igb: Replace rmb in Tx cleanup with read_barrier_depends
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62
63 #define MAJ 4
64 #define MIN 1
65 #define BUILD 2
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71 "Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
73
74 static const struct e1000_info *igb_info_tbl[] = {
75 [board_82575] = &e1000_82575_info,
76 };
77
78 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
109 /* required last entry */
110 {0, }
111 };
112
113 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
114
115 void igb_reset(struct igb_adapter *);
116 static int igb_setup_all_tx_resources(struct igb_adapter *);
117 static int igb_setup_all_rx_resources(struct igb_adapter *);
118 static void igb_free_all_tx_resources(struct igb_adapter *);
119 static void igb_free_all_rx_resources(struct igb_adapter *);
120 static void igb_setup_mrqc(struct igb_adapter *);
121 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
122 static void igb_remove(struct pci_dev *pdev);
123 static int igb_sw_init(struct igb_adapter *);
124 static int igb_open(struct net_device *);
125 static int igb_close(struct net_device *);
126 static void igb_configure(struct igb_adapter *);
127 static void igb_configure_tx(struct igb_adapter *);
128 static void igb_configure_rx(struct igb_adapter *);
129 static void igb_clean_all_tx_rings(struct igb_adapter *);
130 static void igb_clean_all_rx_rings(struct igb_adapter *);
131 static void igb_clean_tx_ring(struct igb_ring *);
132 static void igb_clean_rx_ring(struct igb_ring *);
133 static void igb_set_rx_mode(struct net_device *);
134 static void igb_update_phy_info(unsigned long);
135 static void igb_watchdog(unsigned long);
136 static void igb_watchdog_task(struct work_struct *);
137 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
138 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
139 struct rtnl_link_stats64 *stats);
140 static int igb_change_mtu(struct net_device *, int);
141 static int igb_set_mac(struct net_device *, void *);
142 static void igb_set_uta(struct igb_adapter *adapter);
143 static irqreturn_t igb_intr(int irq, void *);
144 static irqreturn_t igb_intr_msi(int irq, void *);
145 static irqreturn_t igb_msix_other(int irq, void *);
146 static irqreturn_t igb_msix_ring(int irq, void *);
147 #ifdef CONFIG_IGB_DCA
148 static void igb_update_dca(struct igb_q_vector *);
149 static void igb_setup_dca(struct igb_adapter *);
150 #endif /* CONFIG_IGB_DCA */
151 static int igb_poll(struct napi_struct *, int);
152 static bool igb_clean_tx_irq(struct igb_q_vector *);
153 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
154 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
155 static void igb_tx_timeout(struct net_device *);
156 static void igb_reset_task(struct work_struct *);
157 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
158 static int igb_vlan_rx_add_vid(struct net_device *, u16);
159 static int igb_vlan_rx_kill_vid(struct net_device *, u16);
160 static void igb_restore_vlan(struct igb_adapter *);
161 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
162 static void igb_ping_all_vfs(struct igb_adapter *);
163 static void igb_msg_task(struct igb_adapter *);
164 static void igb_vmm_control(struct igb_adapter *);
165 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169 int vf, u16 vlan, u8 qos);
170 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
171 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
172 struct ifla_vf_info *ivi);
173 static void igb_check_vf_rate_limit(struct igb_adapter *);
174
175 #ifdef CONFIG_PCI_IOV
176 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
177 static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
178 #endif
179
180 #ifdef CONFIG_PM
181 #ifdef CONFIG_PM_SLEEP
182 static int igb_suspend(struct device *);
183 #endif
184 static int igb_resume(struct device *);
185 #ifdef CONFIG_PM_RUNTIME
186 static int igb_runtime_suspend(struct device *dev);
187 static int igb_runtime_resume(struct device *dev);
188 static int igb_runtime_idle(struct device *dev);
189 #endif
190 static const struct dev_pm_ops igb_pm_ops = {
191 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
192 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
193 igb_runtime_idle)
194 };
195 #endif
196 static void igb_shutdown(struct pci_dev *);
197 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
198 #ifdef CONFIG_IGB_DCA
199 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
200 static struct notifier_block dca_notifier = {
201 .notifier_call = igb_notify_dca,
202 .next = NULL,
203 .priority = 0
204 };
205 #endif
206 #ifdef CONFIG_NET_POLL_CONTROLLER
207 /* for netdump / net console */
208 static void igb_netpoll(struct net_device *);
209 #endif
210 #ifdef CONFIG_PCI_IOV
211 static unsigned int max_vfs = 0;
212 module_param(max_vfs, uint, 0);
213 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
214 "per physical function");
215 #endif /* CONFIG_PCI_IOV */
216
217 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
218 pci_channel_state_t);
219 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
220 static void igb_io_resume(struct pci_dev *);
221
222 static const struct pci_error_handlers igb_err_handler = {
223 .error_detected = igb_io_error_detected,
224 .slot_reset = igb_io_slot_reset,
225 .resume = igb_io_resume,
226 };
227
228 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
229
230 static struct pci_driver igb_driver = {
231 .name = igb_driver_name,
232 .id_table = igb_pci_tbl,
233 .probe = igb_probe,
234 .remove = igb_remove,
235 #ifdef CONFIG_PM
236 .driver.pm = &igb_pm_ops,
237 #endif
238 .shutdown = igb_shutdown,
239 .sriov_configure = igb_pci_sriov_configure,
240 .err_handler = &igb_err_handler
241 };
242
243 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
244 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
245 MODULE_LICENSE("GPL");
246 MODULE_VERSION(DRV_VERSION);
247
248 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
249 static int debug = -1;
250 module_param(debug, int, 0);
251 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
252
253 struct igb_reg_info {
254 u32 ofs;
255 char *name;
256 };
257
258 static const struct igb_reg_info igb_reg_info_tbl[] = {
259
260 /* General Registers */
261 {E1000_CTRL, "CTRL"},
262 {E1000_STATUS, "STATUS"},
263 {E1000_CTRL_EXT, "CTRL_EXT"},
264
265 /* Interrupt Registers */
266 {E1000_ICR, "ICR"},
267
268 /* RX Registers */
269 {E1000_RCTL, "RCTL"},
270 {E1000_RDLEN(0), "RDLEN"},
271 {E1000_RDH(0), "RDH"},
272 {E1000_RDT(0), "RDT"},
273 {E1000_RXDCTL(0), "RXDCTL"},
274 {E1000_RDBAL(0), "RDBAL"},
275 {E1000_RDBAH(0), "RDBAH"},
276
277 /* TX Registers */
278 {E1000_TCTL, "TCTL"},
279 {E1000_TDBAL(0), "TDBAL"},
280 {E1000_TDBAH(0), "TDBAH"},
281 {E1000_TDLEN(0), "TDLEN"},
282 {E1000_TDH(0), "TDH"},
283 {E1000_TDT(0), "TDT"},
284 {E1000_TXDCTL(0), "TXDCTL"},
285 {E1000_TDFH, "TDFH"},
286 {E1000_TDFT, "TDFT"},
287 {E1000_TDFHS, "TDFHS"},
288 {E1000_TDFPC, "TDFPC"},
289
290 /* List Terminator */
291 {}
292 };
293
294 /*
295 * igb_regdump - register printout routine
296 */
297 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
298 {
299 int n = 0;
300 char rname[16];
301 u32 regs[8];
302
303 switch (reginfo->ofs) {
304 case E1000_RDLEN(0):
305 for (n = 0; n < 4; n++)
306 regs[n] = rd32(E1000_RDLEN(n));
307 break;
308 case E1000_RDH(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_RDH(n));
311 break;
312 case E1000_RDT(0):
313 for (n = 0; n < 4; n++)
314 regs[n] = rd32(E1000_RDT(n));
315 break;
316 case E1000_RXDCTL(0):
317 for (n = 0; n < 4; n++)
318 regs[n] = rd32(E1000_RXDCTL(n));
319 break;
320 case E1000_RDBAL(0):
321 for (n = 0; n < 4; n++)
322 regs[n] = rd32(E1000_RDBAL(n));
323 break;
324 case E1000_RDBAH(0):
325 for (n = 0; n < 4; n++)
326 regs[n] = rd32(E1000_RDBAH(n));
327 break;
328 case E1000_TDBAL(0):
329 for (n = 0; n < 4; n++)
330 regs[n] = rd32(E1000_RDBAL(n));
331 break;
332 case E1000_TDBAH(0):
333 for (n = 0; n < 4; n++)
334 regs[n] = rd32(E1000_TDBAH(n));
335 break;
336 case E1000_TDLEN(0):
337 for (n = 0; n < 4; n++)
338 regs[n] = rd32(E1000_TDLEN(n));
339 break;
340 case E1000_TDH(0):
341 for (n = 0; n < 4; n++)
342 regs[n] = rd32(E1000_TDH(n));
343 break;
344 case E1000_TDT(0):
345 for (n = 0; n < 4; n++)
346 regs[n] = rd32(E1000_TDT(n));
347 break;
348 case E1000_TXDCTL(0):
349 for (n = 0; n < 4; n++)
350 regs[n] = rd32(E1000_TXDCTL(n));
351 break;
352 default:
353 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
354 return;
355 }
356
357 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
358 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
359 regs[2], regs[3]);
360 }
361
362 /*
363 * igb_dump - Print registers, tx-rings and rx-rings
364 */
365 static void igb_dump(struct igb_adapter *adapter)
366 {
367 struct net_device *netdev = adapter->netdev;
368 struct e1000_hw *hw = &adapter->hw;
369 struct igb_reg_info *reginfo;
370 struct igb_ring *tx_ring;
371 union e1000_adv_tx_desc *tx_desc;
372 struct my_u0 { u64 a; u64 b; } *u0;
373 struct igb_ring *rx_ring;
374 union e1000_adv_rx_desc *rx_desc;
375 u32 staterr;
376 u16 i, n;
377
378 if (!netif_msg_hw(adapter))
379 return;
380
381 /* Print netdevice Info */
382 if (netdev) {
383 dev_info(&adapter->pdev->dev, "Net device Info\n");
384 pr_info("Device Name state trans_start "
385 "last_rx\n");
386 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
387 netdev->state, netdev->trans_start, netdev->last_rx);
388 }
389
390 /* Print Registers */
391 dev_info(&adapter->pdev->dev, "Register Dump\n");
392 pr_info(" Register Name Value\n");
393 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
394 reginfo->name; reginfo++) {
395 igb_regdump(hw, reginfo);
396 }
397
398 /* Print TX Ring Summary */
399 if (!netdev || !netif_running(netdev))
400 goto exit;
401
402 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
403 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
404 for (n = 0; n < adapter->num_tx_queues; n++) {
405 struct igb_tx_buffer *buffer_info;
406 tx_ring = adapter->tx_ring[n];
407 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
408 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
409 n, tx_ring->next_to_use, tx_ring->next_to_clean,
410 (u64)dma_unmap_addr(buffer_info, dma),
411 dma_unmap_len(buffer_info, len),
412 buffer_info->next_to_watch,
413 (u64)buffer_info->time_stamp);
414 }
415
416 /* Print TX Rings */
417 if (!netif_msg_tx_done(adapter))
418 goto rx_ring_summary;
419
420 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
421
422 /* Transmit Descriptor Formats
423 *
424 * Advanced Transmit Descriptor
425 * +--------------------------------------------------------------+
426 * 0 | Buffer Address [63:0] |
427 * +--------------------------------------------------------------+
428 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
429 * +--------------------------------------------------------------+
430 * 63 46 45 40 39 38 36 35 32 31 24 15 0
431 */
432
433 for (n = 0; n < adapter->num_tx_queues; n++) {
434 tx_ring = adapter->tx_ring[n];
435 pr_info("------------------------------------\n");
436 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
437 pr_info("------------------------------------\n");
438 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
439 "[bi->dma ] leng ntw timestamp "
440 "bi->skb\n");
441
442 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
443 const char *next_desc;
444 struct igb_tx_buffer *buffer_info;
445 tx_desc = IGB_TX_DESC(tx_ring, i);
446 buffer_info = &tx_ring->tx_buffer_info[i];
447 u0 = (struct my_u0 *)tx_desc;
448 if (i == tx_ring->next_to_use &&
449 i == tx_ring->next_to_clean)
450 next_desc = " NTC/U";
451 else if (i == tx_ring->next_to_use)
452 next_desc = " NTU";
453 else if (i == tx_ring->next_to_clean)
454 next_desc = " NTC";
455 else
456 next_desc = "";
457
458 pr_info("T [0x%03X] %016llX %016llX %016llX"
459 " %04X %p %016llX %p%s\n", i,
460 le64_to_cpu(u0->a),
461 le64_to_cpu(u0->b),
462 (u64)dma_unmap_addr(buffer_info, dma),
463 dma_unmap_len(buffer_info, len),
464 buffer_info->next_to_watch,
465 (u64)buffer_info->time_stamp,
466 buffer_info->skb, next_desc);
467
468 if (netif_msg_pktdata(adapter) && buffer_info->skb)
469 print_hex_dump(KERN_INFO, "",
470 DUMP_PREFIX_ADDRESS,
471 16, 1, buffer_info->skb->data,
472 dma_unmap_len(buffer_info, len),
473 true);
474 }
475 }
476
477 /* Print RX Rings Summary */
478 rx_ring_summary:
479 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
480 pr_info("Queue [NTU] [NTC]\n");
481 for (n = 0; n < adapter->num_rx_queues; n++) {
482 rx_ring = adapter->rx_ring[n];
483 pr_info(" %5d %5X %5X\n",
484 n, rx_ring->next_to_use, rx_ring->next_to_clean);
485 }
486
487 /* Print RX Rings */
488 if (!netif_msg_rx_status(adapter))
489 goto exit;
490
491 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
492
493 /* Advanced Receive Descriptor (Read) Format
494 * 63 1 0
495 * +-----------------------------------------------------+
496 * 0 | Packet Buffer Address [63:1] |A0/NSE|
497 * +----------------------------------------------+------+
498 * 8 | Header Buffer Address [63:1] | DD |
499 * +-----------------------------------------------------+
500 *
501 *
502 * Advanced Receive Descriptor (Write-Back) Format
503 *
504 * 63 48 47 32 31 30 21 20 17 16 4 3 0
505 * +------------------------------------------------------+
506 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
507 * | Checksum Ident | | | | Type | Type |
508 * +------------------------------------------------------+
509 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
510 * +------------------------------------------------------+
511 * 63 48 47 32 31 20 19 0
512 */
513
514 for (n = 0; n < adapter->num_rx_queues; n++) {
515 rx_ring = adapter->rx_ring[n];
516 pr_info("------------------------------------\n");
517 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
518 pr_info("------------------------------------\n");
519 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
520 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
521 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
522 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
523
524 for (i = 0; i < rx_ring->count; i++) {
525 const char *next_desc;
526 struct igb_rx_buffer *buffer_info;
527 buffer_info = &rx_ring->rx_buffer_info[i];
528 rx_desc = IGB_RX_DESC(rx_ring, i);
529 u0 = (struct my_u0 *)rx_desc;
530 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
531
532 if (i == rx_ring->next_to_use)
533 next_desc = " NTU";
534 else if (i == rx_ring->next_to_clean)
535 next_desc = " NTC";
536 else
537 next_desc = "";
538
539 if (staterr & E1000_RXD_STAT_DD) {
540 /* Descriptor Done */
541 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
542 "RWB", i,
543 le64_to_cpu(u0->a),
544 le64_to_cpu(u0->b),
545 next_desc);
546 } else {
547 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
548 "R ", i,
549 le64_to_cpu(u0->a),
550 le64_to_cpu(u0->b),
551 (u64)buffer_info->dma,
552 next_desc);
553
554 if (netif_msg_pktdata(adapter) &&
555 buffer_info->dma && buffer_info->page) {
556 print_hex_dump(KERN_INFO, "",
557 DUMP_PREFIX_ADDRESS,
558 16, 1,
559 page_address(buffer_info->page) +
560 buffer_info->page_offset,
561 IGB_RX_BUFSZ, true);
562 }
563 }
564 }
565 }
566
567 exit:
568 return;
569 }
570
571 /* igb_get_i2c_data - Reads the I2C SDA data bit
572 * @hw: pointer to hardware structure
573 * @i2cctl: Current value of I2CCTL register
574 *
575 * Returns the I2C data bit value
576 */
577 static int igb_get_i2c_data(void *data)
578 {
579 struct igb_adapter *adapter = (struct igb_adapter *)data;
580 struct e1000_hw *hw = &adapter->hw;
581 s32 i2cctl = rd32(E1000_I2CPARAMS);
582
583 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
584 }
585
586 /* igb_set_i2c_data - Sets the I2C data bit
587 * @data: pointer to hardware structure
588 * @state: I2C data value (0 or 1) to set
589 *
590 * Sets the I2C data bit
591 */
592 static void igb_set_i2c_data(void *data, int state)
593 {
594 struct igb_adapter *adapter = (struct igb_adapter *)data;
595 struct e1000_hw *hw = &adapter->hw;
596 s32 i2cctl = rd32(E1000_I2CPARAMS);
597
598 if (state)
599 i2cctl |= E1000_I2C_DATA_OUT;
600 else
601 i2cctl &= ~E1000_I2C_DATA_OUT;
602
603 i2cctl &= ~E1000_I2C_DATA_OE_N;
604 i2cctl |= E1000_I2C_CLK_OE_N;
605 wr32(E1000_I2CPARAMS, i2cctl);
606 wrfl();
607
608 }
609
610 /* igb_set_i2c_clk - Sets the I2C SCL clock
611 * @data: pointer to hardware structure
612 * @state: state to set clock
613 *
614 * Sets the I2C clock line to state
615 */
616 static void igb_set_i2c_clk(void *data, int state)
617 {
618 struct igb_adapter *adapter = (struct igb_adapter *)data;
619 struct e1000_hw *hw = &adapter->hw;
620 s32 i2cctl = rd32(E1000_I2CPARAMS);
621
622 if (state) {
623 i2cctl |= E1000_I2C_CLK_OUT;
624 i2cctl &= ~E1000_I2C_CLK_OE_N;
625 } else {
626 i2cctl &= ~E1000_I2C_CLK_OUT;
627 i2cctl &= ~E1000_I2C_CLK_OE_N;
628 }
629 wr32(E1000_I2CPARAMS, i2cctl);
630 wrfl();
631 }
632
633 /* igb_get_i2c_clk - Gets the I2C SCL clock state
634 * @data: pointer to hardware structure
635 *
636 * Gets the I2C clock state
637 */
638 static int igb_get_i2c_clk(void *data)
639 {
640 struct igb_adapter *adapter = (struct igb_adapter *)data;
641 struct e1000_hw *hw = &adapter->hw;
642 s32 i2cctl = rd32(E1000_I2CPARAMS);
643
644 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
645 }
646
647 static const struct i2c_algo_bit_data igb_i2c_algo = {
648 .setsda = igb_set_i2c_data,
649 .setscl = igb_set_i2c_clk,
650 .getsda = igb_get_i2c_data,
651 .getscl = igb_get_i2c_clk,
652 .udelay = 5,
653 .timeout = 20,
654 };
655
656 /**
657 * igb_get_hw_dev - return device
658 * used by hardware layer to print debugging information
659 **/
660 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
661 {
662 struct igb_adapter *adapter = hw->back;
663 return adapter->netdev;
664 }
665
666 /**
667 * igb_init_module - Driver Registration Routine
668 *
669 * igb_init_module is the first routine called when the driver is
670 * loaded. All it does is register with the PCI subsystem.
671 **/
672 static int __init igb_init_module(void)
673 {
674 int ret;
675 pr_info("%s - version %s\n",
676 igb_driver_string, igb_driver_version);
677
678 pr_info("%s\n", igb_copyright);
679
680 #ifdef CONFIG_IGB_DCA
681 dca_register_notify(&dca_notifier);
682 #endif
683 ret = pci_register_driver(&igb_driver);
684 return ret;
685 }
686
687 module_init(igb_init_module);
688
689 /**
690 * igb_exit_module - Driver Exit Cleanup Routine
691 *
692 * igb_exit_module is called just before the driver is removed
693 * from memory.
694 **/
695 static void __exit igb_exit_module(void)
696 {
697 #ifdef CONFIG_IGB_DCA
698 dca_unregister_notify(&dca_notifier);
699 #endif
700 pci_unregister_driver(&igb_driver);
701 }
702
703 module_exit(igb_exit_module);
704
705 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
706 /**
707 * igb_cache_ring_register - Descriptor ring to register mapping
708 * @adapter: board private structure to initialize
709 *
710 * Once we know the feature-set enabled for the device, we'll cache
711 * the register offset the descriptor ring is assigned to.
712 **/
713 static void igb_cache_ring_register(struct igb_adapter *adapter)
714 {
715 int i = 0, j = 0;
716 u32 rbase_offset = adapter->vfs_allocated_count;
717
718 switch (adapter->hw.mac.type) {
719 case e1000_82576:
720 /* The queues are allocated for virtualization such that VF 0
721 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
722 * In order to avoid collision we start at the first free queue
723 * and continue consuming queues in the same sequence
724 */
725 if (adapter->vfs_allocated_count) {
726 for (; i < adapter->rss_queues; i++)
727 adapter->rx_ring[i]->reg_idx = rbase_offset +
728 Q_IDX_82576(i);
729 }
730 case e1000_82575:
731 case e1000_82580:
732 case e1000_i350:
733 case e1000_i210:
734 case e1000_i211:
735 default:
736 for (; i < adapter->num_rx_queues; i++)
737 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
738 for (; j < adapter->num_tx_queues; j++)
739 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
740 break;
741 }
742 }
743
744 /**
745 * igb_write_ivar - configure ivar for given MSI-X vector
746 * @hw: pointer to the HW structure
747 * @msix_vector: vector number we are allocating to a given ring
748 * @index: row index of IVAR register to write within IVAR table
749 * @offset: column offset of in IVAR, should be multiple of 8
750 *
751 * This function is intended to handle the writing of the IVAR register
752 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
753 * each containing an cause allocation for an Rx and Tx ring, and a
754 * variable number of rows depending on the number of queues supported.
755 **/
756 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
757 int index, int offset)
758 {
759 u32 ivar = array_rd32(E1000_IVAR0, index);
760
761 /* clear any bits that are currently set */
762 ivar &= ~((u32)0xFF << offset);
763
764 /* write vector and valid bit */
765 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
766
767 array_wr32(E1000_IVAR0, index, ivar);
768 }
769
770 #define IGB_N0_QUEUE -1
771 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
772 {
773 struct igb_adapter *adapter = q_vector->adapter;
774 struct e1000_hw *hw = &adapter->hw;
775 int rx_queue = IGB_N0_QUEUE;
776 int tx_queue = IGB_N0_QUEUE;
777 u32 msixbm = 0;
778
779 if (q_vector->rx.ring)
780 rx_queue = q_vector->rx.ring->reg_idx;
781 if (q_vector->tx.ring)
782 tx_queue = q_vector->tx.ring->reg_idx;
783
784 switch (hw->mac.type) {
785 case e1000_82575:
786 /* The 82575 assigns vectors using a bitmask, which matches the
787 bitmask for the EICR/EIMS/EIMC registers. To assign one
788 or more queues to a vector, we write the appropriate bits
789 into the MSIXBM register for that vector. */
790 if (rx_queue > IGB_N0_QUEUE)
791 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
792 if (tx_queue > IGB_N0_QUEUE)
793 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
794 if (!adapter->msix_entries && msix_vector == 0)
795 msixbm |= E1000_EIMS_OTHER;
796 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
797 q_vector->eims_value = msixbm;
798 break;
799 case e1000_82576:
800 /*
801 * 82576 uses a table that essentially consists of 2 columns
802 * with 8 rows. The ordering is column-major so we use the
803 * lower 3 bits as the row index, and the 4th bit as the
804 * column offset.
805 */
806 if (rx_queue > IGB_N0_QUEUE)
807 igb_write_ivar(hw, msix_vector,
808 rx_queue & 0x7,
809 (rx_queue & 0x8) << 1);
810 if (tx_queue > IGB_N0_QUEUE)
811 igb_write_ivar(hw, msix_vector,
812 tx_queue & 0x7,
813 ((tx_queue & 0x8) << 1) + 8);
814 q_vector->eims_value = 1 << msix_vector;
815 break;
816 case e1000_82580:
817 case e1000_i350:
818 case e1000_i210:
819 case e1000_i211:
820 /*
821 * On 82580 and newer adapters the scheme is similar to 82576
822 * however instead of ordering column-major we have things
823 * ordered row-major. So we traverse the table by using
824 * bit 0 as the column offset, and the remaining bits as the
825 * row index.
826 */
827 if (rx_queue > IGB_N0_QUEUE)
828 igb_write_ivar(hw, msix_vector,
829 rx_queue >> 1,
830 (rx_queue & 0x1) << 4);
831 if (tx_queue > IGB_N0_QUEUE)
832 igb_write_ivar(hw, msix_vector,
833 tx_queue >> 1,
834 ((tx_queue & 0x1) << 4) + 8);
835 q_vector->eims_value = 1 << msix_vector;
836 break;
837 default:
838 BUG();
839 break;
840 }
841
842 /* add q_vector eims value to global eims_enable_mask */
843 adapter->eims_enable_mask |= q_vector->eims_value;
844
845 /* configure q_vector to set itr on first interrupt */
846 q_vector->set_itr = 1;
847 }
848
849 /**
850 * igb_configure_msix - Configure MSI-X hardware
851 *
852 * igb_configure_msix sets up the hardware to properly
853 * generate MSI-X interrupts.
854 **/
855 static void igb_configure_msix(struct igb_adapter *adapter)
856 {
857 u32 tmp;
858 int i, vector = 0;
859 struct e1000_hw *hw = &adapter->hw;
860
861 adapter->eims_enable_mask = 0;
862
863 /* set vector for other causes, i.e. link changes */
864 switch (hw->mac.type) {
865 case e1000_82575:
866 tmp = rd32(E1000_CTRL_EXT);
867 /* enable MSI-X PBA support*/
868 tmp |= E1000_CTRL_EXT_PBA_CLR;
869
870 /* Auto-Mask interrupts upon ICR read. */
871 tmp |= E1000_CTRL_EXT_EIAME;
872 tmp |= E1000_CTRL_EXT_IRCA;
873
874 wr32(E1000_CTRL_EXT, tmp);
875
876 /* enable msix_other interrupt */
877 array_wr32(E1000_MSIXBM(0), vector++,
878 E1000_EIMS_OTHER);
879 adapter->eims_other = E1000_EIMS_OTHER;
880
881 break;
882
883 case e1000_82576:
884 case e1000_82580:
885 case e1000_i350:
886 case e1000_i210:
887 case e1000_i211:
888 /* Turn on MSI-X capability first, or our settings
889 * won't stick. And it will take days to debug. */
890 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
891 E1000_GPIE_PBA | E1000_GPIE_EIAME |
892 E1000_GPIE_NSICR);
893
894 /* enable msix_other interrupt */
895 adapter->eims_other = 1 << vector;
896 tmp = (vector++ | E1000_IVAR_VALID) << 8;
897
898 wr32(E1000_IVAR_MISC, tmp);
899 break;
900 default:
901 /* do nothing, since nothing else supports MSI-X */
902 break;
903 } /* switch (hw->mac.type) */
904
905 adapter->eims_enable_mask |= adapter->eims_other;
906
907 for (i = 0; i < adapter->num_q_vectors; i++)
908 igb_assign_vector(adapter->q_vector[i], vector++);
909
910 wrfl();
911 }
912
913 /**
914 * igb_request_msix - Initialize MSI-X interrupts
915 *
916 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
917 * kernel.
918 **/
919 static int igb_request_msix(struct igb_adapter *adapter)
920 {
921 struct net_device *netdev = adapter->netdev;
922 struct e1000_hw *hw = &adapter->hw;
923 int i, err = 0, vector = 0, free_vector = 0;
924
925 err = request_irq(adapter->msix_entries[vector].vector,
926 igb_msix_other, 0, netdev->name, adapter);
927 if (err)
928 goto err_out;
929
930 for (i = 0; i < adapter->num_q_vectors; i++) {
931 struct igb_q_vector *q_vector = adapter->q_vector[i];
932
933 vector++;
934
935 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
936
937 if (q_vector->rx.ring && q_vector->tx.ring)
938 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
939 q_vector->rx.ring->queue_index);
940 else if (q_vector->tx.ring)
941 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
942 q_vector->tx.ring->queue_index);
943 else if (q_vector->rx.ring)
944 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
945 q_vector->rx.ring->queue_index);
946 else
947 sprintf(q_vector->name, "%s-unused", netdev->name);
948
949 err = request_irq(adapter->msix_entries[vector].vector,
950 igb_msix_ring, 0, q_vector->name,
951 q_vector);
952 if (err)
953 goto err_free;
954 }
955
956 igb_configure_msix(adapter);
957 return 0;
958
959 err_free:
960 /* free already assigned IRQs */
961 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
962
963 vector--;
964 for (i = 0; i < vector; i++) {
965 free_irq(adapter->msix_entries[free_vector++].vector,
966 adapter->q_vector[i]);
967 }
968 err_out:
969 return err;
970 }
971
972 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
973 {
974 if (adapter->msix_entries) {
975 pci_disable_msix(adapter->pdev);
976 kfree(adapter->msix_entries);
977 adapter->msix_entries = NULL;
978 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
979 pci_disable_msi(adapter->pdev);
980 }
981 }
982
983 /**
984 * igb_free_q_vector - Free memory allocated for specific interrupt vector
985 * @adapter: board private structure to initialize
986 * @v_idx: Index of vector to be freed
987 *
988 * This function frees the memory allocated to the q_vector. In addition if
989 * NAPI is enabled it will delete any references to the NAPI struct prior
990 * to freeing the q_vector.
991 **/
992 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
993 {
994 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
995
996 if (q_vector->tx.ring)
997 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
998
999 if (q_vector->rx.ring)
1000 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1001
1002 adapter->q_vector[v_idx] = NULL;
1003 netif_napi_del(&q_vector->napi);
1004
1005 /*
1006 * ixgbe_get_stats64() might access the rings on this vector,
1007 * we must wait a grace period before freeing it.
