Merge branch 'v4l_for_linus' into patchwork
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62
63 #define MAJ 5
64 #define MIN 0
65 #define BUILD 3
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71 "Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73 "Copyright (c) 2007-2013 Intel Corporation.";
74
75 static const struct e1000_info *igb_info_tbl[] = {
76 [board_82575] = &e1000_82575_info,
77 };
78
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
113 /* required last entry */
114 {0, }
115 };
116
117 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
118
119 void igb_reset(struct igb_adapter *);
120 static int igb_setup_all_tx_resources(struct igb_adapter *);
121 static int igb_setup_all_rx_resources(struct igb_adapter *);
122 static void igb_free_all_tx_resources(struct igb_adapter *);
123 static void igb_free_all_rx_resources(struct igb_adapter *);
124 static void igb_setup_mrqc(struct igb_adapter *);
125 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
126 static void igb_remove(struct pci_dev *pdev);
127 static int igb_sw_init(struct igb_adapter *);
128 static int igb_open(struct net_device *);
129 static int igb_close(struct net_device *);
130 static void igb_configure(struct igb_adapter *);
131 static void igb_configure_tx(struct igb_adapter *);
132 static void igb_configure_rx(struct igb_adapter *);
133 static void igb_clean_all_tx_rings(struct igb_adapter *);
134 static void igb_clean_all_rx_rings(struct igb_adapter *);
135 static void igb_clean_tx_ring(struct igb_ring *);
136 static void igb_clean_rx_ring(struct igb_ring *);
137 static void igb_set_rx_mode(struct net_device *);
138 static void igb_update_phy_info(unsigned long);
139 static void igb_watchdog(unsigned long);
140 static void igb_watchdog_task(struct work_struct *);
141 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
142 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
143 struct rtnl_link_stats64 *stats);
144 static int igb_change_mtu(struct net_device *, int);
145 static int igb_set_mac(struct net_device *, void *);
146 static void igb_set_uta(struct igb_adapter *adapter);
147 static irqreturn_t igb_intr(int irq, void *);
148 static irqreturn_t igb_intr_msi(int irq, void *);
149 static irqreturn_t igb_msix_other(int irq, void *);
150 static irqreturn_t igb_msix_ring(int irq, void *);
151 #ifdef CONFIG_IGB_DCA
152 static void igb_update_dca(struct igb_q_vector *);
153 static void igb_setup_dca(struct igb_adapter *);
154 #endif /* CONFIG_IGB_DCA */
155 static int igb_poll(struct napi_struct *, int);
156 static bool igb_clean_tx_irq(struct igb_q_vector *);
157 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
158 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
159 static void igb_tx_timeout(struct net_device *);
160 static void igb_reset_task(struct work_struct *);
161 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
162 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
163 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
164 static void igb_restore_vlan(struct igb_adapter *);
165 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
166 static void igb_ping_all_vfs(struct igb_adapter *);
167 static void igb_msg_task(struct igb_adapter *);
168 static void igb_vmm_control(struct igb_adapter *);
169 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
170 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
171 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
172 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
173 int vf, u16 vlan, u8 qos);
174 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
175 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
176 bool setting);
177 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
178 struct ifla_vf_info *ivi);
179 static void igb_check_vf_rate_limit(struct igb_adapter *);
180
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 #endif
184
185 #ifdef CONFIG_PM
186 #ifdef CONFIG_PM_SLEEP
187 static int igb_suspend(struct device *);
188 #endif
189 static int igb_resume(struct device *);
190 #ifdef CONFIG_PM_RUNTIME
191 static int igb_runtime_suspend(struct device *dev);
192 static int igb_runtime_resume(struct device *dev);
193 static int igb_runtime_idle(struct device *dev);
194 #endif
195 static const struct dev_pm_ops igb_pm_ops = {
196 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198 igb_runtime_idle)
199 };
200 #endif
201 static void igb_shutdown(struct pci_dev *);
202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203 #ifdef CONFIG_IGB_DCA
204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205 static struct notifier_block dca_notifier = {
206 .notifier_call = igb_notify_dca,
207 .next = NULL,
208 .priority = 0
209 };
210 #endif
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void igb_netpoll(struct net_device *);
214 #endif
215 #ifdef CONFIG_PCI_IOV
216 static unsigned int max_vfs = 0;
217 module_param(max_vfs, uint, 0);
218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
219 "per physical function");
220 #endif /* CONFIG_PCI_IOV */
221
222 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
223 pci_channel_state_t);
224 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
225 static void igb_io_resume(struct pci_dev *);
226
227 static const struct pci_error_handlers igb_err_handler = {
228 .error_detected = igb_io_error_detected,
229 .slot_reset = igb_io_slot_reset,
230 .resume = igb_io_resume,
231 };
232
233 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
234
235 static struct pci_driver igb_driver = {
236 .name = igb_driver_name,
237 .id_table = igb_pci_tbl,
238 .probe = igb_probe,
239 .remove = igb_remove,
240 #ifdef CONFIG_PM
241 .driver.pm = &igb_pm_ops,
242 #endif
243 .shutdown = igb_shutdown,
244 .sriov_configure = igb_pci_sriov_configure,
245 .err_handler = &igb_err_handler
246 };
247
248 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
249 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
250 MODULE_LICENSE("GPL");
251 MODULE_VERSION(DRV_VERSION);
252
253 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
254 static int debug = -1;
255 module_param(debug, int, 0);
256 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
257
258 struct igb_reg_info {
259 u32 ofs;
260 char *name;
261 };
262
263 static const struct igb_reg_info igb_reg_info_tbl[] = {
264
265 /* General Registers */
266 {E1000_CTRL, "CTRL"},
267 {E1000_STATUS, "STATUS"},
268 {E1000_CTRL_EXT, "CTRL_EXT"},
269
270 /* Interrupt Registers */
271 {E1000_ICR, "ICR"},
272
273 /* RX Registers */
274 {E1000_RCTL, "RCTL"},
275 {E1000_RDLEN(0), "RDLEN"},
276 {E1000_RDH(0), "RDH"},
277 {E1000_RDT(0), "RDT"},
278 {E1000_RXDCTL(0), "RXDCTL"},
279 {E1000_RDBAL(0), "RDBAL"},
280 {E1000_RDBAH(0), "RDBAH"},
281
282 /* TX Registers */
283 {E1000_TCTL, "TCTL"},
284 {E1000_TDBAL(0), "TDBAL"},
285 {E1000_TDBAH(0), "TDBAH"},
286 {E1000_TDLEN(0), "TDLEN"},
287 {E1000_TDH(0), "TDH"},
288 {E1000_TDT(0), "TDT"},
289 {E1000_TXDCTL(0), "TXDCTL"},
290 {E1000_TDFH, "TDFH"},
291 {E1000_TDFT, "TDFT"},
292 {E1000_TDFHS, "TDFHS"},
293 {E1000_TDFPC, "TDFPC"},
294
295 /* List Terminator */
296 {}
297 };
298
299 /* igb_regdump - register printout routine */
300 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
301 {
302 int n = 0;
303 char rname[16];
304 u32 regs[8];
305
306 switch (reginfo->ofs) {
307 case E1000_RDLEN(0):
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_RDLEN(n));
310 break;
311 case E1000_RDH(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_RDH(n));
314 break;
315 case E1000_RDT(0):
316 for (n = 0; n < 4; n++)
317 regs[n] = rd32(E1000_RDT(n));
318 break;
319 case E1000_RXDCTL(0):
320 for (n = 0; n < 4; n++)
321 regs[n] = rd32(E1000_RXDCTL(n));
322 break;
323 case E1000_RDBAL(0):
324 for (n = 0; n < 4; n++)
325 regs[n] = rd32(E1000_RDBAL(n));
326 break;
327 case E1000_RDBAH(0):
328 for (n = 0; n < 4; n++)
329 regs[n] = rd32(E1000_RDBAH(n));
330 break;
331 case E1000_TDBAL(0):
332 for (n = 0; n < 4; n++)
333 regs[n] = rd32(E1000_RDBAL(n));
334 break;
335 case E1000_TDBAH(0):
336 for (n = 0; n < 4; n++)
337 regs[n] = rd32(E1000_TDBAH(n));
338 break;
339 case E1000_TDLEN(0):
340 for (n = 0; n < 4; n++)
341 regs[n] = rd32(E1000_TDLEN(n));
342 break;
343 case E1000_TDH(0):
344 for (n = 0; n < 4; n++)
345 regs[n] = rd32(E1000_TDH(n));
346 break;
347 case E1000_TDT(0):
348 for (n = 0; n < 4; n++)
349 regs[n] = rd32(E1000_TDT(n));
350 break;
351 case E1000_TXDCTL(0):
352 for (n = 0; n < 4; n++)
353 regs[n] = rd32(E1000_TXDCTL(n));
354 break;
355 default:
356 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
357 return;
358 }
359
360 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
361 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
362 regs[2], regs[3]);
363 }
364
365 /* igb_dump - Print registers, Tx-rings and Rx-rings */
366 static void igb_dump(struct igb_adapter *adapter)
367 {
368 struct net_device *netdev = adapter->netdev;
369 struct e1000_hw *hw = &adapter->hw;
370 struct igb_reg_info *reginfo;
371 struct igb_ring *tx_ring;
372 union e1000_adv_tx_desc *tx_desc;
373 struct my_u0 { u64 a; u64 b; } *u0;
374 struct igb_ring *rx_ring;
375 union e1000_adv_rx_desc *rx_desc;
376 u32 staterr;
377 u16 i, n;
378
379 if (!netif_msg_hw(adapter))
380 return;
381
382 /* Print netdevice Info */
383 if (netdev) {
384 dev_info(&adapter->pdev->dev, "Net device Info\n");
385 pr_info("Device Name state trans_start "
386 "last_rx\n");
387 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388 netdev->state, netdev->trans_start, netdev->last_rx);
389 }
390
391 /* Print Registers */
392 dev_info(&adapter->pdev->dev, "Register Dump\n");
393 pr_info(" Register Name Value\n");
394 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 reginfo->name; reginfo++) {
396 igb_regdump(hw, reginfo);
397 }
398
399 /* Print TX Ring Summary */
400 if (!netdev || !netif_running(netdev))
401 goto exit;
402
403 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
405 for (n = 0; n < adapter->num_tx_queues; n++) {
406 struct igb_tx_buffer *buffer_info;
407 tx_ring = adapter->tx_ring[n];
408 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 (u64)dma_unmap_addr(buffer_info, dma),
412 dma_unmap_len(buffer_info, len),
413 buffer_info->next_to_watch,
414 (u64)buffer_info->time_stamp);
415 }
416
417 /* Print TX Rings */
418 if (!netif_msg_tx_done(adapter))
419 goto rx_ring_summary;
420
421 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423 /* Transmit Descriptor Formats
424 *
425 * Advanced Transmit Descriptor
426 * +--------------------------------------------------------------+
427 * 0 | Buffer Address [63:0] |
428 * +--------------------------------------------------------------+
429 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
430 * +--------------------------------------------------------------+
431 * 63 46 45 40 39 38 36 35 32 31 24 15 0
432 */
433
434 for (n = 0; n < adapter->num_tx_queues; n++) {
435 tx_ring = adapter->tx_ring[n];
436 pr_info("------------------------------------\n");
437 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 pr_info("------------------------------------\n");
439 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
440 "[bi->dma ] leng ntw timestamp "
441 "bi->skb\n");
442
443 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
444 const char *next_desc;
445 struct igb_tx_buffer *buffer_info;
446 tx_desc = IGB_TX_DESC(tx_ring, i);
447 buffer_info = &tx_ring->tx_buffer_info[i];
448 u0 = (struct my_u0 *)tx_desc;
449 if (i == tx_ring->next_to_use &&
450 i == tx_ring->next_to_clean)
451 next_desc = " NTC/U";
452 else if (i == tx_ring->next_to_use)
453 next_desc = " NTU";
454 else if (i == tx_ring->next_to_clean)
455 next_desc = " NTC";
456 else
457 next_desc = "";
458
459 pr_info("T [0x%03X] %016llX %016llX %016llX"
460 " %04X %p %016llX %p%s\n", i,
461 le64_to_cpu(u0->a),
462 le64_to_cpu(u0->b),
463 (u64)dma_unmap_addr(buffer_info, dma),
464 dma_unmap_len(buffer_info, len),
465 buffer_info->next_to_watch,
466 (u64)buffer_info->time_stamp,
467 buffer_info->skb, next_desc);
468
469 if (netif_msg_pktdata(adapter) && buffer_info->skb)
470 print_hex_dump(KERN_INFO, "",
471 DUMP_PREFIX_ADDRESS,
472 16, 1, buffer_info->skb->data,
473 dma_unmap_len(buffer_info, len),
474 true);
475 }
476 }
477
478 /* Print RX Rings Summary */
479 rx_ring_summary:
480 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
481 pr_info("Queue [NTU] [NTC]\n");
482 for (n = 0; n < adapter->num_rx_queues; n++) {
483 rx_ring = adapter->rx_ring[n];
484 pr_info(" %5d %5X %5X\n",
485 n, rx_ring->next_to_use, rx_ring->next_to_clean);
486 }
487
488 /* Print RX Rings */
489 if (!netif_msg_rx_status(adapter))
490 goto exit;
491
492 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493
494 /* Advanced Receive Descriptor (Read) Format
495 * 63 1 0
496 * +-----------------------------------------------------+
497 * 0 | Packet Buffer Address [63:1] |A0/NSE|
498 * +----------------------------------------------+------+
499 * 8 | Header Buffer Address [63:1] | DD |
500 * +-----------------------------------------------------+
501 *
502 *
503 * Advanced Receive Descriptor (Write-Back) Format
504 *
505 * 63 48 47 32 31 30 21 20 17 16 4 3 0
506 * +------------------------------------------------------+
507 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
508 * | Checksum Ident | | | | Type | Type |
509 * +------------------------------------------------------+
510 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511 * +------------------------------------------------------+
512 * 63 48 47 32 31 20 19 0
513 */
514
515 for (n = 0; n < adapter->num_rx_queues; n++) {
516 rx_ring = adapter->rx_ring[n];
517 pr_info("------------------------------------\n");
518 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519 pr_info("------------------------------------\n");
520 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
521 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
522 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524
525 for (i = 0; i < rx_ring->count; i++) {
526 const char *next_desc;
527 struct igb_rx_buffer *buffer_info;
528 buffer_info = &rx_ring->rx_buffer_info[i];
529 rx_desc = IGB_RX_DESC(rx_ring, i);
530 u0 = (struct my_u0 *)rx_desc;
531 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
532
533 if (i == rx_ring->next_to_use)
534 next_desc = " NTU";
535 else if (i == rx_ring->next_to_clean)
536 next_desc = " NTC";
537 else
538 next_desc = "";
539
540 if (staterr & E1000_RXD_STAT_DD) {
541 /* Descriptor Done */
542 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
543 "RWB", i,
544 le64_to_cpu(u0->a),
545 le64_to_cpu(u0->b),
546 next_desc);
547 } else {
548 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
549 "R ", i,
550 le64_to_cpu(u0->a),
551 le64_to_cpu(u0->b),
552 (u64)buffer_info->dma,
553 next_desc);
554
555 if (netif_msg_pktdata(adapter) &&
556 buffer_info->dma && buffer_info->page) {
557 print_hex_dump(KERN_INFO, "",
558 DUMP_PREFIX_ADDRESS,
559 16, 1,
560 page_address(buffer_info->page) +
561 buffer_info->page_offset,
562 IGB_RX_BUFSZ, true);
563 }
564 }
565 }
566 }
567
568 exit:
569 return;
570 }
571
572 /**
573 * igb_get_i2c_data - Reads the I2C SDA data bit
574 * @hw: pointer to hardware structure
575 * @i2cctl: Current value of I2CCTL register
576 *
577 * Returns the I2C data bit value
578 **/
579 static int igb_get_i2c_data(void *data)
580 {
581 struct igb_adapter *adapter = (struct igb_adapter *)data;
582 struct e1000_hw *hw = &adapter->hw;
583 s32 i2cctl = rd32(E1000_I2CPARAMS);
584
585 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
586 }
587
588 /**
589 * igb_set_i2c_data - Sets the I2C data bit
590 * @data: pointer to hardware structure
591 * @state: I2C data value (0 or 1) to set
592 *
593 * Sets the I2C data bit
594 **/
595 static void igb_set_i2c_data(void *data, int state)
596 {
597 struct igb_adapter *adapter = (struct igb_adapter *)data;
598 struct e1000_hw *hw = &adapter->hw;
599 s32 i2cctl = rd32(E1000_I2CPARAMS);
600
601 if (state)
602 i2cctl |= E1000_I2C_DATA_OUT;
603 else
604 i2cctl &= ~E1000_I2C_DATA_OUT;
605
606 i2cctl &= ~E1000_I2C_DATA_OE_N;
607 i2cctl |= E1000_I2C_CLK_OE_N;
608 wr32(E1000_I2CPARAMS, i2cctl);
609 wrfl();
610
611 }
612
613 /**
614 * igb_set_i2c_clk - Sets the I2C SCL clock
615 * @data: pointer to hardware structure
616 * @state: state to set clock
617 *
618 * Sets the I2C clock line to state
619 **/
620 static void igb_set_i2c_clk(void *data, int state)
621 {
622 struct igb_adapter *adapter = (struct igb_adapter *)data;
623 struct e1000_hw *hw = &adapter->hw;
624 s32 i2cctl = rd32(E1000_I2CPARAMS);
625
626 if (state) {
627 i2cctl |= E1000_I2C_CLK_OUT;
628 i2cctl &= ~E1000_I2C_CLK_OE_N;
629 } else {
630 i2cctl &= ~E1000_I2C_CLK_OUT;
631 i2cctl &= ~E1000_I2C_CLK_OE_N;
632 }
633 wr32(E1000_I2CPARAMS, i2cctl);
634 wrfl();
635 }
636
637 /**
638 * igb_get_i2c_clk - Gets the I2C SCL clock state
639 * @data: pointer to hardware structure
640 *
641 * Gets the I2C clock state
642 **/
643 static int igb_get_i2c_clk(void *data)
644 {
645 struct igb_adapter *adapter = (struct igb_adapter *)data;
646 struct e1000_hw *hw = &adapter->hw;
647 s32 i2cctl = rd32(E1000_I2CPARAMS);
648
649 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
650 }
651
652 static const struct i2c_algo_bit_data igb_i2c_algo = {
653 .setsda = igb_set_i2c_data,
654 .setscl = igb_set_i2c_clk,
655 .getsda = igb_get_i2c_data,
656 .getscl = igb_get_i2c_clk,
657 .udelay = 5,
658 .timeout = 20,
659 };
660
661 /**
662 * igb_get_hw_dev - return device
663 * @hw: pointer to hardware structure
664 *
665 * used by hardware layer to print debugging information
666 **/
667 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
668 {
669 struct igb_adapter *adapter = hw->back;
670 return adapter->netdev;
671 }
672
673 /**
674 * igb_init_module - Driver Registration Routine
675 *
676 * igb_init_module is the first routine called when the driver is
677 * loaded. All it does is register with the PCI subsystem.
678 **/
679 static int __init igb_init_module(void)
680 {
681 int ret;
682 pr_info("%s - version %s\n",
683 igb_driver_string, igb_driver_version);
684
685 pr_info("%s\n", igb_copyright);
686
687 #ifdef CONFIG_IGB_DCA
688 dca_register_notify(&dca_notifier);
689 #endif
690 ret = pci_register_driver(&igb_driver);
691 return ret;
692 }
693
694 module_init(igb_init_module);
695
696 /**
697 * igb_exit_module - Driver Exit Cleanup Routine
698 *
699 * igb_exit_module is called just before the driver is removed
700 * from memory.
701 **/
702 static void __exit igb_exit_module(void)
703 {
704 #ifdef CONFIG_IGB_DCA
705 dca_unregister_notify(&dca_notifier);
706 #endif
707 pci_unregister_driver(&igb_driver);
708 }
709
710 module_exit(igb_exit_module);
711
712 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
713 /**
714 * igb_cache_ring_register - Descriptor ring to register mapping
715 * @adapter: board private structure to initialize
716 *
717 * Once we know the feature-set enabled for the device, we'll cache
718 * the register offset the descriptor ring is assigned to.
719 **/
720 static void igb_cache_ring_register(struct igb_adapter *adapter)
721 {
722 int i = 0, j = 0;
723 u32 rbase_offset = adapter->vfs_allocated_count;
724
725 switch (adapter->hw.mac.type) {
726 case e1000_82576:
727 /* The queues are allocated for virtualization such that VF 0
728 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
729 * In order to avoid collision we start at the first free queue
730 * and continue consuming queues in the same sequence
731 */
732 if (adapter->vfs_allocated_count) {
733 for (; i < adapter->rss_queues; i++)
734 adapter->rx_ring[i]->reg_idx = rbase_offset +
735 Q_IDX_82576(i);
736 }
737 case e1000_82575:
738 case e1000_82580:
739 case e1000_i350:
740 case e1000_i354:
741 case e1000_i210:
742 case e1000_i211:
743 default:
744 for (; i < adapter->num_rx_queues; i++)
745 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
746 for (; j < adapter->num_tx_queues; j++)
747 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
748 break;
749 }
750 }
751
752 /**
753 * igb_write_ivar - configure ivar for given MSI-X vector
754 * @hw: pointer to the HW structure
755 * @msix_vector: vector number we are allocating to a given ring
756 * @index: row index of IVAR register to write within IVAR table
757 * @offset: column offset of in IVAR, should be multiple of 8
758 *
759 * This function is intended to handle the writing of the IVAR register
760 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
761 * each containing an cause allocation for an Rx and Tx ring, and a
762 * variable number of rows depending on the number of queues supported.
763 **/
764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 int index, int offset)
766 {
767 u32 ivar = array_rd32(E1000_IVAR0, index);
768
769 /* clear any bits that are currently set */
770 ivar &= ~((u32)0xFF << offset);
771
772 /* write vector and valid bit */
773 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774
775 array_wr32(E1000_IVAR0, index, ivar);
776 }
777
778 #define IGB_N0_QUEUE -1
779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780 {
781 struct igb_adapter *adapter = q_vector->adapter;
782 struct e1000_hw *hw = &adapter->hw;
783 int rx_queue = IGB_N0_QUEUE;
784 int tx_queue = IGB_N0_QUEUE;
785 u32 msixbm = 0;
786
787 if (q_vector->rx.ring)
788 rx_queue = q_vector->rx.ring->reg_idx;
789 if (q_vector->tx.ring)
790 tx_queue = q_vector->tx.ring->reg_idx;
791
792 switch (hw->mac.type) {
793 case e1000_82575:
794 /* The 82575 assigns vectors using a bitmask, which matches the
795 * bitmask for the EICR/EIMS/EIMC registers. To assign one
796 * or more queues to a vector, we write the appropriate bits
797 * into the MSIXBM register for that vector.
798 */
799 if (rx_queue > IGB_N0_QUEUE)
800 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801 if (tx_queue > IGB_N0_QUEUE)
802 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 if (!adapter->msix_entries && msix_vector == 0)
804 msixbm |= E1000_EIMS_OTHER;
805 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806 q_vector->eims_value = msixbm;
807 break;
808 case e1000_82576:
809 /* 82576 uses a table that essentially consists of 2 columns
810 * with 8 rows. The ordering is column-major so we use the
811 * lower 3 bits as the row index, and the 4th bit as the
812 * column offset.
813 */
814 if (rx_queue > IGB_N0_QUEUE)
815 igb_write_ivar(hw, msix_vector,
816 rx_queue & 0x7,
817 (rx_queue & 0x8) << 1);
818 if (tx_queue > IGB_N0_QUEUE)
819 igb_write_ivar(hw, msix_vector,
820 tx_queue & 0x7,
821 ((tx_queue & 0x8) << 1) + 8);
822 q_vector->eims_value = 1 << msix_vector;
823 break;
824 case e1000_82580:
825 case e1000_i350:
826 case e1000_i354:
827 case e1000_i210:
828 case e1000_i211:
829 /* On 82580 and newer adapters the scheme is similar to 82576
830 * however instead of ordering column-major we have things
831 * ordered row-major. So we traverse the table by using
832 * bit 0 as the column offset, and the remaining bits as the
833 * row index.
834 */
835 if (rx_queue > IGB_N0_QUEUE)
836 igb_write_ivar(hw, msix_vector,
837 rx_queue >> 1,
838 (rx_queue & 0x1) << 4);
839 if (tx_queue > IGB_N0_QUEUE)
840 igb_write_ivar(hw, msix_vector,
841 tx_queue >> 1,
842 ((tx_queue & 0x1) << 4) + 8);
843 q_vector->eims_value = 1 << msix_vector;
844 break;
845 default:
846 BUG();
847 break;
848 }
849
850 /* add q_vector eims value to global eims_enable_mask */
851 adapter->eims_enable_mask |= q_vector->eims_value;
852
853 /* configure q_vector to set itr on first interrupt */
854 q_vector->set_itr = 1;
855 }
856
857 /**
858 * igb_configure_msix - Configure MSI-X hardware
859 * @adapter: board private structure to initialize
860 *
861 * igb_configure_msix sets up the hardware to properly
862 * generate MSI-X interrupts.
863 **/
864 static void igb_configure_msix(struct igb_adapter *adapter)
865 {
866 u32 tmp;
867 int i, vector = 0;
868 struct e1000_hw *hw = &adapter->hw;
869
870 adapter->eims_enable_mask = 0;
871
872 /* set vector for other causes, i.e. link changes */
873 switch (hw->mac.type) {
874 case e1000_82575:
875 tmp = rd32(E1000_CTRL_EXT);
876 /* enable MSI-X PBA support*/
877 tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879 /* Auto-Mask interrupts upon ICR read. */
880 tmp |= E1000_CTRL_EXT_EIAME;
881 tmp |= E1000_CTRL_EXT_IRCA;
882
883 wr32(E1000_CTRL_EXT, tmp);
884
885 /* enable msix_other interrupt */
886 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887 adapter->eims_other = E1000_EIMS_OTHER;
888
889 break;
890
891 case e1000_82576:
892 case e1000_82580:
893 case e1000_i350:
894 case e1000_i354:
895 case e1000_i210:
896 case e1000_i211:
897 /* Turn on MSI-X capability first, or our settings
898 * won't stick. And it will take days to debug.
899 */
900 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 E1000_GPIE_PBA | E1000_GPIE_EIAME |
902 E1000_GPIE_NSICR);
903
904 /* enable msix_other interrupt */
905 adapter->eims_other = 1 << vector;
906 tmp = (vector++ | E1000_IVAR_VALID) << 8;
907
908 wr32(E1000_IVAR_MISC, tmp);
909 break;
910 default:
911 /* do nothing, since nothing else supports MSI-X */
912 break;
913 } /* switch (hw->mac.type) */
914
915 adapter->eims_enable_mask |= adapter->eims_other;
916
917 for (i = 0; i < adapter->num_q_vectors; i++)
918 igb_assign_vector(adapter->q_vector[i], vector++);
919
920 wrfl();
921 }
922
923 /**
924 * igb_request_msix - Initialize MSI-X interrupts
925 * @adapter: board private structure to initialize
926 *
927 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
928 * kernel.
929 **/
930 static int igb_request_msix(struct igb_adapter *adapter)
931 {
932 struct net_device *netdev = adapter->netdev;
933 struct e1000_hw *hw = &adapter->hw;
934 int i, err = 0, vector = 0, free_vector = 0;
935
936 err = request_irq(adapter->msix_entries[vector].vector,
937 igb_msix_other, 0, netdev->name, adapter);
938 if (err)
939 goto err_out;
940
941 for (i = 0; i < adapter->num_q_vectors; i++) {
942 struct igb_q_vector *q_vector = adapter->q_vector[i];
943
944 vector++;
945
946 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
947
948 if (q_vector->rx.ring && q_vector->tx.ring)
949 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
950 q_vector->rx.ring->queue_index);
951 else if (q_vector->tx.ring)
952 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
953 q_vector->tx.ring->queue_index);
954 else if (q_vector->rx.ring)
955 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
956 q_vector->rx.ring->queue_index);
957 else
958 sprintf(q_vector->name, "%s-unused", netdev->name);
959
960 err = request_irq(adapter->msix_entries[vector].vector,
961 igb_msix_ring, 0, q_vector->name,
962 q_vector);
963 if (err)
964 goto err_free;
965 }
966
967 igb_configure_msix(adapter);
968 return 0;
969
970 err_free:
971 /* free already assigned IRQs */
972 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
973
974 vector--;
975 for (i = 0; i < vector; i++) {
976 free_irq(adapter->msix_entries[free_vector++].vector,
977 adapter->q_vector[i]);
978 }
979 err_out:
980 return err;
981 }
982
983 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
984 {
985 if (adapter->msix_entries) {
986 pci_disable_msix(adapter->pdev);
987 kfree(adapter->msix_entries);
988 adapter->msix_entries = NULL;
989 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
990 pci_disable_msi(adapter->pdev);
991 }
992 }
993
994 /**
995 * igb_free_q_vector - Free memory allocated for specific interrupt vector
996 * @adapter: board private structure to initialize
997 * @v_idx: Index of vector to be freed
998 *
999 * This function frees the memory allocated to the q_vector. In addition if
1000 * NAPI is enabled it will delete any references to the NAPI struct prior
1001 * to freeing the q_vector.
1002 **/
1003 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1004 {
1005 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1006
1007 if (q_vector->tx.ring)
1008 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1009
1010 if (q_vector->rx.ring)
1011 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1012
1013 adapter->q_vector[v_idx] = NULL;
1014 netif_napi_del(&q_vector->napi);
1015
1016 /* ixgbe_get_stats64() might access the rings on this vector,
1017 * we must wait a grace period before freeing it.
1018 */
1019 kfree_rcu(q_vector, rcu);
1020 }
1021
1022 /**
1023 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1024 * @adapter: board private structure to initialize
1025 *
1026 * This function frees the memory allocated to the q_vectors. In addition if
1027 * NAPI is enabled it will delete any references to the NAPI struct prior
1028 * to freeing the q_vector.
