449
7450 if (wake) {
7451 pci_prepare_to_sleep(pdev);
7452 } else {
7453 pci_wake_from_d3(pdev, false);
7454 pci_set_power_state(pdev, PCI_D3hot);
7455 }
7456
7457 return 0;
7458 }
7459 #endif /* CONFIG_PM_SLEEP */
7460
7461 static int igb_resume(struct device *dev)
7462 {
7463 struct pci_dev *pdev = to_pci_dev(dev);
7464 struct net_device *netdev = pci_get_drvdata(pdev);
7465 struct igb_adapter *adapter = netdev_priv(netdev);
7466 struct e1000_hw *hw = &adapter->hw;
7467 u32 err;
7468
7469 pci_set_power_state(pdev, PCI_D0);
7470 pci_restore_state(pdev);
7471 pci_save_state(pdev);
7472
7473 err = pci_enable_device_mem(pdev);
7474 if (err) {
7475 dev_err(&pdev->dev,
7476 "igb: Cannot enable PCI device from suspend\n");
7477 return err;
7478 }
7479 pci_set_master(pdev);
7480
7481 pci_enable_wake(pdev, PCI_D3hot, 0);
7482 pci_enable_wake(pdev, PCI_D3cold, 0);
7483
7484 if (igb_init_interrupt_scheme(adapter, true)) {
7485 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7486 return -ENOMEM;
7487 }
7488
7489 igb_reset(adapter);
7490
7491 /* let the f/w know that the h/w is now under the control of the
7492 * driver.
7493 */
7494 igb_get_hw_control(adapter);
7495
7496 wr32(E1000_WUS, ~0);
7497
7498 if (netdev->flags & IFF_UP) {
7499 rtnl_lock();
7500 err = __igb_open(netdev, true);
7501 rtnl_unlock();
7502 if (err)
7503 return err;
7504 }
7505
7506 netif_device_attach(netdev);
7507 return 0;
7508 }
7509
7510 #ifdef CONFIG_PM_RUNTIME
7511 static int igb_runtime_idle(struct device *dev)
7512 {
7513 struct pci_dev *pdev = to_pci_dev(dev);
7514 struct net_device *netdev = pci_get_drvdata(pdev);
7515 struct igb_adapter *adapter = netdev_priv(netdev);
7516
7517 if (!igb_has_link(adapter))
7518 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7519
7520 return -EBUSY;
7521 }
7522
7523 static int igb_runtime_suspend(struct device *dev)
7524 {
7525 struct pci_dev *pdev = to_pci_dev(dev);
7526 int retval;
7527 bool wake;
7528
7529 retval = __igb_shutdown(pdev, &wake, 1);
7530 if (retval)
7531 return retval;
7532
7533 if (wake) {
7534 pci_prepare_to_sleep(pdev);
7535 } else {
7536 pci_wake_from_d3(pdev, false);
7537 pci_set_power_state(pdev, PCI_D3hot);
7538 }
7539
7540 return 0;
7541 }
7542
7543 static int igb_runtime_resume(struct device *dev)
7544 {
7545 return igb_resume(dev);
7546 }
7547 #endif /* CONFIG_PM_RUNTIME */
7548 #endif
7549
7550 static void igb_shutdown(struct pci_dev *pdev)
7551 {
7552 bool wake;
7553
7554 __igb_shutdown(pdev, &wake, 0);
7555
7556 if (system_state == SYSTEM_POWER_OFF) {
7557 pci_wake_from_d3(pdev, wake);
7558 pci_set_power_state(pdev, PCI_D3hot);
7559 }
7560 }
7561
7562 #ifdef CONFIG_PCI_IOV
7563 static int igb_sriov_reinit(struct pci_dev *dev)
7564 {
7565 struct net_device *netdev = pci_get_drvdata(dev);
7566 struct igb_adapter *adapter = netdev_priv(netdev);
7567 struct pci_dev *pdev = adapter->pdev;
7568
7569 rtnl_lock();
7570
7571 if (netif_running(netdev))
7572 igb_close(netdev);
7573
7574 igb_clear_interrupt_scheme(adapter);
7575
7576 igb_init_queue_configuration(adapter);
7577
7578 if (igb_init_interrupt_scheme(adapter, true)) {
7579 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7580 return -ENOMEM;
7581 }
7582
7583 if (netif_running(netdev))
7584 igb_open(netdev);
7585
7586 rtnl_unlock();
7587
7588 return 0;
7589 }
7590
7591 static int igb_pci_disable_sriov(struct pci_dev *dev)
7592 {
7593 int err = igb_disable_sriov(dev);
7594
7595 if (!err)
7596 err = igb_sriov_reinit(dev);
7597
7598 return err;
7599 }
7600
7601 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7602 {
7603 int err = igb_enable_sriov(dev, num_vfs);
7604
7605 if (err)
7606 goto out;
7607
7608 err = igb_sriov_reinit(dev);
7609 if (!err)
7610 return num_vfs;
7611
7612 out:
7613 return err;
7614 }
7615
7616 #endif
7617 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7618 {
7619 #ifdef CONFIG_PCI_IOV
7620 if (num_vfs == 0)
7621 return igb_pci_disable_sriov(dev);
7622 else
7623 return igb_pci_enable_sriov(dev, num_vfs);
7624 #endif
7625 return 0;
7626 }
7627
7628 #ifdef CONFIG_NET_POLL_CONTROLLER
7629 /* Polling 'interrupt' - used by things like netconsole to send skbs
7630 * without having to re-enable interrupts. It's not called while
7631 * the interrupt routine is executing.
