igb: make igb_update_pf_vlvf static
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59
60 #define MAJ 5
61 #define MIN 3
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68 "Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70 "Copyright (c) 2007-2014 Intel Corporation.";
71
72 static const struct e1000_info *igb_info_tbl[] = {
73 [board_82575] = &e1000_82575_info,
74 };
75
76 static const struct pci_device_id igb_pci_tbl[] = {
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112 /* required last entry */
113 {0, }
114 };
115
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141 struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160 netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
170 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172 int vf, u16 vlan, u8 qos);
173 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
174 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175 bool setting);
176 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177 struct ifla_vf_info *ivi);
178 static void igb_check_vf_rate_limit(struct igb_adapter *);
179
180 #ifdef CONFIG_PCI_IOV
181 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
182 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
183 static int igb_disable_sriov(struct pci_dev *dev);
184 static int igb_pci_disable_sriov(struct pci_dev *dev);
185 #endif
186
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 static int igb_runtime_suspend(struct device *dev);
193 static int igb_runtime_resume(struct device *dev);
194 static int igb_runtime_idle(struct device *dev);
195 static const struct dev_pm_ops igb_pm_ops = {
196 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198 igb_runtime_idle)
199 };
200 #endif
201 static void igb_shutdown(struct pci_dev *);
202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203 #ifdef CONFIG_IGB_DCA
204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205 static struct notifier_block dca_notifier = {
206 .notifier_call = igb_notify_dca,
207 .next = NULL,
208 .priority = 0
209 };
210 #endif
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void igb_netpoll(struct net_device *);
214 #endif
215 #ifdef CONFIG_PCI_IOV
216 static unsigned int max_vfs;
217 module_param(max_vfs, uint, 0);
218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
219 #endif /* CONFIG_PCI_IOV */
220
221 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
222 pci_channel_state_t);
223 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
224 static void igb_io_resume(struct pci_dev *);
225
226 static const struct pci_error_handlers igb_err_handler = {
227 .error_detected = igb_io_error_detected,
228 .slot_reset = igb_io_slot_reset,
229 .resume = igb_io_resume,
230 };
231
232 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
233
234 static struct pci_driver igb_driver = {
235 .name = igb_driver_name,
236 .id_table = igb_pci_tbl,
237 .probe = igb_probe,
238 .remove = igb_remove,
239 #ifdef CONFIG_PM
240 .driver.pm = &igb_pm_ops,
241 #endif
242 .shutdown = igb_shutdown,
243 .sriov_configure = igb_pci_sriov_configure,
244 .err_handler = &igb_err_handler
245 };
246
247 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
248 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION);
251
252 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
253 static int debug = -1;
254 module_param(debug, int, 0);
255 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
256
257 struct igb_reg_info {
258 u32 ofs;
259 char *name;
260 };
261
262 static const struct igb_reg_info igb_reg_info_tbl[] = {
263
264 /* General Registers */
265 {E1000_CTRL, "CTRL"},
266 {E1000_STATUS, "STATUS"},
267 {E1000_CTRL_EXT, "CTRL_EXT"},
268
269 /* Interrupt Registers */
270 {E1000_ICR, "ICR"},
271
272 /* RX Registers */
273 {E1000_RCTL, "RCTL"},
274 {E1000_RDLEN(0), "RDLEN"},
275 {E1000_RDH(0), "RDH"},
276 {E1000_RDT(0), "RDT"},
277 {E1000_RXDCTL(0), "RXDCTL"},
278 {E1000_RDBAL(0), "RDBAL"},
279 {E1000_RDBAH(0), "RDBAH"},
280
281 /* TX Registers */
282 {E1000_TCTL, "TCTL"},
283 {E1000_TDBAL(0), "TDBAL"},
284 {E1000_TDBAH(0), "TDBAH"},
285 {E1000_TDLEN(0), "TDLEN"},
286 {E1000_TDH(0), "TDH"},
287 {E1000_TDT(0), "TDT"},
288 {E1000_TXDCTL(0), "TXDCTL"},
289 {E1000_TDFH, "TDFH"},
290 {E1000_TDFT, "TDFT"},
291 {E1000_TDFHS, "TDFHS"},
292 {E1000_TDFPC, "TDFPC"},
293
294 /* List Terminator */
295 {}
296 };
297
298 /* igb_regdump - register printout routine */
299 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
300 {
301 int n = 0;
302 char rname[16];
303 u32 regs[8];
304
305 switch (reginfo->ofs) {
306 case E1000_RDLEN(0):
307 for (n = 0; n < 4; n++)
308 regs[n] = rd32(E1000_RDLEN(n));
309 break;
310 case E1000_RDH(0):
311 for (n = 0; n < 4; n++)
312 regs[n] = rd32(E1000_RDH(n));
313 break;
314 case E1000_RDT(0):
315 for (n = 0; n < 4; n++)
316 regs[n] = rd32(E1000_RDT(n));
317 break;
318 case E1000_RXDCTL(0):
319 for (n = 0; n < 4; n++)
320 regs[n] = rd32(E1000_RXDCTL(n));
321 break;
322 case E1000_RDBAL(0):
323 for (n = 0; n < 4; n++)
324 regs[n] = rd32(E1000_RDBAL(n));
325 break;
326 case E1000_RDBAH(0):
327 for (n = 0; n < 4; n++)
328 regs[n] = rd32(E1000_RDBAH(n));
329 break;
330 case E1000_TDBAL(0):
331 for (n = 0; n < 4; n++)
332 regs[n] = rd32(E1000_RDBAL(n));
333 break;
334 case E1000_TDBAH(0):
335 for (n = 0; n < 4; n++)
336 regs[n] = rd32(E1000_TDBAH(n));
337 break;
338 case E1000_TDLEN(0):
339 for (n = 0; n < 4; n++)
340 regs[n] = rd32(E1000_TDLEN(n));
341 break;
342 case E1000_TDH(0):
343 for (n = 0; n < 4; n++)
344 regs[n] = rd32(E1000_TDH(n));
345 break;
346 case E1000_TDT(0):
347 for (n = 0; n < 4; n++)
348 regs[n] = rd32(E1000_TDT(n));
349 break;
350 case E1000_TXDCTL(0):
351 for (n = 0; n < 4; n++)
352 regs[n] = rd32(E1000_TXDCTL(n));
353 break;
354 default:
355 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
356 return;
357 }
358
359 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
360 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
361 regs[2], regs[3]);
362 }
363
364 /* igb_dump - Print registers, Tx-rings and Rx-rings */
365 static void igb_dump(struct igb_adapter *adapter)
366 {
367 struct net_device *netdev = adapter->netdev;
368 struct e1000_hw *hw = &adapter->hw;
369 struct igb_reg_info *reginfo;
370 struct igb_ring *tx_ring;
371 union e1000_adv_tx_desc *tx_desc;
372 struct my_u0 { u64 a; u64 b; } *u0;
373 struct igb_ring *rx_ring;
374 union e1000_adv_rx_desc *rx_desc;
375 u32 staterr;
376 u16 i, n;
377
378 if (!netif_msg_hw(adapter))
379 return;
380
381 /* Print netdevice Info */
382 if (netdev) {
383 dev_info(&adapter->pdev->dev, "Net device Info\n");
384 pr_info("Device Name state trans_start last_rx\n");
385 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
386 netdev->state, dev_trans_start(netdev), netdev->last_rx);
387 }
388
389 /* Print Registers */
390 dev_info(&adapter->pdev->dev, "Register Dump\n");
391 pr_info(" Register Name Value\n");
392 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
393 reginfo->name; reginfo++) {
394 igb_regdump(hw, reginfo);
395 }
396
397 /* Print TX Ring Summary */
398 if (!netdev || !netif_running(netdev))
399 goto exit;
400
401 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
402 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
403 for (n = 0; n < adapter->num_tx_queues; n++) {
404 struct igb_tx_buffer *buffer_info;
405 tx_ring = adapter->tx_ring[n];
406 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
407 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
408 n, tx_ring->next_to_use, tx_ring->next_to_clean,
409 (u64)dma_unmap_addr(buffer_info, dma),
410 dma_unmap_len(buffer_info, len),
411 buffer_info->next_to_watch,
412 (u64)buffer_info->time_stamp);
413 }
414
415 /* Print TX Rings */
416 if (!netif_msg_tx_done(adapter))
417 goto rx_ring_summary;
418
419 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
420
421 /* Transmit Descriptor Formats
422 *
423 * Advanced Transmit Descriptor
424 * +--------------------------------------------------------------+
425 * 0 | Buffer Address [63:0] |
426 * +--------------------------------------------------------------+
427 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
428 * +--------------------------------------------------------------+
429 * 63 46 45 40 39 38 36 35 32 31 24 15 0
430 */
431
432 for (n = 0; n < adapter->num_tx_queues; n++) {
433 tx_ring = adapter->tx_ring[n];
434 pr_info("------------------------------------\n");
435 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
436 pr_info("------------------------------------\n");
437 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
438
439 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
440 const char *next_desc;
441 struct igb_tx_buffer *buffer_info;
442 tx_desc = IGB_TX_DESC(tx_ring, i);
443 buffer_info = &tx_ring->tx_buffer_info[i];
444 u0 = (struct my_u0 *)tx_desc;
445 if (i == tx_ring->next_to_use &&
446 i == tx_ring->next_to_clean)
447 next_desc = " NTC/U";
448 else if (i == tx_ring->next_to_use)
449 next_desc = " NTU";
450 else if (i == tx_ring->next_to_clean)
451 next_desc = " NTC";
452 else
453 next_desc = "";
454
455 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
456 i, le64_to_cpu(u0->a),
457 le64_to_cpu(u0->b),
458 (u64)dma_unmap_addr(buffer_info, dma),
459 dma_unmap_len(buffer_info, len),
460 buffer_info->next_to_watch,
461 (u64)buffer_info->time_stamp,
462 buffer_info->skb, next_desc);
463
464 if (netif_msg_pktdata(adapter) && buffer_info->skb)
465 print_hex_dump(KERN_INFO, "",
466 DUMP_PREFIX_ADDRESS,
467 16, 1, buffer_info->skb->data,
468 dma_unmap_len(buffer_info, len),
469 true);
470 }
471 }
472
473 /* Print RX Rings Summary */
474 rx_ring_summary:
475 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476 pr_info("Queue [NTU] [NTC]\n");
477 for (n = 0; n < adapter->num_rx_queues; n++) {
478 rx_ring = adapter->rx_ring[n];
479 pr_info(" %5d %5X %5X\n",
480 n, rx_ring->next_to_use, rx_ring->next_to_clean);
481 }
482
483 /* Print RX Rings */
484 if (!netif_msg_rx_status(adapter))
485 goto exit;
486
487 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488
489 /* Advanced Receive Descriptor (Read) Format
490 * 63 1 0
491 * +-----------------------------------------------------+
492 * 0 | Packet Buffer Address [63:1] |A0/NSE|
493 * +----------------------------------------------+------+
494 * 8 | Header Buffer Address [63:1] | DD |
495 * +-----------------------------------------------------+
496 *
497 *
498 * Advanced Receive Descriptor (Write-Back) Format
499 *
500 * 63 48 47 32 31 30 21 20 17 16 4 3 0
501 * +------------------------------------------------------+
502 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
503 * | Checksum Ident | | | | Type | Type |
504 * +------------------------------------------------------+
505 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506 * +------------------------------------------------------+
507 * 63 48 47 32 31 20 19 0
508 */
509
510 for (n = 0; n < adapter->num_rx_queues; n++) {
511 rx_ring = adapter->rx_ring[n];
512 pr_info("------------------------------------\n");
513 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514 pr_info("------------------------------------\n");
515 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
516 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
517
518 for (i = 0; i < rx_ring->count; i++) {
519 const char *next_desc;
520 struct igb_rx_buffer *buffer_info;
521 buffer_info = &rx_ring->rx_buffer_info[i];
522 rx_desc = IGB_RX_DESC(rx_ring, i);
523 u0 = (struct my_u0 *)rx_desc;
524 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
525
526 if (i == rx_ring->next_to_use)
527 next_desc = " NTU";
528 else if (i == rx_ring->next_to_clean)
529 next_desc = " NTC";
530 else
531 next_desc = "";
532
533 if (staterr & E1000_RXD_STAT_DD) {
534 /* Descriptor Done */
535 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
536 "RWB", i,
537 le64_to_cpu(u0->a),
538 le64_to_cpu(u0->b),
539 next_desc);
540 } else {
541 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
542 "R ", i,
543 le64_to_cpu(u0->a),
544 le64_to_cpu(u0->b),
545 (u64)buffer_info->dma,
546 next_desc);
547
548 if (netif_msg_pktdata(adapter) &&
549 buffer_info->dma && buffer_info->page) {
550 print_hex_dump(KERN_INFO, "",
551 DUMP_PREFIX_ADDRESS,
552 16, 1,
553 page_address(buffer_info->page) +
554 buffer_info->page_offset,
555 IGB_RX_BUFSZ, true);
556 }
557 }
558 }
559 }
560
561 exit:
562 return;
563 }
564
565 /**
566 * igb_get_i2c_data - Reads the I2C SDA data bit
567 * @hw: pointer to hardware structure
568 * @i2cctl: Current value of I2CCTL register
569 *
570 * Returns the I2C data bit value
571 **/
572 static int igb_get_i2c_data(void *data)
573 {
574 struct igb_adapter *adapter = (struct igb_adapter *)data;
575 struct e1000_hw *hw = &adapter->hw;
576 s32 i2cctl = rd32(E1000_I2CPARAMS);
577
578 return !!(i2cctl & E1000_I2C_DATA_IN);
579 }
580
581 /**
582 * igb_set_i2c_data - Sets the I2C data bit
583 * @data: pointer to hardware structure
584 * @state: I2C data value (0 or 1) to set
585 *
586 * Sets the I2C data bit
587 **/
588 static void igb_set_i2c_data(void *data, int state)
589 {
590 struct igb_adapter *adapter = (struct igb_adapter *)data;
591 struct e1000_hw *hw = &adapter->hw;
592 s32 i2cctl = rd32(E1000_I2CPARAMS);
593
594 if (state)
595 i2cctl |= E1000_I2C_DATA_OUT;
596 else
597 i2cctl &= ~E1000_I2C_DATA_OUT;
598
599 i2cctl &= ~E1000_I2C_DATA_OE_N;
600 i2cctl |= E1000_I2C_CLK_OE_N;
601 wr32(E1000_I2CPARAMS, i2cctl);
602 wrfl();
603
604 }
605
606 /**
607 * igb_set_i2c_clk - Sets the I2C SCL clock
608 * @data: pointer to hardware structure
609 * @state: state to set clock
610 *
611 * Sets the I2C clock line to state
612 **/
613 static void igb_set_i2c_clk(void *data, int state)
614 {
615 struct igb_adapter *adapter = (struct igb_adapter *)data;
616 struct e1000_hw *hw = &adapter->hw;
617 s32 i2cctl = rd32(E1000_I2CPARAMS);
618
619 if (state) {
620 i2cctl |= E1000_I2C_CLK_OUT;
621 i2cctl &= ~E1000_I2C_CLK_OE_N;
622 } else {
623 i2cctl &= ~E1000_I2C_CLK_OUT;
624 i2cctl &= ~E1000_I2C_CLK_OE_N;
625 }
626 wr32(E1000_I2CPARAMS, i2cctl);
627 wrfl();
628 }
629
630 /**
631 * igb_get_i2c_clk - Gets the I2C SCL clock state
632 * @data: pointer to hardware structure
633 *
634 * Gets the I2C clock state
635 **/
636 static int igb_get_i2c_clk(void *data)
637 {
638 struct igb_adapter *adapter = (struct igb_adapter *)data;
639 struct e1000_hw *hw = &adapter->hw;
640 s32 i2cctl = rd32(E1000_I2CPARAMS);
641
642 return !!(i2cctl & E1000_I2C_CLK_IN);
643 }
644
645 static const struct i2c_algo_bit_data igb_i2c_algo = {
646 .setsda = igb_set_i2c_data,
647 .setscl = igb_set_i2c_clk,
648 .getsda = igb_get_i2c_data,
649 .getscl = igb_get_i2c_clk,
650 .udelay = 5,
651 .timeout = 20,
652 };
653
654 /**
655 * igb_get_hw_dev - return device
656 * @hw: pointer to hardware structure
657 *
658 * used by hardware layer to print debugging information
659 **/
660 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
661 {
662 struct igb_adapter *adapter = hw->back;
663 return adapter->netdev;
664 }
665
666 /**
667 * igb_init_module - Driver Registration Routine
668 *
669 * igb_init_module is the first routine called when the driver is
670 * loaded. All it does is register with the PCI subsystem.
671 **/
672 static int __init igb_init_module(void)
673 {
674 int ret;
675
676 pr_info("%s - version %s\n",
677 igb_driver_string, igb_driver_version);
678 pr_info("%s\n", igb_copyright);
679
680 #ifdef CONFIG_IGB_DCA
681 dca_register_notify(&dca_notifier);
682 #endif
683 ret = pci_register_driver(&igb_driver);
684 return ret;
685 }
686
687 module_init(igb_init_module);
688
689 /**
690 * igb_exit_module - Driver Exit Cleanup Routine
691 *
692 * igb_exit_module is called just before the driver is removed
693 * from memory.
694 **/
695 static void __exit igb_exit_module(void)
696 {
697 #ifdef CONFIG_IGB_DCA
698 dca_unregister_notify(&dca_notifier);
699 #endif
700 pci_unregister_driver(&igb_driver);
701 }
702
703 module_exit(igb_exit_module);
704
705 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
706 /**
707 * igb_cache_ring_register - Descriptor ring to register mapping
708 * @adapter: board private structure to initialize
709 *
710 * Once we know the feature-set enabled for the device, we'll cache
711 * the register offset the descriptor ring is assigned to.
712 **/
713 static void igb_cache_ring_register(struct igb_adapter *adapter)
714 {
715 int i = 0, j = 0;
716 u32 rbase_offset = adapter->vfs_allocated_count;
717
718 switch (adapter->hw.mac.type) {
719 case e1000_82576:
720 /* The queues are allocated for virtualization such that VF 0
721 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
722 * In order to avoid collision we start at the first free queue
723 * and continue consuming queues in the same sequence
724 */
725 if (adapter->vfs_allocated_count) {
726 for (; i < adapter->rss_queues; i++)
727 adapter->rx_ring[i]->reg_idx = rbase_offset +
728 Q_IDX_82576(i);
729 }
730 /* Fall through */
731 case e1000_82575:
732 case e1000_82580:
733 case e1000_i350:
734 case e1000_i354:
735 case e1000_i210:
736 case e1000_i211:
737 /* Fall through */
738 default:
739 for (; i < adapter->num_rx_queues; i++)
740 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
741 for (; j < adapter->num_tx_queues; j++)
742 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
743 break;
744 }
745 }
746
747 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
748 {
749 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
750 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
751 u32 value = 0;
752
753 if (E1000_REMOVED(hw_addr))
754 return ~value;
755
756 value = readl(&hw_addr[reg]);
757
758 /* reads should not return all F's */
759 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
760 struct net_device *netdev = igb->netdev;
761 hw->hw_addr = NULL;
762 netif_device_detach(netdev);
763 netdev_err(netdev, "PCIe link lost, device now detached\n");
764 }
765
766 return value;
767 }
768
769 /**
770 * igb_write_ivar - configure ivar for given MSI-X vector
771 * @hw: pointer to the HW structure
772 * @msix_vector: vector number we are allocating to a given ring
773 * @index: row index of IVAR register to write within IVAR table
774 * @offset: column offset of in IVAR, should be multiple of 8
775 *
776 * This function is intended to handle the writing of the IVAR register
777 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
778 * each containing an cause allocation for an Rx and Tx ring, and a
779 * variable number of rows depending on the number of queues supported.
780 **/
781 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
782 int index, int offset)
783 {
784 u32 ivar = array_rd32(E1000_IVAR0, index);
785
786 /* clear any bits that are currently set */
787 ivar &= ~((u32)0xFF << offset);
788
789 /* write vector and valid bit */
790 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
791
792 array_wr32(E1000_IVAR0, index, ivar);
793 }
794
795 #define IGB_N0_QUEUE -1
796 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
797 {
798 struct igb_adapter *adapter = q_vector->adapter;
799 struct e1000_hw *hw = &adapter->hw;
800 int rx_queue = IGB_N0_QUEUE;
801 int tx_queue = IGB_N0_QUEUE;
802 u32 msixbm = 0;
803
804 if (q_vector->rx.ring)
805 rx_queue = q_vector->rx.ring->reg_idx;
806 if (q_vector->tx.ring)
807 tx_queue = q_vector->tx.ring->reg_idx;
808
809 switch (hw->mac.type) {
810 case e1000_82575:
811 /* The 82575 assigns vectors using a bitmask, which matches the
812 * bitmask for the EICR/EIMS/EIMC registers. To assign one
813 * or more queues to a vector, we write the appropriate bits
814 * into the MSIXBM register for that vector.
815 */
816 if (rx_queue > IGB_N0_QUEUE)
817 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
818 if (tx_queue > IGB_N0_QUEUE)
819 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
820 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
821 msixbm |= E1000_EIMS_OTHER;
822 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
823 q_vector->eims_value = msixbm;
824 break;
825 case e1000_82576:
826 /* 82576 uses a table that essentially consists of 2 columns
827 * with 8 rows. The ordering is column-major so we use the
828 * lower 3 bits as the row index, and the 4th bit as the
829 * column offset.
830 */
831 if (rx_queue > IGB_N0_QUEUE)
832 igb_write_ivar(hw, msix_vector,
833 rx_queue & 0x7,
834 (rx_queue & 0x8) << 1);
835 if (tx_queue > IGB_N0_QUEUE)
836 igb_write_ivar(hw, msix_vector,
837 tx_queue & 0x7,
838 ((tx_queue & 0x8) << 1) + 8);
839 q_vector->eims_value = BIT(msix_vector);
840 break;
841 case e1000_82580:
842 case e1000_i350:
843 case e1000_i354:
844 case e1000_i210:
845 case e1000_i211:
846 /* On 82580 and newer adapters the scheme is similar to 82576
847 * however instead of ordering column-major we have things
848 * ordered row-major. So we traverse the table by using
849 * bit 0 as the column offset, and the remaining bits as the
850 * row index.
851 */
852 if (rx_queue > IGB_N0_QUEUE)
853 igb_write_ivar(hw, msix_vector,
854 rx_queue >> 1,
855 (rx_queue & 0x1) << 4);
856 if (tx_queue > IGB_N0_QUEUE)
857 igb_write_ivar(hw, msix_vector,
858 tx_queue >> 1,
859 ((tx_queue & 0x1) << 4) + 8);
860 q_vector->eims_value = BIT(msix_vector);
861 break;
862 default:
863 BUG();
864 break;
865 }
866
867 /* add q_vector eims value to global eims_enable_mask */
868 adapter->eims_enable_mask |= q_vector->eims_value;
869
870 /* configure q_vector to set itr on first interrupt */
871 q_vector->set_itr = 1;
872 }
873
874 /**
875 * igb_configure_msix - Configure MSI-X hardware
876 * @adapter: board private structure to initialize
877 *
878 * igb_configure_msix sets up the hardware to properly
879 * generate MSI-X interrupts.
880 **/
881 static void igb_configure_msix(struct igb_adapter *adapter)
882 {
883 u32 tmp;
884 int i, vector = 0;
885 struct e1000_hw *hw = &adapter->hw;
886
887 adapter->eims_enable_mask = 0;
888
889 /* set vector for other causes, i.e. link changes */
890 switch (hw->mac.type) {
891 case e1000_82575:
892 tmp = rd32(E1000_CTRL_EXT);
893 /* enable MSI-X PBA support*/
894 tmp |= E1000_CTRL_EXT_PBA_CLR;
895
896 /* Auto-Mask interrupts upon ICR read. */
897 tmp |= E1000_CTRL_EXT_EIAME;
898 tmp |= E1000_CTRL_EXT_IRCA;
899
900 wr32(E1000_CTRL_EXT, tmp);
901
902 /* enable msix_other interrupt */
903 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
904 adapter->eims_other = E1000_EIMS_OTHER;
905
906 break;
907
908 case e1000_82576:
909 case e1000_82580:
910 case e1000_i350:
911 case e1000_i354:
912 case e1000_i210:
913 case e1000_i211:
914 /* Turn on MSI-X capability first, or our settings
915 * won't stick. And it will take days to debug.
916 */
917 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
918 E1000_GPIE_PBA | E1000_GPIE_EIAME |
919 E1000_GPIE_NSICR);
920
921 /* enable msix_other interrupt */
922 adapter->eims_other = BIT(vector);
923 tmp = (vector++ | E1000_IVAR_VALID) << 8;
924
925 wr32(E1000_IVAR_MISC, tmp);
926 break;
927 default:
928 /* do nothing, since nothing else supports MSI-X */
929 break;
930 } /* switch (hw->mac.type) */
931
932 adapter->eims_enable_mask |= adapter->eims_other;
933
934 for (i = 0; i < adapter->num_q_vectors; i++)
935 igb_assign_vector(adapter->q_vector[i], vector++);
936
937 wrfl();
938 }
939
940 /**
941 * igb_request_msix - Initialize MSI-X interrupts
942 * @adapter: board private structure to initialize
943 *
944 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
945 * kernel.
946 **/
947 static int igb_request_msix(struct igb_adapter *adapter)
948 {
949 struct net_device *netdev = adapter->netdev;
950 int i, err = 0, vector = 0, free_vector = 0;
951
952 err = request_irq(adapter->msix_entries[vector].vector,
953 igb_msix_other, 0, netdev->name, adapter);
954 if (err)
955 goto err_out;
956
957 for (i = 0; i < adapter->num_q_vectors; i++) {
958 struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960 vector++;
961
962 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
963
964 if (q_vector->rx.ring && q_vector->tx.ring)
965 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966 q_vector->rx.ring->queue_index);
967 else if (q_vector->tx.ring)
968 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969 q_vector->tx.ring->queue_index);
970 else if (q_vector->rx.ring)
971 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972 q_vector->rx.ring->queue_index);
973 else
974 sprintf(q_vector->name, "%s-unused", netdev->name);
975
976 err = request_irq(adapter->msix_entries[vector].vector,
977 igb_msix_ring, 0, q_vector->name,
978 q_vector);
979 if (err)
980 goto err_free;
981 }
982
983 igb_configure_msix(adapter);
984 return 0;
985
986 err_free:
987 /* free already assigned IRQs */
988 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990 vector--;
991 for (i = 0; i < vector; i++) {
992 free_irq(adapter->msix_entries[free_vector++].vector,
993 adapter->q_vector[i]);
994 }
995 err_out:
996 return err;
997 }
998
999 /**
1000 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1001 * @adapter: board private structure to initialize
1002 * @v_idx: Index of vector to be freed
1003 *
1004 * This function frees the memory allocated to the q_vector.
1005 **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010 adapter->q_vector[v_idx] = NULL;
1011
1012 /* igb_get_stats64() might access the rings on this vector,
1013 * we must wait a grace period before freeing it.
1014 */
1015 if (q_vector)
1016 kfree_rcu(q_vector, rcu);
1017 }
1018
1019 /**
1020 * igb_reset_q_vector - Reset config for interrupt vector
1021 * @adapter: board private structure to initialize
1022 * @v_idx: Index of vector to be reset
1023 *
1024 * If NAPI is enabled it will delete any references to the
1025 * NAPI struct. This is preparation for igb_free_q_vector.
