Merge branch 'for-3.11-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62
63 #define MAJ 5
64 #define MIN 0
65 #define BUILD 3
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71 "Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73 "Copyright (c) 2007-2013 Intel Corporation.";
74
75 static const struct e1000_info *igb_info_tbl[] = {
76 [board_82575] = &e1000_82575_info,
77 };
78
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
113 /* required last entry */
114 {0, }
115 };
116
117 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
118
119 void igb_reset(struct igb_adapter *);
120 static int igb_setup_all_tx_resources(struct igb_adapter *);
121 static int igb_setup_all_rx_resources(struct igb_adapter *);
122 static void igb_free_all_tx_resources(struct igb_adapter *);
123 static void igb_free_all_rx_resources(struct igb_adapter *);
124 static void igb_setup_mrqc(struct igb_adapter *);
125 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
126 static void igb_remove(struct pci_dev *pdev);
127 static int igb_sw_init(struct igb_adapter *);
128 static int igb_open(struct net_device *);
129 static int igb_close(struct net_device *);
130 static void igb_configure(struct igb_adapter *);
131 static void igb_configure_tx(struct igb_adapter *);
132 static void igb_configure_rx(struct igb_adapter *);
133 static void igb_clean_all_tx_rings(struct igb_adapter *);
134 static void igb_clean_all_rx_rings(struct igb_adapter *);
135 static void igb_clean_tx_ring(struct igb_ring *);
136 static void igb_clean_rx_ring(struct igb_ring *);
137 static void igb_set_rx_mode(struct net_device *);
138 static void igb_update_phy_info(unsigned long);
139 static void igb_watchdog(unsigned long);
140 static void igb_watchdog_task(struct work_struct *);
141 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
142 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
143 struct rtnl_link_stats64 *stats);
144 static int igb_change_mtu(struct net_device *, int);
145 static int igb_set_mac(struct net_device *, void *);
146 static void igb_set_uta(struct igb_adapter *adapter);
147 static irqreturn_t igb_intr(int irq, void *);
148 static irqreturn_t igb_intr_msi(int irq, void *);
149 static irqreturn_t igb_msix_other(int irq, void *);
150 static irqreturn_t igb_msix_ring(int irq, void *);
151 #ifdef CONFIG_IGB_DCA
152 static void igb_update_dca(struct igb_q_vector *);
153 static void igb_setup_dca(struct igb_adapter *);
154 #endif /* CONFIG_IGB_DCA */
155 static int igb_poll(struct napi_struct *, int);
156 static bool igb_clean_tx_irq(struct igb_q_vector *);
157 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
158 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
159 static void igb_tx_timeout(struct net_device *);
160 static void igb_reset_task(struct work_struct *);
161 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
162 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
163 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
164 static void igb_restore_vlan(struct igb_adapter *);
165 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
166 static void igb_ping_all_vfs(struct igb_adapter *);
167 static void igb_msg_task(struct igb_adapter *);
168 static void igb_vmm_control(struct igb_adapter *);
169 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
170 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
171 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
172 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
173 int vf, u16 vlan, u8 qos);
174 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
175 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
176 bool setting);
177 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
178 struct ifla_vf_info *ivi);
179 static void igb_check_vf_rate_limit(struct igb_adapter *);
180
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 #endif
184
185 #ifdef CONFIG_PM
186 #ifdef CONFIG_PM_SLEEP
187 static int igb_suspend(struct device *);
188 #endif
189 static int igb_resume(struct device *);
190 #ifdef CONFIG_PM_RUNTIME
191 static int igb_runtime_suspend(struct device *dev);
192 static int igb_runtime_resume(struct device *dev);
193 static int igb_runtime_idle(struct device *dev);
194 #endif
195 static const struct dev_pm_ops igb_pm_ops = {
196 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198 igb_runtime_idle)
199 };
200 #endif
201 static void igb_shutdown(struct pci_dev *);
202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203 #ifdef CONFIG_IGB_DCA
204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205 static struct notifier_block dca_notifier = {
206 .notifier_call = igb_notify_dca,
207 .next = NULL,
208 .priority = 0
209 };
210 #endif
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void igb_netpoll(struct net_device *);
214 #endif
215 #ifdef CONFIG_PCI_IOV
216 static unsigned int max_vfs = 0;
217 module_param(max_vfs, uint, 0);
218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
219 "per physical function");
220 #endif /* CONFIG_PCI_IOV */
221
222 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
223 pci_channel_state_t);
224 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
225 static void igb_io_resume(struct pci_dev *);
226
227 static const struct pci_error_handlers igb_err_handler = {
228 .error_detected = igb_io_error_detected,
229 .slot_reset = igb_io_slot_reset,
230 .resume = igb_io_resume,
231 };
232
233 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
234
235 static struct pci_driver igb_driver = {
236 .name = igb_driver_name,
237 .id_table = igb_pci_tbl,
238 .probe = igb_probe,
239 .remove = igb_remove,
240 #ifdef CONFIG_PM
241 .driver.pm = &igb_pm_ops,
242 #endif
243 .shutdown = igb_shutdown,
244 .sriov_configure = igb_pci_sriov_configure,
245 .err_handler = &igb_err_handler
246 };
247
248 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
249 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
250 MODULE_LICENSE("GPL");
251 MODULE_VERSION(DRV_VERSION);
252
253 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
254 static int debug = -1;
255 module_param(debug, int, 0);
256 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
257
258 struct igb_reg_info {
259 u32 ofs;
260 char *name;
261 };
262
263 static const struct igb_reg_info igb_reg_info_tbl[] = {
264
265 /* General Registers */
266 {E1000_CTRL, "CTRL"},
267 {E1000_STATUS, "STATUS"},
268 {E1000_CTRL_EXT, "CTRL_EXT"},
269
270 /* Interrupt Registers */
271 {E1000_ICR, "ICR"},
272
273 /* RX Registers */
274 {E1000_RCTL, "RCTL"},
275 {E1000_RDLEN(0), "RDLEN"},
276 {E1000_RDH(0), "RDH"},
277 {E1000_RDT(0), "RDT"},
278 {E1000_RXDCTL(0), "RXDCTL"},
279 {E1000_RDBAL(0), "RDBAL"},
280 {E1000_RDBAH(0), "RDBAH"},
281
282 /* TX Registers */
283 {E1000_TCTL, "TCTL"},
284 {E1000_TDBAL(0), "TDBAL"},
285 {E1000_TDBAH(0), "TDBAH"},
286 {E1000_TDLEN(0), "TDLEN"},
287 {E1000_TDH(0), "TDH"},
288 {E1000_TDT(0), "TDT"},
289 {E1000_TXDCTL(0), "TXDCTL"},
290 {E1000_TDFH, "TDFH"},
291 {E1000_TDFT, "TDFT"},
292 {E1000_TDFHS, "TDFHS"},
293 {E1000_TDFPC, "TDFPC"},
294
295 /* List Terminator */
296 {}
297 };
298
299 /* igb_regdump - register printout routine */
300 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
301 {
302 int n = 0;
303 char rname[16];
304 u32 regs[8];
305
306 switch (reginfo->ofs) {
307 case E1000_RDLEN(0):
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_RDLEN(n));
310 break;
311 case E1000_RDH(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_RDH(n));
314 break;
315 case E1000_RDT(0):
316 for (n = 0; n < 4; n++)
317 regs[n] = rd32(E1000_RDT(n));
318 break;
319 case E1000_RXDCTL(0):
320 for (n = 0; n < 4; n++)
321 regs[n] = rd32(E1000_RXDCTL(n));
322 break;
323 case E1000_RDBAL(0):
324 for (n = 0; n < 4; n++)
325 regs[n] = rd32(E1000_RDBAL(n));
326 break;
327 case E1000_RDBAH(0):
328 for (n = 0; n < 4; n++)
329 regs[n] = rd32(E1000_RDBAH(n));
330 break;
331 case E1000_TDBAL(0):
332 for (n = 0; n < 4; n++)
333 regs[n] = rd32(E1000_RDBAL(n));
334 break;
335 case E1000_TDBAH(0):
336 for (n = 0; n < 4; n++)
337 regs[n] = rd32(E1000_TDBAH(n));
338 break;
339 case E1000_TDLEN(0):
340 for (n = 0; n < 4; n++)
341 regs[n] = rd32(E1000_TDLEN(n));
342 break;
343 case E1000_TDH(0):
344 for (n = 0; n < 4; n++)
345 regs[n] = rd32(E1000_TDH(n));
346 break;
347 case E1000_TDT(0):
348 for (n = 0; n < 4; n++)
349 regs[n] = rd32(E1000_TDT(n));
350 break;
351 case E1000_TXDCTL(0):
352 for (n = 0; n < 4; n++)
353 regs[n] = rd32(E1000_TXDCTL(n));
354 break;
355 default:
356 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
357 return;
358 }
359
360 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
361 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
362 regs[2], regs[3]);
363 }
364
365 /* igb_dump - Print registers, Tx-rings and Rx-rings */
366 static void igb_dump(struct igb_adapter *adapter)
367 {
368 struct net_device *netdev = adapter->netdev;
369 struct e1000_hw *hw = &adapter->hw;
370 struct igb_reg_info *reginfo;
371 struct igb_ring *tx_ring;
372 union e1000_adv_tx_desc *tx_desc;
373 struct my_u0 { u64 a; u64 b; } *u0;
374 struct igb_ring *rx_ring;
375 union e1000_adv_rx_desc *rx_desc;
376 u32 staterr;
377 u16 i, n;
378
379 if (!netif_msg_hw(adapter))
380 return;
381
382 /* Print netdevice Info */
383 if (netdev) {
384 dev_info(&adapter->pdev->dev, "Net device Info\n");
385 pr_info("Device Name state trans_start "
386 "last_rx\n");
387 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388 netdev->state, netdev->trans_start, netdev->last_rx);
389 }
390
391 /* Print Registers */
392 dev_info(&adapter->pdev->dev, "Register Dump\n");
393 pr_info(" Register Name Value\n");
394 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 reginfo->name; reginfo++) {
396 igb_regdump(hw, reginfo);
397 }
398
399 /* Print TX Ring Summary */
400 if (!netdev || !netif_running(netdev))
401 goto exit;
402
403 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
405 for (n = 0; n < adapter->num_tx_queues; n++) {
406 struct igb_tx_buffer *buffer_info;
407 tx_ring = adapter->tx_ring[n];
408 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 (u64)dma_unmap_addr(buffer_info, dma),
412 dma_unmap_len(buffer_info, len),
413 buffer_info->next_to_watch,
414 (u64)buffer_info->time_stamp);
415 }
416
417 /* Print TX Rings */
418 if (!netif_msg_tx_done(adapter))
419 goto rx_ring_summary;
420
421 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423 /* Transmit Descriptor Formats
424 *
425 * Advanced Transmit Descriptor
426 * +--------------------------------------------------------------+
427 * 0 | Buffer Address [63:0] |
428 * +--------------------------------------------------------------+
429 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
430 * +--------------------------------------------------------------+
431 * 63 46 45 40 39 38 36 35 32 31 24 15 0
432 */
433
434 for (n = 0; n < adapter->num_tx_queues; n++) {
435 tx_ring = adapter->tx_ring[n];
436 pr_info("------------------------------------\n");
437 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 pr_info("------------------------------------\n");
439 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
440 "[bi->dma ] leng ntw timestamp "
441 "bi->skb\n");
442
443 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
444 const char *next_desc;
445 struct igb_tx_buffer *buffer_info;
446 tx_desc = IGB_TX_DESC(tx_ring, i);
447 buffer_info = &tx_ring->tx_buffer_info[i];
448 u0 = (struct my_u0 *)tx_desc;
449 if (i == tx_ring->next_to_use &&
450 i == tx_ring->next_to_clean)
451 next_desc = " NTC/U";
452 else if (i == tx_ring->next_to_use)
453 next_desc = " NTU";
454 else if (i == tx_ring->next_to_clean)
455 next_desc = " NTC";
456 else
457 next_desc = "";
458
459 pr_info("T [0x%03X] %016llX %016llX %016llX"
460 " %04X %p %016llX %p%s\n", i,
461 le64_to_cpu(u0->a),
462 le64_to_cpu(u0->b),
463 (u64)dma_unmap_addr(buffer_info, dma),
464 dma_unmap_len(buffer_info, len),
465 buffer_info->next_to_watch,
466 (u64)buffer_info->time_stamp,
467 buffer_info->skb, next_desc);
468
469 if (netif_msg_pktdata(adapter) && buffer_info->skb)
470 print_hex_dump(KERN_INFO, "",
471 DUMP_PREFIX_ADDRESS,
472 16, 1, buffer_info->skb->data,
473 dma_unmap_len(buffer_info, len),
474 true);
475 }
476 }
477
478 /* Print RX Rings Summary */
479 rx_ring_summary:
480 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
481 pr_info("Queue [NTU] [NTC]\n");
482 for (n = 0; n < adapter->num_rx_queues; n++) {
483 rx_ring = adapter->rx_ring[n];
484 pr_info(" %5d %5X %5X\n",
485 n, rx_ring->next_to_use, rx_ring->next_to_clean);
486 }
487
488 /* Print RX Rings */
489 if (!netif_msg_rx_status(adapter))
490 goto exit;
491
492 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493
494 /* Advanced Receive Descriptor (Read) Format
495 * 63 1 0
496 * +-----------------------------------------------------+
497 * 0 | Packet Buffer Address [63:1] |A0/NSE|
498 * +----------------------------------------------+------+
499 * 8 | Header Buffer Address [63:1] | DD |
500 * +-----------------------------------------------------+
501 *
502 *
503 * Advanced Receive Descriptor (Write-Back) Format
504 *
505 * 63 48 47 32 31 30 21 20 17 16 4 3 0
506 * +------------------------------------------------------+
507 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
508 * | Checksum Ident | | | | Type | Type |
509 * +------------------------------------------------------+
510 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511 * +------------------------------------------------------+
512 * 63 48 47 32 31 20 19 0
513 */
514
515 for (n = 0; n < adapter->num_rx_queues; n++) {
516 rx_ring = adapter->rx_ring[n];
517 pr_info("------------------------------------\n");
518 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519 pr_info("------------------------------------\n");
520 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
521 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
522 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524
525 for (i = 0; i < rx_ring->count; i++) {
526 const char *next_desc;
527 struct igb_rx_buffer *buffer_info;
528 buffer_info = &rx_ring->rx_buffer_info[i];
529 rx_desc = IGB_RX_DESC(rx_ring, i);
530 u0 = (struct my_u0 *)rx_desc;
531 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
532
533 if (i == rx_ring->next_to_use)
534 next_desc = " NTU";
535 else if (i == rx_ring->next_to_clean)
536 next_desc = " NTC";
537 else
538 next_desc = "";
539
540 if (staterr & E1000_RXD_STAT_DD) {
541 /* Descriptor Done */
542 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
543 "RWB", i,
544 le64_to_cpu(u0->a),
545 le64_to_cpu(u0->b),
546 next_desc);
547 } else {
548 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
549 "R ", i,
550 le64_to_cpu(u0->a),
551 le64_to_cpu(u0->b),
552 (u64)buffer_info->dma,
553 next_desc);
554
555 if (netif_msg_pktdata(adapter) &&
556 buffer_info->dma && buffer_info->page) {
557 print_hex_dump(KERN_INFO, "",
558 DUMP_PREFIX_ADDRESS,
559 16, 1,
560 page_address(buffer_info->page) +
561 buffer_info->page_offset,
562 IGB_RX_BUFSZ, true);
563 }
564 }
565 }
566 }
567
568 exit:
569 return;
570 }
571
572 /**
573 * igb_get_i2c_data - Reads the I2C SDA data bit
574 * @hw: pointer to hardware structure
575 * @i2cctl: Current value of I2CCTL register
576 *
577 * Returns the I2C data bit value
578 **/
579 static int igb_get_i2c_data(void *data)
580 {
581 struct igb_adapter *adapter = (struct igb_adapter *)data;
582 struct e1000_hw *hw = &adapter->hw;
583 s32 i2cctl = rd32(E1000_I2CPARAMS);
584
585 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
586 }
587
588 /**
589 * igb_set_i2c_data - Sets the I2C data bit
590 * @data: pointer to hardware structure
591 * @state: I2C data value (0 or 1) to set
592 *
593 * Sets the I2C data bit
594 **/
595 static void igb_set_i2c_data(void *data, int state)
596 {
597 struct igb_adapter *adapter = (struct igb_adapter *)data;
598 struct e1000_hw *hw = &adapter->hw;
599 s32 i2cctl = rd32(E1000_I2CPARAMS);
600
601 if (state)
602 i2cctl |= E1000_I2C_DATA_OUT;
603 else
604 i2cctl &= ~E1000_I2C_DATA_OUT;
605
606 i2cctl &= ~E1000_I2C_DATA_OE_N;
607 i2cctl |= E1000_I2C_CLK_OE_N;
608 wr32(E1000_I2CPARAMS, i2cctl);
609 wrfl();
610
611 }
612
613 /**
614 * igb_set_i2c_clk - Sets the I2C SCL clock
615 * @data: pointer to hardware structure
616 * @state: state to set clock
617 *
618 * Sets the I2C clock line to state
619 **/
620 static void igb_set_i2c_clk(void *data, int state)
621 {
622 struct igb_adapter *adapter = (struct igb_adapter *)data;
623 struct e1000_hw *hw = &adapter->hw;
624 s32 i2cctl = rd32(E1000_I2CPARAMS);
625
626 if (state) {
627 i2cctl |= E1000_I2C_CLK_OUT;
628 i2cctl &= ~E1000_I2C_CLK_OE_N;
629 } else {
630 i2cctl &= ~E1000_I2C_CLK_OUT;
631 i2cctl &= ~E1000_I2C_CLK_OE_N;
632 }
633 wr32(E1000_I2CPARAMS, i2cctl);
634 wrfl();
635 }
636
637 /**
638 * igb_get_i2c_clk - Gets the I2C SCL clock state
639 * @data: pointer to hardware structure
640 *
641 * Gets the I2C clock state
642 **/
643 static int igb_get_i2c_clk(void *data)
644 {
645 struct igb_adapter *adapter = (struct igb_adapter *)data;
646 struct e1000_hw *hw = &adapter->hw;
647 s32 i2cctl = rd32(E1000_I2CPARAMS);
648
649 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
650 }
651
652 static const struct i2c_algo_bit_data igb_i2c_algo = {
653 .setsda = igb_set_i2c_data,
654 .setscl = igb_set_i2c_clk,
655 .getsda = igb_get_i2c_data,
656 .getscl = igb_get_i2c_clk,
657 .udelay = 5,
658 .timeout = 20,
659 };
660
661 /**
662 * igb_get_hw_dev - return device
663 * @hw: pointer to hardware structure
664 *
665 * used by hardware layer to print debugging information
666 **/
667 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
668 {
669 struct igb_adapter *adapter = hw->back;
670 return adapter->netdev;
671 }
672
673 /**
674 * igb_init_module - Driver Registration Routine
675 *
676 * igb_init_module is the first routine called when the driver is
677 * loaded. All it does is register with the PCI subsystem.
678 **/
679 static int __init igb_init_module(void)
680 {
681 int ret;
682 pr_info("%s - version %s\n",
683 igb_driver_string, igb_driver_version);
684
685 pr_info("%s\n", igb_copyright);
686
687 #ifdef CONFIG_IGB_DCA
688 dca_register_notify(&dca_notifier);
689 #endif
690 ret = pci_register_driver(&igb_driver);
691 return ret;
692 }
693
694 module_init(igb_init_module);
695
696 /**
697 * igb_exit_module - Driver Exit Cleanup Routine
698 *
699 * igb_exit_module is called just before the driver is removed
700 * from memory.
701 **/
702 static void __exit igb_exit_module(void)
703 {
704 #ifdef CONFIG_IGB_DCA
705 dca_unregister_notify(&dca_notifier);
706 #endif
707 pci_unregister_driver(&igb_driver);
708 }
709
710 module_exit(igb_exit_module);
711
712 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
713 /**
714 * igb_cache_ring_register - Descriptor ring to register mapping
715 * @adapter: board private structure to initialize
716 *
717 * Once we know the feature-set enabled for the device, we'll cache
718 * the register offset the descriptor ring is assigned to.
719 **/
720 static void igb_cache_ring_register(struct igb_adapter *adapter)
721 {
722 int i = 0, j = 0;
723 u32 rbase_offset = adapter->vfs_allocated_count;
724
725 switch (adapter->hw.mac.type) {
726 case e1000_82576:
727 /* The queues are allocated for virtualization such that VF 0
728 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
729 * In order to avoid collision we start at the first free queue
730 * and continue consuming queues in the same sequence
731 */
732 if (adapter->vfs_allocated_count) {
733 for (; i < adapter->rss_queues; i++)
734 adapter->rx_ring[i]->reg_idx = rbase_offset +
735 Q_IDX_82576(i);
736 }
737 case e1000_82575:
738 case e1000_82580:
739 case e1000_i350:
740 case e1000_i354:
741 case e1000_i210:
742 case e1000_i211:
743 default:
744 for (; i < adapter->num_rx_queues; i++)
745 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
746 for (; j < adapter->num_tx_queues; j++)
747 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
748 break;
749 }
750 }
751
752 /**
753 * igb_write_ivar - configure ivar for given MSI-X vector
754 * @hw: pointer to the HW structure
755 * @msix_vector: vector number we are allocating to a given ring
756 * @index: row index of IVAR register to write within IVAR table
757 * @offset: column offset of in IVAR, should be multiple of 8
758 *
759 * This function is intended to handle the writing of the IVAR register
760 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
761 * each containing an cause allocation for an Rx and Tx ring, and a
762 * variable number of rows depending on the number of queues supported.
763 **/
764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 int index, int offset)
766 {
767 u32 ivar = array_rd32(E1000_IVAR0, index);
768
769 /* clear any bits that are currently set */
770 ivar &= ~((u32)0xFF << offset);
771
772 /* write vector and valid bit */
773 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774
775 array_wr32(E1000_IVAR0, index, ivar);
776 }
777
778 #define IGB_N0_QUEUE -1
779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780 {
781 struct igb_adapter *adapter = q_vector->adapter;
782 struct e1000_hw *hw = &adapter->hw;
783 int rx_queue = IGB_N0_QUEUE;
784 int tx_queue = IGB_N0_QUEUE;
785 u32 msixbm = 0;
786
787 if (q_vector->rx.ring)
788 rx_queue = q_vector->rx.ring->reg_idx;
789 if (q_vector->tx.ring)
790 tx_queue = q_vector->tx.ring->reg_idx;
791
792 switch (hw->mac.type) {
793 case e1000_82575:
794 /* The 82575 assigns vectors using a bitmask, which matches the
795 * bitmask for the EICR/EIMS/EIMC registers. To assign one
796 * or more queues to a vector, we write the appropriate bits
797 * into the MSIXBM register for that vector.
798 */
799 if (rx_queue > IGB_N0_QUEUE)
800 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801 if (tx_queue > IGB_N0_QUEUE)
802 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 if (!adapter->msix_entries && msix_vector == 0)
804 msixbm |= E1000_EIMS_OTHER;
805 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806 q_vector->eims_value = msixbm;
807 break;
808 case e1000_82576:
809 /* 82576 uses a table that essentially consists of 2 columns
810 * with 8 rows. The ordering is column-major so we use the
811 * lower 3 bits as the row index, and the 4th bit as the
812 * column offset.
813 */
814 if (rx_queue > IGB_N0_QUEUE)
815 igb_write_ivar(hw, msix_vector,
816 rx_queue & 0x7,
817 (rx_queue & 0x8) << 1);
818 if (tx_queue > IGB_N0_QUEUE)
819 igb_write_ivar(hw, msix_vector,
820 tx_queue & 0x7,
821 ((tx_queue & 0x8) << 1) + 8);
822 q_vector->eims_value = 1 << msix_vector;
823 break;
824 case e1000_82580:
825 case e1000_i350:
826 case e1000_i354:
827 case e1000_i210:
828 case e1000_i211:
829 /* On 82580 and newer adapters the scheme is similar to 82576
830 * however instead of ordering column-major we have things
831 * ordered row-major. So we traverse the table by using
832 * bit 0 as the column offset, and the remaining bits as the
833 * row index.
834 */
835 if (rx_queue > IGB_N0_QUEUE)
836 igb_write_ivar(hw, msix_vector,
837 rx_queue >> 1,
838 (rx_queue & 0x1) << 4);
839 if (tx_queue > IGB_N0_QUEUE)
840 igb_write_ivar(hw, msix_vector,
841 tx_queue >> 1,
842 ((tx_queue & 0x1) << 4) + 8);
843 q_vector->eims_value = 1 << msix_vector;
844 break;
845 default:
846 BUG();
847 break;
848 }
849
850 /* add q_vector eims value to global eims_enable_mask */
851 adapter->eims_enable_mask |= q_vector->eims_value;
852
853 /* configure q_vector to set itr on first interrupt */
854 q_vector->set_itr = 1;
855 }
856
857 /**
858 * igb_configure_msix - Configure MSI-X hardware
859 * @adapter: board private structure to initialize
860 *
861 * igb_configure_msix sets up the hardware to properly
862 * generate MSI-X interrupts.
863 **/
864 static void igb_configure_msix(struct igb_adapter *adapter)
865 {
866 u32 tmp;
867 int i, vector = 0;
868 struct e1000_hw *hw = &adapter->hw;
869
870 adapter->eims_enable_mask = 0;
871
872 /* set vector for other causes, i.e. link changes */
873 switch (hw->mac.type) {
874 case e1000_82575:
875 tmp = rd32(E1000_CTRL_EXT);
876 /* enable MSI-X PBA support*/
877 tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879 /* Auto-Mask interrupts upon ICR read. */
880 tmp |= E1000_CTRL_EXT_EIAME;
881 tmp |= E1000_CTRL_EXT_IRCA;
882
883 wr32(E1000_CTRL_EXT, tmp);
884
885 /* enable msix_other interrupt */
886 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887 adapter->eims_other = E1000_EIMS_OTHER;
888
889 break;
890
891 case e1000_82576:
892 case e1000_82580:
893 case e1000_i350:
894 case e1000_i354:
895 case e1000_i210:
896 case e1000_i211:
897 /* Turn on MSI-X capability first, or our settings
898 * won't stick. And it will take days to debug.
899 */
900 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 E1000_GPIE_PBA | E1000_GPIE_EIAME |
902 E1000_GPIE_NSICR);
903
904 /* enable msix_other interrupt */
905 adapter->eims_other = 1 << vector;
906 tmp = (vector++ | E1000_IVAR_VALID) << 8;
907
908 wr32(E1000_IVAR_MISC, tmp);
909 break;
910 default:
911 /* do nothing, since nothing else supports MSI-X */
912 break;
913 } /* switch (hw->mac.type) */
914
915 adapter->eims_enable_mask |= adapter->eims_other;
916
917 for (i = 0; i < adapter->num_q_vectors; i++)
918 igb_assign_vector(adapter->q_vector[i], vector++);
919
920 wrfl();
921 }
922
923 /**
924 * igb_request_msix - Initialize MSI-X interrupts
925 * @adapter: board private structure to initialize
926 *
927 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
928 * kernel.
929 **/
930 static int igb_request_msix(struct igb_adapter *adapter)
931 {
932 struct net_device *netdev = adapter->netdev;
933 struct e1000_hw *hw = &adapter->hw;
934 int i, err = 0, vector = 0, free_vector = 0;
935
936 err = request_irq(adapter->msix_entries[vector].vector,
937 igb_msix_other, 0, netdev->name, adapter);
938 if (err)
939 goto err_out;
940
941 for (i = 0; i < adapter->num_q_vectors; i++) {
942 struct igb_q_vector *q_vector = adapter->q_vector[i];
943
944 vector++;
945
946 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
947
948 if (q_vector->rx.ring && q_vector->tx.ring)
949 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
950 q_vector->rx.ring->queue_index);
951 else if (q_vector->tx.ring)
952 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
953 q_vector->tx.ring->queue_index);
954 else if (q_vector->rx.ring)
955 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
956 q_vector->rx.ring->queue_index);
957 else
958 sprintf(q_vector->name, "%s-unused", netdev->name);
959
960 err = request_irq(adapter->msix_entries[vector].vector,
961 igb_msix_ring, 0, q_vector->name,
962 q_vector);
963 if (err)
964 goto err_free;
965 }
966
967 igb_configure_msix(adapter);
968 return 0;
969
970 err_free:
971 /* free already assigned IRQs */
972 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
973
974 vector--;
975 for (i = 0; i < vector; i++) {
976 free_irq(adapter->msix_entries[free_vector++].vector,
977 adapter->q_vector[i]);
978 }
979 err_out:
980 return err;
981 }
982
983 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
984 {
985 if (adapter->msix_entries) {
986 pci_disable_msix(adapter->pdev);
987 kfree(adapter->msix_entries);
988 adapter->msix_entries = NULL;
989 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
990 pci_disable_msi(adapter->pdev);
991 }
992 }
993
994 /**
995 * igb_free_q_vector - Free memory allocated for specific interrupt vector
996 * @adapter: board private structure to initialize
997 * @v_idx: Index of vector to be freed
998 *
999 * This function frees the memory allocated to the q_vector. In addition if
1000 * NAPI is enabled it will delete any references to the NAPI struct prior
1001 * to freeing the q_vector.
1002 **/
1003 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1004 {
1005 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1006
1007 if (q_vector->tx.ring)
1008 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1009
1010 if (q_vector->rx.ring)
1011 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1012
1013 adapter->q_vector[v_idx] = NULL;
1014 netif_napi_del(&q_vector->napi);
1015
1016 /* ixgbe_get_stats64() might access the rings on this vector,
1017 * we must wait a grace period before freeing it.
1018 */
1019 kfree_rcu(q_vector, rcu);
1020 }
1021
1022 /**
1023 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1024 * @adapter: board private structure to initialize
1025 *
1026 * This function frees the memory allocated to the q_vectors. In addition if
1027 * NAPI is enabled it will delete any references to the NAPI struct prior
1028 * to freeing the q_vector.
1029 **/
1030 static void igb_free_q_vectors(struct igb_adapter *adapter)
1031 {
1032 int v_idx = adapter->num_q_vectors;
1033
1034 adapter->num_tx_queues = 0;
1035 adapter->num_rx_queues = 0;
1036 adapter->num_q_vectors = 0;
1037
1038 while (v_idx--)
1039 igb_free_q_vector(adapter, v_idx);
1040 }
1041
1042 /**
1043 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1044 * @adapter: board private structure to initialize
1045 *
1046 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1047 * MSI-X interrupts allocated.