1029 **/
1030 static void igb_free_q_vectors(struct igb_adapter *adapter)
1031 {
1032 int v_idx = adapter->num_q_vectors;
1033
1034 adapter->num_tx_queues = 0;
1035 adapter->num_rx_queues = 0;
1036 adapter->num_q_vectors = 0;
1037
1038 while (v_idx--)
1039 igb_free_q_vector(adapter, v_idx);
1040 }
1041
1042 /**
1043 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1044 * @adapter: board private structure to initialize
1045 *
1046 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1047 * MSI-X interrupts allocated.
1048 */
1049 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1050 {
1051 igb_free_q_vectors(adapter);
1052 igb_reset_interrupt_capability(adapter);
1053 }
1054
1055 /**
1056 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1057 * @adapter: board private structure to initialize
1058 * @msix: boolean value of MSIX capability
1059 *
1060 * Attempt to configure interrupts using the best available
1061 * capabilities of the hardware and kernel.
1062 **/
1063 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1064 {
1065 int err;
1066 int numvecs, i;
1067
1068 if (!msix)
1069 goto msi_only;
1070
1071 /* Number of supported queues. */
1072 adapter->num_rx_queues = adapter->rss_queues;
1073 if (adapter->vfs_allocated_count)
1074 adapter->num_tx_queues = 1;
1075 else
1076 adapter->num_tx_queues = adapter->rss_queues;
1077
1078 /* start with one vector for every Rx queue */
1079 numvecs = adapter->num_rx_queues;
1080
1081 /* if Tx handler is separate add 1 for every Tx queue */
1082 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1083 numvecs += adapter->num_tx_queues;
1084
1085 /* store the number of vectors reserved for queues */
1086 adapter->num_q_vectors = numvecs;
1087
1088 /* add 1 vector for link status interrupts */
1089 numvecs++;
1090 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1091 GFP_KERNEL);
1092
1093 if (!adapter->msix_entries)
1094 goto msi_only;
1095
1096 for (i = 0; i < numvecs; i++)
1097 adapter->msix_entries[i].entry = i;
1098
1099 err = pci_enable_msix(adapter->pdev,
1100 adapter->msix_entries,
1101 numvecs);
1102 if (err == 0)
1103 return;
1104
1105 igb_reset_interrupt_capability(adapter);
1106
1107 /* If we can't do MSI-X, try MSI */
1108 msi_only:
1109 #ifdef CONFIG_PCI_IOV
1110 /* disable SR-IOV for non MSI-X configurations */
1111 if (adapter->vf_data) {
1112 struct e1000_hw *hw = &adapter->hw;
1113 /* disable iov and allow time for transactions to clear */
1114 pci_disable_sriov(adapter->pdev);
1115 msleep(500);
1116
1117 kfree(adapter->vf_data);
1118 adapter->vf_data = NULL;
1119 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1120 wrfl();
1121 msleep(100);
1122 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1123 }
1124 #endif
1125 adapter->vfs_allocated_count = 0;
1126 adapter->rss_queues = 1;
1127 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1128 adapter->num_rx_queues = 1;
1129 adapter->num_tx_queues = 1;
1130 adapter->num_q_vectors = 1;
1131 if (!pci_enable_msi(adapter->pdev))
1132 adapter->flags |= IGB_FLAG_HAS_MSI;
1133 }
1134
1135 static void igb_add_ring(struct igb_ring *ring,
1136 struct igb_ring_container *head)
1137 {
1138 head->ring = ring;
1139 head->count++;
1140 }
1141
1142 /**
1143 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1144 * @adapter: board private structure to initialize
1145 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1146 * @v_idx: index of vector in adapter struct
1147 * @txr_count: total number of Tx rings to allocate
1148 * @txr_idx: index of first Tx ring to allocate
1149 * @rxr_count: total number of Rx rings to allocate
1150 * @rxr_idx: index of first Rx ring to allocate
1151 *
1152 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1153 **/
1154 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1155 int v_count, int v_idx,
1156 int txr_count, int txr_idx,
1157 int rxr_count, int rxr_idx)
1158 {
1159 struct igb_q_vector *q_vector;
1160 struct igb_ring *ring;
1161 int ring_count, size;
1162
1163 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1164 if (txr_count > 1 || rxr_count > 1)
1165 return -ENOMEM;
1166
1167 ring_count = txr_count + rxr_count;
1168 size = sizeof(struct igb_q_vector) +
1169 (sizeof(struct igb_ring) * ring_count);
1170
1171 /* allocate q_vector and rings */
1172 q_vector = kzalloc(size, GFP_KERNEL);
1173 if (!q_vector)
1174 return -ENOMEM;
1175
1176 /* initialize NAPI */
1177 netif_napi_add(adapter->netdev, &q_vector->napi,
1178 igb_poll, 64);
1179
1180 /* tie q_vector and adapter together */
1181 adapter->q_vector[v_idx] = q_vector;
1182 q_vector->adapter = adapter;
1183
1184 /* initialize work limits */
1185 q_vector->tx.work_limit = adapter->tx_work_limit;
1186
1187 /* initialize ITR configuration */
1188 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1189 q_vector->itr_val = IGB_START_ITR;
1190
1191 /* initialize pointer to rings */
1192 ring = q_vector->ring;
1193
1194 /* intialize ITR */
1195 if (rxr_count) {
1196 /* rx or rx/tx vector */
1197 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1198 q_vector->itr_val = adapter->rx_itr_setting;
1199 } else {
1200 /* tx only vector */
1201 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1202 q_vector->itr_val = adapter->tx_itr_setting;
1203 }
1204
1205 if (txr_count) {
1206 /* assign generic ring traits */
1207 ring->dev = &adapter->pdev->dev;
1208 ring->netdev = adapter->netdev;
1209
1210 /* configure backlink on ring */
1211 ring->q_vector = q_vector;
1212
1213 /* update q_vector Tx values */
1214 igb_add_ring(ring, &q_vector->tx);
1215
1216 /* For 82575, context index must be unique per ring. */
1217 if (adapter->hw.mac.type == e1000_82575)
1218 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1219
1220 /* apply Tx specific ring traits */
1221 ring->count = adapter->tx_ring_count;
1222 ring->queue_index = txr_idx;
1223
1224 /* assign ring to adapter */
1225 adapter->tx_ring[txr_idx] = ring;
1226
1227 /* push pointer to next ring */
1228 ring++;
1229 }
1230
1231 if (rxr_count) {
1232 /* assign generic ring traits */
1233 ring->dev = &adapter->pdev->dev;
1234 ring->netdev = adapter->netdev;
1235
1236 /* configure backlink on ring */
1237 ring->q_vector = q_vector;
1238
1239 /* update q_vector Rx values */
1240 igb_add_ring(ring, &q_vector->rx);
1241
1242 /* set flag indicating ring supports SCTP checksum offload */
1243 if (adapter->hw.mac.type >= e1000_82576)
1244 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1245
1246 /*
1247 * On i350, i354, i210, and i211, loopback VLAN packets
1248 * have the tag byte-swapped.
1249 */
1250 if (adapter->hw.mac.type >= e1000_i350)
1251 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1252
1253 /* apply Rx specific ring traits */
1254 ring->count = adapter->rx_ring_count;
1255 ring->queue_index = rxr_idx;
1256
1257 /* assign ring to adapter */
1258 adapter->rx_ring[rxr_idx] = ring;
1259 }
1260
1261 return 0;
1262 }
1263
1264
1265 /**
1266 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1267 * @adapter: board private structure to initialize
1268 *
1269 * We allocate one q_vector per queue interrupt. If allocation fails we
1270 * return -ENOMEM.
1271 **/
1272 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1273 {
1274 int q_vectors = adapter->num_q_vectors;
1275 int rxr_remaining = adapter->num_rx_queues;
1276 int txr_remaining = adapter->num_tx_queues;
1277 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1278 int err;
1279
1280 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1281 for (; rxr_remaining; v_idx++) {
1282 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1283 0, 0, 1, rxr_idx);
1284
1285 if (err)
1286 goto err_out;
1287
1288 /* update counts and index */
1289 rxr_remaining--;
1290 rxr_idx++;
1291 }
1292 }
1293
1294 for (; v_idx < q_vectors; v_idx++) {
1295 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1296 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1297 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1298 tqpv, txr_idx, rqpv, rxr_idx);
1299
1300 if (err)
1301 goto err_out;
1302
1303 /* update counts and index */
1304 rxr_remaining -= rqpv;
1305 txr_remaining -= tqpv;
1306 rxr_idx++;
1307 txr_idx++;
1308 }
1309
1310 return 0;
1311
1312 err_out:
1313 adapter->num_tx_queues = 0;
1314 adapter->num_rx_queues = 0;
1315 adapter->num_q_vectors = 0;
1316
1317 while (v_idx--)
1318 igb_free_q_vector(adapter, v_idx);
1319
1320 return -ENOMEM;
1321 }
1322
1323 /**
1324 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1325 * @adapter: board private structure to initialize
1326 * @msix: boolean value of MSIX capability
1327 *
1328 * This function initializes the interrupts and allocates all of the queues.
1329 **/
1330 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1331 {
1332 struct pci_dev *pdev = adapter->pdev;
1333 int err;
1334
1335 igb_set_interrupt_capability(adapter, msix);
1336
1337 err = igb_alloc_q_vectors(adapter);
1338 if (err) {
1339 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1340 goto err_alloc_q_vectors;
1341 }
1342
1343 igb_cache_ring_register(adapter);
1344
1345 return 0;
1346
1347 err_alloc_q_vectors:
1348 igb_reset_interrupt_capability(adapter);
1349 return err;
1350 }
1351
1352 /**
1353 * igb_request_irq - initialize interrupts
1354 * @adapter: board private structure to initialize
1355 *
1356 * Attempts to configure interrupts using the best available
1357 * capabilities of the hardware and kernel.
1358 **/
1359 static int igb_request_irq(struct igb_adapter *adapter)
1360 {
1361 struct net_device *netdev = adapter->netdev;
1362 struct pci_dev *pdev = adapter->pdev;
1363 int err = 0;
1364
1365 if (adapter->msix_entries) {
1366 err = igb_request_msix(adapter);
1367 if (!err)
1368 goto request_done;
1369 /* fall back to MSI */
1370 igb_free_all_tx_resources(adapter);
1371 igb_free_all_rx_resources(adapter);
1372
1373 igb_clear_interrupt_scheme(adapter);
1374 err = igb_init_interrupt_scheme(adapter, false);
1375 if (err)
1376 goto request_done;
1377
1378 igb_setup_all_tx_resources(adapter);
1379 igb_setup_all_rx_resources(adapter);
1380 igb_configure(adapter);
1381 }
1382
1383 igb_assign_vector(adapter->q_vector[0], 0);
1384
1385 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1386 err = request_irq(pdev->irq, igb_intr_msi, 0,
1387 netdev->name, adapter);
1388 if (!err)
1389 goto request_done;
1390
1391 /* fall back to legacy interrupts */
1392 igb_reset_interrupt_capability(adapter);
1393 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1394 }
1395
1396 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1397 netdev->name, adapter);
1398
1399 if (err)
1400 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1401 err);
1402
1403 request_done:
1404 return err;
1405 }
1406
1407 static void igb_free_irq(struct igb_adapter *adapter)
1408 {
1409 if (adapter->msix_entries) {
1410 int vector = 0, i;
1411
1412 free_irq(adapter->msix_entries[vector++].vector, adapter);
1413
1414 for (i = 0; i < adapter->num_q_vectors; i++)
1415 free_irq(adapter->msix_entries[vector++].vector,
1416 adapter->q_vector[i]);
1417 } else {
1418 free_irq(adapter->pdev->irq, adapter);
1419 }
1420 }
1421
1422 /**
1423 * igb_irq_disable - Mask off interrupt generation on the NIC
1424 * @adapter: board private structure
1425 **/
1426 static void igb_irq_disable(struct igb_adapter *adapter)
1427 {
1428 struct e1000_hw *hw = &adapter->hw;
1429
1430 /* we need to be careful when disabling interrupts. The VFs are also
1431 * mapped into these registers and so clearing the bits can cause
1432 * issues on the VF drivers so we only need to clear what we set
1433 */
1434 if (adapter->msix_entries) {
1435 u32 regval = rd32(E1000_EIAM);
1436 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1437 wr32(E1000_EIMC, adapter->eims_enable_mask);
1438 regval = rd32(E1000_EIAC);
1439 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1440 }
1441
1442 wr32(E1000_IAM, 0);
1443 wr32(E1000_IMC, ~0);
1444 wrfl();
1445 if (adapter->msix_entries) {
1446 int i;
1447 for (i = 0; i < adapter->num_q_vectors; i++)
1448 synchronize_irq(adapter->msix_entries[i].vector);
1449 } else {
1450 synchronize_irq(adapter->pdev->irq);
1451 }
1452 }
1453
1454 /**
1455 * igb_irq_enable - Enable default interrupt generation settings
1456 * @adapter: board private structure
1457 **/
1458 static void igb_irq_enable(struct igb_adapter *adapter)
1459 {
1460 struct e1000_hw *hw = &adapter->hw;
1461
1462 if (adapter->msix_entries) {
1463 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1464 u32 regval = rd32(E1000_EIAC);
1465 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1466 regval = rd32(E1000_EIAM);
1467 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1468 wr32(E1000_EIMS, adapter->eims_enable_mask);
1469 if (adapter->vfs_allocated_count) {
1470 wr32(E1000_MBVFIMR, 0xFF);
1471 ims |= E1000_IMS_VMMB;
1472 }
1473 wr32(E1000_IMS, ims);
1474 } else {
1475 wr32(E1000_IMS, IMS_ENABLE_MASK |
1476 E1000_IMS_DRSTA);
1477 wr32(E1000_IAM, IMS_ENABLE_MASK |
1478 E1000_IMS_DRSTA);
1479 }
1480 }
1481
1482 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1483 {
1484 struct e1000_hw *hw = &adapter->hw;
1485 u16 vid = adapter->hw.mng_cookie.vlan_id;
1486 u16 old_vid = adapter->mng_vlan_id;
1487
1488 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1489 /* add VID to filter table */
1490 igb_vfta_set(hw, vid, true);
1491 adapter->mng_vlan_id = vid;
1492 } else {
1493 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1494 }
1495
1496 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1497 (vid != old_vid) &&
1498 !test_bit(old_vid, adapter->active_vlans)) {
1499 /* remove VID from filter table */
1500 igb_vfta_set(hw, old_vid, false);
1501 }
1502 }
1503
1504 /**
1505 * igb_release_hw_control - release control of the h/w to f/w
1506 * @adapter: address of board private structure
1507 *
1508 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1509 * For ASF and Pass Through versions of f/w this means that the
1510 * driver is no longer loaded.
1511 **/
1512 static void igb_release_hw_control(struct igb_adapter *adapter)
1513 {
1514 struct e1000_hw *hw = &adapter->hw;
1515 u32 ctrl_ext;
1516
1517 /* Let firmware take over control of h/w */
1518 ctrl_ext = rd32(E1000_CTRL_EXT);
1519 wr32(E1000_CTRL_EXT,
1520 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1521 }
1522
1523 /**
1524 * igb_get_hw_control - get control of the h/w from f/w
1525 * @adapter: address of board private structure
1526 *
1527 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1528 * For ASF and Pass Through versions of f/w this means that
1529 * the driver is loaded.
1530 **/
1531 static void igb_get_hw_control(struct igb_adapter *adapter)
1532 {
1533 struct e1000_hw *hw = &adapter->hw;
1534 u32 ctrl_ext;
1535
1536 /* Let firmware know the driver has taken over */
1537 ctrl_ext = rd32(E1000_CTRL_EXT);
1538 wr32(E1000_CTRL_EXT,
1539 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1540 }
1541
1542 /**
1543 * igb_configure - configure the hardware for RX and TX
1544 * @adapter: private board structure
1545 **/
1546 static void igb_configure(struct igb_adapter *adapter)
1547 {
1548 struct net_device *netdev = adapter->netdev;
1549 int i;
1550
1551 igb_get_hw_control(adapter);
1552 igb_set_rx_mode(netdev);
1553
1554 igb_restore_vlan(adapter);
1555
1556 igb_setup_tctl(adapter);
1557 igb_setup_mrqc(adapter);
1558 igb_setup_rctl(adapter);
1559
1560 igb_configure_tx(adapter);
1561 igb_configure_rx(adapter);
1562
1563 igb_rx_fifo_flush_82575(&adapter->hw);
1564
1565 /* call igb_desc_unused which always leaves
1566 * at least 1 descriptor unused to make sure
1567 * next_to_use != next_to_clean
1568 */
1569 for (i = 0; i < adapter->num_rx_queues; i++) {
1570 struct igb_ring *ring = adapter->rx_ring[i];
1571 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1572 }
1573 }
1574
1575 /**
1576 * igb_power_up_link - Power up the phy/serdes link
1577 * @adapter: address of board private structure
1578 **/
1579 void igb_power_up_link(struct igb_adapter *adapter)
1580 {
1581 igb_reset_phy(&adapter->hw);
1582
1583 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1584 igb_power_up_phy_copper(&adapter->hw);
1585 else
1586 igb_power_up_serdes_link_82575(&adapter->hw);
1587 }
1588
1589 /**
1590 * igb_power_down_link - Power down the phy/serdes link
1591 * @adapter: address of board private structure
1592 */
1593 static void igb_power_down_link(struct igb_adapter *adapter)
1594 {
1595 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1596 igb_power_down_phy_copper_82575(&adapter->hw);
1597 else
1598 igb_shutdown_serdes_link_82575(&adapter->hw);
1599 }
1600
1601 /**
1602 * igb_up - Open the interface and prepare it to handle traffic
1603 * @adapter: board private structure
1604 **/
1605 int igb_up(struct igb_adapter *adapter)
1606 {
1607 struct e1000_hw *hw = &adapter->hw;
1608 int i;
1609
1610 /* hardware has been reset, we need to reload some things */
1611 igb_configure(adapter);
1612
1613 clear_bit(__IGB_DOWN, &adapter->state);
1614
1615 for (i = 0; i < adapter->num_q_vectors; i++)
1616 napi_enable(&(adapter->q_vector[i]->napi));
1617
1618 if (adapter->msix_entries)
1619 igb_configure_msix(adapter);
1620 else
1621 igb_assign_vector(adapter->q_vector[0], 0);
1622
1623 /* Clear any pending interrupts. */
1624 rd32(E1000_ICR);
1625 igb_irq_enable(adapter);
1626
1627 /* notify VFs that reset has been completed */
1628 if (adapter->vfs_allocated_count) {
1629 u32 reg_data = rd32(E1000_CTRL_EXT);
1630 reg_data |= E1000_CTRL_EXT_PFRSTD;
1631 wr32(E1000_CTRL_EXT, reg_data);
1632 }
1633
1634 netif_tx_start_all_queues(adapter->netdev);
1635
1636 /* start the watchdog. */
1637 hw->mac.get_link_status = 1;
1638 schedule_work(&adapter->watchdog_task);
1639
1640 return 0;
1641 }
1642
1643 void igb_down(struct igb_adapter *adapter)
1644 {
1645 struct net_device *netdev = adapter->netdev;
1646 struct e1000_hw *hw = &adapter->hw;
1647 u32 tctl, rctl;
1648 int i;
1649
1650 /* signal that we're down so the interrupt handler does not
1651 * reschedule our watchdog timer
1652 */
1653 set_bit(__IGB_DOWN, &adapter->state);
1654
1655 /* disable receives in the hardware */
1656 rctl = rd32(E1000_RCTL);
1657 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1658 /* flush and sleep below */
1659
1660 netif_tx_stop_all_queues(netdev);
1661
1662 /* disable transmits in the hardware */
1663 tctl = rd32(E1000_TCTL);
1664 tctl &= ~E1000_TCTL_EN;
1665 wr32(E1000_TCTL, tctl);
1666 /* flush both disables and wait for them to finish */
1667 wrfl();
1668 msleep(10);
1669
1670 for (i = 0; i < adapter->num_q_vectors; i++)
1671 napi_disable(&(adapter->q_vector[i]->napi));
1672
1673 igb_irq_disable(adapter);
1674
1675 del_timer_sync(&adapter->watchdog_timer);
1676 del_timer_sync(&adapter->phy_info_timer);
1677
1678 netif_carrier_off(netdev);
1679
1680 /* record the stats before reset*/
1681 spin_lock(&adapter->stats64_lock);
1682 igb_update_stats(adapter, &adapter->stats64);
1683 spin_unlock(&adapter->stats64_lock);
1684
1685 adapter->link_speed = 0;
1686 adapter->link_duplex = 0;
1687
1688 if (!pci_channel_offline(adapter->pdev))
1689 igb_reset(adapter);
1690 igb_clean_all_tx_rings(adapter);
1691 igb_clean_all_rx_rings(adapter);
1692 #ifdef CONFIG_IGB_DCA
1693
1694 /* since we reset the hardware DCA settings were cleared */
1695 igb_setup_dca(adapter);
1696 #endif
1697 }
1698
1699 void igb_reinit_locked(struct igb_adapter *adapter)
1700 {
1701 WARN_ON(in_interrupt());
1702 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1703 msleep(1);
1704 igb_down(adapter);
1705 igb_up(adapter);
1706 clear_bit(__IGB_RESETTING, &adapter->state);
1707 }
1708
1709 void igb_reset(struct igb_adapter *adapter)
1710 {
1711 struct pci_dev *pdev = adapter->pdev;
1712 struct e1000_hw *hw = &adapter->hw;
1713 struct e1000_mac_info *mac = &hw->mac;
1714 struct e1000_fc_info *fc = &hw->fc;
1715 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1716
1717 /* Repartition Pba for greater than 9k mtu
1718 * To take effect CTRL.RST is required.
1719 */
1720 switch (mac->type) {
1721 case e1000_i350:
1722 case e1000_i354:
1723 case e1000_82580:
1724 pba = rd32(E1000_RXPBS);
1725 pba = igb_rxpbs_adjust_82580(pba);
1726 break;
1727 case e1000_82576:
1728 pba = rd32(E1000_RXPBS);
1729 pba &= E1000_RXPBS_SIZE_MASK_82576;
1730 break;
1731 case e1000_82575:
1732 case e1000_i210:
1733 case e1000_i211:
1734 default:
1735 pba = E1000_PBA_34K;
1736 break;
1737 }
1738
1739 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1740 (mac->type < e1000_82576)) {
1741 /* adjust PBA for jumbo frames */
1742 wr32(E1000_PBA, pba);
1743
1744 /* To maintain wire speed transmits, the Tx FIFO should be
1745 * large enough to accommodate two full transmit packets,
1746 * rounded up to the next 1KB and expressed in KB. Likewise,
1747 * the Rx FIFO should be large enough to accommodate at least
1748 * one full receive packet and is similarly rounded up and
1749 * expressed in KB.
1750 */
1751 pba = rd32(E1000_PBA);
1752 /* upper 16 bits has Tx packet buffer allocation size in KB */
1753 tx_space = pba >> 16;
1754 /* lower 16 bits has Rx packet buffer allocation size in KB */
1755 pba &= 0xffff;
1756 /* the Tx fifo also stores 16 bytes of information about the Tx
1757 * but don't include ethernet FCS because hardware appends it
1758 */
1759 min_tx_space = (adapter->max_frame_size +
1760 sizeof(union e1000_adv_tx_desc) -
1761 ETH_FCS_LEN) * 2;
1762 min_tx_space = ALIGN(min_tx_space, 1024);
1763 min_tx_space >>= 10;
1764 /* software strips receive CRC, so leave room for it */
1765 min_rx_space = adapter->max_frame_size;
1766 min_rx_space = ALIGN(min_rx_space, 1024);
1767 min_rx_space >>= 10;
1768
1769 /* If current Tx allocation is less than the min Tx FIFO size,
1770 * and the min Tx FIFO size is less than the current Rx FIFO
1771 * allocation, take space away from current Rx allocation
1772 */
1773 if (tx_space < min_tx_space &&
1774 ((min_tx_space - tx_space) < pba)) {
1775 pba = pba - (min_tx_space - tx_space);
1776
1777 /* if short on Rx space, Rx wins and must trump Tx
1778 * adjustment
1779 */
1780 if (pba < min_rx_space)
1781 pba = min_rx_space;
1782 }
1783 wr32(E1000_PBA, pba);
1784 }
1785
1786 /* flow control settings */
1787 /* The high water mark must be low enough to fit one full frame
1788 * (or the size used for early receive) above it in the Rx FIFO.
1789 * Set it to the lower of:
1790 * - 90% of the Rx FIFO size, or
1791 * - the full Rx FIFO size minus one full frame
1792 */
1793 hwm = min(((pba << 10) * 9 / 10),
1794 ((pba << 10) - 2 * adapter->max_frame_size));
1795
1796 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1797 fc->low_water = fc->high_water - 16;
1798 fc->pause_time = 0xFFFF;
1799 fc->send_xon = 1;
1800 fc->current_mode = fc->requested_mode;
1801
1802 /* disable receive for all VFs and wait one second */
1803 if (adapter->vfs_allocated_count) {
1804 int i;
1805 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1806 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1807
1808 /* ping all the active vfs to let them know we are going down */
1809 igb_ping_all_vfs(adapter);
1810
1811 /* disable transmits and receives */
1812 wr32(E1000_VFRE, 0);
1813 wr32(E1000_VFTE, 0);
1814 }
1815
1816 /* Allow time for pending master requests to run */
1817 hw->mac.ops.reset_hw(hw);
1818 wr32(E1000_WUC, 0);
1819
1820 if (hw->mac.ops.init_hw(hw))
1821 dev_err(&pdev->dev, "Hardware Error\n");
1822
1823 /* Flow control settings reset on hardware reset, so guarantee flow
1824 * control is off when forcing speed.
1825 */
1826 if (!hw->mac.autoneg)
1827 igb_force_mac_fc(hw);
1828
1829 igb_init_dmac(adapter, pba);
1830 #ifdef CONFIG_IGB_HWMON
1831 /* Re-initialize the thermal sensor on i350 devices. */
1832 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1833 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1834 /* If present, re-initialize the external thermal sensor
1835 * interface.
1836 */
1837 if (adapter->ets)
1838 mac->ops.init_thermal_sensor_thresh(hw);
1839 }
1840 }
1841 #endif
1842 if (!netif_running(adapter->netdev))
1843 igb_power_down_link(adapter);
1844
1845 igb_update_mng_vlan(adapter);
1846
1847 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1848 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1849
1850 /* Re-enable PTP, where applicable. */
1851 igb_ptp_reset(adapter);
1852
1853 igb_get_phy_info(hw);
1854 }
1855
1856 static netdev_features_t igb_fix_features(struct net_device *netdev,
1857 netdev_features_t features)
1858 {
1859 /* Since there is no support for separate Rx/Tx vlan accel
1860 * enable/disable make sure Tx flag is always in same state as Rx.
1861 */
1862 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1863 features |= NETIF_F_HW_VLAN_CTAG_TX;
1864 else
1865 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1866
1867 return features;
1868 }
1869
1870 static int igb_set_features(struct net_device *netdev,
1871 netdev_features_t features)
1872 {
1873 netdev_features_t changed = netdev->features ^ features;
1874 struct igb_adapter *adapter = netdev_priv(netdev);
1875
1876 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1877 igb_vlan_mode(netdev, features);
1878
1879 if (!(changed & NETIF_F_RXALL))
1880 return 0;
1881
1882 netdev->features = features;
1883
1884 if (netif_running(netdev))
1885 igb_reinit_locked(adapter);
1886 else
1887 igb_reset(adapter);
1888
1889 return 0;
1890 }
1891
1892 static const struct net_device_ops igb_netdev_ops = {
1893 .ndo_open = igb_open,
1894 .ndo_stop = igb_close,
1895 .ndo_start_xmit = igb_xmit_frame,
1896 .ndo_get_stats64 = igb_get_stats64,
1897 .ndo_set_rx_mode = igb_set_rx_mode,
1898 .ndo_set_mac_address = igb_set_mac,
1899 .ndo_change_mtu = igb_change_mtu,
1900 .ndo_do_ioctl = igb_ioctl,
1901 .ndo_tx_timeout = igb_tx_timeout,
1902 .ndo_validate_addr = eth_validate_addr,
1903 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1904 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1905 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1906 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1907 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1908 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
1909 .ndo_get_vf_config = igb_ndo_get_vf_config,
1910 #ifdef CONFIG_NET_POLL_CONTROLLER
1911 .ndo_poll_controller = igb_netpoll,
1912 #endif
1913 .ndo_fix_features = igb_fix_features,
1914 .ndo_set_features = igb_set_features,
1915 };
1916
1917 /**
1918 * igb_set_fw_version - Configure version string for ethtool
1919 * @adapter: adapter struct
1920 **/
1921 void igb_set_fw_version(struct igb_adapter *adapter)
1922 {
1923 struct e1000_hw *hw = &adapter->hw;
1924 struct e1000_fw_version fw;
1925
1926 igb_get_fw_version(hw, &fw);
1927
1928 switch (hw->mac.type) {
1929 case e1000_i211:
1930 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1931 "%2d.%2d-%d",
1932 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1933 break;
1934
1935 default:
1936 /* if option is rom valid, display its version too */
1937 if (fw.or_valid) {
1938 snprintf(adapter->fw_version,
1939 sizeof(adapter->fw_version),
1940 "%d.%d, 0x%08x, %d.%d.%d",
1941 fw.eep_major, fw.eep_minor, fw.etrack_id,
1942 fw.or_major, fw.or_build, fw.or_patch);
1943 /* no option rom */
1944 } else {
1945 snprintf(adapter->fw_version,
1946 sizeof(adapter->fw_version),
1947 "%d.%d, 0x%08x",
1948 fw.eep_major, fw.eep_minor, fw.etrack_id);
1949 }
1950 break;
1951 }
1952 return;
1953 }
1954
1955 /**
1956 * igb_init_i2c - Init I2C interface
1957 * @adapter: pointer to adapter structure
1958 **/
1959 static s32 igb_init_i2c(struct igb_adapter *adapter)
1960 {
1961 s32 status = E1000_SUCCESS;
1962
1963 /* I2C interface supported on i350 devices */
1964 if (adapter->hw.mac.type != e1000_i350)
1965 return E1000_SUCCESS;
1966
1967 /* Initialize the i2c bus which is controlled by the registers.
1968 * This bus will use the i2c_algo_bit structue that implements
1969 * the protocol through toggling of the 4 bits in the register.