1008 */
1009 kfree_rcu(q_vector, rcu);
1010 }
1011
1012 /**
1013 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1014 * @adapter: board private structure to initialize
1015 *
1016 * This function frees the memory allocated to the q_vectors. In addition if
1017 * NAPI is enabled it will delete any references to the NAPI struct prior
1018 * to freeing the q_vector.
1019 **/
1020 static void igb_free_q_vectors(struct igb_adapter *adapter)
1021 {
1022 int v_idx = adapter->num_q_vectors;
1023
1024 adapter->num_tx_queues = 0;
1025 adapter->num_rx_queues = 0;
1026 adapter->num_q_vectors = 0;
1027
1028 while (v_idx--)
1029 igb_free_q_vector(adapter, v_idx);
1030 }
1031
1032 /**
1033 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1034 *
1035 * This function resets the device so that it has 0 rx queues, tx queues, and
1036 * MSI-X interrupts allocated.
1037 */
1038 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1039 {
1040 igb_free_q_vectors(adapter);
1041 igb_reset_interrupt_capability(adapter);
1042 }
1043
1044 /**
1045 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1046 *
1047 * Attempt to configure interrupts using the best available
1048 * capabilities of the hardware and kernel.
1049 **/
1050 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1051 {
1052 int err;
1053 int numvecs, i;
1054
1055 if (!msix)
1056 goto msi_only;
1057
1058 /* Number of supported queues. */
1059 adapter->num_rx_queues = adapter->rss_queues;
1060 if (adapter->vfs_allocated_count)
1061 adapter->num_tx_queues = 1;
1062 else
1063 adapter->num_tx_queues = adapter->rss_queues;
1064
1065 /* start with one vector for every rx queue */
1066 numvecs = adapter->num_rx_queues;
1067
1068 /* if tx handler is separate add 1 for every tx queue */
1069 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1070 numvecs += adapter->num_tx_queues;
1071
1072 /* store the number of vectors reserved for queues */
1073 adapter->num_q_vectors = numvecs;
1074
1075 /* add 1 vector for link status interrupts */
1076 numvecs++;
1077 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1078 GFP_KERNEL);
1079
1080 if (!adapter->msix_entries)
1081 goto msi_only;
1082
1083 for (i = 0; i < numvecs; i++)
1084 adapter->msix_entries[i].entry = i;
1085
1086 err = pci_enable_msix(adapter->pdev,
1087 adapter->msix_entries,
1088 numvecs);
1089 if (err == 0)
1090 return;
1091
1092 igb_reset_interrupt_capability(adapter);
1093
1094 /* If we can't do MSI-X, try MSI */
1095 msi_only:
1096 #ifdef CONFIG_PCI_IOV
1097 /* disable SR-IOV for non MSI-X configurations */
1098 if (adapter->vf_data) {
1099 struct e1000_hw *hw = &adapter->hw;
1100 /* disable iov and allow time for transactions to clear */
1101 pci_disable_sriov(adapter->pdev);
1102 msleep(500);
1103
1104 kfree(adapter->vf_data);
1105 adapter->vf_data = NULL;
1106 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1107 wrfl();
1108 msleep(100);
1109 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1110 }
1111 #endif
1112 adapter->vfs_allocated_count = 0;
1113 adapter->rss_queues = 1;
1114 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1115 adapter->num_rx_queues = 1;
1116 adapter->num_tx_queues = 1;
1117 adapter->num_q_vectors = 1;
1118 if (!pci_enable_msi(adapter->pdev))
1119 adapter->flags |= IGB_FLAG_HAS_MSI;
1120 }
1121
1122 static void igb_add_ring(struct igb_ring *ring,
1123 struct igb_ring_container *head)
1124 {
1125 head->ring = ring;
1126 head->count++;
1127 }
1128
1129 /**
1130 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1131 * @adapter: board private structure to initialize
1132 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1133 * @v_idx: index of vector in adapter struct
1134 * @txr_count: total number of Tx rings to allocate
1135 * @txr_idx: index of first Tx ring to allocate
1136 * @rxr_count: total number of Rx rings to allocate
1137 * @rxr_idx: index of first Rx ring to allocate
1138 *
1139 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1140 **/
1141 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1142 int v_count, int v_idx,
1143 int txr_count, int txr_idx,
1144 int rxr_count, int rxr_idx)
1145 {
1146 struct igb_q_vector *q_vector;
1147 struct igb_ring *ring;
1148 int ring_count, size;
1149
1150 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1151 if (txr_count > 1 || rxr_count > 1)
1152 return -ENOMEM;
1153
1154 ring_count = txr_count + rxr_count;
1155 size = sizeof(struct igb_q_vector) +
1156 (sizeof(struct igb_ring) * ring_count);
1157
1158 /* allocate q_vector and rings */
1159 q_vector = kzalloc(size, GFP_KERNEL);
1160 if (!q_vector)
1161 return -ENOMEM;
1162
1163 /* initialize NAPI */
1164 netif_napi_add(adapter->netdev, &q_vector->napi,
1165 igb_poll, 64);
1166
1167 /* tie q_vector and adapter together */
1168 adapter->q_vector[v_idx] = q_vector;
1169 q_vector->adapter = adapter;
1170
1171 /* initialize work limits */
1172 q_vector->tx.work_limit = adapter->tx_work_limit;
1173
1174 /* initialize ITR configuration */
1175 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1176 q_vector->itr_val = IGB_START_ITR;
1177
1178 /* initialize pointer to rings */
1179 ring = q_vector->ring;
1180
1181 if (txr_count) {
1182 /* assign generic ring traits */
1183 ring->dev = &adapter->pdev->dev;
1184 ring->netdev = adapter->netdev;
1185
1186 /* configure backlink on ring */
1187 ring->q_vector = q_vector;
1188
1189 /* update q_vector Tx values */
1190 igb_add_ring(ring, &q_vector->tx);
1191
1192 /* For 82575, context index must be unique per ring. */
1193 if (adapter->hw.mac.type == e1000_82575)
1194 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1195
1196 /* apply Tx specific ring traits */
1197 ring->count = adapter->tx_ring_count;
1198 ring->queue_index = txr_idx;
1199
1200 /* assign ring to adapter */
1201 adapter->tx_ring[txr_idx] = ring;
1202
1203 /* push pointer to next ring */
1204 ring++;
1205 }
1206
1207 if (rxr_count) {
1208 /* assign generic ring traits */
1209 ring->dev = &adapter->pdev->dev;
1210 ring->netdev = adapter->netdev;
1211
1212 /* configure backlink on ring */
1213 ring->q_vector = q_vector;
1214
1215 /* update q_vector Rx values */
1216 igb_add_ring(ring, &q_vector->rx);
1217
1218 /* set flag indicating ring supports SCTP checksum offload */
1219 if (adapter->hw.mac.type >= e1000_82576)
1220 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1221
1222 /*
1223 * On i350, i210, and i211, loopback VLAN packets
1224 * have the tag byte-swapped.
1225 * */
1226 if (adapter->hw.mac.type >= e1000_i350)
1227 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1228
1229 /* apply Rx specific ring traits */
1230 ring->count = adapter->rx_ring_count;
1231 ring->queue_index = rxr_idx;
1232
1233 /* assign ring to adapter */
1234 adapter->rx_ring[rxr_idx] = ring;
1235 }
1236
1237 return 0;
1238 }
1239
1240
1241 /**
1242 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1243 * @adapter: board private structure to initialize
1244 *
1245 * We allocate one q_vector per queue interrupt. If allocation fails we
1246 * return -ENOMEM.
1247 **/
1248 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1249 {
1250 int q_vectors = adapter->num_q_vectors;
1251 int rxr_remaining = adapter->num_rx_queues;
1252 int txr_remaining = adapter->num_tx_queues;
1253 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1254 int err;
1255
1256 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1257 for (; rxr_remaining; v_idx++) {
1258 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1259 0, 0, 1, rxr_idx);
1260
1261 if (err)
1262 goto err_out;
1263
1264 /* update counts and index */
1265 rxr_remaining--;
1266 rxr_idx++;
1267 }
1268 }
1269
1270 for (; v_idx < q_vectors; v_idx++) {
1271 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1272 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1273 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1274 tqpv, txr_idx, rqpv, rxr_idx);
1275
1276 if (err)
1277 goto err_out;
1278
1279 /* update counts and index */
1280 rxr_remaining -= rqpv;
1281 txr_remaining -= tqpv;
1282 rxr_idx++;
1283 txr_idx++;
1284 }
1285
1286 return 0;
1287
1288 err_out:
1289 adapter->num_tx_queues = 0;
1290 adapter->num_rx_queues = 0;
1291 adapter->num_q_vectors = 0;
1292
1293 while (v_idx--)
1294 igb_free_q_vector(adapter, v_idx);
1295
1296 return -ENOMEM;
1297 }
1298
1299 /**
1300 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1301 *
1302 * This function initializes the interrupts and allocates all of the queues.
1303 **/
1304 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1305 {
1306 struct pci_dev *pdev = adapter->pdev;
1307 int err;
1308
1309 igb_set_interrupt_capability(adapter, msix);
1310
1311 err = igb_alloc_q_vectors(adapter);
1312 if (err) {
1313 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1314 goto err_alloc_q_vectors;
1315 }
1316
1317 igb_cache_ring_register(adapter);
1318
1319 return 0;
1320
1321 err_alloc_q_vectors:
1322 igb_reset_interrupt_capability(adapter);
1323 return err;
1324 }
1325
1326 /**
1327 * igb_request_irq - initialize interrupts
1328 *
1329 * Attempts to configure interrupts using the best available
1330 * capabilities of the hardware and kernel.
1331 **/
1332 static int igb_request_irq(struct igb_adapter *adapter)
1333 {
1334 struct net_device *netdev = adapter->netdev;
1335 struct pci_dev *pdev = adapter->pdev;
1336 int err = 0;
1337
1338 if (adapter->msix_entries) {
1339 err = igb_request_msix(adapter);
1340 if (!err)
1341 goto request_done;
1342 /* fall back to MSI */
1343 igb_free_all_tx_resources(adapter);
1344 igb_free_all_rx_resources(adapter);
1345
1346 igb_clear_interrupt_scheme(adapter);
1347 err = igb_init_interrupt_scheme(adapter, false);
1348 if (err)
1349 goto request_done;
1350
1351 igb_setup_all_tx_resources(adapter);
1352 igb_setup_all_rx_resources(adapter);
1353 igb_configure(adapter);
1354 }
1355
1356 igb_assign_vector(adapter->q_vector[0], 0);
1357
1358 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1359 err = request_irq(pdev->irq, igb_intr_msi, 0,
1360 netdev->name, adapter);
1361 if (!err)
1362 goto request_done;
1363
1364 /* fall back to legacy interrupts */
1365 igb_reset_interrupt_capability(adapter);
1366 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1367 }
1368
1369 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1370 netdev->name, adapter);
1371
1372 if (err)
1373 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1374 err);
1375
1376 request_done:
1377 return err;
1378 }
1379
1380 static void igb_free_irq(struct igb_adapter *adapter)
1381 {
1382 if (adapter->msix_entries) {
1383 int vector = 0, i;
1384
1385 free_irq(adapter->msix_entries[vector++].vector, adapter);
1386
1387 for (i = 0; i < adapter->num_q_vectors; i++)
1388 free_irq(adapter->msix_entries[vector++].vector,
1389 adapter->q_vector[i]);
1390 } else {
1391 free_irq(adapter->pdev->irq, adapter);
1392 }
1393 }
1394
1395 /**
1396 * igb_irq_disable - Mask off interrupt generation on the NIC
1397 * @adapter: board private structure
1398 **/
1399 static void igb_irq_disable(struct igb_adapter *adapter)
1400 {
1401 struct e1000_hw *hw = &adapter->hw;
1402
1403 /*
1404 * we need to be careful when disabling interrupts. The VFs are also
1405 * mapped into these registers and so clearing the bits can cause
1406 * issues on the VF drivers so we only need to clear what we set
1407 */
1408 if (adapter->msix_entries) {
1409 u32 regval = rd32(E1000_EIAM);
1410 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1411 wr32(E1000_EIMC, adapter->eims_enable_mask);
1412 regval = rd32(E1000_EIAC);
1413 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1414 }
1415
1416 wr32(E1000_IAM, 0);
1417 wr32(E1000_IMC, ~0);
1418 wrfl();
1419 if (adapter->msix_entries) {
1420 int i;
1421 for (i = 0; i < adapter->num_q_vectors; i++)
1422 synchronize_irq(adapter->msix_entries[i].vector);
1423 } else {
1424 synchronize_irq(adapter->pdev->irq);
1425 }
1426 }
1427
1428 /**
1429 * igb_irq_enable - Enable default interrupt generation settings
1430 * @adapter: board private structure
1431 **/
1432 static void igb_irq_enable(struct igb_adapter *adapter)
1433 {
1434 struct e1000_hw *hw = &adapter->hw;
1435
1436 if (adapter->msix_entries) {
1437 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1438 u32 regval = rd32(E1000_EIAC);
1439 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1440 regval = rd32(E1000_EIAM);
1441 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1442 wr32(E1000_EIMS, adapter->eims_enable_mask);
1443 if (adapter->vfs_allocated_count) {
1444 wr32(E1000_MBVFIMR, 0xFF);
1445 ims |= E1000_IMS_VMMB;
1446 }
1447 wr32(E1000_IMS, ims);
1448 } else {
1449 wr32(E1000_IMS, IMS_ENABLE_MASK |
1450 E1000_IMS_DRSTA);
1451 wr32(E1000_IAM, IMS_ENABLE_MASK |
1452 E1000_IMS_DRSTA);
1453 }
1454 }
1455
1456 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1457 {
1458 struct e1000_hw *hw = &adapter->hw;
1459 u16 vid = adapter->hw.mng_cookie.vlan_id;
1460 u16 old_vid = adapter->mng_vlan_id;
1461
1462 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1463 /* add VID to filter table */
1464 igb_vfta_set(hw, vid, true);
1465 adapter->mng_vlan_id = vid;
1466 } else {
1467 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1468 }
1469
1470 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1471 (vid != old_vid) &&
1472 !test_bit(old_vid, adapter->active_vlans)) {
1473 /* remove VID from filter table */
1474 igb_vfta_set(hw, old_vid, false);
1475 }
1476 }
1477
1478 /**
1479 * igb_release_hw_control - release control of the h/w to f/w
1480 * @adapter: address of board private structure
1481 *
1482 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1483 * For ASF and Pass Through versions of f/w this means that the
1484 * driver is no longer loaded.
1485 *
1486 **/
1487 static void igb_release_hw_control(struct igb_adapter *adapter)
1488 {
1489 struct e1000_hw *hw = &adapter->hw;
1490 u32 ctrl_ext;
1491
1492 /* Let firmware take over control of h/w */
1493 ctrl_ext = rd32(E1000_CTRL_EXT);
1494 wr32(E1000_CTRL_EXT,
1495 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1496 }
1497
1498 /**
1499 * igb_get_hw_control - get control of the h/w from f/w
1500 * @adapter: address of board private structure
1501 *
1502 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1503 * For ASF and Pass Through versions of f/w this means that
1504 * the driver is loaded.
1505 *
1506 **/
1507 static void igb_get_hw_control(struct igb_adapter *adapter)
1508 {
1509 struct e1000_hw *hw = &adapter->hw;
1510 u32 ctrl_ext;
1511
1512 /* Let firmware know the driver has taken over */
1513 ctrl_ext = rd32(E1000_CTRL_EXT);
1514 wr32(E1000_CTRL_EXT,
1515 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1516 }
1517
1518 /**
1519 * igb_configure - configure the hardware for RX and TX
1520 * @adapter: private board structure
1521 **/
1522 static void igb_configure(struct igb_adapter *adapter)
1523 {
1524 struct net_device *netdev = adapter->netdev;
1525 int i;
1526
1527 igb_get_hw_control(adapter);
1528 igb_set_rx_mode(netdev);
1529
1530 igb_restore_vlan(adapter);
1531
1532 igb_setup_tctl(adapter);
1533 igb_setup_mrqc(adapter);
1534 igb_setup_rctl(adapter);
1535
1536 igb_configure_tx(adapter);
1537 igb_configure_rx(adapter);
1538
1539 igb_rx_fifo_flush_82575(&adapter->hw);
1540
1541 /* call igb_desc_unused which always leaves
1542 * at least 1 descriptor unused to make sure
1543 * next_to_use != next_to_clean */
1544 for (i = 0; i < adapter->num_rx_queues; i++) {
1545 struct igb_ring *ring = adapter->rx_ring[i];
1546 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1547 }
1548 }
1549
1550 /**
1551 * igb_power_up_link - Power up the phy/serdes link
1552 * @adapter: address of board private structure
1553 **/
1554 void igb_power_up_link(struct igb_adapter *adapter)
1555 {
1556 igb_reset_phy(&adapter->hw);
1557
1558 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1559 igb_power_up_phy_copper(&adapter->hw);
1560 else
1561 igb_power_up_serdes_link_82575(&adapter->hw);
1562 }
1563
1564 /**
1565 * igb_power_down_link - Power down the phy/serdes link
1566 * @adapter: address of board private structure
1567 */
1568 static void igb_power_down_link(struct igb_adapter *adapter)
1569 {
1570 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1571 igb_power_down_phy_copper_82575(&adapter->hw);
1572 else
1573 igb_shutdown_serdes_link_82575(&adapter->hw);
1574 }
1575
1576 /**
1577 * igb_up - Open the interface and prepare it to handle traffic
1578 * @adapter: board private structure
1579 **/
1580 int igb_up(struct igb_adapter *adapter)
1581 {
1582 struct e1000_hw *hw = &adapter->hw;
1583 int i;
1584
1585 /* hardware has been reset, we need to reload some things */
1586 igb_configure(adapter);
1587
1588 clear_bit(__IGB_DOWN, &adapter->state);
1589
1590 for (i = 0; i < adapter->num_q_vectors; i++)
1591 napi_enable(&(adapter->q_vector[i]->napi));
1592
1593 if (adapter->msix_entries)
1594 igb_configure_msix(adapter);
1595 else
1596 igb_assign_vector(adapter->q_vector[0], 0);
1597
1598 /* Clear any pending interrupts. */
1599 rd32(E1000_ICR);
1600 igb_irq_enable(adapter);
1601
1602 /* notify VFs that reset has been completed */
1603 if (adapter->vfs_allocated_count) {
1604 u32 reg_data = rd32(E1000_CTRL_EXT);
1605 reg_data |= E1000_CTRL_EXT_PFRSTD;
1606 wr32(E1000_CTRL_EXT, reg_data);
1607 }
1608
1609 netif_tx_start_all_queues(adapter->netdev);
1610
1611 /* start the watchdog. */
1612 hw->mac.get_link_status = 1;
1613 schedule_work(&adapter->watchdog_task);
1614
1615 return 0;
1616 }
1617
1618 void igb_down(struct igb_adapter *adapter)
1619 {
1620 struct net_device *netdev = adapter->netdev;
1621 struct e1000_hw *hw = &adapter->hw;
1622 u32 tctl, rctl;
1623 int i;
1624
1625 /* signal that we're down so the interrupt handler does not
1626 * reschedule our watchdog timer */
1627 set_bit(__IGB_DOWN, &adapter->state);
1628
1629 /* disable receives in the hardware */
1630 rctl = rd32(E1000_RCTL);
1631 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1632 /* flush and sleep below */
1633
1634 netif_tx_stop_all_queues(netdev);
1635
1636 /* disable transmits in the hardware */
1637 tctl = rd32(E1000_TCTL);
1638 tctl &= ~E1000_TCTL_EN;
1639 wr32(E1000_TCTL, tctl);
1640 /* flush both disables and wait for them to finish */
1641 wrfl();
1642 msleep(10);
1643
1644 for (i = 0; i < adapter->num_q_vectors; i++)
1645 napi_disable(&(adapter->q_vector[i]->napi));
1646
1647 igb_irq_disable(adapter);
1648
1649 del_timer_sync(&adapter->watchdog_timer);
1650 del_timer_sync(&adapter->phy_info_timer);
1651
1652 netif_carrier_off(netdev);
1653
1654 /* record the stats before reset*/
1655 spin_lock(&adapter->stats64_lock);
1656 igb_update_stats(adapter, &adapter->stats64);
1657 spin_unlock(&adapter->stats64_lock);
1658
1659 adapter->link_speed = 0;
1660 adapter->link_duplex = 0;
1661
1662 if (!pci_channel_offline(adapter->pdev))
1663 igb_reset(adapter);
1664 igb_clean_all_tx_rings(adapter);
1665 igb_clean_all_rx_rings(adapter);
1666 #ifdef CONFIG_IGB_DCA
1667
1668 /* since we reset the hardware DCA settings were cleared */
1669 igb_setup_dca(adapter);
1670 #endif
1671 }
1672
1673 void igb_reinit_locked(struct igb_adapter *adapter)
1674 {
1675 WARN_ON(in_interrupt());
1676 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1677 msleep(1);
1678 igb_down(adapter);
1679 igb_up(adapter);
1680 clear_bit(__IGB_RESETTING, &adapter->state);
1681 }
1682
1683 void igb_reset(struct igb_adapter *adapter)
1684 {
1685 struct pci_dev *pdev = adapter->pdev;
1686 struct e1000_hw *hw = &adapter->hw;
1687 struct e1000_mac_info *mac = &hw->mac;
1688 struct e1000_fc_info *fc = &hw->fc;
1689 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1690
1691 /* Repartition Pba for greater than 9k mtu
1692 * To take effect CTRL.RST is required.
1693 */
1694 switch (mac->type) {
1695 case e1000_i350:
1696 case e1000_82580:
1697 pba = rd32(E1000_RXPBS);
1698 pba = igb_rxpbs_adjust_82580(pba);
1699 break;
1700 case e1000_82576:
1701 pba = rd32(E1000_RXPBS);
1702 pba &= E1000_RXPBS_SIZE_MASK_82576;
1703 break;
1704 case e1000_82575:
1705 case e1000_i210:
1706 case e1000_i211:
1707 default:
1708 pba = E1000_PBA_34K;
1709 break;
1710 }
1711
1712 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1713 (mac->type < e1000_82576)) {
1714 /* adjust PBA for jumbo frames */
1715 wr32(E1000_PBA, pba);
1716
1717 /* To maintain wire speed transmits, the Tx FIFO should be
1718 * large enough to accommodate two full transmit packets,
1719 * rounded up to the next 1KB and expressed in KB. Likewise,
1720 * the Rx FIFO should be large enough to accommodate at least
1721 * one full receive packet and is similarly rounded up and
1722 * expressed in KB. */
1723 pba = rd32(E1000_PBA);
1724 /* upper 16 bits has Tx packet buffer allocation size in KB */
1725 tx_space = pba >> 16;
1726 /* lower 16 bits has Rx packet buffer allocation size in KB */
1727 pba &= 0xffff;
1728 /* the tx fifo also stores 16 bytes of information about the tx
1729 * but don't include ethernet FCS because hardware appends it */
1730 min_tx_space = (adapter->max_frame_size +
1731 sizeof(union e1000_adv_tx_desc) -
1732 ETH_FCS_LEN) * 2;
1733 min_tx_space = ALIGN(min_tx_space, 1024);
1734 min_tx_space >>= 10;
1735 /* software strips receive CRC, so leave room for it */
1736 min_rx_space = adapter->max_frame_size;
1737 min_rx_space = ALIGN(min_rx_space, 1024);
1738 min_rx_space >>= 10;
1739
1740 /* If current Tx allocation is less than the min Tx FIFO size,
1741 * and the min Tx FIFO size is less than the current Rx FIFO
1742 * allocation, take space away from current Rx allocation */
1743 if (tx_space < min_tx_space &&
1744 ((min_tx_space - tx_space) < pba)) {
1745 pba = pba - (min_tx_space - tx_space);
1746
1747 /* if short on rx space, rx wins and must trump tx
1748 * adjustment */
1749 if (pba < min_rx_space)
1750 pba = min_rx_space;
1751 }
1752 wr32(E1000_PBA, pba);
1753 }
1754
1755 /* flow control settings */
1756 /* The high water mark must be low enough to fit one full frame
1757 * (or the size used for early receive) above it in the Rx FIFO.
1758 * Set it to the lower of:
1759 * - 90% of the Rx FIFO size, or
1760 * - the full Rx FIFO size minus one full frame */
1761 hwm = min(((pba << 10) * 9 / 10),
1762 ((pba << 10) - 2 * adapter->max_frame_size));
1763
1764 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1765 fc->low_water = fc->high_water - 16;
1766 fc->pause_time = 0xFFFF;
1767 fc->send_xon = 1;
1768 fc->current_mode = fc->requested_mode;
1769
1770 /* disable receive for all VFs and wait one second */
1771 if (adapter->vfs_allocated_count) {
1772 int i;
1773 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1774 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1775
1776 /* ping all the active vfs to let them know we are going down */
1777 igb_ping_all_vfs(adapter);
1778
1779 /* disable transmits and receives */
1780 wr32(E1000_VFRE, 0);
1781 wr32(E1000_VFTE, 0);
1782 }
1783
1784 /* Allow time for pending master requests to run */
1785 hw->mac.ops.reset_hw(hw);
1786 wr32(E1000_WUC, 0);
1787
1788 if (hw->mac.ops.init_hw(hw))
1789 dev_err(&pdev->dev, "Hardware Error\n");
1790
1791 /*
1792 * Flow control settings reset on hardware reset, so guarantee flow
1793 * control is off when forcing speed.
1794 */
1795 if (!hw->mac.autoneg)
1796 igb_force_mac_fc(hw);
1797
1798 igb_init_dmac(adapter, pba);
1799 #ifdef CONFIG_IGB_HWMON
1800 /* Re-initialize the thermal sensor on i350 devices. */
1801 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1802 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1803 /* If present, re-initialize the external thermal sensor
1804 * interface.
1805 */
1806 if (adapter->ets)
1807 mac->ops.init_thermal_sensor_thresh(hw);
1808 }
1809 }
1810 #endif
1811 if (!netif_running(adapter->netdev))
1812 igb_power_down_link(adapter);
1813
1814 igb_update_mng_vlan(adapter);
1815
1816 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1817 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1818
1819 /* Re-enable PTP, where applicable. */
1820 igb_ptp_reset(adapter);
1821
1822 igb_get_phy_info(hw);
1823 }
1824
1825 static netdev_features_t igb_fix_features(struct net_device *netdev,
1826 netdev_features_t features)
1827 {
1828 /*
1829 * Since there is no support for separate rx/tx vlan accel
1830 * enable/disable make sure tx flag is always in same state as rx.
1831 */
1832 if (features & NETIF_F_HW_VLAN_RX)
1833 features |= NETIF_F_HW_VLAN_TX;
1834 else
1835 features &= ~NETIF_F_HW_VLAN_TX;
1836
1837 return features;
1838 }
1839
1840 static int igb_set_features(struct net_device *netdev,
1841 netdev_features_t features)
1842 {
1843 netdev_features_t changed = netdev->features ^ features;
1844 struct igb_adapter *adapter = netdev_priv(netdev);
1845
1846 if (changed & NETIF_F_HW_VLAN_RX)
1847 igb_vlan_mode(netdev, features);
1848
1849 if (!(changed & NETIF_F_RXALL))
1850 return 0;
1851
1852 netdev->features = features;
1853
1854 if (netif_running(netdev))
1855 igb_reinit_locked(adapter);
1856 else
1857 igb_reset(adapter);
1858
1859 return 0;
1860 }
1861
1862 static const struct net_device_ops igb_netdev_ops = {
1863 .ndo_open = igb_open,
1864 .ndo_stop = igb_close,
1865 .ndo_start_xmit = igb_xmit_frame,
1866 .ndo_get_stats64 = igb_get_stats64,
1867 .ndo_set_rx_mode = igb_set_rx_mode,
1868 .ndo_set_mac_address = igb_set_mac,
1869 .ndo_change_mtu = igb_change_mtu,
1870 .ndo_do_ioctl = igb_ioctl,
1871 .ndo_tx_timeout = igb_tx_timeout,
1872 .ndo_validate_addr = eth_validate_addr,
1873 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1874 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1875 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1876 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1877 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1878 .ndo_get_vf_config = igb_ndo_get_vf_config,
1879 #ifdef CONFIG_NET_POLL_CONTROLLER
1880 .ndo_poll_controller = igb_netpoll,
1881 #endif
1882 .ndo_fix_features = igb_fix_features,
1883 .ndo_set_features = igb_set_features,
1884 };
1885
1886 /**
1887 * igb_set_fw_version - Configure version string for ethtool
1888 * @adapter: adapter struct
1889 *
1890 **/
1891 void igb_set_fw_version(struct igb_adapter *adapter)
1892 {
1893 struct e1000_hw *hw = &adapter->hw;
1894 struct e1000_fw_version fw;
1895
1896 igb_get_fw_version(hw, &fw);
1897
1898 switch (hw->mac.type) {
1899 case e1000_i211:
1900 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1901 "%2d.%2d-%d",
1902 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1903 break;
1904
1905 default:
1906 /* if option is rom valid, display its version too */
1907 if (fw.or_valid) {
1908 snprintf(adapter->fw_version,
1909 sizeof(adapter->fw_version),
1910 "%d.%d, 0x%08x, %d.%d.%d",
1911 fw.eep_major, fw.eep_minor, fw.etrack_id,
1912 fw.or_major, fw.or_build, fw.or_patch);
1913 /* no option rom */
1914 } else {
1915 snprintf(adapter->fw_version,
1916 sizeof(adapter->fw_version),
1917 "%d.%d, 0x%08x",
1918 fw.eep_major, fw.eep_minor, fw.etrack_id);
1919 }
1920 break;
1921 }
1922 return;
1923 }
1924
1925 static const struct i2c_board_info i350_sensor_info = {
1926 I2C_BOARD_INFO("i350bb", 0Xf8),
1927 };
1928
1929 /* igb_init_i2c - Init I2C interface
1930 * @adapter: pointer to adapter structure
1931 *
1932 */
1933 static s32 igb_init_i2c(struct igb_adapter *adapter)
1934 {
1935 s32 status = E1000_SUCCESS;
1936
1937 /* I2C interface supported on i350 devices */
1938 if (adapter->hw.mac.type != e1000_i350)
1939 return E1000_SUCCESS;
1940
1941 /* Initialize the i2c bus which is controlled by the registers.