7632 */
7633 static void igb_netpoll(struct net_device *netdev)
7634 {
7635 struct igb_adapter *adapter = netdev_priv(netdev);
7636 struct e1000_hw *hw = &adapter->hw;
7637 struct igb_q_vector *q_vector;
7638 int i;
7639
7640 for (i = 0; i < adapter->num_q_vectors; i++) {
7641 q_vector = adapter->q_vector[i];
7642 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7643 wr32(E1000_EIMC, q_vector->eims_value);
7644 else
7645 igb_irq_disable(adapter);
7646 napi_schedule(&q_vector->napi);
7647 }
7648 }
7649 #endif /* CONFIG_NET_POLL_CONTROLLER */
7650
7651 /**
7652 * igb_io_error_detected - called when PCI error is detected
7653 * @pdev: Pointer to PCI device
7654 * @state: The current pci connection state
7655 *
7656 * This function is called after a PCI bus error affecting
7657 * this device has been detected.
7658 **/
7659 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7660 pci_channel_state_t state)
7661 {
7662 struct net_device *netdev = pci_get_drvdata(pdev);
7663 struct igb_adapter *adapter = netdev_priv(netdev);
7664
7665 netif_device_detach(netdev);
7666
7667 if (state == pci_channel_io_perm_failure)
7668 return PCI_ERS_RESULT_DISCONNECT;
7669
7670 if (netif_running(netdev))
7671 igb_down(adapter);
7672 pci_disable_device(pdev);
7673
7674 /* Request a slot slot reset. */
7675 return PCI_ERS_RESULT_NEED_RESET;
7676 }
7677
7678 /**
7679 * igb_io_slot_reset - called after the pci bus has been reset.
7680 * @pdev: Pointer to PCI device
7681 *
7682 * Restart the card from scratch, as if from a cold-boot. Implementation
7683 * resembles the first-half of the igb_resume routine.
7684 **/
7685 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7686 {
7687 struct net_device *netdev = pci_get_drvdata(pdev);
7688 struct igb_adapter *adapter = netdev_priv(netdev);
7689 struct e1000_hw *hw = &adapter->hw;
7690 pci_ers_result_t result;
7691 int err;
7692
7693 if (pci_enable_device_mem(pdev)) {
7694 dev_err(&pdev->dev,
7695 "Cannot re-enable PCI device after reset.\n");
7696 result = PCI_ERS_RESULT_DISCONNECT;
7697 } else {
7698 pci_set_master(pdev);
7699 pci_restore_state(pdev);
7700 pci_save_state(pdev);
7701
7702 pci_enable_wake(pdev, PCI_D3hot, 0);
7703 pci_enable_wake(pdev, PCI_D3cold, 0);
7704
7705 igb_reset(adapter);
7706 wr32(E1000_WUS, ~0);
7707 result = PCI_ERS_RESULT_RECOVERED;
7708 }
7709
7710 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7711 if (err) {
7712 dev_err(&pdev->dev,
7713 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7714 err);
7715 /* non-fatal, continue */
7716 }
7717
7718 return result;
7719 }
7720
7721 /**
7722 * igb_io_resume - called when traffic can start flowing again.
7723 * @pdev: Pointer to PCI device
7724 *
7725 * This callback is called when the error recovery driver tells us that
7726 * its OK to resume normal operation. Implementation resembles the
7727 * second-half of the igb_resume routine.