1970 */
1971 adapter->i2c_adap.owner = THIS_MODULE;
1972 adapter->i2c_algo = igb_i2c_algo;
1973 adapter->i2c_algo.data = adapter;
1974 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1975 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1976 strlcpy(adapter->i2c_adap.name, "igb BB",
1977 sizeof(adapter->i2c_adap.name));
1978 status = i2c_bit_add_bus(&adapter->i2c_adap);
1979 return status;
1980 }
1981
1982 /**
1983 * igb_probe - Device Initialization Routine
1984 * @pdev: PCI device information struct
1985 * @ent: entry in igb_pci_tbl
1986 *
1987 * Returns 0 on success, negative on failure
1988 *
1989 * igb_probe initializes an adapter identified by a pci_dev structure.
1990 * The OS initialization, configuring of the adapter private structure,
1991 * and a hardware reset occur.
1992 **/
1993 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1994 {
1995 struct net_device *netdev;
1996 struct igb_adapter *adapter;
1997 struct e1000_hw *hw;
1998 u16 eeprom_data = 0;
1999 s32 ret_val;
2000 static int global_quad_port_a; /* global quad port a indication */
2001 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2002 unsigned long mmio_start, mmio_len;
2003 int err, pci_using_dac;
2004 u8 part_str[E1000_PBANUM_LENGTH];
2005
2006 /* Catch broken hardware that put the wrong VF device ID in
2007 * the PCIe SR-IOV capability.
2008 */
2009 if (pdev->is_virtfn) {
2010 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2011 pci_name(pdev), pdev->vendor, pdev->device);
2012 return -EINVAL;
2013 }
2014
2015 err = pci_enable_device_mem(pdev);
2016 if (err)
2017 return err;
2018
2019 pci_using_dac = 0;
2020 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2021 if (!err) {
2022 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2023 if (!err)
2024 pci_using_dac = 1;
2025 } else {
2026 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2027 if (err) {
2028 err = dma_set_coherent_mask(&pdev->dev,
2029 DMA_BIT_MASK(32));
2030 if (err) {
2031 dev_err(&pdev->dev,
2032 "No usable DMA configuration, aborting\n");
2033 goto err_dma;
2034 }
2035 }
2036 }
2037
2038 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2039 IORESOURCE_MEM),
2040 igb_driver_name);
2041 if (err)
2042 goto err_pci_reg;
2043
2044 pci_enable_pcie_error_reporting(pdev);
2045
2046 pci_set_master(pdev);
2047 pci_save_state(pdev);
2048
2049 err = -ENOMEM;
2050 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2051 IGB_MAX_TX_QUEUES);
2052 if (!netdev)
2053 goto err_alloc_etherdev;
2054
2055 SET_NETDEV_DEV(netdev, &pdev->dev);
2056
2057 pci_set_drvdata(pdev, netdev);
2058 adapter = netdev_priv(netdev);
2059 adapter->netdev = netdev;
2060 adapter->pdev = pdev;
2061 hw = &adapter->hw;
2062 hw->back = adapter;
2063 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2064
2065 mmio_start = pci_resource_start(pdev, 0);
2066 mmio_len = pci_resource_len(pdev, 0);
2067
2068 err = -EIO;
2069 hw->hw_addr = ioremap(mmio_start, mmio_len);
2070 if (!hw->hw_addr)
2071 goto err_ioremap;
2072
2073 netdev->netdev_ops = &igb_netdev_ops;
2074 igb_set_ethtool_ops(netdev);
2075 netdev->watchdog_timeo = 5 * HZ;
2076
2077 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2078
2079 netdev->mem_start = mmio_start;
2080 netdev->mem_end = mmio_start + mmio_len;
2081
2082 /* PCI config space info */
2083 hw->vendor_id = pdev->vendor;
2084 hw->device_id = pdev->device;
2085 hw->revision_id = pdev->revision;
2086 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2087 hw->subsystem_device_id = pdev->subsystem_device;
2088
2089 /* Copy the default MAC, PHY and NVM function pointers */
2090 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2091 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2092 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2093 /* Initialize skew-specific constants */
2094 err = ei->get_invariants(hw);
2095 if (err)
2096 goto err_sw_init;
2097
2098 /* setup the private structure */
2099 err = igb_sw_init(adapter);
2100 if (err)
2101 goto err_sw_init;
2102
2103 igb_get_bus_info_pcie(hw);
2104
2105 hw->phy.autoneg_wait_to_complete = false;
2106
2107 /* Copper options */
2108 if (hw->phy.media_type == e1000_media_type_copper) {
2109 hw->phy.mdix = AUTO_ALL_MODES;
2110 hw->phy.disable_polarity_correction = false;
2111 hw->phy.ms_type = e1000_ms_hw_default;
2112 }
2113
2114 if (igb_check_reset_block(hw))
2115 dev_info(&pdev->dev,
2116 "PHY reset is blocked due to SOL/IDER session.\n");
2117
2118 /* features is initialized to 0 in allocation, it might have bits
2119 * set by igb_sw_init so we should use an or instead of an
2120 * assignment.
2121 */
2122 netdev->features |= NETIF_F_SG |
2123 NETIF_F_IP_CSUM |
2124 NETIF_F_IPV6_CSUM |
2125 NETIF_F_TSO |
2126 NETIF_F_TSO6 |
2127 NETIF_F_RXHASH |
2128 NETIF_F_RXCSUM |
2129 NETIF_F_HW_VLAN_CTAG_RX |
2130 NETIF_F_HW_VLAN_CTAG_TX;
2131
2132 /* copy netdev features into list of user selectable features */
2133 netdev->hw_features |= netdev->features;
2134 netdev->hw_features |= NETIF_F_RXALL;
2135
2136 /* set this bit last since it cannot be part of hw_features */
2137 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2138
2139 netdev->vlan_features |= NETIF_F_TSO |
2140 NETIF_F_TSO6 |
2141 NETIF_F_IP_CSUM |
2142 NETIF_F_IPV6_CSUM |
2143 NETIF_F_SG;
2144
2145 netdev->priv_flags |= IFF_SUPP_NOFCS;
2146
2147 if (pci_using_dac) {
2148 netdev->features |= NETIF_F_HIGHDMA;
2149 netdev->vlan_features |= NETIF_F_HIGHDMA;
2150 }
2151
2152 if (hw->mac.type >= e1000_82576) {
2153 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2154 netdev->features |= NETIF_F_SCTP_CSUM;
2155 }
2156
2157 netdev->priv_flags |= IFF_UNICAST_FLT;
2158
2159 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2160
2161 /* before reading the NVM, reset the controller to put the device in a
2162 * known good starting state
2163 */
2164 hw->mac.ops.reset_hw(hw);
2165
2166 /* make sure the NVM is good , i211 parts have special NVM that
2167 * doesn't contain a checksum
2168 */
2169 if (hw->mac.type != e1000_i211) {
2170 if (hw->nvm.ops.validate(hw) < 0) {
2171 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2172 err = -EIO;
2173 goto err_eeprom;
2174 }
2175 }
2176
2177 /* copy the MAC address out of the NVM */
2178 if (hw->mac.ops.read_mac_addr(hw))
2179 dev_err(&pdev->dev, "NVM Read Error\n");
2180
2181 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2182
2183 if (!is_valid_ether_addr(netdev->dev_addr)) {
2184 dev_err(&pdev->dev, "Invalid MAC Address\n");
2185 err = -EIO;
2186 goto err_eeprom;
2187 }
2188
2189 /* get firmware version for ethtool -i */
2190 igb_set_fw_version(adapter);
2191
2192 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2193 (unsigned long) adapter);
2194 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2195 (unsigned long) adapter);
2196
2197 INIT_WORK(&adapter->reset_task, igb_reset_task);
2198 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2199
2200 /* Initialize link properties that are user-changeable */
2201 adapter->fc_autoneg = true;
2202 hw->mac.autoneg = true;
2203 hw->phy.autoneg_advertised = 0x2f;
2204
2205 hw->fc.requested_mode = e1000_fc_default;
2206 hw->fc.current_mode = e1000_fc_default;
2207
2208 igb_validate_mdi_setting(hw);
2209
2210 /* By default, support wake on port A */
2211 if (hw->bus.func == 0)
2212 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2213
2214 /* Check the NVM for wake support on non-port A ports */
2215 if (hw->mac.type >= e1000_82580)
2216 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2217 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2218 &eeprom_data);
2219 else if (hw->bus.func == 1)
2220 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2221
2222 if (eeprom_data & IGB_EEPROM_APME)
2223 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2224
2225 /* now that we have the eeprom settings, apply the special cases where
2226 * the eeprom may be wrong or the board simply won't support wake on
2227 * lan on a particular port
2228 */
2229 switch (pdev->device) {
2230 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2231 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2232 break;
2233 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2234 case E1000_DEV_ID_82576_FIBER:
2235 case E1000_DEV_ID_82576_SERDES:
2236 /* Wake events only supported on port A for dual fiber
2237 * regardless of eeprom setting
2238 */
2239 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2240 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2241 break;
2242 case E1000_DEV_ID_82576_QUAD_COPPER:
2243 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2244 /* if quad port adapter, disable WoL on all but port A */
2245 if (global_quad_port_a != 0)
2246 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2247 else
2248 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2249 /* Reset for multiple quad port adapters */
2250 if (++global_quad_port_a == 4)
2251 global_quad_port_a = 0;
2252 break;
2253 default:
2254 /* If the device can't wake, don't set software support */
2255 if (!device_can_wakeup(&adapter->pdev->dev))
2256 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2257 }
2258
2259 /* initialize the wol settings based on the eeprom settings */
2260 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2261 adapter->wol |= E1000_WUFC_MAG;
2262
2263 /* Some vendors want WoL disabled by default, but still supported */
2264 if ((hw->mac.type == e1000_i350) &&
2265 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2266 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2267 adapter->wol = 0;
2268 }
2269
2270 device_set_wakeup_enable(&adapter->pdev->dev,
2271 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2272
2273 /* reset the hardware with the new settings */
2274 igb_reset(adapter);
2275
2276 /* Init the I2C interface */
2277 err = igb_init_i2c(adapter);
2278 if (err) {
2279 dev_err(&pdev->dev, "failed to init i2c interface\n");
2280 goto err_eeprom;
2281 }
2282
2283 /* let the f/w know that the h/w is now under the control of the
2284 * driver. */
2285 igb_get_hw_control(adapter);
2286
2287 strcpy(netdev->name, "eth%d");
2288 err = register_netdev(netdev);
2289 if (err)
2290 goto err_register;
2291
2292 /* carrier off reporting is important to ethtool even BEFORE open */
2293 netif_carrier_off(netdev);
2294
2295 #ifdef CONFIG_IGB_DCA
2296 if (dca_add_requester(&pdev->dev) == 0) {
2297 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2298 dev_info(&pdev->dev, "DCA enabled\n");
2299 igb_setup_dca(adapter);
2300 }
2301
2302 #endif
2303 #ifdef CONFIG_IGB_HWMON
2304 /* Initialize the thermal sensor on i350 devices. */
2305 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2306 u16 ets_word;
2307
2308 /* Read the NVM to determine if this i350 device supports an
2309 * external thermal sensor.
2310 */
2311 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2312 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2313 adapter->ets = true;
2314 else
2315 adapter->ets = false;
2316 if (igb_sysfs_init(adapter))
2317 dev_err(&pdev->dev,
2318 "failed to allocate sysfs resources\n");
2319 } else {
2320 adapter->ets = false;
2321 }
2322 #endif
2323 /* do hw tstamp init after resetting */
2324 igb_ptp_init(adapter);
2325
2326 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2327 /* print bus type/speed/width info, not applicable to i354 */
2328 if (hw->mac.type != e1000_i354) {
2329 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2330 netdev->name,
2331 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2332 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2333 "unknown"),
2334 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2335 "Width x4" :
2336 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2337 "Width x2" :
2338 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2339 "Width x1" : "unknown"), netdev->dev_addr);
2340 }
2341
2342 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2343 if (ret_val)
2344 strcpy(part_str, "Unknown");
2345 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2346 dev_info(&pdev->dev,
2347 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2348 adapter->msix_entries ? "MSI-X" :
2349 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2350 adapter->num_rx_queues, adapter->num_tx_queues);
2351 switch (hw->mac.type) {
2352 case e1000_i350:
2353 case e1000_i210:
2354 case e1000_i211:
2355 igb_set_eee_i350(hw);
2356 break;
2357 case e1000_i354:
2358 if (hw->phy.media_type == e1000_media_type_copper) {
2359 if ((rd32(E1000_CTRL_EXT) &
2360 E1000_CTRL_EXT_LINK_MODE_SGMII))
2361 igb_set_eee_i354(hw);
2362 }
2363 break;
2364 default:
2365 break;
2366 }
2367
2368 pm_runtime_put_noidle(&pdev->dev);
2369 return 0;
2370
2371 err_register:
2372 igb_release_hw_control(adapter);
2373 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2374 err_eeprom:
2375 if (!igb_check_reset_block(hw))
2376 igb_reset_phy(hw);
2377
2378 if (hw->flash_address)
2379 iounmap(hw->flash_address);
2380 err_sw_init:
2381 igb_clear_interrupt_scheme(adapter);
2382 iounmap(hw->hw_addr);
2383 err_ioremap:
2384 free_netdev(netdev);
2385 err_alloc_etherdev:
2386 pci_release_selected_regions(pdev,
2387 pci_select_bars(pdev, IORESOURCE_MEM));
2388 err_pci_reg:
2389 err_dma:
2390 pci_disable_device(pdev);
2391 return err;
2392 }
2393
2394 #ifdef CONFIG_PCI_IOV
2395 static int igb_disable_sriov(struct pci_dev *pdev)
2396 {
2397 struct net_device *netdev = pci_get_drvdata(pdev);
2398 struct igb_adapter *adapter = netdev_priv(netdev);
2399 struct e1000_hw *hw = &adapter->hw;
2400
2401 /* reclaim resources allocated to VFs */
2402 if (adapter->vf_data) {
2403 /* disable iov and allow time for transactions to clear */
2404 if (pci_vfs_assigned(pdev)) {
2405 dev_warn(&pdev->dev,
2406 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2407 return -EPERM;
2408 } else {
2409 pci_disable_sriov(pdev);
2410 msleep(500);
2411 }
2412
2413 kfree(adapter->vf_data);
2414 adapter->vf_data = NULL;
2415 adapter->vfs_allocated_count = 0;
2416 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2417 wrfl();
2418 msleep(100);
2419 dev_info(&pdev->dev, "IOV Disabled\n");
2420
2421 /* Re-enable DMA Coalescing flag since IOV is turned off */
2422 adapter->flags |= IGB_FLAG_DMAC;
2423 }
2424
2425 return 0;
2426 }
2427
2428 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2429 {
2430 struct net_device *netdev = pci_get_drvdata(pdev);
2431 struct igb_adapter *adapter = netdev_priv(netdev);
2432 int old_vfs = pci_num_vf(pdev);
2433 int err = 0;
2434 int i;
2435
2436 if (!num_vfs)
2437 goto out;
2438 else if (old_vfs && old_vfs == num_vfs)
2439 goto out;
2440 else if (old_vfs && old_vfs != num_vfs)
2441 err = igb_disable_sriov(pdev);
2442
2443 if (err)
2444 goto out;
2445
2446 if (num_vfs > 7) {
2447 err = -EPERM;
2448 goto out;
2449 }
2450
2451 adapter->vfs_allocated_count = num_vfs;
2452
2453 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2454 sizeof(struct vf_data_storage), GFP_KERNEL);
2455
2456 /* if allocation failed then we do not support SR-IOV */
2457 if (!adapter->vf_data) {
2458 adapter->vfs_allocated_count = 0;
2459 dev_err(&pdev->dev,
2460 "Unable to allocate memory for VF Data Storage\n");
2461 err = -ENOMEM;
2462 goto out;
2463 }
2464
2465 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2466 if (err)
2467 goto err_out;
2468
2469 dev_info(&pdev->dev, "%d VFs allocated\n",
2470 adapter->vfs_allocated_count);
2471 for (i = 0; i < adapter->vfs_allocated_count; i++)
2472 igb_vf_configure(adapter, i);
2473
2474 /* DMA Coalescing is not supported in IOV mode. */
2475 adapter->flags &= ~IGB_FLAG_DMAC;
2476 goto out;
2477
2478 err_out:
2479 kfree(adapter->vf_data);
2480 adapter->vf_data = NULL;
2481 adapter->vfs_allocated_count = 0;
2482 out:
2483 return err;
2484 }
2485
2486 #endif
2487 /**
2488 * igb_remove_i2c - Cleanup I2C interface
2489 * @adapter: pointer to adapter structure
2490 **/
2491 static void igb_remove_i2c(struct igb_adapter *adapter)
2492 {
2493 /* free the adapter bus structure */
2494 i2c_del_adapter(&adapter->i2c_adap);
2495 }
2496
2497 /**
2498 * igb_remove - Device Removal Routine
2499 * @pdev: PCI device information struct
2500 *
2501 * igb_remove is called by the PCI subsystem to alert the driver
2502 * that it should release a PCI device. The could be caused by a
2503 * Hot-Plug event, or because the driver is going to be removed from
2504 * memory.
2505 **/
2506 static void igb_remove(struct pci_dev *pdev)
2507 {
2508 struct net_device *netdev = pci_get_drvdata(pdev);
2509 struct igb_adapter *adapter = netdev_priv(netdev);
2510 struct e1000_hw *hw = &adapter->hw;
2511
2512 pm_runtime_get_noresume(&pdev->dev);
2513 #ifdef CONFIG_IGB_HWMON
2514 igb_sysfs_exit(adapter);
2515 #endif
2516 igb_remove_i2c(adapter);
2517 igb_ptp_stop(adapter);
2518 /* The watchdog timer may be rescheduled, so explicitly
2519 * disable watchdog from being rescheduled.
2520 */
2521 set_bit(__IGB_DOWN, &adapter->state);
2522 del_timer_sync(&adapter->watchdog_timer);
2523 del_timer_sync(&adapter->phy_info_timer);
2524
2525 cancel_work_sync(&adapter->reset_task);
2526 cancel_work_sync(&adapter->watchdog_task);
2527
2528 #ifdef CONFIG_IGB_DCA
2529 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2530 dev_info(&pdev->dev, "DCA disabled\n");
2531 dca_remove_requester(&pdev->dev);
2532 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2533 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2534 }
2535 #endif
2536
2537 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2538 * would have already happened in close and is redundant.
2539 */
2540 igb_release_hw_control(adapter);
2541
2542 unregister_netdev(netdev);
2543
2544 igb_clear_interrupt_scheme(adapter);
2545
2546 #ifdef CONFIG_PCI_IOV
2547 igb_disable_sriov(pdev);
2548 #endif
2549
2550 iounmap(hw->hw_addr);
2551 if (hw->flash_address)
2552 iounmap(hw->flash_address);
2553 pci_release_selected_regions(pdev,
2554 pci_select_bars(pdev, IORESOURCE_MEM));
2555
2556 kfree(adapter->shadow_vfta);
2557 free_netdev(netdev);
2558
2559 pci_disable_pcie_error_reporting(pdev);
2560
2561 pci_disable_device(pdev);
2562 }
2563
2564 /**
2565 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2566 * @adapter: board private structure to initialize
2567 *
2568 * This function initializes the vf specific data storage and then attempts to
2569 * allocate the VFs. The reason for ordering it this way is because it is much
2570 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2571 * the memory for the VFs.
2572 **/
2573 static void igb_probe_vfs(struct igb_adapter *adapter)
2574 {
2575 #ifdef CONFIG_PCI_IOV
2576 struct pci_dev *pdev = adapter->pdev;
2577 struct e1000_hw *hw = &adapter->hw;
2578
2579 /* Virtualization features not supported on i210 family. */
2580 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2581 return;
2582
2583 pci_sriov_set_totalvfs(pdev, 7);
2584 igb_enable_sriov(pdev, max_vfs);
2585
2586 #endif /* CONFIG_PCI_IOV */
2587 }
2588
2589 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2590 {
2591 struct e1000_hw *hw = &adapter->hw;
2592 u32 max_rss_queues;
2593
2594 /* Determine the maximum number of RSS queues supported. */
2595 switch (hw->mac.type) {
2596 case e1000_i211:
2597 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2598 break;
2599 case e1000_82575:
2600 case e1000_i210:
2601 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2602 break;
2603 case e1000_i350:
2604 /* I350 cannot do RSS and SR-IOV at the same time */
2605 if (!!adapter->vfs_allocated_count) {
2606 max_rss_queues = 1;
2607 break;
2608 }
2609 /* fall through */
2610 case e1000_82576:
2611 if (!!adapter->vfs_allocated_count) {
2612 max_rss_queues = 2;
2613 break;
2614 }
2615 /* fall through */
2616 case e1000_82580:
2617 case e1000_i354:
2618 default:
2619 max_rss_queues = IGB_MAX_RX_QUEUES;
2620 break;
2621 }
2622
2623 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2624
2625 /* Determine if we need to pair queues. */
2626 switch (hw->mac.type) {
2627 case e1000_82575:
2628 case e1000_i211:
2629 /* Device supports enough interrupts without queue pairing. */
2630 break;
2631 case e1000_82576:
2632 /* If VFs are going to be allocated with RSS queues then we
2633 * should pair the queues in order to conserve interrupts due
2634 * to limited supply.
2635 */
2636 if ((adapter->rss_queues > 1) &&
2637 (adapter->vfs_allocated_count > 6))
2638 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2639 /* fall through */
2640 case e1000_82580:
2641 case e1000_i350:
2642 case e1000_i354:
2643 case e1000_i210:
2644 default:
2645 /* If rss_queues > half of max_rss_queues, pair the queues in
2646 * order to conserve interrupts due to limited supply.
2647 */
2648 if (adapter->rss_queues > (max_rss_queues / 2))
2649 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2650 break;
2651 }
2652 }
2653
2654 /**
2655 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2656 * @adapter: board private structure to initialize
2657 *
2658 * igb_sw_init initializes the Adapter private data structure.
2659 * Fields are initialized based on PCI device information and
2660 * OS network device settings (MTU size).
2661 **/
2662 static int igb_sw_init(struct igb_adapter *adapter)
2663 {
2664 struct e1000_hw *hw = &adapter->hw;
2665 struct net_device *netdev = adapter->netdev;
2666 struct pci_dev *pdev = adapter->pdev;
2667
2668 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2669
2670 /* set default ring sizes */
2671 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2672 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2673
2674 /* set default ITR values */
2675 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2676 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2677
2678 /* set default work limits */
2679 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2680
2681 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2682 VLAN_HLEN;
2683 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2684
2685 spin_lock_init(&adapter->stats64_lock);
2686 #ifdef CONFIG_PCI_IOV
2687 switch (hw->mac.type) {
2688 case e1000_82576:
2689 case e1000_i350:
2690 if (max_vfs > 7) {
2691 dev_warn(&pdev->dev,
2692 "Maximum of 7 VFs per PF, using max\n");
2693 max_vfs = adapter->vfs_allocated_count = 7;
2694 } else
2695 adapter->vfs_allocated_count = max_vfs;
2696 if (adapter->vfs_allocated_count)
2697 dev_warn(&pdev->dev,
2698 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2699 break;
2700 default:
2701 break;
2702 }
2703 #endif /* CONFIG_PCI_IOV */
2704
2705 igb_init_queue_configuration(adapter);
2706
2707 /* Setup and initialize a copy of the hw vlan table array */
2708 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2709 GFP_ATOMIC);
2710
2711 /* This call may decrease the number of queues */
2712 if (igb_init_interrupt_scheme(adapter, true)) {
2713 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2714 return -ENOMEM;
2715 }
2716
2717 igb_probe_vfs(adapter);
2718
2719 /* Explicitly disable IRQ since the NIC can be in any state. */
2720 igb_irq_disable(adapter);
2721
2722 if (hw->mac.type >= e1000_i350)
2723 adapter->flags &= ~IGB_FLAG_DMAC;
2724
2725 set_bit(__IGB_DOWN, &adapter->state);
2726 return 0;
2727 }
2728
2729 /**
2730 * igb_open - Called when a network interface is made active
2731 * @netdev: network interface device structure
2732 *
2733 * Returns 0 on success, negative value on failure
2734 *
2735 * The open entry point is called when a network interface is made
2736 * active by the system (IFF_UP). At this point all resources needed
2737 * for transmit and receive operations are allocated, the interrupt
2738 * handler is registered with the OS, the watchdog timer is started,
2739 * and the stack is notified that the interface is ready.
2740 **/
2741 static int __igb_open(struct net_device *netdev, bool resuming)
2742 {
2743 struct igb_adapter *adapter = netdev_priv(netdev);
2744 struct e1000_hw *hw = &adapter->hw;
2745 struct pci_dev *pdev = adapter->pdev;
2746 int err;
2747 int i;
2748
2749 /* disallow open during test */
2750 if (test_bit(__IGB_TESTING, &adapter->state)) {
2751 WARN_ON(resuming);
2752 return -EBUSY;
2753 }
2754
2755 if (!resuming)
2756 pm_runtime_get_sync(&pdev->dev);
2757
2758 netif_carrier_off(netdev);
2759
2760 /* allocate transmit descriptors */
2761 err = igb_setup_all_tx_resources(adapter);
2762 if (err)
2763 goto err_setup_tx;
2764
2765 /* allocate receive descriptors */
2766 err = igb_setup_all_rx_resources(adapter);
2767 if (err)
2768 goto err_setup_rx;
2769
2770 igb_power_up_link(adapter);
2771
2772 /* before we allocate an interrupt, we must be ready to handle it.
2773 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2774 * as soon as we call pci_request_irq, so we have to setup our
2775 * clean_rx handler before we do so.
2776 */
2777 igb_configure(adapter);
2778
2779 err = igb_request_irq(adapter);
2780 if (err)
2781 goto err_req_irq;
2782
2783 /* Notify the stack of the actual queue counts. */
2784 err = netif_set_real_num_tx_queues(adapter->netdev,
2785 adapter->num_tx_queues);
2786 if (err)
2787 goto err_set_queues;
2788
2789 err = netif_set_real_num_rx_queues(adapter->netdev,
2790 adapter->num_rx_queues);
2791 if (err)
2792 goto err_set_queues;
2793
2794 /* From here on the code is the same as igb_up() */
2795 clear_bit(__IGB_DOWN, &adapter->state);
2796
2797 for (i = 0; i < adapter->num_q_vectors; i++)
2798 napi_enable(&(adapter->q_vector[i]->napi));
2799
2800 /* Clear any pending interrupts. */
2801 rd32(E1000_ICR);
2802
2803 igb_irq_enable(adapter);
2804
2805 /* notify VFs that reset has been completed */
2806 if (adapter->vfs_allocated_count) {
2807 u32 reg_data = rd32(E1000_CTRL_EXT);
2808 reg_data |= E1000_CTRL_EXT_PFRSTD;
2809 wr32(E1000_CTRL_EXT, reg_data);
2810 }
2811
2812 netif_tx_start_all_queues(netdev);
2813
2814 if (!resuming)
2815 pm_runtime_put(&pdev->dev);
2816
2817 /* start the watchdog. */
2818 hw->mac.get_link_status = 1;
2819 schedule_work(&adapter->watchdog_task);
2820
2821 return 0;
2822
2823 err_set_queues:
2824 igb_free_irq(adapter);
2825 err_req_irq:
2826 igb_release_hw_control(adapter);
2827 igb_power_down_link(adapter);
2828 igb_free_all_rx_resources(adapter);
2829 err_setup_rx:
2830 igb_free_all_tx_resources(adapter);
2831 err_setup_tx:
2832 igb_reset(adapter);
2833 if (!resuming)
2834 pm_runtime_put(&pdev->dev);
2835
2836 return err;
2837 }
2838
2839 static int igb_open(struct net_device *netdev)
2840 {
2841 return __igb_open(netdev, false);
2842 }
2843
2844 /**
2845 * igb_close - Disables a network interface
2846 * @netdev: network interface device structure
2847 *
2848 * Returns 0, this is not allowed to fail
2849 *
2850 * The close entry point is called when an interface is de-activated
2851 * by the OS. The hardware is still under the driver's control, but
2852 * needs to be disabled. A global MAC reset is issued to stop the
2853 * hardware, and all transmit and receive resources are freed.
2854 **/
2855 static int __igb_close(struct net_device *netdev, bool suspending)
2856 {
2857 struct igb_adapter *adapter = netdev_priv(netdev);
2858 struct pci_dev *pdev = adapter->pdev;
2859
2860 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2861
2862 if (!suspending)
2863 pm_runtime_get_sync(&pdev->dev);
2864
2865 igb_down(adapter);
2866 igb_free_irq(adapter);
2867
2868 igb_free_all_tx_resources(adapter);
2869 igb_free_all_rx_resources(adapter);
2870
2871 if (!suspending)
2872 pm_runtime_put_sync(&pdev->dev);
2873 return 0;
2874 }
2875
2876 static int igb_close(struct net_device *netdev)
2877 {
2878 return __igb_close(netdev, false);
2879 }
2880
2881 /**
2882 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2883 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2884 *
2885 * Return 0 on success, negative on failure
2886 **/
2887 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2888 {
2889 struct device *dev = tx_ring->dev;
2890 int size;
2891
2892 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2893
2894 tx_ring->tx_buffer_info = vzalloc(size);
2895 if (!tx_ring->tx_buffer_info)
2896 goto err;
2897
2898 /* round up to nearest 4K */
2899 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2900 tx_ring->size = ALIGN(tx_ring->size, 4096);
2901
2902 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2903 &tx_ring->dma, GFP_KERNEL);
2904 if (!tx_ring->desc)
2905 goto err;
2906
2907 tx_ring->next_to_use = 0;
2908 tx_ring->next_to_clean = 0;
2909
2910 return 0;
2911
2912 err:
2913 vfree(tx_ring->tx_buffer_info);
2914 tx_ring->tx_buffer_info = NULL;
2915 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2916 return -ENOMEM;
2917 }
2918
2919 /**
2920 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2921 * (Descriptors) for all queues
2922 * @adapter: board private structure
2923 *
2924 * Return 0 on success, negative on failure
2925 **/
2926 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2927 {
2928 struct pci_dev *pdev = adapter->pdev;
2929 int i, err = 0;
2930
2931 for (i = 0; i < adapter->num_tx_queues; i++) {
2932 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2933 if (err) {
2934 dev_err(&pdev->dev,
2935 "Allocation for Tx Queue %u failed\n", i);
2936 for (i--; i >= 0; i--)
2937 igb_free_tx_resources(adapter->tx_ring[i]);
2938 break;
2939 }
2940 }
2941
2942 return err;
2943 }
2944
2945 /**
2946 * igb_setup_tctl - configure the transmit control registers
2947 * @adapter: Board private structure
2948 **/
2949 void igb_setup_tctl(struct igb_adapter *adapter)
2950 {
2951 struct e1000_hw *hw = &adapter->hw;
2952 u32 tctl;
2953
2954 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2955 wr32(E1000_TXDCTL(0), 0);
2956
2957 /* Program the Transmit Control Register */
2958 tctl = rd32(E1000_TCTL);
2959 tctl &= ~E1000_TCTL_CT;
2960 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2961 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2962
2963 igb_config_collision_dist(hw);
2964
2965 /* Enable transmits */
2966 tctl |= E1000_TCTL_EN;
2967
2968 wr32(E1000_TCTL, tctl);
2969 }
2970
2971 /**
2972 * igb_configure_tx_ring - Configure transmit ring after Reset
2973 * @adapter: board private structure
2974 * @ring: tx ring to configure
2975 *
2976 * Configure a transmit ring after a reset.