1942 * This bus will use the i2c_algo_bit structue that implements
1943 * the protocol through toggling of the 4 bits in the register.
1944 */
1945 adapter->i2c_adap.owner = THIS_MODULE;
1946 adapter->i2c_algo = igb_i2c_algo;
1947 adapter->i2c_algo.data = adapter;
1948 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1949 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1950 strlcpy(adapter->i2c_adap.name, "igb BB",
1951 sizeof(adapter->i2c_adap.name));
1952 status = i2c_bit_add_bus(&adapter->i2c_adap);
1953 return status;
1954 }
1955
1956 /**
1957 * igb_probe - Device Initialization Routine
1958 * @pdev: PCI device information struct
1959 * @ent: entry in igb_pci_tbl
1960 *
1961 * Returns 0 on success, negative on failure
1962 *
1963 * igb_probe initializes an adapter identified by a pci_dev structure.
1964 * The OS initialization, configuring of the adapter private structure,
1965 * and a hardware reset occur.
1966 **/
1967 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1968 {
1969 struct net_device *netdev;
1970 struct igb_adapter *adapter;
1971 struct e1000_hw *hw;
1972 u16 eeprom_data = 0;
1973 s32 ret_val;
1974 static int global_quad_port_a; /* global quad port a indication */
1975 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1976 unsigned long mmio_start, mmio_len;
1977 int err, pci_using_dac;
1978 u8 part_str[E1000_PBANUM_LENGTH];
1979
1980 /* Catch broken hardware that put the wrong VF device ID in
1981 * the PCIe SR-IOV capability.
1982 */
1983 if (pdev->is_virtfn) {
1984 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1985 pci_name(pdev), pdev->vendor, pdev->device);
1986 return -EINVAL;
1987 }
1988
1989 err = pci_enable_device_mem(pdev);
1990 if (err)
1991 return err;
1992
1993 pci_using_dac = 0;
1994 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1995 if (!err) {
1996 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1997 if (!err)
1998 pci_using_dac = 1;
1999 } else {
2000 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2001 if (err) {
2002 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
2003 if (err) {
2004 dev_err(&pdev->dev, "No usable DMA "
2005 "configuration, aborting\n");
2006 goto err_dma;
2007 }
2008 }
2009 }
2010
2011 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2012 IORESOURCE_MEM),
2013 igb_driver_name);
2014 if (err)
2015 goto err_pci_reg;
2016
2017 pci_enable_pcie_error_reporting(pdev);
2018
2019 pci_set_master(pdev);
2020 pci_save_state(pdev);
2021
2022 err = -ENOMEM;
2023 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2024 IGB_MAX_TX_QUEUES);
2025 if (!netdev)
2026 goto err_alloc_etherdev;
2027
2028 SET_NETDEV_DEV(netdev, &pdev->dev);
2029
2030 pci_set_drvdata(pdev, netdev);
2031 adapter = netdev_priv(netdev);
2032 adapter->netdev = netdev;
2033 adapter->pdev = pdev;
2034 hw = &adapter->hw;
2035 hw->back = adapter;
2036 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2037
2038 mmio_start = pci_resource_start(pdev, 0);
2039 mmio_len = pci_resource_len(pdev, 0);
2040
2041 err = -EIO;
2042 hw->hw_addr = ioremap(mmio_start, mmio_len);
2043 if (!hw->hw_addr)
2044 goto err_ioremap;
2045
2046 netdev->netdev_ops = &igb_netdev_ops;
2047 igb_set_ethtool_ops(netdev);
2048 netdev->watchdog_timeo = 5 * HZ;
2049
2050 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2051
2052 netdev->mem_start = mmio_start;
2053 netdev->mem_end = mmio_start + mmio_len;
2054
2055 /* PCI config space info */
2056 hw->vendor_id = pdev->vendor;
2057 hw->device_id = pdev->device;
2058 hw->revision_id = pdev->revision;
2059 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2060 hw->subsystem_device_id = pdev->subsystem_device;
2061
2062 /* Copy the default MAC, PHY and NVM function pointers */
2063 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2064 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2065 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2066 /* Initialize skew-specific constants */
2067 err = ei->get_invariants(hw);
2068 if (err)
2069 goto err_sw_init;
2070
2071 /* setup the private structure */
2072 err = igb_sw_init(adapter);
2073 if (err)
2074 goto err_sw_init;
2075
2076 igb_get_bus_info_pcie(hw);
2077
2078 hw->phy.autoneg_wait_to_complete = false;
2079
2080 /* Copper options */
2081 if (hw->phy.media_type == e1000_media_type_copper) {
2082 hw->phy.mdix = AUTO_ALL_MODES;
2083 hw->phy.disable_polarity_correction = false;
2084 hw->phy.ms_type = e1000_ms_hw_default;
2085 }
2086
2087 if (igb_check_reset_block(hw))
2088 dev_info(&pdev->dev,
2089 "PHY reset is blocked due to SOL/IDER session.\n");
2090
2091 /*
2092 * features is initialized to 0 in allocation, it might have bits
2093 * set by igb_sw_init so we should use an or instead of an
2094 * assignment.
2095 */
2096 netdev->features |= NETIF_F_SG |
2097 NETIF_F_IP_CSUM |
2098 NETIF_F_IPV6_CSUM |
2099 NETIF_F_TSO |
2100 NETIF_F_TSO6 |
2101 NETIF_F_RXHASH |
2102 NETIF_F_RXCSUM |
2103 NETIF_F_HW_VLAN_RX |
2104 NETIF_F_HW_VLAN_TX;
2105
2106 /* copy netdev features into list of user selectable features */
2107 netdev->hw_features |= netdev->features;
2108 netdev->hw_features |= NETIF_F_RXALL;
2109
2110 /* set this bit last since it cannot be part of hw_features */
2111 netdev->features |= NETIF_F_HW_VLAN_FILTER;
2112
2113 netdev->vlan_features |= NETIF_F_TSO |
2114 NETIF_F_TSO6 |
2115 NETIF_F_IP_CSUM |
2116 NETIF_F_IPV6_CSUM |
2117 NETIF_F_SG;
2118
2119 netdev->priv_flags |= IFF_SUPP_NOFCS;
2120
2121 if (pci_using_dac) {
2122 netdev->features |= NETIF_F_HIGHDMA;
2123 netdev->vlan_features |= NETIF_F_HIGHDMA;
2124 }
2125
2126 if (hw->mac.type >= e1000_82576) {
2127 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2128 netdev->features |= NETIF_F_SCTP_CSUM;
2129 }
2130
2131 netdev->priv_flags |= IFF_UNICAST_FLT;
2132
2133 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2134
2135 /* before reading the NVM, reset the controller to put the device in a
2136 * known good starting state */
2137 hw->mac.ops.reset_hw(hw);
2138
2139 /*
2140 * make sure the NVM is good , i211 parts have special NVM that
2141 * doesn't contain a checksum
2142 */
2143 if (hw->mac.type != e1000_i211) {
2144 if (hw->nvm.ops.validate(hw) < 0) {
2145 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2146 err = -EIO;
2147 goto err_eeprom;
2148 }
2149 }
2150
2151 /* copy the MAC address out of the NVM */
2152 if (hw->mac.ops.read_mac_addr(hw))
2153 dev_err(&pdev->dev, "NVM Read Error\n");
2154
2155 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2156
2157 if (!is_valid_ether_addr(netdev->dev_addr)) {
2158 dev_err(&pdev->dev, "Invalid MAC Address\n");
2159 err = -EIO;
2160 goto err_eeprom;
2161 }
2162
2163 /* get firmware version for ethtool -i */
2164 igb_set_fw_version(adapter);
2165
2166 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2167 (unsigned long) adapter);
2168 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2169 (unsigned long) adapter);
2170
2171 INIT_WORK(&adapter->reset_task, igb_reset_task);
2172 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2173
2174 /* Initialize link properties that are user-changeable */
2175 adapter->fc_autoneg = true;
2176 hw->mac.autoneg = true;
2177 hw->phy.autoneg_advertised = 0x2f;
2178
2179 hw->fc.requested_mode = e1000_fc_default;
2180 hw->fc.current_mode = e1000_fc_default;
2181
2182 igb_validate_mdi_setting(hw);
2183
2184 /* By default, support wake on port A */
2185 if (hw->bus.func == 0)
2186 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2187
2188 /* Check the NVM for wake support on non-port A ports */
2189 if (hw->mac.type >= e1000_82580)
2190 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2191 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2192 &eeprom_data);
2193 else if (hw->bus.func == 1)
2194 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2195
2196 if (eeprom_data & IGB_EEPROM_APME)
2197 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2198
2199 /* now that we have the eeprom settings, apply the special cases where
2200 * the eeprom may be wrong or the board simply won't support wake on
2201 * lan on a particular port */
2202 switch (pdev->device) {
2203 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2204 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2205 break;
2206 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2207 case E1000_DEV_ID_82576_FIBER:
2208 case E1000_DEV_ID_82576_SERDES:
2209 /* Wake events only supported on port A for dual fiber
2210 * regardless of eeprom setting */
2211 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2212 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2213 break;
2214 case E1000_DEV_ID_82576_QUAD_COPPER:
2215 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2216 /* if quad port adapter, disable WoL on all but port A */
2217 if (global_quad_port_a != 0)
2218 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2219 else
2220 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2221 /* Reset for multiple quad port adapters */
2222 if (++global_quad_port_a == 4)
2223 global_quad_port_a = 0;
2224 break;
2225 default:
2226 /* If the device can't wake, don't set software support */
2227 if (!device_can_wakeup(&adapter->pdev->dev))
2228 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2229 }
2230
2231 /* initialize the wol settings based on the eeprom settings */
2232 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2233 adapter->wol |= E1000_WUFC_MAG;
2234
2235 /* Some vendors want WoL disabled by default, but still supported */
2236 if ((hw->mac.type == e1000_i350) &&
2237 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2238 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2239 adapter->wol = 0;
2240 }
2241
2242 device_set_wakeup_enable(&adapter->pdev->dev,
2243 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2244
2245 /* reset the hardware with the new settings */
2246 igb_reset(adapter);
2247
2248 /* Init the I2C interface */
2249 err = igb_init_i2c(adapter);
2250 if (err) {
2251 dev_err(&pdev->dev, "failed to init i2c interface\n");
2252 goto err_eeprom;
2253 }
2254
2255 /* let the f/w know that the h/w is now under the control of the
2256 * driver. */
2257 igb_get_hw_control(adapter);
2258
2259 strcpy(netdev->name, "eth%d");
2260 err = register_netdev(netdev);
2261 if (err)
2262 goto err_register;
2263
2264 /* carrier off reporting is important to ethtool even BEFORE open */
2265 netif_carrier_off(netdev);
2266
2267 #ifdef CONFIG_IGB_DCA
2268 if (dca_add_requester(&pdev->dev) == 0) {
2269 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2270 dev_info(&pdev->dev, "DCA enabled\n");
2271 igb_setup_dca(adapter);
2272 }
2273
2274 #endif
2275 #ifdef CONFIG_IGB_HWMON
2276 /* Initialize the thermal sensor on i350 devices. */
2277 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2278 u16 ets_word;
2279
2280 /*
2281 * Read the NVM to determine if this i350 device supports an
2282 * external thermal sensor.
2283 */
2284 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2285 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2286 adapter->ets = true;
2287 else
2288 adapter->ets = false;
2289 if (igb_sysfs_init(adapter))
2290 dev_err(&pdev->dev,
2291 "failed to allocate sysfs resources\n");
2292 } else {
2293 adapter->ets = false;
2294 }
2295 #endif
2296 /* do hw tstamp init after resetting */
2297 igb_ptp_init(adapter);
2298
2299 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2300 /* print bus type/speed/width info */
2301 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2302 netdev->name,
2303 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2304 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2305 "unknown"),
2306 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2307 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2308 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2309 "unknown"),
2310 netdev->dev_addr);
2311
2312 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2313 if (ret_val)
2314 strcpy(part_str, "Unknown");
2315 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2316 dev_info(&pdev->dev,
2317 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2318 adapter->msix_entries ? "MSI-X" :
2319 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2320 adapter->num_rx_queues, adapter->num_tx_queues);
2321 switch (hw->mac.type) {
2322 case e1000_i350:
2323 case e1000_i210:
2324 case e1000_i211:
2325 igb_set_eee_i350(hw);
2326 break;
2327 default:
2328 break;
2329 }
2330
2331 pm_runtime_put_noidle(&pdev->dev);
2332 return 0;
2333
2334 err_register:
2335 igb_release_hw_control(adapter);
2336 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2337 err_eeprom:
2338 if (!igb_check_reset_block(hw))
2339 igb_reset_phy(hw);
2340
2341 if (hw->flash_address)
2342 iounmap(hw->flash_address);
2343 err_sw_init:
2344 igb_clear_interrupt_scheme(adapter);
2345 iounmap(hw->hw_addr);
2346 err_ioremap:
2347 free_netdev(netdev);
2348 err_alloc_etherdev:
2349 pci_release_selected_regions(pdev,
2350 pci_select_bars(pdev, IORESOURCE_MEM));
2351 err_pci_reg:
2352 err_dma:
2353 pci_disable_device(pdev);
2354 return err;
2355 }
2356
2357 #ifdef CONFIG_PCI_IOV
2358 static int igb_disable_sriov(struct pci_dev *pdev)
2359 {
2360 struct net_device *netdev = pci_get_drvdata(pdev);
2361 struct igb_adapter *adapter = netdev_priv(netdev);
2362 struct e1000_hw *hw = &adapter->hw;
2363
2364 /* reclaim resources allocated to VFs */
2365 if (adapter->vf_data) {
2366 /* disable iov and allow time for transactions to clear */
2367 if (igb_vfs_are_assigned(adapter)) {
2368 dev_warn(&pdev->dev,
2369 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2370 return -EPERM;
2371 } else {
2372 pci_disable_sriov(pdev);
2373 msleep(500);
2374 }
2375
2376 kfree(adapter->vf_data);
2377 adapter->vf_data = NULL;
2378 adapter->vfs_allocated_count = 0;
2379 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2380 wrfl();
2381 msleep(100);
2382 dev_info(&pdev->dev, "IOV Disabled\n");
2383
2384 /* Re-enable DMA Coalescing flag since IOV is turned off */
2385 adapter->flags |= IGB_FLAG_DMAC;
2386 }
2387
2388 return 0;
2389 }
2390
2391 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2392 {
2393 struct net_device *netdev = pci_get_drvdata(pdev);
2394 struct igb_adapter *adapter = netdev_priv(netdev);
2395 int old_vfs = pci_num_vf(pdev);
2396 int err = 0;
2397 int i;
2398
2399 if (!num_vfs)
2400 goto out;
2401 else if (old_vfs && old_vfs == num_vfs)
2402 goto out;
2403 else if (old_vfs && old_vfs != num_vfs)
2404 err = igb_disable_sriov(pdev);
2405
2406 if (err)
2407 goto out;
2408
2409 if (num_vfs > 7) {
2410 err = -EPERM;
2411 goto out;
2412 }
2413
2414 adapter->vfs_allocated_count = num_vfs;
2415
2416 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2417 sizeof(struct vf_data_storage), GFP_KERNEL);
2418
2419 /* if allocation failed then we do not support SR-IOV */
2420 if (!adapter->vf_data) {
2421 adapter->vfs_allocated_count = 0;
2422 dev_err(&pdev->dev,
2423 "Unable to allocate memory for VF Data Storage\n");
2424 err = -ENOMEM;
2425 goto out;
2426 }
2427
2428 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2429 if (err)
2430 goto err_out;
2431
2432 dev_info(&pdev->dev, "%d VFs allocated\n",
2433 adapter->vfs_allocated_count);
2434 for (i = 0; i < adapter->vfs_allocated_count; i++)
2435 igb_vf_configure(adapter, i);
2436
2437 /* DMA Coalescing is not supported in IOV mode. */
2438 adapter->flags &= ~IGB_FLAG_DMAC;
2439 goto out;
2440
2441 err_out:
2442 kfree(adapter->vf_data);
2443 adapter->vf_data = NULL;
2444 adapter->vfs_allocated_count = 0;
2445 out:
2446 return err;
2447 }
2448
2449 #endif
2450 /*
2451 * igb_remove_i2c - Cleanup I2C interface
2452 * @adapter: pointer to adapter structure
2453 *
2454 */
2455 static void igb_remove_i2c(struct igb_adapter *adapter)
2456 {
2457
2458 /* free the adapter bus structure */
2459 i2c_del_adapter(&adapter->i2c_adap);
2460 }
2461
2462 /**
2463 * igb_remove - Device Removal Routine
2464 * @pdev: PCI device information struct
2465 *
2466 * igb_remove is called by the PCI subsystem to alert the driver
2467 * that it should release a PCI device. The could be caused by a
2468 * Hot-Plug event, or because the driver is going to be removed from
2469 * memory.
2470 **/
2471 static void igb_remove(struct pci_dev *pdev)
2472 {
2473 struct net_device *netdev = pci_get_drvdata(pdev);
2474 struct igb_adapter *adapter = netdev_priv(netdev);
2475 struct e1000_hw *hw = &adapter->hw;
2476
2477 pm_runtime_get_noresume(&pdev->dev);
2478 #ifdef CONFIG_IGB_HWMON
2479 igb_sysfs_exit(adapter);
2480 #endif
2481 igb_remove_i2c(adapter);
2482 igb_ptp_stop(adapter);
2483 /*
2484 * The watchdog timer may be rescheduled, so explicitly
2485 * disable watchdog from being rescheduled.
2486 */
2487 set_bit(__IGB_DOWN, &adapter->state);
2488 del_timer_sync(&adapter->watchdog_timer);
2489 del_timer_sync(&adapter->phy_info_timer);
2490
2491 cancel_work_sync(&adapter->reset_task);
2492 cancel_work_sync(&adapter->watchdog_task);
2493
2494 #ifdef CONFIG_IGB_DCA
2495 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2496 dev_info(&pdev->dev, "DCA disabled\n");
2497 dca_remove_requester(&pdev->dev);
2498 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2499 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2500 }
2501 #endif
2502
2503 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2504 * would have already happened in close and is redundant. */
2505 igb_release_hw_control(adapter);
2506
2507 unregister_netdev(netdev);
2508
2509 igb_clear_interrupt_scheme(adapter);
2510
2511 #ifdef CONFIG_PCI_IOV
2512 igb_disable_sriov(pdev);
2513 #endif
2514
2515 iounmap(hw->hw_addr);
2516 if (hw->flash_address)
2517 iounmap(hw->flash_address);
2518 pci_release_selected_regions(pdev,
2519 pci_select_bars(pdev, IORESOURCE_MEM));
2520
2521 kfree(adapter->shadow_vfta);
2522 free_netdev(netdev);
2523
2524 pci_disable_pcie_error_reporting(pdev);
2525
2526 pci_disable_device(pdev);
2527 }
2528
2529 /**
2530 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2531 * @adapter: board private structure to initialize
2532 *
2533 * This function initializes the vf specific data storage and then attempts to
2534 * allocate the VFs. The reason for ordering it this way is because it is much
2535 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2536 * the memory for the VFs.
2537 **/
2538 static void igb_probe_vfs(struct igb_adapter *adapter)
2539 {
2540 #ifdef CONFIG_PCI_IOV
2541 struct pci_dev *pdev = adapter->pdev;
2542 struct e1000_hw *hw = &adapter->hw;
2543
2544 /* Virtualization features not supported on i210 family. */
2545 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2546 return;
2547
2548 igb_enable_sriov(pdev, max_vfs);
2549 pci_sriov_set_totalvfs(pdev, 7);
2550
2551 #endif /* CONFIG_PCI_IOV */
2552 }
2553
2554 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2555 {
2556 struct e1000_hw *hw = &adapter->hw;
2557 u32 max_rss_queues;
2558
2559 /* Determine the maximum number of RSS queues supported. */
2560 switch (hw->mac.type) {
2561 case e1000_i211:
2562 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2563 break;
2564 case e1000_82575:
2565 case e1000_i210:
2566 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2567 break;
2568 case e1000_i350:
2569 /* I350 cannot do RSS and SR-IOV at the same time */
2570 if (!!adapter->vfs_allocated_count) {
2571 max_rss_queues = 1;
2572 break;
2573 }
2574 /* fall through */
2575 case e1000_82576:
2576 if (!!adapter->vfs_allocated_count) {
2577 max_rss_queues = 2;
2578 break;
2579 }
2580 /* fall through */
2581 case e1000_82580:
2582 default:
2583 max_rss_queues = IGB_MAX_RX_QUEUES;
2584 break;
2585 }
2586
2587 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2588
2589 /* Determine if we need to pair queues. */
2590 switch (hw->mac.type) {
2591 case e1000_82575:
2592 case e1000_i211:
2593 /* Device supports enough interrupts without queue pairing. */
2594 break;
2595 case e1000_82576:
2596 /*
2597 * If VFs are going to be allocated with RSS queues then we
2598 * should pair the queues in order to conserve interrupts due
2599 * to limited supply.
2600 */
2601 if ((adapter->rss_queues > 1) &&
2602 (adapter->vfs_allocated_count > 6))
2603 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2604 /* fall through */
2605 case e1000_82580:
2606 case e1000_i350:
2607 case e1000_i210:
2608 default:
2609 /*
2610 * If rss_queues > half of max_rss_queues, pair the queues in
2611 * order to conserve interrupts due to limited supply.
2612 */
2613 if (adapter->rss_queues > (max_rss_queues / 2))
2614 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2615 break;
2616 }
2617 }
2618
2619 /**
2620 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2621 * @adapter: board private structure to initialize
2622 *
2623 * igb_sw_init initializes the Adapter private data structure.
2624 * Fields are initialized based on PCI device information and
2625 * OS network device settings (MTU size).
2626 **/
2627 static int igb_sw_init(struct igb_adapter *adapter)
2628 {
2629 struct e1000_hw *hw = &adapter->hw;
2630 struct net_device *netdev = adapter->netdev;
2631 struct pci_dev *pdev = adapter->pdev;
2632
2633 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2634
2635 /* set default ring sizes */
2636 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2637 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2638
2639 /* set default ITR values */
2640 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2641 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2642
2643 /* set default work limits */
2644 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2645
2646 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2647 VLAN_HLEN;
2648 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2649
2650 spin_lock_init(&adapter->stats64_lock);
2651 #ifdef CONFIG_PCI_IOV
2652 switch (hw->mac.type) {
2653 case e1000_82576:
2654 case e1000_i350:
2655 if (max_vfs > 7) {
2656 dev_warn(&pdev->dev,
2657 "Maximum of 7 VFs per PF, using max\n");
2658 adapter->vfs_allocated_count = 7;
2659 } else
2660 adapter->vfs_allocated_count = max_vfs;
2661 if (adapter->vfs_allocated_count)
2662 dev_warn(&pdev->dev,
2663 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2664 break;
2665 default:
2666 break;
2667 }
2668 #endif /* CONFIG_PCI_IOV */
2669
2670 igb_init_queue_configuration(adapter);
2671
2672 /* Setup and initialize a copy of the hw vlan table array */
2673 adapter->shadow_vfta = kzalloc(sizeof(u32) *
2674 E1000_VLAN_FILTER_TBL_SIZE,
2675 GFP_ATOMIC);
2676
2677 /* This call may decrease the number of queues */
2678 if (igb_init_interrupt_scheme(adapter, true)) {
2679 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2680 return -ENOMEM;
2681 }
2682
2683 igb_probe_vfs(adapter);
2684
2685 /* Explicitly disable IRQ since the NIC can be in any state. */
2686 igb_irq_disable(adapter);
2687
2688 if (hw->mac.type >= e1000_i350)
2689 adapter->flags &= ~IGB_FLAG_DMAC;
2690
2691 set_bit(__IGB_DOWN, &adapter->state);
2692 return 0;
2693 }
2694
2695 /**
2696 * igb_open - Called when a network interface is made active
2697 * @netdev: network interface device structure
2698 *
2699 * Returns 0 on success, negative value on failure
2700 *
2701 * The open entry point is called when a network interface is made
2702 * active by the system (IFF_UP). At this point all resources needed
2703 * for transmit and receive operations are allocated, the interrupt
2704 * handler is registered with the OS, the watchdog timer is started,
2705 * and the stack is notified that the interface is ready.
2706 **/
2707 static int __igb_open(struct net_device *netdev, bool resuming)
2708 {
2709 struct igb_adapter *adapter = netdev_priv(netdev);
2710 struct e1000_hw *hw = &adapter->hw;
2711 struct pci_dev *pdev = adapter->pdev;
2712 int err;
2713 int i;
2714
2715 /* disallow open during test */
2716 if (test_bit(__IGB_TESTING, &adapter->state)) {
2717 WARN_ON(resuming);
2718 return -EBUSY;
2719 }
2720
2721 if (!resuming)
2722 pm_runtime_get_sync(&pdev->dev);
2723
2724 netif_carrier_off(netdev);
2725
2726 /* allocate transmit descriptors */
2727 err = igb_setup_all_tx_resources(adapter);
2728 if (err)
2729 goto err_setup_tx;
2730
2731 /* allocate receive descriptors */
2732 err = igb_setup_all_rx_resources(adapter);
2733 if (err)
2734 goto err_setup_rx;
2735
2736 igb_power_up_link(adapter);
2737
2738 /* before we allocate an interrupt, we must be ready to handle it.
2739 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2740 * as soon as we call pci_request_irq, so we have to setup our
2741 * clean_rx handler before we do so. */
2742 igb_configure(adapter);
2743
2744 err = igb_request_irq(adapter);
2745 if (err)
2746 goto err_req_irq;
2747
2748 /* Notify the stack of the actual queue counts. */
2749 err = netif_set_real_num_tx_queues(adapter->netdev,
2750 adapter->num_tx_queues);
2751 if (err)
2752 goto err_set_queues;
2753
2754 err = netif_set_real_num_rx_queues(adapter->netdev,
2755 adapter->num_rx_queues);
2756 if (err)
2757 goto err_set_queues;
2758
2759 /* From here on the code is the same as igb_up() */
2760 clear_bit(__IGB_DOWN, &adapter->state);
2761
2762 for (i = 0; i < adapter->num_q_vectors; i++)
2763 napi_enable(&(adapter->q_vector[i]->napi));
2764
2765 /* Clear any pending interrupts. */
2766 rd32(E1000_ICR);
2767
2768 igb_irq_enable(adapter);
2769
2770 /* notify VFs that reset has been completed */
2771 if (adapter->vfs_allocated_count) {
2772 u32 reg_data = rd32(E1000_CTRL_EXT);
2773 reg_data |= E1000_CTRL_EXT_PFRSTD;
2774 wr32(E1000_CTRL_EXT, reg_data);
2775 }
2776
2777 netif_tx_start_all_queues(netdev);
2778
2779 if (!resuming)
2780 pm_runtime_put(&pdev->dev);
2781
2782 /* start the watchdog. */
2783 hw->mac.get_link_status = 1;
2784 schedule_work(&adapter->watchdog_task);
2785
2786 return 0;
2787
2788 err_set_queues:
2789 igb_free_irq(adapter);
2790 err_req_irq:
2791 igb_release_hw_control(adapter);
2792 igb_power_down_link(adapter);
2793 igb_free_all_rx_resources(adapter);
2794 err_setup_rx:
2795 igb_free_all_tx_resources(adapter);
2796 err_setup_tx:
2797 igb_reset(adapter);
2798 if (!resuming)
2799 pm_runtime_put(&pdev->dev);
2800
2801 return err;
2802 }
2803
2804 static int igb_open(struct net_device *netdev)
2805 {
2806 return __igb_open(netdev, false);
2807 }
2808
2809 /**
2810 * igb_close - Disables a network interface
2811 * @netdev: network interface device structure
2812 *
2813 * Returns 0, this is not allowed to fail
2814 *
2815 * The close entry point is called when an interface is de-activated
2816 * by the OS. The hardware is still under the driver's control, but
2817 * needs to be disabled. A global MAC reset is issued to stop the
2818 * hardware, and all transmit and receive resources are freed.
2819 **/
2820 static int __igb_close(struct net_device *netdev, bool suspending)
2821 {
2822 struct igb_adapter *adapter = netdev_priv(netdev);
2823 struct pci_dev *pdev = adapter->pdev;
2824
2825 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2826
2827 if (!suspending)
2828 pm_runtime_get_sync(&pdev->dev);
2829
2830 igb_down(adapter);
2831 igb_free_irq(adapter);
2832
2833 igb_free_all_tx_resources(adapter);
2834 igb_free_all_rx_resources(adapter);
2835
2836 if (!suspending)
2837 pm_runtime_put_sync(&pdev->dev);
2838 return 0;
2839 }
2840
2841 static int igb_close(struct net_device *netdev)
2842 {
2843 return __igb_close(netdev, false);
2844 }
2845
2846 /**
2847 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2848 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2849 *
2850 * Return 0 on success, negative on failure
2851 **/
2852 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2853 {
2854 struct device *dev = tx_ring->dev;
2855 int size;
2856
2857 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2858
2859 tx_ring->tx_buffer_info = vzalloc(size);
2860 if (!tx_ring->tx_buffer_info)
2861 goto err;
2862
2863 /* round up to nearest 4K */
2864 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2865 tx_ring->size = ALIGN(tx_ring->size, 4096);
2866
2867 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2868 &tx_ring->dma, GFP_KERNEL);
2869 if (!tx_ring->desc)
2870 goto err;
2871
2872 tx_ring->next_to_use = 0;
2873 tx_ring->next_to_clean = 0;
2874
2875 return 0;
2876
2877 err:
2878 vfree(tx_ring->tx_buffer_info);
2879 tx_ring->tx_buffer_info = NULL;
2880 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2881 return -ENOMEM;
2882 }
2883
2884 /**
2885 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2886 * (Descriptors) for all queues
2887 * @adapter: board private structure
2888 *
2889 * Return 0 on success, negative on failure
2890 **/
2891 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2892 {
2893 struct pci_dev *pdev = adapter->pdev;
2894 int i, err = 0;
2895
2896 for (i = 0; i < adapter->num_tx_queues; i++) {
2897 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2898 if (err) {
2899 dev_err(&pdev->dev,
2900 "Allocation for Tx Queue %u failed\n", i);
2901 for (i--; i >= 0; i--)
2902 igb_free_tx_resources(adapter->tx_ring[i]);
2903 break;
2904 }
2905 }
2906
2907 return err;
2908 }
2909
2910 /**
2911 * igb_setup_tctl - configure the transmit control registers
2912 * @adapter: Board private structure
2913 **/
2914 void igb_setup_tctl(struct igb_adapter *adapter)
2915 {
2916 struct e1000_hw *hw = &adapter->hw;
2917 u32 tctl;
2918
2919 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2920 wr32(E1000_TXDCTL(0), 0);
2921
2922 /* Program the Transmit Control Register */
2923 tctl = rd32(E1000_TCTL);
2924 tctl &= ~E1000_TCTL_CT;
2925 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2926 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2927
2928 igb_config_collision_dist(hw);
2929
2930 /* Enable transmits */
2931 tctl |= E1000_TCTL_EN;
2932
2933 wr32(E1000_TCTL, tctl);
2934 }
2935
2936 /**
2937 * igb_configure_tx_ring - Configure transmit ring after Reset
2938 * @adapter: board private structure
2939 * @ring: tx ring to configure
2940 *
2941 * Configure a transmit ring after a reset.