1048 */
1049 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1050 {
1051 igb_free_q_vectors(adapter);
1052 igb_reset_interrupt_capability(adapter);
1053 }
1054
1055 /**
1056 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1057 * @adapter: board private structure to initialize
1058 * @msix: boolean value of MSIX capability
1059 *
1060 * Attempt to configure interrupts using the best available
1061 * capabilities of the hardware and kernel.
1062 **/
1063 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1064 {
1065 int err;
1066 int numvecs, i;
1067
1068 if (!msix)
1069 goto msi_only;
1070
1071 /* Number of supported queues. */
1072 adapter->num_rx_queues = adapter->rss_queues;
1073 if (adapter->vfs_allocated_count)
1074 adapter->num_tx_queues = 1;
1075 else
1076 adapter->num_tx_queues = adapter->rss_queues;
1077
1078 /* start with one vector for every Rx queue */
1079 numvecs = adapter->num_rx_queues;
1080
1081 /* if Tx handler is separate add 1 for every Tx queue */
1082 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1083 numvecs += adapter->num_tx_queues;
1084
1085 /* store the number of vectors reserved for queues */
1086 adapter->num_q_vectors = numvecs;
1087
1088 /* add 1 vector for link status interrupts */
1089 numvecs++;
1090 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1091 GFP_KERNEL);
1092
1093 if (!adapter->msix_entries)
1094 goto msi_only;
1095
1096 for (i = 0; i < numvecs; i++)
1097 adapter->msix_entries[i].entry = i;
1098
1099 err = pci_enable_msix(adapter->pdev,
1100 adapter->msix_entries,
1101 numvecs);
1102 if (err == 0)
1103 return;
1104
1105 igb_reset_interrupt_capability(adapter);
1106
1107 /* If we can't do MSI-X, try MSI */
1108 msi_only:
1109 #ifdef CONFIG_PCI_IOV
1110 /* disable SR-IOV for non MSI-X configurations */
1111 if (adapter->vf_data) {
1112 struct e1000_hw *hw = &adapter->hw;
1113 /* disable iov and allow time for transactions to clear */
1114 pci_disable_sriov(adapter->pdev);
1115 msleep(500);
1116
1117 kfree(adapter->vf_data);
1118 adapter->vf_data = NULL;
1119 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1120 wrfl();
1121 msleep(100);
1122 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1123 }
1124 #endif
1125 adapter->vfs_allocated_count = 0;
1126 adapter->rss_queues = 1;
1127 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1128 adapter->num_rx_queues = 1;
1129 adapter->num_tx_queues = 1;
1130 adapter->num_q_vectors = 1;
1131 if (!pci_enable_msi(adapter->pdev))
1132 adapter->flags |= IGB_FLAG_HAS_MSI;
1133 }
1134
1135 static void igb_add_ring(struct igb_ring *ring,
1136 struct igb_ring_container *head)
1137 {
1138 head->ring = ring;
1139 head->count++;
1140 }
1141
1142 /**
1143 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1144 * @adapter: board private structure to initialize
1145 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1146 * @v_idx: index of vector in adapter struct
1147 * @txr_count: total number of Tx rings to allocate
1148 * @txr_idx: index of first Tx ring to allocate
1149 * @rxr_count: total number of Rx rings to allocate
1150 * @rxr_idx: index of first Rx ring to allocate
1151 *
1152 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1153 **/
1154 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1155 int v_count, int v_idx,
1156 int txr_count, int txr_idx,
1157 int rxr_count, int rxr_idx)
1158 {
1159 struct igb_q_vector *q_vector;
1160 struct igb_ring *ring;
1161 int ring_count, size;
1162
1163 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1164 if (txr_count > 1 || rxr_count > 1)
1165 return -ENOMEM;
1166
1167 ring_count = txr_count + rxr_count;
1168 size = sizeof(struct igb_q_vector) +
1169 (sizeof(struct igb_ring) * ring_count);
1170
1171 /* allocate q_vector and rings */
1172 q_vector = kzalloc(size, GFP_KERNEL);
1173 if (!q_vector)
1174 return -ENOMEM;
1175
1176 /* initialize NAPI */
1177 netif_napi_add(adapter->netdev, &q_vector->napi,
1178 igb_poll, 64);
1179
1180 /* tie q_vector and adapter together */
1181 adapter->q_vector[v_idx] = q_vector;
1182 q_vector->adapter = adapter;
1183
1184 /* initialize work limits */
1185 q_vector->tx.work_limit = adapter->tx_work_limit;
1186
1187 /* initialize ITR configuration */
1188 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1189 q_vector->itr_val = IGB_START_ITR;
1190
1191 /* initialize pointer to rings */
1192 ring = q_vector->ring;
1193
1194 /* intialize ITR */
1195 if (rxr_count) {
1196 /* rx or rx/tx vector */
1197 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1198 q_vector->itr_val = adapter->rx_itr_setting;
1199 } else {
1200 /* tx only vector */
1201 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1202 q_vector->itr_val = adapter->tx_itr_setting;
1203 }
1204
1205 if (txr_count) {
1206 /* assign generic ring traits */
1207 ring->dev = &adapter->pdev->dev;
1208 ring->netdev = adapter->netdev;
1209
1210 /* configure backlink on ring */
1211 ring->q_vector = q_vector;
1212
1213 /* update q_vector Tx values */
1214 igb_add_ring(ring, &q_vector->tx);
1215
1216 /* For 82575, context index must be unique per ring. */
1217 if (adapter->hw.mac.type == e1000_82575)
1218 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1219
1220 /* apply Tx specific ring traits */
1221 ring->count = adapter->tx_ring_count;
1222 ring->queue_index = txr_idx;
1223
1224 /* assign ring to adapter */
1225 adapter->tx_ring[txr_idx] = ring;
1226
1227 /* push pointer to next ring */
1228 ring++;
1229 }
1230
1231 if (rxr_count) {
1232 /* assign generic ring traits */
1233 ring->dev = &adapter->pdev->dev;
1234 ring->netdev = adapter->netdev;
1235
1236 /* configure backlink on ring */
1237 ring->q_vector = q_vector;
1238
1239 /* update q_vector Rx values */
1240 igb_add_ring(ring, &q_vector->rx);
1241
1242 /* set flag indicating ring supports SCTP checksum offload */
1243 if (adapter->hw.mac.type >= e1000_82576)
1244 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1245
1246 /*
1247 * On i350, i354, i210, and i211, loopback VLAN packets
1248 * have the tag byte-swapped.
1249 */
1250 if (adapter->hw.mac.type >= e1000_i350)
1251 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1252
1253 /* apply Rx specific ring traits */
1254 ring->count = adapter->rx_ring_count;
1255 ring->queue_index = rxr_idx;
1256
1257 /* assign ring to adapter */
1258 adapter->rx_ring[rxr_idx] = ring;
1259 }
1260
1261 return 0;
1262 }
1263
1264
1265 /**
1266 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1267 * @adapter: board private structure to initialize
1268 *
1269 * We allocate one q_vector per queue interrupt. If allocation fails we
1270 * return -ENOMEM.
1271 **/
1272 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1273 {
1274 int q_vectors = adapter->num_q_vectors;
1275 int rxr_remaining = adapter->num_rx_queues;
1276 int txr_remaining = adapter->num_tx_queues;
1277 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1278 int err;
1279
1280 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1281 for (; rxr_remaining; v_idx++) {
1282 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1283 0, 0, 1, rxr_idx);
1284
1285 if (err)
1286 goto err_out;
1287
1288 /* update counts and index */
1289 rxr_remaining--;
1290 rxr_idx++;
1291 }
1292 }
1293
1294 for (; v_idx < q_vectors; v_idx++) {
1295 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1296 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1297 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1298 tqpv, txr_idx, rqpv, rxr_idx);
1299
1300 if (err)
1301 goto err_out;
1302
1303 /* update counts and index */
1304 rxr_remaining -= rqpv;
1305 txr_remaining -= tqpv;
1306 rxr_idx++;
1307 txr_idx++;
1308 }
1309
1310 return 0;
1311
1312 err_out:
1313 adapter->num_tx_queues = 0;
1314 adapter->num_rx_queues = 0;
1315 adapter->num_q_vectors = 0;
1316
1317 while (v_idx--)
1318 igb_free_q_vector(adapter, v_idx);
1319
1320 return -ENOMEM;
1321 }
1322
1323 /**
1324 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1325 * @adapter: board private structure to initialize
1326 * @msix: boolean value of MSIX capability
1327 *
1328 * This function initializes the interrupts and allocates all of the queues.
1329 **/
1330 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1331 {
1332 struct pci_dev *pdev = adapter->pdev;
1333 int err;
1334
1335 igb_set_interrupt_capability(adapter, msix);
1336
1337 err = igb_alloc_q_vectors(adapter);
1338 if (err) {
1339 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1340 goto err_alloc_q_vectors;
1341 }
1342
1343 igb_cache_ring_register(adapter);
1344
1345 return 0;
1346
1347 err_alloc_q_vectors:
1348 igb_reset_interrupt_capability(adapter);
1349 return err;
1350 }
1351
1352 /**
1353 * igb_request_irq - initialize interrupts
1354 * @adapter: board private structure to initialize
1355 *
1356 * Attempts to configure interrupts using the best available
1357 * capabilities of the hardware and kernel.
1358 **/
1359 static int igb_request_irq(struct igb_adapter *adapter)
1360 {
1361 struct net_device *netdev = adapter->netdev;
1362 struct pci_dev *pdev = adapter->pdev;
1363 int err = 0;
1364
1365 if (adapter->msix_entries) {
1366 err = igb_request_msix(adapter);
1367 if (!err)
1368 goto request_done;
1369 /* fall back to MSI */
1370 igb_free_all_tx_resources(adapter);
1371 igb_free_all_rx_resources(adapter);
1372
1373 igb_clear_interrupt_scheme(adapter);
1374 err = igb_init_interrupt_scheme(adapter, false);
1375 if (err)
1376 goto request_done;
1377
1378 igb_setup_all_tx_resources(adapter);
1379 igb_setup_all_rx_resources(adapter);
1380 igb_configure(adapter);
1381 }
1382
1383 igb_assign_vector(adapter->q_vector[0], 0);
1384
1385 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1386 err = request_irq(pdev->irq, igb_intr_msi, 0,
1387 netdev->name, adapter);
1388 if (!err)
1389 goto request_done;
1390
1391 /* fall back to legacy interrupts */
1392 igb_reset_interrupt_capability(adapter);
1393 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1394 }
1395
1396 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1397 netdev->name, adapter);
1398
1399 if (err)
1400 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1401 err);
1402
1403 request_done:
1404 return err;
1405 }
1406
1407 static void igb_free_irq(struct igb_adapter *adapter)
1408 {
1409 if (adapter->msix_entries) {
1410 int vector = 0, i;
1411
1412 free_irq(adapter->msix_entries[vector++].vector, adapter);
1413
1414 for (i = 0; i < adapter->num_q_vectors; i++)
1415 free_irq(adapter->msix_entries[vector++].vector,
1416 adapter->q_vector[i]);
1417 } else {
1418 free_irq(adapter->pdev->irq, adapter);
1419 }
1420 }
1421
1422 /**
1423 * igb_irq_disable - Mask off interrupt generation on the NIC
1424 * @adapter: board private structure
1425 **/
1426 static void igb_irq_disable(struct igb_adapter *adapter)
1427 {
1428 struct e1000_hw *hw = &adapter->hw;
1429
1430 /* we need to be careful when disabling interrupts. The VFs are also
1431 * mapped into these registers and so clearing the bits can cause
1432 * issues on the VF drivers so we only need to clear what we set
1433 */
1434 if (adapter->msix_entries) {
1435 u32 regval = rd32(E1000_EIAM);
1436 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1437 wr32(E1000_EIMC, adapter->eims_enable_mask);
1438 regval = rd32(E1000_EIAC);
1439 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1440 }
1441
1442 wr32(E1000_IAM, 0);
1443 wr32(E1000_IMC, ~0);
1444 wrfl();
1445 if (adapter->msix_entries) {
1446 int i;
1447 for (i = 0; i < adapter->num_q_vectors; i++)
1448 synchronize_irq(adapter->msix_entries[i].vector);
1449 } else {
1450 synchronize_irq(adapter->pdev->irq);
1451 }
1452 }
1453
1454 /**
1455 * igb_irq_enable - Enable default interrupt generation settings
1456 * @adapter: board private structure
1457 **/
1458 static void igb_irq_enable(struct igb_adapter *adapter)
1459 {
1460 struct e1000_hw *hw = &adapter->hw;
1461
1462 if (adapter->msix_entries) {
1463 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1464 u32 regval = rd32(E1000_EIAC);
1465 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1466 regval = rd32(E1000_EIAM);
1467 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1468 wr32(E1000_EIMS, adapter->eims_enable_mask);
1469 if (adapter->vfs_allocated_count) {
1470 wr32(E1000_MBVFIMR, 0xFF);
1471 ims |= E1000_IMS_VMMB;
1472 }
1473 wr32(E1000_IMS, ims);
1474 } else {
1475 wr32(E1000_IMS, IMS_ENABLE_MASK |
1476 E1000_IMS_DRSTA);
1477 wr32(E1000_IAM, IMS_ENABLE_MASK |
1478 E1000_IMS_DRSTA);
1479 }
1480 }
1481
1482 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1483 {
1484 struct e1000_hw *hw = &adapter->hw;
1485 u16 vid = adapter->hw.mng_cookie.vlan_id;
1486 u16 old_vid = adapter->mng_vlan_id;
1487
1488 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1489 /* add VID to filter table */
1490 igb_vfta_set(hw, vid, true);
1491 adapter->mng_vlan_id = vid;
1492 } else {
1493 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1494 }
1495
1496 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1497 (vid != old_vid) &&
1498 !test_bit(old_vid, adapter->active_vlans)) {
1499 /* remove VID from filter table */
1500 igb_vfta_set(hw, old_vid, false);
1501 }
1502 }
1503
1504 /**
1505 * igb_release_hw_control - release control of the h/w to f/w
1506 * @adapter: address of board private structure
1507 *
1508 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1509 * For ASF and Pass Through versions of f/w this means that the
1510 * driver is no longer loaded.
1511 **/
1512 static void igb_release_hw_control(struct igb_adapter *adapter)
1513 {
1514 struct e1000_hw *hw = &adapter->hw;
1515 u32 ctrl_ext;
1516
1517 /* Let firmware take over control of h/w */
1518 ctrl_ext = rd32(E1000_CTRL_EXT);
1519 wr32(E1000_CTRL_EXT,
1520 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1521 }
1522
1523 /**
1524 * igb_get_hw_control - get control of the h/w from f/w
1525 * @adapter: address of board private structure
1526 *
1527 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1528 * For ASF and Pass Through versions of f/w this means that
1529 * the driver is loaded.
1530 **/
1531 static void igb_get_hw_control(struct igb_adapter *adapter)
1532 {
1533 struct e1000_hw *hw = &adapter->hw;
1534 u32 ctrl_ext;
1535
1536 /* Let firmware know the driver has taken over */
1537 ctrl_ext = rd32(E1000_CTRL_EXT);
1538 wr32(E1000_CTRL_EXT,
1539 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1540 }
1541
1542 /**
1543 * igb_configure - configure the hardware for RX and TX
1544 * @adapter: private board structure
1545 **/
1546 static void igb_configure(struct igb_adapter *adapter)
1547 {
1548 struct net_device *netdev = adapter->netdev;
1549 int i;
1550
1551 igb_get_hw_control(adapter);
1552 igb_set_rx_mode(netdev);
1553
1554 igb_restore_vlan(adapter);
1555
1556 igb_setup_tctl(adapter);
1557 igb_setup_mrqc(adapter);
1558 igb_setup_rctl(adapter);
1559
1560 igb_configure_tx(adapter);
1561 igb_configure_rx(adapter);
1562
1563 igb_rx_fifo_flush_82575(&adapter->hw);
1564
1565 /* call igb_desc_unused which always leaves
1566 * at least 1 descriptor unused to make sure
1567 * next_to_use != next_to_clean
1568 */
1569 for (i = 0; i < adapter->num_rx_queues; i++) {
1570 struct igb_ring *ring = adapter->rx_ring[i];
1571 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1572 }
1573 }
1574
1575 /**
1576 * igb_power_up_link - Power up the phy/serdes link
1577 * @adapter: address of board private structure
1578 **/
1579 void igb_power_up_link(struct igb_adapter *adapter)
1580 {
1581 igb_reset_phy(&adapter->hw);
1582
1583 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1584 igb_power_up_phy_copper(&adapter->hw);
1585 else
1586 igb_power_up_serdes_link_82575(&adapter->hw);
1587 }
1588
1589 /**
1590 * igb_power_down_link - Power down the phy/serdes link
1591 * @adapter: address of board private structure
1592 */
1593 static void igb_power_down_link(struct igb_adapter *adapter)
1594 {
1595 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1596 igb_power_down_phy_copper_82575(&adapter->hw);
1597 else
1598 igb_shutdown_serdes_link_82575(&adapter->hw);
1599 }
1600
1601 /**
1602 * igb_up - Open the interface and prepare it to handle traffic
1603 * @adapter: board private structure
1604 **/
1605 int igb_up(struct igb_adapter *adapter)
1606 {
1607 struct e1000_hw *hw = &adapter->hw;
1608 int i;
1609
1610 /* hardware has been reset, we need to reload some things */
1611 igb_configure(adapter);
1612
1613 clear_bit(__IGB_DOWN, &adapter->state);
1614
1615 for (i = 0; i < adapter->num_q_vectors; i++)
1616 napi_enable(&(adapter->q_vector[i]->napi));
1617
1618 if (adapter->msix_entries)
1619 igb_configure_msix(adapter);
1620 else
1621 igb_assign_vector(adapter->q_vector[0], 0);
1622
1623 /* Clear any pending interrupts. */
1624 rd32(E1000_ICR);
1625 igb_irq_enable(adapter);
1626
1627 /* notify VFs that reset has been completed */
1628 if (adapter->vfs_allocated_count) {
1629 u32 reg_data = rd32(E1000_CTRL_EXT);
1630 reg_data |= E1000_CTRL_EXT_PFRSTD;
1631 wr32(E1000_CTRL_EXT, reg_data);
1632 }
1633
1634 netif_tx_start_all_queues(adapter->netdev);
1635
1636 /* start the watchdog. */
1637 hw->mac.get_link_status = 1;
1638 schedule_work(&adapter->watchdog_task);
1639
1640 return 0;
1641 }
1642
1643 void igb_down(struct igb_adapter *adapter)
1644 {
1645 struct net_device *netdev = adapter->netdev;
1646 struct e1000_hw *hw = &adapter->hw;
1647 u32 tctl, rctl;
1648 int i;
1649
1650 /* signal that we're down so the interrupt handler does not
1651 * reschedule our watchdog timer
1652 */
1653 set_bit(__IGB_DOWN, &adapter->state);
1654
1655 /* disable receives in the hardware */
1656 rctl = rd32(E1000_RCTL);
1657 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1658 /* flush and sleep below */
1659
1660 netif_tx_stop_all_queues(netdev);
1661
1662 /* disable transmits in the hardware */
1663 tctl = rd32(E1000_TCTL);
1664 tctl &= ~E1000_TCTL_EN;
1665 wr32(E1000_TCTL, tctl);
1666 /* flush both disables and wait for them to finish */
1667 wrfl();
1668 msleep(10);
1669
1670 igb_irq_disable(adapter);
1671
1672 for (i = 0; i < adapter->num_q_vectors; i++) {
1673 napi_synchronize(&(adapter->q_vector[i]->napi));
1674 napi_disable(&(adapter->q_vector[i]->napi));
1675 }
1676
1677
1678 del_timer_sync(&adapter->watchdog_timer);
1679 del_timer_sync(&adapter->phy_info_timer);
1680
1681 netif_carrier_off(netdev);
1682
1683 /* record the stats before reset*/
1684 spin_lock(&adapter->stats64_lock);
1685 igb_update_stats(adapter, &adapter->stats64);
1686 spin_unlock(&adapter->stats64_lock);
1687
1688 adapter->link_speed = 0;
1689 adapter->link_duplex = 0;
1690
1691 if (!pci_channel_offline(adapter->pdev))
1692 igb_reset(adapter);
1693 igb_clean_all_tx_rings(adapter);
1694 igb_clean_all_rx_rings(adapter);
1695 #ifdef CONFIG_IGB_DCA
1696
1697 /* since we reset the hardware DCA settings were cleared */
1698 igb_setup_dca(adapter);
1699 #endif
1700 }
1701
1702 void igb_reinit_locked(struct igb_adapter *adapter)
1703 {
1704 WARN_ON(in_interrupt());
1705 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1706 msleep(1);
1707 igb_down(adapter);
1708 igb_up(adapter);
1709 clear_bit(__IGB_RESETTING, &adapter->state);
1710 }
1711
1712 void igb_reset(struct igb_adapter *adapter)
1713 {
1714 struct pci_dev *pdev = adapter->pdev;
1715 struct e1000_hw *hw = &adapter->hw;
1716 struct e1000_mac_info *mac = &hw->mac;
1717 struct e1000_fc_info *fc = &hw->fc;
1718 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1719
1720 /* Repartition Pba for greater than 9k mtu
1721 * To take effect CTRL.RST is required.
1722 */
1723 switch (mac->type) {
1724 case e1000_i350:
1725 case e1000_i354:
1726 case e1000_82580:
1727 pba = rd32(E1000_RXPBS);
1728 pba = igb_rxpbs_adjust_82580(pba);
1729 break;
1730 case e1000_82576:
1731 pba = rd32(E1000_RXPBS);
1732 pba &= E1000_RXPBS_SIZE_MASK_82576;
1733 break;
1734 case e1000_82575:
1735 case e1000_i210:
1736 case e1000_i211:
1737 default:
1738 pba = E1000_PBA_34K;
1739 break;
1740 }
1741
1742 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1743 (mac->type < e1000_82576)) {
1744 /* adjust PBA for jumbo frames */
1745 wr32(E1000_PBA, pba);
1746
1747 /* To maintain wire speed transmits, the Tx FIFO should be
1748 * large enough to accommodate two full transmit packets,
1749 * rounded up to the next 1KB and expressed in KB. Likewise,
1750 * the Rx FIFO should be large enough to accommodate at least
1751 * one full receive packet and is similarly rounded up and
1752 * expressed in KB.
1753 */
1754 pba = rd32(E1000_PBA);
1755 /* upper 16 bits has Tx packet buffer allocation size in KB */
1756 tx_space = pba >> 16;
1757 /* lower 16 bits has Rx packet buffer allocation size in KB */
1758 pba &= 0xffff;
1759 /* the Tx fifo also stores 16 bytes of information about the Tx
1760 * but don't include ethernet FCS because hardware appends it
1761 */
1762 min_tx_space = (adapter->max_frame_size +
1763 sizeof(union e1000_adv_tx_desc) -
1764 ETH_FCS_LEN) * 2;
1765 min_tx_space = ALIGN(min_tx_space, 1024);
1766 min_tx_space >>= 10;
1767 /* software strips receive CRC, so leave room for it */
1768 min_rx_space = adapter->max_frame_size;
1769 min_rx_space = ALIGN(min_rx_space, 1024);
1770 min_rx_space >>= 10;
1771
1772 /* If current Tx allocation is less than the min Tx FIFO size,
1773 * and the min Tx FIFO size is less than the current Rx FIFO
1774 * allocation, take space away from current Rx allocation
1775 */
1776 if (tx_space < min_tx_space &&
1777 ((min_tx_space - tx_space) < pba)) {
1778 pba = pba - (min_tx_space - tx_space);
1779
1780 /* if short on Rx space, Rx wins and must trump Tx
1781 * adjustment
1782 */
1783 if (pba < min_rx_space)
1784 pba = min_rx_space;
1785 }
1786 wr32(E1000_PBA, pba);
1787 }
1788
1789 /* flow control settings */
1790 /* The high water mark must be low enough to fit one full frame
1791 * (or the size used for early receive) above it in the Rx FIFO.
1792 * Set it to the lower of:
1793 * - 90% of the Rx FIFO size, or
1794 * - the full Rx FIFO size minus one full frame
1795 */
1796 hwm = min(((pba << 10) * 9 / 10),
1797 ((pba << 10) - 2 * adapter->max_frame_size));
1798
1799 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1800 fc->low_water = fc->high_water - 16;
1801 fc->pause_time = 0xFFFF;
1802 fc->send_xon = 1;
1803 fc->current_mode = fc->requested_mode;
1804
1805 /* disable receive for all VFs and wait one second */
1806 if (adapter->vfs_allocated_count) {
1807 int i;
1808 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1809 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1810
1811 /* ping all the active vfs to let them know we are going down */
1812 igb_ping_all_vfs(adapter);
1813
1814 /* disable transmits and receives */
1815 wr32(E1000_VFRE, 0);
1816 wr32(E1000_VFTE, 0);
1817 }
1818
1819 /* Allow time for pending master requests to run */
1820 hw->mac.ops.reset_hw(hw);
1821 wr32(E1000_WUC, 0);
1822
1823 if (hw->mac.ops.init_hw(hw))
1824 dev_err(&pdev->dev, "Hardware Error\n");
1825
1826 /* Flow control settings reset on hardware reset, so guarantee flow
1827 * control is off when forcing speed.
1828 */
1829 if (!hw->mac.autoneg)
1830 igb_force_mac_fc(hw);
1831
1832 igb_init_dmac(adapter, pba);
1833 #ifdef CONFIG_IGB_HWMON
1834 /* Re-initialize the thermal sensor on i350 devices. */
1835 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1836 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1837 /* If present, re-initialize the external thermal sensor
1838 * interface.
1839 */
1840 if (adapter->ets)
1841 mac->ops.init_thermal_sensor_thresh(hw);
1842 }
1843 }
1844 #endif
1845 if (!netif_running(adapter->netdev))
1846 igb_power_down_link(adapter);
1847
1848 igb_update_mng_vlan(adapter);
1849
1850 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1851 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1852
1853 /* Re-enable PTP, where applicable. */
1854 igb_ptp_reset(adapter);
1855
1856 igb_get_phy_info(hw);
1857 }
1858
1859 static netdev_features_t igb_fix_features(struct net_device *netdev,
1860 netdev_features_t features)
1861 {
1862 /* Since there is no support for separate Rx/Tx vlan accel
1863 * enable/disable make sure Tx flag is always in same state as Rx.
1864 */
1865 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1866 features |= NETIF_F_HW_VLAN_CTAG_TX;
1867 else
1868 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1869
1870 return features;
1871 }
1872
1873 static int igb_set_features(struct net_device *netdev,
1874 netdev_features_t features)
1875 {
1876 netdev_features_t changed = netdev->features ^ features;
1877 struct igb_adapter *adapter = netdev_priv(netdev);
1878
1879 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1880 igb_vlan_mode(netdev, features);
1881
1882 if (!(changed & NETIF_F_RXALL))
1883 return 0;
1884
1885 netdev->features = features;
1886
1887 if (netif_running(netdev))
1888 igb_reinit_locked(adapter);
1889 else
1890 igb_reset(adapter);
1891
1892 return 0;
1893 }
1894
1895 static const struct net_device_ops igb_netdev_ops = {
1896 .ndo_open = igb_open,
1897 .ndo_stop = igb_close,
1898 .ndo_start_xmit = igb_xmit_frame,
1899 .ndo_get_stats64 = igb_get_stats64,
1900 .ndo_set_rx_mode = igb_set_rx_mode,
1901 .ndo_set_mac_address = igb_set_mac,
1902 .ndo_change_mtu = igb_change_mtu,
1903 .ndo_do_ioctl = igb_ioctl,
1904 .ndo_tx_timeout = igb_tx_timeout,
1905 .ndo_validate_addr = eth_validate_addr,
1906 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1907 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1908 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1909 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1910 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1911 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
1912 .ndo_get_vf_config = igb_ndo_get_vf_config,
1913 #ifdef CONFIG_NET_POLL_CONTROLLER
1914 .ndo_poll_controller = igb_netpoll,
1915 #endif
1916 .ndo_fix_features = igb_fix_features,
1917 .ndo_set_features = igb_set_features,
1918 };
1919
1920 /**
1921 * igb_set_fw_version - Configure version string for ethtool
1922 * @adapter: adapter struct
1923 **/
1924 void igb_set_fw_version(struct igb_adapter *adapter)
1925 {
1926 struct e1000_hw *hw = &adapter->hw;
1927 struct e1000_fw_version fw;
1928
1929 igb_get_fw_version(hw, &fw);
1930
1931 switch (hw->mac.type) {
1932 case e1000_i211:
1933 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1934 "%2d.%2d-%d",
1935 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1936 break;
1937
1938 default:
1939 /* if option is rom valid, display its version too */
1940 if (fw.or_valid) {
1941 snprintf(adapter->fw_version,
1942 sizeof(adapter->fw_version),
1943 "%d.%d, 0x%08x, %d.%d.%d",
1944 fw.eep_major, fw.eep_minor, fw.etrack_id,
1945 fw.or_major, fw.or_build, fw.or_patch);
1946 /* no option rom */
1947 } else {
1948 snprintf(adapter->fw_version,
1949 sizeof(adapter->fw_version),
1950 "%d.%d, 0x%08x",
1951 fw.eep_major, fw.eep_minor, fw.etrack_id);
1952 }
1953 break;
1954 }
1955 return;
1956 }
1957
1958 /**
1959 * igb_init_i2c - Init I2C interface
1960 * @adapter: pointer to adapter structure
1961 **/
1962 static s32 igb_init_i2c(struct igb_adapter *adapter)
1963 {
1964 s32 status = E1000_SUCCESS;
1965
1966 /* I2C interface supported on i350 devices */
1967 if (adapter->hw.mac.type != e1000_i350)
1968 return E1000_SUCCESS;
1969
1970 /* Initialize the i2c bus which is controlled by the registers.
1971 * This bus will use the i2c_algo_bit structue that implements
1972 * the protocol through toggling of the 4 bits in the register.