2977 **/
2978 void igb_configure_tx_ring(struct igb_adapter *adapter,
2979 struct igb_ring *ring)
2980 {
2981 struct e1000_hw *hw = &adapter->hw;
2982 u32 txdctl = 0;
2983 u64 tdba = ring->dma;
2984 int reg_idx = ring->reg_idx;
2985
2986 /* disable the queue */
2987 wr32(E1000_TXDCTL(reg_idx), 0);
2988 wrfl();
2989 mdelay(10);
2990
2991 wr32(E1000_TDLEN(reg_idx),
2992 ring->count * sizeof(union e1000_adv_tx_desc));
2993 wr32(E1000_TDBAL(reg_idx),
2994 tdba & 0x00000000ffffffffULL);
2995 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2996
2997 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2998 wr32(E1000_TDH(reg_idx), 0);
2999 writel(0, ring->tail);
3000
3001 txdctl |= IGB_TX_PTHRESH;
3002 txdctl |= IGB_TX_HTHRESH << 8;
3003 txdctl |= IGB_TX_WTHRESH << 16;
3004
3005 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3006 wr32(E1000_TXDCTL(reg_idx), txdctl);
3007 }
3008
3009 /**
3010 * igb_configure_tx - Configure transmit Unit after Reset
3011 * @adapter: board private structure
3012 *
3013 * Configure the Tx unit of the MAC after a reset.
3014 **/
3015 static void igb_configure_tx(struct igb_adapter *adapter)
3016 {
3017 int i;
3018
3019 for (i = 0; i < adapter->num_tx_queues; i++)
3020 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3021 }
3022
3023 /**
3024 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3025 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3026 *
3027 * Returns 0 on success, negative on failure
3028 **/
3029 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3030 {
3031 struct device *dev = rx_ring->dev;
3032 int size;
3033
3034 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3035
3036 rx_ring->rx_buffer_info = vzalloc(size);
3037 if (!rx_ring->rx_buffer_info)
3038 goto err;
3039
3040 /* Round up to nearest 4K */
3041 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3042 rx_ring->size = ALIGN(rx_ring->size, 4096);
3043
3044 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3045 &rx_ring->dma, GFP_KERNEL);
3046 if (!rx_ring->desc)
3047 goto err;
3048
3049 rx_ring->next_to_alloc = 0;
3050 rx_ring->next_to_clean = 0;
3051 rx_ring->next_to_use = 0;
3052
3053 return 0;
3054
3055 err:
3056 vfree(rx_ring->rx_buffer_info);
3057 rx_ring->rx_buffer_info = NULL;
3058 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3059 return -ENOMEM;
3060 }
3061
3062 /**
3063 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3064 * (Descriptors) for all queues
3065 * @adapter: board private structure
3066 *
3067 * Return 0 on success, negative on failure
3068 **/
3069 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3070 {
3071 struct pci_dev *pdev = adapter->pdev;
3072 int i, err = 0;
3073
3074 for (i = 0; i < adapter->num_rx_queues; i++) {
3075 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3076 if (err) {
3077 dev_err(&pdev->dev,
3078 "Allocation for Rx Queue %u failed\n", i);
3079 for (i--; i >= 0; i--)
3080 igb_free_rx_resources(adapter->rx_ring[i]);
3081 break;
3082 }
3083 }
3084
3085 return err;
3086 }
3087
3088 /**
3089 * igb_setup_mrqc - configure the multiple receive queue control registers
3090 * @adapter: Board private structure
3091 **/
3092 static void igb_setup_mrqc(struct igb_adapter *adapter)
3093 {
3094 struct e1000_hw *hw = &adapter->hw;
3095 u32 mrqc, rxcsum;
3096 u32 j, num_rx_queues, shift = 0;
3097 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3098 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3099 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3100 0xFA01ACBE };
3101
3102 /* Fill out hash function seeds */
3103 for (j = 0; j < 10; j++)
3104 wr32(E1000_RSSRK(j), rsskey[j]);
3105
3106 num_rx_queues = adapter->rss_queues;
3107
3108 switch (hw->mac.type) {
3109 case e1000_82575:
3110 shift = 6;
3111 break;
3112 case e1000_82576:
3113 /* 82576 supports 2 RSS queues for SR-IOV */
3114 if (adapter->vfs_allocated_count) {
3115 shift = 3;
3116 num_rx_queues = 2;
3117 }
3118 break;
3119 default:
3120 break;
3121 }
3122
3123 /* Populate the indirection table 4 entries at a time. To do this
3124 * we are generating the results for n and n+2 and then interleaving
3125 * those with the results with n+1 and n+3.
3126 */
3127 for (j = 0; j < 32; j++) {
3128 /* first pass generates n and n+2 */
3129 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3130 u32 reta = (base & 0x07800780) >> (7 - shift);
3131
3132 /* second pass generates n+1 and n+3 */
3133 base += 0x00010001 * num_rx_queues;
3134 reta |= (base & 0x07800780) << (1 + shift);
3135
3136 wr32(E1000_RETA(j), reta);
3137 }
3138
3139 /* Disable raw packet checksumming so that RSS hash is placed in
3140 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3141 * offloads as they are enabled by default
3142 */
3143 rxcsum = rd32(E1000_RXCSUM);
3144 rxcsum |= E1000_RXCSUM_PCSD;
3145
3146 if (adapter->hw.mac.type >= e1000_82576)
3147 /* Enable Receive Checksum Offload for SCTP */
3148 rxcsum |= E1000_RXCSUM_CRCOFL;
3149
3150 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3151 wr32(E1000_RXCSUM, rxcsum);
3152
3153 /* Generate RSS hash based on packet types, TCP/UDP
3154 * port numbers and/or IPv4/v6 src and dst addresses
3155 */
3156 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3157 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3158 E1000_MRQC_RSS_FIELD_IPV6 |
3159 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3160 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3161
3162 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3163 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3164 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3165 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3166
3167 /* If VMDq is enabled then we set the appropriate mode for that, else
3168 * we default to RSS so that an RSS hash is calculated per packet even
3169 * if we are only using one queue
3170 */
3171 if (adapter->vfs_allocated_count) {
3172 if (hw->mac.type > e1000_82575) {
3173 /* Set the default pool for the PF's first queue */
3174 u32 vtctl = rd32(E1000_VT_CTL);
3175 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3176 E1000_VT_CTL_DISABLE_DEF_POOL);
3177 vtctl |= adapter->vfs_allocated_count <<
3178 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3179 wr32(E1000_VT_CTL, vtctl);
3180 }
3181 if (adapter->rss_queues > 1)
3182 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3183 else
3184 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3185 } else {
3186 if (hw->mac.type != e1000_i211)
3187 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3188 }
3189 igb_vmm_control(adapter);
3190
3191 wr32(E1000_MRQC, mrqc);
3192 }
3193
3194 /**
3195 * igb_setup_rctl - configure the receive control registers
3196 * @adapter: Board private structure
3197 **/
3198 void igb_setup_rctl(struct igb_adapter *adapter)
3199 {
3200 struct e1000_hw *hw = &adapter->hw;
3201 u32 rctl;
3202
3203 rctl = rd32(E1000_RCTL);
3204
3205 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3206 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3207
3208 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3209 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3210
3211 /* enable stripping of CRC. It's unlikely this will break BMC
3212 * redirection as it did with e1000. Newer features require
3213 * that the HW strips the CRC.
3214 */
3215 rctl |= E1000_RCTL_SECRC;
3216
3217 /* disable store bad packets and clear size bits. */
3218 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3219
3220 /* enable LPE to prevent packets larger than max_frame_size */
3221 rctl |= E1000_RCTL_LPE;
3222
3223 /* disable queue 0 to prevent tail write w/o re-config */
3224 wr32(E1000_RXDCTL(0), 0);
3225
3226 /* Attention!!! For SR-IOV PF driver operations you must enable
3227 * queue drop for all VF and PF queues to prevent head of line blocking
3228 * if an un-trusted VF does not provide descriptors to hardware.
3229 */
3230 if (adapter->vfs_allocated_count) {
3231 /* set all queue drop enable bits */
3232 wr32(E1000_QDE, ALL_QUEUES);
3233 }
3234
3235 /* This is useful for sniffing bad packets. */
3236 if (adapter->netdev->features & NETIF_F_RXALL) {
3237 /* UPE and MPE will be handled by normal PROMISC logic
3238 * in e1000e_set_rx_mode
3239 */
3240 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3241 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3242 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3243
3244 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3245 E1000_RCTL_DPF | /* Allow filtered pause */
3246 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3247 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3248 * and that breaks VLANs.
3249 */
3250 }
3251
3252 wr32(E1000_RCTL, rctl);
3253 }
3254
3255 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3256 int vfn)
3257 {
3258 struct e1000_hw *hw = &adapter->hw;
3259 u32 vmolr;
3260
3261 /* if it isn't the PF check to see if VFs are enabled and
3262 * increase the size to support vlan tags
3263 */
3264 if (vfn < adapter->vfs_allocated_count &&
3265 adapter->vf_data[vfn].vlans_enabled)
3266 size += VLAN_TAG_SIZE;
3267
3268 vmolr = rd32(E1000_VMOLR(vfn));
3269 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3270 vmolr |= size | E1000_VMOLR_LPE;
3271 wr32(E1000_VMOLR(vfn), vmolr);
3272
3273 return 0;
3274 }
3275
3276 /**
3277 * igb_rlpml_set - set maximum receive packet size
3278 * @adapter: board private structure
3279 *
3280 * Configure maximum receivable packet size.
3281 **/
3282 static void igb_rlpml_set(struct igb_adapter *adapter)
3283 {
3284 u32 max_frame_size = adapter->max_frame_size;
3285 struct e1000_hw *hw = &adapter->hw;
3286 u16 pf_id = adapter->vfs_allocated_count;
3287
3288 if (pf_id) {
3289 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3290 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3291 * to our max jumbo frame size, in case we need to enable
3292 * jumbo frames on one of the rings later.
3293 * This will not pass over-length frames into the default
3294 * queue because it's gated by the VMOLR.RLPML.
3295 */
3296 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3297 }
3298
3299 wr32(E1000_RLPML, max_frame_size);
3300 }
3301
3302 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3303 int vfn, bool aupe)
3304 {
3305 struct e1000_hw *hw = &adapter->hw;
3306 u32 vmolr;
3307
3308 /* This register exists only on 82576 and newer so if we are older then
3309 * we should exit and do nothing
3310 */
3311 if (hw->mac.type < e1000_82576)
3312 return;
3313
3314 vmolr = rd32(E1000_VMOLR(vfn));
3315 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3316 if (aupe)
3317 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3318 else
3319 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3320
3321 /* clear all bits that might not be set */
3322 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3323
3324 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3325 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3326 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3327 * multicast packets
3328 */
3329 if (vfn <= adapter->vfs_allocated_count)
3330 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3331
3332 wr32(E1000_VMOLR(vfn), vmolr);
3333 }
3334
3335 /**
3336 * igb_configure_rx_ring - Configure a receive ring after Reset
3337 * @adapter: board private structure
3338 * @ring: receive ring to be configured
3339 *
3340 * Configure the Rx unit of the MAC after a reset.
3341 **/
3342 void igb_configure_rx_ring(struct igb_adapter *adapter,
3343 struct igb_ring *ring)
3344 {
3345 struct e1000_hw *hw = &adapter->hw;
3346 u64 rdba = ring->dma;
3347 int reg_idx = ring->reg_idx;
3348 u32 srrctl = 0, rxdctl = 0;
3349
3350 /* disable the queue */
3351 wr32(E1000_RXDCTL(reg_idx), 0);
3352
3353 /* Set DMA base address registers */
3354 wr32(E1000_RDBAL(reg_idx),
3355 rdba & 0x00000000ffffffffULL);
3356 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3357 wr32(E1000_RDLEN(reg_idx),
3358 ring->count * sizeof(union e1000_adv_rx_desc));
3359
3360 /* initialize head and tail */
3361 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3362 wr32(E1000_RDH(reg_idx), 0);
3363 writel(0, ring->tail);
3364
3365 /* set descriptor configuration */
3366 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3367 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3368 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3369 if (hw->mac.type >= e1000_82580)
3370 srrctl |= E1000_SRRCTL_TIMESTAMP;
3371 /* Only set Drop Enable if we are supporting multiple queues */
3372 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3373 srrctl |= E1000_SRRCTL_DROP_EN;
3374
3375 wr32(E1000_SRRCTL(reg_idx), srrctl);
3376
3377 /* set filtering for VMDQ pools */
3378 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3379
3380 rxdctl |= IGB_RX_PTHRESH;
3381 rxdctl |= IGB_RX_HTHRESH << 8;
3382 rxdctl |= IGB_RX_WTHRESH << 16;
3383
3384 /* enable receive descriptor fetching */
3385 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3386 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3387 }
3388
3389 /**
3390 * igb_configure_rx - Configure receive Unit after Reset
3391 * @adapter: board private structure
3392 *
3393 * Configure the Rx unit of the MAC after a reset.
3394 **/
3395 static void igb_configure_rx(struct igb_adapter *adapter)
3396 {
3397 int i;
3398
3399 /* set UTA to appropriate mode */
3400 igb_set_uta(adapter);
3401
3402 /* set the correct pool for the PF default MAC address in entry 0 */
3403 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3404 adapter->vfs_allocated_count);
3405
3406 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3407 * the Base and Length of the Rx Descriptor Ring
3408 */
3409 for (i = 0; i < adapter->num_rx_queues; i++)
3410 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3411 }
3412
3413 /**
3414 * igb_free_tx_resources - Free Tx Resources per Queue
3415 * @tx_ring: Tx descriptor ring for a specific queue
3416 *
3417 * Free all transmit software resources
3418 **/
3419 void igb_free_tx_resources(struct igb_ring *tx_ring)
3420 {
3421 igb_clean_tx_ring(tx_ring);
3422
3423 vfree(tx_ring->tx_buffer_info);
3424 tx_ring->tx_buffer_info = NULL;
3425
3426 /* if not set, then don't free */
3427 if (!tx_ring->desc)
3428 return;
3429
3430 dma_free_coherent(tx_ring->dev, tx_ring->size,
3431 tx_ring->desc, tx_ring->dma);
3432
3433 tx_ring->desc = NULL;
3434 }
3435
3436 /**
3437 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3438 * @adapter: board private structure
3439 *
3440 * Free all transmit software resources
3441 **/
3442 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3443 {
3444 int i;
3445
3446 for (i = 0; i < adapter->num_tx_queues; i++)
3447 igb_free_tx_resources(adapter->tx_ring[i]);
3448 }
3449
3450 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3451 struct igb_tx_buffer *tx_buffer)
3452 {
3453 if (tx_buffer->skb) {
3454 dev_kfree_skb_any(tx_buffer->skb);
3455 if (dma_unmap_len(tx_buffer, len))
3456 dma_unmap_single(ring->dev,
3457 dma_unmap_addr(tx_buffer, dma),
3458 dma_unmap_len(tx_buffer, len),
3459 DMA_TO_DEVICE);
3460 } else if (dma_unmap_len(tx_buffer, len)) {
3461 dma_unmap_page(ring->dev,
3462 dma_unmap_addr(tx_buffer, dma),
3463 dma_unmap_len(tx_buffer, len),
3464 DMA_TO_DEVICE);
3465 }
3466 tx_buffer->next_to_watch = NULL;
3467 tx_buffer->skb = NULL;
3468 dma_unmap_len_set(tx_buffer, len, 0);
3469 /* buffer_info must be completely set up in the transmit path */
3470 }
3471
3472 /**
3473 * igb_clean_tx_ring - Free Tx Buffers
3474 * @tx_ring: ring to be cleaned
3475 **/
3476 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3477 {
3478 struct igb_tx_buffer *buffer_info;
3479 unsigned long size;
3480 u16 i;
3481
3482 if (!tx_ring->tx_buffer_info)
3483 return;
3484 /* Free all the Tx ring sk_buffs */
3485
3486 for (i = 0; i < tx_ring->count; i++) {
3487 buffer_info = &tx_ring->tx_buffer_info[i];
3488 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3489 }
3490
3491 netdev_tx_reset_queue(txring_txq(tx_ring));
3492
3493 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3494 memset(tx_ring->tx_buffer_info, 0, size);
3495
3496 /* Zero out the descriptor ring */
3497 memset(tx_ring->desc, 0, tx_ring->size);
3498
3499 tx_ring->next_to_use = 0;
3500 tx_ring->next_to_clean = 0;
3501 }
3502
3503 /**
3504 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3505 * @adapter: board private structure
3506 **/
3507 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3508 {
3509 int i;
3510
3511 for (i = 0; i < adapter->num_tx_queues; i++)
3512 igb_clean_tx_ring(adapter->tx_ring[i]);
3513 }
3514
3515 /**
3516 * igb_free_rx_resources - Free Rx Resources
3517 * @rx_ring: ring to clean the resources from
3518 *
3519 * Free all receive software resources
3520 **/
3521 void igb_free_rx_resources(struct igb_ring *rx_ring)
3522 {
3523 igb_clean_rx_ring(rx_ring);
3524
3525 vfree(rx_ring->rx_buffer_info);
3526 rx_ring->rx_buffer_info = NULL;
3527
3528 /* if not set, then don't free */
3529 if (!rx_ring->desc)
3530 return;
3531
3532 dma_free_coherent(rx_ring->dev, rx_ring->size,
3533 rx_ring->desc, rx_ring->dma);
3534
3535 rx_ring->desc = NULL;
3536 }
3537
3538 /**
3539 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3540 * @adapter: board private structure
3541 *
3542 * Free all receive software resources
3543 **/
3544 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3545 {
3546 int i;
3547
3548 for (i = 0; i < adapter->num_rx_queues; i++)
3549 igb_free_rx_resources(adapter->rx_ring[i]);
3550 }
3551
3552 /**
3553 * igb_clean_rx_ring - Free Rx Buffers per Queue
3554 * @rx_ring: ring to free buffers from
3555 **/
3556 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3557 {
3558 unsigned long size;
3559 u16 i;
3560
3561 if (rx_ring->skb)
3562 dev_kfree_skb(rx_ring->skb);
3563 rx_ring->skb = NULL;
3564
3565 if (!rx_ring->rx_buffer_info)
3566 return;
3567
3568 /* Free all the Rx ring sk_buffs */
3569 for (i = 0; i < rx_ring->count; i++) {
3570 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3571
3572 if (!buffer_info->page)
3573 continue;
3574
3575 dma_unmap_page(rx_ring->dev,
3576 buffer_info->dma,
3577 PAGE_SIZE,
3578 DMA_FROM_DEVICE);
3579 __free_page(buffer_info->page);
3580
3581 buffer_info->page = NULL;
3582 }
3583
3584 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3585 memset(rx_ring->rx_buffer_info, 0, size);
3586
3587 /* Zero out the descriptor ring */
3588 memset(rx_ring->desc, 0, rx_ring->size);
3589
3590 rx_ring->next_to_alloc = 0;
3591 rx_ring->next_to_clean = 0;
3592 rx_ring->next_to_use = 0;
3593 }
3594
3595 /**
3596 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3597 * @adapter: board private structure
3598 **/
3599 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3600 {
3601 int i;
3602
3603 for (i = 0; i < adapter->num_rx_queues; i++)
3604 igb_clean_rx_ring(adapter->rx_ring[i]);
3605 }
3606
3607 /**
3608 * igb_set_mac - Change the Ethernet Address of the NIC
3609 * @netdev: network interface device structure
3610 * @p: pointer to an address structure
3611 *
3612 * Returns 0 on success, negative on failure
3613 **/
3614 static int igb_set_mac(struct net_device *netdev, void *p)
3615 {
3616 struct igb_adapter *adapter = netdev_priv(netdev);
3617 struct e1000_hw *hw = &adapter->hw;
3618 struct sockaddr *addr = p;
3619
3620 if (!is_valid_ether_addr(addr->sa_data))
3621 return -EADDRNOTAVAIL;
3622
3623 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3624 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3625
3626 /* set the correct pool for the new PF MAC address in entry 0 */
3627 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3628 adapter->vfs_allocated_count);
3629
3630 return 0;
3631 }
3632
3633 /**
3634 * igb_write_mc_addr_list - write multicast addresses to MTA
3635 * @netdev: network interface device structure
3636 *
3637 * Writes multicast address list to the MTA hash table.
3638 * Returns: -ENOMEM on failure
3639 * 0 on no addresses written
3640 * X on writing X addresses to MTA
3641 **/
3642 static int igb_write_mc_addr_list(struct net_device *netdev)
3643 {
3644 struct igb_adapter *adapter = netdev_priv(netdev);
3645 struct e1000_hw *hw = &adapter->hw;
3646 struct netdev_hw_addr *ha;
3647 u8 *mta_list;
3648 int i;
3649
3650 if (netdev_mc_empty(netdev)) {
3651 /* nothing to program, so clear mc list */
3652 igb_update_mc_addr_list(hw, NULL, 0);
3653 igb_restore_vf_multicasts(adapter);
3654 return 0;
3655 }
3656
3657 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3658 if (!mta_list)
3659 return -ENOMEM;
3660
3661 /* The shared function expects a packed array of only addresses. */
3662 i = 0;
3663 netdev_for_each_mc_addr(ha, netdev)
3664 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3665
3666 igb_update_mc_addr_list(hw, mta_list, i);
3667 kfree(mta_list);
3668
3669 return netdev_mc_count(netdev);
3670 }
3671
3672 /**
3673 * igb_write_uc_addr_list - write unicast addresses to RAR table
3674 * @netdev: network interface device structure
3675 *
3676 * Writes unicast address list to the RAR table.
3677 * Returns: -ENOMEM on failure/insufficient address space
3678 * 0 on no addresses written
3679 * X on writing X addresses to the RAR table
3680 **/
3681 static int igb_write_uc_addr_list(struct net_device *netdev)
3682 {
3683 struct igb_adapter *adapter = netdev_priv(netdev);
3684 struct e1000_hw *hw = &adapter->hw;
3685 unsigned int vfn = adapter->vfs_allocated_count;
3686 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3687 int count = 0;
3688
3689 /* return ENOMEM indicating insufficient memory for addresses */
3690 if (netdev_uc_count(netdev) > rar_entries)
3691 return -ENOMEM;
3692
3693 if (!netdev_uc_empty(netdev) && rar_entries) {
3694 struct netdev_hw_addr *ha;
3695
3696 netdev_for_each_uc_addr(ha, netdev) {
3697 if (!rar_entries)
3698 break;
3699 igb_rar_set_qsel(adapter, ha->addr,
3700 rar_entries--,
3701 vfn);
3702 count++;
3703 }
3704 }
3705 /* write the addresses in reverse order to avoid write combining */
3706 for (; rar_entries > 0 ; rar_entries--) {
3707 wr32(E1000_RAH(rar_entries), 0);
3708 wr32(E1000_RAL(rar_entries), 0);
3709 }
3710 wrfl();
3711
3712 return count;
3713 }
3714
3715 /**
3716 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3717 * @netdev: network interface device structure
3718 *
3719 * The set_rx_mode entry point is called whenever the unicast or multicast
3720 * address lists or the network interface flags are updated. This routine is
3721 * responsible for configuring the hardware for proper unicast, multicast,
3722 * promiscuous mode, and all-multi behavior.
3723 **/
3724 static void igb_set_rx_mode(struct net_device *netdev)
3725 {
3726 struct igb_adapter *adapter = netdev_priv(netdev);
3727 struct e1000_hw *hw = &adapter->hw;
3728 unsigned int vfn = adapter->vfs_allocated_count;
3729 u32 rctl, vmolr = 0;
3730 int count;
3731
3732 /* Check for Promiscuous and All Multicast modes */
3733 rctl = rd32(E1000_RCTL);
3734
3735 /* clear the effected bits */
3736 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3737
3738 if (netdev->flags & IFF_PROMISC) {
3739 u32 mrqc = rd32(E1000_MRQC);
3740 /* retain VLAN HW filtering if in VT mode */
3741 if (mrqc & E1000_MRQC_ENABLE_VMDQ)
3742 rctl |= E1000_RCTL_VFE;
3743 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3744 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3745 } else {
3746 if (netdev->flags & IFF_ALLMULTI) {
3747 rctl |= E1000_RCTL_MPE;
3748 vmolr |= E1000_VMOLR_MPME;
3749 } else {
3750 /* Write addresses to the MTA, if the attempt fails
3751 * then we should just turn on promiscuous mode so
3752 * that we can at least receive multicast traffic
3753 */
3754 count = igb_write_mc_addr_list(netdev);
3755 if (count < 0) {
3756 rctl |= E1000_RCTL_MPE;
3757 vmolr |= E1000_VMOLR_MPME;
3758 } else if (count) {
3759 vmolr |= E1000_VMOLR_ROMPE;
3760 }
3761 }
3762 /* Write addresses to available RAR registers, if there is not
3763 * sufficient space to store all the addresses then enable
3764 * unicast promiscuous mode
3765 */
3766 count = igb_write_uc_addr_list(netdev);
3767 if (count < 0) {
3768 rctl |= E1000_RCTL_UPE;
3769 vmolr |= E1000_VMOLR_ROPE;
3770 }
3771 rctl |= E1000_RCTL_VFE;
3772 }
3773 wr32(E1000_RCTL, rctl);
3774
3775 /* In order to support SR-IOV and eventually VMDq it is necessary to set
3776 * the VMOLR to enable the appropriate modes. Without this workaround
3777 * we will have issues with VLAN tag stripping not being done for frames
3778 * that are only arriving because we are the default pool
3779 */
3780 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3781 return;
3782
3783 vmolr |= rd32(E1000_VMOLR(vfn)) &
3784 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3785 wr32(E1000_VMOLR(vfn), vmolr);
3786 igb_restore_vf_multicasts(adapter);
3787 }
3788
3789 static void igb_check_wvbr(struct igb_adapter *adapter)
3790 {
3791 struct e1000_hw *hw = &adapter->hw;
3792 u32 wvbr = 0;
3793
3794 switch (hw->mac.type) {
3795 case e1000_82576:
3796 case e1000_i350:
3797 if (!(wvbr = rd32(E1000_WVBR)))
3798 return;
3799 break;
3800 default:
3801 break;
3802 }
3803
3804 adapter->wvbr |= wvbr;
3805 }
3806
3807 #define IGB_STAGGERED_QUEUE_OFFSET 8
3808
3809 static void igb_spoof_check(struct igb_adapter *adapter)
3810 {
3811 int j;
3812
3813 if (!adapter->wvbr)
3814 return;
3815
3816 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3817 if (adapter->wvbr & (1 << j) ||
3818 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3819 dev_warn(&adapter->pdev->dev,
3820 "Spoof event(s) detected on VF %d\n", j);
3821 adapter->wvbr &=
3822 ~((1 << j) |
3823 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3824 }
3825 }
3826 }
3827
3828 /* Need to wait a few seconds after link up to get diagnostic information from
3829 * the phy
3830 */
3831 static void igb_update_phy_info(unsigned long data)
3832 {
3833 struct igb_adapter *adapter = (struct igb_adapter *) data;
3834 igb_get_phy_info(&adapter->hw);
3835 }
3836
3837 /**
3838 * igb_has_link - check shared code for link and determine up/down
3839 * @adapter: pointer to driver private info
3840 **/
3841 bool igb_has_link(struct igb_adapter *adapter)
3842 {
3843 struct e1000_hw *hw = &adapter->hw;
3844 bool link_active = false;
3845 s32 ret_val = 0;
3846
3847 /* get_link_status is set on LSC (link status) interrupt or
3848 * rx sequence error interrupt. get_link_status will stay
3849 * false until the e1000_check_for_link establishes link
3850 * for copper adapters ONLY
3851 */
3852 switch (hw->phy.media_type) {
3853 case e1000_media_type_copper:
3854 if (hw->mac.get_link_status) {
3855 ret_val = hw->mac.ops.check_for_link(hw);
3856 link_active = !hw->mac.get_link_status;
3857 } else {
3858 link_active = true;
3859 }
3860 break;
3861 case e1000_media_type_internal_serdes:
3862 ret_val = hw->mac.ops.check_for_link(hw);
3863 link_active = hw->mac.serdes_has_link;
3864 break;
3865 default:
3866 case e1000_media_type_unknown:
3867 break;
3868 }
3869
3870 return link_active;
3871 }
3872
3873 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3874 {
3875 bool ret = false;
3876 u32 ctrl_ext, thstat;
3877
3878 /* check for thermal sensor event on i350 copper only */
3879 if (hw->mac.type == e1000_i350) {
3880 thstat = rd32(E1000_THSTAT);
3881 ctrl_ext = rd32(E1000_CTRL_EXT);
3882
3883 if ((hw->phy.media_type == e1000_media_type_copper) &&
3884 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3885 ret = !!(thstat & event);
3886 }
3887
3888 return ret;
3889 }
3890
3891 /**
3892 * igb_watchdog - Timer Call-back
3893 * @data: pointer to adapter cast into an unsigned long
3894 **/
3895 static void igb_watchdog(unsigned long data)
3896 {
3897 struct igb_adapter *adapter = (struct igb_adapter *)data;
3898 /* Do the rest outside of interrupt context */
3899 schedule_work(&adapter->watchdog_task);
3900 }
3901
3902 static void igb_watchdog_task(struct work_struct *work)
3903 {
3904 struct igb_adapter *adapter = container_of(work,
3905 struct igb_adapter,
3906 watchdog_task);
3907 struct e1000_hw *hw = &adapter->hw;
3908 struct e1000_phy_info *phy = &hw->phy;
3909 struct net_device *netdev = adapter->netdev;
3910 u32 link;
3911 int i;
3912
3913 link = igb_has_link(adapter);
3914 if (link) {
3915 /* Cancel scheduled suspend requests. */
3916 pm_runtime_resume(netdev->dev.parent);
3917
3918 if (!netif_carrier_ok(netdev)) {
3919 u32 ctrl;
3920 hw->mac.ops.get_speed_and_duplex(hw,
3921 &adapter->link_speed,
3922 &adapter->link_duplex);
3923
3924 ctrl = rd32(E1000_CTRL);
3925 /* Links status message must follow this format */
3926 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3927 "Duplex, Flow Control: %s\n",
3928 netdev->name,
3929 adapter->link_speed,
3930 adapter->link_duplex == FULL_DUPLEX ?