1026 **/
1027 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028 {
1029 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1032 * allocated. So, q_vector is NULL so we should stop here.
1033 */
1034 if (!q_vector)
1035 return;
1036
1037 if (q_vector->tx.ring)
1038 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040 if (q_vector->rx.ring)
1041 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043 netif_napi_del(&q_vector->napi);
1044
1045 }
1046
1047 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048 {
1049 int v_idx = adapter->num_q_vectors;
1050
1051 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052 pci_disable_msix(adapter->pdev);
1053 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054 pci_disable_msi(adapter->pdev);
1055
1056 while (v_idx--)
1057 igb_reset_q_vector(adapter, v_idx);
1058 }
1059
1060 /**
1061 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1062 * @adapter: board private structure to initialize
1063 *
1064 * This function frees the memory allocated to the q_vectors. In addition if
1065 * NAPI is enabled it will delete any references to the NAPI struct prior
1066 * to freeing the q_vector.
1067 **/
1068 static void igb_free_q_vectors(struct igb_adapter *adapter)
1069 {
1070 int v_idx = adapter->num_q_vectors;
1071
1072 adapter->num_tx_queues = 0;
1073 adapter->num_rx_queues = 0;
1074 adapter->num_q_vectors = 0;
1075
1076 while (v_idx--) {
1077 igb_reset_q_vector(adapter, v_idx);
1078 igb_free_q_vector(adapter, v_idx);
1079 }
1080 }
1081
1082 /**
1083 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084 * @adapter: board private structure to initialize
1085 *
1086 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1087 * MSI-X interrupts allocated.
1088 */
1089 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090 {
1091 igb_free_q_vectors(adapter);
1092 igb_reset_interrupt_capability(adapter);
1093 }
1094
1095 /**
1096 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1097 * @adapter: board private structure to initialize
1098 * @msix: boolean value of MSIX capability
1099 *
1100 * Attempt to configure interrupts using the best available
1101 * capabilities of the hardware and kernel.
1102 **/
1103 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104 {
1105 int err;
1106 int numvecs, i;
1107
1108 if (!msix)
1109 goto msi_only;
1110 adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112 /* Number of supported queues. */
1113 adapter->num_rx_queues = adapter->rss_queues;
1114 if (adapter->vfs_allocated_count)
1115 adapter->num_tx_queues = 1;
1116 else
1117 adapter->num_tx_queues = adapter->rss_queues;
1118
1119 /* start with one vector for every Rx queue */
1120 numvecs = adapter->num_rx_queues;
1121
1122 /* if Tx handler is separate add 1 for every Tx queue */
1123 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124 numvecs += adapter->num_tx_queues;
1125
1126 /* store the number of vectors reserved for queues */
1127 adapter->num_q_vectors = numvecs;
1128
1129 /* add 1 vector for link status interrupts */
1130 numvecs++;
1131 for (i = 0; i < numvecs; i++)
1132 adapter->msix_entries[i].entry = i;
1133
1134 err = pci_enable_msix_range(adapter->pdev,
1135 adapter->msix_entries,
1136 numvecs,
1137 numvecs);
1138 if (err > 0)
1139 return;
1140
1141 igb_reset_interrupt_capability(adapter);
1142
1143 /* If we can't do MSI-X, try MSI */
1144 msi_only:
1145 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146 #ifdef CONFIG_PCI_IOV
1147 /* disable SR-IOV for non MSI-X configurations */
1148 if (adapter->vf_data) {
1149 struct e1000_hw *hw = &adapter->hw;
1150 /* disable iov and allow time for transactions to clear */
1151 pci_disable_sriov(adapter->pdev);
1152 msleep(500);
1153
1154 kfree(adapter->vf_data);
1155 adapter->vf_data = NULL;
1156 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157 wrfl();
1158 msleep(100);
1159 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160 }
1161 #endif
1162 adapter->vfs_allocated_count = 0;
1163 adapter->rss_queues = 1;
1164 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165 adapter->num_rx_queues = 1;
1166 adapter->num_tx_queues = 1;
1167 adapter->num_q_vectors = 1;
1168 if (!pci_enable_msi(adapter->pdev))
1169 adapter->flags |= IGB_FLAG_HAS_MSI;
1170 }
1171
1172 static void igb_add_ring(struct igb_ring *ring,
1173 struct igb_ring_container *head)
1174 {
1175 head->ring = ring;
1176 head->count++;
1177 }
1178
1179 /**
1180 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181 * @adapter: board private structure to initialize
1182 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1183 * @v_idx: index of vector in adapter struct
1184 * @txr_count: total number of Tx rings to allocate
1185 * @txr_idx: index of first Tx ring to allocate
1186 * @rxr_count: total number of Rx rings to allocate
1187 * @rxr_idx: index of first Rx ring to allocate
1188 *
1189 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1190 **/
1191 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192 int v_count, int v_idx,
1193 int txr_count, int txr_idx,
1194 int rxr_count, int rxr_idx)
1195 {
1196 struct igb_q_vector *q_vector;
1197 struct igb_ring *ring;
1198 int ring_count, size;
1199
1200 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201 if (txr_count > 1 || rxr_count > 1)
1202 return -ENOMEM;
1203
1204 ring_count = txr_count + rxr_count;
1205 size = sizeof(struct igb_q_vector) +
1206 (sizeof(struct igb_ring) * ring_count);
1207
1208 /* allocate q_vector and rings */
1209 q_vector = adapter->q_vector[v_idx];
1210 if (!q_vector) {
1211 q_vector = kzalloc(size, GFP_KERNEL);
1212 } else if (size > ksize(q_vector)) {
1213 kfree_rcu(q_vector, rcu);
1214 q_vector = kzalloc(size, GFP_KERNEL);
1215 } else {
1216 memset(q_vector, 0, size);
1217 }
1218 if (!q_vector)
1219 return -ENOMEM;
1220
1221 /* initialize NAPI */
1222 netif_napi_add(adapter->netdev, &q_vector->napi,
1223 igb_poll, 64);
1224
1225 /* tie q_vector and adapter together */
1226 adapter->q_vector[v_idx] = q_vector;
1227 q_vector->adapter = adapter;
1228
1229 /* initialize work limits */
1230 q_vector->tx.work_limit = adapter->tx_work_limit;
1231
1232 /* initialize ITR configuration */
1233 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1234 q_vector->itr_val = IGB_START_ITR;
1235
1236 /* initialize pointer to rings */
1237 ring = q_vector->ring;
1238
1239 /* intialize ITR */
1240 if (rxr_count) {
1241 /* rx or rx/tx vector */
1242 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1243 q_vector->itr_val = adapter->rx_itr_setting;
1244 } else {
1245 /* tx only vector */
1246 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1247 q_vector->itr_val = adapter->tx_itr_setting;
1248 }
1249
1250 if (txr_count) {
1251 /* assign generic ring traits */
1252 ring->dev = &adapter->pdev->dev;
1253 ring->netdev = adapter->netdev;
1254
1255 /* configure backlink on ring */
1256 ring->q_vector = q_vector;
1257
1258 /* update q_vector Tx values */
1259 igb_add_ring(ring, &q_vector->tx);
1260
1261 /* For 82575, context index must be unique per ring. */
1262 if (adapter->hw.mac.type == e1000_82575)
1263 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1264
1265 /* apply Tx specific ring traits */
1266 ring->count = adapter->tx_ring_count;
1267 ring->queue_index = txr_idx;
1268
1269 u64_stats_init(&ring->tx_syncp);
1270 u64_stats_init(&ring->tx_syncp2);
1271
1272 /* assign ring to adapter */
1273 adapter->tx_ring[txr_idx] = ring;
1274
1275 /* push pointer to next ring */
1276 ring++;
1277 }
1278
1279 if (rxr_count) {
1280 /* assign generic ring traits */
1281 ring->dev = &adapter->pdev->dev;
1282 ring->netdev = adapter->netdev;
1283
1284 /* configure backlink on ring */
1285 ring->q_vector = q_vector;
1286
1287 /* update q_vector Rx values */
1288 igb_add_ring(ring, &q_vector->rx);
1289
1290 /* set flag indicating ring supports SCTP checksum offload */
1291 if (adapter->hw.mac.type >= e1000_82576)
1292 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294 /* On i350, i354, i210, and i211, loopback VLAN packets
1295 * have the tag byte-swapped.
1296 */
1297 if (adapter->hw.mac.type >= e1000_i350)
1298 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300 /* apply Rx specific ring traits */
1301 ring->count = adapter->rx_ring_count;
1302 ring->queue_index = rxr_idx;
1303
1304 u64_stats_init(&ring->rx_syncp);
1305
1306 /* assign ring to adapter */
1307 adapter->rx_ring[rxr_idx] = ring;
1308 }
1309
1310 return 0;
1311 }
1312
1313
1314 /**
1315 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316 * @adapter: board private structure to initialize
1317 *
1318 * We allocate one q_vector per queue interrupt. If allocation fails we
1319 * return -ENOMEM.
1320 **/
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323 int q_vectors = adapter->num_q_vectors;
1324 int rxr_remaining = adapter->num_rx_queues;
1325 int txr_remaining = adapter->num_tx_queues;
1326 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327 int err;
1328
1329 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 for (; rxr_remaining; v_idx++) {
1331 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 0, 0, 1, rxr_idx);
1333
1334 if (err)
1335 goto err_out;
1336
1337 /* update counts and index */
1338 rxr_remaining--;
1339 rxr_idx++;
1340 }
1341 }
1342
1343 for (; v_idx < q_vectors; v_idx++) {
1344 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 tqpv, txr_idx, rqpv, rxr_idx);
1349
1350 if (err)
1351 goto err_out;
1352
1353 /* update counts and index */
1354 rxr_remaining -= rqpv;
1355 txr_remaining -= tqpv;
1356 rxr_idx++;
1357 txr_idx++;
1358 }
1359
1360 return 0;
1361
1362 err_out:
1363 adapter->num_tx_queues = 0;
1364 adapter->num_rx_queues = 0;
1365 adapter->num_q_vectors = 0;
1366
1367 while (v_idx--)
1368 igb_free_q_vector(adapter, v_idx);
1369
1370 return -ENOMEM;
1371 }
1372
1373 /**
1374 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375 * @adapter: board private structure to initialize
1376 * @msix: boolean value of MSIX capability
1377 *
1378 * This function initializes the interrupts and allocates all of the queues.
1379 **/
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382 struct pci_dev *pdev = adapter->pdev;
1383 int err;
1384
1385 igb_set_interrupt_capability(adapter, msix);
1386
1387 err = igb_alloc_q_vectors(adapter);
1388 if (err) {
1389 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 goto err_alloc_q_vectors;
1391 }
1392
1393 igb_cache_ring_register(adapter);
1394
1395 return 0;
1396
1397 err_alloc_q_vectors:
1398 igb_reset_interrupt_capability(adapter);
1399 return err;
1400 }
1401
1402 /**
1403 * igb_request_irq - initialize interrupts
1404 * @adapter: board private structure to initialize
1405 *
1406 * Attempts to configure interrupts using the best available
1407 * capabilities of the hardware and kernel.
1408 **/
1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411 struct net_device *netdev = adapter->netdev;
1412 struct pci_dev *pdev = adapter->pdev;
1413 int err = 0;
1414
1415 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 err = igb_request_msix(adapter);
1417 if (!err)
1418 goto request_done;
1419 /* fall back to MSI */
1420 igb_free_all_tx_resources(adapter);
1421 igb_free_all_rx_resources(adapter);
1422
1423 igb_clear_interrupt_scheme(adapter);
1424 err = igb_init_interrupt_scheme(adapter, false);
1425 if (err)
1426 goto request_done;
1427
1428 igb_setup_all_tx_resources(adapter);
1429 igb_setup_all_rx_resources(adapter);
1430 igb_configure(adapter);
1431 }
1432
1433 igb_assign_vector(adapter->q_vector[0], 0);
1434
1435 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 netdev->name, adapter);
1438 if (!err)
1439 goto request_done;
1440
1441 /* fall back to legacy interrupts */
1442 igb_reset_interrupt_capability(adapter);
1443 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444 }
1445
1446 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 netdev->name, adapter);
1448
1449 if (err)
1450 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451 err);
1452
1453 request_done:
1454 return err;
1455 }
1456
1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460 int vector = 0, i;
1461
1462 free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464 for (i = 0; i < adapter->num_q_vectors; i++)
1465 free_irq(adapter->msix_entries[vector++].vector,
1466 adapter->q_vector[i]);
1467 } else {
1468 free_irq(adapter->pdev->irq, adapter);
1469 }
1470 }
1471
1472 /**
1473 * igb_irq_disable - Mask off interrupt generation on the NIC
1474 * @adapter: board private structure
1475 **/
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478 struct e1000_hw *hw = &adapter->hw;
1479
1480 /* we need to be careful when disabling interrupts. The VFs are also
1481 * mapped into these registers and so clearing the bits can cause
1482 * issues on the VF drivers so we only need to clear what we set
1483 */
1484 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 u32 regval = rd32(E1000_EIAM);
1486
1487 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 regval = rd32(E1000_EIAC);
1490 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 }
1492
1493 wr32(E1000_IAM, 0);
1494 wr32(E1000_IMC, ~0);
1495 wrfl();
1496 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 int i;
1498
1499 for (i = 0; i < adapter->num_q_vectors; i++)
1500 synchronize_irq(adapter->msix_entries[i].vector);
1501 } else {
1502 synchronize_irq(adapter->pdev->irq);
1503 }
1504 }
1505
1506 /**
1507 * igb_irq_enable - Enable default interrupt generation settings
1508 * @adapter: board private structure
1509 **/
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512 struct e1000_hw *hw = &adapter->hw;
1513
1514 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 u32 regval = rd32(E1000_EIAC);
1517
1518 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 regval = rd32(E1000_EIAM);
1520 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 if (adapter->vfs_allocated_count) {
1523 wr32(E1000_MBVFIMR, 0xFF);
1524 ims |= E1000_IMS_VMMB;
1525 }
1526 wr32(E1000_IMS, ims);
1527 } else {
1528 wr32(E1000_IMS, IMS_ENABLE_MASK |
1529 E1000_IMS_DRSTA);
1530 wr32(E1000_IAM, IMS_ENABLE_MASK |
1531 E1000_IMS_DRSTA);
1532 }
1533 }
1534
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537 struct e1000_hw *hw = &adapter->hw;
1538 u16 pf_id = adapter->vfs_allocated_count;
1539 u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 u16 old_vid = adapter->mng_vlan_id;
1541
1542 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 /* add VID to filter table */
1544 igb_vfta_set(hw, vid, pf_id, true, true);
1545 adapter->mng_vlan_id = vid;
1546 } else {
1547 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548 }
1549
1550 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551 (vid != old_vid) &&
1552 !test_bit(old_vid, adapter->active_vlans)) {
1553 /* remove VID from filter table */
1554 igb_vfta_set(hw, vid, pf_id, false, true);
1555 }
1556 }
1557
1558 /**
1559 * igb_release_hw_control - release control of the h/w to f/w
1560 * @adapter: address of board private structure
1561 *
1562 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563 * For ASF and Pass Through versions of f/w this means that the
1564 * driver is no longer loaded.
1565 **/
1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568 struct e1000_hw *hw = &adapter->hw;
1569 u32 ctrl_ext;
1570
1571 /* Let firmware take over control of h/w */
1572 ctrl_ext = rd32(E1000_CTRL_EXT);
1573 wr32(E1000_CTRL_EXT,
1574 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576
1577 /**
1578 * igb_get_hw_control - get control of the h/w from f/w
1579 * @adapter: address of board private structure
1580 *
1581 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582 * For ASF and Pass Through versions of f/w this means that
1583 * the driver is loaded.
1584 **/
1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587 struct e1000_hw *hw = &adapter->hw;
1588 u32 ctrl_ext;
1589
1590 /* Let firmware know the driver has taken over */
1591 ctrl_ext = rd32(E1000_CTRL_EXT);
1592 wr32(E1000_CTRL_EXT,
1593 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595
1596 /**
1597 * igb_configure - configure the hardware for RX and TX
1598 * @adapter: private board structure
1599 **/
1600 static void igb_configure(struct igb_adapter *adapter)
1601 {
1602 struct net_device *netdev = adapter->netdev;
1603 int i;
1604
1605 igb_get_hw_control(adapter);
1606 igb_set_rx_mode(netdev);
1607
1608 igb_restore_vlan(adapter);
1609
1610 igb_setup_tctl(adapter);
1611 igb_setup_mrqc(adapter);
1612 igb_setup_rctl(adapter);
1613
1614 igb_configure_tx(adapter);
1615 igb_configure_rx(adapter);
1616
1617 igb_rx_fifo_flush_82575(&adapter->hw);
1618
1619 /* call igb_desc_unused which always leaves
1620 * at least 1 descriptor unused to make sure
1621 * next_to_use != next_to_clean
1622 */
1623 for (i = 0; i < adapter->num_rx_queues; i++) {
1624 struct igb_ring *ring = adapter->rx_ring[i];
1625 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1626 }
1627 }
1628
1629 /**
1630 * igb_power_up_link - Power up the phy/serdes link
1631 * @adapter: address of board private structure
1632 **/
1633 void igb_power_up_link(struct igb_adapter *adapter)
1634 {
1635 igb_reset_phy(&adapter->hw);
1636
1637 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1638 igb_power_up_phy_copper(&adapter->hw);
1639 else
1640 igb_power_up_serdes_link_82575(&adapter->hw);
1641
1642 igb_setup_link(&adapter->hw);
1643 }
1644
1645 /**
1646 * igb_power_down_link - Power down the phy/serdes link
1647 * @adapter: address of board private structure
1648 */
1649 static void igb_power_down_link(struct igb_adapter *adapter)
1650 {
1651 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1652 igb_power_down_phy_copper_82575(&adapter->hw);
1653 else
1654 igb_shutdown_serdes_link_82575(&adapter->hw);
1655 }
1656
1657 /**
1658 * Detect and switch function for Media Auto Sense
1659 * @adapter: address of the board private structure
1660 **/
1661 static void igb_check_swap_media(struct igb_adapter *adapter)
1662 {
1663 struct e1000_hw *hw = &adapter->hw;
1664 u32 ctrl_ext, connsw;
1665 bool swap_now = false;
1666
1667 ctrl_ext = rd32(E1000_CTRL_EXT);
1668 connsw = rd32(E1000_CONNSW);
1669
1670 /* need to live swap if current media is copper and we have fiber/serdes
1671 * to go to.
1672 */
1673
1674 if ((hw->phy.media_type == e1000_media_type_copper) &&
1675 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1676 swap_now = true;
1677 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1678 /* copper signal takes time to appear */
1679 if (adapter->copper_tries < 4) {
1680 adapter->copper_tries++;
1681 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1682 wr32(E1000_CONNSW, connsw);
1683 return;
1684 } else {
1685 adapter->copper_tries = 0;
1686 if ((connsw & E1000_CONNSW_PHYSD) &&
1687 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1688 swap_now = true;
1689 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1690 wr32(E1000_CONNSW, connsw);
1691 }
1692 }
1693 }
1694
1695 if (!swap_now)
1696 return;
1697
1698 switch (hw->phy.media_type) {
1699 case e1000_media_type_copper:
1700 netdev_info(adapter->netdev,
1701 "MAS: changing media to fiber/serdes\n");
1702 ctrl_ext |=
1703 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1704 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1705 adapter->copper_tries = 0;
1706 break;
1707 case e1000_media_type_internal_serdes:
1708 case e1000_media_type_fiber:
1709 netdev_info(adapter->netdev,
1710 "MAS: changing media to copper\n");
1711 ctrl_ext &=
1712 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1713 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1714 break;
1715 default:
1716 /* shouldn't get here during regular operation */
1717 netdev_err(adapter->netdev,
1718 "AMS: Invalid media type found, returning\n");
1719 break;
1720 }
1721 wr32(E1000_CTRL_EXT, ctrl_ext);
1722 }
1723
1724 /**
1725 * igb_up - Open the interface and prepare it to handle traffic
1726 * @adapter: board private structure
1727 **/
1728 int igb_up(struct igb_adapter *adapter)
1729 {
1730 struct e1000_hw *hw = &adapter->hw;
1731 int i;
1732
1733 /* hardware has been reset, we need to reload some things */
1734 igb_configure(adapter);
1735
1736 clear_bit(__IGB_DOWN, &adapter->state);
1737
1738 for (i = 0; i < adapter->num_q_vectors; i++)
1739 napi_enable(&(adapter->q_vector[i]->napi));
1740
1741 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1742 igb_configure_msix(adapter);
1743 else
1744 igb_assign_vector(adapter->q_vector[0], 0);
1745
1746 /* Clear any pending interrupts. */
1747 rd32(E1000_ICR);
1748 igb_irq_enable(adapter);
1749
1750 /* notify VFs that reset has been completed */
1751 if (adapter->vfs_allocated_count) {
1752 u32 reg_data = rd32(E1000_CTRL_EXT);
1753
1754 reg_data |= E1000_CTRL_EXT_PFRSTD;
1755 wr32(E1000_CTRL_EXT, reg_data);
1756 }
1757
1758 netif_tx_start_all_queues(adapter->netdev);
1759
1760 /* start the watchdog. */
1761 hw->mac.get_link_status = 1;
1762 schedule_work(&adapter->watchdog_task);
1763
1764 if ((adapter->flags & IGB_FLAG_EEE) &&
1765 (!hw->dev_spec._82575.eee_disable))
1766 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1767
1768 return 0;
1769 }
1770
1771 void igb_down(struct igb_adapter *adapter)
1772 {
1773 struct net_device *netdev = adapter->netdev;
1774 struct e1000_hw *hw = &adapter->hw;
1775 u32 tctl, rctl;
1776 int i;
1777
1778 /* signal that we're down so the interrupt handler does not
1779 * reschedule our watchdog timer
1780 */
1781 set_bit(__IGB_DOWN, &adapter->state);
1782
1783 /* disable receives in the hardware */
1784 rctl = rd32(E1000_RCTL);
1785 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1786 /* flush and sleep below */
1787
1788 netif_carrier_off(netdev);
1789 netif_tx_stop_all_queues(netdev);
1790
1791 /* disable transmits in the hardware */
1792 tctl = rd32(E1000_TCTL);
1793 tctl &= ~E1000_TCTL_EN;
1794 wr32(E1000_TCTL, tctl);
1795 /* flush both disables and wait for them to finish */
1796 wrfl();
1797 usleep_range(10000, 11000);
1798
1799 igb_irq_disable(adapter);
1800
1801 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1802
1803 for (i = 0; i < adapter->num_q_vectors; i++) {
1804 if (adapter->q_vector[i]) {
1805 napi_synchronize(&adapter->q_vector[i]->napi);
1806 napi_disable(&adapter->q_vector[i]->napi);
1807 }
1808 }
1809
1810 del_timer_sync(&adapter->watchdog_timer);
1811 del_timer_sync(&adapter->phy_info_timer);
1812
1813 /* record the stats before reset*/
1814 spin_lock(&adapter->stats64_lock);
1815 igb_update_stats(adapter, &adapter->stats64);
1816 spin_unlock(&adapter->stats64_lock);
1817
1818 adapter->link_speed = 0;
1819 adapter->link_duplex = 0;
1820
1821 if (!pci_channel_offline(adapter->pdev))
1822 igb_reset(adapter);
1823
1824 /* clear VLAN promisc flag so VFTA will be updated if necessary */
1825 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1826
1827 igb_clean_all_tx_rings(adapter);
1828 igb_clean_all_rx_rings(adapter);
1829 #ifdef CONFIG_IGB_DCA
1830
1831 /* since we reset the hardware DCA settings were cleared */
1832 igb_setup_dca(adapter);
1833 #endif
1834 }
1835
1836 void igb_reinit_locked(struct igb_adapter *adapter)
1837 {
1838 WARN_ON(in_interrupt());
1839 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1840 usleep_range(1000, 2000);
1841 igb_down(adapter);
1842 igb_up(adapter);
1843 clear_bit(__IGB_RESETTING, &adapter->state);
1844 }
1845
1846 /** igb_enable_mas - Media Autosense re-enable after swap
1847 *
1848 * @adapter: adapter struct
1849 **/
1850 static void igb_enable_mas(struct igb_adapter *adapter)
1851 {
1852 struct e1000_hw *hw = &adapter->hw;
1853 u32 connsw = rd32(E1000_CONNSW);
1854
1855 /* configure for SerDes media detect */
1856 if ((hw->phy.media_type == e1000_media_type_copper) &&
1857 (!(connsw & E1000_CONNSW_SERDESD))) {
1858 connsw |= E1000_CONNSW_ENRGSRC;
1859 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1860 wr32(E1000_CONNSW, connsw);
1861 wrfl();
1862 }
1863 }
1864
1865 void igb_reset(struct igb_adapter *adapter)
1866 {
1867 struct pci_dev *pdev = adapter->pdev;
1868 struct e1000_hw *hw = &adapter->hw;
1869 struct e1000_mac_info *mac = &hw->mac;
1870 struct e1000_fc_info *fc = &hw->fc;
1871 u32 pba, hwm;
1872
1873 /* Repartition Pba for greater than 9k mtu
1874 * To take effect CTRL.RST is required.
1875 */
1876 switch (mac->type) {
1877 case e1000_i350:
1878 case e1000_i354:
1879 case e1000_82580:
1880 pba = rd32(E1000_RXPBS);
1881 pba = igb_rxpbs_adjust_82580(pba);
1882 break;
1883 case e1000_82576:
1884 pba = rd32(E1000_RXPBS);
1885 pba &= E1000_RXPBS_SIZE_MASK_82576;
1886 break;
1887 case e1000_82575:
1888 case e1000_i210:
1889 case e1000_i211:
1890 default:
1891 pba = E1000_PBA_34K;
1892 break;
1893 }
1894
1895 if (mac->type == e1000_82575) {
1896 u32 min_rx_space, min_tx_space, needed_tx_space;
1897
1898 /* write Rx PBA so that hardware can report correct Tx PBA */
1899 wr32(E1000_PBA, pba);
1900
1901 /* To maintain wire speed transmits, the Tx FIFO should be
1902 * large enough to accommodate two full transmit packets,
1903 * rounded up to the next 1KB and expressed in KB. Likewise,
1904 * the Rx FIFO should be large enough to accommodate at least
1905 * one full receive packet and is similarly rounded up and
1906 * expressed in KB.
1907 */
1908 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1909
1910 /* The Tx FIFO also stores 16 bytes of information about the Tx
1911 * but don't include Ethernet FCS because hardware appends it.
1912 * We only need to round down to the nearest 512 byte block
1913 * count since the value we care about is 2 frames, not 1.
1914 */
1915 min_tx_space = adapter->max_frame_size;
1916 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1917 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1918
1919 /* upper 16 bits has Tx packet buffer allocation size in KB */
1920 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1921
1922 /* If current Tx allocation is less than the min Tx FIFO size,
1923 * and the min Tx FIFO size is less than the current Rx FIFO
1924 * allocation, take space away from current Rx allocation.