7728 */
7729 static void igb_io_resume(struct pci_dev *pdev)
7730 {
7731 struct net_device *netdev = pci_get_drvdata(pdev);
7732 struct igb_adapter *adapter = netdev_priv(netdev);
7733
7734 if (netif_running(netdev)) {
7735 if (igb_up(adapter)) {
7736 dev_err(&pdev->dev, "igb_up failed after reset\n");
7737 return;
7738 }
7739 }
7740
7741 netif_device_attach(netdev);
7742
7743 /* let the f/w know that the h/w is now under the control of the
7744 * driver.
7745 */
7746 igb_get_hw_control(adapter);
7747 }
7748
7749 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7750 u8 qsel)
7751 {
7752 u32 rar_low, rar_high;
7753 struct e1000_hw *hw = &adapter->hw;
7754
7755 /* HW expects these in little endian so we reverse the byte order
7756 * from network order (big endian) to little endian
7757 */
7758 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7759 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7760 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7761
7762 /* Indicate to hardware the Address is Valid. */
7763 rar_high |= E1000_RAH_AV;
7764
7765 if (hw->mac.type == e1000_82575)
7766 rar_high |= E1000_RAH_POOL_1 * qsel;
7767 else
7768 rar_high |= E1000_RAH_POOL_1 << qsel;
7769
7770 wr32(E1000_RAL(index), rar_low);
7771 wrfl();
7772 wr32(E1000_RAH(index), rar_high);
7773 wrfl();
7774 }
7775
7776 static int igb_set_vf_mac(struct igb_adapter *adapter,
7777 int vf, unsigned char *mac_addr)
7778 {
7779 struct e1000_hw *hw = &adapter->hw;
7780 /* VF MAC addresses start at end of receive addresses and moves
7781 * towards the first, as a result a collision should not be possible
7782 */
7783 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7784
7785 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7786
7787 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7788
7789 return 0;
7790 }
7791
7792 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7793 {
7794 struct igb_adapter *adapter = netdev_priv(netdev);
7795 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7796 return -EINVAL;
7797 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7798 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7799 dev_info(&adapter->pdev->dev,
7800 "Reload the VF driver to make this change effective.");
7801 if (test_bit(__IGB_DOWN, &adapter->state)) {
7802 dev_warn(&adapter->pdev->dev,
7803 "The VF MAC address has been set, but the PF device is not up.\n");
7804 dev_warn(&adapter->pdev->dev,
7805 "Bring the PF device up before attempting to use the VF device.\n");
7806 }
7807 return igb_set_vf_mac(adapter, vf, mac);
7808 }
7809
7810 static int igb_link_mbps(int internal_link_speed)
7811 {
7812 switch (internal_link_speed) {
7813 case SPEED_100:
7814 return 100;
7815 case SPEED_1000:
7816 return 1000;
7817 default:
7818 return 0;
7819 }
7820 }
7821
7822 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7823 int link_speed)
7824 {
7825 int rf_dec, rf_int;
7826 u32 bcnrc_val;
7827
7828 if (tx_rate != 0) {
7829 /* Calculate the rate factor values to set */
7830 rf_int = link_speed / tx_rate;
7831 rf_dec = (link_speed - (rf_int * tx_rate));
7832 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7833 tx_rate;
7834
7835 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7836 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7837 E1000_RTTBCNRC_RF_INT_MASK);
7838 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7839 } else {
7840 bcnrc_val = 0;
7841 }
7842
7843 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7844 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7845 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7846 */
7847 wr32(E1000_RTTBCNRM, 0x14);
7848 wr32(E1000_RTTBCNRC, bcnrc_val);
7849 }
7850
7851 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7852 {
7853 int actual_link_speed, i;
7854 bool reset_rate = false;
7855
7856 /* VF TX rate limit was not set or not supported */
7857 if ((adapter->vf_rate_link_speed == 0) ||
7858 (adapter->hw.mac.type != e1000_82576))
7859 return;
7860
7861 actual_link_speed = igb_link_mbps(adapter->link_speed);
7862 if (actual_link_speed != adapter->vf_rate_link_speed) {
7863 reset_rate = true;
7864 adapter->vf_rate_link_speed = 0;
7865 dev_info(&adapter->pdev->dev,
7866 "Link speed has been changed. VF Transmit rate is disabled\n");
7867 }
7868