2942 **/
2943 void igb_configure_tx_ring(struct igb_adapter *adapter,
2944 struct igb_ring *ring)
2945 {
2946 struct e1000_hw *hw = &adapter->hw;
2947 u32 txdctl = 0;
2948 u64 tdba = ring->dma;
2949 int reg_idx = ring->reg_idx;
2950
2951 /* disable the queue */
2952 wr32(E1000_TXDCTL(reg_idx), 0);
2953 wrfl();
2954 mdelay(10);
2955
2956 wr32(E1000_TDLEN(reg_idx),
2957 ring->count * sizeof(union e1000_adv_tx_desc));
2958 wr32(E1000_TDBAL(reg_idx),
2959 tdba & 0x00000000ffffffffULL);
2960 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2961
2962 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2963 wr32(E1000_TDH(reg_idx), 0);
2964 writel(0, ring->tail);
2965
2966 txdctl |= IGB_TX_PTHRESH;
2967 txdctl |= IGB_TX_HTHRESH << 8;
2968 txdctl |= IGB_TX_WTHRESH << 16;
2969
2970 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2971 wr32(E1000_TXDCTL(reg_idx), txdctl);
2972 }
2973
2974 /**
2975 * igb_configure_tx - Configure transmit Unit after Reset
2976 * @adapter: board private structure
2977 *
2978 * Configure the Tx unit of the MAC after a reset.
2979 **/
2980 static void igb_configure_tx(struct igb_adapter *adapter)
2981 {
2982 int i;
2983
2984 for (i = 0; i < adapter->num_tx_queues; i++)
2985 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2986 }
2987
2988 /**
2989 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2990 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2991 *
2992 * Returns 0 on success, negative on failure
2993 **/
2994 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2995 {
2996 struct device *dev = rx_ring->dev;
2997 int size;
2998
2999 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3000
3001 rx_ring->rx_buffer_info = vzalloc(size);
3002 if (!rx_ring->rx_buffer_info)
3003 goto err;
3004
3005 /* Round up to nearest 4K */
3006 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3007 rx_ring->size = ALIGN(rx_ring->size, 4096);
3008
3009 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3010 &rx_ring->dma, GFP_KERNEL);
3011 if (!rx_ring->desc)
3012 goto err;
3013
3014 rx_ring->next_to_alloc = 0;
3015 rx_ring->next_to_clean = 0;
3016 rx_ring->next_to_use = 0;
3017
3018 return 0;
3019
3020 err:
3021 vfree(rx_ring->rx_buffer_info);
3022 rx_ring->rx_buffer_info = NULL;
3023 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3024 return -ENOMEM;
3025 }
3026
3027 /**
3028 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3029 * (Descriptors) for all queues
3030 * @adapter: board private structure
3031 *
3032 * Return 0 on success, negative on failure
3033 **/
3034 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3035 {
3036 struct pci_dev *pdev = adapter->pdev;
3037 int i, err = 0;
3038
3039 for (i = 0; i < adapter->num_rx_queues; i++) {
3040 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3041 if (err) {
3042 dev_err(&pdev->dev,
3043 "Allocation for Rx Queue %u failed\n", i);
3044 for (i--; i >= 0; i--)
3045 igb_free_rx_resources(adapter->rx_ring[i]);
3046 break;
3047 }
3048 }
3049
3050 return err;
3051 }
3052
3053 /**
3054 * igb_setup_mrqc - configure the multiple receive queue control registers
3055 * @adapter: Board private structure
3056 **/
3057 static void igb_setup_mrqc(struct igb_adapter *adapter)
3058 {
3059 struct e1000_hw *hw = &adapter->hw;
3060 u32 mrqc, rxcsum;
3061 u32 j, num_rx_queues, shift = 0;
3062 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3063 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3064 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3065 0xFA01ACBE };
3066
3067 /* Fill out hash function seeds */
3068 for (j = 0; j < 10; j++)
3069 wr32(E1000_RSSRK(j), rsskey[j]);
3070
3071 num_rx_queues = adapter->rss_queues;
3072
3073 switch (hw->mac.type) {
3074 case e1000_82575:
3075 shift = 6;
3076 break;
3077 case e1000_82576:
3078 /* 82576 supports 2 RSS queues for SR-IOV */
3079 if (adapter->vfs_allocated_count) {
3080 shift = 3;
3081 num_rx_queues = 2;
3082 }
3083 break;
3084 default:
3085 break;
3086 }
3087
3088 /*
3089 * Populate the indirection table 4 entries at a time. To do this
3090 * we are generating the results for n and n+2 and then interleaving
3091 * those with the results with n+1 and n+3.
3092 */
3093 for (j = 0; j < 32; j++) {
3094 /* first pass generates n and n+2 */
3095 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3096 u32 reta = (base & 0x07800780) >> (7 - shift);
3097
3098 /* second pass generates n+1 and n+3 */
3099 base += 0x00010001 * num_rx_queues;
3100 reta |= (base & 0x07800780) << (1 + shift);
3101
3102 wr32(E1000_RETA(j), reta);
3103 }
3104
3105 /*
3106 * Disable raw packet checksumming so that RSS hash is placed in
3107 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3108 * offloads as they are enabled by default
3109 */
3110 rxcsum = rd32(E1000_RXCSUM);
3111 rxcsum |= E1000_RXCSUM_PCSD;
3112
3113 if (adapter->hw.mac.type >= e1000_82576)
3114 /* Enable Receive Checksum Offload for SCTP */
3115 rxcsum |= E1000_RXCSUM_CRCOFL;
3116
3117 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3118 wr32(E1000_RXCSUM, rxcsum);
3119
3120 /* Generate RSS hash based on packet types, TCP/UDP
3121 * port numbers and/or IPv4/v6 src and dst addresses
3122 */
3123 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3124 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3125 E1000_MRQC_RSS_FIELD_IPV6 |
3126 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3127 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3128
3129 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3130 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3131 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3132 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3133
3134 /* If VMDq is enabled then we set the appropriate mode for that, else
3135 * we default to RSS so that an RSS hash is calculated per packet even
3136 * if we are only using one queue */
3137 if (adapter->vfs_allocated_count) {
3138 if (hw->mac.type > e1000_82575) {
3139 /* Set the default pool for the PF's first queue */
3140 u32 vtctl = rd32(E1000_VT_CTL);
3141 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3142 E1000_VT_CTL_DISABLE_DEF_POOL);
3143 vtctl |= adapter->vfs_allocated_count <<
3144 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3145 wr32(E1000_VT_CTL, vtctl);
3146 }
3147 if (adapter->rss_queues > 1)
3148 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3149 else
3150 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3151 } else {
3152 if (hw->mac.type != e1000_i211)
3153 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3154 }
3155 igb_vmm_control(adapter);
3156
3157 wr32(E1000_MRQC, mrqc);
3158 }
3159
3160 /**
3161 * igb_setup_rctl - configure the receive control registers
3162 * @adapter: Board private structure
3163 **/
3164 void igb_setup_rctl(struct igb_adapter *adapter)
3165 {
3166 struct e1000_hw *hw = &adapter->hw;
3167 u32 rctl;
3168
3169 rctl = rd32(E1000_RCTL);
3170
3171 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3172 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3173
3174 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3175 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3176
3177 /*
3178 * enable stripping of CRC. It's unlikely this will break BMC
3179 * redirection as it did with e1000. Newer features require
3180 * that the HW strips the CRC.
3181 */
3182 rctl |= E1000_RCTL_SECRC;
3183
3184 /* disable store bad packets and clear size bits. */
3185 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3186
3187 /* enable LPE to prevent packets larger than max_frame_size */
3188 rctl |= E1000_RCTL_LPE;
3189
3190 /* disable queue 0 to prevent tail write w/o re-config */
3191 wr32(E1000_RXDCTL(0), 0);
3192
3193 /* Attention!!! For SR-IOV PF driver operations you must enable
3194 * queue drop for all VF and PF queues to prevent head of line blocking
3195 * if an un-trusted VF does not provide descriptors to hardware.
3196 */
3197 if (adapter->vfs_allocated_count) {
3198 /* set all queue drop enable bits */
3199 wr32(E1000_QDE, ALL_QUEUES);
3200 }
3201
3202 /* This is useful for sniffing bad packets. */
3203 if (adapter->netdev->features & NETIF_F_RXALL) {
3204 /* UPE and MPE will be handled by normal PROMISC logic
3205 * in e1000e_set_rx_mode */
3206 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3207 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3208 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3209
3210 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3211 E1000_RCTL_DPF | /* Allow filtered pause */
3212 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3213 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3214 * and that breaks VLANs.
3215 */
3216 }
3217
3218 wr32(E1000_RCTL, rctl);
3219 }
3220
3221 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3222 int vfn)
3223 {
3224 struct e1000_hw *hw = &adapter->hw;
3225 u32 vmolr;
3226
3227 /* if it isn't the PF check to see if VFs are enabled and
3228 * increase the size to support vlan tags */
3229 if (vfn < adapter->vfs_allocated_count &&
3230 adapter->vf_data[vfn].vlans_enabled)
3231 size += VLAN_TAG_SIZE;
3232
3233 vmolr = rd32(E1000_VMOLR(vfn));
3234 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3235 vmolr |= size | E1000_VMOLR_LPE;
3236 wr32(E1000_VMOLR(vfn), vmolr);
3237
3238 return 0;
3239 }
3240
3241 /**
3242 * igb_rlpml_set - set maximum receive packet size
3243 * @adapter: board private structure
3244 *
3245 * Configure maximum receivable packet size.
3246 **/
3247 static void igb_rlpml_set(struct igb_adapter *adapter)
3248 {
3249 u32 max_frame_size = adapter->max_frame_size;
3250 struct e1000_hw *hw = &adapter->hw;
3251 u16 pf_id = adapter->vfs_allocated_count;
3252
3253 if (pf_id) {
3254 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3255 /*
3256 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3257 * to our max jumbo frame size, in case we need to enable
3258 * jumbo frames on one of the rings later.
3259 * This will not pass over-length frames into the default
3260 * queue because it's gated by the VMOLR.RLPML.
3261 */
3262 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3263 }
3264
3265 wr32(E1000_RLPML, max_frame_size);
3266 }
3267
3268 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3269 int vfn, bool aupe)
3270 {
3271 struct e1000_hw *hw = &adapter->hw;
3272 u32 vmolr;
3273
3274 /*
3275 * This register exists only on 82576 and newer so if we are older then
3276 * we should exit and do nothing
3277 */
3278 if (hw->mac.type < e1000_82576)
3279 return;
3280
3281 vmolr = rd32(E1000_VMOLR(vfn));
3282 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3283 if (aupe)
3284 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3285 else
3286 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3287
3288 /* clear all bits that might not be set */
3289 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3290
3291 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3292 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3293 /*
3294 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3295 * multicast packets
3296 */
3297 if (vfn <= adapter->vfs_allocated_count)
3298 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3299
3300 wr32(E1000_VMOLR(vfn), vmolr);
3301 }
3302
3303 /**
3304 * igb_configure_rx_ring - Configure a receive ring after Reset
3305 * @adapter: board private structure
3306 * @ring: receive ring to be configured
3307 *
3308 * Configure the Rx unit of the MAC after a reset.
3309 **/
3310 void igb_configure_rx_ring(struct igb_adapter *adapter,
3311 struct igb_ring *ring)
3312 {
3313 struct e1000_hw *hw = &adapter->hw;
3314 u64 rdba = ring->dma;
3315 int reg_idx = ring->reg_idx;
3316 u32 srrctl = 0, rxdctl = 0;
3317
3318 /* disable the queue */
3319 wr32(E1000_RXDCTL(reg_idx), 0);
3320
3321 /* Set DMA base address registers */
3322 wr32(E1000_RDBAL(reg_idx),
3323 rdba & 0x00000000ffffffffULL);
3324 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3325 wr32(E1000_RDLEN(reg_idx),
3326 ring->count * sizeof(union e1000_adv_rx_desc));
3327
3328 /* initialize head and tail */
3329 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3330 wr32(E1000_RDH(reg_idx), 0);
3331 writel(0, ring->tail);
3332
3333 /* set descriptor configuration */
3334 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3335 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3336 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3337 if (hw->mac.type >= e1000_82580)
3338 srrctl |= E1000_SRRCTL_TIMESTAMP;
3339 /* Only set Drop Enable if we are supporting multiple queues */
3340 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3341 srrctl |= E1000_SRRCTL_DROP_EN;
3342
3343 wr32(E1000_SRRCTL(reg_idx), srrctl);
3344
3345 /* set filtering for VMDQ pools */
3346 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3347
3348 rxdctl |= IGB_RX_PTHRESH;
3349 rxdctl |= IGB_RX_HTHRESH << 8;
3350 rxdctl |= IGB_RX_WTHRESH << 16;
3351
3352 /* enable receive descriptor fetching */
3353 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3354 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3355 }
3356
3357 /**
3358 * igb_configure_rx - Configure receive Unit after Reset
3359 * @adapter: board private structure
3360 *
3361 * Configure the Rx unit of the MAC after a reset.
3362 **/
3363 static void igb_configure_rx(struct igb_adapter *adapter)
3364 {
3365 int i;
3366
3367 /* set UTA to appropriate mode */
3368 igb_set_uta(adapter);
3369
3370 /* set the correct pool for the PF default MAC address in entry 0 */
3371 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3372 adapter->vfs_allocated_count);
3373
3374 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3375 * the Base and Length of the Rx Descriptor Ring */
3376 for (i = 0; i < adapter->num_rx_queues; i++)
3377 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3378 }
3379
3380 /**
3381 * igb_free_tx_resources - Free Tx Resources per Queue
3382 * @tx_ring: Tx descriptor ring for a specific queue
3383 *
3384 * Free all transmit software resources
3385 **/
3386 void igb_free_tx_resources(struct igb_ring *tx_ring)
3387 {
3388 igb_clean_tx_ring(tx_ring);
3389
3390 vfree(tx_ring->tx_buffer_info);
3391 tx_ring->tx_buffer_info = NULL;
3392
3393 /* if not set, then don't free */
3394 if (!tx_ring->desc)
3395 return;
3396
3397 dma_free_coherent(tx_ring->dev, tx_ring->size,
3398 tx_ring->desc, tx_ring->dma);
3399
3400 tx_ring->desc = NULL;
3401 }
3402
3403 /**
3404 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3405 * @adapter: board private structure
3406 *
3407 * Free all transmit software resources
3408 **/
3409 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3410 {
3411 int i;
3412
3413 for (i = 0; i < adapter->num_tx_queues; i++)
3414 igb_free_tx_resources(adapter->tx_ring[i]);
3415 }
3416
3417 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3418 struct igb_tx_buffer *tx_buffer)
3419 {
3420 if (tx_buffer->skb) {
3421 dev_kfree_skb_any(tx_buffer->skb);
3422 if (dma_unmap_len(tx_buffer, len))
3423 dma_unmap_single(ring->dev,
3424 dma_unmap_addr(tx_buffer, dma),
3425 dma_unmap_len(tx_buffer, len),
3426 DMA_TO_DEVICE);
3427 } else if (dma_unmap_len(tx_buffer, len)) {
3428 dma_unmap_page(ring->dev,
3429 dma_unmap_addr(tx_buffer, dma),
3430 dma_unmap_len(tx_buffer, len),
3431 DMA_TO_DEVICE);
3432 }
3433 tx_buffer->next_to_watch = NULL;
3434 tx_buffer->skb = NULL;
3435 dma_unmap_len_set(tx_buffer, len, 0);
3436 /* buffer_info must be completely set up in the transmit path */
3437 }
3438
3439 /**
3440 * igb_clean_tx_ring - Free Tx Buffers
3441 * @tx_ring: ring to be cleaned
3442 **/
3443 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3444 {
3445 struct igb_tx_buffer *buffer_info;
3446 unsigned long size;
3447 u16 i;
3448
3449 if (!tx_ring->tx_buffer_info)
3450 return;
3451 /* Free all the Tx ring sk_buffs */
3452
3453 for (i = 0; i < tx_ring->count; i++) {
3454 buffer_info = &tx_ring->tx_buffer_info[i];
3455 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3456 }
3457
3458 netdev_tx_reset_queue(txring_txq(tx_ring));
3459
3460 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3461 memset(tx_ring->tx_buffer_info, 0, size);
3462
3463 /* Zero out the descriptor ring */
3464 memset(tx_ring->desc, 0, tx_ring->size);
3465
3466 tx_ring->next_to_use = 0;
3467 tx_ring->next_to_clean = 0;
3468 }
3469
3470 /**
3471 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3472 * @adapter: board private structure
3473 **/
3474 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3475 {
3476 int i;
3477
3478 for (i = 0; i < adapter->num_tx_queues; i++)
3479 igb_clean_tx_ring(adapter->tx_ring[i]);
3480 }
3481
3482 /**
3483 * igb_free_rx_resources - Free Rx Resources
3484 * @rx_ring: ring to clean the resources from
3485 *
3486 * Free all receive software resources
3487 **/
3488 void igb_free_rx_resources(struct igb_ring *rx_ring)
3489 {
3490 igb_clean_rx_ring(rx_ring);
3491
3492 vfree(rx_ring->rx_buffer_info);
3493 rx_ring->rx_buffer_info = NULL;
3494
3495 /* if not set, then don't free */
3496 if (!rx_ring->desc)
3497 return;
3498
3499 dma_free_coherent(rx_ring->dev, rx_ring->size,
3500 rx_ring->desc, rx_ring->dma);
3501
3502 rx_ring->desc = NULL;
3503 }
3504
3505 /**
3506 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3507 * @adapter: board private structure
3508 *
3509 * Free all receive software resources
3510 **/
3511 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3512 {
3513 int i;
3514
3515 for (i = 0; i < adapter->num_rx_queues; i++)
3516 igb_free_rx_resources(adapter->rx_ring[i]);
3517 }
3518
3519 /**
3520 * igb_clean_rx_ring - Free Rx Buffers per Queue
3521 * @rx_ring: ring to free buffers from
3522 **/
3523 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3524 {
3525 unsigned long size;
3526 u16 i;
3527
3528 if (rx_ring->skb)
3529 dev_kfree_skb(rx_ring->skb);
3530 rx_ring->skb = NULL;
3531
3532 if (!rx_ring->rx_buffer_info)
3533 return;
3534
3535 /* Free all the Rx ring sk_buffs */
3536 for (i = 0; i < rx_ring->count; i++) {
3537 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3538
3539 if (!buffer_info->page)
3540 continue;
3541
3542 dma_unmap_page(rx_ring->dev,
3543 buffer_info->dma,
3544 PAGE_SIZE,
3545 DMA_FROM_DEVICE);
3546 __free_page(buffer_info->page);
3547
3548 buffer_info->page = NULL;
3549 }
3550
3551 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3552 memset(rx_ring->rx_buffer_info, 0, size);
3553
3554 /* Zero out the descriptor ring */
3555 memset(rx_ring->desc, 0, rx_ring->size);
3556
3557 rx_ring->next_to_alloc = 0;
3558 rx_ring->next_to_clean = 0;
3559 rx_ring->next_to_use = 0;
3560 }
3561
3562 /**
3563 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3564 * @adapter: board private structure
3565 **/
3566 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3567 {
3568 int i;
3569
3570 for (i = 0; i < adapter->num_rx_queues; i++)
3571 igb_clean_rx_ring(adapter->rx_ring[i]);
3572 }
3573
3574 /**
3575 * igb_set_mac - Change the Ethernet Address of the NIC
3576 * @netdev: network interface device structure
3577 * @p: pointer to an address structure
3578 *
3579 * Returns 0 on success, negative on failure
3580 **/
3581 static int igb_set_mac(struct net_device *netdev, void *p)
3582 {
3583 struct igb_adapter *adapter = netdev_priv(netdev);
3584 struct e1000_hw *hw = &adapter->hw;
3585 struct sockaddr *addr = p;
3586
3587 if (!is_valid_ether_addr(addr->sa_data))
3588 return -EADDRNOTAVAIL;
3589
3590 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3591 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3592
3593 /* set the correct pool for the new PF MAC address in entry 0 */
3594 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3595 adapter->vfs_allocated_count);
3596
3597 return 0;
3598 }
3599
3600 /**
3601 * igb_write_mc_addr_list - write multicast addresses to MTA
3602 * @netdev: network interface device structure
3603 *
3604 * Writes multicast address list to the MTA hash table.
3605 * Returns: -ENOMEM on failure
3606 * 0 on no addresses written
3607 * X on writing X addresses to MTA
3608 **/
3609 static int igb_write_mc_addr_list(struct net_device *netdev)
3610 {
3611 struct igb_adapter *adapter = netdev_priv(netdev);
3612 struct e1000_hw *hw = &adapter->hw;
3613 struct netdev_hw_addr *ha;
3614 u8 *mta_list;
3615 int i;
3616
3617 if (netdev_mc_empty(netdev)) {
3618 /* nothing to program, so clear mc list */
3619 igb_update_mc_addr_list(hw, NULL, 0);
3620 igb_restore_vf_multicasts(adapter);
3621 return 0;
3622 }
3623
3624 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3625 if (!mta_list)
3626 return -ENOMEM;
3627
3628 /* The shared function expects a packed array of only addresses. */
3629 i = 0;
3630 netdev_for_each_mc_addr(ha, netdev)
3631 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3632
3633 igb_update_mc_addr_list(hw, mta_list, i);
3634 kfree(mta_list);
3635
3636 return netdev_mc_count(netdev);
3637 }
3638
3639 /**
3640 * igb_write_uc_addr_list - write unicast addresses to RAR table
3641 * @netdev: network interface device structure
3642 *
3643 * Writes unicast address list to the RAR table.
3644 * Returns: -ENOMEM on failure/insufficient address space
3645 * 0 on no addresses written
3646 * X on writing X addresses to the RAR table
3647 **/
3648 static int igb_write_uc_addr_list(struct net_device *netdev)
3649 {
3650 struct igb_adapter *adapter = netdev_priv(netdev);
3651 struct e1000_hw *hw = &adapter->hw;
3652 unsigned int vfn = adapter->vfs_allocated_count;
3653 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3654 int count = 0;
3655
3656 /* return ENOMEM indicating insufficient memory for addresses */
3657 if (netdev_uc_count(netdev) > rar_entries)
3658 return -ENOMEM;
3659
3660 if (!netdev_uc_empty(netdev) && rar_entries) {
3661 struct netdev_hw_addr *ha;
3662
3663 netdev_for_each_uc_addr(ha, netdev) {
3664 if (!rar_entries)
3665 break;
3666 igb_rar_set_qsel(adapter, ha->addr,
3667 rar_entries--,
3668 vfn);
3669 count++;
3670 }
3671 }
3672 /* write the addresses in reverse order to avoid write combining */
3673 for (; rar_entries > 0 ; rar_entries--) {
3674 wr32(E1000_RAH(rar_entries), 0);
3675 wr32(E1000_RAL(rar_entries), 0);
3676 }
3677 wrfl();
3678
3679 return count;
3680 }
3681
3682 /**
3683 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3684 * @netdev: network interface device structure
3685 *
3686 * The set_rx_mode entry point is called whenever the unicast or multicast
3687 * address lists or the network interface flags are updated. This routine is
3688 * responsible for configuring the hardware for proper unicast, multicast,
3689 * promiscuous mode, and all-multi behavior.
3690 **/
3691 static void igb_set_rx_mode(struct net_device *netdev)
3692 {
3693 struct igb_adapter *adapter = netdev_priv(netdev);
3694 struct e1000_hw *hw = &adapter->hw;
3695 unsigned int vfn = adapter->vfs_allocated_count;
3696 u32 rctl, vmolr = 0;
3697 int count;
3698
3699 /* Check for Promiscuous and All Multicast modes */
3700 rctl = rd32(E1000_RCTL);
3701
3702 /* clear the effected bits */
3703 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3704
3705 if (netdev->flags & IFF_PROMISC) {
3706 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3707 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3708 } else {
3709 if (netdev->flags & IFF_ALLMULTI) {
3710 rctl |= E1000_RCTL_MPE;
3711 vmolr |= E1000_VMOLR_MPME;
3712 } else {
3713 /*
3714 * Write addresses to the MTA, if the attempt fails
3715 * then we should just turn on promiscuous mode so
3716 * that we can at least receive multicast traffic
3717 */
3718 count = igb_write_mc_addr_list(netdev);
3719 if (count < 0) {
3720 rctl |= E1000_RCTL_MPE;
3721 vmolr |= E1000_VMOLR_MPME;
3722 } else if (count) {
3723 vmolr |= E1000_VMOLR_ROMPE;
3724 }
3725 }
3726 /*
3727 * Write addresses to available RAR registers, if there is not
3728 * sufficient space to store all the addresses then enable
3729 * unicast promiscuous mode
3730 */
3731 count = igb_write_uc_addr_list(netdev);
3732 if (count < 0) {
3733 rctl |= E1000_RCTL_UPE;
3734 vmolr |= E1000_VMOLR_ROPE;
3735 }
3736 rctl |= E1000_RCTL_VFE;
3737 }
3738 wr32(E1000_RCTL, rctl);
3739
3740 /*
3741 * In order to support SR-IOV and eventually VMDq it is necessary to set
3742 * the VMOLR to enable the appropriate modes. Without this workaround
3743 * we will have issues with VLAN tag stripping not being done for frames
3744 * that are only arriving because we are the default pool
3745 */
3746 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3747 return;
3748
3749 vmolr |= rd32(E1000_VMOLR(vfn)) &
3750 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3751 wr32(E1000_VMOLR(vfn), vmolr);
3752 igb_restore_vf_multicasts(adapter);
3753 }
3754
3755 static void igb_check_wvbr(struct igb_adapter *adapter)
3756 {
3757 struct e1000_hw *hw = &adapter->hw;
3758 u32 wvbr = 0;
3759
3760 switch (hw->mac.type) {
3761 case e1000_82576:
3762 case e1000_i350:
3763 if (!(wvbr = rd32(E1000_WVBR)))
3764 return;
3765 break;
3766 default:
3767 break;
3768 }
3769
3770 adapter->wvbr |= wvbr;
3771 }
3772
3773 #define IGB_STAGGERED_QUEUE_OFFSET 8
3774
3775 static void igb_spoof_check(struct igb_adapter *adapter)
3776 {
3777 int j;
3778
3779 if (!adapter->wvbr)
3780 return;
3781
3782 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3783 if (adapter->wvbr & (1 << j) ||
3784 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3785 dev_warn(&adapter->pdev->dev,
3786 "Spoof event(s) detected on VF %d\n", j);
3787 adapter->wvbr &=
3788 ~((1 << j) |
3789 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3790 }
3791 }
3792 }
3793
3794 /* Need to wait a few seconds after link up to get diagnostic information from
3795 * the phy */
3796 static void igb_update_phy_info(unsigned long data)
3797 {
3798 struct igb_adapter *adapter = (struct igb_adapter *) data;
3799 igb_get_phy_info(&adapter->hw);
3800 }
3801
3802 /**
3803 * igb_has_link - check shared code for link and determine up/down
3804 * @adapter: pointer to driver private info
3805 **/
3806 bool igb_has_link(struct igb_adapter *adapter)
3807 {
3808 struct e1000_hw *hw = &adapter->hw;
3809 bool link_active = false;
3810 s32 ret_val = 0;
3811
3812 /* get_link_status is set on LSC (link status) interrupt or
3813 * rx sequence error interrupt. get_link_status will stay
3814 * false until the e1000_check_for_link establishes link
3815 * for copper adapters ONLY
3816 */
3817 switch (hw->phy.media_type) {
3818 case e1000_media_type_copper:
3819 if (hw->mac.get_link_status) {
3820 ret_val = hw->mac.ops.check_for_link(hw);
3821 link_active = !hw->mac.get_link_status;
3822 } else {
3823 link_active = true;
3824 }
3825 break;
3826 case e1000_media_type_internal_serdes:
3827 ret_val = hw->mac.ops.check_for_link(hw);
3828 link_active = hw->mac.serdes_has_link;
3829 break;
3830 default:
3831 case e1000_media_type_unknown:
3832 break;
3833 }
3834
3835 return link_active;
3836 }
3837
3838 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3839 {
3840 bool ret = false;
3841 u32 ctrl_ext, thstat;
3842
3843 /* check for thermal sensor event on i350 copper only */
3844 if (hw->mac.type == e1000_i350) {
3845 thstat = rd32(E1000_THSTAT);
3846 ctrl_ext = rd32(E1000_CTRL_EXT);
3847
3848 if ((hw->phy.media_type == e1000_media_type_copper) &&
3849 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3850 ret = !!(thstat & event);
3851 }
3852 }
3853
3854 return ret;
3855 }
3856
3857 /**
3858 * igb_watchdog - Timer Call-back
3859 * @data: pointer to adapter cast into an unsigned long
3860 **/
3861 static void igb_watchdog(unsigned long data)
3862 {
3863 struct igb_adapter *adapter = (struct igb_adapter *)data;
3864 /* Do the rest outside of interrupt context */
3865 schedule_work(&adapter->watchdog_task);
3866 }
3867
3868 static void igb_watchdog_task(struct work_struct *work)
3869 {
3870 struct igb_adapter *adapter = container_of(work,
3871 struct igb_adapter,
3872 watchdog_task);
3873 struct e1000_hw *hw = &adapter->hw;
3874 struct net_device *netdev = adapter->netdev;
3875 u32 link;
3876 int i;
3877
3878 link = igb_has_link(adapter);
3879 if (link) {
3880 /* Cancel scheduled suspend requests. */
3881 pm_runtime_resume(netdev->dev.parent);
3882
3883 if (!netif_carrier_ok(netdev)) {
3884 u32 ctrl;
3885 hw->mac.ops.get_speed_and_duplex(hw,
3886 &adapter->link_speed,
3887 &adapter->link_duplex);
3888
3889 ctrl = rd32(E1000_CTRL);
3890 /* Links status message must follow this format */
3891 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3892 "Duplex, Flow Control: %s\n",
3893 netdev->name,
3894 adapter->link_speed,
3895 adapter->link_duplex == FULL_DUPLEX ?