1925 */
1926 if (needed_tx_space < pba) {
1927 pba -= needed_tx_space;
1928
1929 /* if short on Rx space, Rx wins and must trump Tx
1930 * adjustment
1931 */
1932 if (pba < min_rx_space)
1933 pba = min_rx_space;
1934 }
1935
1936 /* adjust PBA for jumbo frames */
1937 wr32(E1000_PBA, pba);
1938 }
1939
1940 /* flow control settings
1941 * The high water mark must be low enough to fit one full frame
1942 * after transmitting the pause frame. As such we must have enough
1943 * space to allow for us to complete our current transmit and then
1944 * receive the frame that is in progress from the link partner.
1945 * Set it to:
1946 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1947 */
1948 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1949
1950 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1951 fc->low_water = fc->high_water - 16;
1952 fc->pause_time = 0xFFFF;
1953 fc->send_xon = 1;
1954 fc->current_mode = fc->requested_mode;
1955
1956 /* disable receive for all VFs and wait one second */
1957 if (adapter->vfs_allocated_count) {
1958 int i;
1959
1960 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1961 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1962
1963 /* ping all the active vfs to let them know we are going down */
1964 igb_ping_all_vfs(adapter);
1965
1966 /* disable transmits and receives */
1967 wr32(E1000_VFRE, 0);
1968 wr32(E1000_VFTE, 0);
1969 }
1970
1971 /* Allow time for pending master requests to run */
1972 hw->mac.ops.reset_hw(hw);
1973 wr32(E1000_WUC, 0);
1974
1975 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1976 /* need to resetup here after media swap */
1977 adapter->ei.get_invariants(hw);
1978 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1979 }
1980 if ((mac->type == e1000_82575) &&
1981 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1982 igb_enable_mas(adapter);
1983 }
1984 if (hw->mac.ops.init_hw(hw))
1985 dev_err(&pdev->dev, "Hardware Error\n");
1986
1987 /* Flow control settings reset on hardware reset, so guarantee flow
1988 * control is off when forcing speed.
1989 */
1990 if (!hw->mac.autoneg)
1991 igb_force_mac_fc(hw);
1992
1993 igb_init_dmac(adapter, pba);
1994 #ifdef CONFIG_IGB_HWMON
1995 /* Re-initialize the thermal sensor on i350 devices. */
1996 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1997 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1998 /* If present, re-initialize the external thermal sensor
1999 * interface.
2000 */
2001 if (adapter->ets)
2002 mac->ops.init_thermal_sensor_thresh(hw);
2003 }
2004 }
2005 #endif
2006 /* Re-establish EEE setting */
2007 if (hw->phy.media_type == e1000_media_type_copper) {
2008 switch (mac->type) {
2009 case e1000_i350:
2010 case e1000_i210:
2011 case e1000_i211:
2012 igb_set_eee_i350(hw, true, true);
2013 break;
2014 case e1000_i354:
2015 igb_set_eee_i354(hw, true, true);
2016 break;
2017 default:
2018 break;
2019 }
2020 }
2021 if (!netif_running(adapter->netdev))
2022 igb_power_down_link(adapter);
2023
2024 igb_update_mng_vlan(adapter);
2025
2026 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2027 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2028
2029 /* Re-enable PTP, where applicable. */
2030 igb_ptp_reset(adapter);
2031
2032 igb_get_phy_info(hw);
2033 }
2034
2035 static netdev_features_t igb_fix_features(struct net_device *netdev,
2036 netdev_features_t features)
2037 {
2038 /* Since there is no support for separate Rx/Tx vlan accel
2039 * enable/disable make sure Tx flag is always in same state as Rx.
2040 */
2041 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2042 features |= NETIF_F_HW_VLAN_CTAG_TX;
2043 else
2044 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2045
2046 return features;
2047 }
2048
2049 static int igb_set_features(struct net_device *netdev,
2050 netdev_features_t features)
2051 {
2052 netdev_features_t changed = netdev->features ^ features;
2053 struct igb_adapter *adapter = netdev_priv(netdev);
2054
2055 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2056 igb_vlan_mode(netdev, features);
2057
2058 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2059 return 0;
2060
2061 netdev->features = features;
2062
2063 if (netif_running(netdev))
2064 igb_reinit_locked(adapter);
2065 else
2066 igb_reset(adapter);
2067
2068 return 0;
2069 }
2070
2071 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2072 struct net_device *dev,
2073 const unsigned char *addr, u16 vid,
2074 u16 flags)
2075 {
2076 /* guarantee we can provide a unique filter for the unicast address */
2077 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2078 struct igb_adapter *adapter = netdev_priv(dev);
2079 struct e1000_hw *hw = &adapter->hw;
2080 int vfn = adapter->vfs_allocated_count;
2081 int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2082
2083 if (netdev_uc_count(dev) >= rar_entries)
2084 return -ENOMEM;
2085 }
2086
2087 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2088 }
2089
2090 static const struct net_device_ops igb_netdev_ops = {
2091 .ndo_open = igb_open,
2092 .ndo_stop = igb_close,
2093 .ndo_start_xmit = igb_xmit_frame,
2094 .ndo_get_stats64 = igb_get_stats64,
2095 .ndo_set_rx_mode = igb_set_rx_mode,
2096 .ndo_set_mac_address = igb_set_mac,
2097 .ndo_change_mtu = igb_change_mtu,
2098 .ndo_do_ioctl = igb_ioctl,
2099 .ndo_tx_timeout = igb_tx_timeout,
2100 .ndo_validate_addr = eth_validate_addr,
2101 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2102 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2103 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2104 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2105 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2106 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2107 .ndo_get_vf_config = igb_ndo_get_vf_config,
2108 #ifdef CONFIG_NET_POLL_CONTROLLER
2109 .ndo_poll_controller = igb_netpoll,
2110 #endif
2111 .ndo_fix_features = igb_fix_features,
2112 .ndo_set_features = igb_set_features,
2113 .ndo_fdb_add = igb_ndo_fdb_add,
2114 .ndo_features_check = passthru_features_check,
2115 };
2116
2117 /**
2118 * igb_set_fw_version - Configure version string for ethtool
2119 * @adapter: adapter struct
2120 **/
2121 void igb_set_fw_version(struct igb_adapter *adapter)
2122 {
2123 struct e1000_hw *hw = &adapter->hw;
2124 struct e1000_fw_version fw;
2125
2126 igb_get_fw_version(hw, &fw);
2127
2128 switch (hw->mac.type) {
2129 case e1000_i210:
2130 case e1000_i211:
2131 if (!(igb_get_flash_presence_i210(hw))) {
2132 snprintf(adapter->fw_version,
2133 sizeof(adapter->fw_version),
2134 "%2d.%2d-%d",
2135 fw.invm_major, fw.invm_minor,
2136 fw.invm_img_type);
2137 break;
2138 }
2139 /* fall through */
2140 default:
2141 /* if option is rom valid, display its version too */
2142 if (fw.or_valid) {
2143 snprintf(adapter->fw_version,
2144 sizeof(adapter->fw_version),
2145 "%d.%d, 0x%08x, %d.%d.%d",
2146 fw.eep_major, fw.eep_minor, fw.etrack_id,
2147 fw.or_major, fw.or_build, fw.or_patch);
2148 /* no option rom */
2149 } else if (fw.etrack_id != 0X0000) {
2150 snprintf(adapter->fw_version,
2151 sizeof(adapter->fw_version),
2152 "%d.%d, 0x%08x",
2153 fw.eep_major, fw.eep_minor, fw.etrack_id);
2154 } else {
2155 snprintf(adapter->fw_version,
2156 sizeof(adapter->fw_version),
2157 "%d.%d.%d",
2158 fw.eep_major, fw.eep_minor, fw.eep_build);
2159 }
2160 break;
2161 }
2162 }
2163
2164 /**
2165 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2166 *
2167 * @adapter: adapter struct
2168 **/
2169 static void igb_init_mas(struct igb_adapter *adapter)
2170 {
2171 struct e1000_hw *hw = &adapter->hw;
2172 u16 eeprom_data;
2173
2174 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2175 switch (hw->bus.func) {
2176 case E1000_FUNC_0:
2177 if (eeprom_data & IGB_MAS_ENABLE_0) {
2178 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2179 netdev_info(adapter->netdev,
2180 "MAS: Enabling Media Autosense for port %d\n",
2181 hw->bus.func);
2182 }
2183 break;
2184 case E1000_FUNC_1:
2185 if (eeprom_data & IGB_MAS_ENABLE_1) {
2186 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2187 netdev_info(adapter->netdev,
2188 "MAS: Enabling Media Autosense for port %d\n",
2189 hw->bus.func);
2190 }
2191 break;
2192 case E1000_FUNC_2:
2193 if (eeprom_data & IGB_MAS_ENABLE_2) {
2194 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2195 netdev_info(adapter->netdev,
2196 "MAS: Enabling Media Autosense for port %d\n",
2197 hw->bus.func);
2198 }
2199 break;
2200 case E1000_FUNC_3:
2201 if (eeprom_data & IGB_MAS_ENABLE_3) {
2202 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2203 netdev_info(adapter->netdev,
2204 "MAS: Enabling Media Autosense for port %d\n",
2205 hw->bus.func);
2206 }
2207 break;
2208 default:
2209 /* Shouldn't get here */
2210 netdev_err(adapter->netdev,
2211 "MAS: Invalid port configuration, returning\n");
2212 break;
2213 }
2214 }
2215
2216 /**
2217 * igb_init_i2c - Init I2C interface
2218 * @adapter: pointer to adapter structure
2219 **/
2220 static s32 igb_init_i2c(struct igb_adapter *adapter)
2221 {
2222 s32 status = 0;
2223
2224 /* I2C interface supported on i350 devices */
2225 if (adapter->hw.mac.type != e1000_i350)
2226 return 0;
2227
2228 /* Initialize the i2c bus which is controlled by the registers.
2229 * This bus will use the i2c_algo_bit structue that implements
2230 * the protocol through toggling of the 4 bits in the register.
2231 */
2232 adapter->i2c_adap.owner = THIS_MODULE;
2233 adapter->i2c_algo = igb_i2c_algo;
2234 adapter->i2c_algo.data = adapter;
2235 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2236 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2237 strlcpy(adapter->i2c_adap.name, "igb BB",
2238 sizeof(adapter->i2c_adap.name));
2239 status = i2c_bit_add_bus(&adapter->i2c_adap);
2240 return status;
2241 }
2242
2243 /**
2244 * igb_probe - Device Initialization Routine
2245 * @pdev: PCI device information struct
2246 * @ent: entry in igb_pci_tbl
2247 *
2248 * Returns 0 on success, negative on failure
2249 *
2250 * igb_probe initializes an adapter identified by a pci_dev structure.
2251 * The OS initialization, configuring of the adapter private structure,
2252 * and a hardware reset occur.
2253 **/
2254 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2255 {
2256 struct net_device *netdev;
2257 struct igb_adapter *adapter;
2258 struct e1000_hw *hw;
2259 u16 eeprom_data = 0;
2260 s32 ret_val;
2261 static int global_quad_port_a; /* global quad port a indication */
2262 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2263 int err, pci_using_dac;
2264 u8 part_str[E1000_PBANUM_LENGTH];
2265
2266 /* Catch broken hardware that put the wrong VF device ID in
2267 * the PCIe SR-IOV capability.
2268 */
2269 if (pdev->is_virtfn) {
2270 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2271 pci_name(pdev), pdev->vendor, pdev->device);
2272 return -EINVAL;
2273 }
2274
2275 err = pci_enable_device_mem(pdev);
2276 if (err)
2277 return err;
2278
2279 pci_using_dac = 0;
2280 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2281 if (!err) {
2282 pci_using_dac = 1;
2283 } else {
2284 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2285 if (err) {
2286 dev_err(&pdev->dev,
2287 "No usable DMA configuration, aborting\n");
2288 goto err_dma;
2289 }
2290 }
2291
2292 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2293 IORESOURCE_MEM),
2294 igb_driver_name);
2295 if (err)
2296 goto err_pci_reg;
2297
2298 pci_enable_pcie_error_reporting(pdev);
2299
2300 pci_set_master(pdev);
2301 pci_save_state(pdev);
2302
2303 err = -ENOMEM;
2304 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2305 IGB_MAX_TX_QUEUES);
2306 if (!netdev)
2307 goto err_alloc_etherdev;
2308
2309 SET_NETDEV_DEV(netdev, &pdev->dev);
2310
2311 pci_set_drvdata(pdev, netdev);
2312 adapter = netdev_priv(netdev);
2313 adapter->netdev = netdev;
2314 adapter->pdev = pdev;
2315 hw = &adapter->hw;
2316 hw->back = adapter;
2317 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2318
2319 err = -EIO;
2320 adapter->io_addr = pci_iomap(pdev, 0, 0);
2321 if (!adapter->io_addr)
2322 goto err_ioremap;
2323 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2324 hw->hw_addr = adapter->io_addr;
2325
2326 netdev->netdev_ops = &igb_netdev_ops;
2327 igb_set_ethtool_ops(netdev);
2328 netdev->watchdog_timeo = 5 * HZ;
2329
2330 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2331
2332 netdev->mem_start = pci_resource_start(pdev, 0);
2333 netdev->mem_end = pci_resource_end(pdev, 0);
2334
2335 /* PCI config space info */
2336 hw->vendor_id = pdev->vendor;
2337 hw->device_id = pdev->device;
2338 hw->revision_id = pdev->revision;
2339 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2340 hw->subsystem_device_id = pdev->subsystem_device;
2341
2342 /* Copy the default MAC, PHY and NVM function pointers */
2343 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2344 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2345 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2346 /* Initialize skew-specific constants */
2347 err = ei->get_invariants(hw);
2348 if (err)
2349 goto err_sw_init;
2350
2351 /* setup the private structure */
2352 err = igb_sw_init(adapter);
2353 if (err)
2354 goto err_sw_init;
2355
2356 igb_get_bus_info_pcie(hw);
2357
2358 hw->phy.autoneg_wait_to_complete = false;
2359
2360 /* Copper options */
2361 if (hw->phy.media_type == e1000_media_type_copper) {
2362 hw->phy.mdix = AUTO_ALL_MODES;
2363 hw->phy.disable_polarity_correction = false;
2364 hw->phy.ms_type = e1000_ms_hw_default;
2365 }
2366
2367 if (igb_check_reset_block(hw))
2368 dev_info(&pdev->dev,
2369 "PHY reset is blocked due to SOL/IDER session.\n");
2370
2371 /* features is initialized to 0 in allocation, it might have bits
2372 * set by igb_sw_init so we should use an or instead of an
2373 * assignment.
2374 */
2375 netdev->features |= NETIF_F_SG |
2376 NETIF_F_TSO |
2377 NETIF_F_TSO6 |
2378 NETIF_F_RXHASH |
2379 NETIF_F_RXCSUM |
2380 NETIF_F_HW_CSUM |
2381 NETIF_F_HW_VLAN_CTAG_RX |
2382 NETIF_F_HW_VLAN_CTAG_TX;
2383
2384 if (hw->mac.type >= e1000_82576)
2385 netdev->features |= NETIF_F_SCTP_CRC;
2386
2387 /* copy netdev features into list of user selectable features */
2388 netdev->hw_features |= netdev->features;
2389 netdev->hw_features |= NETIF_F_RXALL;
2390
2391 if (hw->mac.type >= e1000_i350)
2392 netdev->hw_features |= NETIF_F_NTUPLE;
2393
2394 /* set this bit last since it cannot be part of hw_features */
2395 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2396
2397 netdev->vlan_features |= NETIF_F_SG |
2398 NETIF_F_TSO |
2399 NETIF_F_TSO6 |
2400 NETIF_F_HW_CSUM |
2401 NETIF_F_SCTP_CRC;
2402
2403 netdev->mpls_features |= NETIF_F_HW_CSUM;
2404 netdev->hw_enc_features |= NETIF_F_HW_CSUM;
2405
2406 netdev->priv_flags |= IFF_SUPP_NOFCS;
2407
2408 if (pci_using_dac) {
2409 netdev->features |= NETIF_F_HIGHDMA;
2410 netdev->vlan_features |= NETIF_F_HIGHDMA;
2411 }
2412
2413 netdev->priv_flags |= IFF_UNICAST_FLT;
2414
2415 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2416
2417 /* before reading the NVM, reset the controller to put the device in a
2418 * known good starting state
2419 */
2420 hw->mac.ops.reset_hw(hw);
2421
2422 /* make sure the NVM is good , i211/i210 parts can have special NVM
2423 * that doesn't contain a checksum
2424 */
2425 switch (hw->mac.type) {
2426 case e1000_i210:
2427 case e1000_i211:
2428 if (igb_get_flash_presence_i210(hw)) {
2429 if (hw->nvm.ops.validate(hw) < 0) {
2430 dev_err(&pdev->dev,
2431 "The NVM Checksum Is Not Valid\n");
2432 err = -EIO;
2433 goto err_eeprom;
2434 }
2435 }
2436 break;
2437 default:
2438 if (hw->nvm.ops.validate(hw) < 0) {
2439 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2440 err = -EIO;
2441 goto err_eeprom;
2442 }
2443 break;
2444 }
2445
2446 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2447 /* copy the MAC address out of the NVM */
2448 if (hw->mac.ops.read_mac_addr(hw))
2449 dev_err(&pdev->dev, "NVM Read Error\n");
2450 }
2451
2452 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2453
2454 if (!is_valid_ether_addr(netdev->dev_addr)) {
2455 dev_err(&pdev->dev, "Invalid MAC Address\n");
2456 err = -EIO;
2457 goto err_eeprom;
2458 }
2459
2460 /* get firmware version for ethtool -i */
2461 igb_set_fw_version(adapter);
2462
2463 /* configure RXPBSIZE and TXPBSIZE */
2464 if (hw->mac.type == e1000_i210) {
2465 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2466 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2467 }
2468
2469 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2470 (unsigned long) adapter);
2471 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2472 (unsigned long) adapter);
2473
2474 INIT_WORK(&adapter->reset_task, igb_reset_task);
2475 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2476
2477 /* Initialize link properties that are user-changeable */
2478 adapter->fc_autoneg = true;
2479 hw->mac.autoneg = true;
2480 hw->phy.autoneg_advertised = 0x2f;
2481
2482 hw->fc.requested_mode = e1000_fc_default;
2483 hw->fc.current_mode = e1000_fc_default;
2484
2485 igb_validate_mdi_setting(hw);
2486
2487 /* By default, support wake on port A */
2488 if (hw->bus.func == 0)
2489 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2490
2491 /* Check the NVM for wake support on non-port A ports */
2492 if (hw->mac.type >= e1000_82580)
2493 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2494 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2495 &eeprom_data);
2496 else if (hw->bus.func == 1)
2497 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2498
2499 if (eeprom_data & IGB_EEPROM_APME)
2500 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2501
2502 /* now that we have the eeprom settings, apply the special cases where
2503 * the eeprom may be wrong or the board simply won't support wake on
2504 * lan on a particular port
2505 */
2506 switch (pdev->device) {
2507 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2508 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2509 break;
2510 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2511 case E1000_DEV_ID_82576_FIBER:
2512 case E1000_DEV_ID_82576_SERDES:
2513 /* Wake events only supported on port A for dual fiber
2514 * regardless of eeprom setting
2515 */
2516 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2517 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2518 break;
2519 case E1000_DEV_ID_82576_QUAD_COPPER:
2520 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2521 /* if quad port adapter, disable WoL on all but port A */
2522 if (global_quad_port_a != 0)
2523 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2524 else
2525 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2526 /* Reset for multiple quad port adapters */
2527 if (++global_quad_port_a == 4)
2528 global_quad_port_a = 0;
2529 break;
2530 default:
2531 /* If the device can't wake, don't set software support */
2532 if (!device_can_wakeup(&adapter->pdev->dev))
2533 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2534 }
2535
2536 /* initialize the wol settings based on the eeprom settings */
2537 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2538 adapter->wol |= E1000_WUFC_MAG;
2539
2540 /* Some vendors want WoL disabled by default, but still supported */
2541 if ((hw->mac.type == e1000_i350) &&
2542 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2543 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2544 adapter->wol = 0;
2545 }
2546
2547 /* Some vendors want the ability to Use the EEPROM setting as
2548 * enable/disable only, and not for capability
2549 */
2550 if (((hw->mac.type == e1000_i350) ||
2551 (hw->mac.type == e1000_i354)) &&
2552 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2553 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2554 adapter->wol = 0;
2555 }
2556 if (hw->mac.type == e1000_i350) {
2557 if (((pdev->subsystem_device == 0x5001) ||
2558 (pdev->subsystem_device == 0x5002)) &&
2559 (hw->bus.func == 0)) {
2560 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2561 adapter->wol = 0;
2562 }
2563 if (pdev->subsystem_device == 0x1F52)
2564 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2565 }
2566
2567 device_set_wakeup_enable(&adapter->pdev->dev,
2568 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2569
2570 /* reset the hardware with the new settings */
2571 igb_reset(adapter);
2572
2573 /* Init the I2C interface */
2574 err = igb_init_i2c(adapter);
2575 if (err) {
2576 dev_err(&pdev->dev, "failed to init i2c interface\n");
2577 goto err_eeprom;
2578 }
2579
2580 /* let the f/w know that the h/w is now under the control of the
2581 * driver.
2582 */
2583 igb_get_hw_control(adapter);
2584
2585 strcpy(netdev->name, "eth%d");
2586 err = register_netdev(netdev);
2587 if (err)
2588 goto err_register;
2589
2590 /* carrier off reporting is important to ethtool even BEFORE open */
2591 netif_carrier_off(netdev);
2592
2593 #ifdef CONFIG_IGB_DCA
2594 if (dca_add_requester(&pdev->dev) == 0) {
2595 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2596 dev_info(&pdev->dev, "DCA enabled\n");
2597 igb_setup_dca(adapter);
2598 }
2599
2600 #endif
2601 #ifdef CONFIG_IGB_HWMON
2602 /* Initialize the thermal sensor on i350 devices. */
2603 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2604 u16 ets_word;
2605
2606 /* Read the NVM to determine if this i350 device supports an
2607 * external thermal sensor.
2608 */
2609 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2610 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2611 adapter->ets = true;
2612 else
2613 adapter->ets = false;
2614 if (igb_sysfs_init(adapter))
2615 dev_err(&pdev->dev,
2616 "failed to allocate sysfs resources\n");
2617 } else {
2618 adapter->ets = false;
2619 }
2620 #endif
2621 /* Check if Media Autosense is enabled */
2622 adapter->ei = *ei;
2623 if (hw->dev_spec._82575.mas_capable)
2624 igb_init_mas(adapter);
2625
2626 /* do hw tstamp init after resetting */
2627 igb_ptp_init(adapter);
2628
2629 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2630 /* print bus type/speed/width info, not applicable to i354 */
2631 if (hw->mac.type != e1000_i354) {
2632 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2633 netdev->name,
2634 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2635 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2636 "unknown"),
2637 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2638 "Width x4" :
2639 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2640 "Width x2" :
2641 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2642 "Width x1" : "unknown"), netdev->dev_addr);
2643 }
2644
2645 if ((hw->mac.type >= e1000_i210 ||
2646 igb_get_flash_presence_i210(hw))) {
2647 ret_val = igb_read_part_string(hw, part_str,
2648 E1000_PBANUM_LENGTH);
2649 } else {
2650 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2651 }
2652
2653 if (ret_val)
2654 strcpy(part_str, "Unknown");
2655 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2656 dev_info(&pdev->dev,
2657 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2658 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2659 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2660 adapter->num_rx_queues, adapter->num_tx_queues);
2661 if (hw->phy.media_type == e1000_media_type_copper) {
2662 switch (hw->mac.type) {
2663 case e1000_i350:
2664 case e1000_i210:
2665 case e1000_i211:
2666 /* Enable EEE for internal copper PHY devices */
2667 err = igb_set_eee_i350(hw, true, true);
2668 if ((!err) &&
2669 (!hw->dev_spec._82575.eee_disable)) {
2670 adapter->eee_advert =
2671 MDIO_EEE_100TX | MDIO_EEE_1000T;
2672 adapter->flags |= IGB_FLAG_EEE;
2673 }
2674 break;
2675 case e1000_i354:
2676 if ((rd32(E1000_CTRL_EXT) &
2677 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2678 err = igb_set_eee_i354(hw, true, true);
2679 if ((!err) &&
2680 (!hw->dev_spec._82575.eee_disable)) {
2681 adapter->eee_advert =
2682 MDIO_EEE_100TX | MDIO_EEE_1000T;
2683 adapter->flags |= IGB_FLAG_EEE;
2684 }
2685 }
2686 break;
2687 default:
2688 break;
2689 }
2690 }
2691 pm_runtime_put_noidle(&pdev->dev);
2692 return 0;
2693
2694 err_register:
2695 igb_release_hw_control(adapter);
2696 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2697 err_eeprom:
2698 if (!igb_check_reset_block(hw))
2699 igb_reset_phy(hw);
2700
2701 if (hw->flash_address)
2702 iounmap(hw->flash_address);
2703 err_sw_init:
2704 kfree(adapter->shadow_vfta);
2705 igb_clear_interrupt_scheme(adapter);
2706 #ifdef CONFIG_PCI_IOV
2707 igb_disable_sriov(pdev);
2708 #endif
2709 pci_iounmap(pdev, adapter->io_addr);
2710 err_ioremap:
2711 free_netdev(netdev);
2712 err_alloc_etherdev:
2713 pci_release_selected_regions(pdev,
2714 pci_select_bars(pdev, IORESOURCE_MEM));
2715 err_pci_reg:
2716 err_dma:
2717 pci_disable_device(pdev);
2718 return err;
2719 }
2720
2721 #ifdef CONFIG_PCI_IOV
2722 static int igb_disable_sriov(struct pci_dev *pdev)
2723 {
2724 struct net_device *netdev = pci_get_drvdata(pdev);
2725 struct igb_adapter *adapter = netdev_priv(netdev);
2726 struct e1000_hw *hw = &adapter->hw;
2727
2728 /* reclaim resources allocated to VFs */
2729 if (adapter->vf_data) {
2730 /* disable iov and allow time for transactions to clear */
2731 if (pci_vfs_assigned(pdev)) {
2732 dev_warn(&pdev->dev,
2733 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2734 return -EPERM;
2735 } else {
2736 pci_disable_sriov(pdev);
2737 msleep(500);
2738 }
2739
2740 kfree(adapter->vf_data);
2741 adapter->vf_data = NULL;
2742 adapter->vfs_allocated_count = 0;
2743 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2744 wrfl();
2745 msleep(100);
2746 dev_info(&pdev->dev, "IOV Disabled\n");
2747
2748 /* Re-enable DMA Coalescing flag since IOV is turned off */
2749 adapter->flags |= IGB_FLAG_DMAC;
2750 }
2751
2752 return 0;
2753 }
2754
2755 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2756 {
2757 struct net_device *netdev = pci_get_drvdata(pdev);
2758 struct igb_adapter *adapter = netdev_priv(netdev);
2759 int old_vfs = pci_num_vf(pdev);
2760 int err = 0;
2761 int i;
2762
2763 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2764 err = -EPERM;
2765 goto out;
2766 }
2767 if (!num_vfs)
2768 goto out;
2769
2770 if (old_vfs) {
2771 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2772 old_vfs, max_vfs);
2773 adapter->vfs_allocated_count = old_vfs;
2774 } else
2775 adapter->vfs_allocated_count = num_vfs;
2776
2777 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2778 sizeof(struct vf_data_storage), GFP_KERNEL);
2779
2780 /* if allocation failed then we do not support SR-IOV */
2781 if (!adapter->vf_data) {
2782 adapter->vfs_allocated_count = 0;
2783 dev_err(&pdev->dev,
2784 "Unable to allocate memory for VF Data Storage\n");
2785 err = -ENOMEM;
2786 goto out;
2787 }
2788
2789 /* only call pci_enable_sriov() if no VFs are allocated already */
2790 if (!old_vfs) {
2791 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2792 if (err)
2793 goto err_out;
2794 }
2795 dev_info(&pdev->dev, "%d VFs allocated\n",
2796 adapter->vfs_allocated_count);
2797 for (i = 0; i < adapter->vfs_allocated_count; i++)
2798 igb_vf_configure(adapter, i);
2799
2800 /* DMA Coalescing is not supported in IOV mode. */
2801 adapter->flags &= ~IGB_FLAG_DMAC;
2802 goto out;
2803
2804 err_out:
2805 kfree(adapter->vf_data);
2806 adapter->vf_data = NULL;
2807 adapter->vfs_allocated_count = 0;
2808 out:
2809 return err;
2810 }
2811
2812 #endif
2813 /**
2814 * igb_remove_i2c - Cleanup I2C interface
2815 * @adapter: pointer to adapter structure
2816 **/
2817 static void igb_remove_i2c(struct igb_adapter *adapter)
2818 {
2819 /* free the adapter bus structure */
2820 i2c_del_adapter(&adapter->i2c_adap);
2821 }
2822
2823 /**
2824 * igb_remove - Device Removal Routine
2825 * @pdev: PCI device information struct
2826 *
2827 * igb_remove is called by the PCI subsystem to alert the driver
2828 * that it should release a PCI device. The could be caused by a
2829 * Hot-Plug event, or because the driver is going to be removed from
2830 * memory.