1973 */
1974 adapter->i2c_adap.owner = THIS_MODULE;
1975 adapter->i2c_algo = igb_i2c_algo;
1976 adapter->i2c_algo.data = adapter;
1977 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1978 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1979 strlcpy(adapter->i2c_adap.name, "igb BB",
1980 sizeof(adapter->i2c_adap.name));
1981 status = i2c_bit_add_bus(&adapter->i2c_adap);
1982 return status;
1983 }
1984
1985 /**
1986 * igb_probe - Device Initialization Routine
1987 * @pdev: PCI device information struct
1988 * @ent: entry in igb_pci_tbl
1989 *
1990 * Returns 0 on success, negative on failure
1991 *
1992 * igb_probe initializes an adapter identified by a pci_dev structure.
1993 * The OS initialization, configuring of the adapter private structure,
1994 * and a hardware reset occur.
1995 **/
1996 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1997 {
1998 struct net_device *netdev;
1999 struct igb_adapter *adapter;
2000 struct e1000_hw *hw;
2001 u16 eeprom_data = 0;
2002 s32 ret_val;
2003 static int global_quad_port_a; /* global quad port a indication */
2004 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2005 unsigned long mmio_start, mmio_len;
2006 int err, pci_using_dac;
2007 u8 part_str[E1000_PBANUM_LENGTH];
2008
2009 /* Catch broken hardware that put the wrong VF device ID in
2010 * the PCIe SR-IOV capability.
2011 */
2012 if (pdev->is_virtfn) {
2013 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2014 pci_name(pdev), pdev->vendor, pdev->device);
2015 return -EINVAL;
2016 }
2017
2018 err = pci_enable_device_mem(pdev);
2019 if (err)
2020 return err;
2021
2022 pci_using_dac = 0;
2023 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2024 if (!err) {
2025 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2026 if (!err)
2027 pci_using_dac = 1;
2028 } else {
2029 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2030 if (err) {
2031 err = dma_set_coherent_mask(&pdev->dev,
2032 DMA_BIT_MASK(32));
2033 if (err) {
2034 dev_err(&pdev->dev,
2035 "No usable DMA configuration, aborting\n");
2036 goto err_dma;
2037 }
2038 }
2039 }
2040
2041 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2042 IORESOURCE_MEM),
2043 igb_driver_name);
2044 if (err)
2045 goto err_pci_reg;
2046
2047 pci_enable_pcie_error_reporting(pdev);
2048
2049 pci_set_master(pdev);
2050 pci_save_state(pdev);
2051
2052 err = -ENOMEM;
2053 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2054 IGB_MAX_TX_QUEUES);
2055 if (!netdev)
2056 goto err_alloc_etherdev;
2057
2058 SET_NETDEV_DEV(netdev, &pdev->dev);
2059
2060 pci_set_drvdata(pdev, netdev);
2061 adapter = netdev_priv(netdev);
2062 adapter->netdev = netdev;
2063 adapter->pdev = pdev;
2064 hw = &adapter->hw;
2065 hw->back = adapter;
2066 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2067
2068 mmio_start = pci_resource_start(pdev, 0);
2069 mmio_len = pci_resource_len(pdev, 0);
2070
2071 err = -EIO;
2072 hw->hw_addr = ioremap(mmio_start, mmio_len);
2073 if (!hw->hw_addr)
2074 goto err_ioremap;
2075
2076 netdev->netdev_ops = &igb_netdev_ops;
2077 igb_set_ethtool_ops(netdev);
2078 netdev->watchdog_timeo = 5 * HZ;
2079
2080 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2081
2082 netdev->mem_start = mmio_start;
2083 netdev->mem_end = mmio_start + mmio_len;
2084
2085 /* PCI config space info */
2086 hw->vendor_id = pdev->vendor;
2087 hw->device_id = pdev->device;
2088 hw->revision_id = pdev->revision;
2089 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2090 hw->subsystem_device_id = pdev->subsystem_device;
2091
2092 /* Copy the default MAC, PHY and NVM function pointers */
2093 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2094 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2095 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2096 /* Initialize skew-specific constants */
2097 err = ei->get_invariants(hw);
2098 if (err)
2099 goto err_sw_init;
2100
2101 /* setup the private structure */
2102 err = igb_sw_init(adapter);
2103 if (err)
2104 goto err_sw_init;
2105
2106 igb_get_bus_info_pcie(hw);
2107
2108 hw->phy.autoneg_wait_to_complete = false;
2109
2110 /* Copper options */
2111 if (hw->phy.media_type == e1000_media_type_copper) {
2112 hw->phy.mdix = AUTO_ALL_MODES;
2113 hw->phy.disable_polarity_correction = false;
2114 hw->phy.ms_type = e1000_ms_hw_default;
2115 }
2116
2117 if (igb_check_reset_block(hw))
2118 dev_info(&pdev->dev,
2119 "PHY reset is blocked due to SOL/IDER session.\n");
2120
2121 /* features is initialized to 0 in allocation, it might have bits
2122 * set by igb_sw_init so we should use an or instead of an
2123 * assignment.
2124 */
2125 netdev->features |= NETIF_F_SG |
2126 NETIF_F_IP_CSUM |
2127 NETIF_F_IPV6_CSUM |
2128 NETIF_F_TSO |
2129 NETIF_F_TSO6 |
2130 NETIF_F_RXHASH |
2131 NETIF_F_RXCSUM |
2132 NETIF_F_HW_VLAN_CTAG_RX |
2133 NETIF_F_HW_VLAN_CTAG_TX;
2134
2135 /* copy netdev features into list of user selectable features */
2136 netdev->hw_features |= netdev->features;
2137 netdev->hw_features |= NETIF_F_RXALL;
2138
2139 /* set this bit last since it cannot be part of hw_features */
2140 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2141
2142 netdev->vlan_features |= NETIF_F_TSO |
2143 NETIF_F_TSO6 |
2144 NETIF_F_IP_CSUM |
2145 NETIF_F_IPV6_CSUM |
2146 NETIF_F_SG;
2147
2148 netdev->priv_flags |= IFF_SUPP_NOFCS;
2149
2150 if (pci_using_dac) {
2151 netdev->features |= NETIF_F_HIGHDMA;
2152 netdev->vlan_features |= NETIF_F_HIGHDMA;
2153 }
2154
2155 if (hw->mac.type >= e1000_82576) {
2156 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2157 netdev->features |= NETIF_F_SCTP_CSUM;
2158 }
2159
2160 netdev->priv_flags |= IFF_UNICAST_FLT;
2161
2162 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2163
2164 /* before reading the NVM, reset the controller to put the device in a
2165 * known good starting state
2166 */
2167 hw->mac.ops.reset_hw(hw);
2168
2169 /* make sure the NVM is good , i211 parts have special NVM that
2170 * doesn't contain a checksum
2171 */
2172 if (hw->mac.type != e1000_i211) {
2173 if (hw->nvm.ops.validate(hw) < 0) {
2174 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2175 err = -EIO;
2176 goto err_eeprom;
2177 }
2178 }
2179
2180 /* copy the MAC address out of the NVM */
2181 if (hw->mac.ops.read_mac_addr(hw))
2182 dev_err(&pdev->dev, "NVM Read Error\n");
2183
2184 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2185
2186 if (!is_valid_ether_addr(netdev->dev_addr)) {
2187 dev_err(&pdev->dev, "Invalid MAC Address\n");
2188 err = -EIO;
2189 goto err_eeprom;
2190 }
2191
2192 /* get firmware version for ethtool -i */
2193 igb_set_fw_version(adapter);
2194
2195 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2196 (unsigned long) adapter);
2197 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2198 (unsigned long) adapter);
2199
2200 INIT_WORK(&adapter->reset_task, igb_reset_task);
2201 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2202
2203 /* Initialize link properties that are user-changeable */
2204 adapter->fc_autoneg = true;
2205 hw->mac.autoneg = true;
2206 hw->phy.autoneg_advertised = 0x2f;
2207
2208 hw->fc.requested_mode = e1000_fc_default;
2209 hw->fc.current_mode = e1000_fc_default;
2210
2211 igb_validate_mdi_setting(hw);
2212
2213 /* By default, support wake on port A */
2214 if (hw->bus.func == 0)
2215 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2216
2217 /* Check the NVM for wake support on non-port A ports */
2218 if (hw->mac.type >= e1000_82580)
2219 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2220 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2221 &eeprom_data);
2222 else if (hw->bus.func == 1)
2223 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2224
2225 if (eeprom_data & IGB_EEPROM_APME)
2226 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2227
2228 /* now that we have the eeprom settings, apply the special cases where
2229 * the eeprom may be wrong or the board simply won't support wake on
2230 * lan on a particular port
2231 */
2232 switch (pdev->device) {
2233 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2234 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2235 break;
2236 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2237 case E1000_DEV_ID_82576_FIBER:
2238 case E1000_DEV_ID_82576_SERDES:
2239 /* Wake events only supported on port A for dual fiber
2240 * regardless of eeprom setting
2241 */
2242 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2243 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2244 break;
2245 case E1000_DEV_ID_82576_QUAD_COPPER:
2246 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2247 /* if quad port adapter, disable WoL on all but port A */
2248 if (global_quad_port_a != 0)
2249 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2250 else
2251 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2252 /* Reset for multiple quad port adapters */
2253 if (++global_quad_port_a == 4)
2254 global_quad_port_a = 0;
2255 break;
2256 default:
2257 /* If the device can't wake, don't set software support */
2258 if (!device_can_wakeup(&adapter->pdev->dev))
2259 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2260 }
2261
2262 /* initialize the wol settings based on the eeprom settings */
2263 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2264 adapter->wol |= E1000_WUFC_MAG;
2265
2266 /* Some vendors want WoL disabled by default, but still supported */
2267 if ((hw->mac.type == e1000_i350) &&
2268 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2269 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2270 adapter->wol = 0;
2271 }
2272
2273 device_set_wakeup_enable(&adapter->pdev->dev,
2274 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2275
2276 /* reset the hardware with the new settings */
2277 igb_reset(adapter);
2278
2279 /* Init the I2C interface */
2280 err = igb_init_i2c(adapter);
2281 if (err) {
2282 dev_err(&pdev->dev, "failed to init i2c interface\n");
2283 goto err_eeprom;
2284 }
2285
2286 /* let the f/w know that the h/w is now under the control of the
2287 * driver. */
2288 igb_get_hw_control(adapter);
2289
2290 strcpy(netdev->name, "eth%d");
2291 err = register_netdev(netdev);
2292 if (err)
2293 goto err_register;
2294
2295 /* carrier off reporting is important to ethtool even BEFORE open */
2296 netif_carrier_off(netdev);
2297
2298 #ifdef CONFIG_IGB_DCA
2299 if (dca_add_requester(&pdev->dev) == 0) {
2300 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2301 dev_info(&pdev->dev, "DCA enabled\n");
2302 igb_setup_dca(adapter);
2303 }
2304
2305 #endif
2306 #ifdef CONFIG_IGB_HWMON
2307 /* Initialize the thermal sensor on i350 devices. */
2308 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2309 u16 ets_word;
2310
2311 /* Read the NVM to determine if this i350 device supports an
2312 * external thermal sensor.
2313 */
2314 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2315 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2316 adapter->ets = true;
2317 else
2318 adapter->ets = false;
2319 if (igb_sysfs_init(adapter))
2320 dev_err(&pdev->dev,
2321 "failed to allocate sysfs resources\n");
2322 } else {
2323 adapter->ets = false;
2324 }
2325 #endif
2326 /* do hw tstamp init after resetting */
2327 igb_ptp_init(adapter);
2328
2329 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2330 /* print bus type/speed/width info, not applicable to i354 */
2331 if (hw->mac.type != e1000_i354) {
2332 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2333 netdev->name,
2334 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2335 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2336 "unknown"),
2337 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2338 "Width x4" :
2339 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2340 "Width x2" :
2341 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2342 "Width x1" : "unknown"), netdev->dev_addr);
2343 }
2344
2345 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2346 if (ret_val)
2347 strcpy(part_str, "Unknown");
2348 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2349 dev_info(&pdev->dev,
2350 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2351 adapter->msix_entries ? "MSI-X" :
2352 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2353 adapter->num_rx_queues, adapter->num_tx_queues);
2354 switch (hw->mac.type) {
2355 case e1000_i350:
2356 case e1000_i210:
2357 case e1000_i211:
2358 igb_set_eee_i350(hw);
2359 break;
2360 case e1000_i354:
2361 if (hw->phy.media_type == e1000_media_type_copper) {
2362 if ((rd32(E1000_CTRL_EXT) &
2363 E1000_CTRL_EXT_LINK_MODE_SGMII))
2364 igb_set_eee_i354(hw);
2365 }
2366 break;
2367 default:
2368 break;
2369 }
2370
2371 pm_runtime_put_noidle(&pdev->dev);
2372 return 0;
2373
2374 err_register:
2375 igb_release_hw_control(adapter);
2376 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2377 err_eeprom:
2378 if (!igb_check_reset_block(hw))
2379 igb_reset_phy(hw);
2380
2381 if (hw->flash_address)
2382 iounmap(hw->flash_address);
2383 err_sw_init:
2384 igb_clear_interrupt_scheme(adapter);
2385 iounmap(hw->hw_addr);
2386 err_ioremap:
2387 free_netdev(netdev);
2388 err_alloc_etherdev:
2389 pci_release_selected_regions(pdev,
2390 pci_select_bars(pdev, IORESOURCE_MEM));
2391 err_pci_reg:
2392 err_dma:
2393 pci_disable_device(pdev);
2394 return err;
2395 }
2396
2397 #ifdef CONFIG_PCI_IOV
2398 static int igb_disable_sriov(struct pci_dev *pdev)
2399 {
2400 struct net_device *netdev = pci_get_drvdata(pdev);
2401 struct igb_adapter *adapter = netdev_priv(netdev);
2402 struct e1000_hw *hw = &adapter->hw;
2403
2404 /* reclaim resources allocated to VFs */
2405 if (adapter->vf_data) {
2406 /* disable iov and allow time for transactions to clear */
2407 if (pci_vfs_assigned(pdev)) {
2408 dev_warn(&pdev->dev,
2409 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2410 return -EPERM;
2411 } else {
2412 pci_disable_sriov(pdev);
2413 msleep(500);
2414 }
2415
2416 kfree(adapter->vf_data);
2417 adapter->vf_data = NULL;
2418 adapter->vfs_allocated_count = 0;
2419 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2420 wrfl();
2421 msleep(100);
2422 dev_info(&pdev->dev, "IOV Disabled\n");
2423
2424 /* Re-enable DMA Coalescing flag since IOV is turned off */
2425 adapter->flags |= IGB_FLAG_DMAC;
2426 }
2427
2428 return 0;
2429 }
2430
2431 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2432 {
2433 struct net_device *netdev = pci_get_drvdata(pdev);
2434 struct igb_adapter *adapter = netdev_priv(netdev);
2435 int old_vfs = pci_num_vf(pdev);
2436 int err = 0;
2437 int i;
2438
2439 if (!num_vfs)
2440 goto out;
2441 else if (old_vfs && old_vfs == num_vfs)
2442 goto out;
2443 else if (old_vfs && old_vfs != num_vfs)
2444 err = igb_disable_sriov(pdev);
2445
2446 if (err)
2447 goto out;
2448
2449 if (num_vfs > 7) {
2450 err = -EPERM;
2451 goto out;
2452 }
2453
2454 adapter->vfs_allocated_count = num_vfs;
2455
2456 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2457 sizeof(struct vf_data_storage), GFP_KERNEL);
2458
2459 /* if allocation failed then we do not support SR-IOV */
2460 if (!adapter->vf_data) {
2461 adapter->vfs_allocated_count = 0;
2462 dev_err(&pdev->dev,
2463 "Unable to allocate memory for VF Data Storage\n");
2464 err = -ENOMEM;
2465 goto out;
2466 }
2467
2468 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2469 if (err)
2470 goto err_out;
2471
2472 dev_info(&pdev->dev, "%d VFs allocated\n",
2473 adapter->vfs_allocated_count);
2474 for (i = 0; i < adapter->vfs_allocated_count; i++)
2475 igb_vf_configure(adapter, i);
2476
2477 /* DMA Coalescing is not supported in IOV mode. */
2478 adapter->flags &= ~IGB_FLAG_DMAC;
2479 goto out;
2480
2481 err_out:
2482 kfree(adapter->vf_data);
2483 adapter->vf_data = NULL;
2484 adapter->vfs_allocated_count = 0;
2485 out:
2486 return err;
2487 }
2488
2489 #endif
2490 /**
2491 * igb_remove_i2c - Cleanup I2C interface
2492 * @adapter: pointer to adapter structure
2493 **/
2494 static void igb_remove_i2c(struct igb_adapter *adapter)
2495 {
2496 /* free the adapter bus structure */
2497 i2c_del_adapter(&adapter->i2c_adap);
2498 }
2499
2500 /**
2501 * igb_remove - Device Removal Routine
2502 * @pdev: PCI device information struct
2503 *
2504 * igb_remove is called by the PCI subsystem to alert the driver
2505 * that it should release a PCI device. The could be caused by a
2506 * Hot-Plug event, or because the driver is going to be removed from
2507 * memory.
2508 **/
2509 static void igb_remove(struct pci_dev *pdev)
2510 {
2511 struct net_device *netdev = pci_get_drvdata(pdev);
2512 struct igb_adapter *adapter = netdev_priv(netdev);
2513 struct e1000_hw *hw = &adapter->hw;
2514
2515 pm_runtime_get_noresume(&pdev->dev);
2516 #ifdef CONFIG_IGB_HWMON
2517 igb_sysfs_exit(adapter);
2518 #endif
2519 igb_remove_i2c(adapter);
2520 igb_ptp_stop(adapter);
2521 /* The watchdog timer may be rescheduled, so explicitly
2522 * disable watchdog from being rescheduled.
2523 */
2524 set_bit(__IGB_DOWN, &adapter->state);
2525 del_timer_sync(&adapter->watchdog_timer);
2526 del_timer_sync(&adapter->phy_info_timer);
2527
2528 cancel_work_sync(&adapter->reset_task);
2529 cancel_work_sync(&adapter->watchdog_task);
2530
2531 #ifdef CONFIG_IGB_DCA
2532 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2533 dev_info(&pdev->dev, "DCA disabled\n");
2534 dca_remove_requester(&pdev->dev);
2535 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2536 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2537 }
2538 #endif
2539
2540 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2541 * would have already happened in close and is redundant.
2542 */
2543 igb_release_hw_control(adapter);
2544
2545 unregister_netdev(netdev);
2546
2547 igb_clear_interrupt_scheme(adapter);
2548
2549 #ifdef CONFIG_PCI_IOV
2550 igb_disable_sriov(pdev);
2551 #endif
2552
2553 iounmap(hw->hw_addr);
2554 if (hw->flash_address)
2555 iounmap(hw->flash_address);
2556 pci_release_selected_regions(pdev,
2557 pci_select_bars(pdev, IORESOURCE_MEM));
2558
2559 kfree(adapter->shadow_vfta);
2560 free_netdev(netdev);
2561
2562 pci_disable_pcie_error_reporting(pdev);
2563
2564 pci_disable_device(pdev);
2565 }
2566
2567 /**
2568 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2569 * @adapter: board private structure to initialize
2570 *
2571 * This function initializes the vf specific data storage and then attempts to
2572 * allocate the VFs. The reason for ordering it this way is because it is much
2573 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2574 * the memory for the VFs.
2575 **/
2576 static void igb_probe_vfs(struct igb_adapter *adapter)
2577 {
2578 #ifdef CONFIG_PCI_IOV
2579 struct pci_dev *pdev = adapter->pdev;
2580 struct e1000_hw *hw = &adapter->hw;
2581
2582 /* Virtualization features not supported on i210 family. */
2583 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2584 return;
2585
2586 pci_sriov_set_totalvfs(pdev, 7);
2587 igb_enable_sriov(pdev, max_vfs);
2588
2589 #endif /* CONFIG_PCI_IOV */
2590 }
2591
2592 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2593 {
2594 struct e1000_hw *hw = &adapter->hw;
2595 u32 max_rss_queues;
2596
2597 /* Determine the maximum number of RSS queues supported. */
2598 switch (hw->mac.type) {
2599 case e1000_i211:
2600 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2601 break;
2602 case e1000_82575:
2603 case e1000_i210:
2604 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2605 break;
2606 case e1000_i350:
2607 /* I350 cannot do RSS and SR-IOV at the same time */
2608 if (!!adapter->vfs_allocated_count) {
2609 max_rss_queues = 1;
2610 break;
2611 }
2612 /* fall through */
2613 case e1000_82576:
2614 if (!!adapter->vfs_allocated_count) {
2615 max_rss_queues = 2;
2616 break;
2617 }
2618 /* fall through */
2619 case e1000_82580:
2620 case e1000_i354:
2621 default:
2622 max_rss_queues = IGB_MAX_RX_QUEUES;
2623 break;
2624 }
2625
2626 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2627
2628 /* Determine if we need to pair queues. */
2629 switch (hw->mac.type) {
2630 case e1000_82575:
2631 case e1000_i211:
2632 /* Device supports enough interrupts without queue pairing. */
2633 break;
2634 case e1000_82576:
2635 /* If VFs are going to be allocated with RSS queues then we
2636 * should pair the queues in order to conserve interrupts due
2637 * to limited supply.
2638 */
2639 if ((adapter->rss_queues > 1) &&
2640 (adapter->vfs_allocated_count > 6))
2641 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2642 /* fall through */
2643 case e1000_82580:
2644 case e1000_i350:
2645 case e1000_i354:
2646 case e1000_i210:
2647 default:
2648 /* If rss_queues > half of max_rss_queues, pair the queues in
2649 * order to conserve interrupts due to limited supply.
2650 */
2651 if (adapter->rss_queues > (max_rss_queues / 2))
2652 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2653 break;
2654 }
2655 }
2656
2657 /**
2658 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2659 * @adapter: board private structure to initialize
2660 *
2661 * igb_sw_init initializes the Adapter private data structure.
2662 * Fields are initialized based on PCI device information and
2663 * OS network device settings (MTU size).
2664 **/
2665 static int igb_sw_init(struct igb_adapter *adapter)
2666 {
2667 struct e1000_hw *hw = &adapter->hw;
2668 struct net_device *netdev = adapter->netdev;
2669 struct pci_dev *pdev = adapter->pdev;
2670
2671 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2672
2673 /* set default ring sizes */
2674 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2675 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2676
2677 /* set default ITR values */
2678 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2679 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2680
2681 /* set default work limits */
2682 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2683
2684 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2685 VLAN_HLEN;
2686 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2687
2688 spin_lock_init(&adapter->stats64_lock);
2689 #ifdef CONFIG_PCI_IOV
2690 switch (hw->mac.type) {
2691 case e1000_82576:
2692 case e1000_i350:
2693 if (max_vfs > 7) {
2694 dev_warn(&pdev->dev,
2695 "Maximum of 7 VFs per PF, using max\n");
2696 max_vfs = adapter->vfs_allocated_count = 7;
2697 } else
2698 adapter->vfs_allocated_count = max_vfs;
2699 if (adapter->vfs_allocated_count)
2700 dev_warn(&pdev->dev,
2701 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2702 break;
2703 default:
2704 break;
2705 }
2706 #endif /* CONFIG_PCI_IOV */
2707
2708 igb_init_queue_configuration(adapter);
2709
2710 /* Setup and initialize a copy of the hw vlan table array */
2711 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2712 GFP_ATOMIC);
2713
2714 /* This call may decrease the number of queues */
2715 if (igb_init_interrupt_scheme(adapter, true)) {
2716 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2717 return -ENOMEM;
2718 }
2719
2720 igb_probe_vfs(adapter);
2721
2722 /* Explicitly disable IRQ since the NIC can be in any state. */
2723 igb_irq_disable(adapter);
2724
2725 if (hw->mac.type >= e1000_i350)
2726 adapter->flags &= ~IGB_FLAG_DMAC;
2727
2728 set_bit(__IGB_DOWN, &adapter->state);
2729 return 0;
2730 }
2731
2732 /**
2733 * igb_open - Called when a network interface is made active
2734 * @netdev: network interface device structure
2735 *
2736 * Returns 0 on success, negative value on failure
2737 *
2738 * The open entry point is called when a network interface is made
2739 * active by the system (IFF_UP). At this point all resources needed
2740 * for transmit and receive operations are allocated, the interrupt
2741 * handler is registered with the OS, the watchdog timer is started,
2742 * and the stack is notified that the interface is ready.
2743 **/
2744 static int __igb_open(struct net_device *netdev, bool resuming)
2745 {
2746 struct igb_adapter *adapter = netdev_priv(netdev);
2747 struct e1000_hw *hw = &adapter->hw;
2748 struct pci_dev *pdev = adapter->pdev;
2749 int err;
2750 int i;
2751
2752 /* disallow open during test */
2753 if (test_bit(__IGB_TESTING, &adapter->state)) {
2754 WARN_ON(resuming);
2755 return -EBUSY;
2756 }
2757
2758 if (!resuming)
2759 pm_runtime_get_sync(&pdev->dev);
2760
2761 netif_carrier_off(netdev);
2762
2763 /* allocate transmit descriptors */
2764 err = igb_setup_all_tx_resources(adapter);
2765 if (err)
2766 goto err_setup_tx;
2767
2768 /* allocate receive descriptors */
2769 err = igb_setup_all_rx_resources(adapter);
2770 if (err)
2771 goto err_setup_rx;
2772
2773 igb_power_up_link(adapter);
2774
2775 /* before we allocate an interrupt, we must be ready to handle it.
2776 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2777 * as soon as we call pci_request_irq, so we have to setup our
2778 * clean_rx handler before we do so.
2779 */
2780 igb_configure(adapter);
2781
2782 err = igb_request_irq(adapter);
2783 if (err)
2784 goto err_req_irq;
2785
2786 /* Notify the stack of the actual queue counts. */
2787 err = netif_set_real_num_tx_queues(adapter->netdev,
2788 adapter->num_tx_queues);
2789 if (err)
2790 goto err_set_queues;
2791
2792 err = netif_set_real_num_rx_queues(adapter->netdev,
2793 adapter->num_rx_queues);
2794 if (err)
2795 goto err_set_queues;
2796
2797 /* From here on the code is the same as igb_up() */
2798 clear_bit(__IGB_DOWN, &adapter->state);
2799
2800 for (i = 0; i < adapter->num_q_vectors; i++)
2801 napi_enable(&(adapter->q_vector[i]->napi));
2802
2803 /* Clear any pending interrupts. */
2804 rd32(E1000_ICR);
2805
2806 igb_irq_enable(adapter);
2807
2808 /* notify VFs that reset has been completed */
2809 if (adapter->vfs_allocated_count) {
2810 u32 reg_data = rd32(E1000_CTRL_EXT);
2811 reg_data |= E1000_CTRL_EXT_PFRSTD;
2812 wr32(E1000_CTRL_EXT, reg_data);
2813 }
2814
2815 netif_tx_start_all_queues(netdev);
2816
2817 if (!resuming)
2818 pm_runtime_put(&pdev->dev);
2819
2820 /* start the watchdog. */
2821 hw->mac.get_link_status = 1;
2822 schedule_work(&adapter->watchdog_task);
2823
2824 return 0;
2825
2826 err_set_queues:
2827 igb_free_irq(adapter);
2828 err_req_irq:
2829 igb_release_hw_control(adapter);
2830 igb_power_down_link(adapter);
2831 igb_free_all_rx_resources(adapter);
2832 err_setup_rx:
2833 igb_free_all_tx_resources(adapter);
2834 err_setup_tx:
2835 igb_reset(adapter);
2836 if (!resuming)
2837 pm_runtime_put(&pdev->dev);
2838
2839 return err;
2840 }
2841
2842 static int igb_open(struct net_device *netdev)
2843 {
2844 return __igb_open(netdev, false);
2845 }
2846
2847 /**
2848 * igb_close - Disables a network interface
2849 * @netdev: network interface device structure
2850 *
2851 * Returns 0, this is not allowed to fail
2852 *
2853 * The close entry point is called when an interface is de-activated
2854 * by the OS. The hardware is still under the driver's control, but
2855 * needs to be disabled. A global MAC reset is issued to stop the
2856 * hardware, and all transmit and receive resources are freed.
2857 **/
2858 static int __igb_close(struct net_device *netdev, bool suspending)
2859 {
2860 struct igb_adapter *adapter = netdev_priv(netdev);
2861 struct pci_dev *pdev = adapter->pdev;
2862
2863 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2864
2865 if (!suspending)
2866 pm_runtime_get_sync(&pdev->dev);
2867
2868 igb_down(adapter);
2869 igb_free_irq(adapter);
2870
2871 igb_free_all_tx_resources(adapter);
2872 igb_free_all_rx_resources(adapter);
2873
2874 if (!suspending)
2875 pm_runtime_put_sync(&pdev->dev);
2876 return 0;
2877 }
2878
2879 static int igb_close(struct net_device *netdev)
2880 {
2881 return __igb_close(netdev, false);
2882 }
2883
2884 /**
2885 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2886 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2887 *
2888 * Return 0 on success, negative on failure
2889 **/
2890 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2891 {
2892 struct device *dev = tx_ring->dev;
2893 int size;
2894
2895 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2896
2897 tx_ring->tx_buffer_info = vzalloc(size);
2898 if (!tx_ring->tx_buffer_info)
2899 goto err;
2900
2901 /* round up to nearest 4K */
2902 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2903 tx_ring->size = ALIGN(tx_ring->size, 4096);
2904
2905 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2906 &tx_ring->dma, GFP_KERNEL);
2907 if (!tx_ring->desc)
2908 goto err;
2909
2910 tx_ring->next_to_use = 0;
2911 tx_ring->next_to_clean = 0;
2912
2913 return 0;
2914
2915 err:
2916 vfree(tx_ring->tx_buffer_info);
2917 tx_ring->tx_buffer_info = NULL;
2918 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2919 return -ENOMEM;
2920 }
2921
2922 /**
2923 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2924 * (Descriptors) for all queues
2925 * @adapter: board private structure
2926 *
2927 * Return 0 on success, negative on failure
2928 **/
2929 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2930 {
2931 struct pci_dev *pdev = adapter->pdev;
2932 int i, err = 0;
2933
2934 for (i = 0; i < adapter->num_tx_queues; i++) {
2935 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2936 if (err) {
2937 dev_err(&pdev->dev,
2938 "Allocation for Tx Queue %u failed\n", i);
2939 for (i--; i >= 0; i--)
2940 igb_free_tx_resources(adapter->tx_ring[i]);
2941 break;
2942 }
2943 }
2944
2945 return err;
2946 }
2947
2948 /**
2949 * igb_setup_tctl - configure the transmit control registers
2950 * @adapter: Board private structure
2951 **/
2952 void igb_setup_tctl(struct igb_adapter *adapter)
2953 {
2954 struct e1000_hw *hw = &adapter->hw;
2955 u32 tctl;
2956
2957 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2958 wr32(E1000_TXDCTL(0), 0);
2959
2960 /* Program the Transmit Control Register */
2961 tctl = rd32(E1000_TCTL);
2962 tctl &= ~E1000_TCTL_CT;
2963 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2964 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2965
2966 igb_config_collision_dist(hw);
2967
2968 /* Enable transmits */
2969 tctl |= E1000_TCTL_EN;
2970
2971 wr32(E1000_TCTL, tctl);
2972 }
2973
2974 /**
2975 * igb_configure_tx_ring - Configure transmit ring after Reset
2976 * @adapter: board private structure
2977 * @ring: tx ring to configure
2978 *
2979 * Configure a transmit ring after a reset.