3896 "Full" : "Half",
3897 (ctrl & E1000_CTRL_TFCE) &&
3898 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3899 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3900 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
3901
3902 /* check for thermal sensor event */
3903 if (igb_thermal_sensor_event(hw,
3904 E1000_THSTAT_LINK_THROTTLE)) {
3905 netdev_info(netdev, "The network adapter link "
3906 "speed was downshifted because it "
3907 "overheated\n");
3908 }
3909
3910 /* adjust timeout factor according to speed/duplex */
3911 adapter->tx_timeout_factor = 1;
3912 switch (adapter->link_speed) {
3913 case SPEED_10:
3914 adapter->tx_timeout_factor = 14;
3915 break;
3916 case SPEED_100:
3917 /* maybe add some timeout factor ? */
3918 break;
3919 }
3920
3921 netif_carrier_on(netdev);
3922
3923 igb_ping_all_vfs(adapter);
3924 igb_check_vf_rate_limit(adapter);
3925
3926 /* link state has changed, schedule phy info update */
3927 if (!test_bit(__IGB_DOWN, &adapter->state))
3928 mod_timer(&adapter->phy_info_timer,
3929 round_jiffies(jiffies + 2 * HZ));
3930 }
3931 } else {
3932 if (netif_carrier_ok(netdev)) {
3933 adapter->link_speed = 0;
3934 adapter->link_duplex = 0;
3935
3936 /* check for thermal sensor event */
3937 if (igb_thermal_sensor_event(hw,
3938 E1000_THSTAT_PWR_DOWN)) {
3939 netdev_err(netdev, "The network adapter was "
3940 "stopped because it overheated\n");
3941 }
3942
3943 /* Links status message must follow this format */
3944 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3945 netdev->name);
3946 netif_carrier_off(netdev);
3947
3948 igb_ping_all_vfs(adapter);
3949
3950 /* link state has changed, schedule phy info update */
3951 if (!test_bit(__IGB_DOWN, &adapter->state))
3952 mod_timer(&adapter->phy_info_timer,
3953 round_jiffies(jiffies + 2 * HZ));
3954
3955 pm_schedule_suspend(netdev->dev.parent,
3956 MSEC_PER_SEC * 5);
3957 }
3958 }
3959
3960 spin_lock(&adapter->stats64_lock);
3961 igb_update_stats(adapter, &adapter->stats64);
3962 spin_unlock(&adapter->stats64_lock);
3963
3964 for (i = 0; i < adapter->num_tx_queues; i++) {
3965 struct igb_ring *tx_ring = adapter->tx_ring[i];
3966 if (!netif_carrier_ok(netdev)) {
3967 /* We've lost link, so the controller stops DMA,
3968 * but we've got queued Tx work that's never going
3969 * to get done, so reset controller to flush Tx.
3970 * (Do the reset outside of interrupt context). */
3971 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3972 adapter->tx_timeout_count++;
3973 schedule_work(&adapter->reset_task);
3974 /* return immediately since reset is imminent */
3975 return;
3976 }
3977 }
3978
3979 /* Force detection of hung controller every watchdog period */
3980 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3981 }
3982
3983 /* Cause software interrupt to ensure rx ring is cleaned */
3984 if (adapter->msix_entries) {
3985 u32 eics = 0;
3986 for (i = 0; i < adapter->num_q_vectors; i++)
3987 eics |= adapter->q_vector[i]->eims_value;
3988 wr32(E1000_EICS, eics);
3989 } else {
3990 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3991 }
3992
3993 igb_spoof_check(adapter);
3994 igb_ptp_rx_hang(adapter);
3995
3996 /* Reset the timer */
3997 if (!test_bit(__IGB_DOWN, &adapter->state))
3998 mod_timer(&adapter->watchdog_timer,
3999 round_jiffies(jiffies + 2 * HZ));
4000 }
4001
4002 enum latency_range {
4003 lowest_latency = 0,
4004 low_latency = 1,
4005 bulk_latency = 2,
4006 latency_invalid = 255
4007 };
4008
4009 /**
4010 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4011 *
4012 * Stores a new ITR value based on strictly on packet size. This
4013 * algorithm is less sophisticated than that used in igb_update_itr,
4014 * due to the difficulty of synchronizing statistics across multiple
4015 * receive rings. The divisors and thresholds used by this function
4016 * were determined based on theoretical maximum wire speed and testing
4017 * data, in order to minimize response time while increasing bulk
4018 * throughput.
4019 * This functionality is controlled by the InterruptThrottleRate module
4020 * parameter (see igb_param.c)
4021 * NOTE: This function is called only when operating in a multiqueue
4022 * receive environment.
4023 * @q_vector: pointer to q_vector
4024 **/
4025 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4026 {
4027 int new_val = q_vector->itr_val;
4028 int avg_wire_size = 0;
4029 struct igb_adapter *adapter = q_vector->adapter;
4030 unsigned int packets;
4031
4032 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4033 * ints/sec - ITR timer value of 120 ticks.
4034 */
4035 if (adapter->link_speed != SPEED_1000) {
4036 new_val = IGB_4K_ITR;
4037 goto set_itr_val;
4038 }
4039
4040 packets = q_vector->rx.total_packets;
4041 if (packets)
4042 avg_wire_size = q_vector->rx.total_bytes / packets;
4043
4044 packets = q_vector->tx.total_packets;
4045 if (packets)
4046 avg_wire_size = max_t(u32, avg_wire_size,
4047 q_vector->tx.total_bytes / packets);
4048
4049 /* if avg_wire_size isn't set no work was done */
4050 if (!avg_wire_size)
4051 goto clear_counts;
4052
4053 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4054 avg_wire_size += 24;
4055
4056 /* Don't starve jumbo frames */
4057 avg_wire_size = min(avg_wire_size, 3000);
4058
4059 /* Give a little boost to mid-size frames */
4060 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4061 new_val = avg_wire_size / 3;
4062 else
4063 new_val = avg_wire_size / 2;
4064
4065 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4066 if (new_val < IGB_20K_ITR &&
4067 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4068 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4069 new_val = IGB_20K_ITR;
4070
4071 set_itr_val:
4072 if (new_val != q_vector->itr_val) {
4073 q_vector->itr_val = new_val;
4074 q_vector->set_itr = 1;
4075 }
4076 clear_counts:
4077 q_vector->rx.total_bytes = 0;
4078 q_vector->rx.total_packets = 0;
4079 q_vector->tx.total_bytes = 0;
4080 q_vector->tx.total_packets = 0;
4081 }
4082
4083 /**
4084 * igb_update_itr - update the dynamic ITR value based on statistics
4085 * Stores a new ITR value based on packets and byte
4086 * counts during the last interrupt. The advantage of per interrupt
4087 * computation is faster updates and more accurate ITR for the current
4088 * traffic pattern. Constants in this function were computed
4089 * based on theoretical maximum wire speed and thresholds were set based
4090 * on testing data as well as attempting to minimize response time
4091 * while increasing bulk throughput.
4092 * this functionality is controlled by the InterruptThrottleRate module
4093 * parameter (see igb_param.c)
4094 * NOTE: These calculations are only valid when operating in a single-
4095 * queue environment.
4096 * @q_vector: pointer to q_vector
4097 * @ring_container: ring info to update the itr for
4098 **/
4099 static void igb_update_itr(struct igb_q_vector *q_vector,
4100 struct igb_ring_container *ring_container)
4101 {
4102 unsigned int packets = ring_container->total_packets;
4103 unsigned int bytes = ring_container->total_bytes;
4104 u8 itrval = ring_container->itr;
4105
4106 /* no packets, exit with status unchanged */
4107 if (packets == 0)
4108 return;
4109
4110 switch (itrval) {
4111 case lowest_latency:
4112 /* handle TSO and jumbo frames */
4113 if (bytes/packets > 8000)
4114 itrval = bulk_latency;
4115 else if ((packets < 5) && (bytes > 512))
4116 itrval = low_latency;
4117 break;
4118 case low_latency: /* 50 usec aka 20000 ints/s */
4119 if (bytes > 10000) {
4120 /* this if handles the TSO accounting */
4121 if (bytes/packets > 8000) {
4122 itrval = bulk_latency;
4123 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4124 itrval = bulk_latency;
4125 } else if ((packets > 35)) {
4126 itrval = lowest_latency;
4127 }
4128 } else if (bytes/packets > 2000) {
4129 itrval = bulk_latency;
4130 } else if (packets <= 2 && bytes < 512) {
4131 itrval = lowest_latency;
4132 }
4133 break;
4134 case bulk_latency: /* 250 usec aka 4000 ints/s */
4135 if (bytes > 25000) {
4136 if (packets > 35)
4137 itrval = low_latency;
4138 } else if (bytes < 1500) {
4139 itrval = low_latency;
4140 }
4141 break;
4142 }
4143
4144 /* clear work counters since we have the values we need */
4145 ring_container->total_bytes = 0;
4146 ring_container->total_packets = 0;
4147
4148 /* write updated itr to ring container */
4149 ring_container->itr = itrval;
4150 }
4151
4152 static void igb_set_itr(struct igb_q_vector *q_vector)
4153 {
4154 struct igb_adapter *adapter = q_vector->adapter;
4155 u32 new_itr = q_vector->itr_val;
4156 u8 current_itr = 0;
4157
4158 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4159 if (adapter->link_speed != SPEED_1000) {
4160 current_itr = 0;
4161 new_itr = IGB_4K_ITR;
4162 goto set_itr_now;
4163 }
4164
4165 igb_update_itr(q_vector, &q_vector->tx);
4166 igb_update_itr(q_vector, &q_vector->rx);
4167
4168 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4169
4170 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4171 if (current_itr == lowest_latency &&
4172 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4173 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4174 current_itr = low_latency;
4175
4176 switch (current_itr) {
4177 /* counts and packets in update_itr are dependent on these numbers */
4178 case lowest_latency:
4179 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4180 break;
4181 case low_latency:
4182 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4183 break;
4184 case bulk_latency:
4185 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4186 break;
4187 default:
4188 break;
4189 }
4190
4191 set_itr_now:
4192 if (new_itr != q_vector->itr_val) {
4193 /* this attempts to bias the interrupt rate towards Bulk
4194 * by adding intermediate steps when interrupt rate is
4195 * increasing */
4196 new_itr = new_itr > q_vector->itr_val ?
4197 max((new_itr * q_vector->itr_val) /
4198 (new_itr + (q_vector->itr_val >> 2)),
4199 new_itr) :
4200 new_itr;
4201 /* Don't write the value here; it resets the adapter's
4202 * internal timer, and causes us to delay far longer than
4203 * we should between interrupts. Instead, we write the ITR
4204 * value at the beginning of the next interrupt so the timing
4205 * ends up being correct.
4206 */
4207 q_vector->itr_val = new_itr;
4208 q_vector->set_itr = 1;
4209 }
4210 }
4211
4212 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4213 u32 type_tucmd, u32 mss_l4len_idx)
4214 {
4215 struct e1000_adv_tx_context_desc *context_desc;
4216 u16 i = tx_ring->next_to_use;
4217
4218 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4219
4220 i++;
4221 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4222
4223 /* set bits to identify this as an advanced context descriptor */
4224 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4225
4226 /* For 82575, context index must be unique per ring. */
4227 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4228 mss_l4len_idx |= tx_ring->reg_idx << 4;
4229
4230 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4231 context_desc->seqnum_seed = 0;
4232 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4233 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4234 }
4235
4236 static int igb_tso(struct igb_ring *tx_ring,
4237 struct igb_tx_buffer *first,
4238 u8 *hdr_len)
4239 {
4240 struct sk_buff *skb = first->skb;
4241 u32 vlan_macip_lens, type_tucmd;
4242 u32 mss_l4len_idx, l4len;
4243
4244 if (skb->ip_summed != CHECKSUM_PARTIAL)
4245 return 0;
4246
4247 if (!skb_is_gso(skb))
4248 return 0;
4249
4250 if (skb_header_cloned(skb)) {
4251 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4252 if (err)
4253 return err;
4254 }
4255
4256 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4257 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4258
4259 if (first->protocol == __constant_htons(ETH_P_IP)) {
4260 struct iphdr *iph = ip_hdr(skb);
4261 iph->tot_len = 0;
4262 iph->check = 0;
4263 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4264 iph->daddr, 0,
4265 IPPROTO_TCP,
4266 0);
4267 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4268 first->tx_flags |= IGB_TX_FLAGS_TSO |
4269 IGB_TX_FLAGS_CSUM |
4270 IGB_TX_FLAGS_IPV4;
4271 } else if (skb_is_gso_v6(skb)) {
4272 ipv6_hdr(skb)->payload_len = 0;
4273 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4274 &ipv6_hdr(skb)->daddr,
4275 0, IPPROTO_TCP, 0);
4276 first->tx_flags |= IGB_TX_FLAGS_TSO |
4277 IGB_TX_FLAGS_CSUM;
4278 }
4279
4280 /* compute header lengths */
4281 l4len = tcp_hdrlen(skb);
4282 *hdr_len = skb_transport_offset(skb) + l4len;
4283
4284 /* update gso size and bytecount with header size */
4285 first->gso_segs = skb_shinfo(skb)->gso_segs;
4286 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4287
4288 /* MSS L4LEN IDX */
4289 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4290 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4291
4292 /* VLAN MACLEN IPLEN */
4293 vlan_macip_lens = skb_network_header_len(skb);
4294 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4295 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4296
4297 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4298
4299 return 1;
4300 }
4301
4302 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4303 {
4304 struct sk_buff *skb = first->skb;
4305 u32 vlan_macip_lens = 0;
4306 u32 mss_l4len_idx = 0;
4307 u32 type_tucmd = 0;
4308
4309 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4310 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4311 return;
4312 } else {
4313 u8 l4_hdr = 0;
4314 switch (first->protocol) {
4315 case __constant_htons(ETH_P_IP):
4316 vlan_macip_lens |= skb_network_header_len(skb);
4317 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4318 l4_hdr = ip_hdr(skb)->protocol;
4319 break;
4320 case __constant_htons(ETH_P_IPV6):
4321 vlan_macip_lens |= skb_network_header_len(skb);
4322 l4_hdr = ipv6_hdr(skb)->nexthdr;
4323 break;
4324 default:
4325 if (unlikely(net_ratelimit())) {
4326 dev_warn(tx_ring->dev,
4327 "partial checksum but proto=%x!\n",
4328 first->protocol);
4329 }
4330 break;
4331 }
4332
4333 switch (l4_hdr) {
4334 case IPPROTO_TCP:
4335 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4336 mss_l4len_idx = tcp_hdrlen(skb) <<
4337 E1000_ADVTXD_L4LEN_SHIFT;
4338 break;
4339 case IPPROTO_SCTP:
4340 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4341 mss_l4len_idx = sizeof(struct sctphdr) <<
4342 E1000_ADVTXD_L4LEN_SHIFT;
4343 break;
4344 case IPPROTO_UDP:
4345 mss_l4len_idx = sizeof(struct udphdr) <<
4346 E1000_ADVTXD_L4LEN_SHIFT;
4347 break;
4348 default:
4349 if (unlikely(net_ratelimit())) {
4350 dev_warn(tx_ring->dev,
4351 "partial checksum but l4 proto=%x!\n",
4352 l4_hdr);
4353 }
4354 break;
4355 }
4356
4357 /* update TX checksum flag */
4358 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4359 }
4360
4361 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4362 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4363
4364 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4365 }
4366
4367 #define IGB_SET_FLAG(_input, _flag, _result) \
4368 ((_flag <= _result) ? \
4369 ((u32)(_input & _flag) * (_result / _flag)) : \
4370 ((u32)(_input & _flag) / (_flag / _result)))
4371
4372 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4373 {
4374 /* set type for advanced descriptor with frame checksum insertion */
4375 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4376 E1000_ADVTXD_DCMD_DEXT |
4377 E1000_ADVTXD_DCMD_IFCS;
4378
4379 /* set HW vlan bit if vlan is present */
4380 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4381 (E1000_ADVTXD_DCMD_VLE));
4382
4383 /* set segmentation bits for TSO */
4384 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4385 (E1000_ADVTXD_DCMD_TSE));
4386
4387 /* set timestamp bit if present */
4388 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4389 (E1000_ADVTXD_MAC_TSTAMP));
4390
4391 /* insert frame checksum */
4392 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4393
4394 return cmd_type;
4395 }
4396
4397 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4398 union e1000_adv_tx_desc *tx_desc,
4399 u32 tx_flags, unsigned int paylen)
4400 {
4401 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4402
4403 /* 82575 requires a unique index per ring */
4404 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4405 olinfo_status |= tx_ring->reg_idx << 4;
4406
4407 /* insert L4 checksum */
4408 olinfo_status |= IGB_SET_FLAG(tx_flags,
4409 IGB_TX_FLAGS_CSUM,
4410 (E1000_TXD_POPTS_TXSM << 8));
4411
4412 /* insert IPv4 checksum */
4413 olinfo_status |= IGB_SET_FLAG(tx_flags,
4414 IGB_TX_FLAGS_IPV4,
4415 (E1000_TXD_POPTS_IXSM << 8));
4416
4417 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4418 }
4419
4420 /*
4421 * The largest size we can write to the descriptor is 65535. In order to
4422 * maintain a power of two alignment we have to limit ourselves to 32K.
4423 */
4424 #define IGB_MAX_TXD_PWR 15
4425 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
4426
4427 static void igb_tx_map(struct igb_ring *tx_ring,
4428 struct igb_tx_buffer *first,
4429 const u8 hdr_len)
4430 {
4431 struct sk_buff *skb = first->skb;
4432 struct igb_tx_buffer *tx_buffer;
4433 union e1000_adv_tx_desc *tx_desc;
4434 struct skb_frag_struct *frag;
4435 dma_addr_t dma;
4436 unsigned int data_len, size;
4437 u32 tx_flags = first->tx_flags;
4438 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4439 u16 i = tx_ring->next_to_use;
4440
4441 tx_desc = IGB_TX_DESC(tx_ring, i);
4442
4443 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4444
4445 size = skb_headlen(skb);
4446 data_len = skb->data_len;
4447
4448 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4449
4450 tx_buffer = first;
4451
4452 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4453 if (dma_mapping_error(tx_ring->dev, dma))
4454 goto dma_error;
4455
4456 /* record length, and DMA address */
4457 dma_unmap_len_set(tx_buffer, len, size);
4458 dma_unmap_addr_set(tx_buffer, dma, dma);
4459
4460 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4461
4462 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4463 tx_desc->read.cmd_type_len =
4464 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4465
4466 i++;
4467 tx_desc++;
4468 if (i == tx_ring->count) {
4469 tx_desc = IGB_TX_DESC(tx_ring, 0);
4470 i = 0;
4471 }
4472 tx_desc->read.olinfo_status = 0;
4473
4474 dma += IGB_MAX_DATA_PER_TXD;
4475 size -= IGB_MAX_DATA_PER_TXD;
4476
4477 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4478 }
4479
4480 if (likely(!data_len))
4481 break;
4482
4483 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4484
4485 i++;
4486 tx_desc++;
4487 if (i == tx_ring->count) {
4488 tx_desc = IGB_TX_DESC(tx_ring, 0);
4489 i = 0;
4490 }
4491 tx_desc->read.olinfo_status = 0;
4492
4493 size = skb_frag_size(frag);
4494 data_len -= size;
4495
4496 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4497 size, DMA_TO_DEVICE);
4498
4499 tx_buffer = &tx_ring->tx_buffer_info[i];
4500 }
4501
4502 /* write last descriptor with RS and EOP bits */
4503 cmd_type |= size | IGB_TXD_DCMD;
4504 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4505
4506 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4507
4508 /* set the timestamp */
4509 first->time_stamp = jiffies;
4510
4511 /*
4512 * Force memory writes to complete before letting h/w know there
4513 * are new descriptors to fetch. (Only applicable for weak-ordered
4514 * memory model archs, such as IA-64).
4515 *
4516 * We also need this memory barrier to make certain all of the
4517 * status bits have been updated before next_to_watch is written.
4518 */
4519 wmb();
4520
4521 /* set next_to_watch value indicating a packet is present */
4522 first->next_to_watch = tx_desc;
4523
4524 i++;
4525 if (i == tx_ring->count)
4526 i = 0;
4527
4528 tx_ring->next_to_use = i;
4529
4530 writel(i, tx_ring->tail);
4531
4532 /* we need this if more than one processor can write to our tail
4533 * at a time, it syncronizes IO on IA64/Altix systems */
4534 mmiowb();
4535
4536 return;
4537
4538 dma_error:
4539 dev_err(tx_ring->dev, "TX DMA map failed\n");
4540
4541 /* clear dma mappings for failed tx_buffer_info map */
4542 for (;;) {
4543 tx_buffer = &tx_ring->tx_buffer_info[i];
4544 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4545 if (tx_buffer == first)
4546 break;
4547 if (i == 0)
4548 i = tx_ring->count;
4549 i--;
4550 }
4551
4552 tx_ring->next_to_use = i;
4553 }
4554
4555 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4556 {
4557 struct net_device *netdev = tx_ring->netdev;
4558
4559 netif_stop_subqueue(netdev, tx_ring->queue_index);
4560
4561 /* Herbert's original patch had:
4562 * smp_mb__after_netif_stop_queue();
4563 * but since that doesn't exist yet, just open code it. */
4564 smp_mb();
4565
4566 /* We need to check again in a case another CPU has just
4567 * made room available. */
4568 if (igb_desc_unused(tx_ring) < size)
4569 return -EBUSY;
4570
4571 /* A reprieve! */
4572 netif_wake_subqueue(netdev, tx_ring->queue_index);
4573
4574 u64_stats_update_begin(&tx_ring->tx_syncp2);
4575 tx_ring->tx_stats.restart_queue2++;
4576 u64_stats_update_end(&tx_ring->tx_syncp2);
4577
4578 return 0;
4579 }
4580
4581 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4582 {
4583 if (igb_desc_unused(tx_ring) >= size)
4584 return 0;
4585 return __igb_maybe_stop_tx(tx_ring, size);
4586 }
4587
4588 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4589 struct igb_ring *tx_ring)
4590 {
4591 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4592 struct igb_tx_buffer *first;
4593 int tso;
4594 u32 tx_flags = 0;
4595 __be16 protocol = vlan_get_protocol(skb);
4596 u8 hdr_len = 0;
4597
4598 /* need: 1 descriptor per page,
4599 * + 2 desc gap to keep tail from touching head,
4600 * + 1 desc for skb->data,
4601 * + 1 desc for context descriptor,
4602 * otherwise try next time */
4603 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4604 /* this is a hard error */
4605 return NETDEV_TX_BUSY;
4606 }
4607
4608 /* record the location of the first descriptor for this packet */
4609 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4610 first->skb = skb;
4611 first->bytecount = skb->len;
4612 first->gso_segs = 1;
4613
4614 skb_tx_timestamp(skb);
4615
4616 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4617 !(adapter->ptp_tx_skb))) {
4618 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4619 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4620
4621 adapter->ptp_tx_skb = skb_get(skb);
4622 adapter->ptp_tx_start = jiffies;
4623 if (adapter->hw.mac.type == e1000_82576)
4624 schedule_work(&adapter->ptp_tx_work);
4625 }
4626
4627 if (vlan_tx_tag_present(skb)) {
4628 tx_flags |= IGB_TX_FLAGS_VLAN;
4629 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4630 }
4631
4632 /* record initial flags and protocol */
4633 first->tx_flags = tx_flags;
4634 first->protocol = protocol;
4635
4636 tso = igb_tso(tx_ring, first, &hdr_len);
4637 if (tso < 0)
4638 goto out_drop;
4639 else if (!tso)
4640 igb_tx_csum(tx_ring, first);
4641
4642 igb_tx_map(tx_ring, first, hdr_len);
4643
4644 /* Make sure there is space in the ring for the next send. */
4645 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4646
4647 return NETDEV_TX_OK;
4648
4649 out_drop:
4650 igb_unmap_and_free_tx_resource(tx_ring, first);
4651
4652 return NETDEV_TX_OK;
4653 }
4654
4655 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4656 struct sk_buff *skb)
4657 {
4658 unsigned int r_idx = skb->queue_mapping;
4659
4660 if (r_idx >= adapter->num_tx_queues)
4661 r_idx = r_idx % adapter->num_tx_queues;
4662
4663 return adapter->tx_ring[r_idx];
4664 }
4665
4666 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4667 struct net_device *netdev)
4668 {
4669 struct igb_adapter *adapter = netdev_priv(netdev);
4670
4671 if (test_bit(__IGB_DOWN, &adapter->state)) {
4672 dev_kfree_skb_any(skb);
4673 return NETDEV_TX_OK;
4674 }
4675
4676 if (skb->len <= 0) {
4677 dev_kfree_skb_any(skb);
4678 return NETDEV_TX_OK;
4679 }
4680
4681 /*
4682 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4683 * in order to meet this minimum size requirement.
4684 */
4685 if (unlikely(skb->len < 17)) {
4686 if (skb_pad(skb, 17 - skb->len))
4687 return NETDEV_TX_OK;
4688 skb->len = 17;
4689 skb_set_tail_pointer(skb, 17);
4690 }
4691
4692 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4693 }
4694
4695 /**
4696 * igb_tx_timeout - Respond to a Tx Hang
4697 * @netdev: network interface device structure
4698 **/
4699 static void igb_tx_timeout(struct net_device *netdev)
4700 {
4701 struct igb_adapter *adapter = netdev_priv(netdev);
4702 struct e1000_hw *hw = &adapter->hw;
4703
4704 /* Do the reset outside of interrupt context */
4705 adapter->tx_timeout_count++;
4706
4707 if (hw->mac.type >= e1000_82580)
4708 hw->dev_spec._82575.global_device_reset = true;
4709
4710 schedule_work(&adapter->reset_task);
4711 wr32(E1000_EICS,
4712 (adapter->eims_enable_mask & ~adapter->eims_other));
4713 }
4714
4715 static void igb_reset_task(struct work_struct *work)
4716 {
4717 struct igb_adapter *adapter;
4718 adapter = container_of(work, struct igb_adapter, reset_task);
4719
4720 igb_dump(adapter);
4721 netdev_err(adapter->netdev, "Reset adapter\n");
4722 igb_reinit_locked(adapter);
4723 }
4724
4725 /**
4726 * igb_get_stats64 - Get System Network Statistics
4727 * @netdev: network interface device structure
4728 * @stats: rtnl_link_stats64 pointer
4729 *
4730 **/
4731 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4732 struct rtnl_link_stats64 *stats)
4733 {
4734 struct igb_adapter *adapter = netdev_priv(netdev);
4735
4736 spin_lock(&adapter->stats64_lock);
4737 igb_update_stats(adapter, &adapter->stats64);
4738 memcpy(stats, &adapter->stats64, sizeof(*stats));
4739 spin_unlock(&adapter->stats64_lock);
4740
4741 return stats;
4742 }
4743
4744 /**
4745 * igb_change_mtu - Change the Maximum Transfer Unit
4746 * @netdev: network interface device structure
4747 * @new_mtu: new value for maximum frame size
4748 *
4749 * Returns 0 on success, negative on failure
4750 **/
4751 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4752 {
4753 struct igb_adapter *adapter = netdev_priv(netdev);
4754 struct pci_dev *pdev = adapter->pdev;
4755 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4756
4757 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4758 dev_err(&pdev->dev, "Invalid MTU setting\n");
4759 return -EINVAL;
4760 }
4761
4762 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4763 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4764 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4765 return -EINVAL;
4766 }
4767
4768 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4769 msleep(1);
4770
4771 /* igb_down has a dependency on max_frame_size */
4772 adapter->max_frame_size = max_frame;
4773
4774 if (netif_running(netdev))
4775 igb_down(adapter);
4776
4777 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4778 netdev->mtu, new_mtu);
4779 netdev->mtu = new_mtu;
4780
4781 if (netif_running(netdev))
4782 igb_up(adapter);
4783 else
4784 igb_reset(adapter);
4785
4786 clear_bit(__IGB_RESETTING, &adapter->state);
4787
4788 return 0;
4789 }
4790
4791 /**
4792 * igb_update_stats - Update the board statistics counters
4793 * @adapter: board private structure
4794 **/
4795
4796 void igb_update_stats(struct igb_adapter *adapter,
4797 struct rtnl_link_stats64 *net_stats)
4798 {
4799 struct e1000_hw *hw = &adapter->hw;
4800 struct pci_dev *pdev = adapter->pdev;
4801 u32 reg, mpc;
4802 u16 phy_tmp;
4803 int i;
4804 u64 bytes, packets;
4805 unsigned int start;
4806 u64 _bytes, _packets;
4807
4808 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4809
4810 /*
4811 * Prevent stats update while adapter is being reset, or if the pci
4812 * connection is down.