3931 "Full" : "Half",
3932 (ctrl & E1000_CTRL_TFCE) &&
3933 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3934 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3935 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
3936
3937 /* check if SmartSpeed worked */
3938 igb_check_downshift(hw);
3939 if (phy->speed_downgraded)
3940 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3941
3942 /* check for thermal sensor event */
3943 if (igb_thermal_sensor_event(hw,
3944 E1000_THSTAT_LINK_THROTTLE)) {
3945 netdev_info(netdev, "The network adapter link "
3946 "speed was downshifted because it "
3947 "overheated\n");
3948 }
3949
3950 /* adjust timeout factor according to speed/duplex */
3951 adapter->tx_timeout_factor = 1;
3952 switch (adapter->link_speed) {
3953 case SPEED_10:
3954 adapter->tx_timeout_factor = 14;
3955 break;
3956 case SPEED_100:
3957 /* maybe add some timeout factor ? */
3958 break;
3959 }
3960
3961 netif_carrier_on(netdev);
3962
3963 igb_ping_all_vfs(adapter);
3964 igb_check_vf_rate_limit(adapter);
3965
3966 /* link state has changed, schedule phy info update */
3967 if (!test_bit(__IGB_DOWN, &adapter->state))
3968 mod_timer(&adapter->phy_info_timer,
3969 round_jiffies(jiffies + 2 * HZ));
3970 }
3971 } else {
3972 if (netif_carrier_ok(netdev)) {
3973 adapter->link_speed = 0;
3974 adapter->link_duplex = 0;
3975
3976 /* check for thermal sensor event */
3977 if (igb_thermal_sensor_event(hw,
3978 E1000_THSTAT_PWR_DOWN)) {
3979 netdev_err(netdev, "The network adapter was "
3980 "stopped because it overheated\n");
3981 }
3982
3983 /* Links status message must follow this format */
3984 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3985 netdev->name);
3986 netif_carrier_off(netdev);
3987
3988 igb_ping_all_vfs(adapter);
3989
3990 /* link state has changed, schedule phy info update */
3991 if (!test_bit(__IGB_DOWN, &adapter->state))
3992 mod_timer(&adapter->phy_info_timer,
3993 round_jiffies(jiffies + 2 * HZ));
3994
3995 pm_schedule_suspend(netdev->dev.parent,
3996 MSEC_PER_SEC * 5);
3997 }
3998 }
3999
4000 spin_lock(&adapter->stats64_lock);
4001 igb_update_stats(adapter, &adapter->stats64);
4002 spin_unlock(&adapter->stats64_lock);
4003
4004 for (i = 0; i < adapter->num_tx_queues; i++) {
4005 struct igb_ring *tx_ring = adapter->tx_ring[i];
4006 if (!netif_carrier_ok(netdev)) {
4007 /* We've lost link, so the controller stops DMA,
4008 * but we've got queued Tx work that's never going
4009 * to get done, so reset controller to flush Tx.
4010 * (Do the reset outside of interrupt context).
4011 */
4012 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4013 adapter->tx_timeout_count++;
4014 schedule_work(&adapter->reset_task);
4015 /* return immediately since reset is imminent */
4016 return;
4017 }
4018 }
4019
4020 /* Force detection of hung controller every watchdog period */
4021 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4022 }
4023
4024 /* Cause software interrupt to ensure Rx ring is cleaned */
4025 if (adapter->msix_entries) {
4026 u32 eics = 0;
4027 for (i = 0; i < adapter->num_q_vectors; i++)
4028 eics |= adapter->q_vector[i]->eims_value;
4029 wr32(E1000_EICS, eics);
4030 } else {
4031 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4032 }
4033
4034 igb_spoof_check(adapter);
4035 igb_ptp_rx_hang(adapter);
4036
4037 /* Reset the timer */
4038 if (!test_bit(__IGB_DOWN, &adapter->state))
4039 mod_timer(&adapter->watchdog_timer,
4040 round_jiffies(jiffies + 2 * HZ));
4041 }
4042
4043 enum latency_range {
4044 lowest_latency = 0,
4045 low_latency = 1,
4046 bulk_latency = 2,
4047 latency_invalid = 255
4048 };
4049
4050 /**
4051 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4052 * @q_vector: pointer to q_vector
4053 *
4054 * Stores a new ITR value based on strictly on packet size. This
4055 * algorithm is less sophisticated than that used in igb_update_itr,
4056 * due to the difficulty of synchronizing statistics across multiple
4057 * receive rings. The divisors and thresholds used by this function
4058 * were determined based on theoretical maximum wire speed and testing
4059 * data, in order to minimize response time while increasing bulk
4060 * throughput.
4061 * This functionality is controlled by the InterruptThrottleRate module
4062 * parameter (see igb_param.c)
4063 * NOTE: This function is called only when operating in a multiqueue
4064 * receive environment.
4065 **/
4066 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4067 {
4068 int new_val = q_vector->itr_val;
4069 int avg_wire_size = 0;
4070 struct igb_adapter *adapter = q_vector->adapter;
4071 unsigned int packets;
4072
4073 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4074 * ints/sec - ITR timer value of 120 ticks.
4075 */
4076 if (adapter->link_speed != SPEED_1000) {
4077 new_val = IGB_4K_ITR;
4078 goto set_itr_val;
4079 }
4080
4081 packets = q_vector->rx.total_packets;
4082 if (packets)
4083 avg_wire_size = q_vector->rx.total_bytes / packets;
4084
4085 packets = q_vector->tx.total_packets;
4086 if (packets)
4087 avg_wire_size = max_t(u32, avg_wire_size,
4088 q_vector->tx.total_bytes / packets);
4089
4090 /* if avg_wire_size isn't set no work was done */
4091 if (!avg_wire_size)
4092 goto clear_counts;
4093
4094 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4095 avg_wire_size += 24;
4096
4097 /* Don't starve jumbo frames */
4098 avg_wire_size = min(avg_wire_size, 3000);
4099
4100 /* Give a little boost to mid-size frames */
4101 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4102 new_val = avg_wire_size / 3;
4103 else
4104 new_val = avg_wire_size / 2;
4105
4106 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4107 if (new_val < IGB_20K_ITR &&
4108 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4109 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4110 new_val = IGB_20K_ITR;
4111
4112 set_itr_val:
4113 if (new_val != q_vector->itr_val) {
4114 q_vector->itr_val = new_val;
4115 q_vector->set_itr = 1;
4116 }
4117 clear_counts:
4118 q_vector->rx.total_bytes = 0;
4119 q_vector->rx.total_packets = 0;
4120 q_vector->tx.total_bytes = 0;
4121 q_vector->tx.total_packets = 0;
4122 }
4123
4124 /**
4125 * igb_update_itr - update the dynamic ITR value based on statistics
4126 * @q_vector: pointer to q_vector
4127 * @ring_container: ring info to update the itr for
4128 *
4129 * Stores a new ITR value based on packets and byte
4130 * counts during the last interrupt. The advantage of per interrupt
4131 * computation is faster updates and more accurate ITR for the current
4132 * traffic pattern. Constants in this function were computed
4133 * based on theoretical maximum wire speed and thresholds were set based
4134 * on testing data as well as attempting to minimize response time
4135 * while increasing bulk throughput.
4136 * this functionality is controlled by the InterruptThrottleRate module
4137 * parameter (see igb_param.c)
4138 * NOTE: These calculations are only valid when operating in a single-
4139 * queue environment.
4140 **/
4141 static void igb_update_itr(struct igb_q_vector *q_vector,
4142 struct igb_ring_container *ring_container)
4143 {
4144 unsigned int packets = ring_container->total_packets;
4145 unsigned int bytes = ring_container->total_bytes;
4146 u8 itrval = ring_container->itr;
4147
4148 /* no packets, exit with status unchanged */
4149 if (packets == 0)
4150 return;
4151
4152 switch (itrval) {
4153 case lowest_latency:
4154 /* handle TSO and jumbo frames */
4155 if (bytes/packets > 8000)
4156 itrval = bulk_latency;
4157 else if ((packets < 5) && (bytes > 512))
4158 itrval = low_latency;
4159 break;
4160 case low_latency: /* 50 usec aka 20000 ints/s */
4161 if (bytes > 10000) {
4162 /* this if handles the TSO accounting */
4163 if (bytes/packets > 8000) {
4164 itrval = bulk_latency;
4165 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4166 itrval = bulk_latency;
4167 } else if ((packets > 35)) {
4168 itrval = lowest_latency;
4169 }
4170 } else if (bytes/packets > 2000) {
4171 itrval = bulk_latency;
4172 } else if (packets <= 2 && bytes < 512) {
4173 itrval = lowest_latency;
4174 }
4175 break;
4176 case bulk_latency: /* 250 usec aka 4000 ints/s */
4177 if (bytes > 25000) {
4178 if (packets > 35)
4179 itrval = low_latency;
4180 } else if (bytes < 1500) {
4181 itrval = low_latency;
4182 }
4183 break;
4184 }
4185
4186 /* clear work counters since we have the values we need */
4187 ring_container->total_bytes = 0;
4188 ring_container->total_packets = 0;
4189
4190 /* write updated itr to ring container */
4191 ring_container->itr = itrval;
4192 }
4193
4194 static void igb_set_itr(struct igb_q_vector *q_vector)
4195 {
4196 struct igb_adapter *adapter = q_vector->adapter;
4197 u32 new_itr = q_vector->itr_val;
4198 u8 current_itr = 0;
4199
4200 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4201 if (adapter->link_speed != SPEED_1000) {
4202 current_itr = 0;
4203 new_itr = IGB_4K_ITR;
4204 goto set_itr_now;
4205 }
4206
4207 igb_update_itr(q_vector, &q_vector->tx);
4208 igb_update_itr(q_vector, &q_vector->rx);
4209
4210 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4211
4212 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4213 if (current_itr == lowest_latency &&
4214 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4215 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4216 current_itr = low_latency;
4217
4218 switch (current_itr) {
4219 /* counts and packets in update_itr are dependent on these numbers */
4220 case lowest_latency:
4221 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4222 break;
4223 case low_latency:
4224 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4225 break;
4226 case bulk_latency:
4227 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4228 break;
4229 default:
4230 break;
4231 }
4232
4233 set_itr_now:
4234 if (new_itr != q_vector->itr_val) {
4235 /* this attempts to bias the interrupt rate towards Bulk
4236 * by adding intermediate steps when interrupt rate is
4237 * increasing
4238 */
4239 new_itr = new_itr > q_vector->itr_val ?
4240 max((new_itr * q_vector->itr_val) /
4241 (new_itr + (q_vector->itr_val >> 2)),
4242 new_itr) : new_itr;
4243 /* Don't write the value here; it resets the adapter's
4244 * internal timer, and causes us to delay far longer than
4245 * we should between interrupts. Instead, we write the ITR
4246 * value at the beginning of the next interrupt so the timing
4247 * ends up being correct.
4248 */
4249 q_vector->itr_val = new_itr;
4250 q_vector->set_itr = 1;
4251 }
4252 }
4253
4254 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4255 u32 type_tucmd, u32 mss_l4len_idx)
4256 {
4257 struct e1000_adv_tx_context_desc *context_desc;
4258 u16 i = tx_ring->next_to_use;
4259
4260 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4261
4262 i++;
4263 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4264
4265 /* set bits to identify this as an advanced context descriptor */
4266 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4267
4268 /* For 82575, context index must be unique per ring. */
4269 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4270 mss_l4len_idx |= tx_ring->reg_idx << 4;
4271
4272 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4273 context_desc->seqnum_seed = 0;
4274 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4275 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4276 }
4277
4278 static int igb_tso(struct igb_ring *tx_ring,
4279 struct igb_tx_buffer *first,
4280 u8 *hdr_len)
4281 {
4282 struct sk_buff *skb = first->skb;
4283 u32 vlan_macip_lens, type_tucmd;
4284 u32 mss_l4len_idx, l4len;
4285
4286 if (skb->ip_summed != CHECKSUM_PARTIAL)
4287 return 0;
4288
4289 if (!skb_is_gso(skb))
4290 return 0;
4291
4292 if (skb_header_cloned(skb)) {
4293 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4294 if (err)
4295 return err;
4296 }
4297
4298 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4299 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4300
4301 if (first->protocol == __constant_htons(ETH_P_IP)) {
4302 struct iphdr *iph = ip_hdr(skb);
4303 iph->tot_len = 0;
4304 iph->check = 0;
4305 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4306 iph->daddr, 0,
4307 IPPROTO_TCP,
4308 0);
4309 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4310 first->tx_flags |= IGB_TX_FLAGS_TSO |
4311 IGB_TX_FLAGS_CSUM |
4312 IGB_TX_FLAGS_IPV4;
4313 } else if (skb_is_gso_v6(skb)) {
4314 ipv6_hdr(skb)->payload_len = 0;
4315 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4316 &ipv6_hdr(skb)->daddr,
4317 0, IPPROTO_TCP, 0);
4318 first->tx_flags |= IGB_TX_FLAGS_TSO |
4319 IGB_TX_FLAGS_CSUM;
4320 }
4321
4322 /* compute header lengths */
4323 l4len = tcp_hdrlen(skb);
4324 *hdr_len = skb_transport_offset(skb) + l4len;
4325
4326 /* update gso size and bytecount with header size */
4327 first->gso_segs = skb_shinfo(skb)->gso_segs;
4328 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4329
4330 /* MSS L4LEN IDX */
4331 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4332 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4333
4334 /* VLAN MACLEN IPLEN */
4335 vlan_macip_lens = skb_network_header_len(skb);
4336 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4337 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4338
4339 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4340
4341 return 1;
4342 }
4343
4344 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4345 {
4346 struct sk_buff *skb = first->skb;
4347 u32 vlan_macip_lens = 0;
4348 u32 mss_l4len_idx = 0;
4349 u32 type_tucmd = 0;
4350
4351 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4352 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4353 return;
4354 } else {
4355 u8 l4_hdr = 0;
4356 switch (first->protocol) {
4357 case __constant_htons(ETH_P_IP):
4358 vlan_macip_lens |= skb_network_header_len(skb);
4359 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4360 l4_hdr = ip_hdr(skb)->protocol;
4361 break;
4362 case __constant_htons(ETH_P_IPV6):
4363 vlan_macip_lens |= skb_network_header_len(skb);
4364 l4_hdr = ipv6_hdr(skb)->nexthdr;
4365 break;
4366 default:
4367 if (unlikely(net_ratelimit())) {
4368 dev_warn(tx_ring->dev,
4369 "partial checksum but proto=%x!\n",
4370 first->protocol);
4371 }
4372 break;
4373 }
4374
4375 switch (l4_hdr) {
4376 case IPPROTO_TCP:
4377 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4378 mss_l4len_idx = tcp_hdrlen(skb) <<
4379 E1000_ADVTXD_L4LEN_SHIFT;
4380 break;
4381 case IPPROTO_SCTP:
4382 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4383 mss_l4len_idx = sizeof(struct sctphdr) <<
4384 E1000_ADVTXD_L4LEN_SHIFT;
4385 break;
4386 case IPPROTO_UDP:
4387 mss_l4len_idx = sizeof(struct udphdr) <<
4388 E1000_ADVTXD_L4LEN_SHIFT;
4389 break;
4390 default:
4391 if (unlikely(net_ratelimit())) {
4392 dev_warn(tx_ring->dev,
4393 "partial checksum but l4 proto=%x!\n",
4394 l4_hdr);
4395 }
4396 break;
4397 }
4398
4399 /* update TX checksum flag */
4400 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4401 }
4402
4403 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4404 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4405
4406 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4407 }
4408
4409 #define IGB_SET_FLAG(_input, _flag, _result) \
4410 ((_flag <= _result) ? \
4411 ((u32)(_input & _flag) * (_result / _flag)) : \
4412 ((u32)(_input & _flag) / (_flag / _result)))
4413
4414 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4415 {
4416 /* set type for advanced descriptor with frame checksum insertion */
4417 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4418 E1000_ADVTXD_DCMD_DEXT |
4419 E1000_ADVTXD_DCMD_IFCS;
4420
4421 /* set HW vlan bit if vlan is present */
4422 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4423 (E1000_ADVTXD_DCMD_VLE));
4424
4425 /* set segmentation bits for TSO */
4426 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4427 (E1000_ADVTXD_DCMD_TSE));
4428
4429 /* set timestamp bit if present */
4430 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4431 (E1000_ADVTXD_MAC_TSTAMP));
4432
4433 /* insert frame checksum */
4434 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4435
4436 return cmd_type;
4437 }
4438
4439 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4440 union e1000_adv_tx_desc *tx_desc,
4441 u32 tx_flags, unsigned int paylen)
4442 {
4443 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4444
4445 /* 82575 requires a unique index per ring */
4446 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4447 olinfo_status |= tx_ring->reg_idx << 4;
4448
4449 /* insert L4 checksum */
4450 olinfo_status |= IGB_SET_FLAG(tx_flags,
4451 IGB_TX_FLAGS_CSUM,
4452 (E1000_TXD_POPTS_TXSM << 8));
4453
4454 /* insert IPv4 checksum */
4455 olinfo_status |= IGB_SET_FLAG(tx_flags,
4456 IGB_TX_FLAGS_IPV4,
4457 (E1000_TXD_POPTS_IXSM << 8));
4458
4459 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4460 }
4461
4462 static void igb_tx_map(struct igb_ring *tx_ring,
4463 struct igb_tx_buffer *first,
4464 const u8 hdr_len)
4465 {
4466 struct sk_buff *skb = first->skb;
4467 struct igb_tx_buffer *tx_buffer;
4468 union e1000_adv_tx_desc *tx_desc;
4469 struct skb_frag_struct *frag;
4470 dma_addr_t dma;
4471 unsigned int data_len, size;
4472 u32 tx_flags = first->tx_flags;
4473 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4474 u16 i = tx_ring->next_to_use;
4475
4476 tx_desc = IGB_TX_DESC(tx_ring, i);
4477
4478 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4479
4480 size = skb_headlen(skb);
4481 data_len = skb->data_len;
4482
4483 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4484
4485 tx_buffer = first;
4486
4487 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4488 if (dma_mapping_error(tx_ring->dev, dma))
4489 goto dma_error;
4490
4491 /* record length, and DMA address */
4492 dma_unmap_len_set(tx_buffer, len, size);
4493 dma_unmap_addr_set(tx_buffer, dma, dma);
4494
4495 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4496
4497 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4498 tx_desc->read.cmd_type_len =
4499 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4500
4501 i++;
4502 tx_desc++;
4503 if (i == tx_ring->count) {
4504 tx_desc = IGB_TX_DESC(tx_ring, 0);
4505 i = 0;
4506 }
4507 tx_desc->read.olinfo_status = 0;
4508
4509 dma += IGB_MAX_DATA_PER_TXD;
4510 size -= IGB_MAX_DATA_PER_TXD;
4511
4512 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4513 }
4514
4515 if (likely(!data_len))
4516 break;
4517
4518 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4519
4520 i++;
4521 tx_desc++;
4522 if (i == tx_ring->count) {
4523 tx_desc = IGB_TX_DESC(tx_ring, 0);
4524 i = 0;
4525 }
4526 tx_desc->read.olinfo_status = 0;
4527
4528 size = skb_frag_size(frag);
4529 data_len -= size;
4530
4531 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4532 size, DMA_TO_DEVICE);
4533
4534 tx_buffer = &tx_ring->tx_buffer_info[i];
4535 }
4536
4537 /* write last descriptor with RS and EOP bits */
4538 cmd_type |= size | IGB_TXD_DCMD;
4539 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4540
4541 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4542
4543 /* set the timestamp */
4544 first->time_stamp = jiffies;
4545
4546 /* Force memory writes to complete before letting h/w know there
4547 * are new descriptors to fetch. (Only applicable for weak-ordered
4548 * memory model archs, such as IA-64).
4549 *
4550 * We also need this memory barrier to make certain all of the
4551 * status bits have been updated before next_to_watch is written.
4552 */
4553 wmb();
4554
4555 /* set next_to_watch value indicating a packet is present */
4556 first->next_to_watch = tx_desc;
4557
4558 i++;
4559 if (i == tx_ring->count)
4560 i = 0;
4561
4562 tx_ring->next_to_use = i;
4563
4564 writel(i, tx_ring->tail);
4565
4566 /* we need this if more than one processor can write to our tail
4567 * at a time, it synchronizes IO on IA64/Altix systems
4568 */
4569 mmiowb();
4570
4571 return;
4572
4573 dma_error:
4574 dev_err(tx_ring->dev, "TX DMA map failed\n");
4575
4576 /* clear dma mappings for failed tx_buffer_info map */
4577 for (;;) {
4578 tx_buffer = &tx_ring->tx_buffer_info[i];
4579 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4580 if (tx_buffer == first)
4581 break;
4582 if (i == 0)
4583 i = tx_ring->count;
4584 i--;
4585 }
4586
4587 tx_ring->next_to_use = i;
4588 }
4589
4590 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4591 {
4592 struct net_device *netdev = tx_ring->netdev;
4593
4594 netif_stop_subqueue(netdev, tx_ring->queue_index);
4595
4596 /* Herbert's original patch had:
4597 * smp_mb__after_netif_stop_queue();
4598 * but since that doesn't exist yet, just open code it.
4599 */
4600 smp_mb();
4601
4602 /* We need to check again in a case another CPU has just
4603 * made room available.
4604 */
4605 if (igb_desc_unused(tx_ring) < size)
4606 return -EBUSY;
4607
4608 /* A reprieve! */
4609 netif_wake_subqueue(netdev, tx_ring->queue_index);
4610
4611 u64_stats_update_begin(&tx_ring->tx_syncp2);
4612 tx_ring->tx_stats.restart_queue2++;
4613 u64_stats_update_end(&tx_ring->tx_syncp2);
4614
4615 return 0;
4616 }
4617
4618 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4619 {
4620 if (igb_desc_unused(tx_ring) >= size)
4621 return 0;
4622 return __igb_maybe_stop_tx(tx_ring, size);
4623 }
4624
4625 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4626 struct igb_ring *tx_ring)
4627 {
4628 struct igb_tx_buffer *first;
4629 int tso;
4630 u32 tx_flags = 0;
4631 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4632 __be16 protocol = vlan_get_protocol(skb);
4633 u8 hdr_len = 0;
4634
4635 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4636 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4637 * + 2 desc gap to keep tail from touching head,
4638 * + 1 desc for context descriptor,
4639 * otherwise try next time
4640 */
4641 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4642 unsigned short f;
4643 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4644 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4645 } else {
4646 count += skb_shinfo(skb)->nr_frags;
4647 }
4648
4649 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4650 /* this is a hard error */
4651 return NETDEV_TX_BUSY;
4652 }
4653
4654 /* record the location of the first descriptor for this packet */
4655 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4656 first->skb = skb;
4657 first->bytecount = skb->len;
4658 first->gso_segs = 1;
4659
4660 skb_tx_timestamp(skb);
4661
4662 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4663 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4664
4665 if (!(adapter->ptp_tx_skb)) {
4666 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4667 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4668
4669 adapter->ptp_tx_skb = skb_get(skb);
4670 adapter->ptp_tx_start = jiffies;
4671 if (adapter->hw.mac.type == e1000_82576)
4672 schedule_work(&adapter->ptp_tx_work);
4673 }
4674 }
4675
4676 if (vlan_tx_tag_present(skb)) {
4677 tx_flags |= IGB_TX_FLAGS_VLAN;
4678 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4679 }
4680
4681 /* record initial flags and protocol */
4682 first->tx_flags = tx_flags;
4683 first->protocol = protocol;
4684
4685 tso = igb_tso(tx_ring, first, &hdr_len);
4686 if (tso < 0)
4687 goto out_drop;
4688 else if (!tso)
4689 igb_tx_csum(tx_ring, first);
4690
4691 igb_tx_map(tx_ring, first, hdr_len);
4692
4693 /* Make sure there is space in the ring for the next send. */
4694 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4695
4696 return NETDEV_TX_OK;
4697
4698 out_drop:
4699 igb_unmap_and_free_tx_resource(tx_ring, first);
4700
4701 return NETDEV_TX_OK;
4702 }
4703
4704 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4705 struct sk_buff *skb)
4706 {
4707 unsigned int r_idx = skb->queue_mapping;
4708
4709 if (r_idx >= adapter->num_tx_queues)
4710 r_idx = r_idx % adapter->num_tx_queues;
4711
4712 return adapter->tx_ring[r_idx];
4713 }
4714
4715 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4716 struct net_device *netdev)
4717 {
4718 struct igb_adapter *adapter = netdev_priv(netdev);
4719
4720 if (test_bit(__IGB_DOWN, &adapter->state)) {
4721 dev_kfree_skb_any(skb);
4722 return NETDEV_TX_OK;
4723 }
4724
4725 if (skb->len <= 0) {
4726 dev_kfree_skb_any(skb);
4727 return NETDEV_TX_OK;
4728 }
4729
4730 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4731 * in order to meet this minimum size requirement.
4732 */
4733 if (unlikely(skb->len < 17)) {
4734 if (skb_pad(skb, 17 - skb->len))
4735 return NETDEV_TX_OK;
4736 skb->len = 17;
4737 skb_set_tail_pointer(skb, 17);
4738 }
4739
4740 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4741 }
4742
4743 /**
4744 * igb_tx_timeout - Respond to a Tx Hang
4745 * @netdev: network interface device structure
4746 **/
4747 static void igb_tx_timeout(struct net_device *netdev)
4748 {
4749 struct igb_adapter *adapter = netdev_priv(netdev);
4750 struct e1000_hw *hw = &adapter->hw;
4751
4752 /* Do the reset outside of interrupt context */
4753 adapter->tx_timeout_count++;
4754
4755 if (hw->mac.type >= e1000_82580)
4756 hw->dev_spec._82575.global_device_reset = true;
4757
4758 schedule_work(&adapter->reset_task);
4759 wr32(E1000_EICS,
4760 (adapter->eims_enable_mask & ~adapter->eims_other));
4761 }
4762
4763 static void igb_reset_task(struct work_struct *work)
4764 {
4765 struct igb_adapter *adapter;
4766 adapter = container_of(work, struct igb_adapter, reset_task);
4767
4768 igb_dump(adapter);
4769 netdev_err(adapter->netdev, "Reset adapter\n");
4770 igb_reinit_locked(adapter);
4771 }
4772
4773 /**
4774 * igb_get_stats64 - Get System Network Statistics
4775 * @netdev: network interface device structure
4776 * @stats: rtnl_link_stats64 pointer
4777 **/
4778 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4779 struct rtnl_link_stats64 *stats)
4780 {
4781 struct igb_adapter *adapter = netdev_priv(netdev);
4782
4783 spin_lock(&adapter->stats64_lock);
4784 igb_update_stats(adapter, &adapter->stats64);
4785 memcpy(stats, &adapter->stats64, sizeof(*stats));
4786 spin_unlock(&adapter->stats64_lock);
4787
4788 return stats;
4789 }
4790
4791 /**
4792 * igb_change_mtu - Change the Maximum Transfer Unit
4793 * @netdev: network interface device structure
4794 * @new_mtu: new value for maximum frame size
4795 *
4796 * Returns 0 on success, negative on failure
4797 **/
4798 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4799 {
4800 struct igb_adapter *adapter = netdev_priv(netdev);
4801 struct pci_dev *pdev = adapter->pdev;
4802 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4803
4804 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4805 dev_err(&pdev->dev, "Invalid MTU setting\n");
4806 return -EINVAL;
4807 }
4808
4809 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4810 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4811 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4812 return -EINVAL;
4813 }
4814
4815 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4816 msleep(1);
4817
4818 /* igb_down has a dependency on max_frame_size */
4819 adapter->max_frame_size = max_frame;
4820
4821 if (netif_running(netdev))
4822 igb_down(adapter);
4823
4824 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4825 netdev->mtu, new_mtu);
4826 netdev->mtu = new_mtu;
4827
4828 if (netif_running(netdev))
4829 igb_up(adapter);
4830 else
4831 igb_reset(adapter);
4832
4833 clear_bit(__IGB_RESETTING, &adapter->state);
4834
4835 return 0;
4836 }
4837
4838 /**
4839 * igb_update_stats - Update the board statistics counters
4840 * @adapter: board private structure
4841 **/
4842 void igb_update_stats(struct igb_adapter *adapter,
4843 struct rtnl_link_stats64 *net_stats)
4844 {
4845 struct e1000_hw *hw = &adapter->hw;
4846 struct pci_dev *pdev = adapter->pdev;
4847 u32 reg, mpc;
4848 u16 phy_tmp;
4849 int i;
4850 u64 bytes, packets;
4851 unsigned int start;
4852 u64 _bytes, _packets;
4853
4854 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4855
4856 /* Prevent stats update while adapter is being reset, or if the pci
4857 * connection is down.