2831 **/
2832 static void igb_remove(struct pci_dev *pdev)
2833 {
2834 struct net_device *netdev = pci_get_drvdata(pdev);
2835 struct igb_adapter *adapter = netdev_priv(netdev);
2836 struct e1000_hw *hw = &adapter->hw;
2837
2838 pm_runtime_get_noresume(&pdev->dev);
2839 #ifdef CONFIG_IGB_HWMON
2840 igb_sysfs_exit(adapter);
2841 #endif
2842 igb_remove_i2c(adapter);
2843 igb_ptp_stop(adapter);
2844 /* The watchdog timer may be rescheduled, so explicitly
2845 * disable watchdog from being rescheduled.
2846 */
2847 set_bit(__IGB_DOWN, &adapter->state);
2848 del_timer_sync(&adapter->watchdog_timer);
2849 del_timer_sync(&adapter->phy_info_timer);
2850
2851 cancel_work_sync(&adapter->reset_task);
2852 cancel_work_sync(&adapter->watchdog_task);
2853
2854 #ifdef CONFIG_IGB_DCA
2855 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2856 dev_info(&pdev->dev, "DCA disabled\n");
2857 dca_remove_requester(&pdev->dev);
2858 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2859 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2860 }
2861 #endif
2862
2863 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2864 * would have already happened in close and is redundant.
2865 */
2866 igb_release_hw_control(adapter);
2867
2868 #ifdef CONFIG_PCI_IOV
2869 igb_disable_sriov(pdev);
2870 #endif
2871
2872 unregister_netdev(netdev);
2873
2874 igb_clear_interrupt_scheme(adapter);
2875
2876 pci_iounmap(pdev, adapter->io_addr);
2877 if (hw->flash_address)
2878 iounmap(hw->flash_address);
2879 pci_release_selected_regions(pdev,
2880 pci_select_bars(pdev, IORESOURCE_MEM));
2881
2882 kfree(adapter->shadow_vfta);
2883 free_netdev(netdev);
2884
2885 pci_disable_pcie_error_reporting(pdev);
2886
2887 pci_disable_device(pdev);
2888 }
2889
2890 /**
2891 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2892 * @adapter: board private structure to initialize
2893 *
2894 * This function initializes the vf specific data storage and then attempts to
2895 * allocate the VFs. The reason for ordering it this way is because it is much
2896 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2897 * the memory for the VFs.
2898 **/
2899 static void igb_probe_vfs(struct igb_adapter *adapter)
2900 {
2901 #ifdef CONFIG_PCI_IOV
2902 struct pci_dev *pdev = adapter->pdev;
2903 struct e1000_hw *hw = &adapter->hw;
2904
2905 /* Virtualization features not supported on i210 family. */
2906 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2907 return;
2908
2909 /* Of the below we really only want the effect of getting
2910 * IGB_FLAG_HAS_MSIX set (if available), without which
2911 * igb_enable_sriov() has no effect.
2912 */
2913 igb_set_interrupt_capability(adapter, true);
2914 igb_reset_interrupt_capability(adapter);
2915
2916 pci_sriov_set_totalvfs(pdev, 7);
2917 igb_enable_sriov(pdev, max_vfs);
2918
2919 #endif /* CONFIG_PCI_IOV */
2920 }
2921
2922 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2923 {
2924 struct e1000_hw *hw = &adapter->hw;
2925 u32 max_rss_queues;
2926
2927 /* Determine the maximum number of RSS queues supported. */
2928 switch (hw->mac.type) {
2929 case e1000_i211:
2930 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2931 break;
2932 case e1000_82575:
2933 case e1000_i210:
2934 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2935 break;
2936 case e1000_i350:
2937 /* I350 cannot do RSS and SR-IOV at the same time */
2938 if (!!adapter->vfs_allocated_count) {
2939 max_rss_queues = 1;
2940 break;
2941 }
2942 /* fall through */
2943 case e1000_82576:
2944 if (!!adapter->vfs_allocated_count) {
2945 max_rss_queues = 2;
2946 break;
2947 }
2948 /* fall through */
2949 case e1000_82580:
2950 case e1000_i354:
2951 default:
2952 max_rss_queues = IGB_MAX_RX_QUEUES;
2953 break;
2954 }
2955
2956 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2957
2958 igb_set_flag_queue_pairs(adapter, max_rss_queues);
2959 }
2960
2961 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
2962 const u32 max_rss_queues)
2963 {
2964 struct e1000_hw *hw = &adapter->hw;
2965
2966 /* Determine if we need to pair queues. */
2967 switch (hw->mac.type) {
2968 case e1000_82575:
2969 case e1000_i211:
2970 /* Device supports enough interrupts without queue pairing. */
2971 break;
2972 case e1000_82576:
2973 case e1000_82580:
2974 case e1000_i350:
2975 case e1000_i354:
2976 case e1000_i210:
2977 default:
2978 /* If rss_queues > half of max_rss_queues, pair the queues in
2979 * order to conserve interrupts due to limited supply.
2980 */
2981 if (adapter->rss_queues > (max_rss_queues / 2))
2982 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2983 else
2984 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
2985 break;
2986 }
2987 }
2988
2989 /**
2990 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2991 * @adapter: board private structure to initialize
2992 *
2993 * igb_sw_init initializes the Adapter private data structure.
2994 * Fields are initialized based on PCI device information and
2995 * OS network device settings (MTU size).
2996 **/
2997 static int igb_sw_init(struct igb_adapter *adapter)
2998 {
2999 struct e1000_hw *hw = &adapter->hw;
3000 struct net_device *netdev = adapter->netdev;
3001 struct pci_dev *pdev = adapter->pdev;
3002
3003 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3004
3005 /* set default ring sizes */
3006 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3007 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3008
3009 /* set default ITR values */
3010 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3011 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3012
3013 /* set default work limits */
3014 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3015
3016 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3017 VLAN_HLEN;
3018 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3019
3020 spin_lock_init(&adapter->stats64_lock);
3021 #ifdef CONFIG_PCI_IOV
3022 switch (hw->mac.type) {
3023 case e1000_82576:
3024 case e1000_i350:
3025 if (max_vfs > 7) {
3026 dev_warn(&pdev->dev,
3027 "Maximum of 7 VFs per PF, using max\n");
3028 max_vfs = adapter->vfs_allocated_count = 7;
3029 } else
3030 adapter->vfs_allocated_count = max_vfs;
3031 if (adapter->vfs_allocated_count)
3032 dev_warn(&pdev->dev,
3033 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3034 break;
3035 default:
3036 break;
3037 }
3038 #endif /* CONFIG_PCI_IOV */
3039
3040 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3041 adapter->flags |= IGB_FLAG_HAS_MSIX;
3042
3043 igb_probe_vfs(adapter);
3044
3045 igb_init_queue_configuration(adapter);
3046
3047 /* Setup and initialize a copy of the hw vlan table array */
3048 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3049 GFP_ATOMIC);
3050
3051 /* This call may decrease the number of queues */
3052 if (igb_init_interrupt_scheme(adapter, true)) {
3053 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3054 return -ENOMEM;
3055 }
3056
3057 /* Explicitly disable IRQ since the NIC can be in any state. */
3058 igb_irq_disable(adapter);
3059
3060 if (hw->mac.type >= e1000_i350)
3061 adapter->flags &= ~IGB_FLAG_DMAC;
3062
3063 set_bit(__IGB_DOWN, &adapter->state);
3064 return 0;
3065 }
3066
3067 /**
3068 * igb_open - Called when a network interface is made active
3069 * @netdev: network interface device structure
3070 *
3071 * Returns 0 on success, negative value on failure
3072 *
3073 * The open entry point is called when a network interface is made
3074 * active by the system (IFF_UP). At this point all resources needed
3075 * for transmit and receive operations are allocated, the interrupt
3076 * handler is registered with the OS, the watchdog timer is started,
3077 * and the stack is notified that the interface is ready.
3078 **/
3079 static int __igb_open(struct net_device *netdev, bool resuming)
3080 {
3081 struct igb_adapter *adapter = netdev_priv(netdev);
3082 struct e1000_hw *hw = &adapter->hw;
3083 struct pci_dev *pdev = adapter->pdev;
3084 int err;
3085 int i;
3086
3087 /* disallow open during test */
3088 if (test_bit(__IGB_TESTING, &adapter->state)) {
3089 WARN_ON(resuming);
3090 return -EBUSY;
3091 }
3092
3093 if (!resuming)
3094 pm_runtime_get_sync(&pdev->dev);
3095
3096 netif_carrier_off(netdev);
3097
3098 /* allocate transmit descriptors */
3099 err = igb_setup_all_tx_resources(adapter);
3100 if (err)
3101 goto err_setup_tx;
3102
3103 /* allocate receive descriptors */
3104 err = igb_setup_all_rx_resources(adapter);
3105 if (err)
3106 goto err_setup_rx;
3107
3108 igb_power_up_link(adapter);
3109
3110 /* before we allocate an interrupt, we must be ready to handle it.
3111 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3112 * as soon as we call pci_request_irq, so we have to setup our
3113 * clean_rx handler before we do so.
3114 */
3115 igb_configure(adapter);
3116
3117 err = igb_request_irq(adapter);
3118 if (err)
3119 goto err_req_irq;
3120
3121 /* Notify the stack of the actual queue counts. */
3122 err = netif_set_real_num_tx_queues(adapter->netdev,
3123 adapter->num_tx_queues);
3124 if (err)
3125 goto err_set_queues;
3126
3127 err = netif_set_real_num_rx_queues(adapter->netdev,
3128 adapter->num_rx_queues);
3129 if (err)
3130 goto err_set_queues;
3131
3132 /* From here on the code is the same as igb_up() */
3133 clear_bit(__IGB_DOWN, &adapter->state);
3134
3135 for (i = 0; i < adapter->num_q_vectors; i++)
3136 napi_enable(&(adapter->q_vector[i]->napi));
3137
3138 /* Clear any pending interrupts. */
3139 rd32(E1000_ICR);
3140
3141 igb_irq_enable(adapter);
3142
3143 /* notify VFs that reset has been completed */
3144 if (adapter->vfs_allocated_count) {
3145 u32 reg_data = rd32(E1000_CTRL_EXT);
3146
3147 reg_data |= E1000_CTRL_EXT_PFRSTD;
3148 wr32(E1000_CTRL_EXT, reg_data);
3149 }
3150
3151 netif_tx_start_all_queues(netdev);
3152
3153 if (!resuming)
3154 pm_runtime_put(&pdev->dev);
3155
3156 /* start the watchdog. */
3157 hw->mac.get_link_status = 1;
3158 schedule_work(&adapter->watchdog_task);
3159
3160 return 0;
3161
3162 err_set_queues:
3163 igb_free_irq(adapter);
3164 err_req_irq:
3165 igb_release_hw_control(adapter);
3166 igb_power_down_link(adapter);
3167 igb_free_all_rx_resources(adapter);
3168 err_setup_rx:
3169 igb_free_all_tx_resources(adapter);
3170 err_setup_tx:
3171 igb_reset(adapter);
3172 if (!resuming)
3173 pm_runtime_put(&pdev->dev);
3174
3175 return err;
3176 }
3177
3178 int igb_open(struct net_device *netdev)
3179 {
3180 return __igb_open(netdev, false);
3181 }
3182
3183 /**
3184 * igb_close - Disables a network interface
3185 * @netdev: network interface device structure
3186 *
3187 * Returns 0, this is not allowed to fail
3188 *
3189 * The close entry point is called when an interface is de-activated
3190 * by the OS. The hardware is still under the driver's control, but
3191 * needs to be disabled. A global MAC reset is issued to stop the
3192 * hardware, and all transmit and receive resources are freed.
3193 **/
3194 static int __igb_close(struct net_device *netdev, bool suspending)
3195 {
3196 struct igb_adapter *adapter = netdev_priv(netdev);
3197 struct pci_dev *pdev = adapter->pdev;
3198
3199 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3200
3201 if (!suspending)
3202 pm_runtime_get_sync(&pdev->dev);
3203
3204 igb_down(adapter);
3205 igb_free_irq(adapter);
3206
3207 igb_free_all_tx_resources(adapter);
3208 igb_free_all_rx_resources(adapter);
3209
3210 if (!suspending)
3211 pm_runtime_put_sync(&pdev->dev);
3212 return 0;
3213 }
3214
3215 int igb_close(struct net_device *netdev)
3216 {
3217 return __igb_close(netdev, false);
3218 }
3219
3220 /**
3221 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3222 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3223 *
3224 * Return 0 on success, negative on failure
3225 **/
3226 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3227 {
3228 struct device *dev = tx_ring->dev;
3229 int size;
3230
3231 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3232
3233 tx_ring->tx_buffer_info = vzalloc(size);
3234 if (!tx_ring->tx_buffer_info)
3235 goto err;
3236
3237 /* round up to nearest 4K */
3238 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3239 tx_ring->size = ALIGN(tx_ring->size, 4096);
3240
3241 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3242 &tx_ring->dma, GFP_KERNEL);
3243 if (!tx_ring->desc)
3244 goto err;
3245
3246 tx_ring->next_to_use = 0;
3247 tx_ring->next_to_clean = 0;
3248
3249 return 0;
3250
3251 err:
3252 vfree(tx_ring->tx_buffer_info);
3253 tx_ring->tx_buffer_info = NULL;
3254 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3255 return -ENOMEM;
3256 }
3257
3258 /**
3259 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3260 * (Descriptors) for all queues
3261 * @adapter: board private structure
3262 *
3263 * Return 0 on success, negative on failure
3264 **/
3265 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3266 {
3267 struct pci_dev *pdev = adapter->pdev;
3268 int i, err = 0;
3269
3270 for (i = 0; i < adapter->num_tx_queues; i++) {
3271 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3272 if (err) {
3273 dev_err(&pdev->dev,
3274 "Allocation for Tx Queue %u failed\n", i);
3275 for (i--; i >= 0; i--)
3276 igb_free_tx_resources(adapter->tx_ring[i]);
3277 break;
3278 }
3279 }
3280
3281 return err;
3282 }
3283
3284 /**
3285 * igb_setup_tctl - configure the transmit control registers
3286 * @adapter: Board private structure
3287 **/
3288 void igb_setup_tctl(struct igb_adapter *adapter)
3289 {
3290 struct e1000_hw *hw = &adapter->hw;
3291 u32 tctl;
3292
3293 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3294 wr32(E1000_TXDCTL(0), 0);
3295
3296 /* Program the Transmit Control Register */
3297 tctl = rd32(E1000_TCTL);
3298 tctl &= ~E1000_TCTL_CT;
3299 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3300 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3301
3302 igb_config_collision_dist(hw);
3303
3304 /* Enable transmits */
3305 tctl |= E1000_TCTL_EN;
3306
3307 wr32(E1000_TCTL, tctl);
3308 }
3309
3310 /**
3311 * igb_configure_tx_ring - Configure transmit ring after Reset
3312 * @adapter: board private structure
3313 * @ring: tx ring to configure
3314 *
3315 * Configure a transmit ring after a reset.
3316 **/
3317 void igb_configure_tx_ring(struct igb_adapter *adapter,
3318 struct igb_ring *ring)
3319 {
3320 struct e1000_hw *hw = &adapter->hw;
3321 u32 txdctl = 0;
3322 u64 tdba = ring->dma;
3323 int reg_idx = ring->reg_idx;
3324
3325 /* disable the queue */
3326 wr32(E1000_TXDCTL(reg_idx), 0);
3327 wrfl();
3328 mdelay(10);
3329
3330 wr32(E1000_TDLEN(reg_idx),
3331 ring->count * sizeof(union e1000_adv_tx_desc));
3332 wr32(E1000_TDBAL(reg_idx),
3333 tdba & 0x00000000ffffffffULL);
3334 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3335
3336 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3337 wr32(E1000_TDH(reg_idx), 0);
3338 writel(0, ring->tail);
3339
3340 txdctl |= IGB_TX_PTHRESH;
3341 txdctl |= IGB_TX_HTHRESH << 8;
3342 txdctl |= IGB_TX_WTHRESH << 16;
3343
3344 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3345 wr32(E1000_TXDCTL(reg_idx), txdctl);
3346 }
3347
3348 /**
3349 * igb_configure_tx - Configure transmit Unit after Reset
3350 * @adapter: board private structure
3351 *
3352 * Configure the Tx unit of the MAC after a reset.
3353 **/
3354 static void igb_configure_tx(struct igb_adapter *adapter)
3355 {
3356 int i;
3357
3358 for (i = 0; i < adapter->num_tx_queues; i++)
3359 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3360 }
3361
3362 /**
3363 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3364 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3365 *
3366 * Returns 0 on success, negative on failure
3367 **/
3368 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3369 {
3370 struct device *dev = rx_ring->dev;
3371 int size;
3372
3373 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3374
3375 rx_ring->rx_buffer_info = vzalloc(size);
3376 if (!rx_ring->rx_buffer_info)
3377 goto err;
3378
3379 /* Round up to nearest 4K */
3380 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3381 rx_ring->size = ALIGN(rx_ring->size, 4096);
3382
3383 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3384 &rx_ring->dma, GFP_KERNEL);
3385 if (!rx_ring->desc)
3386 goto err;
3387
3388 rx_ring->next_to_alloc = 0;
3389 rx_ring->next_to_clean = 0;
3390 rx_ring->next_to_use = 0;
3391
3392 return 0;
3393
3394 err:
3395 vfree(rx_ring->rx_buffer_info);
3396 rx_ring->rx_buffer_info = NULL;
3397 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3398 return -ENOMEM;
3399 }
3400
3401 /**
3402 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3403 * (Descriptors) for all queues
3404 * @adapter: board private structure
3405 *
3406 * Return 0 on success, negative on failure
3407 **/
3408 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3409 {
3410 struct pci_dev *pdev = adapter->pdev;
3411 int i, err = 0;
3412
3413 for (i = 0; i < adapter->num_rx_queues; i++) {
3414 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3415 if (err) {
3416 dev_err(&pdev->dev,
3417 "Allocation for Rx Queue %u failed\n", i);
3418 for (i--; i >= 0; i--)
3419 igb_free_rx_resources(adapter->rx_ring[i]);
3420 break;
3421 }
3422 }
3423
3424 return err;
3425 }
3426
3427 /**
3428 * igb_setup_mrqc - configure the multiple receive queue control registers
3429 * @adapter: Board private structure
3430 **/
3431 static void igb_setup_mrqc(struct igb_adapter *adapter)
3432 {
3433 struct e1000_hw *hw = &adapter->hw;
3434 u32 mrqc, rxcsum;
3435 u32 j, num_rx_queues;
3436 u32 rss_key[10];
3437
3438 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3439 for (j = 0; j < 10; j++)
3440 wr32(E1000_RSSRK(j), rss_key[j]);
3441
3442 num_rx_queues = adapter->rss_queues;
3443
3444 switch (hw->mac.type) {
3445 case e1000_82576:
3446 /* 82576 supports 2 RSS queues for SR-IOV */
3447 if (adapter->vfs_allocated_count)
3448 num_rx_queues = 2;
3449 break;
3450 default:
3451 break;
3452 }
3453
3454 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3455 for (j = 0; j < IGB_RETA_SIZE; j++)
3456 adapter->rss_indir_tbl[j] =
3457 (j * num_rx_queues) / IGB_RETA_SIZE;
3458 adapter->rss_indir_tbl_init = num_rx_queues;
3459 }
3460 igb_write_rss_indir_tbl(adapter);
3461
3462 /* Disable raw packet checksumming so that RSS hash is placed in
3463 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3464 * offloads as they are enabled by default
3465 */
3466 rxcsum = rd32(E1000_RXCSUM);
3467 rxcsum |= E1000_RXCSUM_PCSD;
3468
3469 if (adapter->hw.mac.type >= e1000_82576)
3470 /* Enable Receive Checksum Offload for SCTP */
3471 rxcsum |= E1000_RXCSUM_CRCOFL;
3472
3473 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3474 wr32(E1000_RXCSUM, rxcsum);
3475
3476 /* Generate RSS hash based on packet types, TCP/UDP
3477 * port numbers and/or IPv4/v6 src and dst addresses
3478 */
3479 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3480 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3481 E1000_MRQC_RSS_FIELD_IPV6 |
3482 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3483 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3484
3485 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3486 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3487 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3488 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3489
3490 /* If VMDq is enabled then we set the appropriate mode for that, else
3491 * we default to RSS so that an RSS hash is calculated per packet even
3492 * if we are only using one queue
3493 */
3494 if (adapter->vfs_allocated_count) {
3495 if (hw->mac.type > e1000_82575) {
3496 /* Set the default pool for the PF's first queue */
3497 u32 vtctl = rd32(E1000_VT_CTL);
3498
3499 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3500 E1000_VT_CTL_DISABLE_DEF_POOL);
3501 vtctl |= adapter->vfs_allocated_count <<
3502 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3503 wr32(E1000_VT_CTL, vtctl);
3504 }
3505 if (adapter->rss_queues > 1)
3506 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3507 else
3508 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3509 } else {
3510 if (hw->mac.type != e1000_i211)
3511 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3512 }
3513 igb_vmm_control(adapter);
3514
3515 wr32(E1000_MRQC, mrqc);
3516 }
3517
3518 /**
3519 * igb_setup_rctl - configure the receive control registers
3520 * @adapter: Board private structure
3521 **/
3522 void igb_setup_rctl(struct igb_adapter *adapter)
3523 {
3524 struct e1000_hw *hw = &adapter->hw;
3525 u32 rctl;
3526
3527 rctl = rd32(E1000_RCTL);
3528
3529 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3530 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3531
3532 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3533 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3534
3535 /* enable stripping of CRC. It's unlikely this will break BMC
3536 * redirection as it did with e1000. Newer features require
3537 * that the HW strips the CRC.
3538 */
3539 rctl |= E1000_RCTL_SECRC;
3540
3541 /* disable store bad packets and clear size bits. */
3542 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3543
3544 /* enable LPE to allow for reception of jumbo frames */
3545 rctl |= E1000_RCTL_LPE;
3546
3547 /* disable queue 0 to prevent tail write w/o re-config */
3548 wr32(E1000_RXDCTL(0), 0);
3549
3550 /* Attention!!! For SR-IOV PF driver operations you must enable
3551 * queue drop for all VF and PF queues to prevent head of line blocking
3552 * if an un-trusted VF does not provide descriptors to hardware.
3553 */
3554 if (adapter->vfs_allocated_count) {
3555 /* set all queue drop enable bits */
3556 wr32(E1000_QDE, ALL_QUEUES);
3557 }
3558
3559 /* This is useful for sniffing bad packets. */
3560 if (adapter->netdev->features & NETIF_F_RXALL) {
3561 /* UPE and MPE will be handled by normal PROMISC logic
3562 * in e1000e_set_rx_mode
3563 */
3564 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3565 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3566 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3567
3568 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3569 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3570 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3571 * and that breaks VLANs.
3572 */
3573 }
3574
3575 wr32(E1000_RCTL, rctl);
3576 }
3577
3578 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3579 int vfn)
3580 {
3581 struct e1000_hw *hw = &adapter->hw;
3582 u32 vmolr;
3583
3584 if (size > MAX_JUMBO_FRAME_SIZE)
3585 size = MAX_JUMBO_FRAME_SIZE;
3586
3587 vmolr = rd32(E1000_VMOLR(vfn));
3588 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3589 vmolr |= size | E1000_VMOLR_LPE;
3590 wr32(E1000_VMOLR(vfn), vmolr);
3591
3592 return 0;
3593 }
3594
3595 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3596 int vfn, bool enable)
3597 {
3598 struct e1000_hw *hw = &adapter->hw;
3599 u32 val, reg;
3600
3601 if (hw->mac.type < e1000_82576)
3602 return;
3603
3604 if (hw->mac.type == e1000_i350)
3605 reg = E1000_DVMOLR(vfn);
3606 else
3607 reg = E1000_VMOLR(vfn);
3608
3609 val = rd32(reg);
3610 if (enable)
3611 val |= E1000_VMOLR_STRVLAN;
3612 else
3613 val &= ~(E1000_VMOLR_STRVLAN);
3614 wr32(reg, val);
3615 }
3616
3617 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3618 int vfn, bool aupe)
3619 {
3620 struct e1000_hw *hw = &adapter->hw;
3621 u32 vmolr;
3622
3623 /* This register exists only on 82576 and newer so if we are older then
3624 * we should exit and do nothing
3625 */
3626 if (hw->mac.type < e1000_82576)
3627 return;
3628
3629 vmolr = rd32(E1000_VMOLR(vfn));
3630 if (aupe)
3631 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3632 else
3633 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3634
3635 /* clear all bits that might not be set */
3636 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3637
3638 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3639 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3640 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3641 * multicast packets
3642 */
3643 if (vfn <= adapter->vfs_allocated_count)
3644 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3645
3646 wr32(E1000_VMOLR(vfn), vmolr);
3647 }
3648
3649 /**
3650 * igb_configure_rx_ring - Configure a receive ring after Reset
3651 * @adapter: board private structure
3652 * @ring: receive ring to be configured
3653 *
3654 * Configure the Rx unit of the MAC after a reset.