4813 */
4814 if (adapter->link_speed == 0)
4815 return;
4816 if (pci_channel_offline(pdev))
4817 return;
4818
4819 bytes = 0;
4820 packets = 0;
4821 for (i = 0; i < adapter->num_rx_queues; i++) {
4822 u32 rqdpc = rd32(E1000_RQDPC(i));
4823 struct igb_ring *ring = adapter->rx_ring[i];
4824
4825 if (rqdpc) {
4826 ring->rx_stats.drops += rqdpc;
4827 net_stats->rx_fifo_errors += rqdpc;
4828 }
4829
4830 do {
4831 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4832 _bytes = ring->rx_stats.bytes;
4833 _packets = ring->rx_stats.packets;
4834 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4835 bytes += _bytes;
4836 packets += _packets;
4837 }
4838
4839 net_stats->rx_bytes = bytes;
4840 net_stats->rx_packets = packets;
4841
4842 bytes = 0;
4843 packets = 0;
4844 for (i = 0; i < adapter->num_tx_queues; i++) {
4845 struct igb_ring *ring = adapter->tx_ring[i];
4846 do {
4847 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4848 _bytes = ring->tx_stats.bytes;
4849 _packets = ring->tx_stats.packets;
4850 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4851 bytes += _bytes;
4852 packets += _packets;
4853 }
4854 net_stats->tx_bytes = bytes;
4855 net_stats->tx_packets = packets;
4856
4857 /* read stats registers */
4858 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4859 adapter->stats.gprc += rd32(E1000_GPRC);
4860 adapter->stats.gorc += rd32(E1000_GORCL);
4861 rd32(E1000_GORCH); /* clear GORCL */
4862 adapter->stats.bprc += rd32(E1000_BPRC);
4863 adapter->stats.mprc += rd32(E1000_MPRC);
4864 adapter->stats.roc += rd32(E1000_ROC);
4865
4866 adapter->stats.prc64 += rd32(E1000_PRC64);
4867 adapter->stats.prc127 += rd32(E1000_PRC127);
4868 adapter->stats.prc255 += rd32(E1000_PRC255);
4869 adapter->stats.prc511 += rd32(E1000_PRC511);
4870 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4871 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4872 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4873 adapter->stats.sec += rd32(E1000_SEC);
4874
4875 mpc = rd32(E1000_MPC);
4876 adapter->stats.mpc += mpc;
4877 net_stats->rx_fifo_errors += mpc;
4878 adapter->stats.scc += rd32(E1000_SCC);
4879 adapter->stats.ecol += rd32(E1000_ECOL);
4880 adapter->stats.mcc += rd32(E1000_MCC);
4881 adapter->stats.latecol += rd32(E1000_LATECOL);
4882 adapter->stats.dc += rd32(E1000_DC);
4883 adapter->stats.rlec += rd32(E1000_RLEC);
4884 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4885 adapter->stats.xontxc += rd32(E1000_XONTXC);
4886 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4887 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4888 adapter->stats.fcruc += rd32(E1000_FCRUC);
4889 adapter->stats.gptc += rd32(E1000_GPTC);
4890 adapter->stats.gotc += rd32(E1000_GOTCL);
4891 rd32(E1000_GOTCH); /* clear GOTCL */
4892 adapter->stats.rnbc += rd32(E1000_RNBC);
4893 adapter->stats.ruc += rd32(E1000_RUC);
4894 adapter->stats.rfc += rd32(E1000_RFC);
4895 adapter->stats.rjc += rd32(E1000_RJC);
4896 adapter->stats.tor += rd32(E1000_TORH);
4897 adapter->stats.tot += rd32(E1000_TOTH);
4898 adapter->stats.tpr += rd32(E1000_TPR);
4899
4900 adapter->stats.ptc64 += rd32(E1000_PTC64);
4901 adapter->stats.ptc127 += rd32(E1000_PTC127);
4902 adapter->stats.ptc255 += rd32(E1000_PTC255);
4903 adapter->stats.ptc511 += rd32(E1000_PTC511);
4904 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4905 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4906
4907 adapter->stats.mptc += rd32(E1000_MPTC);
4908 adapter->stats.bptc += rd32(E1000_BPTC);
4909
4910 adapter->stats.tpt += rd32(E1000_TPT);
4911 adapter->stats.colc += rd32(E1000_COLC);
4912
4913 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4914 /* read internal phy specific stats */
4915 reg = rd32(E1000_CTRL_EXT);
4916 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4917 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4918
4919 /* this stat has invalid values on i210/i211 */
4920 if ((hw->mac.type != e1000_i210) &&
4921 (hw->mac.type != e1000_i211))
4922 adapter->stats.tncrs += rd32(E1000_TNCRS);
4923 }
4924
4925 adapter->stats.tsctc += rd32(E1000_TSCTC);
4926 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4927
4928 adapter->stats.iac += rd32(E1000_IAC);
4929 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4930 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4931 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4932 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4933 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4934 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4935 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4936 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4937
4938 /* Fill out the OS statistics structure */
4939 net_stats->multicast = adapter->stats.mprc;
4940 net_stats->collisions = adapter->stats.colc;
4941
4942 /* Rx Errors */
4943
4944 /* RLEC on some newer hardware can be incorrect so build
4945 * our own version based on RUC and ROC */
4946 net_stats->rx_errors = adapter->stats.rxerrc +
4947 adapter->stats.crcerrs + adapter->stats.algnerrc +
4948 adapter->stats.ruc + adapter->stats.roc +
4949 adapter->stats.cexterr;
4950 net_stats->rx_length_errors = adapter->stats.ruc +
4951 adapter->stats.roc;
4952 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4953 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4954 net_stats->rx_missed_errors = adapter->stats.mpc;
4955
4956 /* Tx Errors */
4957 net_stats->tx_errors = adapter->stats.ecol +
4958 adapter->stats.latecol;
4959 net_stats->tx_aborted_errors = adapter->stats.ecol;
4960 net_stats->tx_window_errors = adapter->stats.latecol;
4961 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4962
4963 /* Tx Dropped needs to be maintained elsewhere */
4964
4965 /* Phy Stats */
4966 if (hw->phy.media_type == e1000_media_type_copper) {
4967 if ((adapter->link_speed == SPEED_1000) &&
4968 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4969 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4970 adapter->phy_stats.idle_errors += phy_tmp;
4971 }
4972 }
4973
4974 /* Management Stats */
4975 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4976 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4977 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4978
4979 /* OS2BMC Stats */
4980 reg = rd32(E1000_MANC);
4981 if (reg & E1000_MANC_EN_BMC2OS) {
4982 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4983 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4984 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4985 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4986 }
4987 }
4988
4989 static irqreturn_t igb_msix_other(int irq, void *data)
4990 {
4991 struct igb_adapter *adapter = data;
4992 struct e1000_hw *hw = &adapter->hw;
4993 u32 icr = rd32(E1000_ICR);
4994 /* reading ICR causes bit 31 of EICR to be cleared */
4995
4996 if (icr & E1000_ICR_DRSTA)
4997 schedule_work(&adapter->reset_task);
4998
4999 if (icr & E1000_ICR_DOUTSYNC) {
5000 /* HW is reporting DMA is out of sync */
5001 adapter->stats.doosync++;
5002 /* The DMA Out of Sync is also indication of a spoof event
5003 * in IOV mode. Check the Wrong VM Behavior register to
5004 * see if it is really a spoof event. */
5005 igb_check_wvbr(adapter);
5006 }
5007
5008 /* Check for a mailbox event */
5009 if (icr & E1000_ICR_VMMB)
5010 igb_msg_task(adapter);
5011
5012 if (icr & E1000_ICR_LSC) {
5013 hw->mac.get_link_status = 1;
5014 /* guard against interrupt when we're going down */
5015 if (!test_bit(__IGB_DOWN, &adapter->state))
5016 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5017 }
5018
5019 if (icr & E1000_ICR_TS) {
5020 u32 tsicr = rd32(E1000_TSICR);
5021
5022 if (tsicr & E1000_TSICR_TXTS) {
5023 /* acknowledge the interrupt */
5024 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5025 /* retrieve hardware timestamp */
5026 schedule_work(&adapter->ptp_tx_work);
5027 }
5028 }
5029
5030 wr32(E1000_EIMS, adapter->eims_other);
5031
5032 return IRQ_HANDLED;
5033 }
5034
5035 static void igb_write_itr(struct igb_q_vector *q_vector)
5036 {
5037 struct igb_adapter *adapter = q_vector->adapter;
5038 u32 itr_val = q_vector->itr_val & 0x7FFC;
5039
5040 if (!q_vector->set_itr)
5041 return;
5042
5043 if (!itr_val)
5044 itr_val = 0x4;
5045
5046 if (adapter->hw.mac.type == e1000_82575)
5047 itr_val |= itr_val << 16;
5048 else
5049 itr_val |= E1000_EITR_CNT_IGNR;
5050
5051 writel(itr_val, q_vector->itr_register);
5052 q_vector->set_itr = 0;
5053 }
5054
5055 static irqreturn_t igb_msix_ring(int irq, void *data)
5056 {
5057 struct igb_q_vector *q_vector = data;
5058
5059 /* Write the ITR value calculated from the previous interrupt. */
5060 igb_write_itr(q_vector);
5061
5062 napi_schedule(&q_vector->napi);
5063
5064 return IRQ_HANDLED;
5065 }
5066
5067 #ifdef CONFIG_IGB_DCA
5068 static void igb_update_tx_dca(struct igb_adapter *adapter,
5069 struct igb_ring *tx_ring,
5070 int cpu)
5071 {
5072 struct e1000_hw *hw = &adapter->hw;
5073 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5074
5075 if (hw->mac.type != e1000_82575)
5076 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5077
5078 /*
5079 * We can enable relaxed ordering for reads, but not writes when
5080 * DCA is enabled. This is due to a known issue in some chipsets
5081 * which will cause the DCA tag to be cleared.
5082 */
5083 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5084 E1000_DCA_TXCTRL_DATA_RRO_EN |
5085 E1000_DCA_TXCTRL_DESC_DCA_EN;
5086
5087 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5088 }
5089
5090 static void igb_update_rx_dca(struct igb_adapter *adapter,
5091 struct igb_ring *rx_ring,
5092 int cpu)
5093 {
5094 struct e1000_hw *hw = &adapter->hw;
5095 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5096
5097 if (hw->mac.type != e1000_82575)
5098 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5099
5100 /*
5101 * We can enable relaxed ordering for reads, but not writes when
5102 * DCA is enabled. This is due to a known issue in some chipsets
5103 * which will cause the DCA tag to be cleared.
5104 */
5105 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5106 E1000_DCA_RXCTRL_DESC_DCA_EN;
5107
5108 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5109 }
5110
5111 static void igb_update_dca(struct igb_q_vector *q_vector)
5112 {
5113 struct igb_adapter *adapter = q_vector->adapter;
5114 int cpu = get_cpu();
5115
5116 if (q_vector->cpu == cpu)
5117 goto out_no_update;
5118
5119 if (q_vector->tx.ring)
5120 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5121
5122 if (q_vector->rx.ring)
5123 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5124
5125 q_vector->cpu = cpu;
5126 out_no_update:
5127 put_cpu();
5128 }
5129
5130 static void igb_setup_dca(struct igb_adapter *adapter)
5131 {
5132 struct e1000_hw *hw = &adapter->hw;
5133 int i;
5134
5135 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5136 return;
5137
5138 /* Always use CB2 mode, difference is masked in the CB driver. */
5139 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5140
5141 for (i = 0; i < adapter->num_q_vectors; i++) {
5142 adapter->q_vector[i]->cpu = -1;
5143 igb_update_dca(adapter->q_vector[i]);
5144 }
5145 }
5146
5147 static int __igb_notify_dca(struct device *dev, void *data)
5148 {
5149 struct net_device *netdev = dev_get_drvdata(dev);
5150 struct igb_adapter *adapter = netdev_priv(netdev);
5151 struct pci_dev *pdev = adapter->pdev;
5152 struct e1000_hw *hw = &adapter->hw;
5153 unsigned long event = *(unsigned long *)data;
5154
5155 switch (event) {
5156 case DCA_PROVIDER_ADD:
5157 /* if already enabled, don't do it again */
5158 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5159 break;
5160 if (dca_add_requester(dev) == 0) {
5161 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5162 dev_info(&pdev->dev, "DCA enabled\n");
5163 igb_setup_dca(adapter);
5164 break;
5165 }
5166 /* Fall Through since DCA is disabled. */
5167 case DCA_PROVIDER_REMOVE:
5168 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5169 /* without this a class_device is left
5170 * hanging around in the sysfs model */
5171 dca_remove_requester(dev);
5172 dev_info(&pdev->dev, "DCA disabled\n");
5173 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5174 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5175 }
5176 break;
5177 }
5178
5179 return 0;
5180 }
5181
5182 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5183 void *p)
5184 {
5185 int ret_val;
5186
5187 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5188 __igb_notify_dca);
5189
5190 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5191 }
5192 #endif /* CONFIG_IGB_DCA */
5193
5194 #ifdef CONFIG_PCI_IOV
5195 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5196 {
5197 unsigned char mac_addr[ETH_ALEN];
5198
5199 eth_random_addr(mac_addr);
5200 igb_set_vf_mac(adapter, vf, mac_addr);
5201
5202 return 0;
5203 }
5204
5205 static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5206 {
5207 struct pci_dev *pdev = adapter->pdev;
5208 struct pci_dev *vfdev;
5209 int dev_id;
5210
5211 switch (adapter->hw.mac.type) {
5212 case e1000_82576:
5213 dev_id = IGB_82576_VF_DEV_ID;
5214 break;
5215 case e1000_i350:
5216 dev_id = IGB_I350_VF_DEV_ID;
5217 break;
5218 default:
5219 return false;
5220 }
5221
5222 /* loop through all the VFs to see if we own any that are assigned */
5223 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
5224 while (vfdev) {
5225 /* if we don't own it we don't care */
5226 if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5227 /* if it is assigned we cannot release it */
5228 if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5229 return true;
5230 }
5231
5232 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5233 }
5234
5235 return false;
5236 }
5237
5238 #endif
5239 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5240 {
5241 struct e1000_hw *hw = &adapter->hw;
5242 u32 ping;
5243 int i;
5244
5245 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5246 ping = E1000_PF_CONTROL_MSG;
5247 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5248 ping |= E1000_VT_MSGTYPE_CTS;
5249 igb_write_mbx(hw, &ping, 1, i);
5250 }
5251 }
5252
5253 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5254 {
5255 struct e1000_hw *hw = &adapter->hw;
5256 u32 vmolr = rd32(E1000_VMOLR(vf));
5257 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5258
5259 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5260 IGB_VF_FLAG_MULTI_PROMISC);
5261 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5262
5263 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5264 vmolr |= E1000_VMOLR_MPME;
5265 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5266 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5267 } else {
5268 /*
5269 * if we have hashes and we are clearing a multicast promisc
5270 * flag we need to write the hashes to the MTA as this step
5271 * was previously skipped
5272 */
5273 if (vf_data->num_vf_mc_hashes > 30) {
5274 vmolr |= E1000_VMOLR_MPME;
5275 } else if (vf_data->num_vf_mc_hashes) {
5276 int j;
5277 vmolr |= E1000_VMOLR_ROMPE;
5278 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5279 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5280 }
5281 }
5282
5283 wr32(E1000_VMOLR(vf), vmolr);
5284
5285 /* there are flags left unprocessed, likely not supported */
5286 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5287 return -EINVAL;
5288
5289 return 0;
5290
5291 }
5292
5293 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5294 u32 *msgbuf, u32 vf)
5295 {
5296 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5297 u16 *hash_list = (u16 *)&msgbuf[1];
5298 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5299 int i;
5300
5301 /* salt away the number of multicast addresses assigned
5302 * to this VF for later use to restore when the PF multi cast
5303 * list changes
5304 */
5305 vf_data->num_vf_mc_hashes = n;
5306
5307 /* only up to 30 hash values supported */
5308 if (n > 30)
5309 n = 30;
5310
5311 /* store the hashes for later use */
5312 for (i = 0; i < n; i++)
5313 vf_data->vf_mc_hashes[i] = hash_list[i];
5314
5315 /* Flush and reset the mta with the new values */
5316 igb_set_rx_mode(adapter->netdev);
5317
5318 return 0;
5319 }
5320
5321 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5322 {
5323 struct e1000_hw *hw = &adapter->hw;
5324 struct vf_data_storage *vf_data;
5325 int i, j;
5326
5327 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5328 u32 vmolr = rd32(E1000_VMOLR(i));
5329 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5330
5331 vf_data = &adapter->vf_data[i];
5332
5333 if ((vf_data->num_vf_mc_hashes > 30) ||
5334 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5335 vmolr |= E1000_VMOLR_MPME;
5336 } else if (vf_data->num_vf_mc_hashes) {
5337 vmolr |= E1000_VMOLR_ROMPE;
5338 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5339 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5340 }
5341 wr32(E1000_VMOLR(i), vmolr);
5342 }
5343 }
5344
5345 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5346 {
5347 struct e1000_hw *hw = &adapter->hw;
5348 u32 pool_mask, reg, vid;
5349 int i;
5350
5351 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5352
5353 /* Find the vlan filter for this id */
5354 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5355 reg = rd32(E1000_VLVF(i));
5356
5357 /* remove the vf from the pool */
5358 reg &= ~pool_mask;
5359
5360 /* if pool is empty then remove entry from vfta */
5361 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5362 (reg & E1000_VLVF_VLANID_ENABLE)) {
5363 reg = 0;
5364 vid = reg & E1000_VLVF_VLANID_MASK;
5365 igb_vfta_set(hw, vid, false);
5366 }
5367
5368 wr32(E1000_VLVF(i), reg);
5369 }
5370
5371 adapter->vf_data[vf].vlans_enabled = 0;
5372 }
5373
5374 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5375 {
5376 struct e1000_hw *hw = &adapter->hw;
5377 u32 reg, i;
5378
5379 /* The vlvf table only exists on 82576 hardware and newer */
5380 if (hw->mac.type < e1000_82576)
5381 return -1;
5382
5383 /* we only need to do this if VMDq is enabled */
5384 if (!adapter->vfs_allocated_count)
5385 return -1;
5386
5387 /* Find the vlan filter for this id */
5388 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5389 reg = rd32(E1000_VLVF(i));
5390 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5391 vid == (reg & E1000_VLVF_VLANID_MASK))
5392 break;
5393 }
5394
5395 if (add) {
5396 if (i == E1000_VLVF_ARRAY_SIZE) {
5397 /* Did not find a matching VLAN ID entry that was
5398 * enabled. Search for a free filter entry, i.e.
5399 * one without the enable bit set
5400 */
5401 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5402 reg = rd32(E1000_VLVF(i));
5403 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5404 break;
5405 }
5406 }
5407 if (i < E1000_VLVF_ARRAY_SIZE) {
5408 /* Found an enabled/available entry */
5409 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5410
5411 /* if !enabled we need to set this up in vfta */
5412 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5413 /* add VID to filter table */
5414 igb_vfta_set(hw, vid, true);
5415 reg |= E1000_VLVF_VLANID_ENABLE;
5416 }
5417 reg &= ~E1000_VLVF_VLANID_MASK;
5418 reg |= vid;
5419 wr32(E1000_VLVF(i), reg);
5420
5421 /* do not modify RLPML for PF devices */
5422 if (vf >= adapter->vfs_allocated_count)
5423 return 0;
5424
5425 if (!adapter->vf_data[vf].vlans_enabled) {
5426 u32 size;
5427 reg = rd32(E1000_VMOLR(vf));
5428 size = reg & E1000_VMOLR_RLPML_MASK;
5429 size += 4;
5430 reg &= ~E1000_VMOLR_RLPML_MASK;
5431 reg |= size;
5432 wr32(E1000_VMOLR(vf), reg);
5433 }
5434
5435 adapter->vf_data[vf].vlans_enabled++;
5436 }
5437 } else {
5438 if (i < E1000_VLVF_ARRAY_SIZE) {
5439 /* remove vf from the pool */
5440 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5441 /* if pool is empty then remove entry from vfta */
5442 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5443 reg = 0;
5444 igb_vfta_set(hw, vid, false);
5445 }
5446 wr32(E1000_VLVF(i), reg);
5447
5448 /* do not modify RLPML for PF devices */
5449 if (vf >= adapter->vfs_allocated_count)
5450 return 0;
5451
5452 adapter->vf_data[vf].vlans_enabled--;
5453 if (!adapter->vf_data[vf].vlans_enabled) {
5454 u32 size;
5455 reg = rd32(E1000_VMOLR(vf));
5456 size = reg & E1000_VMOLR_RLPML_MASK;
5457 size -= 4;
5458 reg &= ~E1000_VMOLR_RLPML_MASK;
5459 reg |= size;
5460 wr32(E1000_VMOLR(vf), reg);
5461 }
5462 }
5463 }
5464 return 0;
5465 }
5466
5467 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5468 {
5469 struct e1000_hw *hw = &adapter->hw;
5470
5471 if (vid)
5472 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5473 else
5474 wr32(E1000_VMVIR(vf), 0);
5475 }
5476
5477 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5478 int vf, u16 vlan, u8 qos)
5479 {
5480 int err = 0;
5481 struct igb_adapter *adapter = netdev_priv(netdev);
5482
5483 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5484 return -EINVAL;
5485 if (vlan || qos) {
5486 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5487 if (err)
5488 goto out;
5489 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5490 igb_set_vmolr(adapter, vf, !vlan);
5491 adapter->vf_data[vf].pf_vlan = vlan;
5492 adapter->vf_data[vf].pf_qos = qos;
5493 dev_info(&adapter->pdev->dev,
5494 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5495 if (test_bit(__IGB_DOWN, &adapter->state)) {
5496 dev_warn(&adapter->pdev->dev,
5497 "The VF VLAN has been set,"
5498 " but the PF device is not up.\n");
5499 dev_warn(&adapter->pdev->dev,
5500 "Bring the PF device up before"
5501 " attempting to use the VF device.\n");
5502 }
5503 } else {
5504 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5505 false, vf);
5506 igb_set_vmvir(adapter, vlan, vf);
5507 igb_set_vmolr(adapter, vf, true);
5508 adapter->vf_data[vf].pf_vlan = 0;
5509 adapter->vf_data[vf].pf_qos = 0;
5510 }
5511 out:
5512 return err;
5513 }
5514
5515 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5516 {
5517 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5518 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5519
5520 return igb_vlvf_set(adapter, vid, add, vf);
5521 }
5522
5523 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5524 {
5525 /* clear flags - except flag that indicates PF has set the MAC */
5526 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5527 adapter->vf_data[vf].last_nack = jiffies;
5528
5529 /* reset offloads to defaults */
5530 igb_set_vmolr(adapter, vf, true);
5531
5532 /* reset vlans for device */
5533 igb_clear_vf_vfta(adapter, vf);
5534 if (adapter->vf_data[vf].pf_vlan)
5535 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5536 adapter->vf_data[vf].pf_vlan,
5537 adapter->vf_data[vf].pf_qos);
5538 else
5539 igb_clear_vf_vfta(adapter, vf);
5540
5541 /* reset multicast table array for vf */
5542 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5543
5544 /* Flush and reset the mta with the new values */
5545 igb_set_rx_mode(adapter->netdev);
5546 }
5547
5548 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5549 {
5550 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5551
5552 /* generate a new mac address as we were hotplug removed/added */
5553 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5554 eth_random_addr(vf_mac);
5555
5556 /* process remaining reset events */
5557 igb_vf_reset(adapter, vf);
5558 }
5559
5560 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5561 {
5562 struct e1000_hw *hw = &adapter->hw;
5563 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5564 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5565 u32 reg, msgbuf[3];
5566 u8 *addr = (u8 *)(&msgbuf[1]);
5567
5568 /* process all the same items cleared in a function level reset */
5569 igb_vf_reset(adapter, vf);
5570
5571 /* set vf mac address */
5572 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5573
5574 /* enable transmit and receive for vf */
5575 reg = rd32(E1000_VFTE);
5576 wr32(E1000_VFTE, reg | (1 << vf));
5577 reg = rd32(E1000_VFRE);
5578 wr32(E1000_VFRE, reg | (1 << vf));
5579
5580 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5581
5582 /* reply to reset with ack and vf mac address */
5583 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5584 memcpy(addr, vf_mac, 6);
5585 igb_write_mbx(hw, msgbuf, 3, vf);
5586 }
5587
5588 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5589 {
5590 /*
5591 * The VF MAC Address is stored in a packed array of bytes
5592 * starting at the second 32 bit word of the msg array
5593 */
5594 unsigned char *addr = (char *)&msg[1];
5595 int err = -1;
5596
5597 if (is_valid_ether_addr(addr))
5598 err = igb_set_vf_mac(adapter, vf, addr);
5599
5600 return err;
5601 }
5602
5603 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5604 {
5605 struct e1000_hw *hw = &adapter->hw;
5606 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5607 u32 msg = E1000_VT_MSGTYPE_NACK;
5608
5609 /* if device isn't clear to send it shouldn't be reading either */
5610 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5611 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5612 igb_write_mbx(hw, &msg, 1, vf);
5613 vf_data->last_nack = jiffies;
5614 }
5615 }
5616
5617 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5618 {
5619 struct pci_dev *pdev = adapter->pdev;
5620 u32 msgbuf[E1000_VFMAILBOX_SIZE];
5621 struct e1000_hw *hw = &adapter->hw;
5622 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5623 s32 retval;
5624
5625 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5626
5627 if (retval) {
5628 /* if receive failed revoke VF CTS stats and restart init */
5629 dev_err(&pdev->dev, "Error receiving message from VF\n");
5630 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5631 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5632 return;
5633 goto out;
5634 }
5635
5636 /* this is a message we already processed, do nothing */
5637 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5638 return;
5639
5640 /*
5641 * until the vf completes a reset it should not be
5642 * allowed to start any configuration.
5643 */
5644
5645 if (msgbuf[0] == E1000_VF_RESET) {
5646 igb_vf_reset_msg(adapter, vf);
5647 return;
5648 }
5649
5650 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5651 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5652 return;
5653 retval = -1;
5654 goto out;
5655 }
5656
5657 switch ((msgbuf[0] & 0xFFFF)) {
5658 case E1000_VF_SET_MAC_ADDR:
5659 retval = -EINVAL;
5660 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5661 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5662 else
5663 dev_warn(&pdev->dev,
5664 "VF %d attempted to override administratively "
5665 "set MAC address\nReload the VF driver to "
5666 "resume operations\n", vf);
5667 break;
5668 case E1000_VF_SET_PROMISC:
5669 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5670 break;
5671 case E1000_VF_SET_MULTICAST:
5672 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5673 break;
5674 case E1000_VF_SET_LPE:
5675 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5676 break;
5677 case E1000_VF_SET_VLAN:
5678 retval = -1;
5679 if (vf_data->pf_vlan)
5680 dev_warn(&pdev->dev,
5681 "VF %d attempted to override administratively "
5682 "set VLAN tag\nReload the VF driver to "
5683 "resume operations\n", vf);
5684 else
5685 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5686 break;
5687 default:
5688 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5689 retval = -1;
5690 break;
5691 }
5692
5693 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5694 out:
5695 /* notify the VF of the results of what it sent us */
5696 if (retval)
5697 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5698 else
5699 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5700
5701 igb_write_mbx(hw, msgbuf, 1, vf);
5702 }
5703
5704 static void igb_msg_task(struct igb_adapter *adapter)
5705 {
5706 struct e1000_hw *hw = &adapter->hw;
5707 u32 vf;
5708
5709 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5710 /* process any reset requests */
5711 if (!igb_check_for_rst(hw, vf))
5712 igb_vf_reset_event(adapter, vf);
5713
5714 /* process any messages pending */
5715 if (!igb_check_for_msg(hw, vf))
5716 igb_rcv_msg_from_vf(adapter, vf);
5717
5718 /* process any acks */
5719 if (!igb_check_for_ack(hw, vf))
5720 igb_rcv_ack_from_vf(adapter, vf);
5721 }
5722 }
5723
5724 /**
5725 * igb_set_uta - Set unicast filter table address
5726 * @adapter: board private structure
5727 *
5728 * The unicast table address is a register array of 32-bit registers.