2980 **/
2981 void igb_configure_tx_ring(struct igb_adapter *adapter,
2982 struct igb_ring *ring)
2983 {
2984 struct e1000_hw *hw = &adapter->hw;
2985 u32 txdctl = 0;
2986 u64 tdba = ring->dma;
2987 int reg_idx = ring->reg_idx;
2988
2989 /* disable the queue */
2990 wr32(E1000_TXDCTL(reg_idx), 0);
2991 wrfl();
2992 mdelay(10);
2993
2994 wr32(E1000_TDLEN(reg_idx),
2995 ring->count * sizeof(union e1000_adv_tx_desc));
2996 wr32(E1000_TDBAL(reg_idx),
2997 tdba & 0x00000000ffffffffULL);
2998 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2999
3000 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3001 wr32(E1000_TDH(reg_idx), 0);
3002 writel(0, ring->tail);
3003
3004 txdctl |= IGB_TX_PTHRESH;
3005 txdctl |= IGB_TX_HTHRESH << 8;
3006 txdctl |= IGB_TX_WTHRESH << 16;
3007
3008 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3009 wr32(E1000_TXDCTL(reg_idx), txdctl);
3010 }
3011
3012 /**
3013 * igb_configure_tx - Configure transmit Unit after Reset
3014 * @adapter: board private structure
3015 *
3016 * Configure the Tx unit of the MAC after a reset.
3017 **/
3018 static void igb_configure_tx(struct igb_adapter *adapter)
3019 {
3020 int i;
3021
3022 for (i = 0; i < adapter->num_tx_queues; i++)
3023 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3024 }
3025
3026 /**
3027 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3028 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3029 *
3030 * Returns 0 on success, negative on failure
3031 **/
3032 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3033 {
3034 struct device *dev = rx_ring->dev;
3035 int size;
3036
3037 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3038
3039 rx_ring->rx_buffer_info = vzalloc(size);
3040 if (!rx_ring->rx_buffer_info)
3041 goto err;
3042
3043 /* Round up to nearest 4K */
3044 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3045 rx_ring->size = ALIGN(rx_ring->size, 4096);
3046
3047 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3048 &rx_ring->dma, GFP_KERNEL);
3049 if (!rx_ring->desc)
3050 goto err;
3051
3052 rx_ring->next_to_alloc = 0;
3053 rx_ring->next_to_clean = 0;
3054 rx_ring->next_to_use = 0;
3055
3056 return 0;
3057
3058 err:
3059 vfree(rx_ring->rx_buffer_info);
3060 rx_ring->rx_buffer_info = NULL;
3061 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3062 return -ENOMEM;
3063 }
3064
3065 /**
3066 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3067 * (Descriptors) for all queues
3068 * @adapter: board private structure
3069 *
3070 * Return 0 on success, negative on failure
3071 **/
3072 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3073 {
3074 struct pci_dev *pdev = adapter->pdev;
3075 int i, err = 0;
3076
3077 for (i = 0; i < adapter->num_rx_queues; i++) {
3078 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3079 if (err) {
3080 dev_err(&pdev->dev,
3081 "Allocation for Rx Queue %u failed\n", i);
3082 for (i--; i >= 0; i--)
3083 igb_free_rx_resources(adapter->rx_ring[i]);
3084 break;
3085 }
3086 }
3087
3088 return err;
3089 }
3090
3091 /**
3092 * igb_setup_mrqc - configure the multiple receive queue control registers
3093 * @adapter: Board private structure
3094 **/
3095 static void igb_setup_mrqc(struct igb_adapter *adapter)
3096 {
3097 struct e1000_hw *hw = &adapter->hw;
3098 u32 mrqc, rxcsum;
3099 u32 j, num_rx_queues, shift = 0;
3100 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3101 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3102 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3103 0xFA01ACBE };
3104
3105 /* Fill out hash function seeds */
3106 for (j = 0; j < 10; j++)
3107 wr32(E1000_RSSRK(j), rsskey[j]);
3108
3109 num_rx_queues = adapter->rss_queues;
3110
3111 switch (hw->mac.type) {
3112 case e1000_82575:
3113 shift = 6;
3114 break;
3115 case e1000_82576:
3116 /* 82576 supports 2 RSS queues for SR-IOV */
3117 if (adapter->vfs_allocated_count) {
3118 shift = 3;
3119 num_rx_queues = 2;
3120 }
3121 break;
3122 default:
3123 break;
3124 }
3125
3126 /* Populate the indirection table 4 entries at a time. To do this
3127 * we are generating the results for n and n+2 and then interleaving
3128 * those with the results with n+1 and n+3.
3129 */
3130 for (j = 0; j < 32; j++) {
3131 /* first pass generates n and n+2 */
3132 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3133 u32 reta = (base & 0x07800780) >> (7 - shift);
3134
3135 /* second pass generates n+1 and n+3 */
3136 base += 0x00010001 * num_rx_queues;
3137 reta |= (base & 0x07800780) << (1 + shift);
3138
3139 wr32(E1000_RETA(j), reta);
3140 }
3141
3142 /* Disable raw packet checksumming so that RSS hash is placed in
3143 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3144 * offloads as they are enabled by default
3145 */
3146 rxcsum = rd32(E1000_RXCSUM);
3147 rxcsum |= E1000_RXCSUM_PCSD;
3148
3149 if (adapter->hw.mac.type >= e1000_82576)
3150 /* Enable Receive Checksum Offload for SCTP */
3151 rxcsum |= E1000_RXCSUM_CRCOFL;
3152
3153 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3154 wr32(E1000_RXCSUM, rxcsum);
3155
3156 /* Generate RSS hash based on packet types, TCP/UDP
3157 * port numbers and/or IPv4/v6 src and dst addresses
3158 */
3159 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3160 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3161 E1000_MRQC_RSS_FIELD_IPV6 |
3162 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3163 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3164
3165 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3166 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3167 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3168 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3169
3170 /* If VMDq is enabled then we set the appropriate mode for that, else
3171 * we default to RSS so that an RSS hash is calculated per packet even
3172 * if we are only using one queue
3173 */
3174 if (adapter->vfs_allocated_count) {
3175 if (hw->mac.type > e1000_82575) {
3176 /* Set the default pool for the PF's first queue */
3177 u32 vtctl = rd32(E1000_VT_CTL);
3178 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3179 E1000_VT_CTL_DISABLE_DEF_POOL);
3180 vtctl |= adapter->vfs_allocated_count <<
3181 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3182 wr32(E1000_VT_CTL, vtctl);
3183 }
3184 if (adapter->rss_queues > 1)
3185 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3186 else
3187 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3188 } else {
3189 if (hw->mac.type != e1000_i211)
3190 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3191 }
3192 igb_vmm_control(adapter);
3193
3194 wr32(E1000_MRQC, mrqc);
3195 }
3196
3197 /**
3198 * igb_setup_rctl - configure the receive control registers
3199 * @adapter: Board private structure
3200 **/
3201 void igb_setup_rctl(struct igb_adapter *adapter)
3202 {
3203 struct e1000_hw *hw = &adapter->hw;
3204 u32 rctl;
3205
3206 rctl = rd32(E1000_RCTL);
3207
3208 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3209 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3210
3211 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3212 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3213
3214 /* enable stripping of CRC. It's unlikely this will break BMC
3215 * redirection as it did with e1000. Newer features require
3216 * that the HW strips the CRC.
3217 */
3218 rctl |= E1000_RCTL_SECRC;
3219
3220 /* disable store bad packets and clear size bits. */
3221 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3222
3223 /* enable LPE to prevent packets larger than max_frame_size */
3224 rctl |= E1000_RCTL_LPE;
3225
3226 /* disable queue 0 to prevent tail write w/o re-config */
3227 wr32(E1000_RXDCTL(0), 0);
3228
3229 /* Attention!!! For SR-IOV PF driver operations you must enable
3230 * queue drop for all VF and PF queues to prevent head of line blocking
3231 * if an un-trusted VF does not provide descriptors to hardware.
3232 */
3233 if (adapter->vfs_allocated_count) {
3234 /* set all queue drop enable bits */
3235 wr32(E1000_QDE, ALL_QUEUES);
3236 }
3237
3238 /* This is useful for sniffing bad packets. */
3239 if (adapter->netdev->features & NETIF_F_RXALL) {
3240 /* UPE and MPE will be handled by normal PROMISC logic
3241 * in e1000e_set_rx_mode
3242 */
3243 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3244 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3245 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3246
3247 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3248 E1000_RCTL_DPF | /* Allow filtered pause */
3249 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3250 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3251 * and that breaks VLANs.
3252 */
3253 }
3254
3255 wr32(E1000_RCTL, rctl);
3256 }
3257
3258 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3259 int vfn)
3260 {
3261 struct e1000_hw *hw = &adapter->hw;
3262 u32 vmolr;
3263
3264 /* if it isn't the PF check to see if VFs are enabled and
3265 * increase the size to support vlan tags
3266 */
3267 if (vfn < adapter->vfs_allocated_count &&
3268 adapter->vf_data[vfn].vlans_enabled)
3269 size += VLAN_TAG_SIZE;
3270
3271 vmolr = rd32(E1000_VMOLR(vfn));
3272 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3273 vmolr |= size | E1000_VMOLR_LPE;
3274 wr32(E1000_VMOLR(vfn), vmolr);
3275
3276 return 0;
3277 }
3278
3279 /**
3280 * igb_rlpml_set - set maximum receive packet size
3281 * @adapter: board private structure
3282 *
3283 * Configure maximum receivable packet size.
3284 **/
3285 static void igb_rlpml_set(struct igb_adapter *adapter)
3286 {
3287 u32 max_frame_size = adapter->max_frame_size;
3288 struct e1000_hw *hw = &adapter->hw;
3289 u16 pf_id = adapter->vfs_allocated_count;
3290
3291 if (pf_id) {
3292 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3293 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3294 * to our max jumbo frame size, in case we need to enable
3295 * jumbo frames on one of the rings later.
3296 * This will not pass over-length frames into the default
3297 * queue because it's gated by the VMOLR.RLPML.
3298 */
3299 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3300 }
3301
3302 wr32(E1000_RLPML, max_frame_size);
3303 }
3304
3305 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3306 int vfn, bool aupe)
3307 {
3308 struct e1000_hw *hw = &adapter->hw;
3309 u32 vmolr;
3310
3311 /* This register exists only on 82576 and newer so if we are older then
3312 * we should exit and do nothing
3313 */
3314 if (hw->mac.type < e1000_82576)
3315 return;
3316
3317 vmolr = rd32(E1000_VMOLR(vfn));
3318 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3319 if (aupe)
3320 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3321 else
3322 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3323
3324 /* clear all bits that might not be set */
3325 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3326
3327 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3328 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3329 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3330 * multicast packets
3331 */
3332 if (vfn <= adapter->vfs_allocated_count)
3333 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3334
3335 wr32(E1000_VMOLR(vfn), vmolr);
3336 }
3337
3338 /**
3339 * igb_configure_rx_ring - Configure a receive ring after Reset
3340 * @adapter: board private structure
3341 * @ring: receive ring to be configured
3342 *
3343 * Configure the Rx unit of the MAC after a reset.
3344 **/
3345 void igb_configure_rx_ring(struct igb_adapter *adapter,
3346 struct igb_ring *ring)
3347 {
3348 struct e1000_hw *hw = &adapter->hw;
3349 u64 rdba = ring->dma;
3350 int reg_idx = ring->reg_idx;
3351 u32 srrctl = 0, rxdctl = 0;
3352
3353 /* disable the queue */
3354 wr32(E1000_RXDCTL(reg_idx), 0);
3355
3356 /* Set DMA base address registers */
3357 wr32(E1000_RDBAL(reg_idx),
3358 rdba & 0x00000000ffffffffULL);
3359 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3360 wr32(E1000_RDLEN(reg_idx),
3361 ring->count * sizeof(union e1000_adv_rx_desc));
3362
3363 /* initialize head and tail */
3364 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3365 wr32(E1000_RDH(reg_idx), 0);
3366 writel(0, ring->tail);
3367
3368 /* set descriptor configuration */
3369 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3370 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3371 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3372 if (hw->mac.type >= e1000_82580)
3373 srrctl |= E1000_SRRCTL_TIMESTAMP;
3374 /* Only set Drop Enable if we are supporting multiple queues */
3375 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3376 srrctl |= E1000_SRRCTL_DROP_EN;
3377
3378 wr32(E1000_SRRCTL(reg_idx), srrctl);
3379
3380 /* set filtering for VMDQ pools */
3381 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3382
3383 rxdctl |= IGB_RX_PTHRESH;
3384 rxdctl |= IGB_RX_HTHRESH << 8;
3385 rxdctl |= IGB_RX_WTHRESH << 16;
3386
3387 /* enable receive descriptor fetching */
3388 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3389 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3390 }
3391
3392 /**
3393 * igb_configure_rx - Configure receive Unit after Reset
3394 * @adapter: board private structure
3395 *
3396 * Configure the Rx unit of the MAC after a reset.
3397 **/
3398 static void igb_configure_rx(struct igb_adapter *adapter)
3399 {
3400 int i;
3401
3402 /* set UTA to appropriate mode */
3403 igb_set_uta(adapter);
3404
3405 /* set the correct pool for the PF default MAC address in entry 0 */
3406 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3407 adapter->vfs_allocated_count);
3408
3409 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3410 * the Base and Length of the Rx Descriptor Ring
3411 */
3412 for (i = 0; i < adapter->num_rx_queues; i++)
3413 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3414 }
3415
3416 /**
3417 * igb_free_tx_resources - Free Tx Resources per Queue
3418 * @tx_ring: Tx descriptor ring for a specific queue
3419 *
3420 * Free all transmit software resources
3421 **/
3422 void igb_free_tx_resources(struct igb_ring *tx_ring)
3423 {
3424 igb_clean_tx_ring(tx_ring);
3425
3426 vfree(tx_ring->tx_buffer_info);
3427 tx_ring->tx_buffer_info = NULL;
3428
3429 /* if not set, then don't free */
3430 if (!tx_ring->desc)
3431 return;
3432
3433 dma_free_coherent(tx_ring->dev, tx_ring->size,
3434 tx_ring->desc, tx_ring->dma);
3435
3436 tx_ring->desc = NULL;
3437 }
3438
3439 /**
3440 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3441 * @adapter: board private structure
3442 *
3443 * Free all transmit software resources
3444 **/
3445 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3446 {
3447 int i;
3448
3449 for (i = 0; i < adapter->num_tx_queues; i++)
3450 igb_free_tx_resources(adapter->tx_ring[i]);
3451 }
3452
3453 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3454 struct igb_tx_buffer *tx_buffer)
3455 {
3456 if (tx_buffer->skb) {
3457 dev_kfree_skb_any(tx_buffer->skb);
3458 if (dma_unmap_len(tx_buffer, len))
3459 dma_unmap_single(ring->dev,
3460 dma_unmap_addr(tx_buffer, dma),
3461 dma_unmap_len(tx_buffer, len),
3462 DMA_TO_DEVICE);
3463 } else if (dma_unmap_len(tx_buffer, len)) {
3464 dma_unmap_page(ring->dev,
3465 dma_unmap_addr(tx_buffer, dma),
3466 dma_unmap_len(tx_buffer, len),
3467 DMA_TO_DEVICE);
3468 }
3469 tx_buffer->next_to_watch = NULL;
3470 tx_buffer->skb = NULL;
3471 dma_unmap_len_set(tx_buffer, len, 0);
3472 /* buffer_info must be completely set up in the transmit path */
3473 }
3474
3475 /**
3476 * igb_clean_tx_ring - Free Tx Buffers
3477 * @tx_ring: ring to be cleaned
3478 **/
3479 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3480 {
3481 struct igb_tx_buffer *buffer_info;
3482 unsigned long size;
3483 u16 i;
3484
3485 if (!tx_ring->tx_buffer_info)
3486 return;
3487 /* Free all the Tx ring sk_buffs */
3488
3489 for (i = 0; i < tx_ring->count; i++) {
3490 buffer_info = &tx_ring->tx_buffer_info[i];
3491 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3492 }
3493
3494 netdev_tx_reset_queue(txring_txq(tx_ring));
3495
3496 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3497 memset(tx_ring->tx_buffer_info, 0, size);
3498
3499 /* Zero out the descriptor ring */
3500 memset(tx_ring->desc, 0, tx_ring->size);
3501
3502 tx_ring->next_to_use = 0;
3503 tx_ring->next_to_clean = 0;
3504 }
3505
3506 /**
3507 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3508 * @adapter: board private structure
3509 **/
3510 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3511 {
3512 int i;
3513
3514 for (i = 0; i < adapter->num_tx_queues; i++)
3515 igb_clean_tx_ring(adapter->tx_ring[i]);
3516 }
3517
3518 /**
3519 * igb_free_rx_resources - Free Rx Resources
3520 * @rx_ring: ring to clean the resources from
3521 *
3522 * Free all receive software resources
3523 **/
3524 void igb_free_rx_resources(struct igb_ring *rx_ring)
3525 {
3526 igb_clean_rx_ring(rx_ring);
3527
3528 vfree(rx_ring->rx_buffer_info);
3529 rx_ring->rx_buffer_info = NULL;
3530
3531 /* if not set, then don't free */
3532 if (!rx_ring->desc)
3533 return;
3534
3535 dma_free_coherent(rx_ring->dev, rx_ring->size,
3536 rx_ring->desc, rx_ring->dma);
3537
3538 rx_ring->desc = NULL;
3539 }
3540
3541 /**
3542 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3543 * @adapter: board private structure
3544 *
3545 * Free all receive software resources
3546 **/
3547 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3548 {
3549 int i;
3550
3551 for (i = 0; i < adapter->num_rx_queues; i++)
3552 igb_free_rx_resources(adapter->rx_ring[i]);
3553 }
3554
3555 /**
3556 * igb_clean_rx_ring - Free Rx Buffers per Queue
3557 * @rx_ring: ring to free buffers from
3558 **/
3559 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3560 {
3561 unsigned long size;
3562 u16 i;
3563
3564 if (rx_ring->skb)
3565 dev_kfree_skb(rx_ring->skb);
3566 rx_ring->skb = NULL;
3567
3568 if (!rx_ring->rx_buffer_info)
3569 return;
3570
3571 /* Free all the Rx ring sk_buffs */
3572 for (i = 0; i < rx_ring->count; i++) {
3573 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3574
3575 if (!buffer_info->page)
3576 continue;
3577
3578 dma_unmap_page(rx_ring->dev,
3579 buffer_info->dma,
3580 PAGE_SIZE,
3581 DMA_FROM_DEVICE);
3582 __free_page(buffer_info->page);
3583
3584 buffer_info->page = NULL;
3585 }
3586
3587 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3588 memset(rx_ring->rx_buffer_info, 0, size);
3589
3590 /* Zero out the descriptor ring */
3591 memset(rx_ring->desc, 0, rx_ring->size);
3592
3593 rx_ring->next_to_alloc = 0;
3594 rx_ring->next_to_clean = 0;
3595 rx_ring->next_to_use = 0;
3596 }
3597
3598 /**
3599 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3600 * @adapter: board private structure
3601 **/
3602 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3603 {
3604 int i;
3605
3606 for (i = 0; i < adapter->num_rx_queues; i++)
3607 igb_clean_rx_ring(adapter->rx_ring[i]);
3608 }
3609
3610 /**
3611 * igb_set_mac - Change the Ethernet Address of the NIC
3612 * @netdev: network interface device structure
3613 * @p: pointer to an address structure
3614 *
3615 * Returns 0 on success, negative on failure
3616 **/
3617 static int igb_set_mac(struct net_device *netdev, void *p)
3618 {
3619 struct igb_adapter *adapter = netdev_priv(netdev);
3620 struct e1000_hw *hw = &adapter->hw;
3621 struct sockaddr *addr = p;
3622
3623 if (!is_valid_ether_addr(addr->sa_data))
3624 return -EADDRNOTAVAIL;
3625
3626 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3627 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3628
3629 /* set the correct pool for the new PF MAC address in entry 0 */
3630 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3631 adapter->vfs_allocated_count);
3632
3633 return 0;
3634 }
3635
3636 /**
3637 * igb_write_mc_addr_list - write multicast addresses to MTA
3638 * @netdev: network interface device structure
3639 *
3640 * Writes multicast address list to the MTA hash table.
3641 * Returns: -ENOMEM on failure
3642 * 0 on no addresses written
3643 * X on writing X addresses to MTA
3644 **/
3645 static int igb_write_mc_addr_list(struct net_device *netdev)
3646 {
3647 struct igb_adapter *adapter = netdev_priv(netdev);
3648 struct e1000_hw *hw = &adapter->hw;
3649 struct netdev_hw_addr *ha;
3650 u8 *mta_list;
3651 int i;
3652
3653 if (netdev_mc_empty(netdev)) {
3654 /* nothing to program, so clear mc list */
3655 igb_update_mc_addr_list(hw, NULL, 0);
3656 igb_restore_vf_multicasts(adapter);
3657 return 0;
3658 }
3659
3660 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3661 if (!mta_list)
3662 return -ENOMEM;
3663
3664 /* The shared function expects a packed array of only addresses. */
3665 i = 0;
3666 netdev_for_each_mc_addr(ha, netdev)
3667 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3668
3669 igb_update_mc_addr_list(hw, mta_list, i);
3670 kfree(mta_list);
3671
3672 return netdev_mc_count(netdev);
3673 }
3674
3675 /**
3676 * igb_write_uc_addr_list - write unicast addresses to RAR table
3677 * @netdev: network interface device structure
3678 *
3679 * Writes unicast address list to the RAR table.
3680 * Returns: -ENOMEM on failure/insufficient address space
3681 * 0 on no addresses written
3682 * X on writing X addresses to the RAR table
3683 **/
3684 static int igb_write_uc_addr_list(struct net_device *netdev)
3685 {
3686 struct igb_adapter *adapter = netdev_priv(netdev);
3687 struct e1000_hw *hw = &adapter->hw;
3688 unsigned int vfn = adapter->vfs_allocated_count;
3689 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3690 int count = 0;
3691
3692 /* return ENOMEM indicating insufficient memory for addresses */
3693 if (netdev_uc_count(netdev) > rar_entries)
3694 return -ENOMEM;
3695
3696 if (!netdev_uc_empty(netdev) && rar_entries) {
3697 struct netdev_hw_addr *ha;
3698
3699 netdev_for_each_uc_addr(ha, netdev) {
3700 if (!rar_entries)
3701 break;
3702 igb_rar_set_qsel(adapter, ha->addr,
3703 rar_entries--,
3704 vfn);
3705 count++;
3706 }
3707 }
3708 /* write the addresses in reverse order to avoid write combining */
3709 for (; rar_entries > 0 ; rar_entries--) {
3710 wr32(E1000_RAH(rar_entries), 0);
3711 wr32(E1000_RAL(rar_entries), 0);
3712 }
3713 wrfl();
3714
3715 return count;
3716 }
3717
3718 /**
3719 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3720 * @netdev: network interface device structure
3721 *
3722 * The set_rx_mode entry point is called whenever the unicast or multicast
3723 * address lists or the network interface flags are updated. This routine is
3724 * responsible for configuring the hardware for proper unicast, multicast,
3725 * promiscuous mode, and all-multi behavior.
3726 **/
3727 static void igb_set_rx_mode(struct net_device *netdev)
3728 {
3729 struct igb_adapter *adapter = netdev_priv(netdev);
3730 struct e1000_hw *hw = &adapter->hw;
3731 unsigned int vfn = adapter->vfs_allocated_count;
3732 u32 rctl, vmolr = 0;
3733 int count;
3734
3735 /* Check for Promiscuous and All Multicast modes */
3736 rctl = rd32(E1000_RCTL);
3737
3738 /* clear the effected bits */
3739 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3740
3741 if (netdev->flags & IFF_PROMISC) {
3742 u32 mrqc = rd32(E1000_MRQC);
3743 /* retain VLAN HW filtering if in VT mode */
3744 if (mrqc & E1000_MRQC_ENABLE_VMDQ)
3745 rctl |= E1000_RCTL_VFE;
3746 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3747 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3748 } else {
3749 if (netdev->flags & IFF_ALLMULTI) {
3750 rctl |= E1000_RCTL_MPE;
3751 vmolr |= E1000_VMOLR_MPME;
3752 } else {
3753 /* Write addresses to the MTA, if the attempt fails
3754 * then we should just turn on promiscuous mode so
3755 * that we can at least receive multicast traffic
3756 */
3757 count = igb_write_mc_addr_list(netdev);
3758 if (count < 0) {
3759 rctl |= E1000_RCTL_MPE;
3760 vmolr |= E1000_VMOLR_MPME;
3761 } else if (count) {
3762 vmolr |= E1000_VMOLR_ROMPE;
3763 }
3764 }
3765 /* Write addresses to available RAR registers, if there is not
3766 * sufficient space to store all the addresses then enable
3767 * unicast promiscuous mode
3768 */
3769 count = igb_write_uc_addr_list(netdev);
3770 if (count < 0) {
3771 rctl |= E1000_RCTL_UPE;
3772 vmolr |= E1000_VMOLR_ROPE;
3773 }
3774 rctl |= E1000_RCTL_VFE;
3775 }
3776 wr32(E1000_RCTL, rctl);
3777
3778 /* In order to support SR-IOV and eventually VMDq it is necessary to set
3779 * the VMOLR to enable the appropriate modes. Without this workaround
3780 * we will have issues with VLAN tag stripping not being done for frames
3781 * that are only arriving because we are the default pool
3782 */
3783 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3784 return;
3785
3786 vmolr |= rd32(E1000_VMOLR(vfn)) &
3787 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3788 wr32(E1000_VMOLR(vfn), vmolr);
3789 igb_restore_vf_multicasts(adapter);
3790 }
3791
3792 static void igb_check_wvbr(struct igb_adapter *adapter)
3793 {
3794 struct e1000_hw *hw = &adapter->hw;
3795 u32 wvbr = 0;
3796
3797 switch (hw->mac.type) {
3798 case e1000_82576:
3799 case e1000_i350:
3800 if (!(wvbr = rd32(E1000_WVBR)))
3801 return;
3802 break;
3803 default:
3804 break;
3805 }
3806
3807 adapter->wvbr |= wvbr;
3808 }
3809
3810 #define IGB_STAGGERED_QUEUE_OFFSET 8
3811
3812 static void igb_spoof_check(struct igb_adapter *adapter)
3813 {
3814 int j;
3815
3816 if (!adapter->wvbr)
3817 return;
3818
3819 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3820 if (adapter->wvbr & (1 << j) ||
3821 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3822 dev_warn(&adapter->pdev->dev,
3823 "Spoof event(s) detected on VF %d\n", j);
3824 adapter->wvbr &=
3825 ~((1 << j) |
3826 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3827 }
3828 }
3829 }
3830
3831 /* Need to wait a few seconds after link up to get diagnostic information from
3832 * the phy
3833 */
3834 static void igb_update_phy_info(unsigned long data)
3835 {
3836 struct igb_adapter *adapter = (struct igb_adapter *) data;
3837 igb_get_phy_info(&adapter->hw);
3838 }
3839
3840 /**
3841 * igb_has_link - check shared code for link and determine up/down
3842 * @adapter: pointer to driver private info
3843 **/
3844 bool igb_has_link(struct igb_adapter *adapter)
3845 {
3846 struct e1000_hw *hw = &adapter->hw;
3847 bool link_active = false;
3848 s32 ret_val = 0;
3849
3850 /* get_link_status is set on LSC (link status) interrupt or
3851 * rx sequence error interrupt. get_link_status will stay
3852 * false until the e1000_check_for_link establishes link
3853 * for copper adapters ONLY
3854 */
3855 switch (hw->phy.media_type) {
3856 case e1000_media_type_copper:
3857 if (hw->mac.get_link_status) {
3858 ret_val = hw->mac.ops.check_for_link(hw);
3859 link_active = !hw->mac.get_link_status;
3860 } else {
3861 link_active = true;
3862 }
3863 break;
3864 case e1000_media_type_internal_serdes:
3865 ret_val = hw->mac.ops.check_for_link(hw);
3866 link_active = hw->mac.serdes_has_link;
3867 break;
3868 default:
3869 case e1000_media_type_unknown:
3870 break;
3871 }
3872
3873 return link_active;
3874 }
3875
3876 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3877 {
3878 bool ret = false;
3879 u32 ctrl_ext, thstat;
3880
3881 /* check for thermal sensor event on i350 copper only */
3882 if (hw->mac.type == e1000_i350) {
3883 thstat = rd32(E1000_THSTAT);
3884 ctrl_ext = rd32(E1000_CTRL_EXT);
3885
3886 if ((hw->phy.media_type == e1000_media_type_copper) &&
3887 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3888 ret = !!(thstat & event);
3889 }
3890
3891 return ret;
3892 }
3893
3894 /**
3895 * igb_watchdog - Timer Call-back
3896 * @data: pointer to adapter cast into an unsigned long
3897 **/
3898 static void igb_watchdog(unsigned long data)
3899 {
3900 struct igb_adapter *adapter = (struct igb_adapter *)data;
3901 /* Do the rest outside of interrupt context */
3902 schedule_work(&adapter->watchdog_task);
3903 }
3904
3905 static void igb_watchdog_task(struct work_struct *work)
3906 {
3907 struct igb_adapter *adapter = container_of(work,
3908 struct igb_adapter,
3909 watchdog_task);
3910 struct e1000_hw *hw = &adapter->hw;
3911 struct e1000_phy_info *phy = &hw->phy;
3912 struct net_device *netdev = adapter->netdev;
3913 u32 link;
3914 int i;
3915
3916 link = igb_has_link(adapter);
3917 if (link) {
3918 /* Cancel scheduled suspend requests. */
3919 pm_runtime_resume(netdev->dev.parent);
3920
3921 if (!netif_carrier_ok(netdev)) {
3922 u32 ctrl;
3923 hw->mac.ops.get_speed_and_duplex(hw,
3924 &adapter->link_speed,
3925 &adapter->link_duplex);
3926
3927 ctrl = rd32(E1000_CTRL);
3928 /* Links status message must follow this format */
3929 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3930 "Duplex, Flow Control: %s\n",
3931 netdev->name,
3932 adapter->link_speed,
3933 adapter->link_duplex == FULL_DUPLEX ?