3655 **/
3656 void igb_configure_rx_ring(struct igb_adapter *adapter,
3657 struct igb_ring *ring)
3658 {
3659 struct e1000_hw *hw = &adapter->hw;
3660 u64 rdba = ring->dma;
3661 int reg_idx = ring->reg_idx;
3662 u32 srrctl = 0, rxdctl = 0;
3663
3664 /* disable the queue */
3665 wr32(E1000_RXDCTL(reg_idx), 0);
3666
3667 /* Set DMA base address registers */
3668 wr32(E1000_RDBAL(reg_idx),
3669 rdba & 0x00000000ffffffffULL);
3670 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3671 wr32(E1000_RDLEN(reg_idx),
3672 ring->count * sizeof(union e1000_adv_rx_desc));
3673
3674 /* initialize head and tail */
3675 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3676 wr32(E1000_RDH(reg_idx), 0);
3677 writel(0, ring->tail);
3678
3679 /* set descriptor configuration */
3680 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3681 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3682 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3683 if (hw->mac.type >= e1000_82580)
3684 srrctl |= E1000_SRRCTL_TIMESTAMP;
3685 /* Only set Drop Enable if we are supporting multiple queues */
3686 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3687 srrctl |= E1000_SRRCTL_DROP_EN;
3688
3689 wr32(E1000_SRRCTL(reg_idx), srrctl);
3690
3691 /* set filtering for VMDQ pools */
3692 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3693
3694 rxdctl |= IGB_RX_PTHRESH;
3695 rxdctl |= IGB_RX_HTHRESH << 8;
3696 rxdctl |= IGB_RX_WTHRESH << 16;
3697
3698 /* enable receive descriptor fetching */
3699 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3700 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3701 }
3702
3703 /**
3704 * igb_configure_rx - Configure receive Unit after Reset
3705 * @adapter: board private structure
3706 *
3707 * Configure the Rx unit of the MAC after a reset.
3708 **/
3709 static void igb_configure_rx(struct igb_adapter *adapter)
3710 {
3711 int i;
3712
3713 /* set the correct pool for the PF default MAC address in entry 0 */
3714 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3715 adapter->vfs_allocated_count);
3716
3717 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3718 * the Base and Length of the Rx Descriptor Ring
3719 */
3720 for (i = 0; i < adapter->num_rx_queues; i++)
3721 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3722 }
3723
3724 /**
3725 * igb_free_tx_resources - Free Tx Resources per Queue
3726 * @tx_ring: Tx descriptor ring for a specific queue
3727 *
3728 * Free all transmit software resources
3729 **/
3730 void igb_free_tx_resources(struct igb_ring *tx_ring)
3731 {
3732 igb_clean_tx_ring(tx_ring);
3733
3734 vfree(tx_ring->tx_buffer_info);
3735 tx_ring->tx_buffer_info = NULL;
3736
3737 /* if not set, then don't free */
3738 if (!tx_ring->desc)
3739 return;
3740
3741 dma_free_coherent(tx_ring->dev, tx_ring->size,
3742 tx_ring->desc, tx_ring->dma);
3743
3744 tx_ring->desc = NULL;
3745 }
3746
3747 /**
3748 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3749 * @adapter: board private structure
3750 *
3751 * Free all transmit software resources
3752 **/
3753 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3754 {
3755 int i;
3756
3757 for (i = 0; i < adapter->num_tx_queues; i++)
3758 if (adapter->tx_ring[i])
3759 igb_free_tx_resources(adapter->tx_ring[i]);
3760 }
3761
3762 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3763 struct igb_tx_buffer *tx_buffer)
3764 {
3765 if (tx_buffer->skb) {
3766 dev_kfree_skb_any(tx_buffer->skb);
3767 if (dma_unmap_len(tx_buffer, len))
3768 dma_unmap_single(ring->dev,
3769 dma_unmap_addr(tx_buffer, dma),
3770 dma_unmap_len(tx_buffer, len),
3771 DMA_TO_DEVICE);
3772 } else if (dma_unmap_len(tx_buffer, len)) {
3773 dma_unmap_page(ring->dev,
3774 dma_unmap_addr(tx_buffer, dma),
3775 dma_unmap_len(tx_buffer, len),
3776 DMA_TO_DEVICE);
3777 }
3778 tx_buffer->next_to_watch = NULL;
3779 tx_buffer->skb = NULL;
3780 dma_unmap_len_set(tx_buffer, len, 0);
3781 /* buffer_info must be completely set up in the transmit path */
3782 }
3783
3784 /**
3785 * igb_clean_tx_ring - Free Tx Buffers
3786 * @tx_ring: ring to be cleaned
3787 **/
3788 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3789 {
3790 struct igb_tx_buffer *buffer_info;
3791 unsigned long size;
3792 u16 i;
3793
3794 if (!tx_ring->tx_buffer_info)
3795 return;
3796 /* Free all the Tx ring sk_buffs */
3797
3798 for (i = 0; i < tx_ring->count; i++) {
3799 buffer_info = &tx_ring->tx_buffer_info[i];
3800 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3801 }
3802
3803 netdev_tx_reset_queue(txring_txq(tx_ring));
3804
3805 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3806 memset(tx_ring->tx_buffer_info, 0, size);
3807
3808 /* Zero out the descriptor ring */
3809 memset(tx_ring->desc, 0, tx_ring->size);
3810
3811 tx_ring->next_to_use = 0;
3812 tx_ring->next_to_clean = 0;
3813 }
3814
3815 /**
3816 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3817 * @adapter: board private structure
3818 **/
3819 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3820 {
3821 int i;
3822
3823 for (i = 0; i < adapter->num_tx_queues; i++)
3824 if (adapter->tx_ring[i])
3825 igb_clean_tx_ring(adapter->tx_ring[i]);
3826 }
3827
3828 /**
3829 * igb_free_rx_resources - Free Rx Resources
3830 * @rx_ring: ring to clean the resources from
3831 *
3832 * Free all receive software resources
3833 **/
3834 void igb_free_rx_resources(struct igb_ring *rx_ring)
3835 {
3836 igb_clean_rx_ring(rx_ring);
3837
3838 vfree(rx_ring->rx_buffer_info);
3839 rx_ring->rx_buffer_info = NULL;
3840
3841 /* if not set, then don't free */
3842 if (!rx_ring->desc)
3843 return;
3844
3845 dma_free_coherent(rx_ring->dev, rx_ring->size,
3846 rx_ring->desc, rx_ring->dma);
3847
3848 rx_ring->desc = NULL;
3849 }
3850
3851 /**
3852 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3853 * @adapter: board private structure
3854 *
3855 * Free all receive software resources
3856 **/
3857 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3858 {
3859 int i;
3860
3861 for (i = 0; i < adapter->num_rx_queues; i++)
3862 if (adapter->rx_ring[i])
3863 igb_free_rx_resources(adapter->rx_ring[i]);
3864 }
3865
3866 /**
3867 * igb_clean_rx_ring - Free Rx Buffers per Queue
3868 * @rx_ring: ring to free buffers from
3869 **/
3870 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3871 {
3872 unsigned long size;
3873 u16 i;
3874
3875 if (rx_ring->skb)
3876 dev_kfree_skb(rx_ring->skb);
3877 rx_ring->skb = NULL;
3878
3879 if (!rx_ring->rx_buffer_info)
3880 return;
3881
3882 /* Free all the Rx ring sk_buffs */
3883 for (i = 0; i < rx_ring->count; i++) {
3884 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3885
3886 if (!buffer_info->page)
3887 continue;
3888
3889 dma_unmap_page(rx_ring->dev,
3890 buffer_info->dma,
3891 PAGE_SIZE,
3892 DMA_FROM_DEVICE);
3893 __free_page(buffer_info->page);
3894
3895 buffer_info->page = NULL;
3896 }
3897
3898 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3899 memset(rx_ring->rx_buffer_info, 0, size);
3900
3901 /* Zero out the descriptor ring */
3902 memset(rx_ring->desc, 0, rx_ring->size);
3903
3904 rx_ring->next_to_alloc = 0;
3905 rx_ring->next_to_clean = 0;
3906 rx_ring->next_to_use = 0;
3907 }
3908
3909 /**
3910 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3911 * @adapter: board private structure
3912 **/
3913 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3914 {
3915 int i;
3916
3917 for (i = 0; i < adapter->num_rx_queues; i++)
3918 if (adapter->rx_ring[i])
3919 igb_clean_rx_ring(adapter->rx_ring[i]);
3920 }
3921
3922 /**
3923 * igb_set_mac - Change the Ethernet Address of the NIC
3924 * @netdev: network interface device structure
3925 * @p: pointer to an address structure
3926 *
3927 * Returns 0 on success, negative on failure
3928 **/
3929 static int igb_set_mac(struct net_device *netdev, void *p)
3930 {
3931 struct igb_adapter *adapter = netdev_priv(netdev);
3932 struct e1000_hw *hw = &adapter->hw;
3933 struct sockaddr *addr = p;
3934
3935 if (!is_valid_ether_addr(addr->sa_data))
3936 return -EADDRNOTAVAIL;
3937
3938 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3939 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3940
3941 /* set the correct pool for the new PF MAC address in entry 0 */
3942 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3943 adapter->vfs_allocated_count);
3944
3945 return 0;
3946 }
3947
3948 /**
3949 * igb_write_mc_addr_list - write multicast addresses to MTA
3950 * @netdev: network interface device structure
3951 *
3952 * Writes multicast address list to the MTA hash table.
3953 * Returns: -ENOMEM on failure
3954 * 0 on no addresses written
3955 * X on writing X addresses to MTA
3956 **/
3957 static int igb_write_mc_addr_list(struct net_device *netdev)
3958 {
3959 struct igb_adapter *adapter = netdev_priv(netdev);
3960 struct e1000_hw *hw = &adapter->hw;
3961 struct netdev_hw_addr *ha;
3962 u8 *mta_list;
3963 int i;
3964
3965 if (netdev_mc_empty(netdev)) {
3966 /* nothing to program, so clear mc list */
3967 igb_update_mc_addr_list(hw, NULL, 0);
3968 igb_restore_vf_multicasts(adapter);
3969 return 0;
3970 }
3971
3972 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3973 if (!mta_list)
3974 return -ENOMEM;
3975
3976 /* The shared function expects a packed array of only addresses. */
3977 i = 0;
3978 netdev_for_each_mc_addr(ha, netdev)
3979 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3980
3981 igb_update_mc_addr_list(hw, mta_list, i);
3982 kfree(mta_list);
3983
3984 return netdev_mc_count(netdev);
3985 }
3986
3987 /**
3988 * igb_write_uc_addr_list - write unicast addresses to RAR table
3989 * @netdev: network interface device structure
3990 *
3991 * Writes unicast address list to the RAR table.
3992 * Returns: -ENOMEM on failure/insufficient address space
3993 * 0 on no addresses written
3994 * X on writing X addresses to the RAR table
3995 **/
3996 static int igb_write_uc_addr_list(struct net_device *netdev)
3997 {
3998 struct igb_adapter *adapter = netdev_priv(netdev);
3999 struct e1000_hw *hw = &adapter->hw;
4000 unsigned int vfn = adapter->vfs_allocated_count;
4001 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4002 int count = 0;
4003
4004 /* return ENOMEM indicating insufficient memory for addresses */
4005 if (netdev_uc_count(netdev) > rar_entries)
4006 return -ENOMEM;
4007
4008 if (!netdev_uc_empty(netdev) && rar_entries) {
4009 struct netdev_hw_addr *ha;
4010
4011 netdev_for_each_uc_addr(ha, netdev) {
4012 if (!rar_entries)
4013 break;
4014 igb_rar_set_qsel(adapter, ha->addr,
4015 rar_entries--,
4016 vfn);
4017 count++;
4018 }
4019 }
4020 /* write the addresses in reverse order to avoid write combining */
4021 for (; rar_entries > 0 ; rar_entries--) {
4022 wr32(E1000_RAH(rar_entries), 0);
4023 wr32(E1000_RAL(rar_entries), 0);
4024 }
4025 wrfl();
4026
4027 return count;
4028 }
4029
4030 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4031 {
4032 struct e1000_hw *hw = &adapter->hw;
4033 u32 i, pf_id;
4034
4035 switch (hw->mac.type) {
4036 case e1000_i210:
4037 case e1000_i211:
4038 case e1000_i350:
4039 /* VLAN filtering needed for VLAN prio filter */
4040 if (adapter->netdev->features & NETIF_F_NTUPLE)
4041 break;
4042 /* fall through */
4043 case e1000_82576:
4044 case e1000_82580:
4045 case e1000_i354:
4046 /* VLAN filtering needed for pool filtering */
4047 if (adapter->vfs_allocated_count)
4048 break;
4049 /* fall through */
4050 default:
4051 return 1;
4052 }
4053
4054 /* We are already in VLAN promisc, nothing to do */
4055 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4056 return 0;
4057
4058 if (!adapter->vfs_allocated_count)
4059 goto set_vfta;
4060
4061 /* Add PF to all active pools */
4062 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4063
4064 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4065 u32 vlvf = rd32(E1000_VLVF(i));
4066
4067 vlvf |= BIT(pf_id);
4068 wr32(E1000_VLVF(i), vlvf);
4069 }
4070
4071 set_vfta:
4072 /* Set all bits in the VLAN filter table array */
4073 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4074 hw->mac.ops.write_vfta(hw, i, ~0U);
4075
4076 /* Set flag so we don't redo unnecessary work */
4077 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4078
4079 return 0;
4080 }
4081
4082 #define VFTA_BLOCK_SIZE 8
4083 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4084 {
4085 struct e1000_hw *hw = &adapter->hw;
4086 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4087 u32 vid_start = vfta_offset * 32;
4088 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4089 u32 i, vid, word, bits, pf_id;
4090
4091 /* guarantee that we don't scrub out management VLAN */
4092 vid = adapter->mng_vlan_id;
4093 if (vid >= vid_start && vid < vid_end)
4094 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4095
4096 if (!adapter->vfs_allocated_count)
4097 goto set_vfta;
4098
4099 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4100
4101 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4102 u32 vlvf = rd32(E1000_VLVF(i));
4103
4104 /* pull VLAN ID from VLVF */
4105 vid = vlvf & VLAN_VID_MASK;
4106
4107 /* only concern ourselves with a certain range */
4108 if (vid < vid_start || vid >= vid_end)
4109 continue;
4110
4111 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4112 /* record VLAN ID in VFTA */
4113 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4114
4115 /* if PF is part of this then continue */
4116 if (test_bit(vid, adapter->active_vlans))
4117 continue;
4118 }
4119
4120 /* remove PF from the pool */
4121 bits = ~BIT(pf_id);
4122 bits &= rd32(E1000_VLVF(i));
4123 wr32(E1000_VLVF(i), bits);
4124 }
4125
4126 set_vfta:
4127 /* extract values from active_vlans and write back to VFTA */
4128 for (i = VFTA_BLOCK_SIZE; i--;) {
4129 vid = (vfta_offset + i) * 32;
4130 word = vid / BITS_PER_LONG;
4131 bits = vid % BITS_PER_LONG;
4132
4133 vfta[i] |= adapter->active_vlans[word] >> bits;
4134
4135 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4136 }
4137 }
4138
4139 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4140 {
4141 u32 i;
4142
4143 /* We are not in VLAN promisc, nothing to do */
4144 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4145 return;
4146
4147 /* Set flag so we don't redo unnecessary work */
4148 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4149
4150 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4151 igb_scrub_vfta(adapter, i);
4152 }
4153
4154 /**
4155 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4156 * @netdev: network interface device structure
4157 *
4158 * The set_rx_mode entry point is called whenever the unicast or multicast
4159 * address lists or the network interface flags are updated. This routine is
4160 * responsible for configuring the hardware for proper unicast, multicast,
4161 * promiscuous mode, and all-multi behavior.
4162 **/
4163 static void igb_set_rx_mode(struct net_device *netdev)
4164 {
4165 struct igb_adapter *adapter = netdev_priv(netdev);
4166 struct e1000_hw *hw = &adapter->hw;
4167 unsigned int vfn = adapter->vfs_allocated_count;
4168 u32 rctl = 0, vmolr = 0;
4169 int count;
4170
4171 /* Check for Promiscuous and All Multicast modes */
4172 if (netdev->flags & IFF_PROMISC) {
4173 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4174 vmolr |= E1000_VMOLR_MPME;
4175
4176 /* enable use of UTA filter to force packets to default pool */
4177 if (hw->mac.type == e1000_82576)
4178 vmolr |= E1000_VMOLR_ROPE;
4179 } else {
4180 if (netdev->flags & IFF_ALLMULTI) {
4181 rctl |= E1000_RCTL_MPE;
4182 vmolr |= E1000_VMOLR_MPME;
4183 } else {
4184 /* Write addresses to the MTA, if the attempt fails
4185 * then we should just turn on promiscuous mode so
4186 * that we can at least receive multicast traffic
4187 */
4188 count = igb_write_mc_addr_list(netdev);
4189 if (count < 0) {
4190 rctl |= E1000_RCTL_MPE;
4191 vmolr |= E1000_VMOLR_MPME;
4192 } else if (count) {
4193 vmolr |= E1000_VMOLR_ROMPE;
4194 }
4195 }
4196 }
4197
4198 /* Write addresses to available RAR registers, if there is not
4199 * sufficient space to store all the addresses then enable
4200 * unicast promiscuous mode
4201 */
4202 count = igb_write_uc_addr_list(netdev);
4203 if (count < 0) {
4204 rctl |= E1000_RCTL_UPE;
4205 vmolr |= E1000_VMOLR_ROPE;
4206 }
4207
4208 /* enable VLAN filtering by default */
4209 rctl |= E1000_RCTL_VFE;
4210
4211 /* disable VLAN filtering for modes that require it */
4212 if ((netdev->flags & IFF_PROMISC) ||
4213 (netdev->features & NETIF_F_RXALL)) {
4214 /* if we fail to set all rules then just clear VFE */
4215 if (igb_vlan_promisc_enable(adapter))
4216 rctl &= ~E1000_RCTL_VFE;
4217 } else {
4218 igb_vlan_promisc_disable(adapter);
4219 }
4220
4221 /* update state of unicast, multicast, and VLAN filtering modes */
4222 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4223 E1000_RCTL_VFE);
4224 wr32(E1000_RCTL, rctl);
4225
4226 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4227 * the VMOLR to enable the appropriate modes. Without this workaround
4228 * we will have issues with VLAN tag stripping not being done for frames
4229 * that are only arriving because we are the default pool
4230 */
4231 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4232 return;
4233
4234 /* set UTA to appropriate mode */
4235 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4236
4237 vmolr |= rd32(E1000_VMOLR(vfn)) &
4238 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4239
4240 /* enable Rx jumbo frames, no need for restriction */
4241 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4242 vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4243
4244 wr32(E1000_VMOLR(vfn), vmolr);
4245 wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4246
4247 igb_restore_vf_multicasts(adapter);
4248 }
4249
4250 static void igb_check_wvbr(struct igb_adapter *adapter)
4251 {
4252 struct e1000_hw *hw = &adapter->hw;
4253 u32 wvbr = 0;
4254
4255 switch (hw->mac.type) {
4256 case e1000_82576:
4257 case e1000_i350:
4258 wvbr = rd32(E1000_WVBR);
4259 if (!wvbr)
4260 return;
4261 break;
4262 default:
4263 break;
4264 }
4265
4266 adapter->wvbr |= wvbr;
4267 }
4268
4269 #define IGB_STAGGERED_QUEUE_OFFSET 8
4270
4271 static void igb_spoof_check(struct igb_adapter *adapter)
4272 {
4273 int j;
4274
4275 if (!adapter->wvbr)
4276 return;
4277
4278 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4279 if (adapter->wvbr & BIT(j) ||
4280 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4281 dev_warn(&adapter->pdev->dev,
4282 "Spoof event(s) detected on VF %d\n", j);
4283 adapter->wvbr &=
4284 ~(BIT(j) |
4285 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4286 }
4287 }
4288 }
4289
4290 /* Need to wait a few seconds after link up to get diagnostic information from
4291 * the phy
4292 */
4293 static void igb_update_phy_info(unsigned long data)
4294 {
4295 struct igb_adapter *adapter = (struct igb_adapter *) data;
4296 igb_get_phy_info(&adapter->hw);
4297 }
4298
4299 /**
4300 * igb_has_link - check shared code for link and determine up/down
4301 * @adapter: pointer to driver private info
4302 **/
4303 bool igb_has_link(struct igb_adapter *adapter)
4304 {
4305 struct e1000_hw *hw = &adapter->hw;
4306 bool link_active = false;
4307
4308 /* get_link_status is set on LSC (link status) interrupt or
4309 * rx sequence error interrupt. get_link_status will stay
4310 * false until the e1000_check_for_link establishes link
4311 * for copper adapters ONLY
4312 */
4313 switch (hw->phy.media_type) {
4314 case e1000_media_type_copper:
4315 if (!hw->mac.get_link_status)
4316 return true;
4317 case e1000_media_type_internal_serdes:
4318 hw->mac.ops.check_for_link(hw);
4319 link_active = !hw->mac.get_link_status;
4320 break;
4321 default:
4322 case e1000_media_type_unknown:
4323 break;
4324 }
4325
4326 if (((hw->mac.type == e1000_i210) ||
4327 (hw->mac.type == e1000_i211)) &&
4328 (hw->phy.id == I210_I_PHY_ID)) {
4329 if (!netif_carrier_ok(adapter->netdev)) {
4330 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4331 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4332 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4333 adapter->link_check_timeout = jiffies;
4334 }
4335 }
4336
4337 return link_active;
4338 }
4339
4340 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4341 {
4342 bool ret = false;
4343 u32 ctrl_ext, thstat;
4344
4345 /* check for thermal sensor event on i350 copper only */
4346 if (hw->mac.type == e1000_i350) {
4347 thstat = rd32(E1000_THSTAT);
4348 ctrl_ext = rd32(E1000_CTRL_EXT);
4349
4350 if ((hw->phy.media_type == e1000_media_type_copper) &&
4351 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4352 ret = !!(thstat & event);
4353 }
4354
4355 return ret;
4356 }
4357
4358 /**
4359 * igb_check_lvmmc - check for malformed packets received
4360 * and indicated in LVMMC register
4361 * @adapter: pointer to adapter
4362 **/
4363 static void igb_check_lvmmc(struct igb_adapter *adapter)
4364 {
4365 struct e1000_hw *hw = &adapter->hw;
4366 u32 lvmmc;
4367
4368 lvmmc = rd32(E1000_LVMMC);
4369 if (lvmmc) {
4370 if (unlikely(net_ratelimit())) {
4371 netdev_warn(adapter->netdev,
4372 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4373 lvmmc);
4374 }
4375 }
4376 }
4377
4378 /**
4379 * igb_watchdog - Timer Call-back
4380 * @data: pointer to adapter cast into an unsigned long
4381 **/
4382 static void igb_watchdog(unsigned long data)
4383 {
4384 struct igb_adapter *adapter = (struct igb_adapter *)data;
4385 /* Do the rest outside of interrupt context */
4386 schedule_work(&adapter->watchdog_task);
4387 }
4388
4389 static void igb_watchdog_task(struct work_struct *work)
4390 {
4391 struct igb_adapter *adapter = container_of(work,
4392 struct igb_adapter,
4393 watchdog_task);
4394 struct e1000_hw *hw = &adapter->hw;
4395 struct e1000_phy_info *phy = &hw->phy;
4396 struct net_device *netdev = adapter->netdev;
4397 u32 link;
4398 int i;
4399 u32 connsw;
4400 u16 phy_data, retry_count = 20;
4401
4402 link = igb_has_link(adapter);
4403
4404 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4405 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4406 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4407 else
4408 link = false;
4409 }
4410
4411 /* Force link down if we have fiber to swap to */
4412 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4413 if (hw->phy.media_type == e1000_media_type_copper) {
4414 connsw = rd32(E1000_CONNSW);
4415 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4416 link = 0;
4417 }
4418 }
4419 if (link) {
4420 /* Perform a reset if the media type changed. */
4421 if (hw->dev_spec._82575.media_changed) {
4422 hw->dev_spec._82575.media_changed = false;
4423 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4424 igb_reset(adapter);
4425 }
4426 /* Cancel scheduled suspend requests. */
4427 pm_runtime_resume(netdev->dev.parent);
4428
4429 if (!netif_carrier_ok(netdev)) {
4430 u32 ctrl;
4431
4432 hw->mac.ops.get_speed_and_duplex(hw,
4433 &adapter->link_speed,
4434 &adapter->link_duplex);
4435
4436 ctrl = rd32(E1000_CTRL);
4437 /* Links status message must follow this format */
4438 netdev_info(netdev,
4439 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4440 netdev->name,
4441 adapter->link_speed,
4442 adapter->link_duplex == FULL_DUPLEX ?
4443 "Full" : "Half",
4444 (ctrl & E1000_CTRL_TFCE) &&
4445 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4446 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4447 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4448
4449 /* disable EEE if enabled */
4450 if ((adapter->flags & IGB_FLAG_EEE) &&
4451 (adapter->link_duplex == HALF_DUPLEX)) {
4452 dev_info(&adapter->pdev->dev,
4453 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4454 adapter->hw.dev_spec._82575.eee_disable = true;
4455 adapter->flags &= ~IGB_FLAG_EEE;
4456 }
4457
4458 /* check if SmartSpeed worked */
4459 igb_check_downshift(hw);
4460 if (phy->speed_downgraded)
4461 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4462
4463 /* check for thermal sensor event */
4464 if (igb_thermal_sensor_event(hw,
4465 E1000_THSTAT_LINK_THROTTLE))
4466 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4467
4468 /* adjust timeout factor according to speed/duplex */
4469 adapter->tx_timeout_factor = 1;
4470 switch (adapter->link_speed) {
4471 case SPEED_10:
4472 adapter->tx_timeout_factor = 14;
4473 break;
4474 case SPEED_100:
4475 /* maybe add some timeout factor ? */
4476 break;
4477 }
4478
4479 if (adapter->link_speed != SPEED_1000)
4480 goto no_wait;
4481
4482 /* wait for Remote receiver status OK */
4483 retry_read_status:
4484 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4485 &phy_data)) {
4486 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4487 retry_count) {
4488 msleep(100);
4489 retry_count--;
4490 goto retry_read_status;
4491 } else if (!retry_count) {
4492 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4493 }
4494 } else {
4495 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4496 }
4497 no_wait:
4498 netif_carrier_on(netdev);
4499
4500 igb_ping_all_vfs(adapter);
4501 igb_check_vf_rate_limit(adapter);
4502
4503 /* link state has changed, schedule phy info update */
4504 if (!test_bit(__IGB_DOWN, &adapter->state))
4505 mod_timer(&adapter->phy_info_timer,
4506 round_jiffies(jiffies + 2 * HZ));
4507 }
4508 } else {
4509 if (netif_carrier_ok(netdev)) {
4510 adapter->link_speed = 0;
4511 adapter->link_duplex = 0;
4512
4513 /* check for thermal sensor event */
4514 if (igb_thermal_sensor_event(hw,
4515 E1000_THSTAT_PWR_DOWN)) {
4516 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4517 }
4518
4519 /* Links status message must follow this format */
4520 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4521 netdev->name);
4522 netif_carrier_off(netdev);
4523
4524 igb_ping_all_vfs(adapter);
4525
4526 /* link state has changed, schedule phy info update */
4527 if (!test_bit(__IGB_DOWN, &adapter->state))
4528 mod_timer(&adapter->phy_info_timer,
4529 round_jiffies(jiffies + 2 * HZ));
4530
4531 /* link is down, time to check for alternate media */
4532 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4533 igb_check_swap_media(adapter);
4534 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4535 schedule_work(&adapter->reset_task);
4536 /* return immediately */
4537 return;
4538 }
4539 }
4540 pm_schedule_suspend(netdev->dev.parent,
4541 MSEC_PER_SEC * 5);
4542
4543 /* also check for alternate media here */
4544 } else if (!netif_carrier_ok(netdev) &&
4545 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4546 igb_check_swap_media(adapter);
4547 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4548 schedule_work(&adapter->reset_task);
4549 /* return immediately */
4550 return;
4551 }
4552 }
4553 }
4554
4555 spin_lock(&adapter->stats64_lock);
4556 igb_update_stats(adapter, &adapter->stats64);
4557 spin_unlock(&adapter->stats64_lock);
4558
4559 for (i = 0; i < adapter->num_tx_queues; i++) {
4560 struct igb_ring *tx_ring = adapter->tx_ring[i];
4561 if (!netif_carrier_ok(netdev)) {
4562 /* We've lost link, so the controller stops DMA,
4563 * but we've got queued Tx work that's never going
4564 * to get done, so reset controller to flush Tx.