5729 * The table is meant to be used in a way similar to how the MTA is used
5730 * however due to certain limitations in the hardware it is necessary to
5731 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5732 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
5733 **/
5734 static void igb_set_uta(struct igb_adapter *adapter)
5735 {
5736 struct e1000_hw *hw = &adapter->hw;
5737 int i;
5738
5739 /* The UTA table only exists on 82576 hardware and newer */
5740 if (hw->mac.type < e1000_82576)
5741 return;
5742
5743 /* we only need to do this if VMDq is enabled */
5744 if (!adapter->vfs_allocated_count)
5745 return;
5746
5747 for (i = 0; i < hw->mac.uta_reg_count; i++)
5748 array_wr32(E1000_UTA, i, ~0);
5749 }
5750
5751 /**
5752 * igb_intr_msi - Interrupt Handler
5753 * @irq: interrupt number
5754 * @data: pointer to a network interface device structure
5755 **/
5756 static irqreturn_t igb_intr_msi(int irq, void *data)
5757 {
5758 struct igb_adapter *adapter = data;
5759 struct igb_q_vector *q_vector = adapter->q_vector[0];
5760 struct e1000_hw *hw = &adapter->hw;
5761 /* read ICR disables interrupts using IAM */
5762 u32 icr = rd32(E1000_ICR);
5763
5764 igb_write_itr(q_vector);
5765
5766 if (icr & E1000_ICR_DRSTA)
5767 schedule_work(&adapter->reset_task);
5768
5769 if (icr & E1000_ICR_DOUTSYNC) {
5770 /* HW is reporting DMA is out of sync */
5771 adapter->stats.doosync++;
5772 }
5773
5774 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5775 hw->mac.get_link_status = 1;
5776 if (!test_bit(__IGB_DOWN, &adapter->state))
5777 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5778 }
5779
5780 if (icr & E1000_ICR_TS) {
5781 u32 tsicr = rd32(E1000_TSICR);
5782
5783 if (tsicr & E1000_TSICR_TXTS) {
5784 /* acknowledge the interrupt */
5785 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5786 /* retrieve hardware timestamp */
5787 schedule_work(&adapter->ptp_tx_work);
5788 }
5789 }
5790
5791 napi_schedule(&q_vector->napi);
5792
5793 return IRQ_HANDLED;
5794 }
5795
5796 /**
5797 * igb_intr - Legacy Interrupt Handler
5798 * @irq: interrupt number
5799 * @data: pointer to a network interface device structure
5800 **/
5801 static irqreturn_t igb_intr(int irq, void *data)
5802 {
5803 struct igb_adapter *adapter = data;
5804 struct igb_q_vector *q_vector = adapter->q_vector[0];
5805 struct e1000_hw *hw = &adapter->hw;
5806 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5807 * need for the IMC write */
5808 u32 icr = rd32(E1000_ICR);
5809
5810 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5811 * not set, then the adapter didn't send an interrupt */
5812 if (!(icr & E1000_ICR_INT_ASSERTED))
5813 return IRQ_NONE;
5814
5815 igb_write_itr(q_vector);
5816
5817 if (icr & E1000_ICR_DRSTA)
5818 schedule_work(&adapter->reset_task);
5819
5820 if (icr & E1000_ICR_DOUTSYNC) {
5821 /* HW is reporting DMA is out of sync */
5822 adapter->stats.doosync++;
5823 }
5824
5825 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5826 hw->mac.get_link_status = 1;
5827 /* guard against interrupt when we're going down */
5828 if (!test_bit(__IGB_DOWN, &adapter->state))
5829 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5830 }
5831
5832 if (icr & E1000_ICR_TS) {
5833 u32 tsicr = rd32(E1000_TSICR);
5834
5835 if (tsicr & E1000_TSICR_TXTS) {
5836 /* acknowledge the interrupt */
5837 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5838 /* retrieve hardware timestamp */
5839 schedule_work(&adapter->ptp_tx_work);
5840 }
5841 }
5842
5843 napi_schedule(&q_vector->napi);
5844
5845 return IRQ_HANDLED;
5846 }
5847
5848 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5849 {
5850 struct igb_adapter *adapter = q_vector->adapter;
5851 struct e1000_hw *hw = &adapter->hw;
5852
5853 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5854 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5855 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5856 igb_set_itr(q_vector);
5857 else
5858 igb_update_ring_itr(q_vector);
5859 }
5860
5861 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5862 if (adapter->msix_entries)
5863 wr32(E1000_EIMS, q_vector->eims_value);
5864 else
5865 igb_irq_enable(adapter);
5866 }
5867 }
5868
5869 /**
5870 * igb_poll - NAPI Rx polling callback
5871 * @napi: napi polling structure
5872 * @budget: count of how many packets we should handle
5873 **/
5874 static int igb_poll(struct napi_struct *napi, int budget)
5875 {
5876 struct igb_q_vector *q_vector = container_of(napi,
5877 struct igb_q_vector,
5878 napi);
5879 bool clean_complete = true;
5880
5881 #ifdef CONFIG_IGB_DCA
5882 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5883 igb_update_dca(q_vector);
5884 #endif
5885 if (q_vector->tx.ring)
5886 clean_complete = igb_clean_tx_irq(q_vector);
5887
5888 if (q_vector->rx.ring)
5889 clean_complete &= igb_clean_rx_irq(q_vector, budget);
5890
5891 /* If all work not completed, return budget and keep polling */
5892 if (!clean_complete)
5893 return budget;
5894
5895 /* If not enough Rx work done, exit the polling mode */
5896 napi_complete(napi);
5897 igb_ring_irq_enable(q_vector);
5898
5899 return 0;
5900 }
5901
5902 /**
5903 * igb_clean_tx_irq - Reclaim resources after transmit completes
5904 * @q_vector: pointer to q_vector containing needed info
5905 *
5906 * returns true if ring is completely cleaned
5907 **/
5908 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5909 {
5910 struct igb_adapter *adapter = q_vector->adapter;
5911 struct igb_ring *tx_ring = q_vector->tx.ring;
5912 struct igb_tx_buffer *tx_buffer;
5913 union e1000_adv_tx_desc *tx_desc;
5914 unsigned int total_bytes = 0, total_packets = 0;
5915 unsigned int budget = q_vector->tx.work_limit;
5916 unsigned int i = tx_ring->next_to_clean;
5917
5918 if (test_bit(__IGB_DOWN, &adapter->state))
5919 return true;
5920
5921 tx_buffer = &tx_ring->tx_buffer_info[i];
5922 tx_desc = IGB_TX_DESC(tx_ring, i);
5923 i -= tx_ring->count;
5924
5925 do {
5926 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5927
5928 /* if next_to_watch is not set then there is no work pending */
5929 if (!eop_desc)
5930 break;
5931
5932 /* prevent any other reads prior to eop_desc */
5933 read_barrier_depends();
5934
5935 /* if DD is not set pending work has not been completed */
5936 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5937 break;
5938
5939 /* clear next_to_watch to prevent false hangs */
5940 tx_buffer->next_to_watch = NULL;
5941
5942 /* update the statistics for this packet */
5943 total_bytes += tx_buffer->bytecount;
5944 total_packets += tx_buffer->gso_segs;
5945
5946 /* free the skb */
5947 dev_kfree_skb_any(tx_buffer->skb);
5948
5949 /* unmap skb header data */
5950 dma_unmap_single(tx_ring->dev,
5951 dma_unmap_addr(tx_buffer, dma),
5952 dma_unmap_len(tx_buffer, len),
5953 DMA_TO_DEVICE);
5954
5955 /* clear tx_buffer data */
5956 tx_buffer->skb = NULL;
5957 dma_unmap_len_set(tx_buffer, len, 0);
5958
5959 /* clear last DMA location and unmap remaining buffers */
5960 while (tx_desc != eop_desc) {
5961 tx_buffer++;
5962 tx_desc++;
5963 i++;
5964 if (unlikely(!i)) {
5965 i -= tx_ring->count;
5966 tx_buffer = tx_ring->tx_buffer_info;
5967 tx_desc = IGB_TX_DESC(tx_ring, 0);
5968 }
5969
5970 /* unmap any remaining paged data */
5971 if (dma_unmap_len(tx_buffer, len)) {
5972 dma_unmap_page(tx_ring->dev,
5973 dma_unmap_addr(tx_buffer, dma),
5974 dma_unmap_len(tx_buffer, len),
5975 DMA_TO_DEVICE);
5976 dma_unmap_len_set(tx_buffer, len, 0);
5977 }
5978 }
5979
5980 /* move us one more past the eop_desc for start of next pkt */
5981 tx_buffer++;
5982 tx_desc++;
5983 i++;
5984 if (unlikely(!i)) {
5985 i -= tx_ring->count;
5986 tx_buffer = tx_ring->tx_buffer_info;
5987 tx_desc = IGB_TX_DESC(tx_ring, 0);
5988 }
5989
5990 /* issue prefetch for next Tx descriptor */
5991 prefetch(tx_desc);
5992
5993 /* update budget accounting */
5994 budget--;
5995 } while (likely(budget));
5996
5997 netdev_tx_completed_queue(txring_txq(tx_ring),
5998 total_packets, total_bytes);
5999 i += tx_ring->count;
6000 tx_ring->next_to_clean = i;
6001 u64_stats_update_begin(&tx_ring->tx_syncp);
6002 tx_ring->tx_stats.bytes += total_bytes;
6003 tx_ring->tx_stats.packets += total_packets;
6004 u64_stats_update_end(&tx_ring->tx_syncp);
6005 q_vector->tx.total_bytes += total_bytes;
6006 q_vector->tx.total_packets += total_packets;
6007
6008 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6009 struct e1000_hw *hw = &adapter->hw;
6010
6011 /* Detect a transmit hang in hardware, this serializes the
6012 * check with the clearing of time_stamp and movement of i */
6013 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6014 if (tx_buffer->next_to_watch &&
6015 time_after(jiffies, tx_buffer->time_stamp +
6016 (adapter->tx_timeout_factor * HZ)) &&
6017 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6018
6019 /* detected Tx unit hang */
6020 dev_err(tx_ring->dev,
6021 "Detected Tx Unit Hang\n"
6022 " Tx Queue <%d>\n"
6023 " TDH <%x>\n"
6024 " TDT <%x>\n"
6025 " next_to_use <%x>\n"
6026 " next_to_clean <%x>\n"
6027 "buffer_info[next_to_clean]\n"
6028 " time_stamp <%lx>\n"
6029 " next_to_watch <%p>\n"
6030 " jiffies <%lx>\n"
6031 " desc.status <%x>\n",
6032 tx_ring->queue_index,
6033 rd32(E1000_TDH(tx_ring->reg_idx)),
6034 readl(tx_ring->tail),
6035 tx_ring->next_to_use,
6036 tx_ring->next_to_clean,
6037 tx_buffer->time_stamp,
6038 tx_buffer->next_to_watch,
6039 jiffies,
6040 tx_buffer->next_to_watch->wb.status);
6041 netif_stop_subqueue(tx_ring->netdev,
6042 tx_ring->queue_index);
6043
6044 /* we are about to reset, no point in enabling stuff */
6045 return true;
6046 }
6047 }
6048
6049 if (unlikely(total_packets &&
6050 netif_carrier_ok(tx_ring->netdev) &&
6051 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
6052 /* Make sure that anybody stopping the queue after this
6053 * sees the new next_to_clean.
6054 */
6055 smp_mb();
6056 if (__netif_subqueue_stopped(tx_ring->netdev,
6057 tx_ring->queue_index) &&
6058 !(test_bit(__IGB_DOWN, &adapter->state))) {
6059 netif_wake_subqueue(tx_ring->netdev,
6060 tx_ring->queue_index);
6061
6062 u64_stats_update_begin(&tx_ring->tx_syncp);
6063 tx_ring->tx_stats.restart_queue++;
6064 u64_stats_update_end(&tx_ring->tx_syncp);
6065 }
6066 }
6067
6068 return !!budget;
6069 }
6070
6071 /**
6072 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6073 * @rx_ring: rx descriptor ring to store buffers on
6074 * @old_buff: donor buffer to have page reused
6075 *
6076 * Synchronizes page for reuse by the adapter
6077 **/
6078 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6079 struct igb_rx_buffer *old_buff)
6080 {
6081 struct igb_rx_buffer *new_buff;
6082 u16 nta = rx_ring->next_to_alloc;
6083
6084 new_buff = &rx_ring->rx_buffer_info[nta];
6085
6086 /* update, and store next to alloc */
6087 nta++;
6088 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6089
6090 /* transfer page from old buffer to new buffer */
6091 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6092
6093 /* sync the buffer for use by the device */
6094 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6095 old_buff->page_offset,
6096 IGB_RX_BUFSZ,
6097 DMA_FROM_DEVICE);
6098 }
6099
6100 /**
6101 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6102 * @rx_ring: rx descriptor ring to transact packets on
6103 * @rx_buffer: buffer containing page to add
6104 * @rx_desc: descriptor containing length of buffer written by hardware
6105 * @skb: sk_buff to place the data into
6106 *
6107 * This function will add the data contained in rx_buffer->page to the skb.
6108 * This is done either through a direct copy if the data in the buffer is
6109 * less than the skb header size, otherwise it will just attach the page as
6110 * a frag to the skb.
6111 *
6112 * The function will then update the page offset if necessary and return
6113 * true if the buffer can be reused by the adapter.
6114 **/
6115 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6116 struct igb_rx_buffer *rx_buffer,
6117 union e1000_adv_rx_desc *rx_desc,
6118 struct sk_buff *skb)
6119 {
6120 struct page *page = rx_buffer->page;
6121 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6122
6123 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6124 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6125
6126 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6127 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6128 va += IGB_TS_HDR_LEN;
6129 size -= IGB_TS_HDR_LEN;
6130 }
6131
6132 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6133
6134 /* we can reuse buffer as-is, just make sure it is local */
6135 if (likely(page_to_nid(page) == numa_node_id()))
6136 return true;
6137
6138 /* this page cannot be reused so discard it */
6139 put_page(page);
6140 return false;
6141 }
6142
6143 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6144 rx_buffer->page_offset, size, IGB_RX_BUFSZ);
6145
6146 /* avoid re-using remote pages */
6147 if (unlikely(page_to_nid(page) != numa_node_id()))
6148 return false;
6149
6150 #if (PAGE_SIZE < 8192)
6151 /* if we are only owner of page we can reuse it */
6152 if (unlikely(page_count(page) != 1))
6153 return false;
6154
6155 /* flip page offset to other buffer */
6156 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6157
6158 /*
6159 * since we are the only owner of the page and we need to
6160 * increment it, just set the value to 2 in order to avoid
6161 * an unnecessary locked operation
6162 */
6163 atomic_set(&page->_count, 2);
6164 #else
6165 /* move offset up to the next cache line */
6166 rx_buffer->page_offset += SKB_DATA_ALIGN(size);
6167
6168 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6169 return false;
6170
6171 /* bump ref count on page before it is given to the stack */
6172 get_page(page);
6173 #endif
6174
6175 return true;
6176 }
6177
6178 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6179 union e1000_adv_rx_desc *rx_desc,
6180 struct sk_buff *skb)
6181 {
6182 struct igb_rx_buffer *rx_buffer;
6183 struct page *page;
6184
6185 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6186
6187 /*
6188 * This memory barrier is needed to keep us from reading
6189 * any other fields out of the rx_desc until we know the
6190 * RXD_STAT_DD bit is set
6191 */
6192 rmb();
6193
6194 page = rx_buffer->page;
6195 prefetchw(page);
6196
6197 if (likely(!skb)) {
6198 void *page_addr = page_address(page) +
6199 rx_buffer->page_offset;
6200
6201 /* prefetch first cache line of first page */
6202 prefetch(page_addr);
6203 #if L1_CACHE_BYTES < 128
6204 prefetch(page_addr + L1_CACHE_BYTES);
6205 #endif
6206
6207 /* allocate a skb to store the frags */
6208 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6209 IGB_RX_HDR_LEN);
6210 if (unlikely(!skb)) {
6211 rx_ring->rx_stats.alloc_failed++;
6212 return NULL;
6213 }
6214
6215 /*
6216 * we will be copying header into skb->data in
6217 * pskb_may_pull so it is in our interest to prefetch
6218 * it now to avoid a possible cache miss
6219 */
6220 prefetchw(skb->data);
6221 }
6222
6223 /* we are reusing so sync this buffer for CPU use */
6224 dma_sync_single_range_for_cpu(rx_ring->dev,
6225 rx_buffer->dma,
6226 rx_buffer->page_offset,
6227 IGB_RX_BUFSZ,
6228 DMA_FROM_DEVICE);
6229
6230 /* pull page into skb */
6231 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6232 /* hand second half of page back to the ring */
6233 igb_reuse_rx_page(rx_ring, rx_buffer);
6234 } else {
6235 /* we are not reusing the buffer so unmap it */
6236 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6237 PAGE_SIZE, DMA_FROM_DEVICE);
6238 }
6239
6240 /* clear contents of rx_buffer */
6241 rx_buffer->page = NULL;
6242
6243 return skb;
6244 }
6245
6246 static inline void igb_rx_checksum(struct igb_ring *ring,
6247 union e1000_adv_rx_desc *rx_desc,
6248 struct sk_buff *skb)
6249 {
6250 skb_checksum_none_assert(skb);
6251
6252 /* Ignore Checksum bit is set */
6253 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6254 return;
6255
6256 /* Rx checksum disabled via ethtool */
6257 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6258 return;
6259
6260 /* TCP/UDP checksum error bit is set */
6261 if (igb_test_staterr(rx_desc,
6262 E1000_RXDEXT_STATERR_TCPE |
6263 E1000_RXDEXT_STATERR_IPE)) {
6264 /*
6265 * work around errata with sctp packets where the TCPE aka
6266 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6267 * packets, (aka let the stack check the crc32c)
6268 */
6269 if (!((skb->len == 60) &&
6270 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6271 u64_stats_update_begin(&ring->rx_syncp);
6272 ring->rx_stats.csum_err++;
6273 u64_stats_update_end(&ring->rx_syncp);
6274 }
6275 /* let the stack verify checksum errors */
6276 return;
6277 }
6278 /* It must be a TCP or UDP packet with a valid checksum */
6279 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6280 E1000_RXD_STAT_UDPCS))
6281 skb->ip_summed = CHECKSUM_UNNECESSARY;
6282
6283 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6284 le32_to_cpu(rx_desc->wb.upper.status_error));
6285 }
6286
6287 static inline void igb_rx_hash(struct igb_ring *ring,
6288 union e1000_adv_rx_desc *rx_desc,
6289 struct sk_buff *skb)
6290 {
6291 if (ring->netdev->features & NETIF_F_RXHASH)
6292 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6293 }
6294
6295 /**
6296 * igb_is_non_eop - process handling of non-EOP buffers
6297 * @rx_ring: Rx ring being processed
6298 * @rx_desc: Rx descriptor for current buffer
6299 * @skb: current socket buffer containing buffer in progress
6300 *
6301 * This function updates next to clean. If the buffer is an EOP buffer
6302 * this function exits returning false, otherwise it will place the
6303 * sk_buff in the next buffer to be chained and return true indicating
6304 * that this is in fact a non-EOP buffer.
6305 **/
6306 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6307 union e1000_adv_rx_desc *rx_desc)
6308 {
6309 u32 ntc = rx_ring->next_to_clean + 1;
6310
6311 /* fetch, update, and store next to clean */
6312 ntc = (ntc < rx_ring->count) ? ntc : 0;
6313 rx_ring->next_to_clean = ntc;
6314
6315 prefetch(IGB_RX_DESC(rx_ring, ntc));
6316
6317 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6318 return false;
6319
6320 return true;
6321 }
6322
6323 /**
6324 * igb_get_headlen - determine size of header for LRO/GRO
6325 * @data: pointer to the start of the headers
6326 * @max_len: total length of section to find headers in
6327 *
6328 * This function is meant to determine the length of headers that will
6329 * be recognized by hardware for LRO, and GRO offloads. The main
6330 * motivation of doing this is to only perform one pull for IPv4 TCP
6331 * packets so that we can do basic things like calculating the gso_size
6332 * based on the average data per packet.
6333 **/
6334 static unsigned int igb_get_headlen(unsigned char *data,
6335 unsigned int max_len)
6336 {
6337 union {
6338 unsigned char *network;
6339 /* l2 headers */
6340 struct ethhdr *eth;
6341 struct vlan_hdr *vlan;
6342 /* l3 headers */
6343 struct iphdr *ipv4;
6344 struct ipv6hdr *ipv6;
6345 } hdr;
6346 __be16 protocol;
6347 u8 nexthdr = 0; /* default to not TCP */
6348 u8 hlen;
6349
6350 /* this should never happen, but better safe than sorry */
6351 if (max_len < ETH_HLEN)
6352 return max_len;
6353
6354 /* initialize network frame pointer */
6355 hdr.network = data;
6356
6357 /* set first protocol and move network header forward */
6358 protocol = hdr.eth->h_proto;
6359 hdr.network += ETH_HLEN;
6360
6361 /* handle any vlan tag if present */
6362 if (protocol == __constant_htons(ETH_P_8021Q)) {
6363 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6364 return max_len;
6365
6366 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6367 hdr.network += VLAN_HLEN;
6368 }
6369
6370 /* handle L3 protocols */
6371 if (protocol == __constant_htons(ETH_P_IP)) {
6372 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6373 return max_len;
6374
6375 /* access ihl as a u8 to avoid unaligned access on ia64 */
6376 hlen = (hdr.network[0] & 0x0F) << 2;
6377
6378 /* verify hlen meets minimum size requirements */
6379 if (hlen < sizeof(struct iphdr))
6380 return hdr.network - data;
6381
6382 /* record next protocol if header is present */
6383 if (!hdr.ipv4->frag_off)
6384 nexthdr = hdr.ipv4->protocol;
6385 } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6386 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6387 return max_len;
6388
6389 /* record next protocol */
6390 nexthdr = hdr.ipv6->nexthdr;
6391 hlen = sizeof(struct ipv6hdr);
6392 } else {
6393 return hdr.network - data;
6394 }
6395
6396 /* relocate pointer to start of L4 header */
6397 hdr.network += hlen;
6398
6399 /* finally sort out TCP */
6400 if (nexthdr == IPPROTO_TCP) {
6401 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6402 return max_len;
6403
6404 /* access doff as a u8 to avoid unaligned access on ia64 */
6405 hlen = (hdr.network[12] & 0xF0) >> 2;
6406
6407 /* verify hlen meets minimum size requirements */
6408 if (hlen < sizeof(struct tcphdr))
6409 return hdr.network - data;
6410
6411 hdr.network += hlen;
6412 } else if (nexthdr == IPPROTO_UDP) {
6413 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6414 return max_len;
6415
6416 hdr.network += sizeof(struct udphdr);
6417 }
6418
6419 /*
6420 * If everything has gone correctly hdr.network should be the
6421 * data section of the packet and will be the end of the header.
6422 * If not then it probably represents the end of the last recognized
6423 * header.
6424 */
6425 if ((hdr.network - data) < max_len)
6426 return hdr.network - data;
6427 else
6428 return max_len;
6429 }
6430
6431 /**
6432 * igb_pull_tail - igb specific version of skb_pull_tail
6433 * @rx_ring: rx descriptor ring packet is being transacted on
6434 * @rx_desc: pointer to the EOP Rx descriptor
6435 * @skb: pointer to current skb being adjusted
6436 *
6437 * This function is an igb specific version of __pskb_pull_tail. The
6438 * main difference between this version and the original function is that
6439 * this function can make several assumptions about the state of things
6440 * that allow for significant optimizations versus the standard function.
6441 * As a result we can do things like drop a frag and maintain an accurate
6442 * truesize for the skb.
6443 */
6444 static void igb_pull_tail(struct igb_ring *rx_ring,
6445 union e1000_adv_rx_desc *rx_desc,
6446 struct sk_buff *skb)
6447 {
6448 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6449 unsigned char *va;
6450 unsigned int pull_len;
6451
6452 /*
6453 * it is valid to use page_address instead of kmap since we are
6454 * working with pages allocated out of the lomem pool per
6455 * alloc_page(GFP_ATOMIC)
6456 */
6457 va = skb_frag_address(frag);
6458
6459 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6460 /* retrieve timestamp from buffer */
6461 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6462
6463 /* update pointers to remove timestamp header */
6464 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6465 frag->page_offset += IGB_TS_HDR_LEN;
6466 skb->data_len -= IGB_TS_HDR_LEN;
6467 skb->len -= IGB_TS_HDR_LEN;
6468
6469 /* move va to start of packet data */
6470 va += IGB_TS_HDR_LEN;
6471 }
6472
6473 /*
6474 * we need the header to contain the greater of either ETH_HLEN or
6475 * 60 bytes if the skb->len is less than 60 for skb_pad.
6476 */
6477 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6478
6479 /* align pull length to size of long to optimize memcpy performance */
6480 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6481
6482 /* update all of the pointers */
6483 skb_frag_size_sub(frag, pull_len);
6484 frag->page_offset += pull_len;
6485 skb->data_len -= pull_len;
6486 skb->tail += pull_len;
6487 }
6488
6489 /**
6490 * igb_cleanup_headers - Correct corrupted or empty headers
6491 * @rx_ring: rx descriptor ring packet is being transacted on
6492 * @rx_desc: pointer to the EOP Rx descriptor
6493 * @skb: pointer to current skb being fixed
6494 *
6495 * Address the case where we are pulling data in on pages only
6496 * and as such no data is present in the skb header.
6497 *
6498 * In addition if skb is not at least 60 bytes we need to pad it so that
6499 * it is large enough to qualify as a valid Ethernet frame.
6500 *
6501 * Returns true if an error was encountered and skb was freed.
6502 **/
6503 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6504 union e1000_adv_rx_desc *rx_desc,
6505 struct sk_buff *skb)
6506 {
6507
6508 if (unlikely((igb_test_staterr(rx_desc,
6509 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6510 struct net_device *netdev = rx_ring->netdev;
6511 if (!(netdev->features & NETIF_F_RXALL)) {
6512 dev_kfree_skb_any(skb);
6513 return true;
6514 }
6515 }
6516
6517 /* place header in linear portion of buffer */
6518 if (skb_is_nonlinear(skb))
6519 igb_pull_tail(rx_ring, rx_desc, skb);
6520
6521 /* if skb_pad returns an error the skb was freed */
6522 if (unlikely(skb->len < 60)) {
6523 int pad_len = 60 - skb->len;
6524
6525 if (skb_pad(skb, pad_len))
6526 return true;
6527 __skb_put(skb, pad_len);
6528 }
6529
6530 return false;
6531 }
6532
6533 /**
6534 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6535 * @rx_ring: rx descriptor ring packet is being transacted on
6536 * @rx_desc: pointer to the EOP Rx descriptor
6537 * @skb: pointer to current skb being populated
6538 *
6539 * This function checks the ring, descriptor, and packet information in
6540 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6541 * other fields within the skb.
6542 **/
6543 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6544 union e1000_adv_rx_desc *rx_desc,
6545 struct sk_buff *skb)
6546 {
6547 struct net_device *dev = rx_ring->netdev;
6548
6549 igb_rx_hash(rx_ring, rx_desc, skb);
6550
6551 igb_rx_checksum(rx_ring, rx_desc, skb);
6552
6553 igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6554
6555 if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6556 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6557 u16 vid;
6558 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6559 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6560 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6561 else
6562 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6563
6564 __vlan_hwaccel_put_tag(skb, vid);
6565 }
6566
6567 skb_record_rx_queue(skb, rx_ring->queue_index);
6568
6569 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6570 }
6571
6572 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6573 {
6574 struct igb_ring *rx_ring = q_vector->rx.ring;
6575 struct sk_buff *skb = rx_ring->skb;
6576 unsigned int total_bytes = 0, total_packets = 0;
6577 u16 cleaned_count = igb_desc_unused(rx_ring);
6578
6579 do {
6580 union e1000_adv_rx_desc *rx_desc;
6581
6582 /* return some buffers to hardware, one at a time is too slow */
6583 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6584 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6585 cleaned_count = 0;
6586 }
6587
6588 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6589
6590 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6591 break;
6592
6593 /* retrieve a buffer from the ring */
6594 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6595
6596 /* exit if we failed to retrieve a buffer */
6597 if (!skb)
6598 break;
6599
6600 cleaned_count++;
6601
6602 /* fetch next buffer in frame if non-eop */
6603 if (igb_is_non_eop(rx_ring, rx_desc))
6604 continue;
6605
6606 /* verify the packet layout is correct */
6607 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6608 skb = NULL;
6609 continue;
6610 }
6611
6612 /* probably a little skewed due to removing CRC */
6613 total_bytes += skb->len;
6614
6615 /* populate checksum, timestamp, VLAN, and protocol */
6616 igb_process_skb_fields(rx_ring, rx_desc, skb);
6617
6618 napi_gro_receive(&q_vector->napi, skb);
6619
6620 /* reset skb pointer */
6621 skb = NULL;
6622
6623 /* update budget accounting */
6624 total_packets++;
6625 } while (likely(total_packets < budget));
6626
6627 /* place incomplete frames back on ring for completion */
6628 rx_ring->skb = skb;
6629
6630 u64_stats_update_begin(&rx_ring->rx_syncp);
6631 rx_ring->rx_stats.packets += total_packets;
6632 rx_ring->rx_stats.bytes += total_bytes;
6633 u64_stats_update_end(&rx_ring->rx_syncp);
6634 q_vector->rx.total_packets += total_packets;
6635 q_vector->rx.total_bytes += total_bytes;
6636
6637 if (cleaned_count)
6638 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6639
6640 return (total_packets < budget);
6641 }
6642
6643 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6644 struct igb_rx_buffer *bi)
6645 {
6646 struct page *page = bi->page;
6647 dma_addr_t dma;
6648
6649 /* since we are recycling buffers we should seldom need to alloc */
6650 if (likely(page))
6651 return true;
6652
6653 /* alloc new page for storage */
6654 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6655 if (unlikely(!page)) {
6656 rx_ring->rx_stats.alloc_failed++;
6657 return false;
6658 }
6659
6660 /* map page for use */
6661 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6662
6663 /*
6664 * if mapping failed free memory back to system since
6665 * there isn't much point in holding memory we can't use
6666 */
6667 if (dma_mapping_error(rx_ring->dev, dma)) {
6668 __free_page(page);
6669
6670 rx_ring->rx_stats.alloc_failed++;
6671 return false;
6672 }
6673
6674 bi->dma = dma;
6675 bi->page = page;
6676 bi->page_offset = 0;
6677
6678 return true;
6679 }
6680
6681 /**
6682 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6683 * @adapter: address of board private structure
6684 **/
6685 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6686 {
6687 union e1000_adv_rx_desc *rx_desc;
6688 struct igb_rx_buffer *bi;
6689 u16 i = rx_ring->next_to_use;
6690
6691 /* nothing to do */
6692 if (!cleaned_count)
6693 return;
6694
6695 rx_desc = IGB_RX_DESC(rx_ring, i);
6696 bi = &rx_ring->rx_buffer_info[i];
6697 i -= rx_ring->count;
6698
6699 do {
6700 if (!igb_alloc_mapped_page(rx_ring, bi))
6701 break;
6702
6703 /*
6704 * Refresh the desc even if buffer_addrs didn't change
6705 * because each write-back erases this info.
6706 */
6707 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6708
6709 rx_desc++;
6710 bi++;
6711 i++;
6712 if (unlikely(!i)) {
6713 rx_desc = IGB_RX_DESC(rx_ring, 0);
6714 bi = rx_ring->rx_buffer_info;
6715 i -= rx_ring->count;
6716 }
6717
6718 /* clear the hdr_addr for the next_to_use descriptor */
6719 rx_desc->read.hdr_addr = 0;
6720
6721 cleaned_count--;
6722 } while (cleaned_count);
6723
6724 i += rx_ring->count;
6725
6726 if (rx_ring->next_to_use != i) {
6727 /* record the next descriptor to use */
6728 rx_ring->next_to_use = i;
6729
6730 /* update next to alloc since we have filled the ring */
6731 rx_ring->next_to_alloc = i;
6732
6733 /*
6734 * Force memory writes to complete before letting h/w
6735 * know there are new descriptors to fetch. (Only
6736 * applicable for weak-ordered memory model archs,
6737 * such as IA-64).