7869 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7870 if (reset_rate)
7871 adapter->vf_data[i].tx_rate = 0;
7872
7873 igb_set_vf_rate_limit(&adapter->hw, i,
7874 adapter->vf_data[i].tx_rate,
7875 actual_link_speed);
7876 }
7877 }
7878
7879 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7880 {
7881 struct igb_adapter *adapter = netdev_priv(netdev);
7882 struct e1000_hw *hw = &adapter->hw;
7883 int actual_link_speed;
7884
7885 if (hw->mac.type != e1000_82576)
7886 return -EOPNOTSUPP;
7887
7888 actual_link_speed = igb_link_mbps(adapter->link_speed);
7889 if ((vf >= adapter->vfs_allocated_count) ||
7890 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7891 (tx_rate < 0) || (tx_rate > actual_link_speed))
7892 return -EINVAL;
7893
7894 adapter->vf_rate_link_speed = actual_link_speed;
7895 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7896 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7897
7898 return 0;
7899 }
7900
7901 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7902 bool setting)
7903 {
7904 struct igb_adapter *adapter = netdev_priv(netdev);
7905 struct e1000_hw *hw = &adapter->hw;
7906 u32 reg_val, reg_offset;
7907
7908 if (!adapter->vfs_allocated_count)
7909 return -EOPNOTSUPP;
7910
7911 if (vf >= adapter->vfs_allocated_count)
7912 return -EINVAL;
7913
7914 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7915 reg_val = rd32(reg_offset);
7916 if (setting)
7917 reg_val |= ((1 << vf) |
7918 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7919 else
7920 reg_val &= ~((1 << vf) |
7921 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7922 wr32(reg_offset, reg_val);
7923
7924 adapter->vf_data[vf].spoofchk_enabled = setting;
7925 return E1000_SUCCESS;
7926 }
7927
7928 static int igb_ndo_get_vf_config(struct net_device *netdev,
7929 int vf, struct ifla_vf_info *ivi)
7930 {
7931 struct igb_adapter *adapter = netdev_priv(netdev);
7932 if (vf >= adapter->vfs_allocated_count)
7933 return -EINVAL;
7934 ivi->vf = vf;
7935 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7936 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7937 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7938 ivi->qos = adapter->vf_data[vf].pf_qos;
7939 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7940 return 0;
7941 }
7942
7943 static void igb_vmm_control(struct igb_adapter *adapter)
7944 {
7945 struct e1000_hw *hw = &adapter->hw;
7946 u32 reg;
7947
7948 switch (hw->mac.type) {
7949 case e1000_82575:
7950 case e1000_i210:
7951 case e1000_i211:
7952 case e1000_i354:
7953 default:
7954 /* replication is not supported for 82575 */
7955 return;
7956 case e1000_82576:
7957 /* notify HW that the MAC is adding vlan tags */
7958 reg = rd32(E1000_DTXCTL);
7959 reg |= E1000_DTXCTL_VLAN_ADDED;
7960 wr32(E1000_DTXCTL, reg);
7961 case e1000_82580:
7962 /* enable replication vlan tag stripping */
7963 reg = rd32(E1000_RPLOLR);
7964 reg |= E1000_RPLOLR_STRVLAN;
7965 wr32(E1000_RPLOLR, reg);
7966 case e1000_i350:
7967 /* none of the above registers are supported by i350 */
7968 break;
7969 }
7970
7971 if (adapter->vfs_allocated_count) {
7972 igb_vmdq_set_loopback_pf(hw, true);
7973 igb_vmdq_set_replication_pf(hw, true);
7974 igb_vmdq_set_anti_spoofing_pf(hw, true,
7975 adapter->vfs_allocated_count);
7976 } else {
7977 igb_vmdq_set_loopback_pf(hw, false);
7978 igb_vmdq_set_replication_pf(hw, false);
7979 }
7980 }
7981
7982 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7983 {
7984 struct e1000_hw *hw = &adapter->hw;
7985 u32 dmac_thr;
7986 u16 hwm;
7987
7988 if (hw->mac.type > e1000_82580) {
7989 if (adapter->flags & IGB_FLAG_DMAC) {
7990 u32 reg;
7991
7992 /* force threshold to 0. */
7993 wr32(E1000_DMCTXTH, 0);
7994
7995 /* DMA Coalescing high water mark needs to be greater
7996 * than the Rx threshold. Set hwm to PBA - max frame
7997 * size in 16B units, capping it at PBA - 6KB.
7998 */
7999 hwm = 64 * pba - adapter->max_frame_size / 16;
8000 if (hwm < 64 * (pba - 6))
8001 hwm = 64 * (pba - 6);
8002 reg = rd32(E1000_FCRTC);
8003 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8004 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8005 & E1000_FCRTC_RTH_COAL_MASK);
8006 wr32(E1000_FCRTC, reg);
8007
8008 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8009 * frame size, capping it at PBA - 10KB.