4858 */
4859 if (adapter->link_speed == 0)
4860 return;
4861 if (pci_channel_offline(pdev))
4862 return;
4863
4864 bytes = 0;
4865 packets = 0;
4866 for (i = 0; i < adapter->num_rx_queues; i++) {
4867 u32 rqdpc = rd32(E1000_RQDPC(i));
4868 struct igb_ring *ring = adapter->rx_ring[i];
4869
4870 if (rqdpc) {
4871 ring->rx_stats.drops += rqdpc;
4872 net_stats->rx_fifo_errors += rqdpc;
4873 }
4874
4875 do {
4876 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4877 _bytes = ring->rx_stats.bytes;
4878 _packets = ring->rx_stats.packets;
4879 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4880 bytes += _bytes;
4881 packets += _packets;
4882 }
4883
4884 net_stats->rx_bytes = bytes;
4885 net_stats->rx_packets = packets;
4886
4887 bytes = 0;
4888 packets = 0;
4889 for (i = 0; i < adapter->num_tx_queues; i++) {
4890 struct igb_ring *ring = adapter->tx_ring[i];
4891 do {
4892 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4893 _bytes = ring->tx_stats.bytes;
4894 _packets = ring->tx_stats.packets;
4895 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4896 bytes += _bytes;
4897 packets += _packets;
4898 }
4899 net_stats->tx_bytes = bytes;
4900 net_stats->tx_packets = packets;
4901
4902 /* read stats registers */
4903 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4904 adapter->stats.gprc += rd32(E1000_GPRC);
4905 adapter->stats.gorc += rd32(E1000_GORCL);
4906 rd32(E1000_GORCH); /* clear GORCL */
4907 adapter->stats.bprc += rd32(E1000_BPRC);
4908 adapter->stats.mprc += rd32(E1000_MPRC);
4909 adapter->stats.roc += rd32(E1000_ROC);
4910
4911 adapter->stats.prc64 += rd32(E1000_PRC64);
4912 adapter->stats.prc127 += rd32(E1000_PRC127);
4913 adapter->stats.prc255 += rd32(E1000_PRC255);
4914 adapter->stats.prc511 += rd32(E1000_PRC511);
4915 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4916 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4917 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4918 adapter->stats.sec += rd32(E1000_SEC);
4919
4920 mpc = rd32(E1000_MPC);
4921 adapter->stats.mpc += mpc;
4922 net_stats->rx_fifo_errors += mpc;
4923 adapter->stats.scc += rd32(E1000_SCC);
4924 adapter->stats.ecol += rd32(E1000_ECOL);
4925 adapter->stats.mcc += rd32(E1000_MCC);
4926 adapter->stats.latecol += rd32(E1000_LATECOL);
4927 adapter->stats.dc += rd32(E1000_DC);
4928 adapter->stats.rlec += rd32(E1000_RLEC);
4929 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4930 adapter->stats.xontxc += rd32(E1000_XONTXC);
4931 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4932 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4933 adapter->stats.fcruc += rd32(E1000_FCRUC);
4934 adapter->stats.gptc += rd32(E1000_GPTC);
4935 adapter->stats.gotc += rd32(E1000_GOTCL);
4936 rd32(E1000_GOTCH); /* clear GOTCL */
4937 adapter->stats.rnbc += rd32(E1000_RNBC);
4938 adapter->stats.ruc += rd32(E1000_RUC);
4939 adapter->stats.rfc += rd32(E1000_RFC);
4940 adapter->stats.rjc += rd32(E1000_RJC);
4941 adapter->stats.tor += rd32(E1000_TORH);
4942 adapter->stats.tot += rd32(E1000_TOTH);
4943 adapter->stats.tpr += rd32(E1000_TPR);
4944
4945 adapter->stats.ptc64 += rd32(E1000_PTC64);
4946 adapter->stats.ptc127 += rd32(E1000_PTC127);
4947 adapter->stats.ptc255 += rd32(E1000_PTC255);
4948 adapter->stats.ptc511 += rd32(E1000_PTC511);
4949 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4950 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4951
4952 adapter->stats.mptc += rd32(E1000_MPTC);
4953 adapter->stats.bptc += rd32(E1000_BPTC);
4954
4955 adapter->stats.tpt += rd32(E1000_TPT);
4956 adapter->stats.colc += rd32(E1000_COLC);
4957
4958 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4959 /* read internal phy specific stats */
4960 reg = rd32(E1000_CTRL_EXT);
4961 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4962 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4963
4964 /* this stat has invalid values on i210/i211 */
4965 if ((hw->mac.type != e1000_i210) &&
4966 (hw->mac.type != e1000_i211))
4967 adapter->stats.tncrs += rd32(E1000_TNCRS);
4968 }
4969
4970 adapter->stats.tsctc += rd32(E1000_TSCTC);
4971 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4972
4973 adapter->stats.iac += rd32(E1000_IAC);
4974 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4975 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4976 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4977 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4978 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4979 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4980 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4981 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4982
4983 /* Fill out the OS statistics structure */
4984 net_stats->multicast = adapter->stats.mprc;
4985 net_stats->collisions = adapter->stats.colc;
4986
4987 /* Rx Errors */
4988
4989 /* RLEC on some newer hardware can be incorrect so build
4990 * our own version based on RUC and ROC
4991 */
4992 net_stats->rx_errors = adapter->stats.rxerrc +
4993 adapter->stats.crcerrs + adapter->stats.algnerrc +
4994 adapter->stats.ruc + adapter->stats.roc +
4995 adapter->stats.cexterr;
4996 net_stats->rx_length_errors = adapter->stats.ruc +
4997 adapter->stats.roc;
4998 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4999 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5000 net_stats->rx_missed_errors = adapter->stats.mpc;
5001
5002 /* Tx Errors */
5003 net_stats->tx_errors = adapter->stats.ecol +
5004 adapter->stats.latecol;
5005 net_stats->tx_aborted_errors = adapter->stats.ecol;
5006 net_stats->tx_window_errors = adapter->stats.latecol;
5007 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5008
5009 /* Tx Dropped needs to be maintained elsewhere */
5010
5011 /* Phy Stats */
5012 if (hw->phy.media_type == e1000_media_type_copper) {
5013 if ((adapter->link_speed == SPEED_1000) &&
5014 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5015 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5016 adapter->phy_stats.idle_errors += phy_tmp;
5017 }
5018 }
5019
5020 /* Management Stats */
5021 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5022 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5023 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5024
5025 /* OS2BMC Stats */
5026 reg = rd32(E1000_MANC);
5027 if (reg & E1000_MANC_EN_BMC2OS) {
5028 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5029 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5030 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5031 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5032 }
5033 }
5034
5035 static irqreturn_t igb_msix_other(int irq, void *data)
5036 {
5037 struct igb_adapter *adapter = data;
5038 struct e1000_hw *hw = &adapter->hw;
5039 u32 icr = rd32(E1000_ICR);
5040 /* reading ICR causes bit 31 of EICR to be cleared */
5041
5042 if (icr & E1000_ICR_DRSTA)
5043 schedule_work(&adapter->reset_task);
5044
5045 if (icr & E1000_ICR_DOUTSYNC) {
5046 /* HW is reporting DMA is out of sync */
5047 adapter->stats.doosync++;
5048 /* The DMA Out of Sync is also indication of a spoof event
5049 * in IOV mode. Check the Wrong VM Behavior register to
5050 * see if it is really a spoof event.
5051 */
5052 igb_check_wvbr(adapter);
5053 }
5054
5055 /* Check for a mailbox event */
5056 if (icr & E1000_ICR_VMMB)
5057 igb_msg_task(adapter);
5058
5059 if (icr & E1000_ICR_LSC) {
5060 hw->mac.get_link_status = 1;
5061 /* guard against interrupt when we're going down */
5062 if (!test_bit(__IGB_DOWN, &adapter->state))
5063 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5064 }
5065
5066 if (icr & E1000_ICR_TS) {
5067 u32 tsicr = rd32(E1000_TSICR);
5068
5069 if (tsicr & E1000_TSICR_TXTS) {
5070 /* acknowledge the interrupt */
5071 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5072 /* retrieve hardware timestamp */
5073 schedule_work(&adapter->ptp_tx_work);
5074 }
5075 }
5076
5077 wr32(E1000_EIMS, adapter->eims_other);
5078
5079 return IRQ_HANDLED;
5080 }
5081
5082 static void igb_write_itr(struct igb_q_vector *q_vector)
5083 {
5084 struct igb_adapter *adapter = q_vector->adapter;
5085 u32 itr_val = q_vector->itr_val & 0x7FFC;
5086
5087 if (!q_vector->set_itr)
5088 return;
5089
5090 if (!itr_val)
5091 itr_val = 0x4;
5092
5093 if (adapter->hw.mac.type == e1000_82575)
5094 itr_val |= itr_val << 16;
5095 else
5096 itr_val |= E1000_EITR_CNT_IGNR;
5097
5098 writel(itr_val, q_vector->itr_register);
5099 q_vector->set_itr = 0;
5100 }
5101
5102 static irqreturn_t igb_msix_ring(int irq, void *data)
5103 {
5104 struct igb_q_vector *q_vector = data;
5105
5106 /* Write the ITR value calculated from the previous interrupt. */
5107 igb_write_itr(q_vector);
5108
5109 napi_schedule(&q_vector->napi);
5110
5111 return IRQ_HANDLED;
5112 }
5113
5114 #ifdef CONFIG_IGB_DCA
5115 static void igb_update_tx_dca(struct igb_adapter *adapter,
5116 struct igb_ring *tx_ring,
5117 int cpu)
5118 {
5119 struct e1000_hw *hw = &adapter->hw;
5120 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5121
5122 if (hw->mac.type != e1000_82575)
5123 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5124
5125 /* We can enable relaxed ordering for reads, but not writes when
5126 * DCA is enabled. This is due to a known issue in some chipsets
5127 * which will cause the DCA tag to be cleared.
5128 */
5129 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5130 E1000_DCA_TXCTRL_DATA_RRO_EN |
5131 E1000_DCA_TXCTRL_DESC_DCA_EN;
5132
5133 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5134 }
5135
5136 static void igb_update_rx_dca(struct igb_adapter *adapter,
5137 struct igb_ring *rx_ring,
5138 int cpu)
5139 {
5140 struct e1000_hw *hw = &adapter->hw;
5141 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5142
5143 if (hw->mac.type != e1000_82575)
5144 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5145
5146 /* We can enable relaxed ordering for reads, but not writes when
5147 * DCA is enabled. This is due to a known issue in some chipsets
5148 * which will cause the DCA tag to be cleared.
5149 */
5150 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5151 E1000_DCA_RXCTRL_DESC_DCA_EN;
5152
5153 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5154 }
5155
5156 static void igb_update_dca(struct igb_q_vector *q_vector)
5157 {
5158 struct igb_adapter *adapter = q_vector->adapter;
5159 int cpu = get_cpu();
5160
5161 if (q_vector->cpu == cpu)
5162 goto out_no_update;
5163
5164 if (q_vector->tx.ring)
5165 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5166
5167 if (q_vector->rx.ring)
5168 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5169
5170 q_vector->cpu = cpu;
5171 out_no_update:
5172 put_cpu();
5173 }
5174
5175 static void igb_setup_dca(struct igb_adapter *adapter)
5176 {
5177 struct e1000_hw *hw = &adapter->hw;
5178 int i;
5179
5180 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5181 return;
5182
5183 /* Always use CB2 mode, difference is masked in the CB driver. */
5184 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5185
5186 for (i = 0; i < adapter->num_q_vectors; i++) {
5187 adapter->q_vector[i]->cpu = -1;
5188 igb_update_dca(adapter->q_vector[i]);
5189 }
5190 }
5191
5192 static int __igb_notify_dca(struct device *dev, void *data)
5193 {
5194 struct net_device *netdev = dev_get_drvdata(dev);
5195 struct igb_adapter *adapter = netdev_priv(netdev);
5196 struct pci_dev *pdev = adapter->pdev;
5197 struct e1000_hw *hw = &adapter->hw;
5198 unsigned long event = *(unsigned long *)data;
5199
5200 switch (event) {
5201 case DCA_PROVIDER_ADD:
5202 /* if already enabled, don't do it again */
5203 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5204 break;
5205 if (dca_add_requester(dev) == 0) {
5206 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5207 dev_info(&pdev->dev, "DCA enabled\n");
5208 igb_setup_dca(adapter);
5209 break;
5210 }
5211 /* Fall Through since DCA is disabled. */
5212 case DCA_PROVIDER_REMOVE:
5213 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5214 /* without this a class_device is left
5215 * hanging around in the sysfs model
5216 */
5217 dca_remove_requester(dev);
5218 dev_info(&pdev->dev, "DCA disabled\n");
5219 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5220 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5221 }
5222 break;
5223 }
5224
5225 return 0;
5226 }
5227
5228 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5229 void *p)
5230 {
5231 int ret_val;
5232
5233 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5234 __igb_notify_dca);
5235
5236 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5237 }
5238 #endif /* CONFIG_IGB_DCA */
5239
5240 #ifdef CONFIG_PCI_IOV
5241 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5242 {
5243 unsigned char mac_addr[ETH_ALEN];
5244
5245 eth_zero_addr(mac_addr);
5246 igb_set_vf_mac(adapter, vf, mac_addr);
5247
5248 /* By default spoof check is enabled for all VFs */
5249 adapter->vf_data[vf].spoofchk_enabled = true;
5250
5251 return 0;
5252 }
5253
5254 #endif
5255 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5256 {
5257 struct e1000_hw *hw = &adapter->hw;
5258 u32 ping;
5259 int i;
5260
5261 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5262 ping = E1000_PF_CONTROL_MSG;
5263 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5264 ping |= E1000_VT_MSGTYPE_CTS;
5265 igb_write_mbx(hw, &ping, 1, i);
5266 }
5267 }
5268
5269 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5270 {
5271 struct e1000_hw *hw = &adapter->hw;
5272 u32 vmolr = rd32(E1000_VMOLR(vf));
5273 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5274
5275 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5276 IGB_VF_FLAG_MULTI_PROMISC);
5277 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5278
5279 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5280 vmolr |= E1000_VMOLR_MPME;
5281 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5282 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5283 } else {
5284 /* if we have hashes and we are clearing a multicast promisc
5285 * flag we need to write the hashes to the MTA as this step
5286 * was previously skipped
5287 */
5288 if (vf_data->num_vf_mc_hashes > 30) {
5289 vmolr |= E1000_VMOLR_MPME;
5290 } else if (vf_data->num_vf_mc_hashes) {
5291 int j;
5292 vmolr |= E1000_VMOLR_ROMPE;
5293 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5294 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5295 }
5296 }
5297
5298 wr32(E1000_VMOLR(vf), vmolr);
5299
5300 /* there are flags left unprocessed, likely not supported */
5301 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5302 return -EINVAL;
5303
5304 return 0;
5305 }
5306
5307 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5308 u32 *msgbuf, u32 vf)
5309 {
5310 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5311 u16 *hash_list = (u16 *)&msgbuf[1];
5312 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5313 int i;
5314
5315 /* salt away the number of multicast addresses assigned
5316 * to this VF for later use to restore when the PF multi cast
5317 * list changes
5318 */
5319 vf_data->num_vf_mc_hashes = n;
5320
5321 /* only up to 30 hash values supported */
5322 if (n > 30)
5323 n = 30;
5324
5325 /* store the hashes for later use */
5326 for (i = 0; i < n; i++)
5327 vf_data->vf_mc_hashes[i] = hash_list[i];
5328
5329 /* Flush and reset the mta with the new values */
5330 igb_set_rx_mode(adapter->netdev);
5331
5332 return 0;
5333 }
5334
5335 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5336 {
5337 struct e1000_hw *hw = &adapter->hw;
5338 struct vf_data_storage *vf_data;
5339 int i, j;
5340
5341 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5342 u32 vmolr = rd32(E1000_VMOLR(i));
5343 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5344
5345 vf_data = &adapter->vf_data[i];
5346
5347 if ((vf_data->num_vf_mc_hashes > 30) ||
5348 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5349 vmolr |= E1000_VMOLR_MPME;
5350 } else if (vf_data->num_vf_mc_hashes) {
5351 vmolr |= E1000_VMOLR_ROMPE;
5352 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5353 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5354 }
5355 wr32(E1000_VMOLR(i), vmolr);
5356 }
5357 }
5358
5359 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5360 {
5361 struct e1000_hw *hw = &adapter->hw;
5362 u32 pool_mask, reg, vid;
5363 int i;
5364
5365 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5366
5367 /* Find the vlan filter for this id */
5368 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5369 reg = rd32(E1000_VLVF(i));
5370
5371 /* remove the vf from the pool */
5372 reg &= ~pool_mask;
5373
5374 /* if pool is empty then remove entry from vfta */
5375 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5376 (reg & E1000_VLVF_VLANID_ENABLE)) {
5377 reg = 0;
5378 vid = reg & E1000_VLVF_VLANID_MASK;
5379 igb_vfta_set(hw, vid, false);
5380 }
5381
5382 wr32(E1000_VLVF(i), reg);
5383 }
5384
5385 adapter->vf_data[vf].vlans_enabled = 0;
5386 }
5387
5388 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5389 {
5390 struct e1000_hw *hw = &adapter->hw;
5391 u32 reg, i;
5392
5393 /* The vlvf table only exists on 82576 hardware and newer */
5394 if (hw->mac.type < e1000_82576)
5395 return -1;
5396
5397 /* we only need to do this if VMDq is enabled */
5398 if (!adapter->vfs_allocated_count)
5399 return -1;
5400
5401 /* Find the vlan filter for this id */
5402 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5403 reg = rd32(E1000_VLVF(i));
5404 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5405 vid == (reg & E1000_VLVF_VLANID_MASK))
5406 break;
5407 }
5408
5409 if (add) {
5410 if (i == E1000_VLVF_ARRAY_SIZE) {
5411 /* Did not find a matching VLAN ID entry that was
5412 * enabled. Search for a free filter entry, i.e.
5413 * one without the enable bit set
5414 */
5415 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5416 reg = rd32(E1000_VLVF(i));
5417 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5418 break;
5419 }
5420 }
5421 if (i < E1000_VLVF_ARRAY_SIZE) {
5422 /* Found an enabled/available entry */
5423 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5424
5425 /* if !enabled we need to set this up in vfta */
5426 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5427 /* add VID to filter table */
5428 igb_vfta_set(hw, vid, true);
5429 reg |= E1000_VLVF_VLANID_ENABLE;
5430 }
5431 reg &= ~E1000_VLVF_VLANID_MASK;
5432 reg |= vid;
5433 wr32(E1000_VLVF(i), reg);
5434
5435 /* do not modify RLPML for PF devices */
5436 if (vf >= adapter->vfs_allocated_count)
5437 return 0;
5438
5439 if (!adapter->vf_data[vf].vlans_enabled) {
5440 u32 size;
5441 reg = rd32(E1000_VMOLR(vf));
5442 size = reg & E1000_VMOLR_RLPML_MASK;
5443 size += 4;
5444 reg &= ~E1000_VMOLR_RLPML_MASK;
5445 reg |= size;
5446 wr32(E1000_VMOLR(vf), reg);
5447 }
5448
5449 adapter->vf_data[vf].vlans_enabled++;
5450 }
5451 } else {
5452 if (i < E1000_VLVF_ARRAY_SIZE) {
5453 /* remove vf from the pool */
5454 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5455 /* if pool is empty then remove entry from vfta */
5456 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5457 reg = 0;
5458 igb_vfta_set(hw, vid, false);
5459 }
5460 wr32(E1000_VLVF(i), reg);
5461
5462 /* do not modify RLPML for PF devices */
5463 if (vf >= adapter->vfs_allocated_count)
5464 return 0;
5465
5466 adapter->vf_data[vf].vlans_enabled--;
5467 if (!adapter->vf_data[vf].vlans_enabled) {
5468 u32 size;
5469 reg = rd32(E1000_VMOLR(vf));
5470 size = reg & E1000_VMOLR_RLPML_MASK;
5471 size -= 4;
5472 reg &= ~E1000_VMOLR_RLPML_MASK;
5473 reg |= size;
5474 wr32(E1000_VMOLR(vf), reg);
5475 }
5476 }
5477 }
5478 return 0;
5479 }
5480
5481 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5482 {
5483 struct e1000_hw *hw = &adapter->hw;
5484
5485 if (vid)
5486 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5487 else
5488 wr32(E1000_VMVIR(vf), 0);
5489 }
5490
5491 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5492 int vf, u16 vlan, u8 qos)
5493 {
5494 int err = 0;
5495 struct igb_adapter *adapter = netdev_priv(netdev);
5496
5497 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5498 return -EINVAL;
5499 if (vlan || qos) {
5500 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5501 if (err)
5502 goto out;
5503 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5504 igb_set_vmolr(adapter, vf, !vlan);
5505 adapter->vf_data[vf].pf_vlan = vlan;
5506 adapter->vf_data[vf].pf_qos = qos;
5507 dev_info(&adapter->pdev->dev,
5508 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5509 if (test_bit(__IGB_DOWN, &adapter->state)) {
5510 dev_warn(&adapter->pdev->dev,
5511 "The VF VLAN has been set, but the PF device is not up.\n");
5512 dev_warn(&adapter->pdev->dev,
5513 "Bring the PF device up before attempting to use the VF device.\n");
5514 }
5515 } else {
5516 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5517 false, vf);
5518 igb_set_vmvir(adapter, vlan, vf);
5519 igb_set_vmolr(adapter, vf, true);
5520 adapter->vf_data[vf].pf_vlan = 0;
5521 adapter->vf_data[vf].pf_qos = 0;
5522 }
5523 out:
5524 return err;
5525 }
5526
5527 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5528 {
5529 struct e1000_hw *hw = &adapter->hw;
5530 int i;
5531 u32 reg;
5532
5533 /* Find the vlan filter for this id */
5534 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5535 reg = rd32(E1000_VLVF(i));
5536 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5537 vid == (reg & E1000_VLVF_VLANID_MASK))
5538 break;
5539 }
5540
5541 if (i >= E1000_VLVF_ARRAY_SIZE)
5542 i = -1;
5543
5544 return i;
5545 }
5546
5547 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5548 {
5549 struct e1000_hw *hw = &adapter->hw;
5550 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5551 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5552 int err = 0;
5553
5554 /* If in promiscuous mode we need to make sure the PF also has
5555 * the VLAN filter set.
5556 */
5557 if (add && (adapter->netdev->flags & IFF_PROMISC))
5558 err = igb_vlvf_set(adapter, vid, add,
5559 adapter->vfs_allocated_count);
5560 if (err)
5561 goto out;
5562
5563 err = igb_vlvf_set(adapter, vid, add, vf);
5564
5565 if (err)
5566 goto out;
5567
5568 /* Go through all the checks to see if the VLAN filter should
5569 * be wiped completely.
5570 */
5571 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5572 u32 vlvf, bits;
5573
5574 int regndx = igb_find_vlvf_entry(adapter, vid);
5575 if (regndx < 0)
5576 goto out;
5577 /* See if any other pools are set for this VLAN filter
5578 * entry other than the PF.
5579 */
5580 vlvf = bits = rd32(E1000_VLVF(regndx));
5581 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5582 adapter->vfs_allocated_count);
5583 /* If the filter was removed then ensure PF pool bit
5584 * is cleared if the PF only added itself to the pool
5585 * because the PF is in promiscuous mode.
5586 */
5587 if ((vlvf & VLAN_VID_MASK) == vid &&
5588 !test_bit(vid, adapter->active_vlans) &&
5589 !bits)
5590 igb_vlvf_set(adapter, vid, add,
5591 adapter->vfs_allocated_count);
5592 }
5593
5594 out:
5595 return err;
5596 }
5597
5598 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5599 {
5600 /* clear flags - except flag that indicates PF has set the MAC */
5601 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5602 adapter->vf_data[vf].last_nack = jiffies;
5603
5604 /* reset offloads to defaults */
5605 igb_set_vmolr(adapter, vf, true);
5606
5607 /* reset vlans for device */
5608 igb_clear_vf_vfta(adapter, vf);
5609 if (adapter->vf_data[vf].pf_vlan)
5610 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5611 adapter->vf_data[vf].pf_vlan,
5612 adapter->vf_data[vf].pf_qos);
5613 else
5614 igb_clear_vf_vfta(adapter, vf);
5615
5616 /* reset multicast table array for vf */
5617 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5618
5619 /* Flush and reset the mta with the new values */
5620 igb_set_rx_mode(adapter->netdev);
5621 }
5622
5623 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5624 {
5625 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5626
5627 /* clear mac address as we were hotplug removed/added */
5628 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5629 eth_zero_addr(vf_mac);
5630
5631 /* process remaining reset events */
5632 igb_vf_reset(adapter, vf);
5633 }
5634
5635 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5636 {
5637 struct e1000_hw *hw = &adapter->hw;
5638 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5639 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5640 u32 reg, msgbuf[3];
5641 u8 *addr = (u8 *)(&msgbuf[1]);
5642
5643 /* process all the same items cleared in a function level reset */
5644 igb_vf_reset(adapter, vf);
5645
5646 /* set vf mac address */
5647 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5648
5649 /* enable transmit and receive for vf */
5650 reg = rd32(E1000_VFTE);
5651 wr32(E1000_VFTE, reg | (1 << vf));
5652 reg = rd32(E1000_VFRE);
5653 wr32(E1000_VFRE, reg | (1 << vf));
5654
5655 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5656
5657 /* reply to reset with ack and vf mac address */
5658 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5659 memcpy(addr, vf_mac, 6);
5660 igb_write_mbx(hw, msgbuf, 3, vf);
5661 }
5662
5663 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5664 {
5665 /* The VF MAC Address is stored in a packed array of bytes
5666 * starting at the second 32 bit word of the msg array
5667 */
5668 unsigned char *addr = (char *)&msg[1];
5669 int err = -1;
5670
5671 if (is_valid_ether_addr(addr))
5672 err = igb_set_vf_mac(adapter, vf, addr);
5673
5674 return err;
5675 }
5676
5677 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5678 {
5679 struct e1000_hw *hw = &adapter->hw;
5680 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5681 u32 msg = E1000_VT_MSGTYPE_NACK;
5682
5683 /* if device isn't clear to send it shouldn't be reading either */
5684 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5685 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5686 igb_write_mbx(hw, &msg, 1, vf);
5687 vf_data->last_nack = jiffies;
5688 }
5689 }
5690
5691 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5692 {
5693 struct pci_dev *pdev = adapter->pdev;
5694 u32 msgbuf[E1000_VFMAILBOX_SIZE];
5695 struct e1000_hw *hw = &adapter->hw;
5696 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5697 s32 retval;
5698
5699 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5700
5701 if (retval) {
5702 /* if receive failed revoke VF CTS stats and restart init */
5703 dev_err(&pdev->dev, "Error receiving message from VF\n");
5704 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5705 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5706 return;
5707 goto out;
5708 }
5709
5710 /* this is a message we already processed, do nothing */
5711 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5712 return;
5713
5714 /* until the vf completes a reset it should not be
5715 * allowed to start any configuration.
5716 */
5717 if (msgbuf[0] == E1000_VF_RESET) {
5718 igb_vf_reset_msg(adapter, vf);
5719 return;
5720 }
5721
5722 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5723 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5724 return;
5725 retval = -1;
5726 goto out;
5727 }
5728
5729 switch ((msgbuf[0] & 0xFFFF)) {
5730 case E1000_VF_SET_MAC_ADDR:
5731 retval = -EINVAL;
5732 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5733 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5734 else
5735 dev_warn(&pdev->dev,
5736 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5737 vf);
5738 break;
5739 case E1000_VF_SET_PROMISC:
5740 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5741 break;
5742 case E1000_VF_SET_MULTICAST:
5743 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5744 break;
5745 case E1000_VF_SET_LPE:
5746 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5747 break;
5748 case E1000_VF_SET_VLAN:
5749 retval = -1;
5750 if (vf_data->pf_vlan)
5751 dev_warn(&pdev->dev,
5752 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5753 vf);
5754 else
5755 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5756 break;
5757 default:
5758 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5759 retval = -1;
5760 break;
5761 }
5762
5763 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5764 out:
5765 /* notify the VF of the results of what it sent us */
5766 if (retval)
5767 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5768 else
5769 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5770
5771 igb_write_mbx(hw, msgbuf, 1, vf);
5772 }
5773
5774 static void igb_msg_task(struct igb_adapter *adapter)
5775 {
5776 struct e1000_hw *hw = &adapter->hw;
5777 u32 vf;
5778
5779 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5780 /* process any reset requests */
5781 if (!igb_check_for_rst(hw, vf))
5782 igb_vf_reset_event(adapter, vf);
5783
5784 /* process any messages pending */
5785 if (!igb_check_for_msg(hw, vf))
5786 igb_rcv_msg_from_vf(adapter, vf);
5787
5788 /* process any acks */
5789 if (!igb_check_for_ack(hw, vf))
5790 igb_rcv_ack_from_vf(adapter, vf);
5791 }
5792 }
5793
5794 /**
5795 * igb_set_uta - Set unicast filter table address
5796 * @adapter: board private structure
5797 *
5798 * The unicast table address is a register array of 32-bit registers.