3934 "Full" : "Half",
3935 (ctrl & E1000_CTRL_TFCE) &&
3936 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3937 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3938 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
3939
3940 /* check if SmartSpeed worked */
3941 igb_check_downshift(hw);
3942 if (phy->speed_downgraded)
3943 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3944
3945 /* check for thermal sensor event */
3946 if (igb_thermal_sensor_event(hw,
3947 E1000_THSTAT_LINK_THROTTLE)) {
3948 netdev_info(netdev, "The network adapter link "
3949 "speed was downshifted because it "
3950 "overheated\n");
3951 }
3952
3953 /* adjust timeout factor according to speed/duplex */
3954 adapter->tx_timeout_factor = 1;
3955 switch (adapter->link_speed) {
3956 case SPEED_10:
3957 adapter->tx_timeout_factor = 14;
3958 break;
3959 case SPEED_100:
3960 /* maybe add some timeout factor ? */
3961 break;
3962 }
3963
3964 netif_carrier_on(netdev);
3965
3966 igb_ping_all_vfs(adapter);
3967 igb_check_vf_rate_limit(adapter);
3968
3969 /* link state has changed, schedule phy info update */
3970 if (!test_bit(__IGB_DOWN, &adapter->state))
3971 mod_timer(&adapter->phy_info_timer,
3972 round_jiffies(jiffies + 2 * HZ));
3973 }
3974 } else {
3975 if (netif_carrier_ok(netdev)) {
3976 adapter->link_speed = 0;
3977 adapter->link_duplex = 0;
3978
3979 /* check for thermal sensor event */
3980 if (igb_thermal_sensor_event(hw,
3981 E1000_THSTAT_PWR_DOWN)) {
3982 netdev_err(netdev, "The network adapter was "
3983 "stopped because it overheated\n");
3984 }
3985
3986 /* Links status message must follow this format */
3987 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3988 netdev->name);
3989 netif_carrier_off(netdev);
3990
3991 igb_ping_all_vfs(adapter);
3992
3993 /* link state has changed, schedule phy info update */
3994 if (!test_bit(__IGB_DOWN, &adapter->state))
3995 mod_timer(&adapter->phy_info_timer,
3996 round_jiffies(jiffies + 2 * HZ));
3997
3998 pm_schedule_suspend(netdev->dev.parent,
3999 MSEC_PER_SEC * 5);
4000 }
4001 }
4002
4003 spin_lock(&adapter->stats64_lock);
4004 igb_update_stats(adapter, &adapter->stats64);
4005 spin_unlock(&adapter->stats64_lock);
4006
4007 for (i = 0; i < adapter->num_tx_queues; i++) {
4008 struct igb_ring *tx_ring = adapter->tx_ring[i];
4009 if (!netif_carrier_ok(netdev)) {
4010 /* We've lost link, so the controller stops DMA,
4011 * but we've got queued Tx work that's never going
4012 * to get done, so reset controller to flush Tx.
4013 * (Do the reset outside of interrupt context).
4014 */
4015 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4016 adapter->tx_timeout_count++;
4017 schedule_work(&adapter->reset_task);
4018 /* return immediately since reset is imminent */
4019 return;
4020 }
4021 }
4022
4023 /* Force detection of hung controller every watchdog period */
4024 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4025 }
4026
4027 /* Cause software interrupt to ensure Rx ring is cleaned */
4028 if (adapter->msix_entries) {
4029 u32 eics = 0;
4030 for (i = 0; i < adapter->num_q_vectors; i++)
4031 eics |= adapter->q_vector[i]->eims_value;
4032 wr32(E1000_EICS, eics);
4033 } else {
4034 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4035 }
4036
4037 igb_spoof_check(adapter);
4038 igb_ptp_rx_hang(adapter);
4039
4040 /* Reset the timer */
4041 if (!test_bit(__IGB_DOWN, &adapter->state))
4042 mod_timer(&adapter->watchdog_timer,
4043 round_jiffies(jiffies + 2 * HZ));
4044 }
4045
4046 enum latency_range {
4047 lowest_latency = 0,
4048 low_latency = 1,
4049 bulk_latency = 2,
4050 latency_invalid = 255
4051 };
4052
4053 /**
4054 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4055 * @q_vector: pointer to q_vector
4056 *
4057 * Stores a new ITR value based on strictly on packet size. This
4058 * algorithm is less sophisticated than that used in igb_update_itr,
4059 * due to the difficulty of synchronizing statistics across multiple
4060 * receive rings. The divisors and thresholds used by this function
4061 * were determined based on theoretical maximum wire speed and testing
4062 * data, in order to minimize response time while increasing bulk
4063 * throughput.
4064 * This functionality is controlled by the InterruptThrottleRate module
4065 * parameter (see igb_param.c)
4066 * NOTE: This function is called only when operating in a multiqueue
4067 * receive environment.
4068 **/
4069 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4070 {
4071 int new_val = q_vector->itr_val;
4072 int avg_wire_size = 0;
4073 struct igb_adapter *adapter = q_vector->adapter;
4074 unsigned int packets;
4075
4076 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4077 * ints/sec - ITR timer value of 120 ticks.
4078 */
4079 if (adapter->link_speed != SPEED_1000) {
4080 new_val = IGB_4K_ITR;
4081 goto set_itr_val;
4082 }
4083
4084 packets = q_vector->rx.total_packets;
4085 if (packets)
4086 avg_wire_size = q_vector->rx.total_bytes / packets;
4087
4088 packets = q_vector->tx.total_packets;
4089 if (packets)
4090 avg_wire_size = max_t(u32, avg_wire_size,
4091 q_vector->tx.total_bytes / packets);
4092
4093 /* if avg_wire_size isn't set no work was done */
4094 if (!avg_wire_size)
4095 goto clear_counts;
4096
4097 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4098 avg_wire_size += 24;
4099
4100 /* Don't starve jumbo frames */
4101 avg_wire_size = min(avg_wire_size, 3000);
4102
4103 /* Give a little boost to mid-size frames */
4104 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4105 new_val = avg_wire_size / 3;
4106 else
4107 new_val = avg_wire_size / 2;
4108
4109 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4110 if (new_val < IGB_20K_ITR &&
4111 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4112 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4113 new_val = IGB_20K_ITR;
4114
4115 set_itr_val:
4116 if (new_val != q_vector->itr_val) {
4117 q_vector->itr_val = new_val;
4118 q_vector->set_itr = 1;
4119 }
4120 clear_counts:
4121 q_vector->rx.total_bytes = 0;
4122 q_vector->rx.total_packets = 0;
4123 q_vector->tx.total_bytes = 0;
4124 q_vector->tx.total_packets = 0;
4125 }
4126
4127 /**
4128 * igb_update_itr - update the dynamic ITR value based on statistics
4129 * @q_vector: pointer to q_vector
4130 * @ring_container: ring info to update the itr for
4131 *
4132 * Stores a new ITR value based on packets and byte
4133 * counts during the last interrupt. The advantage of per interrupt
4134 * computation is faster updates and more accurate ITR for the current
4135 * traffic pattern. Constants in this function were computed
4136 * based on theoretical maximum wire speed and thresholds were set based
4137 * on testing data as well as attempting to minimize response time
4138 * while increasing bulk throughput.
4139 * this functionality is controlled by the InterruptThrottleRate module
4140 * parameter (see igb_param.c)
4141 * NOTE: These calculations are only valid when operating in a single-
4142 * queue environment.
4143 **/
4144 static void igb_update_itr(struct igb_q_vector *q_vector,
4145 struct igb_ring_container *ring_container)
4146 {
4147 unsigned int packets = ring_container->total_packets;
4148 unsigned int bytes = ring_container->total_bytes;
4149 u8 itrval = ring_container->itr;
4150
4151 /* no packets, exit with status unchanged */
4152 if (packets == 0)
4153 return;
4154
4155 switch (itrval) {
4156 case lowest_latency:
4157 /* handle TSO and jumbo frames */
4158 if (bytes/packets > 8000)
4159 itrval = bulk_latency;
4160 else if ((packets < 5) && (bytes > 512))
4161 itrval = low_latency;
4162 break;
4163 case low_latency: /* 50 usec aka 20000 ints/s */
4164 if (bytes > 10000) {
4165 /* this if handles the TSO accounting */
4166 if (bytes/packets > 8000) {
4167 itrval = bulk_latency;
4168 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4169 itrval = bulk_latency;
4170 } else if ((packets > 35)) {
4171 itrval = lowest_latency;
4172 }
4173 } else if (bytes/packets > 2000) {
4174 itrval = bulk_latency;
4175 } else if (packets <= 2 && bytes < 512) {
4176 itrval = lowest_latency;
4177 }
4178 break;
4179 case bulk_latency: /* 250 usec aka 4000 ints/s */
4180 if (bytes > 25000) {
4181 if (packets > 35)
4182 itrval = low_latency;
4183 } else if (bytes < 1500) {
4184 itrval = low_latency;
4185 }
4186 break;
4187 }
4188
4189 /* clear work counters since we have the values we need */
4190 ring_container->total_bytes = 0;
4191 ring_container->total_packets = 0;
4192
4193 /* write updated itr to ring container */
4194 ring_container->itr = itrval;
4195 }
4196
4197 static void igb_set_itr(struct igb_q_vector *q_vector)
4198 {
4199 struct igb_adapter *adapter = q_vector->adapter;
4200 u32 new_itr = q_vector->itr_val;
4201 u8 current_itr = 0;
4202
4203 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4204 if (adapter->link_speed != SPEED_1000) {
4205 current_itr = 0;
4206 new_itr = IGB_4K_ITR;
4207 goto set_itr_now;
4208 }
4209
4210 igb_update_itr(q_vector, &q_vector->tx);
4211 igb_update_itr(q_vector, &q_vector->rx);
4212
4213 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4214
4215 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4216 if (current_itr == lowest_latency &&
4217 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4218 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4219 current_itr = low_latency;
4220
4221 switch (current_itr) {
4222 /* counts and packets in update_itr are dependent on these numbers */
4223 case lowest_latency:
4224 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4225 break;
4226 case low_latency:
4227 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4228 break;
4229 case bulk_latency:
4230 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4231 break;
4232 default:
4233 break;
4234 }
4235
4236 set_itr_now:
4237 if (new_itr != q_vector->itr_val) {
4238 /* this attempts to bias the interrupt rate towards Bulk
4239 * by adding intermediate steps when interrupt rate is
4240 * increasing
4241 */
4242 new_itr = new_itr > q_vector->itr_val ?
4243 max((new_itr * q_vector->itr_val) /
4244 (new_itr + (q_vector->itr_val >> 2)),
4245 new_itr) : new_itr;
4246 /* Don't write the value here; it resets the adapter's
4247 * internal timer, and causes us to delay far longer than
4248 * we should between interrupts. Instead, we write the ITR
4249 * value at the beginning of the next interrupt so the timing
4250 * ends up being correct.
4251 */
4252 q_vector->itr_val = new_itr;
4253 q_vector->set_itr = 1;
4254 }
4255 }
4256
4257 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4258 u32 type_tucmd, u32 mss_l4len_idx)
4259 {
4260 struct e1000_adv_tx_context_desc *context_desc;
4261 u16 i = tx_ring->next_to_use;
4262
4263 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4264
4265 i++;
4266 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4267
4268 /* set bits to identify this as an advanced context descriptor */
4269 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4270
4271 /* For 82575, context index must be unique per ring. */
4272 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4273 mss_l4len_idx |= tx_ring->reg_idx << 4;
4274
4275 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4276 context_desc->seqnum_seed = 0;
4277 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4278 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4279 }
4280
4281 static int igb_tso(struct igb_ring *tx_ring,
4282 struct igb_tx_buffer *first,
4283 u8 *hdr_len)
4284 {
4285 struct sk_buff *skb = first->skb;
4286 u32 vlan_macip_lens, type_tucmd;
4287 u32 mss_l4len_idx, l4len;
4288
4289 if (skb->ip_summed != CHECKSUM_PARTIAL)
4290 return 0;
4291
4292 if (!skb_is_gso(skb))
4293 return 0;
4294
4295 if (skb_header_cloned(skb)) {
4296 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4297 if (err)
4298 return err;
4299 }
4300
4301 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4302 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4303
4304 if (first->protocol == __constant_htons(ETH_P_IP)) {
4305 struct iphdr *iph = ip_hdr(skb);
4306 iph->tot_len = 0;
4307 iph->check = 0;
4308 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4309 iph->daddr, 0,
4310 IPPROTO_TCP,
4311 0);
4312 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4313 first->tx_flags |= IGB_TX_FLAGS_TSO |
4314 IGB_TX_FLAGS_CSUM |
4315 IGB_TX_FLAGS_IPV4;
4316 } else if (skb_is_gso_v6(skb)) {
4317 ipv6_hdr(skb)->payload_len = 0;
4318 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4319 &ipv6_hdr(skb)->daddr,
4320 0, IPPROTO_TCP, 0);
4321 first->tx_flags |= IGB_TX_FLAGS_TSO |
4322 IGB_TX_FLAGS_CSUM;
4323 }
4324
4325 /* compute header lengths */
4326 l4len = tcp_hdrlen(skb);
4327 *hdr_len = skb_transport_offset(skb) + l4len;
4328
4329 /* update gso size and bytecount with header size */
4330 first->gso_segs = skb_shinfo(skb)->gso_segs;
4331 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4332
4333 /* MSS L4LEN IDX */
4334 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4335 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4336
4337 /* VLAN MACLEN IPLEN */
4338 vlan_macip_lens = skb_network_header_len(skb);
4339 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4340 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4341
4342 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4343
4344 return 1;
4345 }
4346
4347 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4348 {
4349 struct sk_buff *skb = first->skb;
4350 u32 vlan_macip_lens = 0;
4351 u32 mss_l4len_idx = 0;
4352 u32 type_tucmd = 0;
4353
4354 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4355 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4356 return;
4357 } else {
4358 u8 l4_hdr = 0;
4359 switch (first->protocol) {
4360 case __constant_htons(ETH_P_IP):
4361 vlan_macip_lens |= skb_network_header_len(skb);
4362 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4363 l4_hdr = ip_hdr(skb)->protocol;
4364 break;
4365 case __constant_htons(ETH_P_IPV6):
4366 vlan_macip_lens |= skb_network_header_len(skb);
4367 l4_hdr = ipv6_hdr(skb)->nexthdr;
4368 break;
4369 default:
4370 if (unlikely(net_ratelimit())) {
4371 dev_warn(tx_ring->dev,
4372 "partial checksum but proto=%x!\n",
4373 first->protocol);
4374 }
4375 break;
4376 }
4377
4378 switch (l4_hdr) {
4379 case IPPROTO_TCP:
4380 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4381 mss_l4len_idx = tcp_hdrlen(skb) <<
4382 E1000_ADVTXD_L4LEN_SHIFT;
4383 break;
4384 case IPPROTO_SCTP:
4385 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4386 mss_l4len_idx = sizeof(struct sctphdr) <<
4387 E1000_ADVTXD_L4LEN_SHIFT;
4388 break;
4389 case IPPROTO_UDP:
4390 mss_l4len_idx = sizeof(struct udphdr) <<
4391 E1000_ADVTXD_L4LEN_SHIFT;
4392 break;
4393 default:
4394 if (unlikely(net_ratelimit())) {
4395 dev_warn(tx_ring->dev,
4396 "partial checksum but l4 proto=%x!\n",
4397 l4_hdr);
4398 }
4399 break;
4400 }
4401
4402 /* update TX checksum flag */
4403 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4404 }
4405
4406 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4407 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4408
4409 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4410 }
4411
4412 #define IGB_SET_FLAG(_input, _flag, _result) \
4413 ((_flag <= _result) ? \
4414 ((u32)(_input & _flag) * (_result / _flag)) : \
4415 ((u32)(_input & _flag) / (_flag / _result)))
4416
4417 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4418 {
4419 /* set type for advanced descriptor with frame checksum insertion */
4420 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4421 E1000_ADVTXD_DCMD_DEXT |
4422 E1000_ADVTXD_DCMD_IFCS;
4423
4424 /* set HW vlan bit if vlan is present */
4425 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4426 (E1000_ADVTXD_DCMD_VLE));
4427
4428 /* set segmentation bits for TSO */
4429 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4430 (E1000_ADVTXD_DCMD_TSE));
4431
4432 /* set timestamp bit if present */
4433 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4434 (E1000_ADVTXD_MAC_TSTAMP));
4435
4436 /* insert frame checksum */
4437 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4438
4439 return cmd_type;
4440 }
4441
4442 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4443 union e1000_adv_tx_desc *tx_desc,
4444 u32 tx_flags, unsigned int paylen)
4445 {
4446 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4447
4448 /* 82575 requires a unique index per ring */
4449 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4450 olinfo_status |= tx_ring->reg_idx << 4;
4451
4452 /* insert L4 checksum */
4453 olinfo_status |= IGB_SET_FLAG(tx_flags,
4454 IGB_TX_FLAGS_CSUM,
4455 (E1000_TXD_POPTS_TXSM << 8));
4456
4457 /* insert IPv4 checksum */
4458 olinfo_status |= IGB_SET_FLAG(tx_flags,
4459 IGB_TX_FLAGS_IPV4,
4460 (E1000_TXD_POPTS_IXSM << 8));
4461
4462 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4463 }
4464
4465 static void igb_tx_map(struct igb_ring *tx_ring,
4466 struct igb_tx_buffer *first,
4467 const u8 hdr_len)
4468 {
4469 struct sk_buff *skb = first->skb;
4470 struct igb_tx_buffer *tx_buffer;
4471 union e1000_adv_tx_desc *tx_desc;
4472 struct skb_frag_struct *frag;
4473 dma_addr_t dma;
4474 unsigned int data_len, size;
4475 u32 tx_flags = first->tx_flags;
4476 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4477 u16 i = tx_ring->next_to_use;
4478
4479 tx_desc = IGB_TX_DESC(tx_ring, i);
4480
4481 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4482
4483 size = skb_headlen(skb);
4484 data_len = skb->data_len;
4485
4486 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4487
4488 tx_buffer = first;
4489
4490 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4491 if (dma_mapping_error(tx_ring->dev, dma))
4492 goto dma_error;
4493
4494 /* record length, and DMA address */
4495 dma_unmap_len_set(tx_buffer, len, size);
4496 dma_unmap_addr_set(tx_buffer, dma, dma);
4497
4498 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4499
4500 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4501 tx_desc->read.cmd_type_len =
4502 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4503
4504 i++;
4505 tx_desc++;
4506 if (i == tx_ring->count) {
4507 tx_desc = IGB_TX_DESC(tx_ring, 0);
4508 i = 0;
4509 }
4510 tx_desc->read.olinfo_status = 0;
4511
4512 dma += IGB_MAX_DATA_PER_TXD;
4513 size -= IGB_MAX_DATA_PER_TXD;
4514
4515 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4516 }
4517
4518 if (likely(!data_len))
4519 break;
4520
4521 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4522
4523 i++;
4524 tx_desc++;
4525 if (i == tx_ring->count) {
4526 tx_desc = IGB_TX_DESC(tx_ring, 0);
4527 i = 0;
4528 }
4529 tx_desc->read.olinfo_status = 0;
4530
4531 size = skb_frag_size(frag);
4532 data_len -= size;
4533
4534 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4535 size, DMA_TO_DEVICE);
4536
4537 tx_buffer = &tx_ring->tx_buffer_info[i];
4538 }
4539
4540 /* write last descriptor with RS and EOP bits */
4541 cmd_type |= size | IGB_TXD_DCMD;
4542 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4543
4544 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4545
4546 /* set the timestamp */
4547 first->time_stamp = jiffies;
4548
4549 /* Force memory writes to complete before letting h/w know there
4550 * are new descriptors to fetch. (Only applicable for weak-ordered
4551 * memory model archs, such as IA-64).
4552 *
4553 * We also need this memory barrier to make certain all of the
4554 * status bits have been updated before next_to_watch is written.
4555 */
4556 wmb();
4557
4558 /* set next_to_watch value indicating a packet is present */
4559 first->next_to_watch = tx_desc;
4560
4561 i++;
4562 if (i == tx_ring->count)
4563 i = 0;
4564
4565 tx_ring->next_to_use = i;
4566
4567 writel(i, tx_ring->tail);
4568
4569 /* we need this if more than one processor can write to our tail
4570 * at a time, it synchronizes IO on IA64/Altix systems
4571 */
4572 mmiowb();
4573
4574 return;
4575
4576 dma_error:
4577 dev_err(tx_ring->dev, "TX DMA map failed\n");
4578
4579 /* clear dma mappings for failed tx_buffer_info map */
4580 for (;;) {
4581 tx_buffer = &tx_ring->tx_buffer_info[i];
4582 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4583 if (tx_buffer == first)
4584 break;
4585 if (i == 0)
4586 i = tx_ring->count;
4587 i--;
4588 }
4589
4590 tx_ring->next_to_use = i;
4591 }
4592
4593 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4594 {
4595 struct net_device *netdev = tx_ring->netdev;
4596
4597 netif_stop_subqueue(netdev, tx_ring->queue_index);
4598
4599 /* Herbert's original patch had:
4600 * smp_mb__after_netif_stop_queue();
4601 * but since that doesn't exist yet, just open code it.
4602 */
4603 smp_mb();
4604
4605 /* We need to check again in a case another CPU has just
4606 * made room available.
4607 */
4608 if (igb_desc_unused(tx_ring) < size)
4609 return -EBUSY;
4610
4611 /* A reprieve! */
4612 netif_wake_subqueue(netdev, tx_ring->queue_index);
4613
4614 u64_stats_update_begin(&tx_ring->tx_syncp2);
4615 tx_ring->tx_stats.restart_queue2++;
4616 u64_stats_update_end(&tx_ring->tx_syncp2);
4617
4618 return 0;
4619 }
4620
4621 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4622 {
4623 if (igb_desc_unused(tx_ring) >= size)
4624 return 0;
4625 return __igb_maybe_stop_tx(tx_ring, size);
4626 }
4627
4628 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4629 struct igb_ring *tx_ring)
4630 {
4631 struct igb_tx_buffer *first;
4632 int tso;
4633 u32 tx_flags = 0;
4634 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4635 __be16 protocol = vlan_get_protocol(skb);
4636 u8 hdr_len = 0;
4637
4638 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4639 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4640 * + 2 desc gap to keep tail from touching head,
4641 * + 1 desc for context descriptor,
4642 * otherwise try next time
4643 */
4644 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4645 unsigned short f;
4646 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4647 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4648 } else {
4649 count += skb_shinfo(skb)->nr_frags;
4650 }
4651
4652 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4653 /* this is a hard error */
4654 return NETDEV_TX_BUSY;
4655 }
4656
4657 /* record the location of the first descriptor for this packet */
4658 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4659 first->skb = skb;
4660 first->bytecount = skb->len;
4661 first->gso_segs = 1;
4662
4663 skb_tx_timestamp(skb);
4664
4665 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4666 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4667
4668 if (!(adapter->ptp_tx_skb)) {
4669 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4670 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4671
4672 adapter->ptp_tx_skb = skb_get(skb);
4673 adapter->ptp_tx_start = jiffies;
4674 if (adapter->hw.mac.type == e1000_82576)
4675 schedule_work(&adapter->ptp_tx_work);
4676 }
4677 }
4678
4679 if (vlan_tx_tag_present(skb)) {
4680 tx_flags |= IGB_TX_FLAGS_VLAN;
4681 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4682 }
4683
4684 /* record initial flags and protocol */
4685 first->tx_flags = tx_flags;
4686 first->protocol = protocol;
4687
4688 tso = igb_tso(tx_ring, first, &hdr_len);
4689 if (tso < 0)
4690 goto out_drop;
4691 else if (!tso)
4692 igb_tx_csum(tx_ring, first);
4693
4694 igb_tx_map(tx_ring, first, hdr_len);
4695
4696 /* Make sure there is space in the ring for the next send. */
4697 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4698
4699 return NETDEV_TX_OK;
4700
4701 out_drop:
4702 igb_unmap_and_free_tx_resource(tx_ring, first);
4703
4704 return NETDEV_TX_OK;
4705 }
4706
4707 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4708 struct sk_buff *skb)
4709 {
4710 unsigned int r_idx = skb->queue_mapping;
4711
4712 if (r_idx >= adapter->num_tx_queues)
4713 r_idx = r_idx % adapter->num_tx_queues;
4714
4715 return adapter->tx_ring[r_idx];
4716 }
4717
4718 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4719 struct net_device *netdev)
4720 {
4721 struct igb_adapter *adapter = netdev_priv(netdev);
4722
4723 if (test_bit(__IGB_DOWN, &adapter->state)) {
4724 dev_kfree_skb_any(skb);
4725 return NETDEV_TX_OK;
4726 }
4727
4728 if (skb->len <= 0) {
4729 dev_kfree_skb_any(skb);
4730 return NETDEV_TX_OK;
4731 }
4732
4733 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4734 * in order to meet this minimum size requirement.
4735 */
4736 if (unlikely(skb->len < 17)) {
4737 if (skb_pad(skb, 17 - skb->len))
4738 return NETDEV_TX_OK;
4739 skb->len = 17;
4740 skb_set_tail_pointer(skb, 17);
4741 }
4742
4743 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4744 }
4745
4746 /**
4747 * igb_tx_timeout - Respond to a Tx Hang
4748 * @netdev: network interface device structure
4749 **/
4750 static void igb_tx_timeout(struct net_device *netdev)
4751 {
4752 struct igb_adapter *adapter = netdev_priv(netdev);
4753 struct e1000_hw *hw = &adapter->hw;
4754
4755 /* Do the reset outside of interrupt context */
4756 adapter->tx_timeout_count++;
4757
4758 if (hw->mac.type >= e1000_82580)
4759 hw->dev_spec._82575.global_device_reset = true;
4760
4761 schedule_work(&adapter->reset_task);
4762 wr32(E1000_EICS,
4763 (adapter->eims_enable_mask & ~adapter->eims_other));
4764 }
4765
4766 static void igb_reset_task(struct work_struct *work)
4767 {
4768 struct igb_adapter *adapter;
4769 adapter = container_of(work, struct igb_adapter, reset_task);
4770
4771 igb_dump(adapter);
4772 netdev_err(adapter->netdev, "Reset adapter\n");
4773 igb_reinit_locked(adapter);
4774 }
4775
4776 /**
4777 * igb_get_stats64 - Get System Network Statistics
4778 * @netdev: network interface device structure
4779 * @stats: rtnl_link_stats64 pointer
4780 **/
4781 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4782 struct rtnl_link_stats64 *stats)
4783 {
4784 struct igb_adapter *adapter = netdev_priv(netdev);
4785
4786 spin_lock(&adapter->stats64_lock);
4787 igb_update_stats(adapter, &adapter->stats64);
4788 memcpy(stats, &adapter->stats64, sizeof(*stats));
4789 spin_unlock(&adapter->stats64_lock);
4790
4791 return stats;
4792 }
4793
4794 /**
4795 * igb_change_mtu - Change the Maximum Transfer Unit
4796 * @netdev: network interface device structure
4797 * @new_mtu: new value for maximum frame size
4798 *
4799 * Returns 0 on success, negative on failure
4800 **/
4801 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4802 {
4803 struct igb_adapter *adapter = netdev_priv(netdev);
4804 struct pci_dev *pdev = adapter->pdev;
4805 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4806
4807 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4808 dev_err(&pdev->dev, "Invalid MTU setting\n");
4809 return -EINVAL;
4810 }
4811
4812 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4813 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4814 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4815 return -EINVAL;
4816 }
4817
4818 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4819 msleep(1);
4820
4821 /* igb_down has a dependency on max_frame_size */
4822 adapter->max_frame_size = max_frame;
4823
4824 if (netif_running(netdev))
4825 igb_down(adapter);
4826
4827 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4828 netdev->mtu, new_mtu);
4829 netdev->mtu = new_mtu;
4830
4831 if (netif_running(netdev))
4832 igb_up(adapter);
4833 else
4834 igb_reset(adapter);
4835
4836 clear_bit(__IGB_RESETTING, &adapter->state);
4837
4838 return 0;
4839 }
4840
4841 /**
4842 * igb_update_stats - Update the board statistics counters
4843 * @adapter: board private structure
4844 **/
4845 void igb_update_stats(struct igb_adapter *adapter,
4846 struct rtnl_link_stats64 *net_stats)
4847 {
4848 struct e1000_hw *hw = &adapter->hw;
4849 struct pci_dev *pdev = adapter->pdev;
4850 u32 reg, mpc;
4851 u16 phy_tmp;
4852 int i;
4853 u64 bytes, packets;
4854 unsigned int start;
4855 u64 _bytes, _packets;
4856
4857 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4858
4859 /* Prevent stats update while adapter is being reset, or if the pci
4860 * connection is down.