4565 * (Do the reset outside of interrupt context).
4566 */
4567 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4568 adapter->tx_timeout_count++;
4569 schedule_work(&adapter->reset_task);
4570 /* return immediately since reset is imminent */
4571 return;
4572 }
4573 }
4574
4575 /* Force detection of hung controller every watchdog period */
4576 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4577 }
4578
4579 /* Cause software interrupt to ensure Rx ring is cleaned */
4580 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4581 u32 eics = 0;
4582
4583 for (i = 0; i < adapter->num_q_vectors; i++)
4584 eics |= adapter->q_vector[i]->eims_value;
4585 wr32(E1000_EICS, eics);
4586 } else {
4587 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4588 }
4589
4590 igb_spoof_check(adapter);
4591 igb_ptp_rx_hang(adapter);
4592
4593 /* Check LVMMC register on i350/i354 only */
4594 if ((adapter->hw.mac.type == e1000_i350) ||
4595 (adapter->hw.mac.type == e1000_i354))
4596 igb_check_lvmmc(adapter);
4597
4598 /* Reset the timer */
4599 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4600 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4601 mod_timer(&adapter->watchdog_timer,
4602 round_jiffies(jiffies + HZ));
4603 else
4604 mod_timer(&adapter->watchdog_timer,
4605 round_jiffies(jiffies + 2 * HZ));
4606 }
4607 }
4608
4609 enum latency_range {
4610 lowest_latency = 0,
4611 low_latency = 1,
4612 bulk_latency = 2,
4613 latency_invalid = 255
4614 };
4615
4616 /**
4617 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4618 * @q_vector: pointer to q_vector
4619 *
4620 * Stores a new ITR value based on strictly on packet size. This
4621 * algorithm is less sophisticated than that used in igb_update_itr,
4622 * due to the difficulty of synchronizing statistics across multiple
4623 * receive rings. The divisors and thresholds used by this function
4624 * were determined based on theoretical maximum wire speed and testing
4625 * data, in order to minimize response time while increasing bulk
4626 * throughput.
4627 * This functionality is controlled by ethtool's coalescing settings.
4628 * NOTE: This function is called only when operating in a multiqueue
4629 * receive environment.
4630 **/
4631 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4632 {
4633 int new_val = q_vector->itr_val;
4634 int avg_wire_size = 0;
4635 struct igb_adapter *adapter = q_vector->adapter;
4636 unsigned int packets;
4637
4638 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4639 * ints/sec - ITR timer value of 120 ticks.
4640 */
4641 if (adapter->link_speed != SPEED_1000) {
4642 new_val = IGB_4K_ITR;
4643 goto set_itr_val;
4644 }
4645
4646 packets = q_vector->rx.total_packets;
4647 if (packets)
4648 avg_wire_size = q_vector->rx.total_bytes / packets;
4649
4650 packets = q_vector->tx.total_packets;
4651 if (packets)
4652 avg_wire_size = max_t(u32, avg_wire_size,
4653 q_vector->tx.total_bytes / packets);
4654
4655 /* if avg_wire_size isn't set no work was done */
4656 if (!avg_wire_size)
4657 goto clear_counts;
4658
4659 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4660 avg_wire_size += 24;
4661
4662 /* Don't starve jumbo frames */
4663 avg_wire_size = min(avg_wire_size, 3000);
4664
4665 /* Give a little boost to mid-size frames */
4666 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4667 new_val = avg_wire_size / 3;
4668 else
4669 new_val = avg_wire_size / 2;
4670
4671 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4672 if (new_val < IGB_20K_ITR &&
4673 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4674 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4675 new_val = IGB_20K_ITR;
4676
4677 set_itr_val:
4678 if (new_val != q_vector->itr_val) {
4679 q_vector->itr_val = new_val;
4680 q_vector->set_itr = 1;
4681 }
4682 clear_counts:
4683 q_vector->rx.total_bytes = 0;
4684 q_vector->rx.total_packets = 0;
4685 q_vector->tx.total_bytes = 0;
4686 q_vector->tx.total_packets = 0;
4687 }
4688
4689 /**
4690 * igb_update_itr - update the dynamic ITR value based on statistics
4691 * @q_vector: pointer to q_vector
4692 * @ring_container: ring info to update the itr for
4693 *
4694 * Stores a new ITR value based on packets and byte
4695 * counts during the last interrupt. The advantage of per interrupt
4696 * computation is faster updates and more accurate ITR for the current
4697 * traffic pattern. Constants in this function were computed
4698 * based on theoretical maximum wire speed and thresholds were set based
4699 * on testing data as well as attempting to minimize response time
4700 * while increasing bulk throughput.
4701 * This functionality is controlled by ethtool's coalescing settings.
4702 * NOTE: These calculations are only valid when operating in a single-
4703 * queue environment.
4704 **/
4705 static void igb_update_itr(struct igb_q_vector *q_vector,
4706 struct igb_ring_container *ring_container)
4707 {
4708 unsigned int packets = ring_container->total_packets;
4709 unsigned int bytes = ring_container->total_bytes;
4710 u8 itrval = ring_container->itr;
4711
4712 /* no packets, exit with status unchanged */
4713 if (packets == 0)
4714 return;
4715
4716 switch (itrval) {
4717 case lowest_latency:
4718 /* handle TSO and jumbo frames */
4719 if (bytes/packets > 8000)
4720 itrval = bulk_latency;
4721 else if ((packets < 5) && (bytes > 512))
4722 itrval = low_latency;
4723 break;
4724 case low_latency: /* 50 usec aka 20000 ints/s */
4725 if (bytes > 10000) {
4726 /* this if handles the TSO accounting */
4727 if (bytes/packets > 8000)
4728 itrval = bulk_latency;
4729 else if ((packets < 10) || ((bytes/packets) > 1200))
4730 itrval = bulk_latency;
4731 else if ((packets > 35))
4732 itrval = lowest_latency;
4733 } else if (bytes/packets > 2000) {
4734 itrval = bulk_latency;
4735 } else if (packets <= 2 && bytes < 512) {
4736 itrval = lowest_latency;
4737 }
4738 break;
4739 case bulk_latency: /* 250 usec aka 4000 ints/s */
4740 if (bytes > 25000) {
4741 if (packets > 35)
4742 itrval = low_latency;
4743 } else if (bytes < 1500) {
4744 itrval = low_latency;
4745 }
4746 break;
4747 }
4748
4749 /* clear work counters since we have the values we need */
4750 ring_container->total_bytes = 0;
4751 ring_container->total_packets = 0;
4752
4753 /* write updated itr to ring container */
4754 ring_container->itr = itrval;
4755 }
4756
4757 static void igb_set_itr(struct igb_q_vector *q_vector)
4758 {
4759 struct igb_adapter *adapter = q_vector->adapter;
4760 u32 new_itr = q_vector->itr_val;
4761 u8 current_itr = 0;
4762
4763 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4764 if (adapter->link_speed != SPEED_1000) {
4765 current_itr = 0;
4766 new_itr = IGB_4K_ITR;
4767 goto set_itr_now;
4768 }
4769
4770 igb_update_itr(q_vector, &q_vector->tx);
4771 igb_update_itr(q_vector, &q_vector->rx);
4772
4773 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4774
4775 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4776 if (current_itr == lowest_latency &&
4777 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4778 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4779 current_itr = low_latency;
4780
4781 switch (current_itr) {
4782 /* counts and packets in update_itr are dependent on these numbers */
4783 case lowest_latency:
4784 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4785 break;
4786 case low_latency:
4787 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4788 break;
4789 case bulk_latency:
4790 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4791 break;
4792 default:
4793 break;
4794 }
4795
4796 set_itr_now:
4797 if (new_itr != q_vector->itr_val) {
4798 /* this attempts to bias the interrupt rate towards Bulk
4799 * by adding intermediate steps when interrupt rate is
4800 * increasing
4801 */
4802 new_itr = new_itr > q_vector->itr_val ?
4803 max((new_itr * q_vector->itr_val) /
4804 (new_itr + (q_vector->itr_val >> 2)),
4805 new_itr) : new_itr;
4806 /* Don't write the value here; it resets the adapter's
4807 * internal timer, and causes us to delay far longer than
4808 * we should between interrupts. Instead, we write the ITR
4809 * value at the beginning of the next interrupt so the timing
4810 * ends up being correct.
4811 */
4812 q_vector->itr_val = new_itr;
4813 q_vector->set_itr = 1;
4814 }
4815 }
4816
4817 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4818 u32 type_tucmd, u32 mss_l4len_idx)
4819 {
4820 struct e1000_adv_tx_context_desc *context_desc;
4821 u16 i = tx_ring->next_to_use;
4822
4823 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4824
4825 i++;
4826 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4827
4828 /* set bits to identify this as an advanced context descriptor */
4829 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4830
4831 /* For 82575, context index must be unique per ring. */
4832 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4833 mss_l4len_idx |= tx_ring->reg_idx << 4;
4834
4835 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4836 context_desc->seqnum_seed = 0;
4837 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4838 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4839 }
4840
4841 static int igb_tso(struct igb_ring *tx_ring,
4842 struct igb_tx_buffer *first,
4843 u8 *hdr_len)
4844 {
4845 struct sk_buff *skb = first->skb;
4846 u32 vlan_macip_lens, type_tucmd;
4847 u32 mss_l4len_idx, l4len;
4848 int err;
4849
4850 if (skb->ip_summed != CHECKSUM_PARTIAL)
4851 return 0;
4852
4853 if (!skb_is_gso(skb))
4854 return 0;
4855
4856 err = skb_cow_head(skb, 0);
4857 if (err < 0)
4858 return err;
4859
4860 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4861 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4862
4863 if (first->protocol == htons(ETH_P_IP)) {
4864 struct iphdr *iph = ip_hdr(skb);
4865 iph->tot_len = 0;
4866 iph->check = 0;
4867 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4868 iph->daddr, 0,
4869 IPPROTO_TCP,
4870 0);
4871 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4872 first->tx_flags |= IGB_TX_FLAGS_TSO |
4873 IGB_TX_FLAGS_CSUM |
4874 IGB_TX_FLAGS_IPV4;
4875 } else if (skb_is_gso_v6(skb)) {
4876 ipv6_hdr(skb)->payload_len = 0;
4877 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4878 &ipv6_hdr(skb)->daddr,
4879 0, IPPROTO_TCP, 0);
4880 first->tx_flags |= IGB_TX_FLAGS_TSO |
4881 IGB_TX_FLAGS_CSUM;
4882 }
4883
4884 /* compute header lengths */
4885 l4len = tcp_hdrlen(skb);
4886 *hdr_len = skb_transport_offset(skb) + l4len;
4887
4888 /* update gso size and bytecount with header size */
4889 first->gso_segs = skb_shinfo(skb)->gso_segs;
4890 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4891
4892 /* MSS L4LEN IDX */
4893 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4894 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4895
4896 /* VLAN MACLEN IPLEN */
4897 vlan_macip_lens = skb_network_header_len(skb);
4898 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4899 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4900
4901 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4902
4903 return 1;
4904 }
4905
4906 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4907 {
4908 unsigned int offset = 0;
4909
4910 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4911
4912 return offset == skb_checksum_start_offset(skb);
4913 }
4914
4915 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4916 {
4917 struct sk_buff *skb = first->skb;
4918 u32 vlan_macip_lens = 0;
4919 u32 type_tucmd = 0;
4920
4921 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4922 csum_failed:
4923 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4924 return;
4925 goto no_csum;
4926 }
4927
4928 switch (skb->csum_offset) {
4929 case offsetof(struct tcphdr, check):
4930 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4931 /* fall through */
4932 case offsetof(struct udphdr, check):
4933 break;
4934 case offsetof(struct sctphdr, checksum):
4935 /* validate that this is actually an SCTP request */
4936 if (((first->protocol == htons(ETH_P_IP)) &&
4937 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
4938 ((first->protocol == htons(ETH_P_IPV6)) &&
4939 igb_ipv6_csum_is_sctp(skb))) {
4940 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
4941 break;
4942 }
4943 default:
4944 skb_checksum_help(skb);
4945 goto csum_failed;
4946 }
4947
4948 /* update TX checksum flag */
4949 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4950 vlan_macip_lens = skb_checksum_start_offset(skb) -
4951 skb_network_offset(skb);
4952 no_csum:
4953 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4954 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4955
4956 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
4957 }
4958
4959 #define IGB_SET_FLAG(_input, _flag, _result) \
4960 ((_flag <= _result) ? \
4961 ((u32)(_input & _flag) * (_result / _flag)) : \
4962 ((u32)(_input & _flag) / (_flag / _result)))
4963
4964 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4965 {
4966 /* set type for advanced descriptor with frame checksum insertion */
4967 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4968 E1000_ADVTXD_DCMD_DEXT |
4969 E1000_ADVTXD_DCMD_IFCS;
4970
4971 /* set HW vlan bit if vlan is present */
4972 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4973 (E1000_ADVTXD_DCMD_VLE));
4974
4975 /* set segmentation bits for TSO */
4976 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4977 (E1000_ADVTXD_DCMD_TSE));
4978
4979 /* set timestamp bit if present */
4980 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4981 (E1000_ADVTXD_MAC_TSTAMP));
4982
4983 /* insert frame checksum */
4984 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4985
4986 return cmd_type;
4987 }
4988
4989 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4990 union e1000_adv_tx_desc *tx_desc,
4991 u32 tx_flags, unsigned int paylen)
4992 {
4993 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4994
4995 /* 82575 requires a unique index per ring */
4996 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4997 olinfo_status |= tx_ring->reg_idx << 4;
4998
4999 /* insert L4 checksum */
5000 olinfo_status |= IGB_SET_FLAG(tx_flags,
5001 IGB_TX_FLAGS_CSUM,
5002 (E1000_TXD_POPTS_TXSM << 8));
5003
5004 /* insert IPv4 checksum */
5005 olinfo_status |= IGB_SET_FLAG(tx_flags,
5006 IGB_TX_FLAGS_IPV4,
5007 (E1000_TXD_POPTS_IXSM << 8));
5008
5009 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5010 }
5011
5012 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5013 {
5014 struct net_device *netdev = tx_ring->netdev;
5015
5016 netif_stop_subqueue(netdev, tx_ring->queue_index);
5017
5018 /* Herbert's original patch had:
5019 * smp_mb__after_netif_stop_queue();
5020 * but since that doesn't exist yet, just open code it.
5021 */
5022 smp_mb();
5023
5024 /* We need to check again in a case another CPU has just
5025 * made room available.
5026 */
5027 if (igb_desc_unused(tx_ring) < size)
5028 return -EBUSY;
5029
5030 /* A reprieve! */
5031 netif_wake_subqueue(netdev, tx_ring->queue_index);
5032
5033 u64_stats_update_begin(&tx_ring->tx_syncp2);
5034 tx_ring->tx_stats.restart_queue2++;
5035 u64_stats_update_end(&tx_ring->tx_syncp2);
5036
5037 return 0;
5038 }
5039
5040 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5041 {
5042 if (igb_desc_unused(tx_ring) >= size)
5043 return 0;
5044 return __igb_maybe_stop_tx(tx_ring, size);
5045 }
5046
5047 static void igb_tx_map(struct igb_ring *tx_ring,
5048 struct igb_tx_buffer *first,
5049 const u8 hdr_len)
5050 {
5051 struct sk_buff *skb = first->skb;
5052 struct igb_tx_buffer *tx_buffer;
5053 union e1000_adv_tx_desc *tx_desc;
5054 struct skb_frag_struct *frag;
5055 dma_addr_t dma;
5056 unsigned int data_len, size;
5057 u32 tx_flags = first->tx_flags;
5058 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5059 u16 i = tx_ring->next_to_use;
5060
5061 tx_desc = IGB_TX_DESC(tx_ring, i);
5062
5063 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5064
5065 size = skb_headlen(skb);
5066 data_len = skb->data_len;
5067
5068 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5069
5070 tx_buffer = first;
5071
5072 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5073 if (dma_mapping_error(tx_ring->dev, dma))
5074 goto dma_error;
5075
5076 /* record length, and DMA address */
5077 dma_unmap_len_set(tx_buffer, len, size);
5078 dma_unmap_addr_set(tx_buffer, dma, dma);
5079
5080 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5081
5082 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5083 tx_desc->read.cmd_type_len =
5084 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5085
5086 i++;
5087 tx_desc++;
5088 if (i == tx_ring->count) {
5089 tx_desc = IGB_TX_DESC(tx_ring, 0);
5090 i = 0;
5091 }
5092 tx_desc->read.olinfo_status = 0;
5093
5094 dma += IGB_MAX_DATA_PER_TXD;
5095 size -= IGB_MAX_DATA_PER_TXD;
5096
5097 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5098 }
5099
5100 if (likely(!data_len))
5101 break;
5102
5103 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5104
5105 i++;
5106 tx_desc++;
5107 if (i == tx_ring->count) {
5108 tx_desc = IGB_TX_DESC(tx_ring, 0);
5109 i = 0;
5110 }
5111 tx_desc->read.olinfo_status = 0;
5112
5113 size = skb_frag_size(frag);
5114 data_len -= size;
5115
5116 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5117 size, DMA_TO_DEVICE);
5118
5119 tx_buffer = &tx_ring->tx_buffer_info[i];
5120 }
5121
5122 /* write last descriptor with RS and EOP bits */
5123 cmd_type |= size | IGB_TXD_DCMD;
5124 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5125
5126 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5127
5128 /* set the timestamp */
5129 first->time_stamp = jiffies;
5130
5131 /* Force memory writes to complete before letting h/w know there
5132 * are new descriptors to fetch. (Only applicable for weak-ordered
5133 * memory model archs, such as IA-64).
5134 *
5135 * We also need this memory barrier to make certain all of the
5136 * status bits have been updated before next_to_watch is written.
5137 */
5138 wmb();
5139
5140 /* set next_to_watch value indicating a packet is present */
5141 first->next_to_watch = tx_desc;
5142
5143 i++;
5144 if (i == tx_ring->count)
5145 i = 0;
5146
5147 tx_ring->next_to_use = i;
5148
5149 /* Make sure there is space in the ring for the next send. */
5150 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5151
5152 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5153 writel(i, tx_ring->tail);
5154
5155 /* we need this if more than one processor can write to our tail
5156 * at a time, it synchronizes IO on IA64/Altix systems
5157 */
5158 mmiowb();
5159 }
5160 return;
5161
5162 dma_error:
5163 dev_err(tx_ring->dev, "TX DMA map failed\n");
5164
5165 /* clear dma mappings for failed tx_buffer_info map */
5166 for (;;) {
5167 tx_buffer = &tx_ring->tx_buffer_info[i];
5168 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5169 if (tx_buffer == first)
5170 break;
5171 if (i == 0)
5172 i = tx_ring->count;
5173 i--;
5174 }
5175
5176 tx_ring->next_to_use = i;
5177 }
5178
5179 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5180 struct igb_ring *tx_ring)
5181 {
5182 struct igb_tx_buffer *first;
5183 int tso;
5184 u32 tx_flags = 0;
5185 unsigned short f;
5186 u16 count = TXD_USE_COUNT(skb_headlen(skb));
5187 __be16 protocol = vlan_get_protocol(skb);
5188 u8 hdr_len = 0;
5189
5190 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5191 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5192 * + 2 desc gap to keep tail from touching head,
5193 * + 1 desc for context descriptor,
5194 * otherwise try next time
5195 */
5196 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5197 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5198
5199 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5200 /* this is a hard error */
5201 return NETDEV_TX_BUSY;
5202 }
5203
5204 /* record the location of the first descriptor for this packet */
5205 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5206 first->skb = skb;
5207 first->bytecount = skb->len;
5208 first->gso_segs = 1;
5209
5210 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5211 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5212
5213 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5214 &adapter->state)) {
5215 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5216 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5217
5218 adapter->ptp_tx_skb = skb_get(skb);
5219 adapter->ptp_tx_start = jiffies;
5220 if (adapter->hw.mac.type == e1000_82576)
5221 schedule_work(&adapter->ptp_tx_work);
5222 }
5223 }
5224
5225 skb_tx_timestamp(skb);
5226
5227 if (skb_vlan_tag_present(skb)) {
5228 tx_flags |= IGB_TX_FLAGS_VLAN;
5229 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5230 }
5231
5232 /* record initial flags and protocol */
5233 first->tx_flags = tx_flags;
5234 first->protocol = protocol;
5235
5236 tso = igb_tso(tx_ring, first, &hdr_len);
5237 if (tso < 0)
5238 goto out_drop;
5239 else if (!tso)
5240 igb_tx_csum(tx_ring, first);
5241
5242 igb_tx_map(tx_ring, first, hdr_len);
5243
5244 return NETDEV_TX_OK;
5245
5246 out_drop:
5247 igb_unmap_and_free_tx_resource(tx_ring, first);
5248
5249 return NETDEV_TX_OK;
5250 }
5251
5252 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5253 struct sk_buff *skb)
5254 {
5255 unsigned int r_idx = skb->queue_mapping;
5256
5257 if (r_idx >= adapter->num_tx_queues)
5258 r_idx = r_idx % adapter->num_tx_queues;
5259
5260 return adapter->tx_ring[r_idx];
5261 }
5262
5263 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5264 struct net_device *netdev)
5265 {
5266 struct igb_adapter *adapter = netdev_priv(netdev);
5267
5268 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5269 * in order to meet this minimum size requirement.
5270 */
5271 if (skb_put_padto(skb, 17))
5272 return NETDEV_TX_OK;
5273
5274 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5275 }
5276
5277 /**
5278 * igb_tx_timeout - Respond to a Tx Hang
5279 * @netdev: network interface device structure
5280 **/
5281 static void igb_tx_timeout(struct net_device *netdev)
5282 {
5283 struct igb_adapter *adapter = netdev_priv(netdev);
5284 struct e1000_hw *hw = &adapter->hw;
5285
5286 /* Do the reset outside of interrupt context */
5287 adapter->tx_timeout_count++;
5288
5289 if (hw->mac.type >= e1000_82580)
5290 hw->dev_spec._82575.global_device_reset = true;
5291
5292 schedule_work(&adapter->reset_task);
5293 wr32(E1000_EICS,
5294 (adapter->eims_enable_mask & ~adapter->eims_other));
5295 }
5296
5297 static void igb_reset_task(struct work_struct *work)
5298 {
5299 struct igb_adapter *adapter;
5300 adapter = container_of(work, struct igb_adapter, reset_task);
5301
5302 igb_dump(adapter);
5303 netdev_err(adapter->netdev, "Reset adapter\n");
5304 igb_reinit_locked(adapter);
5305 }
5306
5307 /**
5308 * igb_get_stats64 - Get System Network Statistics
5309 * @netdev: network interface device structure
5310 * @stats: rtnl_link_stats64 pointer
5311 **/
5312 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5313 struct rtnl_link_stats64 *stats)
5314 {
5315 struct igb_adapter *adapter = netdev_priv(netdev);
5316
5317 spin_lock(&adapter->stats64_lock);
5318 igb_update_stats(adapter, &adapter->stats64);
5319 memcpy(stats, &adapter->stats64, sizeof(*stats));
5320 spin_unlock(&adapter->stats64_lock);
5321
5322 return stats;
5323 }
5324
5325 /**
5326 * igb_change_mtu - Change the Maximum Transfer Unit
5327 * @netdev: network interface device structure
5328 * @new_mtu: new value for maximum frame size
5329 *
5330 * Returns 0 on success, negative on failure
5331 **/
5332 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5333 {
5334 struct igb_adapter *adapter = netdev_priv(netdev);
5335 struct pci_dev *pdev = adapter->pdev;
5336 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5337
5338 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5339 dev_err(&pdev->dev, "Invalid MTU setting\n");
5340 return -EINVAL;
5341 }
5342
5343 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5344 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5345 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5346 return -EINVAL;
5347 }
5348
5349 /* adjust max frame to be at least the size of a standard frame */
5350 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5351 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5352
5353 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5354 usleep_range(1000, 2000);
5355
5356 /* igb_down has a dependency on max_frame_size */
5357 adapter->max_frame_size = max_frame;
5358
5359 if (netif_running(netdev))
5360 igb_down(adapter);
5361
5362 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5363 netdev->mtu, new_mtu);
5364 netdev->mtu = new_mtu;
5365
5366 if (netif_running(netdev))
5367 igb_up(adapter);
5368 else
5369 igb_reset(adapter);
5370
5371 clear_bit(__IGB_RESETTING, &adapter->state);
5372
5373 return 0;
5374 }
5375
5376 /**
5377 * igb_update_stats - Update the board statistics counters
5378 * @adapter: board private structure
5379 **/
5380 void igb_update_stats(struct igb_adapter *adapter,
5381 struct rtnl_link_stats64 *net_stats)
5382 {
5383 struct e1000_hw *hw = &adapter->hw;
5384 struct pci_dev *pdev = adapter->pdev;
5385 u32 reg, mpc;
5386 int i;
5387 u64 bytes, packets;
5388 unsigned int start;
5389 u64 _bytes, _packets;
5390
5391 /* Prevent stats update while adapter is being reset, or if the pci
5392 * connection is down.