5799 * The table is meant to be used in a way similar to how the MTA is used
5800 * however due to certain limitations in the hardware it is necessary to
5801 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5802 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
5803 **/
5804 static void igb_set_uta(struct igb_adapter *adapter)
5805 {
5806 struct e1000_hw *hw = &adapter->hw;
5807 int i;
5808
5809 /* The UTA table only exists on 82576 hardware and newer */
5810 if (hw->mac.type < e1000_82576)
5811 return;
5812
5813 /* we only need to do this if VMDq is enabled */
5814 if (!adapter->vfs_allocated_count)
5815 return;
5816
5817 for (i = 0; i < hw->mac.uta_reg_count; i++)
5818 array_wr32(E1000_UTA, i, ~0);
5819 }
5820
5821 /**
5822 * igb_intr_msi - Interrupt Handler
5823 * @irq: interrupt number
5824 * @data: pointer to a network interface device structure
5825 **/
5826 static irqreturn_t igb_intr_msi(int irq, void *data)
5827 {
5828 struct igb_adapter *adapter = data;
5829 struct igb_q_vector *q_vector = adapter->q_vector[0];
5830 struct e1000_hw *hw = &adapter->hw;
5831 /* read ICR disables interrupts using IAM */
5832 u32 icr = rd32(E1000_ICR);
5833
5834 igb_write_itr(q_vector);
5835
5836 if (icr & E1000_ICR_DRSTA)
5837 schedule_work(&adapter->reset_task);
5838
5839 if (icr & E1000_ICR_DOUTSYNC) {
5840 /* HW is reporting DMA is out of sync */
5841 adapter->stats.doosync++;
5842 }
5843
5844 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5845 hw->mac.get_link_status = 1;
5846 if (!test_bit(__IGB_DOWN, &adapter->state))
5847 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5848 }
5849
5850 if (icr & E1000_ICR_TS) {
5851 u32 tsicr = rd32(E1000_TSICR);
5852
5853 if (tsicr & E1000_TSICR_TXTS) {
5854 /* acknowledge the interrupt */
5855 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5856 /* retrieve hardware timestamp */
5857 schedule_work(&adapter->ptp_tx_work);
5858 }
5859 }
5860
5861 napi_schedule(&q_vector->napi);
5862
5863 return IRQ_HANDLED;
5864 }
5865
5866 /**
5867 * igb_intr - Legacy Interrupt Handler
5868 * @irq: interrupt number
5869 * @data: pointer to a network interface device structure
5870 **/
5871 static irqreturn_t igb_intr(int irq, void *data)
5872 {
5873 struct igb_adapter *adapter = data;
5874 struct igb_q_vector *q_vector = adapter->q_vector[0];
5875 struct e1000_hw *hw = &adapter->hw;
5876 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5877 * need for the IMC write
5878 */
5879 u32 icr = rd32(E1000_ICR);
5880
5881 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5882 * not set, then the adapter didn't send an interrupt
5883 */
5884 if (!(icr & E1000_ICR_INT_ASSERTED))
5885 return IRQ_NONE;
5886
5887 igb_write_itr(q_vector);
5888
5889 if (icr & E1000_ICR_DRSTA)
5890 schedule_work(&adapter->reset_task);
5891
5892 if (icr & E1000_ICR_DOUTSYNC) {
5893 /* HW is reporting DMA is out of sync */
5894 adapter->stats.doosync++;
5895 }
5896
5897 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5898 hw->mac.get_link_status = 1;
5899 /* guard against interrupt when we're going down */
5900 if (!test_bit(__IGB_DOWN, &adapter->state))
5901 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5902 }
5903
5904 if (icr & E1000_ICR_TS) {
5905 u32 tsicr = rd32(E1000_TSICR);
5906
5907 if (tsicr & E1000_TSICR_TXTS) {
5908 /* acknowledge the interrupt */
5909 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5910 /* retrieve hardware timestamp */
5911 schedule_work(&adapter->ptp_tx_work);
5912 }
5913 }
5914
5915 napi_schedule(&q_vector->napi);
5916
5917 return IRQ_HANDLED;
5918 }
5919
5920 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5921 {
5922 struct igb_adapter *adapter = q_vector->adapter;
5923 struct e1000_hw *hw = &adapter->hw;
5924
5925 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5926 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5927 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5928 igb_set_itr(q_vector);
5929 else
5930 igb_update_ring_itr(q_vector);
5931 }
5932
5933 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5934 if (adapter->msix_entries)
5935 wr32(E1000_EIMS, q_vector->eims_value);
5936 else
5937 igb_irq_enable(adapter);
5938 }
5939 }
5940
5941 /**
5942 * igb_poll - NAPI Rx polling callback
5943 * @napi: napi polling structure
5944 * @budget: count of how many packets we should handle
5945 **/
5946 static int igb_poll(struct napi_struct *napi, int budget)
5947 {
5948 struct igb_q_vector *q_vector = container_of(napi,
5949 struct igb_q_vector,
5950 napi);
5951 bool clean_complete = true;
5952
5953 #ifdef CONFIG_IGB_DCA
5954 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5955 igb_update_dca(q_vector);
5956 #endif
5957 if (q_vector->tx.ring)
5958 clean_complete = igb_clean_tx_irq(q_vector);
5959
5960 if (q_vector->rx.ring)
5961 clean_complete &= igb_clean_rx_irq(q_vector, budget);
5962
5963 /* If all work not completed, return budget and keep polling */
5964 if (!clean_complete)
5965 return budget;
5966
5967 /* If not enough Rx work done, exit the polling mode */
5968 napi_complete(napi);
5969 igb_ring_irq_enable(q_vector);
5970
5971 return 0;
5972 }
5973
5974 /**
5975 * igb_clean_tx_irq - Reclaim resources after transmit completes
5976 * @q_vector: pointer to q_vector containing needed info
5977 *
5978 * returns true if ring is completely cleaned
5979 **/
5980 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5981 {
5982 struct igb_adapter *adapter = q_vector->adapter;
5983 struct igb_ring *tx_ring = q_vector->tx.ring;
5984 struct igb_tx_buffer *tx_buffer;
5985 union e1000_adv_tx_desc *tx_desc;
5986 unsigned int total_bytes = 0, total_packets = 0;
5987 unsigned int budget = q_vector->tx.work_limit;
5988 unsigned int i = tx_ring->next_to_clean;
5989
5990 if (test_bit(__IGB_DOWN, &adapter->state))
5991 return true;
5992
5993 tx_buffer = &tx_ring->tx_buffer_info[i];
5994 tx_desc = IGB_TX_DESC(tx_ring, i);
5995 i -= tx_ring->count;
5996
5997 do {
5998 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5999
6000 /* if next_to_watch is not set then there is no work pending */
6001 if (!eop_desc)
6002 break;
6003
6004 /* prevent any other reads prior to eop_desc */
6005 read_barrier_depends();
6006
6007 /* if DD is not set pending work has not been completed */
6008 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6009 break;
6010
6011 /* clear next_to_watch to prevent false hangs */
6012 tx_buffer->next_to_watch = NULL;
6013
6014 /* update the statistics for this packet */
6015 total_bytes += tx_buffer->bytecount;
6016 total_packets += tx_buffer->gso_segs;
6017
6018 /* free the skb */
6019 dev_kfree_skb_any(tx_buffer->skb);
6020
6021 /* unmap skb header data */
6022 dma_unmap_single(tx_ring->dev,
6023 dma_unmap_addr(tx_buffer, dma),
6024 dma_unmap_len(tx_buffer, len),
6025 DMA_TO_DEVICE);
6026
6027 /* clear tx_buffer data */
6028 tx_buffer->skb = NULL;
6029 dma_unmap_len_set(tx_buffer, len, 0);
6030
6031 /* clear last DMA location and unmap remaining buffers */
6032 while (tx_desc != eop_desc) {
6033 tx_buffer++;
6034 tx_desc++;
6035 i++;
6036 if (unlikely(!i)) {
6037 i -= tx_ring->count;
6038 tx_buffer = tx_ring->tx_buffer_info;
6039 tx_desc = IGB_TX_DESC(tx_ring, 0);
6040 }
6041
6042 /* unmap any remaining paged data */
6043 if (dma_unmap_len(tx_buffer, len)) {
6044 dma_unmap_page(tx_ring->dev,
6045 dma_unmap_addr(tx_buffer, dma),
6046 dma_unmap_len(tx_buffer, len),
6047 DMA_TO_DEVICE);
6048 dma_unmap_len_set(tx_buffer, len, 0);
6049 }
6050 }
6051
6052 /* move us one more past the eop_desc for start of next pkt */
6053 tx_buffer++;
6054 tx_desc++;
6055 i++;
6056 if (unlikely(!i)) {
6057 i -= tx_ring->count;
6058 tx_buffer = tx_ring->tx_buffer_info;
6059 tx_desc = IGB_TX_DESC(tx_ring, 0);
6060 }
6061
6062 /* issue prefetch for next Tx descriptor */
6063 prefetch(tx_desc);
6064
6065 /* update budget accounting */
6066 budget--;
6067 } while (likely(budget));
6068
6069 netdev_tx_completed_queue(txring_txq(tx_ring),
6070 total_packets, total_bytes);
6071 i += tx_ring->count;
6072 tx_ring->next_to_clean = i;
6073 u64_stats_update_begin(&tx_ring->tx_syncp);
6074 tx_ring->tx_stats.bytes += total_bytes;
6075 tx_ring->tx_stats.packets += total_packets;
6076 u64_stats_update_end(&tx_ring->tx_syncp);
6077 q_vector->tx.total_bytes += total_bytes;
6078 q_vector->tx.total_packets += total_packets;
6079
6080 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6081 struct e1000_hw *hw = &adapter->hw;
6082
6083 /* Detect a transmit hang in hardware, this serializes the
6084 * check with the clearing of time_stamp and movement of i
6085 */
6086 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6087 if (tx_buffer->next_to_watch &&
6088 time_after(jiffies, tx_buffer->time_stamp +
6089 (adapter->tx_timeout_factor * HZ)) &&
6090 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6091
6092 /* detected Tx unit hang */
6093 dev_err(tx_ring->dev,
6094 "Detected Tx Unit Hang\n"
6095 " Tx Queue <%d>\n"
6096 " TDH <%x>\n"
6097 " TDT <%x>\n"
6098 " next_to_use <%x>\n"
6099 " next_to_clean <%x>\n"
6100 "buffer_info[next_to_clean]\n"
6101 " time_stamp <%lx>\n"
6102 " next_to_watch <%p>\n"
6103 " jiffies <%lx>\n"
6104 " desc.status <%x>\n",
6105 tx_ring->queue_index,
6106 rd32(E1000_TDH(tx_ring->reg_idx)),
6107 readl(tx_ring->tail),
6108 tx_ring->next_to_use,
6109 tx_ring->next_to_clean,
6110 tx_buffer->time_stamp,
6111 tx_buffer->next_to_watch,
6112 jiffies,
6113 tx_buffer->next_to_watch->wb.status);
6114 netif_stop_subqueue(tx_ring->netdev,
6115 tx_ring->queue_index);
6116
6117 /* we are about to reset, no point in enabling stuff */
6118 return true;
6119 }
6120 }
6121
6122 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6123 if (unlikely(total_packets &&
6124 netif_carrier_ok(tx_ring->netdev) &&
6125 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6126 /* Make sure that anybody stopping the queue after this
6127 * sees the new next_to_clean.
6128 */
6129 smp_mb();
6130 if (__netif_subqueue_stopped(tx_ring->netdev,
6131 tx_ring->queue_index) &&
6132 !(test_bit(__IGB_DOWN, &adapter->state))) {
6133 netif_wake_subqueue(tx_ring->netdev,
6134 tx_ring->queue_index);
6135
6136 u64_stats_update_begin(&tx_ring->tx_syncp);
6137 tx_ring->tx_stats.restart_queue++;
6138 u64_stats_update_end(&tx_ring->tx_syncp);
6139 }
6140 }
6141
6142 return !!budget;
6143 }
6144
6145 /**
6146 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6147 * @rx_ring: rx descriptor ring to store buffers on
6148 * @old_buff: donor buffer to have page reused
6149 *
6150 * Synchronizes page for reuse by the adapter
6151 **/
6152 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6153 struct igb_rx_buffer *old_buff)
6154 {
6155 struct igb_rx_buffer *new_buff;
6156 u16 nta = rx_ring->next_to_alloc;
6157
6158 new_buff = &rx_ring->rx_buffer_info[nta];
6159
6160 /* update, and store next to alloc */
6161 nta++;
6162 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6163
6164 /* transfer page from old buffer to new buffer */
6165 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6166
6167 /* sync the buffer for use by the device */
6168 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6169 old_buff->page_offset,
6170 IGB_RX_BUFSZ,
6171 DMA_FROM_DEVICE);
6172 }
6173
6174 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6175 struct page *page,
6176 unsigned int truesize)
6177 {
6178 /* avoid re-using remote pages */
6179 if (unlikely(page_to_nid(page) != numa_node_id()))
6180 return false;
6181
6182 #if (PAGE_SIZE < 8192)
6183 /* if we are only owner of page we can reuse it */
6184 if (unlikely(page_count(page) != 1))
6185 return false;
6186
6187 /* flip page offset to other buffer */
6188 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6189
6190 /* since we are the only owner of the page and we need to
6191 * increment it, just set the value to 2 in order to avoid
6192 * an unnecessary locked operation
6193 */
6194 atomic_set(&page->_count, 2);
6195 #else
6196 /* move offset up to the next cache line */
6197 rx_buffer->page_offset += truesize;
6198
6199 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6200 return false;
6201
6202 /* bump ref count on page before it is given to the stack */
6203 get_page(page);
6204 #endif
6205
6206 return true;
6207 }
6208
6209 /**
6210 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6211 * @rx_ring: rx descriptor ring to transact packets on
6212 * @rx_buffer: buffer containing page to add
6213 * @rx_desc: descriptor containing length of buffer written by hardware
6214 * @skb: sk_buff to place the data into
6215 *
6216 * This function will add the data contained in rx_buffer->page to the skb.
6217 * This is done either through a direct copy if the data in the buffer is
6218 * less than the skb header size, otherwise it will just attach the page as
6219 * a frag to the skb.
6220 *
6221 * The function will then update the page offset if necessary and return
6222 * true if the buffer can be reused by the adapter.
6223 **/
6224 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6225 struct igb_rx_buffer *rx_buffer,
6226 union e1000_adv_rx_desc *rx_desc,
6227 struct sk_buff *skb)
6228 {
6229 struct page *page = rx_buffer->page;
6230 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6231 #if (PAGE_SIZE < 8192)
6232 unsigned int truesize = IGB_RX_BUFSZ;
6233 #else
6234 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6235 #endif
6236
6237 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6238 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6239
6240 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6241 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6242 va += IGB_TS_HDR_LEN;
6243 size -= IGB_TS_HDR_LEN;
6244 }
6245
6246 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6247
6248 /* we can reuse buffer as-is, just make sure it is local */
6249 if (likely(page_to_nid(page) == numa_node_id()))
6250 return true;
6251
6252 /* this page cannot be reused so discard it */
6253 put_page(page);
6254 return false;
6255 }
6256
6257 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6258 rx_buffer->page_offset, size, truesize);
6259
6260 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6261 }
6262
6263 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6264 union e1000_adv_rx_desc *rx_desc,
6265 struct sk_buff *skb)
6266 {
6267 struct igb_rx_buffer *rx_buffer;
6268 struct page *page;
6269
6270 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6271
6272 page = rx_buffer->page;
6273 prefetchw(page);
6274
6275 if (likely(!skb)) {
6276 void *page_addr = page_address(page) +
6277 rx_buffer->page_offset;
6278
6279 /* prefetch first cache line of first page */
6280 prefetch(page_addr);
6281 #if L1_CACHE_BYTES < 128
6282 prefetch(page_addr + L1_CACHE_BYTES);
6283 #endif
6284
6285 /* allocate a skb to store the frags */
6286 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6287 IGB_RX_HDR_LEN);
6288 if (unlikely(!skb)) {
6289 rx_ring->rx_stats.alloc_failed++;
6290 return NULL;
6291 }
6292
6293 /* we will be copying header into skb->data in
6294 * pskb_may_pull so it is in our interest to prefetch
6295 * it now to avoid a possible cache miss
6296 */
6297 prefetchw(skb->data);
6298 }
6299
6300 /* we are reusing so sync this buffer for CPU use */
6301 dma_sync_single_range_for_cpu(rx_ring->dev,
6302 rx_buffer->dma,
6303 rx_buffer->page_offset,
6304 IGB_RX_BUFSZ,
6305 DMA_FROM_DEVICE);
6306
6307 /* pull page into skb */
6308 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6309 /* hand second half of page back to the ring */
6310 igb_reuse_rx_page(rx_ring, rx_buffer);
6311 } else {
6312 /* we are not reusing the buffer so unmap it */
6313 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6314 PAGE_SIZE, DMA_FROM_DEVICE);
6315 }
6316
6317 /* clear contents of rx_buffer */
6318 rx_buffer->page = NULL;
6319
6320 return skb;
6321 }
6322
6323 static inline void igb_rx_checksum(struct igb_ring *ring,
6324 union e1000_adv_rx_desc *rx_desc,
6325 struct sk_buff *skb)
6326 {
6327 skb_checksum_none_assert(skb);
6328
6329 /* Ignore Checksum bit is set */
6330 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6331 return;
6332
6333 /* Rx checksum disabled via ethtool */
6334 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6335 return;
6336
6337 /* TCP/UDP checksum error bit is set */
6338 if (igb_test_staterr(rx_desc,
6339 E1000_RXDEXT_STATERR_TCPE |
6340 E1000_RXDEXT_STATERR_IPE)) {
6341 /* work around errata with sctp packets where the TCPE aka
6342 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6343 * packets, (aka let the stack check the crc32c)
6344 */
6345 if (!((skb->len == 60) &&
6346 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6347 u64_stats_update_begin(&ring->rx_syncp);
6348 ring->rx_stats.csum_err++;
6349 u64_stats_update_end(&ring->rx_syncp);
6350 }
6351 /* let the stack verify checksum errors */
6352 return;
6353 }
6354 /* It must be a TCP or UDP packet with a valid checksum */
6355 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6356 E1000_RXD_STAT_UDPCS))
6357 skb->ip_summed = CHECKSUM_UNNECESSARY;
6358
6359 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6360 le32_to_cpu(rx_desc->wb.upper.status_error));
6361 }
6362
6363 static inline void igb_rx_hash(struct igb_ring *ring,
6364 union e1000_adv_rx_desc *rx_desc,
6365 struct sk_buff *skb)
6366 {
6367 if (ring->netdev->features & NETIF_F_RXHASH)
6368 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6369 }
6370
6371 /**
6372 * igb_is_non_eop - process handling of non-EOP buffers
6373 * @rx_ring: Rx ring being processed
6374 * @rx_desc: Rx descriptor for current buffer
6375 * @skb: current socket buffer containing buffer in progress
6376 *
6377 * This function updates next to clean. If the buffer is an EOP buffer
6378 * this function exits returning false, otherwise it will place the
6379 * sk_buff in the next buffer to be chained and return true indicating
6380 * that this is in fact a non-EOP buffer.
6381 **/
6382 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6383 union e1000_adv_rx_desc *rx_desc)
6384 {
6385 u32 ntc = rx_ring->next_to_clean + 1;
6386
6387 /* fetch, update, and store next to clean */
6388 ntc = (ntc < rx_ring->count) ? ntc : 0;
6389 rx_ring->next_to_clean = ntc;
6390
6391 prefetch(IGB_RX_DESC(rx_ring, ntc));
6392
6393 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6394 return false;
6395
6396 return true;
6397 }
6398
6399 /**
6400 * igb_get_headlen - determine size of header for LRO/GRO
6401 * @data: pointer to the start of the headers
6402 * @max_len: total length of section to find headers in
6403 *
6404 * This function is meant to determine the length of headers that will
6405 * be recognized by hardware for LRO, and GRO offloads. The main
6406 * motivation of doing this is to only perform one pull for IPv4 TCP
6407 * packets so that we can do basic things like calculating the gso_size
6408 * based on the average data per packet.
6409 **/
6410 static unsigned int igb_get_headlen(unsigned char *data,
6411 unsigned int max_len)
6412 {
6413 union {
6414 unsigned char *network;
6415 /* l2 headers */
6416 struct ethhdr *eth;
6417 struct vlan_hdr *vlan;
6418 /* l3 headers */
6419 struct iphdr *ipv4;
6420 struct ipv6hdr *ipv6;
6421 } hdr;
6422 __be16 protocol;
6423 u8 nexthdr = 0; /* default to not TCP */
6424 u8 hlen;
6425
6426 /* this should never happen, but better safe than sorry */
6427 if (max_len < ETH_HLEN)
6428 return max_len;
6429
6430 /* initialize network frame pointer */
6431 hdr.network = data;
6432
6433 /* set first protocol and move network header forward */
6434 protocol = hdr.eth->h_proto;
6435 hdr.network += ETH_HLEN;
6436
6437 /* handle any vlan tag if present */
6438 if (protocol == __constant_htons(ETH_P_8021Q)) {
6439 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6440 return max_len;
6441
6442 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6443 hdr.network += VLAN_HLEN;
6444 }
6445
6446 /* handle L3 protocols */
6447 if (protocol == __constant_htons(ETH_P_IP)) {
6448 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6449 return max_len;
6450
6451 /* access ihl as a u8 to avoid unaligned access on ia64 */
6452 hlen = (hdr.network[0] & 0x0F) << 2;
6453
6454 /* verify hlen meets minimum size requirements */
6455 if (hlen < sizeof(struct iphdr))
6456 return hdr.network - data;
6457
6458 /* record next protocol if header is present */
6459 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6460 nexthdr = hdr.ipv4->protocol;
6461 } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6462 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6463 return max_len;
6464
6465 /* record next protocol */
6466 nexthdr = hdr.ipv6->nexthdr;
6467 hlen = sizeof(struct ipv6hdr);
6468 } else {
6469 return hdr.network - data;
6470 }
6471
6472 /* relocate pointer to start of L4 header */
6473 hdr.network += hlen;
6474
6475 /* finally sort out TCP */
6476 if (nexthdr == IPPROTO_TCP) {
6477 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6478 return max_len;
6479
6480 /* access doff as a u8 to avoid unaligned access on ia64 */
6481 hlen = (hdr.network[12] & 0xF0) >> 2;
6482
6483 /* verify hlen meets minimum size requirements */
6484 if (hlen < sizeof(struct tcphdr))
6485 return hdr.network - data;
6486
6487 hdr.network += hlen;
6488 } else if (nexthdr == IPPROTO_UDP) {
6489 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6490 return max_len;
6491
6492 hdr.network += sizeof(struct udphdr);
6493 }
6494
6495 /* If everything has gone correctly hdr.network should be the
6496 * data section of the packet and will be the end of the header.
6497 * If not then it probably represents the end of the last recognized
6498 * header.
6499 */
6500 if ((hdr.network - data) < max_len)
6501 return hdr.network - data;
6502 else
6503 return max_len;
6504 }
6505
6506 /**
6507 * igb_pull_tail - igb specific version of skb_pull_tail
6508 * @rx_ring: rx descriptor ring packet is being transacted on
6509 * @rx_desc: pointer to the EOP Rx descriptor
6510 * @skb: pointer to current skb being adjusted
6511 *
6512 * This function is an igb specific version of __pskb_pull_tail. The
6513 * main difference between this version and the original function is that
6514 * this function can make several assumptions about the state of things
6515 * that allow for significant optimizations versus the standard function.
6516 * As a result we can do things like drop a frag and maintain an accurate
6517 * truesize for the skb.
6518 */
6519 static void igb_pull_tail(struct igb_ring *rx_ring,
6520 union e1000_adv_rx_desc *rx_desc,
6521 struct sk_buff *skb)
6522 {
6523 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6524 unsigned char *va;
6525 unsigned int pull_len;
6526
6527 /* it is valid to use page_address instead of kmap since we are
6528 * working with pages allocated out of the lomem pool per
6529 * alloc_page(GFP_ATOMIC)
6530 */
6531 va = skb_frag_address(frag);
6532
6533 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6534 /* retrieve timestamp from buffer */
6535 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6536
6537 /* update pointers to remove timestamp header */
6538 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6539 frag->page_offset += IGB_TS_HDR_LEN;
6540 skb->data_len -= IGB_TS_HDR_LEN;
6541 skb->len -= IGB_TS_HDR_LEN;
6542
6543 /* move va to start of packet data */
6544 va += IGB_TS_HDR_LEN;
6545 }
6546
6547 /* we need the header to contain the greater of either ETH_HLEN or
6548 * 60 bytes if the skb->len is less than 60 for skb_pad.
6549 */
6550 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6551
6552 /* align pull length to size of long to optimize memcpy performance */
6553 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6554
6555 /* update all of the pointers */
6556 skb_frag_size_sub(frag, pull_len);
6557 frag->page_offset += pull_len;
6558 skb->data_len -= pull_len;
6559 skb->tail += pull_len;
6560 }
6561
6562 /**
6563 * igb_cleanup_headers - Correct corrupted or empty headers
6564 * @rx_ring: rx descriptor ring packet is being transacted on
6565 * @rx_desc: pointer to the EOP Rx descriptor
6566 * @skb: pointer to current skb being fixed
6567 *
6568 * Address the case where we are pulling data in on pages only
6569 * and as such no data is present in the skb header.
6570 *
6571 * In addition if skb is not at least 60 bytes we need to pad it so that
6572 * it is large enough to qualify as a valid Ethernet frame.
6573 *
6574 * Returns true if an error was encountered and skb was freed.
6575 **/
6576 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6577 union e1000_adv_rx_desc *rx_desc,
6578 struct sk_buff *skb)
6579 {
6580 if (unlikely((igb_test_staterr(rx_desc,
6581 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6582 struct net_device *netdev = rx_ring->netdev;
6583 if (!(netdev->features & NETIF_F_RXALL)) {
6584 dev_kfree_skb_any(skb);
6585 return true;
6586 }
6587 }
6588
6589 /* place header in linear portion of buffer */
6590 if (skb_is_nonlinear(skb))
6591 igb_pull_tail(rx_ring, rx_desc, skb);
6592
6593 /* if skb_pad returns an error the skb was freed */
6594 if (unlikely(skb->len < 60)) {
6595 int pad_len = 60 - skb->len;
6596
6597 if (skb_pad(skb, pad_len))
6598 return true;
6599 __skb_put(skb, pad_len);
6600 }
6601
6602 return false;
6603 }
6604
6605 /**
6606 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6607 * @rx_ring: rx descriptor ring packet is being transacted on
6608 * @rx_desc: pointer to the EOP Rx descriptor
6609 * @skb: pointer to current skb being populated
6610 *
6611 * This function checks the ring, descriptor, and packet information in
6612 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6613 * other fields within the skb.
6614 **/
6615 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6616 union e1000_adv_rx_desc *rx_desc,
6617 struct sk_buff *skb)
6618 {
6619 struct net_device *dev = rx_ring->netdev;
6620
6621 igb_rx_hash(rx_ring, rx_desc, skb);
6622
6623 igb_rx_checksum(rx_ring, rx_desc, skb);
6624
6625 igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6626
6627 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6628 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6629 u16 vid;
6630 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6631 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6632 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6633 else
6634 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6635
6636 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6637 }
6638
6639 skb_record_rx_queue(skb, rx_ring->queue_index);
6640
6641 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6642 }
6643
6644 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6645 {
6646 struct igb_ring *rx_ring = q_vector->rx.ring;
6647 struct sk_buff *skb = rx_ring->skb;
6648 unsigned int total_bytes = 0, total_packets = 0;
6649 u16 cleaned_count = igb_desc_unused(rx_ring);
6650
6651 do {
6652 union e1000_adv_rx_desc *rx_desc;
6653
6654 /* return some buffers to hardware, one at a time is too slow */
6655 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6656 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6657 cleaned_count = 0;
6658 }
6659
6660 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6661
6662 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6663 break;
6664
6665 /* This memory barrier is needed to keep us from reading
6666 * any other fields out of the rx_desc until we know the
6667 * RXD_STAT_DD bit is set
6668 */
6669 rmb();
6670
6671 /* retrieve a buffer from the ring */
6672 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6673
6674 /* exit if we failed to retrieve a buffer */
6675 if (!skb)
6676 break;
6677
6678 cleaned_count++;
6679
6680 /* fetch next buffer in frame if non-eop */
6681 if (igb_is_non_eop(rx_ring, rx_desc))
6682 continue;
6683
6684 /* verify the packet layout is correct */
6685 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6686 skb = NULL;
6687 continue;
6688 }
6689
6690 /* probably a little skewed due to removing CRC */
6691 total_bytes += skb->len;
6692
6693 /* populate checksum, timestamp, VLAN, and protocol */
6694 igb_process_skb_fields(rx_ring, rx_desc, skb);
6695
6696 napi_gro_receive(&q_vector->napi, skb);
6697
6698 /* reset skb pointer */
6699 skb = NULL;
6700
6701 /* update budget accounting */
6702 total_packets++;
6703 } while (likely(total_packets < budget));
6704
6705 /* place incomplete frames back on ring for completion */
6706 rx_ring->skb = skb;
6707
6708 u64_stats_update_begin(&rx_ring->rx_syncp);
6709 rx_ring->rx_stats.packets += total_packets;
6710 rx_ring->rx_stats.bytes += total_bytes;
6711 u64_stats_update_end(&rx_ring->rx_syncp);
6712 q_vector->rx.total_packets += total_packets;
6713 q_vector->rx.total_bytes += total_bytes;
6714
6715 if (cleaned_count)
6716 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6717
6718 return (total_packets < budget);
6719 }
6720
6721 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6722 struct igb_rx_buffer *bi)
6723 {
6724 struct page *page = bi->page;
6725 dma_addr_t dma;
6726
6727 /* since we are recycling buffers we should seldom need to alloc */
6728 if (likely(page))
6729 return true;
6730
6731 /* alloc new page for storage */
6732 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6733 if (unlikely(!page)) {
6734 rx_ring->rx_stats.alloc_failed++;
6735 return false;
6736 }
6737
6738 /* map page for use */
6739 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6740
6741 /* if mapping failed free memory back to system since
6742 * there isn't much point in holding memory we can't use
6743 */
6744 if (dma_mapping_error(rx_ring->dev, dma)) {
6745 __free_page(page);
6746
6747 rx_ring->rx_stats.alloc_failed++;
6748 return false;
6749 }
6750
6751 bi->dma = dma;
6752 bi->page = page;
6753 bi->page_offset = 0;
6754
6755 return true;
6756 }
6757
6758 /**
6759 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6760 * @adapter: address of board private structure
6761 **/
6762 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6763 {
6764 union e1000_adv_rx_desc *rx_desc;
6765 struct igb_rx_buffer *bi;
6766 u16 i = rx_ring->next_to_use;
6767
6768 /* nothing to do */
6769 if (!cleaned_count)
6770 return;
6771
6772 rx_desc = IGB_RX_DESC(rx_ring, i);
6773 bi = &rx_ring->rx_buffer_info[i];
6774 i -= rx_ring->count;
6775
6776 do {
6777 if (!igb_alloc_mapped_page(rx_ring, bi))
6778 break;
6779
6780 /* Refresh the desc even if buffer_addrs didn't change
6781 * because each write-back erases this info.
6782 */
6783 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6784
6785 rx_desc++;
6786 bi++;
6787 i++;
6788 if (unlikely(!i)) {
6789 rx_desc = IGB_RX_DESC(rx_ring, 0);
6790 bi = rx_ring->rx_buffer_info;
6791 i -= rx_ring->count;
6792 }
6793
6794 /* clear the hdr_addr for the next_to_use descriptor */
6795 rx_desc->read.hdr_addr = 0;
6796
6797 cleaned_count--;
6798 } while (cleaned_count);
6799
6800 i += rx_ring->count;
6801
6802 if (rx_ring->next_to_use != i) {
6803 /* record the next descriptor to use */
6804 rx_ring->next_to_use = i;
6805
6806 /* update next to alloc since we have filled the ring */
6807 rx_ring->next_to_alloc = i;
6808
6809 /* Force memory writes to complete before letting h/w
6810 * know there are new descriptors to fetch. (Only
6811 * applicable for weak-ordered memory model archs,
6812 * such as IA-64).