4861 */
4862 if (adapter->link_speed == 0)
4863 return;
4864 if (pci_channel_offline(pdev))
4865 return;
4866
4867 bytes = 0;
4868 packets = 0;
4869 for (i = 0; i < adapter->num_rx_queues; i++) {
4870 u32 rqdpc = rd32(E1000_RQDPC(i));
4871 struct igb_ring *ring = adapter->rx_ring[i];
4872
4873 if (rqdpc) {
4874 ring->rx_stats.drops += rqdpc;
4875 net_stats->rx_fifo_errors += rqdpc;
4876 }
4877
4878 do {
4879 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4880 _bytes = ring->rx_stats.bytes;
4881 _packets = ring->rx_stats.packets;
4882 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4883 bytes += _bytes;
4884 packets += _packets;
4885 }
4886
4887 net_stats->rx_bytes = bytes;
4888 net_stats->rx_packets = packets;
4889
4890 bytes = 0;
4891 packets = 0;
4892 for (i = 0; i < adapter->num_tx_queues; i++) {
4893 struct igb_ring *ring = adapter->tx_ring[i];
4894 do {
4895 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4896 _bytes = ring->tx_stats.bytes;
4897 _packets = ring->tx_stats.packets;
4898 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4899 bytes += _bytes;
4900 packets += _packets;
4901 }
4902 net_stats->tx_bytes = bytes;
4903 net_stats->tx_packets = packets;
4904
4905 /* read stats registers */
4906 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4907 adapter->stats.gprc += rd32(E1000_GPRC);
4908 adapter->stats.gorc += rd32(E1000_GORCL);
4909 rd32(E1000_GORCH); /* clear GORCL */
4910 adapter->stats.bprc += rd32(E1000_BPRC);
4911 adapter->stats.mprc += rd32(E1000_MPRC);
4912 adapter->stats.roc += rd32(E1000_ROC);
4913
4914 adapter->stats.prc64 += rd32(E1000_PRC64);
4915 adapter->stats.prc127 += rd32(E1000_PRC127);
4916 adapter->stats.prc255 += rd32(E1000_PRC255);
4917 adapter->stats.prc511 += rd32(E1000_PRC511);
4918 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4919 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4920 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4921 adapter->stats.sec += rd32(E1000_SEC);
4922
4923 mpc = rd32(E1000_MPC);
4924 adapter->stats.mpc += mpc;
4925 net_stats->rx_fifo_errors += mpc;
4926 adapter->stats.scc += rd32(E1000_SCC);
4927 adapter->stats.ecol += rd32(E1000_ECOL);
4928 adapter->stats.mcc += rd32(E1000_MCC);
4929 adapter->stats.latecol += rd32(E1000_LATECOL);
4930 adapter->stats.dc += rd32(E1000_DC);
4931 adapter->stats.rlec += rd32(E1000_RLEC);
4932 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4933 adapter->stats.xontxc += rd32(E1000_XONTXC);
4934 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4935 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4936 adapter->stats.fcruc += rd32(E1000_FCRUC);
4937 adapter->stats.gptc += rd32(E1000_GPTC);
4938 adapter->stats.gotc += rd32(E1000_GOTCL);
4939 rd32(E1000_GOTCH); /* clear GOTCL */
4940 adapter->stats.rnbc += rd32(E1000_RNBC);
4941 adapter->stats.ruc += rd32(E1000_RUC);
4942 adapter->stats.rfc += rd32(E1000_RFC);
4943 adapter->stats.rjc += rd32(E1000_RJC);
4944 adapter->stats.tor += rd32(E1000_TORH);
4945 adapter->stats.tot += rd32(E1000_TOTH);
4946 adapter->stats.tpr += rd32(E1000_TPR);
4947
4948 adapter->stats.ptc64 += rd32(E1000_PTC64);
4949 adapter->stats.ptc127 += rd32(E1000_PTC127);
4950 adapter->stats.ptc255 += rd32(E1000_PTC255);
4951 adapter->stats.ptc511 += rd32(E1000_PTC511);
4952 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4953 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4954
4955 adapter->stats.mptc += rd32(E1000_MPTC);
4956 adapter->stats.bptc += rd32(E1000_BPTC);
4957
4958 adapter->stats.tpt += rd32(E1000_TPT);
4959 adapter->stats.colc += rd32(E1000_COLC);
4960
4961 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4962 /* read internal phy specific stats */
4963 reg = rd32(E1000_CTRL_EXT);
4964 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4965 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4966
4967 /* this stat has invalid values on i210/i211 */
4968 if ((hw->mac.type != e1000_i210) &&
4969 (hw->mac.type != e1000_i211))
4970 adapter->stats.tncrs += rd32(E1000_TNCRS);
4971 }
4972
4973 adapter->stats.tsctc += rd32(E1000_TSCTC);
4974 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4975
4976 adapter->stats.iac += rd32(E1000_IAC);
4977 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4978 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4979 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4980 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4981 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4982 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4983 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4984 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4985
4986 /* Fill out the OS statistics structure */
4987 net_stats->multicast = adapter->stats.mprc;
4988 net_stats->collisions = adapter->stats.colc;
4989
4990 /* Rx Errors */
4991
4992 /* RLEC on some newer hardware can be incorrect so build
4993 * our own version based on RUC and ROC
4994 */
4995 net_stats->rx_errors = adapter->stats.rxerrc +
4996 adapter->stats.crcerrs + adapter->stats.algnerrc +
4997 adapter->stats.ruc + adapter->stats.roc +
4998 adapter->stats.cexterr;
4999 net_stats->rx_length_errors = adapter->stats.ruc +
5000 adapter->stats.roc;
5001 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5002 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5003 net_stats->rx_missed_errors = adapter->stats.mpc;
5004
5005 /* Tx Errors */
5006 net_stats->tx_errors = adapter->stats.ecol +
5007 adapter->stats.latecol;
5008 net_stats->tx_aborted_errors = adapter->stats.ecol;
5009 net_stats->tx_window_errors = adapter->stats.latecol;
5010 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5011
5012 /* Tx Dropped needs to be maintained elsewhere */
5013
5014 /* Phy Stats */
5015 if (hw->phy.media_type == e1000_media_type_copper) {
5016 if ((adapter->link_speed == SPEED_1000) &&
5017 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5018 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5019 adapter->phy_stats.idle_errors += phy_tmp;
5020 }
5021 }
5022
5023 /* Management Stats */
5024 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5025 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5026 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5027
5028 /* OS2BMC Stats */
5029 reg = rd32(E1000_MANC);
5030 if (reg & E1000_MANC_EN_BMC2OS) {
5031 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5032 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5033 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5034 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5035 }
5036 }
5037
5038 static irqreturn_t igb_msix_other(int irq, void *data)
5039 {
5040 struct igb_adapter *adapter = data;
5041 struct e1000_hw *hw = &adapter->hw;
5042 u32 icr = rd32(E1000_ICR);
5043 /* reading ICR causes bit 31 of EICR to be cleared */
5044
5045 if (icr & E1000_ICR_DRSTA)
5046 schedule_work(&adapter->reset_task);
5047
5048 if (icr & E1000_ICR_DOUTSYNC) {
5049 /* HW is reporting DMA is out of sync */
5050 adapter->stats.doosync++;
5051 /* The DMA Out of Sync is also indication of a spoof event
5052 * in IOV mode. Check the Wrong VM Behavior register to
5053 * see if it is really a spoof event.
5054 */
5055 igb_check_wvbr(adapter);
5056 }
5057
5058 /* Check for a mailbox event */
5059 if (icr & E1000_ICR_VMMB)
5060 igb_msg_task(adapter);
5061
5062 if (icr & E1000_ICR_LSC) {
5063 hw->mac.get_link_status = 1;
5064 /* guard against interrupt when we're going down */
5065 if (!test_bit(__IGB_DOWN, &adapter->state))
5066 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5067 }
5068
5069 if (icr & E1000_ICR_TS) {
5070 u32 tsicr = rd32(E1000_TSICR);
5071
5072 if (tsicr & E1000_TSICR_TXTS) {
5073 /* acknowledge the interrupt */
5074 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5075 /* retrieve hardware timestamp */
5076 schedule_work(&adapter->ptp_tx_work);
5077 }
5078 }
5079
5080 wr32(E1000_EIMS, adapter->eims_other);
5081
5082 return IRQ_HANDLED;
5083 }
5084
5085 static void igb_write_itr(struct igb_q_vector *q_vector)
5086 {
5087 struct igb_adapter *adapter = q_vector->adapter;
5088 u32 itr_val = q_vector->itr_val & 0x7FFC;
5089
5090 if (!q_vector->set_itr)
5091 return;
5092
5093 if (!itr_val)
5094 itr_val = 0x4;
5095
5096 if (adapter->hw.mac.type == e1000_82575)
5097 itr_val |= itr_val << 16;
5098 else
5099 itr_val |= E1000_EITR_CNT_IGNR;
5100
5101 writel(itr_val, q_vector->itr_register);
5102 q_vector->set_itr = 0;
5103 }
5104
5105 static irqreturn_t igb_msix_ring(int irq, void *data)
5106 {
5107 struct igb_q_vector *q_vector = data;
5108
5109 /* Write the ITR value calculated from the previous interrupt. */
5110 igb_write_itr(q_vector);
5111
5112 napi_schedule(&q_vector->napi);
5113
5114 return IRQ_HANDLED;
5115 }
5116
5117 #ifdef CONFIG_IGB_DCA
5118 static void igb_update_tx_dca(struct igb_adapter *adapter,
5119 struct igb_ring *tx_ring,
5120 int cpu)
5121 {
5122 struct e1000_hw *hw = &adapter->hw;
5123 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5124
5125 if (hw->mac.type != e1000_82575)
5126 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5127
5128 /* We can enable relaxed ordering for reads, but not writes when
5129 * DCA is enabled. This is due to a known issue in some chipsets
5130 * which will cause the DCA tag to be cleared.
5131 */
5132 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5133 E1000_DCA_TXCTRL_DATA_RRO_EN |
5134 E1000_DCA_TXCTRL_DESC_DCA_EN;
5135
5136 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5137 }
5138
5139 static void igb_update_rx_dca(struct igb_adapter *adapter,
5140 struct igb_ring *rx_ring,
5141 int cpu)
5142 {
5143 struct e1000_hw *hw = &adapter->hw;
5144 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5145
5146 if (hw->mac.type != e1000_82575)
5147 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5148
5149 /* We can enable relaxed ordering for reads, but not writes when
5150 * DCA is enabled. This is due to a known issue in some chipsets
5151 * which will cause the DCA tag to be cleared.
5152 */
5153 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5154 E1000_DCA_RXCTRL_DESC_DCA_EN;
5155
5156 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5157 }
5158
5159 static void igb_update_dca(struct igb_q_vector *q_vector)
5160 {
5161 struct igb_adapter *adapter = q_vector->adapter;
5162 int cpu = get_cpu();
5163
5164 if (q_vector->cpu == cpu)
5165 goto out_no_update;
5166
5167 if (q_vector->tx.ring)
5168 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5169
5170 if (q_vector->rx.ring)
5171 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5172
5173 q_vector->cpu = cpu;
5174 out_no_update:
5175 put_cpu();
5176 }
5177
5178 static void igb_setup_dca(struct igb_adapter *adapter)
5179 {
5180 struct e1000_hw *hw = &adapter->hw;
5181 int i;
5182
5183 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5184 return;
5185
5186 /* Always use CB2 mode, difference is masked in the CB driver. */
5187 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5188
5189 for (i = 0; i < adapter->num_q_vectors; i++) {
5190 adapter->q_vector[i]->cpu = -1;
5191 igb_update_dca(adapter->q_vector[i]);
5192 }
5193 }
5194
5195 static int __igb_notify_dca(struct device *dev, void *data)
5196 {
5197 struct net_device *netdev = dev_get_drvdata(dev);
5198 struct igb_adapter *adapter = netdev_priv(netdev);
5199 struct pci_dev *pdev = adapter->pdev;
5200 struct e1000_hw *hw = &adapter->hw;
5201 unsigned long event = *(unsigned long *)data;
5202
5203 switch (event) {
5204 case DCA_PROVIDER_ADD:
5205 /* if already enabled, don't do it again */
5206 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5207 break;
5208 if (dca_add_requester(dev) == 0) {
5209 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5210 dev_info(&pdev->dev, "DCA enabled\n");
5211 igb_setup_dca(adapter);
5212 break;
5213 }
5214 /* Fall Through since DCA is disabled. */
5215 case DCA_PROVIDER_REMOVE:
5216 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5217 /* without this a class_device is left
5218 * hanging around in the sysfs model
5219 */
5220 dca_remove_requester(dev);
5221 dev_info(&pdev->dev, "DCA disabled\n");
5222 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5223 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5224 }
5225 break;
5226 }
5227
5228 return 0;
5229 }
5230
5231 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5232 void *p)
5233 {
5234 int ret_val;
5235
5236 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5237 __igb_notify_dca);
5238
5239 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5240 }
5241 #endif /* CONFIG_IGB_DCA */
5242
5243 #ifdef CONFIG_PCI_IOV
5244 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5245 {
5246 unsigned char mac_addr[ETH_ALEN];
5247
5248 eth_zero_addr(mac_addr);
5249 igb_set_vf_mac(adapter, vf, mac_addr);
5250
5251 /* By default spoof check is enabled for all VFs */
5252 adapter->vf_data[vf].spoofchk_enabled = true;
5253
5254 return 0;
5255 }
5256
5257 #endif
5258 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5259 {
5260 struct e1000_hw *hw = &adapter->hw;
5261 u32 ping;
5262 int i;
5263
5264 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5265 ping = E1000_PF_CONTROL_MSG;
5266 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5267 ping |= E1000_VT_MSGTYPE_CTS;
5268 igb_write_mbx(hw, &ping, 1, i);
5269 }
5270 }
5271
5272 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5273 {
5274 struct e1000_hw *hw = &adapter->hw;
5275 u32 vmolr = rd32(E1000_VMOLR(vf));
5276 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5277
5278 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5279 IGB_VF_FLAG_MULTI_PROMISC);
5280 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5281
5282 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5283 vmolr |= E1000_VMOLR_MPME;
5284 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5285 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5286 } else {
5287 /* if we have hashes and we are clearing a multicast promisc
5288 * flag we need to write the hashes to the MTA as this step
5289 * was previously skipped
5290 */
5291 if (vf_data->num_vf_mc_hashes > 30) {
5292 vmolr |= E1000_VMOLR_MPME;
5293 } else if (vf_data->num_vf_mc_hashes) {
5294 int j;
5295 vmolr |= E1000_VMOLR_ROMPE;
5296 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5297 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5298 }
5299 }
5300
5301 wr32(E1000_VMOLR(vf), vmolr);
5302
5303 /* there are flags left unprocessed, likely not supported */
5304 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5305 return -EINVAL;
5306
5307 return 0;
5308 }
5309
5310 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5311 u32 *msgbuf, u32 vf)
5312 {
5313 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5314 u16 *hash_list = (u16 *)&msgbuf[1];
5315 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5316 int i;
5317
5318 /* salt away the number of multicast addresses assigned
5319 * to this VF for later use to restore when the PF multi cast
5320 * list changes
5321 */
5322 vf_data->num_vf_mc_hashes = n;
5323
5324 /* only up to 30 hash values supported */
5325 if (n > 30)
5326 n = 30;
5327
5328 /* store the hashes for later use */
5329 for (i = 0; i < n; i++)
5330 vf_data->vf_mc_hashes[i] = hash_list[i];
5331
5332 /* Flush and reset the mta with the new values */
5333 igb_set_rx_mode(adapter->netdev);
5334
5335 return 0;
5336 }
5337
5338 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5339 {
5340 struct e1000_hw *hw = &adapter->hw;
5341 struct vf_data_storage *vf_data;
5342 int i, j;
5343
5344 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5345 u32 vmolr = rd32(E1000_VMOLR(i));
5346 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5347
5348 vf_data = &adapter->vf_data[i];
5349
5350 if ((vf_data->num_vf_mc_hashes > 30) ||
5351 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5352 vmolr |= E1000_VMOLR_MPME;
5353 } else if (vf_data->num_vf_mc_hashes) {
5354 vmolr |= E1000_VMOLR_ROMPE;
5355 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5356 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5357 }
5358 wr32(E1000_VMOLR(i), vmolr);
5359 }
5360 }
5361
5362 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5363 {
5364 struct e1000_hw *hw = &adapter->hw;
5365 u32 pool_mask, reg, vid;
5366 int i;
5367
5368 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5369
5370 /* Find the vlan filter for this id */
5371 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5372 reg = rd32(E1000_VLVF(i));
5373
5374 /* remove the vf from the pool */
5375 reg &= ~pool_mask;
5376
5377 /* if pool is empty then remove entry from vfta */
5378 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5379 (reg & E1000_VLVF_VLANID_ENABLE)) {
5380 reg = 0;
5381 vid = reg & E1000_VLVF_VLANID_MASK;
5382 igb_vfta_set(hw, vid, false);
5383 }
5384
5385 wr32(E1000_VLVF(i), reg);
5386 }
5387
5388 adapter->vf_data[vf].vlans_enabled = 0;
5389 }
5390
5391 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5392 {
5393 struct e1000_hw *hw = &adapter->hw;
5394 u32 reg, i;
5395
5396 /* The vlvf table only exists on 82576 hardware and newer */
5397 if (hw->mac.type < e1000_82576)
5398 return -1;
5399
5400 /* we only need to do this if VMDq is enabled */
5401 if (!adapter->vfs_allocated_count)
5402 return -1;
5403
5404 /* Find the vlan filter for this id */
5405 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5406 reg = rd32(E1000_VLVF(i));
5407 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5408 vid == (reg & E1000_VLVF_VLANID_MASK))
5409 break;
5410 }
5411
5412 if (add) {
5413 if (i == E1000_VLVF_ARRAY_SIZE) {
5414 /* Did not find a matching VLAN ID entry that was
5415 * enabled. Search for a free filter entry, i.e.
5416 * one without the enable bit set
5417 */
5418 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5419 reg = rd32(E1000_VLVF(i));
5420 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5421 break;
5422 }
5423 }
5424 if (i < E1000_VLVF_ARRAY_SIZE) {
5425 /* Found an enabled/available entry */
5426 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5427
5428 /* if !enabled we need to set this up in vfta */
5429 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5430 /* add VID to filter table */
5431 igb_vfta_set(hw, vid, true);
5432 reg |= E1000_VLVF_VLANID_ENABLE;
5433 }
5434 reg &= ~E1000_VLVF_VLANID_MASK;
5435 reg |= vid;
5436 wr32(E1000_VLVF(i), reg);
5437
5438 /* do not modify RLPML for PF devices */
5439 if (vf >= adapter->vfs_allocated_count)
5440 return 0;
5441
5442 if (!adapter->vf_data[vf].vlans_enabled) {
5443 u32 size;
5444 reg = rd32(E1000_VMOLR(vf));
5445 size = reg & E1000_VMOLR_RLPML_MASK;
5446 size += 4;
5447 reg &= ~E1000_VMOLR_RLPML_MASK;
5448 reg |= size;
5449 wr32(E1000_VMOLR(vf), reg);
5450 }
5451
5452 adapter->vf_data[vf].vlans_enabled++;
5453 }
5454 } else {
5455 if (i < E1000_VLVF_ARRAY_SIZE) {
5456 /* remove vf from the pool */
5457 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5458 /* if pool is empty then remove entry from vfta */
5459 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5460 reg = 0;
5461 igb_vfta_set(hw, vid, false);
5462 }
5463 wr32(E1000_VLVF(i), reg);
5464
5465 /* do not modify RLPML for PF devices */
5466 if (vf >= adapter->vfs_allocated_count)
5467 return 0;
5468
5469 adapter->vf_data[vf].vlans_enabled--;
5470 if (!adapter->vf_data[vf].vlans_enabled) {
5471 u32 size;
5472 reg = rd32(E1000_VMOLR(vf));
5473 size = reg & E1000_VMOLR_RLPML_MASK;
5474 size -= 4;
5475 reg &= ~E1000_VMOLR_RLPML_MASK;
5476 reg |= size;
5477 wr32(E1000_VMOLR(vf), reg);
5478 }
5479 }
5480 }
5481 return 0;
5482 }
5483
5484 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5485 {
5486 struct e1000_hw *hw = &adapter->hw;
5487
5488 if (vid)
5489 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5490 else
5491 wr32(E1000_VMVIR(vf), 0);
5492 }
5493
5494 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5495 int vf, u16 vlan, u8 qos)
5496 {
5497 int err = 0;
5498 struct igb_adapter *adapter = netdev_priv(netdev);
5499
5500 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5501 return -EINVAL;
5502 if (vlan || qos) {
5503 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5504 if (err)
5505 goto out;
5506 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5507 igb_set_vmolr(adapter, vf, !vlan);
5508 adapter->vf_data[vf].pf_vlan = vlan;
5509 adapter->vf_data[vf].pf_qos = qos;
5510 dev_info(&adapter->pdev->dev,
5511 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5512 if (test_bit(__IGB_DOWN, &adapter->state)) {
5513 dev_warn(&adapter->pdev->dev,
5514 "The VF VLAN has been set, but the PF device is not up.\n");
5515 dev_warn(&adapter->pdev->dev,
5516 "Bring the PF device up before attempting to use the VF device.\n");
5517 }
5518 } else {
5519 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5520 false, vf);
5521 igb_set_vmvir(adapter, vlan, vf);
5522 igb_set_vmolr(adapter, vf, true);
5523 adapter->vf_data[vf].pf_vlan = 0;
5524 adapter->vf_data[vf].pf_qos = 0;
5525 }
5526 out:
5527 return err;
5528 }
5529
5530 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5531 {
5532 struct e1000_hw *hw = &adapter->hw;
5533 int i;
5534 u32 reg;
5535
5536 /* Find the vlan filter for this id */
5537 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5538 reg = rd32(E1000_VLVF(i));
5539 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5540 vid == (reg & E1000_VLVF_VLANID_MASK))
5541 break;
5542 }
5543
5544 if (i >= E1000_VLVF_ARRAY_SIZE)
5545 i = -1;
5546
5547 return i;
5548 }
5549
5550 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5551 {
5552 struct e1000_hw *hw = &adapter->hw;
5553 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5554 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5555 int err = 0;
5556
5557 /* If in promiscuous mode we need to make sure the PF also has
5558 * the VLAN filter set.
5559 */
5560 if (add && (adapter->netdev->flags & IFF_PROMISC))
5561 err = igb_vlvf_set(adapter, vid, add,
5562 adapter->vfs_allocated_count);
5563 if (err)
5564 goto out;
5565
5566 err = igb_vlvf_set(adapter, vid, add, vf);
5567
5568 if (err)
5569 goto out;
5570
5571 /* Go through all the checks to see if the VLAN filter should
5572 * be wiped completely.
5573 */
5574 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5575 u32 vlvf, bits;
5576
5577 int regndx = igb_find_vlvf_entry(adapter, vid);
5578 if (regndx < 0)
5579 goto out;
5580 /* See if any other pools are set for this VLAN filter
5581 * entry other than the PF.
5582 */
5583 vlvf = bits = rd32(E1000_VLVF(regndx));
5584 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5585 adapter->vfs_allocated_count);
5586 /* If the filter was removed then ensure PF pool bit
5587 * is cleared if the PF only added itself to the pool
5588 * because the PF is in promiscuous mode.
5589 */
5590 if ((vlvf & VLAN_VID_MASK) == vid &&
5591 !test_bit(vid, adapter->active_vlans) &&
5592 !bits)
5593 igb_vlvf_set(adapter, vid, add,
5594 adapter->vfs_allocated_count);
5595 }
5596
5597 out:
5598 return err;
5599 }
5600
5601 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5602 {
5603 /* clear flags - except flag that indicates PF has set the MAC */
5604 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5605 adapter->vf_data[vf].last_nack = jiffies;
5606
5607 /* reset offloads to defaults */
5608 igb_set_vmolr(adapter, vf, true);
5609
5610 /* reset vlans for device */
5611 igb_clear_vf_vfta(adapter, vf);
5612 if (adapter->vf_data[vf].pf_vlan)
5613 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5614 adapter->vf_data[vf].pf_vlan,
5615 adapter->vf_data[vf].pf_qos);
5616 else
5617 igb_clear_vf_vfta(adapter, vf);
5618
5619 /* reset multicast table array for vf */
5620 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5621
5622 /* Flush and reset the mta with the new values */
5623 igb_set_rx_mode(adapter->netdev);
5624 }
5625
5626 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5627 {
5628 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5629
5630 /* clear mac address as we were hotplug removed/added */
5631 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5632 eth_zero_addr(vf_mac);
5633
5634 /* process remaining reset events */
5635 igb_vf_reset(adapter, vf);
5636 }
5637
5638 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5639 {
5640 struct e1000_hw *hw = &adapter->hw;
5641 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5642 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5643 u32 reg, msgbuf[3];
5644 u8 *addr = (u8 *)(&msgbuf[1]);
5645
5646 /* process all the same items cleared in a function level reset */
5647 igb_vf_reset(adapter, vf);
5648
5649 /* set vf mac address */
5650 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5651
5652 /* enable transmit and receive for vf */
5653 reg = rd32(E1000_VFTE);
5654 wr32(E1000_VFTE, reg | (1 << vf));
5655 reg = rd32(E1000_VFRE);
5656 wr32(E1000_VFRE, reg | (1 << vf));
5657
5658 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5659
5660 /* reply to reset with ack and vf mac address */
5661 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5662 memcpy(addr, vf_mac, 6);
5663 igb_write_mbx(hw, msgbuf, 3, vf);
5664 }
5665
5666 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5667 {
5668 /* The VF MAC Address is stored in a packed array of bytes
5669 * starting at the second 32 bit word of the msg array
5670 */
5671 unsigned char *addr = (char *)&msg[1];
5672 int err = -1;
5673
5674 if (is_valid_ether_addr(addr))
5675 err = igb_set_vf_mac(adapter, vf, addr);
5676
5677 return err;
5678 }
5679
5680 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5681 {
5682 struct e1000_hw *hw = &adapter->hw;
5683 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5684 u32 msg = E1000_VT_MSGTYPE_NACK;
5685
5686 /* if device isn't clear to send it shouldn't be reading either */
5687 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5688 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5689 igb_write_mbx(hw, &msg, 1, vf);
5690 vf_data->last_nack = jiffies;
5691 }
5692 }
5693
5694 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5695 {
5696 struct pci_dev *pdev = adapter->pdev;
5697 u32 msgbuf[E1000_VFMAILBOX_SIZE];
5698 struct e1000_hw *hw = &adapter->hw;
5699 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5700 s32 retval;
5701
5702 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5703
5704 if (retval) {
5705 /* if receive failed revoke VF CTS stats and restart init */
5706 dev_err(&pdev->dev, "Error receiving message from VF\n");
5707 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5708 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5709 return;
5710 goto out;
5711 }
5712
5713 /* this is a message we already processed, do nothing */
5714 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5715 return;
5716
5717 /* until the vf completes a reset it should not be
5718 * allowed to start any configuration.
5719 */
5720 if (msgbuf[0] == E1000_VF_RESET) {
5721 igb_vf_reset_msg(adapter, vf);
5722 return;
5723 }
5724
5725 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5726 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5727 return;
5728 retval = -1;
5729 goto out;
5730 }
5731
5732 switch ((msgbuf[0] & 0xFFFF)) {
5733 case E1000_VF_SET_MAC_ADDR:
5734 retval = -EINVAL;
5735 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5736 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5737 else
5738 dev_warn(&pdev->dev,
5739 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5740 vf);
5741 break;
5742 case E1000_VF_SET_PROMISC:
5743 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5744 break;
5745 case E1000_VF_SET_MULTICAST:
5746 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5747 break;
5748 case E1000_VF_SET_LPE:
5749 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5750 break;
5751 case E1000_VF_SET_VLAN:
5752 retval = -1;
5753 if (vf_data->pf_vlan)
5754 dev_warn(&pdev->dev,
5755 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5756 vf);
5757 else
5758 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5759 break;
5760 default:
5761 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5762 retval = -1;
5763 break;
5764 }
5765
5766 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5767 out:
5768 /* notify the VF of the results of what it sent us */
5769 if (retval)
5770 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5771 else
5772 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5773
5774 igb_write_mbx(hw, msgbuf, 1, vf);
5775 }
5776
5777 static void igb_msg_task(struct igb_adapter *adapter)
5778 {
5779 struct e1000_hw *hw = &adapter->hw;
5780 u32 vf;
5781
5782 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5783 /* process any reset requests */
5784 if (!igb_check_for_rst(hw, vf))
5785 igb_vf_reset_event(adapter, vf);
5786
5787 /* process any messages pending */
5788 if (!igb_check_for_msg(hw, vf))
5789 igb_rcv_msg_from_vf(adapter, vf);
5790
5791 /* process any acks */
5792 if (!igb_check_for_ack(hw, vf))
5793 igb_rcv_ack_from_vf(adapter, vf);
5794 }
5795 }
5796
5797 /**
5798 * igb_set_uta - Set unicast filter table address
5799 * @adapter: board private structure
5800 *
5801 * The unicast table address is a register array of 32-bit registers.