8010 */
8011 dmac_thr = pba - adapter->max_frame_size / 512;
8012 if (dmac_thr < pba - 10)
8013 dmac_thr = pba - 10;
8014 reg = rd32(E1000_DMACR);
8015 reg &= ~E1000_DMACR_DMACTHR_MASK;
8016 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8017 & E1000_DMACR_DMACTHR_MASK);
8018
8019 /* transition to L0x or L1 if available..*/
8020 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8021
8022 /* watchdog timer= +-1000 usec in 32usec intervals */
8023 reg |= (1000 >> 5);
8024
8025 /* Disable BMC-to-OS Watchdog Enable */
8026 if (hw->mac.type != e1000_i354)
8027 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8028
8029 wr32(E1000_DMACR, reg);
8030
8031 /* no lower threshold to disable
8032 * coalescing(smart fifb)-UTRESH=0
8033 */
8034 wr32(E1000_DMCRTRH, 0);
8035
8036 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8037
8038 wr32(E1000_DMCTLX, reg);
8039
8040 /* free space in tx packet buffer to wake from
8041 * DMA coal
8042 */
8043 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8044 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8045
8046 /* make low power state decision controlled
8047 * by DMA coal
8048 */
8049 reg = rd32(E1000_PCIEMISC);
8050 reg &= ~E1000_PCIEMISC_LX_DECISION;
8051 wr32(E1000_PCIEMISC, reg);
8052 } /* endif adapter->dmac is not disabled */
8053 } else if (hw->mac.type == e1000_82580) {
8054 u32 reg = rd32(E1000_PCIEMISC);
8055
8056 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8057 wr32(E1000_DMACR, 0);
8058 }
8059 }
8060
8061 /**
8062 * igb_read_i2c_byte - Reads 8 bit word over I2C
8063 * @hw: pointer to hardware structure
8064 * @byte_offset: byte offset to read
8065 * @dev_addr: device address
8066 * @data: value read
8067 *
8068 * Performs byte read operation over I2C interface at
8069 * a specified device address.
8070 **/
8071 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8072 u8 dev_addr, u8 *data)
8073 {
8074 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8075 struct i2c_client *this_client = adapter->i2c_client;
8076 s32 status;
8077 u16 swfw_mask = 0;
8078
8079 if (!this_client)
8080 return E1000_ERR_I2C;
8081
8082 swfw_mask = E1000_SWFW_PHY0_SM;
8083
8084 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8085 != E1000_SUCCESS)
8086 return E1000_ERR_SWFW_SYNC;
8087
8088 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8089 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8090
8091 if (status < 0)
8092 return E1000_ERR_I2C;
8093 else {
8094 *data = status;
8095 return E1000_SUCCESS;
8096 }
8097 }
8098
8099 /**
8100 * igb_write_i2c_byte - Writes 8 bit word over I2C
8101 * @hw: pointer to hardware structure
8102 * @byte_offset: byte offset to write
8103 * @dev_addr: device address
8104 * @data: value to write
8105 *
8106 * Performs byte write operation over I2C interface at
8107 * a specified device address.
8108 **/
8109 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8110 u8 dev_addr, u8 data)
8111 {
8112 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8113 struct i2c_client *this_client = adapter->i2c_client;
8114 s32 status;
8115 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8116
8117 if (!this_client)
8118 return E1000_ERR_I2C;
8119
8120 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8121 return E1000_ERR_SWFW_SYNC;
8122 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8123 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8124
8125 if (status)
8126 return E1000_ERR_I2C;
8127 else
8128 return E1000_SUCCESS;
8129
8130 }
8131
8132 int igb_reinit_queues(struct igb_adapter *adapter)
8133 {
8134 struct net_device *netdev = adapter->netdev;
8135 struct pci_dev *pdev = adapter->pdev;
8136 int err = 0;
8137
8138 if (netif_running(netdev))
8139 igb_close(netdev);
8140
8141 igb_reset_interrupt_capability(adapter);
8142
8143 if (igb_init_interrupt_scheme(adapter, true)) {
8144 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8145 return -ENOMEM;
8146 }
8147
8148 if (netif_running(netdev))
8149 err = igb_open(netdev);
8150
8151 return err;
8152 }
8153 /* igb_main.c */
This page took 0.211219 seconds and 5 git commands to generate.