6813 */
6814 wmb();
6815 writel(i, rx_ring->tail);
6816 }
6817 }
6818
6819 /**
6820 * igb_mii_ioctl -
6821 * @netdev:
6822 * @ifreq:
6823 * @cmd:
6824 **/
6825 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6826 {
6827 struct igb_adapter *adapter = netdev_priv(netdev);
6828 struct mii_ioctl_data *data = if_mii(ifr);
6829
6830 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6831 return -EOPNOTSUPP;
6832
6833 switch (cmd) {
6834 case SIOCGMIIPHY:
6835 data->phy_id = adapter->hw.phy.addr;
6836 break;
6837 case SIOCGMIIREG:
6838 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6839 &data->val_out))
6840 return -EIO;
6841 break;
6842 case SIOCSMIIREG:
6843 default:
6844 return -EOPNOTSUPP;
6845 }
6846 return 0;
6847 }
6848
6849 /**
6850 * igb_ioctl -
6851 * @netdev:
6852 * @ifreq:
6853 * @cmd:
6854 **/
6855 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6856 {
6857 switch (cmd) {
6858 case SIOCGMIIPHY:
6859 case SIOCGMIIREG:
6860 case SIOCSMIIREG:
6861 return igb_mii_ioctl(netdev, ifr, cmd);
6862 case SIOCSHWTSTAMP:
6863 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6864 default:
6865 return -EOPNOTSUPP;
6866 }
6867 }
6868
6869 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6870 {
6871 struct igb_adapter *adapter = hw->back;
6872
6873 if (pcie_capability_read_word(adapter->pdev, reg, value))
6874 return -E1000_ERR_CONFIG;
6875
6876 return 0;
6877 }
6878
6879 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6880 {
6881 struct igb_adapter *adapter = hw->back;
6882
6883 if (pcie_capability_write_word(adapter->pdev, reg, *value))
6884 return -E1000_ERR_CONFIG;
6885
6886 return 0;
6887 }
6888
6889 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6890 {
6891 struct igb_adapter *adapter = netdev_priv(netdev);
6892 struct e1000_hw *hw = &adapter->hw;
6893 u32 ctrl, rctl;
6894 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6895
6896 if (enable) {
6897 /* enable VLAN tag insert/strip */
6898 ctrl = rd32(E1000_CTRL);
6899 ctrl |= E1000_CTRL_VME;
6900 wr32(E1000_CTRL, ctrl);
6901
6902 /* Disable CFI check */
6903 rctl = rd32(E1000_RCTL);
6904 rctl &= ~E1000_RCTL_CFIEN;
6905 wr32(E1000_RCTL, rctl);
6906 } else {
6907 /* disable VLAN tag insert/strip */
6908 ctrl = rd32(E1000_CTRL);
6909 ctrl &= ~E1000_CTRL_VME;
6910 wr32(E1000_CTRL, ctrl);
6911 }
6912
6913 igb_rlpml_set(adapter);
6914 }
6915
6916 static int igb_vlan_rx_add_vid(struct net_device *netdev,
6917 __be16 proto, u16 vid)
6918 {
6919 struct igb_adapter *adapter = netdev_priv(netdev);
6920 struct e1000_hw *hw = &adapter->hw;
6921 int pf_id = adapter->vfs_allocated_count;
6922
6923 /* attempt to add filter to vlvf array */
6924 igb_vlvf_set(adapter, vid, true, pf_id);
6925
6926 /* add the filter since PF can receive vlans w/o entry in vlvf */
6927 igb_vfta_set(hw, vid, true);
6928
6929 set_bit(vid, adapter->active_vlans);
6930
6931 return 0;
6932 }
6933
6934 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6935 __be16 proto, u16 vid)
6936 {
6937 struct igb_adapter *adapter = netdev_priv(netdev);
6938 struct e1000_hw *hw = &adapter->hw;
6939 int pf_id = adapter->vfs_allocated_count;
6940 s32 err;
6941
6942 /* remove vlan from VLVF table array */
6943 err = igb_vlvf_set(adapter, vid, false, pf_id);
6944
6945 /* if vid was not present in VLVF just remove it from table */
6946 if (err)
6947 igb_vfta_set(hw, vid, false);
6948
6949 clear_bit(vid, adapter->active_vlans);
6950
6951 return 0;
6952 }
6953
6954 static void igb_restore_vlan(struct igb_adapter *adapter)
6955 {
6956 u16 vid;
6957
6958 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6959
6960 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6961 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
6962 }
6963
6964 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6965 {
6966 struct pci_dev *pdev = adapter->pdev;
6967 struct e1000_mac_info *mac = &adapter->hw.mac;
6968
6969 mac->autoneg = 0;
6970
6971 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6972 * for the switch() below to work
6973 */
6974 if ((spd & 1) || (dplx & ~1))
6975 goto err_inval;
6976
6977 /* Fiber NIC's only allow 1000 gbps Full duplex
6978 * and 100Mbps Full duplex for 100baseFx sfp
6979 */
6980 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
6981 switch (spd + dplx) {
6982 case SPEED_10 + DUPLEX_HALF:
6983 case SPEED_10 + DUPLEX_FULL:
6984 case SPEED_100 + DUPLEX_HALF:
6985 goto err_inval;
6986 default:
6987 break;
6988 }
6989 }
6990
6991 switch (spd + dplx) {
6992 case SPEED_10 + DUPLEX_HALF:
6993 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6994 break;
6995 case SPEED_10 + DUPLEX_FULL:
6996 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6997 break;
6998 case SPEED_100 + DUPLEX_HALF:
6999 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7000 break;
7001 case SPEED_100 + DUPLEX_FULL:
7002 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7003 break;
7004 case SPEED_1000 + DUPLEX_FULL:
7005 mac->autoneg = 1;
7006 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7007 break;
7008 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7009 default:
7010 goto err_inval;
7011 }
7012
7013 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7014 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7015
7016 return 0;
7017
7018 err_inval:
7019 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7020 return -EINVAL;
7021 }
7022
7023 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7024 bool runtime)
7025 {
7026 struct net_device *netdev = pci_get_drvdata(pdev);
7027 struct igb_adapter *adapter = netdev_priv(netdev);
7028 struct e1000_hw *hw = &adapter->hw;
7029 u32 ctrl, rctl, status;
7030 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7031 #ifdef CONFIG_PM
7032 int retval = 0;
7033 #endif
7034
7035 netif_device_detach(netdev);
7036
7037 if (netif_running(netdev))
7038 __igb_close(netdev, true);
7039
7040 igb_clear_interrupt_scheme(adapter);
7041
7042 #ifdef CONFIG_PM
7043 retval = pci_save_state(pdev);
7044 if (retval)
7045 return retval;
7046 #endif
7047
7048 status = rd32(E1000_STATUS);
7049 if (status & E1000_STATUS_LU)
7050 wufc &= ~E1000_WUFC_LNKC;
7051
7052 if (wufc) {
7053 igb_setup_rctl(adapter);
7054 igb_set_rx_mode(netdev);
7055
7056 /* turn on all-multi mode if wake on multicast is enabled */
7057 if (wufc & E1000_WUFC_MC) {
7058 rctl = rd32(E1000_RCTL);
7059 rctl |= E1000_RCTL_MPE;
7060 wr32(E1000_RCTL, rctl);
7061 }
7062
7063 ctrl = rd32(E1000_CTRL);
7064 /* advertise wake from D3Cold */
7065 #define E1000_CTRL_ADVD3WUC 0x00100000
7066 /* phy power management enable */
7067 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7068 ctrl |= E1000_CTRL_ADVD3WUC;
7069 wr32(E1000_CTRL, ctrl);
7070
7071 /* Allow time for pending master requests to run */
7072 igb_disable_pcie_master(hw);
7073
7074 wr32(E1000_WUC, E1000_WUC_PME_EN);
7075 wr32(E1000_WUFC, wufc);
7076 } else {
7077 wr32(E1000_WUC, 0);
7078 wr32(E1000_WUFC, 0);
7079 }
7080
7081 *enable_wake = wufc || adapter->en_mng_pt;
7082 if (!*enable_wake)
7083 igb_power_down_link(adapter);
7084 else
7085 igb_power_up_link(adapter);
7086
7087 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7088 * would have already happened in close and is redundant.
7089 */
7090 igb_release_hw_control(adapter);
7091
7092 pci_disable_device(pdev);
7093
7094 return 0;
7095 }
7096
7097 #ifdef CONFIG_PM
7098 #ifdef CONFIG_PM_SLEEP
7099 static int igb_suspend(struct device *dev)
7100 {
7101 int retval;
7102 bool wake;
7103 struct pci_dev *pdev = to_pci_dev(dev);
7104
7105 retval = __igb_shutdown(pdev, &wake, 0);
7106 if (retval)
7107 return retval;
7108
7109 if (wake) {
7110 pci_prepare_to_sleep(pdev);
7111 } else {
7112 pci_wake_from_d3(pdev, false);
7113 pci_set_power_state(pdev, PCI_D3hot);
7114 }
7115
7116 return 0;
7117 }
7118 #endif /* CONFIG_PM_SLEEP */
7119
7120 static int igb_resume(struct device *dev)
7121 {
7122 struct pci_dev *pdev = to_pci_dev(dev);
7123 struct net_device *netdev = pci_get_drvdata(pdev);
7124 struct igb_adapter *adapter = netdev_priv(netdev);
7125 struct e1000_hw *hw = &adapter->hw;
7126 u32 err;
7127
7128 pci_set_power_state(pdev, PCI_D0);
7129 pci_restore_state(pdev);
7130 pci_save_state(pdev);
7131
7132 err = pci_enable_device_mem(pdev);
7133 if (err) {
7134 dev_err(&pdev->dev,
7135 "igb: Cannot enable PCI device from suspend\n");
7136 return err;
7137 }
7138 pci_set_master(pdev);
7139
7140 pci_enable_wake(pdev, PCI_D3hot, 0);
7141 pci_enable_wake(pdev, PCI_D3cold, 0);
7142
7143 if (igb_init_interrupt_scheme(adapter, true)) {
7144 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7145 return -ENOMEM;
7146 }
7147
7148 igb_reset(adapter);
7149
7150 /* let the f/w know that the h/w is now under the control of the
7151 * driver.
7152 */
7153 igb_get_hw_control(adapter);
7154
7155 wr32(E1000_WUS, ~0);
7156
7157 if (netdev->flags & IFF_UP) {
7158 rtnl_lock();
7159 err = __igb_open(netdev, true);
7160 rtnl_unlock();
7161 if (err)
7162 return err;
7163 }
7164
7165 netif_device_attach(netdev);
7166 return 0;
7167 }
7168
7169 #ifdef CONFIG_PM_RUNTIME
7170 static int igb_runtime_idle(struct device *dev)
7171 {
7172 struct pci_dev *pdev = to_pci_dev(dev);
7173 struct net_device *netdev = pci_get_drvdata(pdev);
7174 struct igb_adapter *adapter = netdev_priv(netdev);
7175
7176 if (!igb_has_link(adapter))
7177 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7178
7179 return -EBUSY;
7180 }
7181
7182 static int igb_runtime_suspend(struct device *dev)
7183 {
7184 struct pci_dev *pdev = to_pci_dev(dev);
7185 int retval;
7186 bool wake;
7187
7188 retval = __igb_shutdown(pdev, &wake, 1);
7189 if (retval)
7190 return retval;
7191
7192 if (wake) {
7193 pci_prepare_to_sleep(pdev);
7194 } else {
7195 pci_wake_from_d3(pdev, false);
7196 pci_set_power_state(pdev, PCI_D3hot);
7197 }
7198
7199 return 0;
7200 }
7201
7202 static int igb_runtime_resume(struct device *dev)
7203 {
7204 return igb_resume(dev);
7205 }
7206 #endif /* CONFIG_PM_RUNTIME */
7207 #endif
7208
7209 static void igb_shutdown(struct pci_dev *pdev)
7210 {
7211 bool wake;
7212
7213 __igb_shutdown(pdev, &wake, 0);
7214
7215 if (system_state == SYSTEM_POWER_OFF) {
7216 pci_wake_from_d3(pdev, wake);
7217 pci_set_power_state(pdev, PCI_D3hot);
7218 }
7219 }
7220
7221 #ifdef CONFIG_PCI_IOV
7222 static int igb_sriov_reinit(struct pci_dev *dev)
7223 {
7224 struct net_device *netdev = pci_get_drvdata(dev);
7225 struct igb_adapter *adapter = netdev_priv(netdev);
7226 struct pci_dev *pdev = adapter->pdev;
7227
7228 rtnl_lock();
7229
7230 if (netif_running(netdev))
7231 igb_close(netdev);
7232
7233 igb_clear_interrupt_scheme(adapter);
7234
7235 igb_init_queue_configuration(adapter);
7236
7237 if (igb_init_interrupt_scheme(adapter, true)) {
7238 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7239 return -ENOMEM;
7240 }
7241
7242 if (netif_running(netdev))
7243 igb_open(netdev);
7244
7245 rtnl_unlock();
7246
7247 return 0;
7248 }
7249
7250 static int igb_pci_disable_sriov(struct pci_dev *dev)
7251 {
7252 int err = igb_disable_sriov(dev);
7253
7254 if (!err)
7255 err = igb_sriov_reinit(dev);
7256
7257 return err;
7258 }
7259
7260 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7261 {
7262 int err = igb_enable_sriov(dev, num_vfs);
7263
7264 if (err)
7265 goto out;
7266
7267 err = igb_sriov_reinit(dev);
7268 if (!err)
7269 return num_vfs;
7270
7271 out:
7272 return err;
7273 }
7274
7275 #endif
7276 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7277 {
7278 #ifdef CONFIG_PCI_IOV
7279 if (num_vfs == 0)
7280 return igb_pci_disable_sriov(dev);
7281 else
7282 return igb_pci_enable_sriov(dev, num_vfs);
7283 #endif
7284 return 0;
7285 }
7286
7287 #ifdef CONFIG_NET_POLL_CONTROLLER
7288 /* Polling 'interrupt' - used by things like netconsole to send skbs
7289 * without having to re-enable interrupts. It's not called while
7290 * the interrupt routine is executing.
7291 */
7292 static void igb_netpoll(struct net_device *netdev)
7293 {
7294 struct igb_adapter *adapter = netdev_priv(netdev);
7295 struct e1000_hw *hw = &adapter->hw;
7296 struct igb_q_vector *q_vector;
7297 int i;
7298
7299 for (i = 0; i < adapter->num_q_vectors; i++) {
7300 q_vector = adapter->q_vector[i];
7301 if (adapter->msix_entries)
7302 wr32(E1000_EIMC, q_vector->eims_value);
7303 else
7304 igb_irq_disable(adapter);
7305 napi_schedule(&q_vector->napi);
7306 }
7307 }
7308 #endif /* CONFIG_NET_POLL_CONTROLLER */
7309
7310 /**
7311 * igb_io_error_detected - called when PCI error is detected
7312 * @pdev: Pointer to PCI device
7313 * @state: The current pci connection state
7314 *
7315 * This function is called after a PCI bus error affecting
7316 * this device has been detected.
7317 **/
7318 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7319 pci_channel_state_t state)
7320 {
7321 struct net_device *netdev = pci_get_drvdata(pdev);
7322 struct igb_adapter *adapter = netdev_priv(netdev);
7323
7324 netif_device_detach(netdev);
7325
7326 if (state == pci_channel_io_perm_failure)
7327 return PCI_ERS_RESULT_DISCONNECT;
7328
7329 if (netif_running(netdev))
7330 igb_down(adapter);
7331 pci_disable_device(pdev);
7332
7333 /* Request a slot slot reset. */
7334 return PCI_ERS_RESULT_NEED_RESET;
7335 }
7336
7337 /**
7338 * igb_io_slot_reset - called after the pci bus has been reset.
7339 * @pdev: Pointer to PCI device
7340 *
7341 * Restart the card from scratch, as if from a cold-boot. Implementation
7342 * resembles the first-half of the igb_resume routine.
7343 **/
7344 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7345 {
7346 struct net_device *netdev = pci_get_drvdata(pdev);
7347 struct igb_adapter *adapter = netdev_priv(netdev);
7348 struct e1000_hw *hw = &adapter->hw;
7349 pci_ers_result_t result;
7350 int err;
7351
7352 if (pci_enable_device_mem(pdev)) {
7353 dev_err(&pdev->dev,
7354 "Cannot re-enable PCI device after reset.\n");
7355 result = PCI_ERS_RESULT_DISCONNECT;
7356 } else {
7357 pci_set_master(pdev);
7358 pci_restore_state(pdev);
7359 pci_save_state(pdev);
7360
7361 pci_enable_wake(pdev, PCI_D3hot, 0);
7362 pci_enable_wake(pdev, PCI_D3cold, 0);
7363
7364 igb_reset(adapter);
7365 wr32(E1000_WUS, ~0);
7366 result = PCI_ERS_RESULT_RECOVERED;
7367 }
7368
7369 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7370 if (err) {
7371 dev_err(&pdev->dev,
7372 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7373 err);
7374 /* non-fatal, continue */
7375 }
7376
7377 return result;
7378 }
7379
7380 /**
7381 * igb_io_resume - called when traffic can start flowing again.
7382 * @pdev: Pointer to PCI device
7383 *
7384 * This callback is called when the error recovery driver tells us that
7385 * its OK to resume normal operation. Implementation resembles the
7386 * second-half of the igb_resume routine.
7387 */
7388 static void igb_io_resume(struct pci_dev *pdev)
7389 {
7390 struct net_device *netdev = pci_get_drvdata(pdev);
7391 struct igb_adapter *adapter = netdev_priv(netdev);
7392
7393 if (netif_running(netdev)) {
7394 if (igb_up(adapter)) {
7395 dev_err(&pdev->dev, "igb_up failed after reset\n");
7396 return;
7397 }
7398 }
7399
7400 netif_device_attach(netdev);
7401
7402 /* let the f/w know that the h/w is now under the control of the
7403 * driver.
7404 */
7405 igb_get_hw_control(adapter);
7406 }
7407
7408 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7409 u8 qsel)
7410 {
7411 u32 rar_low, rar_high;
7412 struct e1000_hw *hw = &adapter->hw;
7413
7414 /* HW expects these in little endian so we reverse the byte order
7415 * from network order (big endian) to little endian
7416 */
7417 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7418 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7419 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7420
7421 /* Indicate to hardware the Address is Valid. */
7422 rar_high |= E1000_RAH_AV;
7423
7424 if (hw->mac.type == e1000_82575)
7425 rar_high |= E1000_RAH_POOL_1 * qsel;
7426 else
7427 rar_high |= E1000_RAH_POOL_1 << qsel;
7428
7429 wr32(E1000_RAL(index), rar_low);
7430 wrfl();
7431 wr32(E1000_RAH(index), rar_high);
7432 wrfl();
7433 }
7434
7435 static int igb_set_vf_mac(struct igb_adapter *adapter,
7436 int vf, unsigned char *mac_addr)
7437 {
7438 struct e1000_hw *hw = &adapter->hw;
7439 /* VF MAC addresses start at end of receive addresses and moves
7440 * towards the first, as a result a collision should not be possible
7441 */
7442 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7443
7444 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7445
7446 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7447
7448 return 0;
7449 }
7450
7451 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7452 {
7453 struct igb_adapter *adapter = netdev_priv(netdev);
7454 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7455 return -EINVAL;
7456 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7457 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7458 dev_info(&adapter->pdev->dev,
7459 "Reload the VF driver to make this change effective.");
7460 if (test_bit(__IGB_DOWN, &adapter->state)) {
7461 dev_warn(&adapter->pdev->dev,
7462 "The VF MAC address has been set, but the PF device is not up.\n");
7463 dev_warn(&adapter->pdev->dev,
7464 "Bring the PF device up before attempting to use the VF device.\n");
7465 }
7466 return igb_set_vf_mac(adapter, vf, mac);
7467 }
7468
7469 static int igb_link_mbps(int internal_link_speed)
7470 {
7471 switch (internal_link_speed) {
7472 case SPEED_100:
7473 return 100;
7474 case SPEED_1000:
7475 return 1000;
7476 default:
7477 return 0;
7478 }
7479 }
7480
7481 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7482 int link_speed)
7483 {
7484 int rf_dec, rf_int;
7485 u32 bcnrc_val;
7486
7487 if (tx_rate != 0) {
7488 /* Calculate the rate factor values to set */
7489 rf_int = link_speed / tx_rate;
7490 rf_dec = (link_speed - (rf_int * tx_rate));
7491 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7492 tx_rate;
7493
7494 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7495 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7496 E1000_RTTBCNRC_RF_INT_MASK);
7497 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7498 } else {
7499 bcnrc_val = 0;
7500 }
7501
7502 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7503 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7504 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7505 */
7506 wr32(E1000_RTTBCNRM, 0x14);
7507 wr32(E1000_RTTBCNRC, bcnrc_val);
7508 }
7509
7510 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7511 {
7512 int actual_link_speed, i;
7513 bool reset_rate = false;
7514
7515 /* VF TX rate limit was not set or not supported */
7516 if ((adapter->vf_rate_link_speed == 0) ||
7517 (adapter->hw.mac.type != e1000_82576))
7518 return;
7519
7520 actual_link_speed = igb_link_mbps(adapter->link_speed);
7521 if (actual_link_speed != adapter->vf_rate_link_speed) {
7522 reset_rate = true;
7523 adapter->vf_rate_link_speed = 0;
7524 dev_info(&adapter->pdev->dev,
7525 "Link speed has been changed. VF Transmit rate is disabled\n");
7526 }
7527
7528 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7529 if (reset_rate)
7530 adapter->vf_data[i].tx_rate = 0;
7531
7532 igb_set_vf_rate_limit(&adapter->hw, i,
7533 adapter->vf_data[i].tx_rate,
7534 actual_link_speed);
7535 }
7536 }
7537
7538 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7539 {
7540 struct igb_adapter *adapter = netdev_priv(netdev);
7541 struct e1000_hw *hw = &adapter->hw;
7542 int actual_link_speed;
7543
7544 if (hw->mac.type != e1000_82576)
7545 return -EOPNOTSUPP;
7546
7547 actual_link_speed = igb_link_mbps(adapter->link_speed);
7548 if ((vf >= adapter->vfs_allocated_count) ||
7549 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7550 (tx_rate < 0) || (tx_rate > actual_link_speed))
7551 return -EINVAL;
7552
7553 adapter->vf_rate_link_speed = actual_link_speed;
7554 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7555 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7556
7557 return 0;
7558 }
7559
7560 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7561 bool setting)
7562 {
7563 struct igb_adapter *adapter = netdev_priv(netdev);
7564 struct e1000_hw *hw = &adapter->hw;
7565 u32 reg_val, reg_offset;
7566
7567 if (!adapter->vfs_allocated_count)
7568 return -EOPNOTSUPP;
7569
7570 if (vf >= adapter->vfs_allocated_count)
7571 return -EINVAL;
7572
7573 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7574 reg_val = rd32(reg_offset);
7575 if (setting)
7576 reg_val |= ((1 << vf) |
7577 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7578 else
7579 reg_val &= ~((1 << vf) |
7580 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7581 wr32(reg_offset, reg_val);
7582
7583 adapter->vf_data[vf].spoofchk_enabled = setting;
7584 return E1000_SUCCESS;
7585 }
7586
7587 static int igb_ndo_get_vf_config(struct net_device *netdev,
7588 int vf, struct ifla_vf_info *ivi)
7589 {
7590 struct igb_adapter *adapter = netdev_priv(netdev);
7591 if (vf >= adapter->vfs_allocated_count)
7592 return -EINVAL;
7593 ivi->vf = vf;
7594 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7595 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7596 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7597 ivi->qos = adapter->vf_data[vf].pf_qos;
7598 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7599 return 0;
7600 }
7601
7602 static void igb_vmm_control(struct igb_adapter *adapter)
7603 {
7604 struct e1000_hw *hw = &adapter->hw;
7605 u32 reg;
7606
7607 switch (hw->mac.type) {
7608 case e1000_82575:
7609 case e1000_i210:
7610 case e1000_i211:
7611 case e1000_i354:
7612 default:
7613 /* replication is not supported for 82575 */
7614 return;
7615 case e1000_82576:
7616 /* notify HW that the MAC is adding vlan tags */
7617 reg = rd32(E1000_DTXCTL);
7618 reg |= E1000_DTXCTL_VLAN_ADDED;
7619 wr32(E1000_DTXCTL, reg);
7620 case e1000_82580:
7621 /* enable replication vlan tag stripping */
7622 reg = rd32(E1000_RPLOLR);
7623 reg |= E1000_RPLOLR_STRVLAN;
7624 wr32(E1000_RPLOLR, reg);
7625 case e1000_i350:
7626 /* none of the above registers are supported by i350 */
7627 break;
7628 }
7629
7630 if (adapter->vfs_allocated_count) {
7631 igb_vmdq_set_loopback_pf(hw, true);
7632 igb_vmdq_set_replication_pf(hw, true);
7633 igb_vmdq_set_anti_spoofing_pf(hw, true,
7634 adapter->vfs_allocated_count);
7635 } else {
7636 igb_vmdq_set_loopback_pf(hw, false);
7637 igb_vmdq_set_replication_pf(hw, false);
7638 }
7639 }
7640
7641 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7642 {
7643 struct e1000_hw *hw = &adapter->hw;
7644 u32 dmac_thr;
7645 u16 hwm;
7646
7647 if (hw->mac.type > e1000_82580) {
7648 if (adapter->flags & IGB_FLAG_DMAC) {
7649 u32 reg;
7650
7651 /* force threshold to 0. */
7652 wr32(E1000_DMCTXTH, 0);
7653
7654 /* DMA Coalescing high water mark needs to be greater
7655 * than the Rx threshold. Set hwm to PBA - max frame
7656 * size in 16B units, capping it at PBA - 6KB.
7657 */
7658 hwm = 64 * pba - adapter->max_frame_size / 16;
7659 if (hwm < 64 * (pba - 6))
7660 hwm = 64 * (pba - 6);
7661 reg = rd32(E1000_FCRTC);
7662 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7663 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7664 & E1000_FCRTC_RTH_COAL_MASK);
7665 wr32(E1000_FCRTC, reg);
7666
7667 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7668 * frame size, capping it at PBA - 10KB.
7669 */
7670 dmac_thr = pba - adapter->max_frame_size / 512;
7671 if (dmac_thr < pba - 10)
7672 dmac_thr = pba - 10;
7673 reg = rd32(E1000_DMACR);
7674 reg &= ~E1000_DMACR_DMACTHR_MASK;
7675 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7676 & E1000_DMACR_DMACTHR_MASK);
7677
7678 /* transition to L0x or L1 if available..*/
7679 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7680
7681 /* watchdog timer= +-1000 usec in 32usec intervals */
7682 reg |= (1000 >> 5);
7683
7684 /* Disable BMC-to-OS Watchdog Enable */
7685 if (hw->mac.type != e1000_i354)
7686 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7687
7688 wr32(E1000_DMACR, reg);
7689
7690 /* no lower threshold to disable
7691 * coalescing(smart fifb)-UTRESH=0
7692 */
7693 wr32(E1000_DMCRTRH, 0);
7694
7695 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7696
7697 wr32(E1000_DMCTLX, reg);
7698
7699 /* free space in tx packet buffer to wake from
7700 * DMA coal
7701 */
7702 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7703 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7704
7705 /* make low power state decision controlled
7706 * by DMA coal
7707 */
7708 reg = rd32(E1000_PCIEMISC);
7709 reg &= ~E1000_PCIEMISC_LX_DECISION;
7710 wr32(E1000_PCIEMISC, reg);
7711 } /* endif adapter->dmac is not disabled */
7712 } else if (hw->mac.type == e1000_82580) {
7713 u32 reg = rd32(E1000_PCIEMISC);
7714 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7715 wr32(E1000_DMACR, 0);
7716 }
7717 }
7718
7719 /**
7720 * igb_read_i2c_byte - Reads 8 bit word over I2C
7721 * @hw: pointer to hardware structure
7722 * @byte_offset: byte offset to read
7723 * @dev_addr: device address
7724 * @data: value read
7725 *
7726 * Performs byte read operation over I2C interface at
7727 * a specified device address.
7728 **/
7729 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7730 u8 dev_addr, u8 *data)
7731 {
7732 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7733 struct i2c_client *this_client = adapter->i2c_client;
7734 s32 status;
7735 u16 swfw_mask = 0;
7736
7737 if (!this_client)
7738 return E1000_ERR_I2C;
7739
7740 swfw_mask = E1000_SWFW_PHY0_SM;
7741
7742 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7743 != E1000_SUCCESS)
7744 return E1000_ERR_SWFW_SYNC;
7745
7746 status = i2c_smbus_read_byte_data(this_client, byte_offset);
7747 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7748
7749 if (status < 0)
7750 return E1000_ERR_I2C;
7751 else {
7752 *data = status;
7753 return E1000_SUCCESS;
7754 }
7755 }
7756
7757 /**
7758 * igb_write_i2c_byte - Writes 8 bit word over I2C
7759 * @hw: pointer to hardware structure
7760 * @byte_offset: byte offset to write
7761 * @dev_addr: device address
7762 * @data: value to write
7763 *
7764 * Performs byte write operation over I2C interface at
7765 * a specified device address.
7766 **/
7767 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7768 u8 dev_addr, u8 data)
7769 {
7770 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7771 struct i2c_client *this_client = adapter->i2c_client;
7772 s32 status;
7773 u16 swfw_mask = E1000_SWFW_PHY0_SM;
7774
7775 if (!this_client)
7776 return E1000_ERR_I2C;
7777
7778 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7779 return E1000_ERR_SWFW_SYNC;
7780 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7781 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7782
7783 if (status)
7784 return E1000_ERR_I2C;
7785 else
7786 return E1000_SUCCESS;
7787
7788 }
7789 /* igb_main.c */
This page took 0.676765 seconds and 5 git commands to generate.