5393 */
5394 if (adapter->link_speed == 0)
5395 return;
5396 if (pci_channel_offline(pdev))
5397 return;
5398
5399 bytes = 0;
5400 packets = 0;
5401
5402 rcu_read_lock();
5403 for (i = 0; i < adapter->num_rx_queues; i++) {
5404 struct igb_ring *ring = adapter->rx_ring[i];
5405 u32 rqdpc = rd32(E1000_RQDPC(i));
5406 if (hw->mac.type >= e1000_i210)
5407 wr32(E1000_RQDPC(i), 0);
5408
5409 if (rqdpc) {
5410 ring->rx_stats.drops += rqdpc;
5411 net_stats->rx_fifo_errors += rqdpc;
5412 }
5413
5414 do {
5415 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5416 _bytes = ring->rx_stats.bytes;
5417 _packets = ring->rx_stats.packets;
5418 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5419 bytes += _bytes;
5420 packets += _packets;
5421 }
5422
5423 net_stats->rx_bytes = bytes;
5424 net_stats->rx_packets = packets;
5425
5426 bytes = 0;
5427 packets = 0;
5428 for (i = 0; i < adapter->num_tx_queues; i++) {
5429 struct igb_ring *ring = adapter->tx_ring[i];
5430 do {
5431 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5432 _bytes = ring->tx_stats.bytes;
5433 _packets = ring->tx_stats.packets;
5434 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5435 bytes += _bytes;
5436 packets += _packets;
5437 }
5438 net_stats->tx_bytes = bytes;
5439 net_stats->tx_packets = packets;
5440 rcu_read_unlock();
5441
5442 /* read stats registers */
5443 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5444 adapter->stats.gprc += rd32(E1000_GPRC);
5445 adapter->stats.gorc += rd32(E1000_GORCL);
5446 rd32(E1000_GORCH); /* clear GORCL */
5447 adapter->stats.bprc += rd32(E1000_BPRC);
5448 adapter->stats.mprc += rd32(E1000_MPRC);
5449 adapter->stats.roc += rd32(E1000_ROC);
5450
5451 adapter->stats.prc64 += rd32(E1000_PRC64);
5452 adapter->stats.prc127 += rd32(E1000_PRC127);
5453 adapter->stats.prc255 += rd32(E1000_PRC255);
5454 adapter->stats.prc511 += rd32(E1000_PRC511);
5455 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5456 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5457 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5458 adapter->stats.sec += rd32(E1000_SEC);
5459
5460 mpc = rd32(E1000_MPC);
5461 adapter->stats.mpc += mpc;
5462 net_stats->rx_fifo_errors += mpc;
5463 adapter->stats.scc += rd32(E1000_SCC);
5464 adapter->stats.ecol += rd32(E1000_ECOL);
5465 adapter->stats.mcc += rd32(E1000_MCC);
5466 adapter->stats.latecol += rd32(E1000_LATECOL);
5467 adapter->stats.dc += rd32(E1000_DC);
5468 adapter->stats.rlec += rd32(E1000_RLEC);
5469 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5470 adapter->stats.xontxc += rd32(E1000_XONTXC);
5471 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5472 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5473 adapter->stats.fcruc += rd32(E1000_FCRUC);
5474 adapter->stats.gptc += rd32(E1000_GPTC);
5475 adapter->stats.gotc += rd32(E1000_GOTCL);
5476 rd32(E1000_GOTCH); /* clear GOTCL */
5477 adapter->stats.rnbc += rd32(E1000_RNBC);
5478 adapter->stats.ruc += rd32(E1000_RUC);
5479 adapter->stats.rfc += rd32(E1000_RFC);
5480 adapter->stats.rjc += rd32(E1000_RJC);
5481 adapter->stats.tor += rd32(E1000_TORH);
5482 adapter->stats.tot += rd32(E1000_TOTH);
5483 adapter->stats.tpr += rd32(E1000_TPR);
5484
5485 adapter->stats.ptc64 += rd32(E1000_PTC64);
5486 adapter->stats.ptc127 += rd32(E1000_PTC127);
5487 adapter->stats.ptc255 += rd32(E1000_PTC255);
5488 adapter->stats.ptc511 += rd32(E1000_PTC511);
5489 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5490 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5491
5492 adapter->stats.mptc += rd32(E1000_MPTC);
5493 adapter->stats.bptc += rd32(E1000_BPTC);
5494
5495 adapter->stats.tpt += rd32(E1000_TPT);
5496 adapter->stats.colc += rd32(E1000_COLC);
5497
5498 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5499 /* read internal phy specific stats */
5500 reg = rd32(E1000_CTRL_EXT);
5501 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5502 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5503
5504 /* this stat has invalid values on i210/i211 */
5505 if ((hw->mac.type != e1000_i210) &&
5506 (hw->mac.type != e1000_i211))
5507 adapter->stats.tncrs += rd32(E1000_TNCRS);
5508 }
5509
5510 adapter->stats.tsctc += rd32(E1000_TSCTC);
5511 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5512
5513 adapter->stats.iac += rd32(E1000_IAC);
5514 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5515 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5516 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5517 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5518 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5519 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5520 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5521 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5522
5523 /* Fill out the OS statistics structure */
5524 net_stats->multicast = adapter->stats.mprc;
5525 net_stats->collisions = adapter->stats.colc;
5526
5527 /* Rx Errors */
5528
5529 /* RLEC on some newer hardware can be incorrect so build
5530 * our own version based on RUC and ROC
5531 */
5532 net_stats->rx_errors = adapter->stats.rxerrc +
5533 adapter->stats.crcerrs + adapter->stats.algnerrc +
5534 adapter->stats.ruc + adapter->stats.roc +
5535 adapter->stats.cexterr;
5536 net_stats->rx_length_errors = adapter->stats.ruc +
5537 adapter->stats.roc;
5538 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5539 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5540 net_stats->rx_missed_errors = adapter->stats.mpc;
5541
5542 /* Tx Errors */
5543 net_stats->tx_errors = adapter->stats.ecol +
5544 adapter->stats.latecol;
5545 net_stats->tx_aborted_errors = adapter->stats.ecol;
5546 net_stats->tx_window_errors = adapter->stats.latecol;
5547 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5548
5549 /* Tx Dropped needs to be maintained elsewhere */
5550
5551 /* Management Stats */
5552 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5553 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5554 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5555
5556 /* OS2BMC Stats */
5557 reg = rd32(E1000_MANC);
5558 if (reg & E1000_MANC_EN_BMC2OS) {
5559 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5560 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5561 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5562 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5563 }
5564 }
5565
5566 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5567 {
5568 struct e1000_hw *hw = &adapter->hw;
5569 struct ptp_clock_event event;
5570 struct timespec64 ts;
5571 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5572
5573 if (tsicr & TSINTR_SYS_WRAP) {
5574 event.type = PTP_CLOCK_PPS;
5575 if (adapter->ptp_caps.pps)
5576 ptp_clock_event(adapter->ptp_clock, &event);
5577 else
5578 dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5579 ack |= TSINTR_SYS_WRAP;
5580 }
5581
5582 if (tsicr & E1000_TSICR_TXTS) {
5583 /* retrieve hardware timestamp */
5584 schedule_work(&adapter->ptp_tx_work);
5585 ack |= E1000_TSICR_TXTS;
5586 }
5587
5588 if (tsicr & TSINTR_TT0) {
5589 spin_lock(&adapter->tmreg_lock);
5590 ts = timespec64_add(adapter->perout[0].start,
5591 adapter->perout[0].period);
5592 /* u32 conversion of tv_sec is safe until y2106 */
5593 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5594 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5595 tsauxc = rd32(E1000_TSAUXC);
5596 tsauxc |= TSAUXC_EN_TT0;
5597 wr32(E1000_TSAUXC, tsauxc);
5598 adapter->perout[0].start = ts;
5599 spin_unlock(&adapter->tmreg_lock);
5600 ack |= TSINTR_TT0;
5601 }
5602
5603 if (tsicr & TSINTR_TT1) {
5604 spin_lock(&adapter->tmreg_lock);
5605 ts = timespec64_add(adapter->perout[1].start,
5606 adapter->perout[1].period);
5607 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5608 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5609 tsauxc = rd32(E1000_TSAUXC);
5610 tsauxc |= TSAUXC_EN_TT1;
5611 wr32(E1000_TSAUXC, tsauxc);
5612 adapter->perout[1].start = ts;
5613 spin_unlock(&adapter->tmreg_lock);
5614 ack |= TSINTR_TT1;
5615 }
5616
5617 if (tsicr & TSINTR_AUTT0) {
5618 nsec = rd32(E1000_AUXSTMPL0);
5619 sec = rd32(E1000_AUXSTMPH0);
5620 event.type = PTP_CLOCK_EXTTS;
5621 event.index = 0;
5622 event.timestamp = sec * 1000000000ULL + nsec;
5623 ptp_clock_event(adapter->ptp_clock, &event);
5624 ack |= TSINTR_AUTT0;
5625 }
5626
5627 if (tsicr & TSINTR_AUTT1) {
5628 nsec = rd32(E1000_AUXSTMPL1);
5629 sec = rd32(E1000_AUXSTMPH1);
5630 event.type = PTP_CLOCK_EXTTS;
5631 event.index = 1;
5632 event.timestamp = sec * 1000000000ULL + nsec;
5633 ptp_clock_event(adapter->ptp_clock, &event);
5634 ack |= TSINTR_AUTT1;
5635 }
5636
5637 /* acknowledge the interrupts */
5638 wr32(E1000_TSICR, ack);
5639 }
5640
5641 static irqreturn_t igb_msix_other(int irq, void *data)
5642 {
5643 struct igb_adapter *adapter = data;
5644 struct e1000_hw *hw = &adapter->hw;
5645 u32 icr = rd32(E1000_ICR);
5646 /* reading ICR causes bit 31 of EICR to be cleared */
5647
5648 if (icr & E1000_ICR_DRSTA)
5649 schedule_work(&adapter->reset_task);
5650
5651 if (icr & E1000_ICR_DOUTSYNC) {
5652 /* HW is reporting DMA is out of sync */
5653 adapter->stats.doosync++;
5654 /* The DMA Out of Sync is also indication of a spoof event
5655 * in IOV mode. Check the Wrong VM Behavior register to
5656 * see if it is really a spoof event.
5657 */
5658 igb_check_wvbr(adapter);
5659 }
5660
5661 /* Check for a mailbox event */
5662 if (icr & E1000_ICR_VMMB)
5663 igb_msg_task(adapter);
5664
5665 if (icr & E1000_ICR_LSC) {
5666 hw->mac.get_link_status = 1;
5667 /* guard against interrupt when we're going down */
5668 if (!test_bit(__IGB_DOWN, &adapter->state))
5669 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5670 }
5671
5672 if (icr & E1000_ICR_TS)
5673 igb_tsync_interrupt(adapter);
5674
5675 wr32(E1000_EIMS, adapter->eims_other);
5676
5677 return IRQ_HANDLED;
5678 }
5679
5680 static void igb_write_itr(struct igb_q_vector *q_vector)
5681 {
5682 struct igb_adapter *adapter = q_vector->adapter;
5683 u32 itr_val = q_vector->itr_val & 0x7FFC;
5684
5685 if (!q_vector->set_itr)
5686 return;
5687
5688 if (!itr_val)
5689 itr_val = 0x4;
5690
5691 if (adapter->hw.mac.type == e1000_82575)
5692 itr_val |= itr_val << 16;
5693 else
5694 itr_val |= E1000_EITR_CNT_IGNR;
5695
5696 writel(itr_val, q_vector->itr_register);
5697 q_vector->set_itr = 0;
5698 }
5699
5700 static irqreturn_t igb_msix_ring(int irq, void *data)
5701 {
5702 struct igb_q_vector *q_vector = data;
5703
5704 /* Write the ITR value calculated from the previous interrupt. */
5705 igb_write_itr(q_vector);
5706
5707 napi_schedule(&q_vector->napi);
5708
5709 return IRQ_HANDLED;
5710 }
5711
5712 #ifdef CONFIG_IGB_DCA
5713 static void igb_update_tx_dca(struct igb_adapter *adapter,
5714 struct igb_ring *tx_ring,
5715 int cpu)
5716 {
5717 struct e1000_hw *hw = &adapter->hw;
5718 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5719
5720 if (hw->mac.type != e1000_82575)
5721 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5722
5723 /* We can enable relaxed ordering for reads, but not writes when
5724 * DCA is enabled. This is due to a known issue in some chipsets
5725 * which will cause the DCA tag to be cleared.
5726 */
5727 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5728 E1000_DCA_TXCTRL_DATA_RRO_EN |
5729 E1000_DCA_TXCTRL_DESC_DCA_EN;
5730
5731 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5732 }
5733
5734 static void igb_update_rx_dca(struct igb_adapter *adapter,
5735 struct igb_ring *rx_ring,
5736 int cpu)
5737 {
5738 struct e1000_hw *hw = &adapter->hw;
5739 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5740
5741 if (hw->mac.type != e1000_82575)
5742 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5743
5744 /* We can enable relaxed ordering for reads, but not writes when
5745 * DCA is enabled. This is due to a known issue in some chipsets
5746 * which will cause the DCA tag to be cleared.
5747 */
5748 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5749 E1000_DCA_RXCTRL_DESC_DCA_EN;
5750
5751 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5752 }
5753
5754 static void igb_update_dca(struct igb_q_vector *q_vector)
5755 {
5756 struct igb_adapter *adapter = q_vector->adapter;
5757 int cpu = get_cpu();
5758
5759 if (q_vector->cpu == cpu)
5760 goto out_no_update;
5761
5762 if (q_vector->tx.ring)
5763 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5764
5765 if (q_vector->rx.ring)
5766 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5767
5768 q_vector->cpu = cpu;
5769 out_no_update:
5770 put_cpu();
5771 }
5772
5773 static void igb_setup_dca(struct igb_adapter *adapter)
5774 {
5775 struct e1000_hw *hw = &adapter->hw;
5776 int i;
5777
5778 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5779 return;
5780
5781 /* Always use CB2 mode, difference is masked in the CB driver. */
5782 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5783
5784 for (i = 0; i < adapter->num_q_vectors; i++) {
5785 adapter->q_vector[i]->cpu = -1;
5786 igb_update_dca(adapter->q_vector[i]);
5787 }
5788 }
5789
5790 static int __igb_notify_dca(struct device *dev, void *data)
5791 {
5792 struct net_device *netdev = dev_get_drvdata(dev);
5793 struct igb_adapter *adapter = netdev_priv(netdev);
5794 struct pci_dev *pdev = adapter->pdev;
5795 struct e1000_hw *hw = &adapter->hw;
5796 unsigned long event = *(unsigned long *)data;
5797
5798 switch (event) {
5799 case DCA_PROVIDER_ADD:
5800 /* if already enabled, don't do it again */
5801 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5802 break;
5803 if (dca_add_requester(dev) == 0) {
5804 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5805 dev_info(&pdev->dev, "DCA enabled\n");
5806 igb_setup_dca(adapter);
5807 break;
5808 }
5809 /* Fall Through since DCA is disabled. */
5810 case DCA_PROVIDER_REMOVE:
5811 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5812 /* without this a class_device is left
5813 * hanging around in the sysfs model
5814 */
5815 dca_remove_requester(dev);
5816 dev_info(&pdev->dev, "DCA disabled\n");
5817 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5818 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5819 }
5820 break;
5821 }
5822
5823 return 0;
5824 }
5825
5826 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5827 void *p)
5828 {
5829 int ret_val;
5830
5831 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5832 __igb_notify_dca);
5833
5834 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5835 }
5836 #endif /* CONFIG_IGB_DCA */
5837
5838 #ifdef CONFIG_PCI_IOV
5839 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5840 {
5841 unsigned char mac_addr[ETH_ALEN];
5842
5843 eth_zero_addr(mac_addr);
5844 igb_set_vf_mac(adapter, vf, mac_addr);
5845
5846 /* By default spoof check is enabled for all VFs */
5847 adapter->vf_data[vf].spoofchk_enabled = true;
5848
5849 return 0;
5850 }
5851
5852 #endif
5853 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5854 {
5855 struct e1000_hw *hw = &adapter->hw;
5856 u32 ping;
5857 int i;
5858
5859 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5860 ping = E1000_PF_CONTROL_MSG;
5861 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5862 ping |= E1000_VT_MSGTYPE_CTS;
5863 igb_write_mbx(hw, &ping, 1, i);
5864 }
5865 }
5866
5867 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5868 {
5869 struct e1000_hw *hw = &adapter->hw;
5870 u32 vmolr = rd32(E1000_VMOLR(vf));
5871 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5872
5873 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5874 IGB_VF_FLAG_MULTI_PROMISC);
5875 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5876
5877 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5878 vmolr |= E1000_VMOLR_MPME;
5879 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5880 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5881 } else {
5882 /* if we have hashes and we are clearing a multicast promisc
5883 * flag we need to write the hashes to the MTA as this step
5884 * was previously skipped
5885 */
5886 if (vf_data->num_vf_mc_hashes > 30) {
5887 vmolr |= E1000_VMOLR_MPME;
5888 } else if (vf_data->num_vf_mc_hashes) {
5889 int j;
5890
5891 vmolr |= E1000_VMOLR_ROMPE;
5892 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5893 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5894 }
5895 }
5896
5897 wr32(E1000_VMOLR(vf), vmolr);
5898
5899 /* there are flags left unprocessed, likely not supported */
5900 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5901 return -EINVAL;
5902
5903 return 0;
5904 }
5905
5906 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5907 u32 *msgbuf, u32 vf)
5908 {
5909 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5910 u16 *hash_list = (u16 *)&msgbuf[1];
5911 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5912 int i;
5913
5914 /* salt away the number of multicast addresses assigned
5915 * to this VF for later use to restore when the PF multi cast
5916 * list changes
5917 */
5918 vf_data->num_vf_mc_hashes = n;
5919
5920 /* only up to 30 hash values supported */
5921 if (n > 30)
5922 n = 30;
5923
5924 /* store the hashes for later use */
5925 for (i = 0; i < n; i++)
5926 vf_data->vf_mc_hashes[i] = hash_list[i];
5927
5928 /* Flush and reset the mta with the new values */
5929 igb_set_rx_mode(adapter->netdev);
5930
5931 return 0;
5932 }
5933
5934 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5935 {
5936 struct e1000_hw *hw = &adapter->hw;
5937 struct vf_data_storage *vf_data;
5938 int i, j;
5939
5940 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5941 u32 vmolr = rd32(E1000_VMOLR(i));
5942
5943 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5944
5945 vf_data = &adapter->vf_data[i];
5946
5947 if ((vf_data->num_vf_mc_hashes > 30) ||
5948 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5949 vmolr |= E1000_VMOLR_MPME;
5950 } else if (vf_data->num_vf_mc_hashes) {
5951 vmolr |= E1000_VMOLR_ROMPE;
5952 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5953 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5954 }
5955 wr32(E1000_VMOLR(i), vmolr);
5956 }
5957 }
5958
5959 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5960 {
5961 struct e1000_hw *hw = &adapter->hw;
5962 u32 pool_mask, vlvf_mask, i;
5963
5964 /* create mask for VF and other pools */
5965 pool_mask = E1000_VLVF_POOLSEL_MASK;
5966 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
5967
5968 /* drop PF from pool bits */
5969 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
5970 adapter->vfs_allocated_count);
5971
5972 /* Find the vlan filter for this id */
5973 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
5974 u32 vlvf = rd32(E1000_VLVF(i));
5975 u32 vfta_mask, vid, vfta;
5976
5977 /* remove the vf from the pool */
5978 if (!(vlvf & vlvf_mask))
5979 continue;
5980
5981 /* clear out bit from VLVF */
5982 vlvf ^= vlvf_mask;
5983
5984 /* if other pools are present, just remove ourselves */
5985 if (vlvf & pool_mask)
5986 goto update_vlvfb;
5987
5988 /* if PF is present, leave VFTA */
5989 if (vlvf & E1000_VLVF_POOLSEL_MASK)
5990 goto update_vlvf;
5991
5992 vid = vlvf & E1000_VLVF_VLANID_MASK;
5993 vfta_mask = BIT(vid % 32);
5994
5995 /* clear bit from VFTA */
5996 vfta = adapter->shadow_vfta[vid / 32];
5997 if (vfta & vfta_mask)
5998 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
5999 update_vlvf:
6000 /* clear pool selection enable */
6001 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6002 vlvf &= E1000_VLVF_POOLSEL_MASK;
6003 else
6004 vlvf = 0;
6005 update_vlvfb:
6006 /* clear pool bits */
6007 wr32(E1000_VLVF(i), vlvf);
6008 }
6009 }
6010
6011 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6012 {
6013 u32 vlvf;
6014 int idx;
6015
6016 /* short cut the special case */
6017 if (vlan == 0)
6018 return 0;
6019
6020 /* Search for the VLAN id in the VLVF entries */
6021 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6022 vlvf = rd32(E1000_VLVF(idx));
6023 if ((vlvf & VLAN_VID_MASK) == vlan)
6024 break;
6025 }
6026
6027 return idx;
6028 }
6029
6030 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6031 {
6032 struct e1000_hw *hw = &adapter->hw;
6033 u32 bits, pf_id;
6034 int idx;
6035
6036 idx = igb_find_vlvf_entry(hw, vid);
6037 if (!idx)
6038 return;
6039
6040 /* See if any other pools are set for this VLAN filter
6041 * entry other than the PF.
6042 */
6043 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6044 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6045 bits &= rd32(E1000_VLVF(idx));
6046
6047 /* Disable the filter so this falls into the default pool. */
6048 if (!bits) {
6049 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6050 wr32(E1000_VLVF(idx), BIT(pf_id));
6051 else
6052 wr32(E1000_VLVF(idx), 0);
6053 }
6054 }
6055
6056 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6057 bool add, u32 vf)
6058 {
6059 int pf_id = adapter->vfs_allocated_count;
6060 struct e1000_hw *hw = &adapter->hw;
6061 int err;
6062
6063 /* If VLAN overlaps with one the PF is currently monitoring make
6064 * sure that we are able to allocate a VLVF entry. This may be
6065 * redundant but it guarantees PF will maintain visibility to
6066 * the VLAN.
6067 */
6068 if (add && test_bit(vid, adapter->active_vlans)) {
6069 err = igb_vfta_set(hw, vid, pf_id, true, false);
6070 if (err)
6071 return err;
6072 }
6073
6074 err = igb_vfta_set(hw, vid, vf, add, false);
6075
6076 if (add && !err)
6077 return err;
6078
6079 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6080 * we may need to drop the PF pool bit in order to allow us to free
6081 * up the VLVF resources.
6082 */
6083 if (test_bit(vid, adapter->active_vlans) ||
6084 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6085 igb_update_pf_vlvf(adapter, vid);
6086
6087 return err;
6088 }
6089
6090 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6091 {
6092 struct e1000_hw *hw = &adapter->hw;
6093
6094 if (vid)
6095 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6096 else
6097 wr32(E1000_VMVIR(vf), 0);
6098 }
6099
6100 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6101 u16 vlan, u8 qos)
6102 {
6103 int err;
6104
6105 err = igb_set_vf_vlan(adapter, vlan, true, vf);
6106 if (err)
6107 return err;
6108
6109 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6110 igb_set_vmolr(adapter, vf, !vlan);
6111
6112 /* revoke access to previous VLAN */
6113 if (vlan != adapter->vf_data[vf].pf_vlan)
6114 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6115 false, vf);
6116
6117 adapter->vf_data[vf].pf_vlan = vlan;
6118 adapter->vf_data[vf].pf_qos = qos;
6119 igb_set_vf_vlan_strip(adapter, vf, true);
6120 dev_info(&adapter->pdev->dev,
6121 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6122 if (test_bit(__IGB_DOWN, &adapter->state)) {
6123 dev_warn(&adapter->pdev->dev,
6124 "The VF VLAN has been set, but the PF device is not up.\n");
6125 dev_warn(&adapter->pdev->dev,
6126 "Bring the PF device up before attempting to use the VF device.\n");
6127 }
6128
6129 return err;
6130 }
6131
6132 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6133 {
6134 /* Restore tagless access via VLAN 0 */
6135 igb_set_vf_vlan(adapter, 0, true, vf);
6136
6137 igb_set_vmvir(adapter, 0, vf);
6138 igb_set_vmolr(adapter, vf, true);
6139
6140 /* Remove any PF assigned VLAN */
6141 if (adapter->vf_data[vf].pf_vlan)
6142 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6143 false, vf);
6144
6145 adapter->vf_data[vf].pf_vlan = 0;
6146 adapter->vf_data[vf].pf_qos = 0;
6147 igb_set_vf_vlan_strip(adapter, vf, false);
6148
6149 return 0;
6150 }
6151
6152 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6153 int vf, u16 vlan, u8 qos)
6154 {
6155 struct igb_adapter *adapter = netdev_priv(netdev);
6156
6157 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6158 return -EINVAL;
6159
6160 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6161 igb_disable_port_vlan(adapter, vf);
6162 }
6163
6164 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6165 {
6166 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6167 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6168 int ret;
6169
6170 if (adapter->vf_data[vf].pf_vlan)
6171 return -1;
6172
6173 /* VLAN 0 is a special case, don't allow it to be removed */
6174 if (!vid && !add)
6175 return 0;
6176
6177 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6178 if (!ret)
6179 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6180 return ret;
6181 }
6182
6183 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6184 {
6185 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6186
6187 /* clear flags - except flag that indicates PF has set the MAC */
6188 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6189 vf_data->last_nack = jiffies;
6190
6191 /* reset vlans for device */
6192 igb_clear_vf_vfta(adapter, vf);
6193 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6194 igb_set_vmvir(adapter, vf_data->pf_vlan |
6195 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6196 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6197 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6198
6199 /* reset multicast table array for vf */
6200 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6201
6202 /* Flush and reset the mta with the new values */
6203 igb_set_rx_mode(adapter->netdev);
6204 }
6205
6206 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6207 {
6208 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6209
6210 /* clear mac address as we were hotplug removed/added */
6211 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6212 eth_zero_addr(vf_mac);
6213
6214 /* process remaining reset events */
6215 igb_vf_reset(adapter, vf);
6216 }
6217
6218 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6219 {
6220 struct e1000_hw *hw = &adapter->hw;
6221 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6222 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6223 u32 reg, msgbuf[3];
6224 u8 *addr = (u8 *)(&msgbuf[1]);
6225
6226 /* process all the same items cleared in a function level reset */
6227 igb_vf_reset(adapter, vf);
6228
6229 /* set vf mac address */
6230 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6231
6232 /* enable transmit and receive for vf */
6233 reg = rd32(E1000_VFTE);
6234 wr32(E1000_VFTE, reg | BIT(vf));
6235 reg = rd32(E1000_VFRE);
6236 wr32(E1000_VFRE, reg | BIT(vf));
6237
6238 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6239
6240 /* reply to reset with ack and vf mac address */
6241 if (!is_zero_ether_addr(vf_mac)) {
6242 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6243 memcpy(addr, vf_mac, ETH_ALEN);
6244 } else {
6245 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6246 }
6247 igb_write_mbx(hw, msgbuf, 3, vf);
6248 }
6249
6250 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6251 {
6252 /* The VF MAC Address is stored in a packed array of bytes
6253 * starting at the second 32 bit word of the msg array
6254 */
6255 unsigned char *addr = (char *)&msg[1];
6256 int err = -1;
6257
6258 if (is_valid_ether_addr(addr))
6259 err = igb_set_vf_mac(adapter, vf, addr);
6260
6261 return err;
6262 }
6263
6264 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6265 {
6266 struct e1000_hw *hw = &adapter->hw;
6267 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6268 u32 msg = E1000_VT_MSGTYPE_NACK;
6269
6270 /* if device isn't clear to send it shouldn't be reading either */
6271 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6272 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6273 igb_write_mbx(hw, &msg, 1, vf);
6274 vf_data->last_nack = jiffies;
6275 }
6276 }
6277
6278 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6279 {
6280 struct pci_dev *pdev = adapter->pdev;
6281 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6282 struct e1000_hw *hw = &adapter->hw;
6283 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6284 s32 retval;
6285
6286 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6287
6288 if (retval) {
6289 /* if receive failed revoke VF CTS stats and restart init */
6290 dev_err(&pdev->dev, "Error receiving message from VF\n");
6291 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6292 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6293 return;
6294 goto out;
6295 }
6296
6297 /* this is a message we already processed, do nothing */
6298 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6299 return;
6300
6301 /* until the vf completes a reset it should not be
6302 * allowed to start any configuration.