5802 * The table is meant to be used in a way similar to how the MTA is used
5803 * however due to certain limitations in the hardware it is necessary to
5804 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5805 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
5806 **/
5807 static void igb_set_uta(struct igb_adapter *adapter)
5808 {
5809 struct e1000_hw *hw = &adapter->hw;
5810 int i;
5811
5812 /* The UTA table only exists on 82576 hardware and newer */
5813 if (hw->mac.type < e1000_82576)
5814 return;
5815
5816 /* we only need to do this if VMDq is enabled */
5817 if (!adapter->vfs_allocated_count)
5818 return;
5819
5820 for (i = 0; i < hw->mac.uta_reg_count; i++)
5821 array_wr32(E1000_UTA, i, ~0);
5822 }
5823
5824 /**
5825 * igb_intr_msi - Interrupt Handler
5826 * @irq: interrupt number
5827 * @data: pointer to a network interface device structure
5828 **/
5829 static irqreturn_t igb_intr_msi(int irq, void *data)
5830 {
5831 struct igb_adapter *adapter = data;
5832 struct igb_q_vector *q_vector = adapter->q_vector[0];
5833 struct e1000_hw *hw = &adapter->hw;
5834 /* read ICR disables interrupts using IAM */
5835 u32 icr = rd32(E1000_ICR);
5836
5837 igb_write_itr(q_vector);
5838
5839 if (icr & E1000_ICR_DRSTA)
5840 schedule_work(&adapter->reset_task);
5841
5842 if (icr & E1000_ICR_DOUTSYNC) {
5843 /* HW is reporting DMA is out of sync */
5844 adapter->stats.doosync++;
5845 }
5846
5847 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5848 hw->mac.get_link_status = 1;
5849 if (!test_bit(__IGB_DOWN, &adapter->state))
5850 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5851 }
5852
5853 if (icr & E1000_ICR_TS) {
5854 u32 tsicr = rd32(E1000_TSICR);
5855
5856 if (tsicr & E1000_TSICR_TXTS) {
5857 /* acknowledge the interrupt */
5858 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5859 /* retrieve hardware timestamp */
5860 schedule_work(&adapter->ptp_tx_work);
5861 }
5862 }
5863
5864 napi_schedule(&q_vector->napi);
5865
5866 return IRQ_HANDLED;
5867 }
5868
5869 /**
5870 * igb_intr - Legacy Interrupt Handler
5871 * @irq: interrupt number
5872 * @data: pointer to a network interface device structure
5873 **/
5874 static irqreturn_t igb_intr(int irq, void *data)
5875 {
5876 struct igb_adapter *adapter = data;
5877 struct igb_q_vector *q_vector = adapter->q_vector[0];
5878 struct e1000_hw *hw = &adapter->hw;
5879 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5880 * need for the IMC write
5881 */
5882 u32 icr = rd32(E1000_ICR);
5883
5884 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5885 * not set, then the adapter didn't send an interrupt
5886 */
5887 if (!(icr & E1000_ICR_INT_ASSERTED))
5888 return IRQ_NONE;
5889
5890 igb_write_itr(q_vector);
5891
5892 if (icr & E1000_ICR_DRSTA)
5893 schedule_work(&adapter->reset_task);
5894
5895 if (icr & E1000_ICR_DOUTSYNC) {
5896 /* HW is reporting DMA is out of sync */
5897 adapter->stats.doosync++;
5898 }
5899
5900 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5901 hw->mac.get_link_status = 1;
5902 /* guard against interrupt when we're going down */
5903 if (!test_bit(__IGB_DOWN, &adapter->state))
5904 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5905 }
5906
5907 if (icr & E1000_ICR_TS) {
5908 u32 tsicr = rd32(E1000_TSICR);
5909
5910 if (tsicr & E1000_TSICR_TXTS) {
5911 /* acknowledge the interrupt */
5912 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5913 /* retrieve hardware timestamp */
5914 schedule_work(&adapter->ptp_tx_work);
5915 }
5916 }
5917
5918 napi_schedule(&q_vector->napi);
5919
5920 return IRQ_HANDLED;
5921 }
5922
5923 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5924 {
5925 struct igb_adapter *adapter = q_vector->adapter;
5926 struct e1000_hw *hw = &adapter->hw;
5927
5928 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5929 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5930 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5931 igb_set_itr(q_vector);
5932 else
5933 igb_update_ring_itr(q_vector);
5934 }
5935
5936 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5937 if (adapter->msix_entries)
5938 wr32(E1000_EIMS, q_vector->eims_value);
5939 else
5940 igb_irq_enable(adapter);
5941 }
5942 }
5943
5944 /**
5945 * igb_poll - NAPI Rx polling callback
5946 * @napi: napi polling structure
5947 * @budget: count of how many packets we should handle
5948 **/
5949 static int igb_poll(struct napi_struct *napi, int budget)
5950 {
5951 struct igb_q_vector *q_vector = container_of(napi,
5952 struct igb_q_vector,
5953 napi);
5954 bool clean_complete = true;
5955
5956 #ifdef CONFIG_IGB_DCA
5957 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5958 igb_update_dca(q_vector);
5959 #endif
5960 if (q_vector->tx.ring)
5961 clean_complete = igb_clean_tx_irq(q_vector);
5962
5963 if (q_vector->rx.ring)
5964 clean_complete &= igb_clean_rx_irq(q_vector, budget);
5965
5966 /* If all work not completed, return budget and keep polling */
5967 if (!clean_complete)
5968 return budget;
5969
5970 /* If not enough Rx work done, exit the polling mode */
5971 napi_complete(napi);
5972 igb_ring_irq_enable(q_vector);
5973
5974 return 0;
5975 }
5976
5977 /**
5978 * igb_clean_tx_irq - Reclaim resources after transmit completes
5979 * @q_vector: pointer to q_vector containing needed info
5980 *
5981 * returns true if ring is completely cleaned
5982 **/
5983 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5984 {
5985 struct igb_adapter *adapter = q_vector->adapter;
5986 struct igb_ring *tx_ring = q_vector->tx.ring;
5987 struct igb_tx_buffer *tx_buffer;
5988 union e1000_adv_tx_desc *tx_desc;
5989 unsigned int total_bytes = 0, total_packets = 0;
5990 unsigned int budget = q_vector->tx.work_limit;
5991 unsigned int i = tx_ring->next_to_clean;
5992
5993 if (test_bit(__IGB_DOWN, &adapter->state))
5994 return true;
5995
5996 tx_buffer = &tx_ring->tx_buffer_info[i];
5997 tx_desc = IGB_TX_DESC(tx_ring, i);
5998 i -= tx_ring->count;
5999
6000 do {
6001 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6002
6003 /* if next_to_watch is not set then there is no work pending */
6004 if (!eop_desc)
6005 break;
6006
6007 /* prevent any other reads prior to eop_desc */
6008 read_barrier_depends();
6009
6010 /* if DD is not set pending work has not been completed */
6011 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6012 break;
6013
6014 /* clear next_to_watch to prevent false hangs */
6015 tx_buffer->next_to_watch = NULL;
6016
6017 /* update the statistics for this packet */
6018 total_bytes += tx_buffer->bytecount;
6019 total_packets += tx_buffer->gso_segs;
6020
6021 /* free the skb */
6022 dev_kfree_skb_any(tx_buffer->skb);
6023
6024 /* unmap skb header data */
6025 dma_unmap_single(tx_ring->dev,
6026 dma_unmap_addr(tx_buffer, dma),
6027 dma_unmap_len(tx_buffer, len),
6028 DMA_TO_DEVICE);
6029
6030 /* clear tx_buffer data */
6031 tx_buffer->skb = NULL;
6032 dma_unmap_len_set(tx_buffer, len, 0);
6033
6034 /* clear last DMA location and unmap remaining buffers */
6035 while (tx_desc != eop_desc) {
6036 tx_buffer++;
6037 tx_desc++;
6038 i++;
6039 if (unlikely(!i)) {
6040 i -= tx_ring->count;
6041 tx_buffer = tx_ring->tx_buffer_info;
6042 tx_desc = IGB_TX_DESC(tx_ring, 0);
6043 }
6044
6045 /* unmap any remaining paged data */
6046 if (dma_unmap_len(tx_buffer, len)) {
6047 dma_unmap_page(tx_ring->dev,
6048 dma_unmap_addr(tx_buffer, dma),
6049 dma_unmap_len(tx_buffer, len),
6050 DMA_TO_DEVICE);
6051 dma_unmap_len_set(tx_buffer, len, 0);
6052 }
6053 }
6054
6055 /* move us one more past the eop_desc for start of next pkt */
6056 tx_buffer++;
6057 tx_desc++;
6058 i++;
6059 if (unlikely(!i)) {
6060 i -= tx_ring->count;
6061 tx_buffer = tx_ring->tx_buffer_info;
6062 tx_desc = IGB_TX_DESC(tx_ring, 0);
6063 }
6064
6065 /* issue prefetch for next Tx descriptor */
6066 prefetch(tx_desc);
6067
6068 /* update budget accounting */
6069 budget--;
6070 } while (likely(budget));
6071
6072 netdev_tx_completed_queue(txring_txq(tx_ring),
6073 total_packets, total_bytes);
6074 i += tx_ring->count;
6075 tx_ring->next_to_clean = i;
6076 u64_stats_update_begin(&tx_ring->tx_syncp);
6077 tx_ring->tx_stats.bytes += total_bytes;
6078 tx_ring->tx_stats.packets += total_packets;
6079 u64_stats_update_end(&tx_ring->tx_syncp);
6080 q_vector->tx.total_bytes += total_bytes;
6081 q_vector->tx.total_packets += total_packets;
6082
6083 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6084 struct e1000_hw *hw = &adapter->hw;
6085
6086 /* Detect a transmit hang in hardware, this serializes the
6087 * check with the clearing of time_stamp and movement of i
6088 */
6089 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6090 if (tx_buffer->next_to_watch &&
6091 time_after(jiffies, tx_buffer->time_stamp +
6092 (adapter->tx_timeout_factor * HZ)) &&
6093 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6094
6095 /* detected Tx unit hang */
6096 dev_err(tx_ring->dev,
6097 "Detected Tx Unit Hang\n"
6098 " Tx Queue <%d>\n"
6099 " TDH <%x>\n"
6100 " TDT <%x>\n"
6101 " next_to_use <%x>\n"
6102 " next_to_clean <%x>\n"
6103 "buffer_info[next_to_clean]\n"
6104 " time_stamp <%lx>\n"
6105 " next_to_watch <%p>\n"
6106 " jiffies <%lx>\n"
6107 " desc.status <%x>\n",
6108 tx_ring->queue_index,
6109 rd32(E1000_TDH(tx_ring->reg_idx)),
6110 readl(tx_ring->tail),
6111 tx_ring->next_to_use,
6112 tx_ring->next_to_clean,
6113 tx_buffer->time_stamp,
6114 tx_buffer->next_to_watch,
6115 jiffies,
6116 tx_buffer->next_to_watch->wb.status);
6117 netif_stop_subqueue(tx_ring->netdev,
6118 tx_ring->queue_index);
6119
6120 /* we are about to reset, no point in enabling stuff */
6121 return true;
6122 }
6123 }
6124
6125 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6126 if (unlikely(total_packets &&
6127 netif_carrier_ok(tx_ring->netdev) &&
6128 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6129 /* Make sure that anybody stopping the queue after this
6130 * sees the new next_to_clean.
6131 */
6132 smp_mb();
6133 if (__netif_subqueue_stopped(tx_ring->netdev,
6134 tx_ring->queue_index) &&
6135 !(test_bit(__IGB_DOWN, &adapter->state))) {
6136 netif_wake_subqueue(tx_ring->netdev,
6137 tx_ring->queue_index);
6138
6139 u64_stats_update_begin(&tx_ring->tx_syncp);
6140 tx_ring->tx_stats.restart_queue++;
6141 u64_stats_update_end(&tx_ring->tx_syncp);
6142 }
6143 }
6144
6145 return !!budget;
6146 }
6147
6148 /**
6149 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6150 * @rx_ring: rx descriptor ring to store buffers on
6151 * @old_buff: donor buffer to have page reused
6152 *
6153 * Synchronizes page for reuse by the adapter
6154 **/
6155 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6156 struct igb_rx_buffer *old_buff)
6157 {
6158 struct igb_rx_buffer *new_buff;
6159 u16 nta = rx_ring->next_to_alloc;
6160
6161 new_buff = &rx_ring->rx_buffer_info[nta];
6162
6163 /* update, and store next to alloc */
6164 nta++;
6165 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6166
6167 /* transfer page from old buffer to new buffer */
6168 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6169
6170 /* sync the buffer for use by the device */
6171 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6172 old_buff->page_offset,
6173 IGB_RX_BUFSZ,
6174 DMA_FROM_DEVICE);
6175 }
6176
6177 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6178 struct page *page,
6179 unsigned int truesize)
6180 {
6181 /* avoid re-using remote pages */
6182 if (unlikely(page_to_nid(page) != numa_node_id()))
6183 return false;
6184
6185 #if (PAGE_SIZE < 8192)
6186 /* if we are only owner of page we can reuse it */
6187 if (unlikely(page_count(page) != 1))
6188 return false;
6189
6190 /* flip page offset to other buffer */
6191 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6192
6193 /* since we are the only owner of the page and we need to
6194 * increment it, just set the value to 2 in order to avoid
6195 * an unnecessary locked operation
6196 */
6197 atomic_set(&page->_count, 2);
6198 #else
6199 /* move offset up to the next cache line */
6200 rx_buffer->page_offset += truesize;
6201
6202 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6203 return false;
6204
6205 /* bump ref count on page before it is given to the stack */
6206 get_page(page);
6207 #endif
6208
6209 return true;
6210 }
6211
6212 /**
6213 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6214 * @rx_ring: rx descriptor ring to transact packets on
6215 * @rx_buffer: buffer containing page to add
6216 * @rx_desc: descriptor containing length of buffer written by hardware
6217 * @skb: sk_buff to place the data into
6218 *
6219 * This function will add the data contained in rx_buffer->page to the skb.
6220 * This is done either through a direct copy if the data in the buffer is
6221 * less than the skb header size, otherwise it will just attach the page as
6222 * a frag to the skb.
6223 *
6224 * The function will then update the page offset if necessary and return
6225 * true if the buffer can be reused by the adapter.
6226 **/
6227 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6228 struct igb_rx_buffer *rx_buffer,
6229 union e1000_adv_rx_desc *rx_desc,
6230 struct sk_buff *skb)
6231 {
6232 struct page *page = rx_buffer->page;
6233 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6234 #if (PAGE_SIZE < 8192)
6235 unsigned int truesize = IGB_RX_BUFSZ;
6236 #else
6237 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6238 #endif
6239
6240 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6241 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6242
6243 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6244 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6245 va += IGB_TS_HDR_LEN;
6246 size -= IGB_TS_HDR_LEN;
6247 }
6248
6249 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6250
6251 /* we can reuse buffer as-is, just make sure it is local */
6252 if (likely(page_to_nid(page) == numa_node_id()))
6253 return true;
6254
6255 /* this page cannot be reused so discard it */
6256 put_page(page);
6257 return false;
6258 }
6259
6260 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6261 rx_buffer->page_offset, size, truesize);
6262
6263 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6264 }
6265
6266 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6267 union e1000_adv_rx_desc *rx_desc,
6268 struct sk_buff *skb)
6269 {
6270 struct igb_rx_buffer *rx_buffer;
6271 struct page *page;
6272
6273 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6274
6275 page = rx_buffer->page;
6276 prefetchw(page);
6277
6278 if (likely(!skb)) {
6279 void *page_addr = page_address(page) +
6280 rx_buffer->page_offset;
6281
6282 /* prefetch first cache line of first page */
6283 prefetch(page_addr);
6284 #if L1_CACHE_BYTES < 128
6285 prefetch(page_addr + L1_CACHE_BYTES);
6286 #endif
6287
6288 /* allocate a skb to store the frags */
6289 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6290 IGB_RX_HDR_LEN);
6291 if (unlikely(!skb)) {
6292 rx_ring->rx_stats.alloc_failed++;
6293 return NULL;
6294 }
6295
6296 /* we will be copying header into skb->data in
6297 * pskb_may_pull so it is in our interest to prefetch
6298 * it now to avoid a possible cache miss
6299 */
6300 prefetchw(skb->data);
6301 }
6302
6303 /* we are reusing so sync this buffer for CPU use */
6304 dma_sync_single_range_for_cpu(rx_ring->dev,
6305 rx_buffer->dma,
6306 rx_buffer->page_offset,
6307 IGB_RX_BUFSZ,
6308 DMA_FROM_DEVICE);
6309
6310 /* pull page into skb */
6311 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6312 /* hand second half of page back to the ring */
6313 igb_reuse_rx_page(rx_ring, rx_buffer);
6314 } else {
6315 /* we are not reusing the buffer so unmap it */
6316 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6317 PAGE_SIZE, DMA_FROM_DEVICE);
6318 }
6319
6320 /* clear contents of rx_buffer */
6321 rx_buffer->page = NULL;
6322
6323 return skb;
6324 }
6325
6326 static inline void igb_rx_checksum(struct igb_ring *ring,
6327 union e1000_adv_rx_desc *rx_desc,
6328 struct sk_buff *skb)
6329 {
6330 skb_checksum_none_assert(skb);
6331
6332 /* Ignore Checksum bit is set */
6333 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6334 return;
6335
6336 /* Rx checksum disabled via ethtool */
6337 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6338 return;
6339
6340 /* TCP/UDP checksum error bit is set */
6341 if (igb_test_staterr(rx_desc,
6342 E1000_RXDEXT_STATERR_TCPE |
6343 E1000_RXDEXT_STATERR_IPE)) {
6344 /* work around errata with sctp packets where the TCPE aka
6345 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6346 * packets, (aka let the stack check the crc32c)
6347 */
6348 if (!((skb->len == 60) &&
6349 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6350 u64_stats_update_begin(&ring->rx_syncp);
6351 ring->rx_stats.csum_err++;
6352 u64_stats_update_end(&ring->rx_syncp);
6353 }
6354 /* let the stack verify checksum errors */
6355 return;
6356 }
6357 /* It must be a TCP or UDP packet with a valid checksum */
6358 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6359 E1000_RXD_STAT_UDPCS))
6360 skb->ip_summed = CHECKSUM_UNNECESSARY;
6361
6362 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6363 le32_to_cpu(rx_desc->wb.upper.status_error));
6364 }
6365
6366 static inline void igb_rx_hash(struct igb_ring *ring,
6367 union e1000_adv_rx_desc *rx_desc,
6368 struct sk_buff *skb)
6369 {
6370 if (ring->netdev->features & NETIF_F_RXHASH)
6371 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6372 }
6373
6374 /**
6375 * igb_is_non_eop - process handling of non-EOP buffers
6376 * @rx_ring: Rx ring being processed
6377 * @rx_desc: Rx descriptor for current buffer
6378 * @skb: current socket buffer containing buffer in progress
6379 *
6380 * This function updates next to clean. If the buffer is an EOP buffer
6381 * this function exits returning false, otherwise it will place the
6382 * sk_buff in the next buffer to be chained and return true indicating
6383 * that this is in fact a non-EOP buffer.
6384 **/
6385 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6386 union e1000_adv_rx_desc *rx_desc)
6387 {
6388 u32 ntc = rx_ring->next_to_clean + 1;
6389
6390 /* fetch, update, and store next to clean */
6391 ntc = (ntc < rx_ring->count) ? ntc : 0;
6392 rx_ring->next_to_clean = ntc;
6393
6394 prefetch(IGB_RX_DESC(rx_ring, ntc));
6395
6396 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6397 return false;
6398
6399 return true;
6400 }
6401
6402 /**
6403 * igb_get_headlen - determine size of header for LRO/GRO
6404 * @data: pointer to the start of the headers
6405 * @max_len: total length of section to find headers in
6406 *
6407 * This function is meant to determine the length of headers that will
6408 * be recognized by hardware for LRO, and GRO offloads. The main
6409 * motivation of doing this is to only perform one pull for IPv4 TCP
6410 * packets so that we can do basic things like calculating the gso_size
6411 * based on the average data per packet.
6412 **/
6413 static unsigned int igb_get_headlen(unsigned char *data,
6414 unsigned int max_len)
6415 {
6416 union {
6417 unsigned char *network;
6418 /* l2 headers */
6419 struct ethhdr *eth;
6420 struct vlan_hdr *vlan;
6421 /* l3 headers */
6422 struct iphdr *ipv4;
6423 struct ipv6hdr *ipv6;
6424 } hdr;
6425 __be16 protocol;
6426 u8 nexthdr = 0; /* default to not TCP */
6427 u8 hlen;
6428
6429 /* this should never happen, but better safe than sorry */
6430 if (max_len < ETH_HLEN)
6431 return max_len;
6432
6433 /* initialize network frame pointer */
6434 hdr.network = data;
6435
6436 /* set first protocol and move network header forward */
6437 protocol = hdr.eth->h_proto;
6438 hdr.network += ETH_HLEN;
6439
6440 /* handle any vlan tag if present */
6441 if (protocol == __constant_htons(ETH_P_8021Q)) {
6442 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6443 return max_len;
6444
6445 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6446 hdr.network += VLAN_HLEN;
6447 }
6448
6449 /* handle L3 protocols */
6450 if (protocol == __constant_htons(ETH_P_IP)) {
6451 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6452 return max_len;
6453
6454 /* access ihl as a u8 to avoid unaligned access on ia64 */
6455 hlen = (hdr.network[0] & 0x0F) << 2;
6456
6457 /* verify hlen meets minimum size requirements */
6458 if (hlen < sizeof(struct iphdr))
6459 return hdr.network - data;
6460
6461 /* record next protocol if header is present */
6462 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6463 nexthdr = hdr.ipv4->protocol;
6464 } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6465 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6466 return max_len;
6467
6468 /* record next protocol */
6469 nexthdr = hdr.ipv6->nexthdr;
6470 hlen = sizeof(struct ipv6hdr);
6471 } else {
6472 return hdr.network - data;
6473 }
6474
6475 /* relocate pointer to start of L4 header */
6476 hdr.network += hlen;
6477
6478 /* finally sort out TCP */
6479 if (nexthdr == IPPROTO_TCP) {
6480 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6481 return max_len;
6482
6483 /* access doff as a u8 to avoid unaligned access on ia64 */
6484 hlen = (hdr.network[12] & 0xF0) >> 2;
6485
6486 /* verify hlen meets minimum size requirements */
6487 if (hlen < sizeof(struct tcphdr))
6488 return hdr.network - data;
6489
6490 hdr.network += hlen;
6491 } else if (nexthdr == IPPROTO_UDP) {
6492 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6493 return max_len;
6494
6495 hdr.network += sizeof(struct udphdr);
6496 }
6497
6498 /* If everything has gone correctly hdr.network should be the
6499 * data section of the packet and will be the end of the header.
6500 * If not then it probably represents the end of the last recognized
6501 * header.
6502 */
6503 if ((hdr.network - data) < max_len)
6504 return hdr.network - data;
6505 else
6506 return max_len;
6507 }
6508
6509 /**
6510 * igb_pull_tail - igb specific version of skb_pull_tail
6511 * @rx_ring: rx descriptor ring packet is being transacted on
6512 * @rx_desc: pointer to the EOP Rx descriptor
6513 * @skb: pointer to current skb being adjusted
6514 *
6515 * This function is an igb specific version of __pskb_pull_tail. The
6516 * main difference between this version and the original function is that
6517 * this function can make several assumptions about the state of things
6518 * that allow for significant optimizations versus the standard function.
6519 * As a result we can do things like drop a frag and maintain an accurate
6520 * truesize for the skb.
6521 */
6522 static void igb_pull_tail(struct igb_ring *rx_ring,
6523 union e1000_adv_rx_desc *rx_desc,
6524 struct sk_buff *skb)
6525 {
6526 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6527 unsigned char *va;
6528 unsigned int pull_len;
6529
6530 /* it is valid to use page_address instead of kmap since we are
6531 * working with pages allocated out of the lomem pool per
6532 * alloc_page(GFP_ATOMIC)
6533 */
6534 va = skb_frag_address(frag);
6535
6536 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6537 /* retrieve timestamp from buffer */
6538 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6539
6540 /* update pointers to remove timestamp header */
6541 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6542 frag->page_offset += IGB_TS_HDR_LEN;
6543 skb->data_len -= IGB_TS_HDR_LEN;
6544 skb->len -= IGB_TS_HDR_LEN;
6545
6546 /* move va to start of packet data */
6547 va += IGB_TS_HDR_LEN;
6548 }
6549
6550 /* we need the header to contain the greater of either ETH_HLEN or
6551 * 60 bytes if the skb->len is less than 60 for skb_pad.
6552 */
6553 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6554
6555 /* align pull length to size of long to optimize memcpy performance */
6556 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6557
6558 /* update all of the pointers */
6559 skb_frag_size_sub(frag, pull_len);
6560 frag->page_offset += pull_len;
6561 skb->data_len -= pull_len;
6562 skb->tail += pull_len;
6563 }
6564
6565 /**
6566 * igb_cleanup_headers - Correct corrupted or empty headers
6567 * @rx_ring: rx descriptor ring packet is being transacted on
6568 * @rx_desc: pointer to the EOP Rx descriptor
6569 * @skb: pointer to current skb being fixed
6570 *
6571 * Address the case where we are pulling data in on pages only
6572 * and as such no data is present in the skb header.
6573 *
6574 * In addition if skb is not at least 60 bytes we need to pad it so that
6575 * it is large enough to qualify as a valid Ethernet frame.
6576 *
6577 * Returns true if an error was encountered and skb was freed.
6578 **/
6579 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6580 union e1000_adv_rx_desc *rx_desc,
6581 struct sk_buff *skb)
6582 {
6583 if (unlikely((igb_test_staterr(rx_desc,
6584 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6585 struct net_device *netdev = rx_ring->netdev;
6586 if (!(netdev->features & NETIF_F_RXALL)) {
6587 dev_kfree_skb_any(skb);
6588 return true;
6589 }
6590 }
6591
6592 /* place header in linear portion of buffer */
6593 if (skb_is_nonlinear(skb))
6594 igb_pull_tail(rx_ring, rx_desc, skb);
6595
6596 /* if skb_pad returns an error the skb was freed */
6597 if (unlikely(skb->len < 60)) {
6598 int pad_len = 60 - skb->len;
6599
6600 if (skb_pad(skb, pad_len))
6601 return true;
6602 __skb_put(skb, pad_len);
6603 }
6604
6605 return false;
6606 }
6607
6608 /**
6609 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6610 * @rx_ring: rx descriptor ring packet is being transacted on
6611 * @rx_desc: pointer to the EOP Rx descriptor
6612 * @skb: pointer to current skb being populated
6613 *
6614 * This function checks the ring, descriptor, and packet information in
6615 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6616 * other fields within the skb.
6617 **/
6618 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6619 union e1000_adv_rx_desc *rx_desc,
6620 struct sk_buff *skb)
6621 {
6622 struct net_device *dev = rx_ring->netdev;
6623
6624 igb_rx_hash(rx_ring, rx_desc, skb);
6625
6626 igb_rx_checksum(rx_ring, rx_desc, skb);
6627
6628 igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6629
6630 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6631 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6632 u16 vid;
6633 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6634 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6635 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6636 else
6637 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6638
6639 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6640 }
6641
6642 skb_record_rx_queue(skb, rx_ring->queue_index);
6643
6644 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6645 }
6646
6647 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6648 {
6649 struct igb_ring *rx_ring = q_vector->rx.ring;
6650 struct sk_buff *skb = rx_ring->skb;
6651 unsigned int total_bytes = 0, total_packets = 0;
6652 u16 cleaned_count = igb_desc_unused(rx_ring);
6653
6654 do {
6655 union e1000_adv_rx_desc *rx_desc;
6656
6657 /* return some buffers to hardware, one at a time is too slow */
6658 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6659 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6660 cleaned_count = 0;
6661 }
6662
6663 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6664
6665 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6666 break;
6667
6668 /* This memory barrier is needed to keep us from reading
6669 * any other fields out of the rx_desc until we know the
6670 * RXD_STAT_DD bit is set
6671 */
6672 rmb();
6673
6674 /* retrieve a buffer from the ring */
6675 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6676
6677 /* exit if we failed to retrieve a buffer */
6678 if (!skb)
6679 break;
6680
6681 cleaned_count++;
6682
6683 /* fetch next buffer in frame if non-eop */
6684 if (igb_is_non_eop(rx_ring, rx_desc))
6685 continue;
6686
6687 /* verify the packet layout is correct */
6688 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6689 skb = NULL;
6690 continue;
6691 }
6692
6693 /* probably a little skewed due to removing CRC */
6694 total_bytes += skb->len;
6695
6696 /* populate checksum, timestamp, VLAN, and protocol */
6697 igb_process_skb_fields(rx_ring, rx_desc, skb);
6698
6699 napi_gro_receive(&q_vector->napi, skb);
6700
6701 /* reset skb pointer */
6702 skb = NULL;
6703
6704 /* update budget accounting */
6705 total_packets++;
6706 } while (likely(total_packets < budget));
6707
6708 /* place incomplete frames back on ring for completion */
6709 rx_ring->skb = skb;
6710
6711 u64_stats_update_begin(&rx_ring->rx_syncp);
6712 rx_ring->rx_stats.packets += total_packets;
6713 rx_ring->rx_stats.bytes += total_bytes;
6714 u64_stats_update_end(&rx_ring->rx_syncp);
6715 q_vector->rx.total_packets += total_packets;
6716 q_vector->rx.total_bytes += total_bytes;
6717
6718 if (cleaned_count)
6719 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6720
6721 return (total_packets < budget);
6722 }
6723
6724 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6725 struct igb_rx_buffer *bi)
6726 {
6727 struct page *page = bi->page;
6728 dma_addr_t dma;
6729
6730 /* since we are recycling buffers we should seldom need to alloc */
6731 if (likely(page))
6732 return true;
6733
6734 /* alloc new page for storage */
6735 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6736 if (unlikely(!page)) {
6737 rx_ring->rx_stats.alloc_failed++;
6738 return false;
6739 }
6740
6741 /* map page for use */
6742 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6743
6744 /* if mapping failed free memory back to system since
6745 * there isn't much point in holding memory we can't use
6746 */
6747 if (dma_mapping_error(rx_ring->dev, dma)) {
6748 __free_page(page);
6749
6750 rx_ring->rx_stats.alloc_failed++;
6751 return false;
6752 }
6753
6754 bi->dma = dma;
6755 bi->page = page;
6756 bi->page_offset = 0;
6757
6758 return true;
6759 }
6760
6761 /**
6762 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6763 * @adapter: address of board private structure
6764 **/
6765 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6766 {
6767 union e1000_adv_rx_desc *rx_desc;
6768 struct igb_rx_buffer *bi;
6769 u16 i = rx_ring->next_to_use;
6770
6771 /* nothing to do */
6772 if (!cleaned_count)
6773 return;
6774
6775 rx_desc = IGB_RX_DESC(rx_ring, i);
6776 bi = &rx_ring->rx_buffer_info[i];
6777 i -= rx_ring->count;
6778
6779 do {
6780 if (!igb_alloc_mapped_page(rx_ring, bi))
6781 break;
6782
6783 /* Refresh the desc even if buffer_addrs didn't change
6784 * because each write-back erases this info.
6785 */
6786 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6787
6788 rx_desc++;
6789 bi++;
6790 i++;
6791 if (unlikely(!i)) {
6792 rx_desc = IGB_RX_DESC(rx_ring, 0);
6793 bi = rx_ring->rx_buffer_info;
6794 i -= rx_ring->count;
6795 }
6796
6797 /* clear the hdr_addr for the next_to_use descriptor */
6798 rx_desc->read.hdr_addr = 0;
6799
6800 cleaned_count--;
6801 } while (cleaned_count);
6802
6803 i += rx_ring->count;
6804
6805 if (rx_ring->next_to_use != i) {
6806 /* record the next descriptor to use */
6807 rx_ring->next_to_use = i;
6808
6809 /* update next to alloc since we have filled the ring */
6810 rx_ring->next_to_alloc = i;
6811
6812 /* Force memory writes to complete before letting h/w
6813 * know there are new descriptors to fetch. (Only
6814 * applicable for weak-ordered memory model archs,
6815 * such as IA-64).