6738 */
6739 wmb();
6740 writel(i, rx_ring->tail);
6741 }
6742 }
6743
6744 /**
6745 * igb_mii_ioctl -
6746 * @netdev:
6747 * @ifreq:
6748 * @cmd:
6749 **/
6750 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6751 {
6752 struct igb_adapter *adapter = netdev_priv(netdev);
6753 struct mii_ioctl_data *data = if_mii(ifr);
6754
6755 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6756 return -EOPNOTSUPP;
6757
6758 switch (cmd) {
6759 case SIOCGMIIPHY:
6760 data->phy_id = adapter->hw.phy.addr;
6761 break;
6762 case SIOCGMIIREG:
6763 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6764 &data->val_out))
6765 return -EIO;
6766 break;
6767 case SIOCSMIIREG:
6768 default:
6769 return -EOPNOTSUPP;
6770 }
6771 return 0;
6772 }
6773
6774 /**
6775 * igb_ioctl -
6776 * @netdev:
6777 * @ifreq:
6778 * @cmd:
6779 **/
6780 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6781 {
6782 switch (cmd) {
6783 case SIOCGMIIPHY:
6784 case SIOCGMIIREG:
6785 case SIOCSMIIREG:
6786 return igb_mii_ioctl(netdev, ifr, cmd);
6787 case SIOCSHWTSTAMP:
6788 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6789 default:
6790 return -EOPNOTSUPP;
6791 }
6792 }
6793
6794 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6795 {
6796 struct igb_adapter *adapter = hw->back;
6797
6798 if (pcie_capability_read_word(adapter->pdev, reg, value))
6799 return -E1000_ERR_CONFIG;
6800
6801 return 0;
6802 }
6803
6804 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6805 {
6806 struct igb_adapter *adapter = hw->back;
6807
6808 if (pcie_capability_write_word(adapter->pdev, reg, *value))
6809 return -E1000_ERR_CONFIG;
6810
6811 return 0;
6812 }
6813
6814 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6815 {
6816 struct igb_adapter *adapter = netdev_priv(netdev);
6817 struct e1000_hw *hw = &adapter->hw;
6818 u32 ctrl, rctl;
6819 bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6820
6821 if (enable) {
6822 /* enable VLAN tag insert/strip */
6823 ctrl = rd32(E1000_CTRL);
6824 ctrl |= E1000_CTRL_VME;
6825 wr32(E1000_CTRL, ctrl);
6826
6827 /* Disable CFI check */
6828 rctl = rd32(E1000_RCTL);
6829 rctl &= ~E1000_RCTL_CFIEN;
6830 wr32(E1000_RCTL, rctl);
6831 } else {
6832 /* disable VLAN tag insert/strip */
6833 ctrl = rd32(E1000_CTRL);
6834 ctrl &= ~E1000_CTRL_VME;
6835 wr32(E1000_CTRL, ctrl);
6836 }
6837
6838 igb_rlpml_set(adapter);
6839 }
6840
6841 static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6842 {
6843 struct igb_adapter *adapter = netdev_priv(netdev);
6844 struct e1000_hw *hw = &adapter->hw;
6845 int pf_id = adapter->vfs_allocated_count;
6846
6847 /* attempt to add filter to vlvf array */
6848 igb_vlvf_set(adapter, vid, true, pf_id);
6849
6850 /* add the filter since PF can receive vlans w/o entry in vlvf */
6851 igb_vfta_set(hw, vid, true);
6852
6853 set_bit(vid, adapter->active_vlans);
6854
6855 return 0;
6856 }
6857
6858 static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6859 {
6860 struct igb_adapter *adapter = netdev_priv(netdev);
6861 struct e1000_hw *hw = &adapter->hw;
6862 int pf_id = adapter->vfs_allocated_count;
6863 s32 err;
6864
6865 /* remove vlan from VLVF table array */
6866 err = igb_vlvf_set(adapter, vid, false, pf_id);
6867
6868 /* if vid was not present in VLVF just remove it from table */
6869 if (err)
6870 igb_vfta_set(hw, vid, false);
6871
6872 clear_bit(vid, adapter->active_vlans);
6873
6874 return 0;
6875 }
6876
6877 static void igb_restore_vlan(struct igb_adapter *adapter)
6878 {
6879 u16 vid;
6880
6881 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6882
6883 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6884 igb_vlan_rx_add_vid(adapter->netdev, vid);
6885 }
6886
6887 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6888 {
6889 struct pci_dev *pdev = adapter->pdev;
6890 struct e1000_mac_info *mac = &adapter->hw.mac;
6891
6892 mac->autoneg = 0;
6893
6894 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6895 * for the switch() below to work */
6896 if ((spd & 1) || (dplx & ~1))
6897 goto err_inval;
6898
6899 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6900 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6901 spd != SPEED_1000 &&
6902 dplx != DUPLEX_FULL)
6903 goto err_inval;
6904
6905 switch (spd + dplx) {
6906 case SPEED_10 + DUPLEX_HALF:
6907 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6908 break;
6909 case SPEED_10 + DUPLEX_FULL:
6910 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6911 break;
6912 case SPEED_100 + DUPLEX_HALF:
6913 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6914 break;
6915 case SPEED_100 + DUPLEX_FULL:
6916 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6917 break;
6918 case SPEED_1000 + DUPLEX_FULL:
6919 mac->autoneg = 1;
6920 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6921 break;
6922 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6923 default:
6924 goto err_inval;
6925 }
6926
6927 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6928 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6929
6930 return 0;
6931
6932 err_inval:
6933 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6934 return -EINVAL;
6935 }
6936
6937 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6938 bool runtime)
6939 {
6940 struct net_device *netdev = pci_get_drvdata(pdev);
6941 struct igb_adapter *adapter = netdev_priv(netdev);
6942 struct e1000_hw *hw = &adapter->hw;
6943 u32 ctrl, rctl, status;
6944 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6945 #ifdef CONFIG_PM
6946 int retval = 0;
6947 #endif
6948
6949 netif_device_detach(netdev);
6950
6951 if (netif_running(netdev))
6952 __igb_close(netdev, true);
6953
6954 igb_clear_interrupt_scheme(adapter);
6955
6956 #ifdef CONFIG_PM
6957 retval = pci_save_state(pdev);
6958 if (retval)
6959 return retval;
6960 #endif
6961
6962 status = rd32(E1000_STATUS);
6963 if (status & E1000_STATUS_LU)
6964 wufc &= ~E1000_WUFC_LNKC;
6965
6966 if (wufc) {
6967 igb_setup_rctl(adapter);
6968 igb_set_rx_mode(netdev);
6969
6970 /* turn on all-multi mode if wake on multicast is enabled */
6971 if (wufc & E1000_WUFC_MC) {
6972 rctl = rd32(E1000_RCTL);
6973 rctl |= E1000_RCTL_MPE;
6974 wr32(E1000_RCTL, rctl);
6975 }
6976
6977 ctrl = rd32(E1000_CTRL);
6978 /* advertise wake from D3Cold */
6979 #define E1000_CTRL_ADVD3WUC 0x00100000
6980 /* phy power management enable */
6981 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6982 ctrl |= E1000_CTRL_ADVD3WUC;
6983 wr32(E1000_CTRL, ctrl);
6984
6985 /* Allow time for pending master requests to run */
6986 igb_disable_pcie_master(hw);
6987
6988 wr32(E1000_WUC, E1000_WUC_PME_EN);
6989 wr32(E1000_WUFC, wufc);
6990 } else {
6991 wr32(E1000_WUC, 0);
6992 wr32(E1000_WUFC, 0);
6993 }
6994
6995 *enable_wake = wufc || adapter->en_mng_pt;
6996 if (!*enable_wake)
6997 igb_power_down_link(adapter);
6998 else
6999 igb_power_up_link(adapter);
7000
7001 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7002 * would have already happened in close and is redundant. */
7003 igb_release_hw_control(adapter);
7004
7005 pci_disable_device(pdev);
7006
7007 return 0;
7008 }
7009
7010 #ifdef CONFIG_PM
7011 #ifdef CONFIG_PM_SLEEP
7012 static int igb_suspend(struct device *dev)
7013 {
7014 int retval;
7015 bool wake;
7016 struct pci_dev *pdev = to_pci_dev(dev);
7017
7018 retval = __igb_shutdown(pdev, &wake, 0);
7019 if (retval)
7020 return retval;
7021
7022 if (wake) {
7023 pci_prepare_to_sleep(pdev);
7024 } else {
7025 pci_wake_from_d3(pdev, false);
7026 pci_set_power_state(pdev, PCI_D3hot);
7027 }
7028
7029 return 0;
7030 }
7031 #endif /* CONFIG_PM_SLEEP */
7032
7033 static int igb_resume(struct device *dev)
7034 {
7035 struct pci_dev *pdev = to_pci_dev(dev);
7036 struct net_device *netdev = pci_get_drvdata(pdev);
7037 struct igb_adapter *adapter = netdev_priv(netdev);
7038 struct e1000_hw *hw = &adapter->hw;
7039 u32 err;
7040
7041 pci_set_power_state(pdev, PCI_D0);
7042 pci_restore_state(pdev);
7043 pci_save_state(pdev);
7044
7045 err = pci_enable_device_mem(pdev);
7046 if (err) {
7047 dev_err(&pdev->dev,
7048 "igb: Cannot enable PCI device from suspend\n");
7049 return err;
7050 }
7051 pci_set_master(pdev);
7052
7053 pci_enable_wake(pdev, PCI_D3hot, 0);
7054 pci_enable_wake(pdev, PCI_D3cold, 0);
7055
7056 if (igb_init_interrupt_scheme(adapter, true)) {
7057 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7058 return -ENOMEM;
7059 }
7060
7061 igb_reset(adapter);
7062
7063 /* let the f/w know that the h/w is now under the control of the
7064 * driver. */
7065 igb_get_hw_control(adapter);
7066
7067 wr32(E1000_WUS, ~0);
7068
7069 if (netdev->flags & IFF_UP) {
7070 rtnl_lock();
7071 err = __igb_open(netdev, true);
7072 rtnl_unlock();
7073 if (err)
7074 return err;
7075 }
7076
7077 netif_device_attach(netdev);
7078 return 0;
7079 }
7080
7081 #ifdef CONFIG_PM_RUNTIME
7082 static int igb_runtime_idle(struct device *dev)
7083 {
7084 struct pci_dev *pdev = to_pci_dev(dev);
7085 struct net_device *netdev = pci_get_drvdata(pdev);
7086 struct igb_adapter *adapter = netdev_priv(netdev);
7087
7088 if (!igb_has_link(adapter))
7089 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7090
7091 return -EBUSY;
7092 }
7093
7094 static int igb_runtime_suspend(struct device *dev)
7095 {
7096 struct pci_dev *pdev = to_pci_dev(dev);
7097 int retval;
7098 bool wake;
7099
7100 retval = __igb_shutdown(pdev, &wake, 1);
7101 if (retval)
7102 return retval;
7103
7104 if (wake) {
7105 pci_prepare_to_sleep(pdev);
7106 } else {
7107 pci_wake_from_d3(pdev, false);
7108 pci_set_power_state(pdev, PCI_D3hot);
7109 }
7110
7111 return 0;
7112 }
7113
7114 static int igb_runtime_resume(struct device *dev)
7115 {
7116 return igb_resume(dev);
7117 }
7118 #endif /* CONFIG_PM_RUNTIME */
7119 #endif
7120
7121 static void igb_shutdown(struct pci_dev *pdev)
7122 {
7123 bool wake;
7124
7125 __igb_shutdown(pdev, &wake, 0);
7126
7127 if (system_state == SYSTEM_POWER_OFF) {
7128 pci_wake_from_d3(pdev, wake);
7129 pci_set_power_state(pdev, PCI_D3hot);
7130 }
7131 }
7132
7133 #ifdef CONFIG_PCI_IOV
7134 static int igb_sriov_reinit(struct pci_dev *dev)
7135 {
7136 struct net_device *netdev = pci_get_drvdata(dev);
7137 struct igb_adapter *adapter = netdev_priv(netdev);
7138 struct pci_dev *pdev = adapter->pdev;
7139
7140 rtnl_lock();
7141
7142 if (netif_running(netdev))
7143 igb_close(netdev);
7144
7145 igb_clear_interrupt_scheme(adapter);
7146
7147 igb_init_queue_configuration(adapter);
7148
7149 if (igb_init_interrupt_scheme(adapter, true)) {
7150 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7151 return -ENOMEM;
7152 }
7153
7154 if (netif_running(netdev))
7155 igb_open(netdev);
7156
7157 rtnl_unlock();
7158
7159 return 0;
7160 }
7161
7162 static int igb_pci_disable_sriov(struct pci_dev *dev)
7163 {
7164 int err = igb_disable_sriov(dev);
7165
7166 if (!err)
7167 err = igb_sriov_reinit(dev);
7168
7169 return err;
7170 }
7171
7172 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7173 {
7174 int err = igb_enable_sriov(dev, num_vfs);
7175
7176 if (err)
7177 goto out;
7178
7179 err = igb_sriov_reinit(dev);
7180 if (!err)
7181 return num_vfs;
7182
7183 out:
7184 return err;
7185 }
7186
7187 #endif
7188 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7189 {
7190 #ifdef CONFIG_PCI_IOV
7191 if (num_vfs == 0)
7192 return igb_pci_disable_sriov(dev);
7193 else
7194 return igb_pci_enable_sriov(dev, num_vfs);
7195 #endif
7196 return 0;
7197 }
7198
7199 #ifdef CONFIG_NET_POLL_CONTROLLER
7200 /*
7201 * Polling 'interrupt' - used by things like netconsole to send skbs
7202 * without having to re-enable interrupts. It's not called while
7203 * the interrupt routine is executing.
7204 */
7205 static void igb_netpoll(struct net_device *netdev)
7206 {
7207 struct igb_adapter *adapter = netdev_priv(netdev);
7208 struct e1000_hw *hw = &adapter->hw;
7209 struct igb_q_vector *q_vector;
7210 int i;
7211
7212 for (i = 0; i < adapter->num_q_vectors; i++) {
7213 q_vector = adapter->q_vector[i];
7214 if (adapter->msix_entries)
7215 wr32(E1000_EIMC, q_vector->eims_value);
7216 else
7217 igb_irq_disable(adapter);
7218 napi_schedule(&q_vector->napi);
7219 }
7220 }
7221 #endif /* CONFIG_NET_POLL_CONTROLLER */
7222
7223 /**
7224 * igb_io_error_detected - called when PCI error is detected
7225 * @pdev: Pointer to PCI device
7226 * @state: The current pci connection state
7227 *
7228 * This function is called after a PCI bus error affecting
7229 * this device has been detected.
7230 */
7231 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7232 pci_channel_state_t state)
7233 {
7234 struct net_device *netdev = pci_get_drvdata(pdev);
7235 struct igb_adapter *adapter = netdev_priv(netdev);
7236
7237 netif_device_detach(netdev);
7238
7239 if (state == pci_channel_io_perm_failure)
7240 return PCI_ERS_RESULT_DISCONNECT;
7241
7242 if (netif_running(netdev))
7243 igb_down(adapter);
7244 pci_disable_device(pdev);
7245
7246 /* Request a slot slot reset. */
7247 return PCI_ERS_RESULT_NEED_RESET;
7248 }
7249
7250 /**
7251 * igb_io_slot_reset - called after the pci bus has been reset.
7252 * @pdev: Pointer to PCI device
7253 *
7254 * Restart the card from scratch, as if from a cold-boot. Implementation
7255 * resembles the first-half of the igb_resume routine.
7256 */
7257 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7258 {
7259 struct net_device *netdev = pci_get_drvdata(pdev);
7260 struct igb_adapter *adapter = netdev_priv(netdev);
7261 struct e1000_hw *hw = &adapter->hw;
7262 pci_ers_result_t result;
7263 int err;
7264
7265 if (pci_enable_device_mem(pdev)) {
7266 dev_err(&pdev->dev,
7267 "Cannot re-enable PCI device after reset.\n");
7268 result = PCI_ERS_RESULT_DISCONNECT;
7269 } else {
7270 pci_set_master(pdev);
7271 pci_restore_state(pdev);
7272 pci_save_state(pdev);
7273
7274 pci_enable_wake(pdev, PCI_D3hot, 0);
7275 pci_enable_wake(pdev, PCI_D3cold, 0);
7276
7277 igb_reset(adapter);
7278 wr32(E1000_WUS, ~0);
7279 result = PCI_ERS_RESULT_RECOVERED;
7280 }
7281
7282 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7283 if (err) {
7284 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
7285 "failed 0x%0x\n", err);
7286 /* non-fatal, continue */
7287 }
7288
7289 return result;
7290 }
7291
7292 /**
7293 * igb_io_resume - called when traffic can start flowing again.
7294 * @pdev: Pointer to PCI device
7295 *
7296 * This callback is called when the error recovery driver tells us that
7297 * its OK to resume normal operation. Implementation resembles the
7298 * second-half of the igb_resume routine.
7299 */
7300 static void igb_io_resume(struct pci_dev *pdev)
7301 {
7302 struct net_device *netdev = pci_get_drvdata(pdev);
7303 struct igb_adapter *adapter = netdev_priv(netdev);
7304
7305 if (netif_running(netdev)) {
7306 if (igb_up(adapter)) {
7307 dev_err(&pdev->dev, "igb_up failed after reset\n");
7308 return;
7309 }
7310 }
7311
7312 netif_device_attach(netdev);
7313
7314 /* let the f/w know that the h/w is now under the control of the
7315 * driver. */
7316 igb_get_hw_control(adapter);
7317 }
7318
7319 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7320 u8 qsel)
7321 {
7322 u32 rar_low, rar_high;
7323 struct e1000_hw *hw = &adapter->hw;
7324
7325 /* HW expects these in little endian so we reverse the byte order
7326 * from network order (big endian) to little endian
7327 */
7328 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7329 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7330 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7331
7332 /* Indicate to hardware the Address is Valid. */
7333 rar_high |= E1000_RAH_AV;
7334
7335 if (hw->mac.type == e1000_82575)
7336 rar_high |= E1000_RAH_POOL_1 * qsel;
7337 else
7338 rar_high |= E1000_RAH_POOL_1 << qsel;
7339
7340 wr32(E1000_RAL(index), rar_low);
7341 wrfl();
7342 wr32(E1000_RAH(index), rar_high);
7343 wrfl();
7344 }
7345
7346 static int igb_set_vf_mac(struct igb_adapter *adapter,
7347 int vf, unsigned char *mac_addr)
7348 {
7349 struct e1000_hw *hw = &adapter->hw;
7350 /* VF MAC addresses start at end of receive addresses and moves
7351 * torwards the first, as a result a collision should not be possible */
7352 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7353
7354 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7355
7356 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7357
7358 return 0;
7359 }
7360
7361 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7362 {
7363 struct igb_adapter *adapter = netdev_priv(netdev);
7364 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7365 return -EINVAL;
7366 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7367 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7368 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
7369 " change effective.");
7370 if (test_bit(__IGB_DOWN, &adapter->state)) {
7371 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
7372 " but the PF device is not up.\n");
7373 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
7374 " attempting to use the VF device.\n");
7375 }
7376 return igb_set_vf_mac(adapter, vf, mac);
7377 }
7378
7379 static int igb_link_mbps(int internal_link_speed)
7380 {
7381 switch (internal_link_speed) {
7382 case SPEED_100:
7383 return 100;
7384 case SPEED_1000:
7385 return 1000;
7386 default:
7387 return 0;
7388 }
7389 }
7390
7391 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7392 int link_speed)
7393 {
7394 int rf_dec, rf_int;
7395 u32 bcnrc_val;
7396
7397 if (tx_rate != 0) {
7398 /* Calculate the rate factor values to set */
7399 rf_int = link_speed / tx_rate;
7400 rf_dec = (link_speed - (rf_int * tx_rate));
7401 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
7402
7403 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7404 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
7405 E1000_RTTBCNRC_RF_INT_MASK);
7406 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7407 } else {
7408 bcnrc_val = 0;
7409 }
7410
7411 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7412 /*
7413 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7414 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7415 */
7416 wr32(E1000_RTTBCNRM, 0x14);
7417 wr32(E1000_RTTBCNRC, bcnrc_val);
7418 }
7419
7420 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7421 {
7422 int actual_link_speed, i;
7423 bool reset_rate = false;
7424
7425 /* VF TX rate limit was not set or not supported */
7426 if ((adapter->vf_rate_link_speed == 0) ||
7427 (adapter->hw.mac.type != e1000_82576))
7428 return;
7429
7430 actual_link_speed = igb_link_mbps(adapter->link_speed);
7431 if (actual_link_speed != adapter->vf_rate_link_speed) {
7432 reset_rate = true;
7433 adapter->vf_rate_link_speed = 0;
7434 dev_info(&adapter->pdev->dev,
7435 "Link speed has been changed. VF Transmit "
7436 "rate is disabled\n");
7437 }
7438
7439 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7440 if (reset_rate)
7441 adapter->vf_data[i].tx_rate = 0;
7442
7443 igb_set_vf_rate_limit(&adapter->hw, i,
7444 adapter->vf_data[i].tx_rate,
7445 actual_link_speed);
7446 }
7447 }
7448
7449 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7450 {
7451 struct igb_adapter *adapter = netdev_priv(netdev);
7452 struct e1000_hw *hw = &adapter->hw;
7453 int actual_link_speed;
7454
7455 if (hw->mac.type != e1000_82576)
7456 return -EOPNOTSUPP;
7457
7458 actual_link_speed = igb_link_mbps(adapter->link_speed);
7459 if ((vf >= adapter->vfs_allocated_count) ||
7460 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7461 (tx_rate < 0) || (tx_rate > actual_link_speed))
7462 return -EINVAL;
7463
7464 adapter->vf_rate_link_speed = actual_link_speed;
7465 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7466 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7467
7468 return 0;
7469 }
7470
7471 static int igb_ndo_get_vf_config(struct net_device *netdev,
7472 int vf, struct ifla_vf_info *ivi)
7473 {
7474 struct igb_adapter *adapter = netdev_priv(netdev);
7475 if (vf >= adapter->vfs_allocated_count)
7476 return -EINVAL;
7477 ivi->vf = vf;
7478 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7479 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7480 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7481 ivi->qos = adapter->vf_data[vf].pf_qos;
7482 return 0;
7483 }
7484
7485 static void igb_vmm_control(struct igb_adapter *adapter)
7486 {
7487 struct e1000_hw *hw = &adapter->hw;
7488 u32 reg;
7489
7490 switch (hw->mac.type) {
7491 case e1000_82575:
7492 case e1000_i210:
7493 case e1000_i211:
7494 default:
7495 /* replication is not supported for 82575 */
7496 return;
7497 case e1000_82576:
7498 /* notify HW that the MAC is adding vlan tags */
7499 reg = rd32(E1000_DTXCTL);
7500 reg |= E1000_DTXCTL_VLAN_ADDED;
7501 wr32(E1000_DTXCTL, reg);
7502 case e1000_82580:
7503 /* enable replication vlan tag stripping */
7504 reg = rd32(E1000_RPLOLR);
7505 reg |= E1000_RPLOLR_STRVLAN;
7506 wr32(E1000_RPLOLR, reg);
7507 case e1000_i350:
7508 /* none of the above registers are supported by i350 */
7509 break;
7510 }
7511
7512 if (adapter->vfs_allocated_count) {
7513 igb_vmdq_set_loopback_pf(hw, true);
7514 igb_vmdq_set_replication_pf(hw, true);
7515 igb_vmdq_set_anti_spoofing_pf(hw, true,
7516 adapter->vfs_allocated_count);
7517 } else {
7518 igb_vmdq_set_loopback_pf(hw, false);
7519 igb_vmdq_set_replication_pf(hw, false);
7520 }
7521 }
7522
7523 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7524 {
7525 struct e1000_hw *hw = &adapter->hw;
7526 u32 dmac_thr;
7527 u16 hwm;
7528
7529 if (hw->mac.type > e1000_82580) {
7530 if (adapter->flags & IGB_FLAG_DMAC) {
7531 u32 reg;
7532
7533 /* force threshold to 0. */
7534 wr32(E1000_DMCTXTH, 0);
7535
7536 /*
7537 * DMA Coalescing high water mark needs to be greater
7538 * than the Rx threshold. Set hwm to PBA - max frame
7539 * size in 16B units, capping it at PBA - 6KB.
7540 */
7541 hwm = 64 * pba - adapter->max_frame_size / 16;
7542 if (hwm < 64 * (pba - 6))
7543 hwm = 64 * (pba - 6);
7544 reg = rd32(E1000_FCRTC);
7545 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7546 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7547 & E1000_FCRTC_RTH_COAL_MASK);
7548 wr32(E1000_FCRTC, reg);
7549
7550 /*
7551 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7552 * frame size, capping it at PBA - 10KB.
7553 */
7554 dmac_thr = pba - adapter->max_frame_size / 512;
7555 if (dmac_thr < pba - 10)
7556 dmac_thr = pba - 10;
7557 reg = rd32(E1000_DMACR);
7558 reg &= ~E1000_DMACR_DMACTHR_MASK;
7559 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7560 & E1000_DMACR_DMACTHR_MASK);
7561
7562 /* transition to L0x or L1 if available..*/
7563 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7564
7565 /* watchdog timer= +-1000 usec in 32usec intervals */
7566 reg |= (1000 >> 5);
7567
7568 /* Disable BMC-to-OS Watchdog Enable */
7569 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7570 wr32(E1000_DMACR, reg);
7571
7572 /*
7573 * no lower threshold to disable
7574 * coalescing(smart fifb)-UTRESH=0
7575 */
7576 wr32(E1000_DMCRTRH, 0);
7577
7578 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7579
7580 wr32(E1000_DMCTLX, reg);
7581
7582 /*
7583 * free space in tx packet buffer to wake from
7584 * DMA coal
7585 */
7586 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7587 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7588
7589 /*
7590 * make low power state decision controlled
7591 * by DMA coal
7592 */
7593 reg = rd32(E1000_PCIEMISC);
7594 reg &= ~E1000_PCIEMISC_LX_DECISION;
7595 wr32(E1000_PCIEMISC, reg);
7596 } /* endif adapter->dmac is not disabled */
7597 } else if (hw->mac.type == e1000_82580) {
7598 u32 reg = rd32(E1000_PCIEMISC);
7599 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7600 wr32(E1000_DMACR, 0);
7601 }
7602 }
7603
7604 static DEFINE_SPINLOCK(i2c_clients_lock);
7605
7606 /* igb_get_i2c_client - returns matching client
7607 * in adapters's client list.
7608 * @adapter: adapter struct
7609 * @dev_addr: device address of i2c needed.
7610 */
7611 struct i2c_client *
7612 igb_get_i2c_client(struct igb_adapter *adapter, u8 dev_addr)
7613 {
7614 ulong flags;
7615 struct igb_i2c_client_list *client_list;
7616 struct i2c_client *client = NULL;
7617 struct i2c_board_info client_info = {
7618 I2C_BOARD_INFO("igb", 0x00),
7619 };
7620
7621 spin_lock_irqsave(&i2c_clients_lock, flags);
7622 client_list = adapter->i2c_clients;
7623
7624 /* See if we already have an i2c_client */
7625 while (client_list) {
7626 if (client_list->client->addr == (dev_addr >> 1)) {
7627 client = client_list->client;
7628 goto exit;
7629 } else {
7630 client_list = client_list->next;
7631 }
7632 }
7633
7634 /* no client_list found, create a new one as long as
7635 * irqs are not disabled
7636 */
7637 if (unlikely(irqs_disabled()))
7638 goto exit;
7639
7640 client_list = kzalloc(sizeof(*client_list), GFP_KERNEL);
7641 if (client_list == NULL)
7642 goto exit;
7643
7644 /* dev_addr passed to us is left-shifted by 1 bit
7645 * i2c_new_device call expects it to be flush to the right.
7646 */
7647 client_info.addr = dev_addr >> 1;
7648 client_info.platform_data = adapter;
7649 client_list->client = i2c_new_device(&adapter->i2c_adap, &client_info);
7650 if (client_list->client == NULL) {
7651 dev_info(&adapter->pdev->dev,
7652 "Failed to create new i2c device..\n");
7653 goto err_no_client;
7654 }
7655
7656 /* insert new client at head of list */
7657 client_list->next = adapter->i2c_clients;
7658 adapter->i2c_clients = client_list;
7659
7660 client = client_list->client;
7661 goto exit;
7662
7663 err_no_client:
7664 kfree(client_list);
7665 exit:
7666 spin_unlock_irqrestore(&i2c_clients_lock, flags);
7667 return client;
7668 }
7669
7670 /* igb_read_i2c_byte - Reads 8 bit word over I2C
7671 * @hw: pointer to hardware structure
7672 * @byte_offset: byte offset to read
7673 * @dev_addr: device address
7674 * @data: value read
7675 *
7676 * Performs byte read operation over I2C interface at
7677 * a specified device address.
7678 */
7679 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7680 u8 dev_addr, u8 *data)
7681 {
7682 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7683 struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
7684 s32 status;
7685 u16 swfw_mask = 0;
7686
7687 if (!this_client)
7688 return E1000_ERR_I2C;
7689
7690 swfw_mask = E1000_SWFW_PHY0_SM;
7691
7692 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7693 != E1000_SUCCESS)
7694 return E1000_ERR_SWFW_SYNC;
7695
7696 status = i2c_smbus_read_byte_data(this_client, byte_offset);
7697 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7698
7699 if (status < 0)
7700 return E1000_ERR_I2C;
7701 else {
7702 *data = status;
7703 return E1000_SUCCESS;
7704 }
7705 }
7706
7707 /* igb_write_i2c_byte - Writes 8 bit word over I2C
7708 * @hw: pointer to hardware structure
7709 * @byte_offset: byte offset to write
7710 * @dev_addr: device address
7711 * @data: value to write
7712 *
7713 * Performs byte write operation over I2C interface at
7714 * a specified device address.
7715 */
7716 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7717 u8 dev_addr, u8 data)
7718 {
7719 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7720 struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
7721 s32 status;
7722 u16 swfw_mask = E1000_SWFW_PHY0_SM;
7723
7724 if (!this_client)
7725 return E1000_ERR_I2C;
7726
7727 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7728 return E1000_ERR_SWFW_SYNC;
7729 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7730 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7731
7732 if (status)
7733 return E1000_ERR_I2C;
7734 else
7735 return E1000_SUCCESS;
7736
7737 }
7738 /* igb_main.c */
This page took 0.246808 seconds and 5 git commands to generate.