6816 */
6817 wmb();
6818 writel(i, rx_ring->tail);
6819 }
6820 }
6821
6822 /**
6823 * igb_mii_ioctl -
6824 * @netdev:
6825 * @ifreq:
6826 * @cmd:
6827 **/
6828 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6829 {
6830 struct igb_adapter *adapter = netdev_priv(netdev);
6831 struct mii_ioctl_data *data = if_mii(ifr);
6832
6833 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6834 return -EOPNOTSUPP;
6835
6836 switch (cmd) {
6837 case SIOCGMIIPHY:
6838 data->phy_id = adapter->hw.phy.addr;
6839 break;
6840 case SIOCGMIIREG:
6841 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6842 &data->val_out))
6843 return -EIO;
6844 break;
6845 case SIOCSMIIREG:
6846 default:
6847 return -EOPNOTSUPP;
6848 }
6849 return 0;
6850 }
6851
6852 /**
6853 * igb_ioctl -
6854 * @netdev:
6855 * @ifreq:
6856 * @cmd:
6857 **/
6858 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6859 {
6860 switch (cmd) {
6861 case SIOCGMIIPHY:
6862 case SIOCGMIIREG:
6863 case SIOCSMIIREG:
6864 return igb_mii_ioctl(netdev, ifr, cmd);
6865 case SIOCSHWTSTAMP:
6866 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6867 default:
6868 return -EOPNOTSUPP;
6869 }
6870 }
6871
6872 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6873 {
6874 struct igb_adapter *adapter = hw->back;
6875
6876 if (pcie_capability_read_word(adapter->pdev, reg, value))
6877 return -E1000_ERR_CONFIG;
6878
6879 return 0;
6880 }
6881
6882 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6883 {
6884 struct igb_adapter *adapter = hw->back;
6885
6886 if (pcie_capability_write_word(adapter->pdev, reg, *value))
6887 return -E1000_ERR_CONFIG;
6888
6889 return 0;
6890 }
6891
6892 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6893 {
6894 struct igb_adapter *adapter = netdev_priv(netdev);
6895 struct e1000_hw *hw = &adapter->hw;
6896 u32 ctrl, rctl;
6897 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6898
6899 if (enable) {
6900 /* enable VLAN tag insert/strip */
6901 ctrl = rd32(E1000_CTRL);
6902 ctrl |= E1000_CTRL_VME;
6903 wr32(E1000_CTRL, ctrl);
6904
6905 /* Disable CFI check */
6906 rctl = rd32(E1000_RCTL);
6907 rctl &= ~E1000_RCTL_CFIEN;
6908 wr32(E1000_RCTL, rctl);
6909 } else {
6910 /* disable VLAN tag insert/strip */
6911 ctrl = rd32(E1000_CTRL);
6912 ctrl &= ~E1000_CTRL_VME;
6913 wr32(E1000_CTRL, ctrl);
6914 }
6915
6916 igb_rlpml_set(adapter);
6917 }
6918
6919 static int igb_vlan_rx_add_vid(struct net_device *netdev,
6920 __be16 proto, u16 vid)
6921 {
6922 struct igb_adapter *adapter = netdev_priv(netdev);
6923 struct e1000_hw *hw = &adapter->hw;
6924 int pf_id = adapter->vfs_allocated_count;
6925
6926 /* attempt to add filter to vlvf array */
6927 igb_vlvf_set(adapter, vid, true, pf_id);
6928
6929 /* add the filter since PF can receive vlans w/o entry in vlvf */
6930 igb_vfta_set(hw, vid, true);
6931
6932 set_bit(vid, adapter->active_vlans);
6933
6934 return 0;
6935 }
6936
6937 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6938 __be16 proto, u16 vid)
6939 {
6940 struct igb_adapter *adapter = netdev_priv(netdev);
6941 struct e1000_hw *hw = &adapter->hw;
6942 int pf_id = adapter->vfs_allocated_count;
6943 s32 err;
6944
6945 /* remove vlan from VLVF table array */
6946 err = igb_vlvf_set(adapter, vid, false, pf_id);
6947
6948 /* if vid was not present in VLVF just remove it from table */
6949 if (err)
6950 igb_vfta_set(hw, vid, false);
6951
6952 clear_bit(vid, adapter->active_vlans);
6953
6954 return 0;
6955 }
6956
6957 static void igb_restore_vlan(struct igb_adapter *adapter)
6958 {
6959 u16 vid;
6960
6961 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6962
6963 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6964 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
6965 }
6966
6967 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6968 {
6969 struct pci_dev *pdev = adapter->pdev;
6970 struct e1000_mac_info *mac = &adapter->hw.mac;
6971
6972 mac->autoneg = 0;
6973
6974 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6975 * for the switch() below to work
6976 */
6977 if ((spd & 1) || (dplx & ~1))
6978 goto err_inval;
6979
6980 /* Fiber NIC's only allow 1000 gbps Full duplex
6981 * and 100Mbps Full duplex for 100baseFx sfp
6982 */
6983 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
6984 switch (spd + dplx) {
6985 case SPEED_10 + DUPLEX_HALF:
6986 case SPEED_10 + DUPLEX_FULL:
6987 case SPEED_100 + DUPLEX_HALF:
6988 goto err_inval;
6989 default:
6990 break;
6991 }
6992 }
6993
6994 switch (spd + dplx) {
6995 case SPEED_10 + DUPLEX_HALF:
6996 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6997 break;
6998 case SPEED_10 + DUPLEX_FULL:
6999 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7000 break;
7001 case SPEED_100 + DUPLEX_HALF:
7002 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7003 break;
7004 case SPEED_100 + DUPLEX_FULL:
7005 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7006 break;
7007 case SPEED_1000 + DUPLEX_FULL:
7008 mac->autoneg = 1;
7009 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7010 break;
7011 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7012 default:
7013 goto err_inval;
7014 }
7015
7016 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7017 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7018
7019 return 0;
7020
7021 err_inval:
7022 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7023 return -EINVAL;
7024 }
7025
7026 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7027 bool runtime)
7028 {
7029 struct net_device *netdev = pci_get_drvdata(pdev);
7030 struct igb_adapter *adapter = netdev_priv(netdev);
7031 struct e1000_hw *hw = &adapter->hw;
7032 u32 ctrl, rctl, status;
7033 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7034 #ifdef CONFIG_PM
7035 int retval = 0;
7036 #endif
7037
7038 netif_device_detach(netdev);
7039
7040 if (netif_running(netdev))
7041 __igb_close(netdev, true);
7042
7043 igb_clear_interrupt_scheme(adapter);
7044
7045 #ifdef CONFIG_PM
7046 retval = pci_save_state(pdev);
7047 if (retval)
7048 return retval;
7049 #endif
7050
7051 status = rd32(E1000_STATUS);
7052 if (status & E1000_STATUS_LU)
7053 wufc &= ~E1000_WUFC_LNKC;
7054
7055 if (wufc) {
7056 igb_setup_rctl(adapter);
7057 igb_set_rx_mode(netdev);
7058
7059 /* turn on all-multi mode if wake on multicast is enabled */
7060 if (wufc & E1000_WUFC_MC) {
7061 rctl = rd32(E1000_RCTL);
7062 rctl |= E1000_RCTL_MPE;
7063 wr32(E1000_RCTL, rctl);
7064 }
7065
7066 ctrl = rd32(E1000_CTRL);
7067 /* advertise wake from D3Cold */
7068 #define E1000_CTRL_ADVD3WUC 0x00100000
7069 /* phy power management enable */
7070 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7071 ctrl |= E1000_CTRL_ADVD3WUC;
7072 wr32(E1000_CTRL, ctrl);
7073
7074 /* Allow time for pending master requests to run */
7075 igb_disable_pcie_master(hw);
7076
7077 wr32(E1000_WUC, E1000_WUC_PME_EN);
7078 wr32(E1000_WUFC, wufc);
7079 } else {
7080 wr32(E1000_WUC, 0);
7081 wr32(E1000_WUFC, 0);
7082 }
7083
7084 *enable_wake = wufc || adapter->en_mng_pt;
7085 if (!*enable_wake)
7086 igb_power_down_link(adapter);
7087 else
7088 igb_power_up_link(adapter);
7089
7090 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7091 * would have already happened in close and is redundant.
7092 */
7093 igb_release_hw_control(adapter);
7094
7095 pci_disable_device(pdev);
7096
7097 return 0;
7098 }
7099
7100 #ifdef CONFIG_PM
7101 #ifdef CONFIG_PM_SLEEP
7102 static int igb_suspend(struct device *dev)
7103 {
7104 int retval;
7105 bool wake;
7106 struct pci_dev *pdev = to_pci_dev(dev);
7107
7108 retval = __igb_shutdown(pdev, &wake, 0);
7109 if (retval)
7110 return retval;
7111
7112 if (wake) {
7113 pci_prepare_to_sleep(pdev);
7114 } else {
7115 pci_wake_from_d3(pdev, false);
7116 pci_set_power_state(pdev, PCI_D3hot);
7117 }
7118
7119 return 0;
7120 }
7121 #endif /* CONFIG_PM_SLEEP */
7122
7123 static int igb_resume(struct device *dev)
7124 {
7125 struct pci_dev *pdev = to_pci_dev(dev);
7126 struct net_device *netdev = pci_get_drvdata(pdev);
7127 struct igb_adapter *adapter = netdev_priv(netdev);
7128 struct e1000_hw *hw = &adapter->hw;
7129 u32 err;
7130
7131 pci_set_power_state(pdev, PCI_D0);
7132 pci_restore_state(pdev);
7133 pci_save_state(pdev);
7134
7135 err = pci_enable_device_mem(pdev);
7136 if (err) {
7137 dev_err(&pdev->dev,
7138 "igb: Cannot enable PCI device from suspend\n");
7139 return err;
7140 }
7141 pci_set_master(pdev);
7142
7143 pci_enable_wake(pdev, PCI_D3hot, 0);
7144 pci_enable_wake(pdev, PCI_D3cold, 0);
7145
7146 if (igb_init_interrupt_scheme(adapter, true)) {
7147 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7148 return -ENOMEM;
7149 }
7150
7151 igb_reset(adapter);
7152
7153 /* let the f/w know that the h/w is now under the control of the
7154 * driver.
7155 */
7156 igb_get_hw_control(adapter);
7157
7158 wr32(E1000_WUS, ~0);
7159
7160 if (netdev->flags & IFF_UP) {
7161 rtnl_lock();
7162 err = __igb_open(netdev, true);
7163 rtnl_unlock();
7164 if (err)
7165 return err;
7166 }
7167
7168 netif_device_attach(netdev);
7169 return 0;
7170 }
7171
7172 #ifdef CONFIG_PM_RUNTIME
7173 static int igb_runtime_idle(struct device *dev)
7174 {
7175 struct pci_dev *pdev = to_pci_dev(dev);
7176 struct net_device *netdev = pci_get_drvdata(pdev);
7177 struct igb_adapter *adapter = netdev_priv(netdev);
7178
7179 if (!igb_has_link(adapter))
7180 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7181
7182 return -EBUSY;
7183 }
7184
7185 static int igb_runtime_suspend(struct device *dev)
7186 {
7187 struct pci_dev *pdev = to_pci_dev(dev);
7188 int retval;
7189 bool wake;
7190
7191 retval = __igb_shutdown(pdev, &wake, 1);
7192 if (retval)
7193 return retval;
7194
7195 if (wake) {
7196 pci_prepare_to_sleep(pdev);
7197 } else {
7198 pci_wake_from_d3(pdev, false);
7199 pci_set_power_state(pdev, PCI_D3hot);
7200 }
7201
7202 return 0;
7203 }
7204
7205 static int igb_runtime_resume(struct device *dev)
7206 {
7207 return igb_resume(dev);
7208 }
7209 #endif /* CONFIG_PM_RUNTIME */
7210 #endif
7211
7212 static void igb_shutdown(struct pci_dev *pdev)
7213 {
7214 bool wake;
7215
7216 __igb_shutdown(pdev, &wake, 0);
7217
7218 if (system_state == SYSTEM_POWER_OFF) {
7219 pci_wake_from_d3(pdev, wake);
7220 pci_set_power_state(pdev, PCI_D3hot);
7221 }
7222 }
7223
7224 #ifdef CONFIG_PCI_IOV
7225 static int igb_sriov_reinit(struct pci_dev *dev)
7226 {
7227 struct net_device *netdev = pci_get_drvdata(dev);
7228 struct igb_adapter *adapter = netdev_priv(netdev);
7229 struct pci_dev *pdev = adapter->pdev;
7230
7231 rtnl_lock();
7232
7233 if (netif_running(netdev))
7234 igb_close(netdev);
7235
7236 igb_clear_interrupt_scheme(adapter);
7237
7238 igb_init_queue_configuration(adapter);
7239
7240 if (igb_init_interrupt_scheme(adapter, true)) {
7241 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7242 return -ENOMEM;
7243 }
7244
7245 if (netif_running(netdev))
7246 igb_open(netdev);
7247
7248 rtnl_unlock();
7249
7250 return 0;
7251 }
7252
7253 static int igb_pci_disable_sriov(struct pci_dev *dev)
7254 {
7255 int err = igb_disable_sriov(dev);
7256
7257 if (!err)
7258 err = igb_sriov_reinit(dev);
7259
7260 return err;
7261 }
7262
7263 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7264 {
7265 int err = igb_enable_sriov(dev, num_vfs);
7266
7267 if (err)
7268 goto out;
7269
7270 err = igb_sriov_reinit(dev);
7271 if (!err)
7272 return num_vfs;
7273
7274 out:
7275 return err;
7276 }
7277
7278 #endif
7279 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7280 {
7281 #ifdef CONFIG_PCI_IOV
7282 if (num_vfs == 0)
7283 return igb_pci_disable_sriov(dev);
7284 else
7285 return igb_pci_enable_sriov(dev, num_vfs);
7286 #endif
7287 return 0;
7288 }
7289
7290 #ifdef CONFIG_NET_POLL_CONTROLLER
7291 /* Polling 'interrupt' - used by things like netconsole to send skbs
7292 * without having to re-enable interrupts. It's not called while
7293 * the interrupt routine is executing.
7294 */
7295 static void igb_netpoll(struct net_device *netdev)
7296 {
7297 struct igb_adapter *adapter = netdev_priv(netdev);
7298 struct e1000_hw *hw = &adapter->hw;
7299 struct igb_q_vector *q_vector;
7300 int i;
7301
7302 for (i = 0; i < adapter->num_q_vectors; i++) {
7303 q_vector = adapter->q_vector[i];
7304 if (adapter->msix_entries)
7305 wr32(E1000_EIMC, q_vector->eims_value);
7306 else
7307 igb_irq_disable(adapter);
7308 napi_schedule(&q_vector->napi);
7309 }
7310 }
7311 #endif /* CONFIG_NET_POLL_CONTROLLER */
7312
7313 /**
7314 * igb_io_error_detected - called when PCI error is detected
7315 * @pdev: Pointer to PCI device
7316 * @state: The current pci connection state
7317 *
7318 * This function is called after a PCI bus error affecting
7319 * this device has been detected.
7320 **/
7321 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7322 pci_channel_state_t state)
7323 {
7324 struct net_device *netdev = pci_get_drvdata(pdev);
7325 struct igb_adapter *adapter = netdev_priv(netdev);
7326
7327 netif_device_detach(netdev);
7328
7329 if (state == pci_channel_io_perm_failure)
7330 return PCI_ERS_RESULT_DISCONNECT;
7331
7332 if (netif_running(netdev))
7333 igb_down(adapter);
7334 pci_disable_device(pdev);
7335
7336 /* Request a slot slot reset. */
7337 return PCI_ERS_RESULT_NEED_RESET;
7338 }
7339
7340 /**
7341 * igb_io_slot_reset - called after the pci bus has been reset.
7342 * @pdev: Pointer to PCI device
7343 *
7344 * Restart the card from scratch, as if from a cold-boot. Implementation
7345 * resembles the first-half of the igb_resume routine.
7346 **/
7347 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7348 {
7349 struct net_device *netdev = pci_get_drvdata(pdev);
7350 struct igb_adapter *adapter = netdev_priv(netdev);
7351 struct e1000_hw *hw = &adapter->hw;
7352 pci_ers_result_t result;
7353 int err;
7354
7355 if (pci_enable_device_mem(pdev)) {
7356 dev_err(&pdev->dev,
7357 "Cannot re-enable PCI device after reset.\n");
7358 result = PCI_ERS_RESULT_DISCONNECT;
7359 } else {
7360 pci_set_master(pdev);
7361 pci_restore_state(pdev);
7362 pci_save_state(pdev);
7363
7364 pci_enable_wake(pdev, PCI_D3hot, 0);
7365 pci_enable_wake(pdev, PCI_D3cold, 0);
7366
7367 igb_reset(adapter);
7368 wr32(E1000_WUS, ~0);
7369 result = PCI_ERS_RESULT_RECOVERED;
7370 }
7371
7372 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7373 if (err) {
7374 dev_err(&pdev->dev,
7375 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7376 err);
7377 /* non-fatal, continue */
7378 }
7379
7380 return result;
7381 }
7382
7383 /**
7384 * igb_io_resume - called when traffic can start flowing again.
7385 * @pdev: Pointer to PCI device
7386 *
7387 * This callback is called when the error recovery driver tells us that
7388 * its OK to resume normal operation. Implementation resembles the
7389 * second-half of the igb_resume routine.
7390 */
7391 static void igb_io_resume(struct pci_dev *pdev)
7392 {
7393 struct net_device *netdev = pci_get_drvdata(pdev);
7394 struct igb_adapter *adapter = netdev_priv(netdev);
7395
7396 if (netif_running(netdev)) {
7397 if (igb_up(adapter)) {
7398 dev_err(&pdev->dev, "igb_up failed after reset\n");
7399 return;
7400 }
7401 }
7402
7403 netif_device_attach(netdev);
7404
7405 /* let the f/w know that the h/w is now under the control of the
7406 * driver.
7407 */
7408 igb_get_hw_control(adapter);
7409 }
7410
7411 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7412 u8 qsel)
7413 {
7414 u32 rar_low, rar_high;
7415 struct e1000_hw *hw = &adapter->hw;
7416
7417 /* HW expects these in little endian so we reverse the byte order
7418 * from network order (big endian) to little endian
7419 */
7420 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7421 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7422 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7423
7424 /* Indicate to hardware the Address is Valid. */
7425 rar_high |= E1000_RAH_AV;
7426
7427 if (hw->mac.type == e1000_82575)
7428 rar_high |= E1000_RAH_POOL_1 * qsel;
7429 else
7430 rar_high |= E1000_RAH_POOL_1 << qsel;
7431
7432 wr32(E1000_RAL(index), rar_low);
7433 wrfl();
7434 wr32(E1000_RAH(index), rar_high);
7435 wrfl();
7436 }
7437
7438 static int igb_set_vf_mac(struct igb_adapter *adapter,
7439 int vf, unsigned char *mac_addr)
7440 {
7441 struct e1000_hw *hw = &adapter->hw;
7442 /* VF MAC addresses start at end of receive addresses and moves
7443 * towards the first, as a result a collision should not be possible
7444 */
7445 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7446
7447 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7448
7449 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7450
7451 return 0;
7452 }
7453
7454 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7455 {
7456 struct igb_adapter *adapter = netdev_priv(netdev);
7457 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7458 return -EINVAL;
7459 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7460 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7461 dev_info(&adapter->pdev->dev,
7462 "Reload the VF driver to make this change effective.");
7463 if (test_bit(__IGB_DOWN, &adapter->state)) {
7464 dev_warn(&adapter->pdev->dev,
7465 "The VF MAC address has been set, but the PF device is not up.\n");
7466 dev_warn(&adapter->pdev->dev,
7467 "Bring the PF device up before attempting to use the VF device.\n");
7468 }
7469 return igb_set_vf_mac(adapter, vf, mac);
7470 }
7471
7472 static int igb_link_mbps(int internal_link_speed)
7473 {
7474 switch (internal_link_speed) {
7475 case SPEED_100:
7476 return 100;
7477 case SPEED_1000:
7478 return 1000;
7479 default:
7480 return 0;
7481 }
7482 }
7483
7484 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7485 int link_speed)
7486 {
7487 int rf_dec, rf_int;
7488 u32 bcnrc_val;
7489
7490 if (tx_rate != 0) {
7491 /* Calculate the rate factor values to set */
7492 rf_int = link_speed / tx_rate;
7493 rf_dec = (link_speed - (rf_int * tx_rate));
7494 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7495 tx_rate;
7496
7497 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7498 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7499 E1000_RTTBCNRC_RF_INT_MASK);
7500 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7501 } else {
7502 bcnrc_val = 0;
7503 }
7504
7505 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7506 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7507 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7508 */
7509 wr32(E1000_RTTBCNRM, 0x14);
7510 wr32(E1000_RTTBCNRC, bcnrc_val);
7511 }
7512
7513 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7514 {
7515 int actual_link_speed, i;
7516 bool reset_rate = false;
7517
7518 /* VF TX rate limit was not set or not supported */
7519 if ((adapter->vf_rate_link_speed == 0) ||
7520 (adapter->hw.mac.type != e1000_82576))
7521 return;
7522
7523 actual_link_speed = igb_link_mbps(adapter->link_speed);
7524 if (actual_link_speed != adapter->vf_rate_link_speed) {
7525 reset_rate = true;
7526 adapter->vf_rate_link_speed = 0;
7527 dev_info(&adapter->pdev->dev,
7528 "Link speed has been changed. VF Transmit rate is disabled\n");
7529 }
7530
7531 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7532 if (reset_rate)
7533 adapter->vf_data[i].tx_rate = 0;
7534
7535 igb_set_vf_rate_limit(&adapter->hw, i,
7536 adapter->vf_data[i].tx_rate,
7537 actual_link_speed);
7538 }
7539 }
7540
7541 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7542 {
7543 struct igb_adapter *adapter = netdev_priv(netdev);
7544 struct e1000_hw *hw = &adapter->hw;
7545 int actual_link_speed;
7546
7547 if (hw->mac.type != e1000_82576)
7548 return -EOPNOTSUPP;
7549
7550 actual_link_speed = igb_link_mbps(adapter->link_speed);
7551 if ((vf >= adapter->vfs_allocated_count) ||
7552 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7553 (tx_rate < 0) || (tx_rate > actual_link_speed))
7554 return -EINVAL;
7555
7556 adapter->vf_rate_link_speed = actual_link_speed;
7557 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7558 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7559
7560 return 0;
7561 }
7562
7563 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7564 bool setting)
7565 {
7566 struct igb_adapter *adapter = netdev_priv(netdev);
7567 struct e1000_hw *hw = &adapter->hw;
7568 u32 reg_val, reg_offset;
7569
7570 if (!adapter->vfs_allocated_count)
7571 return -EOPNOTSUPP;
7572
7573 if (vf >= adapter->vfs_allocated_count)
7574 return -EINVAL;
7575
7576 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7577 reg_val = rd32(reg_offset);
7578 if (setting)
7579 reg_val |= ((1 << vf) |
7580 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7581 else
7582 reg_val &= ~((1 << vf) |
7583 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7584 wr32(reg_offset, reg_val);
7585
7586 adapter->vf_data[vf].spoofchk_enabled = setting;
7587 return E1000_SUCCESS;
7588 }
7589
7590 static int igb_ndo_get_vf_config(struct net_device *netdev,
7591 int vf, struct ifla_vf_info *ivi)
7592 {
7593 struct igb_adapter *adapter = netdev_priv(netdev);
7594 if (vf >= adapter->vfs_allocated_count)
7595 return -EINVAL;
7596 ivi->vf = vf;
7597 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7598 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7599 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7600 ivi->qos = adapter->vf_data[vf].pf_qos;
7601 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7602 return 0;
7603 }
7604
7605 static void igb_vmm_control(struct igb_adapter *adapter)
7606 {
7607 struct e1000_hw *hw = &adapter->hw;
7608 u32 reg;
7609
7610 switch (hw->mac.type) {
7611 case e1000_82575:
7612 case e1000_i210:
7613 case e1000_i211:
7614 case e1000_i354:
7615 default:
7616 /* replication is not supported for 82575 */
7617 return;
7618 case e1000_82576:
7619 /* notify HW that the MAC is adding vlan tags */
7620 reg = rd32(E1000_DTXCTL);
7621 reg |= E1000_DTXCTL_VLAN_ADDED;
7622 wr32(E1000_DTXCTL, reg);
7623 case e1000_82580:
7624 /* enable replication vlan tag stripping */
7625 reg = rd32(E1000_RPLOLR);
7626 reg |= E1000_RPLOLR_STRVLAN;
7627 wr32(E1000_RPLOLR, reg);
7628 case e1000_i350:
7629 /* none of the above registers are supported by i350 */
7630 break;
7631 }
7632
7633 if (adapter->vfs_allocated_count) {
7634 igb_vmdq_set_loopback_pf(hw, true);
7635 igb_vmdq_set_replication_pf(hw, true);
7636 igb_vmdq_set_anti_spoofing_pf(hw, true,
7637 adapter->vfs_allocated_count);
7638 } else {
7639 igb_vmdq_set_loopback_pf(hw, false);
7640 igb_vmdq_set_replication_pf(hw, false);
7641 }
7642 }
7643
7644 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7645 {
7646 struct e1000_hw *hw = &adapter->hw;
7647 u32 dmac_thr;
7648 u16 hwm;
7649
7650 if (hw->mac.type > e1000_82580) {
7651 if (adapter->flags & IGB_FLAG_DMAC) {
7652 u32 reg;
7653
7654 /* force threshold to 0. */
7655 wr32(E1000_DMCTXTH, 0);
7656
7657 /* DMA Coalescing high water mark needs to be greater
7658 * than the Rx threshold. Set hwm to PBA - max frame
7659 * size in 16B units, capping it at PBA - 6KB.
7660 */
7661 hwm = 64 * pba - adapter->max_frame_size / 16;
7662 if (hwm < 64 * (pba - 6))
7663 hwm = 64 * (pba - 6);
7664 reg = rd32(E1000_FCRTC);
7665 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7666 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7667 & E1000_FCRTC_RTH_COAL_MASK);
7668 wr32(E1000_FCRTC, reg);
7669
7670 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7671 * frame size, capping it at PBA - 10KB.
7672 */
7673 dmac_thr = pba - adapter->max_frame_size / 512;
7674 if (dmac_thr < pba - 10)
7675 dmac_thr = pba - 10;
7676 reg = rd32(E1000_DMACR);
7677 reg &= ~E1000_DMACR_DMACTHR_MASK;
7678 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7679 & E1000_DMACR_DMACTHR_MASK);
7680
7681 /* transition to L0x or L1 if available..*/
7682 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7683
7684 /* watchdog timer= +-1000 usec in 32usec intervals */
7685 reg |= (1000 >> 5);
7686
7687 /* Disable BMC-to-OS Watchdog Enable */
7688 if (hw->mac.type != e1000_i354)
7689 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7690
7691 wr32(E1000_DMACR, reg);
7692
7693 /* no lower threshold to disable
7694 * coalescing(smart fifb)-UTRESH=0
7695 */
7696 wr32(E1000_DMCRTRH, 0);
7697
7698 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7699
7700 wr32(E1000_DMCTLX, reg);
7701
7702 /* free space in tx packet buffer to wake from
7703 * DMA coal
7704 */
7705 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7706 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7707
7708 /* make low power state decision controlled
7709 * by DMA coal
7710 */
7711 reg = rd32(E1000_PCIEMISC);
7712 reg &= ~E1000_PCIEMISC_LX_DECISION;
7713 wr32(E1000_PCIEMISC, reg);
7714 } /* endif adapter->dmac is not disabled */
7715 } else if (hw->mac.type == e1000_82580) {
7716 u32 reg = rd32(E1000_PCIEMISC);
7717 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7718 wr32(E1000_DMACR, 0);
7719 }
7720 }
7721
7722 /**
7723 * igb_read_i2c_byte - Reads 8 bit word over I2C
7724 * @hw: pointer to hardware structure
7725 * @byte_offset: byte offset to read
7726 * @dev_addr: device address
7727 * @data: value read
7728 *
7729 * Performs byte read operation over I2C interface at
7730 * a specified device address.
7731 **/
7732 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7733 u8 dev_addr, u8 *data)
7734 {
7735 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7736 struct i2c_client *this_client = adapter->i2c_client;
7737 s32 status;
7738 u16 swfw_mask = 0;
7739
7740 if (!this_client)
7741 return E1000_ERR_I2C;
7742
7743 swfw_mask = E1000_SWFW_PHY0_SM;
7744
7745 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7746 != E1000_SUCCESS)
7747 return E1000_ERR_SWFW_SYNC;
7748
7749 status = i2c_smbus_read_byte_data(this_client, byte_offset);
7750 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7751
7752 if (status < 0)
7753 return E1000_ERR_I2C;
7754 else {
7755 *data = status;
7756 return E1000_SUCCESS;
7757 }
7758 }
7759
7760 /**
7761 * igb_write_i2c_byte - Writes 8 bit word over I2C
7762 * @hw: pointer to hardware structure
7763 * @byte_offset: byte offset to write
7764 * @dev_addr: device address
7765 * @data: value to write
7766 *
7767 * Performs byte write operation over I2C interface at
7768 * a specified device address.
7769 **/
7770 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7771 u8 dev_addr, u8 data)
7772 {
7773 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7774 struct i2c_client *this_client = adapter->i2c_client;
7775 s32 status;
7776 u16 swfw_mask = E1000_SWFW_PHY0_SM;
7777
7778 if (!this_client)
7779 return E1000_ERR_I2C;
7780
7781 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7782 return E1000_ERR_SWFW_SYNC;
7783 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7784 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7785
7786 if (status)
7787 return E1000_ERR_I2C;
7788 else
7789 return E1000_SUCCESS;
7790
7791 }
7792 /* igb_main.c */
This page took 0.283428 seconds and 5 git commands to generate.