6303 */
6304 if (msgbuf[0] == E1000_VF_RESET) {
6305 igb_vf_reset_msg(adapter, vf);
6306 return;
6307 }
6308
6309 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6310 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6311 return;
6312 retval = -1;
6313 goto out;
6314 }
6315
6316 switch ((msgbuf[0] & 0xFFFF)) {
6317 case E1000_VF_SET_MAC_ADDR:
6318 retval = -EINVAL;
6319 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6320 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6321 else
6322 dev_warn(&pdev->dev,
6323 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6324 vf);
6325 break;
6326 case E1000_VF_SET_PROMISC:
6327 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6328 break;
6329 case E1000_VF_SET_MULTICAST:
6330 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6331 break;
6332 case E1000_VF_SET_LPE:
6333 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6334 break;
6335 case E1000_VF_SET_VLAN:
6336 retval = -1;
6337 if (vf_data->pf_vlan)
6338 dev_warn(&pdev->dev,
6339 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6340 vf);
6341 else
6342 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6343 break;
6344 default:
6345 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6346 retval = -1;
6347 break;
6348 }
6349
6350 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6351 out:
6352 /* notify the VF of the results of what it sent us */
6353 if (retval)
6354 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6355 else
6356 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6357
6358 igb_write_mbx(hw, msgbuf, 1, vf);
6359 }
6360
6361 static void igb_msg_task(struct igb_adapter *adapter)
6362 {
6363 struct e1000_hw *hw = &adapter->hw;
6364 u32 vf;
6365
6366 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6367 /* process any reset requests */
6368 if (!igb_check_for_rst(hw, vf))
6369 igb_vf_reset_event(adapter, vf);
6370
6371 /* process any messages pending */
6372 if (!igb_check_for_msg(hw, vf))
6373 igb_rcv_msg_from_vf(adapter, vf);
6374
6375 /* process any acks */
6376 if (!igb_check_for_ack(hw, vf))
6377 igb_rcv_ack_from_vf(adapter, vf);
6378 }
6379 }
6380
6381 /**
6382 * igb_set_uta - Set unicast filter table address
6383 * @adapter: board private structure
6384 * @set: boolean indicating if we are setting or clearing bits
6385 *
6386 * The unicast table address is a register array of 32-bit registers.
6387 * The table is meant to be used in a way similar to how the MTA is used
6388 * however due to certain limitations in the hardware it is necessary to
6389 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6390 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6391 **/
6392 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6393 {
6394 struct e1000_hw *hw = &adapter->hw;
6395 u32 uta = set ? ~0 : 0;
6396 int i;
6397
6398 /* we only need to do this if VMDq is enabled */
6399 if (!adapter->vfs_allocated_count)
6400 return;
6401
6402 for (i = hw->mac.uta_reg_count; i--;)
6403 array_wr32(E1000_UTA, i, uta);
6404 }
6405
6406 /**
6407 * igb_intr_msi - Interrupt Handler
6408 * @irq: interrupt number
6409 * @data: pointer to a network interface device structure
6410 **/
6411 static irqreturn_t igb_intr_msi(int irq, void *data)
6412 {
6413 struct igb_adapter *adapter = data;
6414 struct igb_q_vector *q_vector = adapter->q_vector[0];
6415 struct e1000_hw *hw = &adapter->hw;
6416 /* read ICR disables interrupts using IAM */
6417 u32 icr = rd32(E1000_ICR);
6418
6419 igb_write_itr(q_vector);
6420
6421 if (icr & E1000_ICR_DRSTA)
6422 schedule_work(&adapter->reset_task);
6423
6424 if (icr & E1000_ICR_DOUTSYNC) {
6425 /* HW is reporting DMA is out of sync */
6426 adapter->stats.doosync++;
6427 }
6428
6429 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6430 hw->mac.get_link_status = 1;
6431 if (!test_bit(__IGB_DOWN, &adapter->state))
6432 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6433 }
6434
6435 if (icr & E1000_ICR_TS)
6436 igb_tsync_interrupt(adapter);
6437
6438 napi_schedule(&q_vector->napi);
6439
6440 return IRQ_HANDLED;
6441 }
6442
6443 /**
6444 * igb_intr - Legacy Interrupt Handler
6445 * @irq: interrupt number
6446 * @data: pointer to a network interface device structure
6447 **/
6448 static irqreturn_t igb_intr(int irq, void *data)
6449 {
6450 struct igb_adapter *adapter = data;
6451 struct igb_q_vector *q_vector = adapter->q_vector[0];
6452 struct e1000_hw *hw = &adapter->hw;
6453 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6454 * need for the IMC write
6455 */
6456 u32 icr = rd32(E1000_ICR);
6457
6458 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6459 * not set, then the adapter didn't send an interrupt
6460 */
6461 if (!(icr & E1000_ICR_INT_ASSERTED))
6462 return IRQ_NONE;
6463
6464 igb_write_itr(q_vector);
6465
6466 if (icr & E1000_ICR_DRSTA)
6467 schedule_work(&adapter->reset_task);
6468
6469 if (icr & E1000_ICR_DOUTSYNC) {
6470 /* HW is reporting DMA is out of sync */
6471 adapter->stats.doosync++;
6472 }
6473
6474 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6475 hw->mac.get_link_status = 1;
6476 /* guard against interrupt when we're going down */
6477 if (!test_bit(__IGB_DOWN, &adapter->state))
6478 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6479 }
6480
6481 if (icr & E1000_ICR_TS)
6482 igb_tsync_interrupt(adapter);
6483
6484 napi_schedule(&q_vector->napi);
6485
6486 return IRQ_HANDLED;
6487 }
6488
6489 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6490 {
6491 struct igb_adapter *adapter = q_vector->adapter;
6492 struct e1000_hw *hw = &adapter->hw;
6493
6494 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6495 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6496 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6497 igb_set_itr(q_vector);
6498 else
6499 igb_update_ring_itr(q_vector);
6500 }
6501
6502 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6503 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6504 wr32(E1000_EIMS, q_vector->eims_value);
6505 else
6506 igb_irq_enable(adapter);
6507 }
6508 }
6509
6510 /**
6511 * igb_poll - NAPI Rx polling callback
6512 * @napi: napi polling structure
6513 * @budget: count of how many packets we should handle
6514 **/
6515 static int igb_poll(struct napi_struct *napi, int budget)
6516 {
6517 struct igb_q_vector *q_vector = container_of(napi,
6518 struct igb_q_vector,
6519 napi);
6520 bool clean_complete = true;
6521 int work_done = 0;
6522
6523 #ifdef CONFIG_IGB_DCA
6524 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6525 igb_update_dca(q_vector);
6526 #endif
6527 if (q_vector->tx.ring)
6528 clean_complete = igb_clean_tx_irq(q_vector, budget);
6529
6530 if (q_vector->rx.ring) {
6531 int cleaned = igb_clean_rx_irq(q_vector, budget);
6532
6533 work_done += cleaned;
6534 if (cleaned >= budget)
6535 clean_complete = false;
6536 }
6537
6538 /* If all work not completed, return budget and keep polling */
6539 if (!clean_complete)
6540 return budget;
6541
6542 /* If not enough Rx work done, exit the polling mode */
6543 napi_complete_done(napi, work_done);
6544 igb_ring_irq_enable(q_vector);
6545
6546 return 0;
6547 }
6548
6549 /**
6550 * igb_clean_tx_irq - Reclaim resources after transmit completes
6551 * @q_vector: pointer to q_vector containing needed info
6552 * @napi_budget: Used to determine if we are in netpoll
6553 *
6554 * returns true if ring is completely cleaned
6555 **/
6556 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6557 {
6558 struct igb_adapter *adapter = q_vector->adapter;
6559 struct igb_ring *tx_ring = q_vector->tx.ring;
6560 struct igb_tx_buffer *tx_buffer;
6561 union e1000_adv_tx_desc *tx_desc;
6562 unsigned int total_bytes = 0, total_packets = 0;
6563 unsigned int budget = q_vector->tx.work_limit;
6564 unsigned int i = tx_ring->next_to_clean;
6565
6566 if (test_bit(__IGB_DOWN, &adapter->state))
6567 return true;
6568
6569 tx_buffer = &tx_ring->tx_buffer_info[i];
6570 tx_desc = IGB_TX_DESC(tx_ring, i);
6571 i -= tx_ring->count;
6572
6573 do {
6574 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6575
6576 /* if next_to_watch is not set then there is no work pending */
6577 if (!eop_desc)
6578 break;
6579
6580 /* prevent any other reads prior to eop_desc */
6581 read_barrier_depends();
6582
6583 /* if DD is not set pending work has not been completed */
6584 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6585 break;
6586
6587 /* clear next_to_watch to prevent false hangs */
6588 tx_buffer->next_to_watch = NULL;
6589
6590 /* update the statistics for this packet */
6591 total_bytes += tx_buffer->bytecount;
6592 total_packets += tx_buffer->gso_segs;
6593
6594 /* free the skb */
6595 napi_consume_skb(tx_buffer->skb, napi_budget);
6596
6597 /* unmap skb header data */
6598 dma_unmap_single(tx_ring->dev,
6599 dma_unmap_addr(tx_buffer, dma),
6600 dma_unmap_len(tx_buffer, len),
6601 DMA_TO_DEVICE);
6602
6603 /* clear tx_buffer data */
6604 tx_buffer->skb = NULL;
6605 dma_unmap_len_set(tx_buffer, len, 0);
6606
6607 /* clear last DMA location and unmap remaining buffers */
6608 while (tx_desc != eop_desc) {
6609 tx_buffer++;
6610 tx_desc++;
6611 i++;
6612 if (unlikely(!i)) {
6613 i -= tx_ring->count;
6614 tx_buffer = tx_ring->tx_buffer_info;
6615 tx_desc = IGB_TX_DESC(tx_ring, 0);
6616 }
6617
6618 /* unmap any remaining paged data */
6619 if (dma_unmap_len(tx_buffer, len)) {
6620 dma_unmap_page(tx_ring->dev,
6621 dma_unmap_addr(tx_buffer, dma),
6622 dma_unmap_len(tx_buffer, len),
6623 DMA_TO_DEVICE);
6624 dma_unmap_len_set(tx_buffer, len, 0);
6625 }
6626 }
6627
6628 /* move us one more past the eop_desc for start of next pkt */
6629 tx_buffer++;
6630 tx_desc++;
6631 i++;
6632 if (unlikely(!i)) {
6633 i -= tx_ring->count;
6634 tx_buffer = tx_ring->tx_buffer_info;
6635 tx_desc = IGB_TX_DESC(tx_ring, 0);
6636 }
6637
6638 /* issue prefetch for next Tx descriptor */
6639 prefetch(tx_desc);
6640
6641 /* update budget accounting */
6642 budget--;
6643 } while (likely(budget));
6644
6645 netdev_tx_completed_queue(txring_txq(tx_ring),
6646 total_packets, total_bytes);
6647 i += tx_ring->count;
6648 tx_ring->next_to_clean = i;
6649 u64_stats_update_begin(&tx_ring->tx_syncp);
6650 tx_ring->tx_stats.bytes += total_bytes;
6651 tx_ring->tx_stats.packets += total_packets;
6652 u64_stats_update_end(&tx_ring->tx_syncp);
6653 q_vector->tx.total_bytes += total_bytes;
6654 q_vector->tx.total_packets += total_packets;
6655
6656 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6657 struct e1000_hw *hw = &adapter->hw;
6658
6659 /* Detect a transmit hang in hardware, this serializes the
6660 * check with the clearing of time_stamp and movement of i
6661 */
6662 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6663 if (tx_buffer->next_to_watch &&
6664 time_after(jiffies, tx_buffer->time_stamp +
6665 (adapter->tx_timeout_factor * HZ)) &&
6666 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6667
6668 /* detected Tx unit hang */
6669 dev_err(tx_ring->dev,
6670 "Detected Tx Unit Hang\n"
6671 " Tx Queue <%d>\n"
6672 " TDH <%x>\n"
6673 " TDT <%x>\n"
6674 " next_to_use <%x>\n"
6675 " next_to_clean <%x>\n"
6676 "buffer_info[next_to_clean]\n"
6677 " time_stamp <%lx>\n"
6678 " next_to_watch <%p>\n"
6679 " jiffies <%lx>\n"
6680 " desc.status <%x>\n",
6681 tx_ring->queue_index,
6682 rd32(E1000_TDH(tx_ring->reg_idx)),
6683 readl(tx_ring->tail),
6684 tx_ring->next_to_use,
6685 tx_ring->next_to_clean,
6686 tx_buffer->time_stamp,
6687 tx_buffer->next_to_watch,
6688 jiffies,
6689 tx_buffer->next_to_watch->wb.status);
6690 netif_stop_subqueue(tx_ring->netdev,
6691 tx_ring->queue_index);
6692
6693 /* we are about to reset, no point in enabling stuff */
6694 return true;
6695 }
6696 }
6697
6698 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6699 if (unlikely(total_packets &&
6700 netif_carrier_ok(tx_ring->netdev) &&
6701 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6702 /* Make sure that anybody stopping the queue after this
6703 * sees the new next_to_clean.
6704 */
6705 smp_mb();
6706 if (__netif_subqueue_stopped(tx_ring->netdev,
6707 tx_ring->queue_index) &&
6708 !(test_bit(__IGB_DOWN, &adapter->state))) {
6709 netif_wake_subqueue(tx_ring->netdev,
6710 tx_ring->queue_index);
6711
6712 u64_stats_update_begin(&tx_ring->tx_syncp);
6713 tx_ring->tx_stats.restart_queue++;
6714 u64_stats_update_end(&tx_ring->tx_syncp);
6715 }
6716 }
6717
6718 return !!budget;
6719 }
6720
6721 /**
6722 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6723 * @rx_ring: rx descriptor ring to store buffers on
6724 * @old_buff: donor buffer to have page reused
6725 *
6726 * Synchronizes page for reuse by the adapter
6727 **/
6728 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6729 struct igb_rx_buffer *old_buff)
6730 {
6731 struct igb_rx_buffer *new_buff;
6732 u16 nta = rx_ring->next_to_alloc;
6733
6734 new_buff = &rx_ring->rx_buffer_info[nta];
6735
6736 /* update, and store next to alloc */
6737 nta++;
6738 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6739
6740 /* transfer page from old buffer to new buffer */
6741 *new_buff = *old_buff;
6742
6743 /* sync the buffer for use by the device */
6744 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6745 old_buff->page_offset,
6746 IGB_RX_BUFSZ,
6747 DMA_FROM_DEVICE);
6748 }
6749
6750 static inline bool igb_page_is_reserved(struct page *page)
6751 {
6752 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6753 }
6754
6755 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6756 struct page *page,
6757 unsigned int truesize)
6758 {
6759 /* avoid re-using remote pages */
6760 if (unlikely(igb_page_is_reserved(page)))
6761 return false;
6762
6763 #if (PAGE_SIZE < 8192)
6764 /* if we are only owner of page we can reuse it */
6765 if (unlikely(page_count(page) != 1))
6766 return false;
6767
6768 /* flip page offset to other buffer */
6769 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6770 #else
6771 /* move offset up to the next cache line */
6772 rx_buffer->page_offset += truesize;
6773
6774 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6775 return false;
6776 #endif
6777
6778 /* Even if we own the page, we are not allowed to use atomic_set()
6779 * This would break get_page_unless_zero() users.
6780 */
6781 page_ref_inc(page);
6782
6783 return true;
6784 }
6785
6786 /**
6787 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6788 * @rx_ring: rx descriptor ring to transact packets on
6789 * @rx_buffer: buffer containing page to add
6790 * @rx_desc: descriptor containing length of buffer written by hardware
6791 * @skb: sk_buff to place the data into
6792 *
6793 * This function will add the data contained in rx_buffer->page to the skb.
6794 * This is done either through a direct copy if the data in the buffer is
6795 * less than the skb header size, otherwise it will just attach the page as
6796 * a frag to the skb.
6797 *
6798 * The function will then update the page offset if necessary and return
6799 * true if the buffer can be reused by the adapter.
6800 **/
6801 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6802 struct igb_rx_buffer *rx_buffer,
6803 union e1000_adv_rx_desc *rx_desc,
6804 struct sk_buff *skb)
6805 {
6806 struct page *page = rx_buffer->page;
6807 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6808 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6809 #if (PAGE_SIZE < 8192)
6810 unsigned int truesize = IGB_RX_BUFSZ;
6811 #else
6812 unsigned int truesize = SKB_DATA_ALIGN(size);
6813 #endif
6814 unsigned int pull_len;
6815
6816 if (unlikely(skb_is_nonlinear(skb)))
6817 goto add_tail_frag;
6818
6819 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6820 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6821 va += IGB_TS_HDR_LEN;
6822 size -= IGB_TS_HDR_LEN;
6823 }
6824
6825 if (likely(size <= IGB_RX_HDR_LEN)) {
6826 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6827
6828 /* page is not reserved, we can reuse buffer as-is */
6829 if (likely(!igb_page_is_reserved(page)))
6830 return true;
6831
6832 /* this page cannot be reused so discard it */
6833 __free_page(page);
6834 return false;
6835 }
6836
6837 /* we need the header to contain the greater of either ETH_HLEN or
6838 * 60 bytes if the skb->len is less than 60 for skb_pad.
6839 */
6840 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6841
6842 /* align pull length to size of long to optimize memcpy performance */
6843 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6844
6845 /* update all of the pointers */
6846 va += pull_len;
6847 size -= pull_len;
6848
6849 add_tail_frag:
6850 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6851 (unsigned long)va & ~PAGE_MASK, size, truesize);
6852
6853 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6854 }
6855
6856 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6857 union e1000_adv_rx_desc *rx_desc,
6858 struct sk_buff *skb)
6859 {
6860 struct igb_rx_buffer *rx_buffer;
6861 struct page *page;
6862
6863 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6864 page = rx_buffer->page;
6865 prefetchw(page);
6866
6867 if (likely(!skb)) {
6868 void *page_addr = page_address(page) +
6869 rx_buffer->page_offset;
6870
6871 /* prefetch first cache line of first page */
6872 prefetch(page_addr);
6873 #if L1_CACHE_BYTES < 128
6874 prefetch(page_addr + L1_CACHE_BYTES);
6875 #endif
6876
6877 /* allocate a skb to store the frags */
6878 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6879 if (unlikely(!skb)) {
6880 rx_ring->rx_stats.alloc_failed++;
6881 return NULL;
6882 }
6883
6884 /* we will be copying header into skb->data in
6885 * pskb_may_pull so it is in our interest to prefetch
6886 * it now to avoid a possible cache miss
6887 */
6888 prefetchw(skb->data);
6889 }
6890
6891 /* we are reusing so sync this buffer for CPU use */
6892 dma_sync_single_range_for_cpu(rx_ring->dev,
6893 rx_buffer->dma,
6894 rx_buffer->page_offset,
6895 IGB_RX_BUFSZ,
6896 DMA_FROM_DEVICE);
6897
6898 /* pull page into skb */
6899 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6900 /* hand second half of page back to the ring */
6901 igb_reuse_rx_page(rx_ring, rx_buffer);
6902 } else {
6903 /* we are not reusing the buffer so unmap it */
6904 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6905 PAGE_SIZE, DMA_FROM_DEVICE);
6906 }
6907
6908 /* clear contents of rx_buffer */
6909 rx_buffer->page = NULL;
6910
6911 return skb;
6912 }
6913
6914 static inline void igb_rx_checksum(struct igb_ring *ring,
6915 union e1000_adv_rx_desc *rx_desc,
6916 struct sk_buff *skb)
6917 {
6918 skb_checksum_none_assert(skb);
6919
6920 /* Ignore Checksum bit is set */
6921 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6922 return;
6923
6924 /* Rx checksum disabled via ethtool */
6925 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6926 return;
6927
6928 /* TCP/UDP checksum error bit is set */
6929 if (igb_test_staterr(rx_desc,
6930 E1000_RXDEXT_STATERR_TCPE |
6931 E1000_RXDEXT_STATERR_IPE)) {
6932 /* work around errata with sctp packets where the TCPE aka
6933 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6934 * packets, (aka let the stack check the crc32c)
6935 */
6936 if (!((skb->len == 60) &&
6937 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6938 u64_stats_update_begin(&ring->rx_syncp);
6939 ring->rx_stats.csum_err++;
6940 u64_stats_update_end(&ring->rx_syncp);
6941 }
6942 /* let the stack verify checksum errors */
6943 return;
6944 }
6945 /* It must be a TCP or UDP packet with a valid checksum */
6946 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6947 E1000_RXD_STAT_UDPCS))
6948 skb->ip_summed = CHECKSUM_UNNECESSARY;
6949
6950 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6951 le32_to_cpu(rx_desc->wb.upper.status_error));
6952 }
6953
6954 static inline void igb_rx_hash(struct igb_ring *ring,
6955 union e1000_adv_rx_desc *rx_desc,
6956 struct sk_buff *skb)
6957 {
6958 if (ring->netdev->features & NETIF_F_RXHASH)
6959 skb_set_hash(skb,
6960 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6961 PKT_HASH_TYPE_L3);
6962 }
6963
6964 /**
6965 * igb_is_non_eop - process handling of non-EOP buffers
6966 * @rx_ring: Rx ring being processed
6967 * @rx_desc: Rx descriptor for current buffer
6968 * @skb: current socket buffer containing buffer in progress
6969 *
6970 * This function updates next to clean. If the buffer is an EOP buffer
6971 * this function exits returning false, otherwise it will place the
6972 * sk_buff in the next buffer to be chained and return true indicating
6973 * that this is in fact a non-EOP buffer.
6974 **/
6975 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6976 union e1000_adv_rx_desc *rx_desc)
6977 {
6978 u32 ntc = rx_ring->next_to_clean + 1;
6979
6980 /* fetch, update, and store next to clean */
6981 ntc = (ntc < rx_ring->count) ? ntc : 0;
6982 rx_ring->next_to_clean = ntc;
6983
6984 prefetch(IGB_RX_DESC(rx_ring, ntc));
6985
6986 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6987 return false;
6988
6989 return true;
6990 }
6991
6992 /**
6993 * igb_cleanup_headers - Correct corrupted or empty headers
6994 * @rx_ring: rx descriptor ring packet is being transacted on
6995 * @rx_desc: pointer to the EOP Rx descriptor
6996 * @skb: pointer to current skb being fixed
6997 *
6998 * Address the case where we are pulling data in on pages only
6999 * and as such no data is present in the skb header.
7000 *
7001 * In addition if skb is not at least 60 bytes we need to pad it so that
7002 * it is large enough to qualify as a valid Ethernet frame.
7003 *
7004 * Returns true if an error was encountered and skb was freed.
7005 **/
7006 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7007 union e1000_adv_rx_desc *rx_desc,
7008 struct sk_buff *skb)
7009 {
7010 if (unlikely((igb_test_staterr(rx_desc,
7011 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7012 struct net_device *netdev = rx_ring->netdev;
7013 if (!(netdev->features & NETIF_F_RXALL)) {
7014 dev_kfree_skb_any(skb);
7015 return true;
7016 }
7017 }
7018
7019 /* if eth_skb_pad returns an error the skb was freed */
7020 if (eth_skb_pad(skb))
7021 return true;
7022
7023 return false;
7024 }
7025
7026 /**
7027 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
7028 * @rx_ring: rx descriptor ring packet is being transacted on
7029 * @rx_desc: pointer to the EOP Rx descriptor
7030 * @skb: pointer to current skb being populated
7031 *
7032 * This function checks the ring, descriptor, and packet information in
7033 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
7034 * other fields within the skb.
7035 **/
7036 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7037 union e1000_adv_rx_desc *rx_desc,
7038 struct sk_buff *skb)
7039 {
7040 struct net_device *dev = rx_ring->netdev;
7041
7042 igb_rx_hash(rx_ring, rx_desc, skb);
7043
7044 igb_rx_checksum(rx_ring, rx_desc, skb);
7045
7046 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7047 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7048 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7049
7050 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7051 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7052 u16 vid;
7053
7054 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7055 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7056 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7057 else
7058 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7059
7060 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7061 }
7062
7063 skb_record_rx_queue(skb, rx_ring->queue_index);
7064
7065 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7066 }
7067
7068 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7069 {
7070 struct igb_ring *rx_ring = q_vector->rx.ring;
7071 struct sk_buff *skb = rx_ring->skb;
7072 unsigned int total_bytes = 0, total_packets = 0;
7073 u16 cleaned_count = igb_desc_unused(rx_ring);
7074
7075 while (likely(total_packets < budget)) {
7076 union e1000_adv_rx_desc *rx_desc;
7077
7078 /* return some buffers to hardware, one at a time is too slow */
7079 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7080 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7081 cleaned_count = 0;
7082 }
7083
7084 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7085
7086 if (!rx_desc->wb.upper.status_error)
7087 break;
7088
7089 /* This memory barrier is needed to keep us from reading
7090 * any other fields out of the rx_desc until we know the
7091 * descriptor has been written back
7092 */
7093 dma_rmb();
7094
7095 /* retrieve a buffer from the ring */
7096 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7097
7098 /* exit if we failed to retrieve a buffer */
7099 if (!skb)
7100 break;
7101
7102 cleaned_count++;
7103
7104 /* fetch next buffer in frame if non-eop */
7105 if (igb_is_non_eop(rx_ring, rx_desc))
7106 continue;
7107
7108 /* verify the packet layout is correct */
7109 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7110 skb = NULL;
7111 continue;
7112 }
7113
7114 /* probably a little skewed due to removing CRC */
7115 total_bytes += skb->len;
7116
7117 /* populate checksum, timestamp, VLAN, and protocol */
7118 igb_process_skb_fields(rx_ring, rx_desc, skb);
7119
7120 napi_gro_receive(&q_vector->napi, skb);
7121
7122 /* reset skb pointer */
7123 skb = NULL;
7124
7125 /* update budget accounting */
7126 total_packets++;
7127 }
7128
7129 /* place incomplete frames back on ring for completion */
7130 rx_ring->skb = skb;
7131
7132 u64_stats_update_begin(&rx_ring->rx_syncp);
7133 rx_ring->rx_stats.packets += total_packets;
7134 rx_ring->rx_stats.bytes += total_bytes;
7135 u64_stats_update_end(&rx_ring->rx_syncp);
7136 q_vector->rx.total_packets += total_packets;
7137 q_vector->rx.total_bytes += total_bytes;
7138
7139 if (cleaned_count)
7140 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7141
7142 return total_packets;
7143 }
7144
7145 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7146 struct igb_rx_buffer *bi)
7147 {
7148 struct page *page = bi->page;
7149 dma_addr_t dma;
7150
7151 /* since we are recycling buffers we should seldom need to alloc */
7152 if (likely(page))
7153 return true;
7154
7155 /* alloc new page for storage */
7156 page = dev_alloc_page();
7157 if (unlikely(!page)) {
7158 rx_ring->rx_stats.alloc_failed++;
7159 return false;
7160 }
7161
7162 /* map page for use */
7163 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7164
7165 /* if mapping failed free memory back to system since
7166 * there isn't much point in holding memory we can't use
7167 */
7168 if (dma_mapping_error(rx_ring->dev, dma)) {
7169 __free_page(page);
7170
7171 rx_ring->rx_stats.alloc_failed++;
7172 return false;
7173 }
7174
7175 bi->dma = dma;
7176 bi->page = page;
7177 bi->page_offset = 0;
7178
7179 return true;
7180 }
7181
7182 /**
7183 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7184 * @adapter: address of board private structure
7185 **/
7186 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7187 {
7188 union e1000_adv_rx_desc *rx_desc;
7189 struct igb_rx_buffer *bi;
7190 u16 i = rx_ring->next_to_use;
7191
7192 /* nothing to do */
7193 if (!cleaned_count)
7194 return;
7195
7196 rx_desc = IGB_RX_DESC(rx_ring, i);
7197 bi = &rx_ring->rx_buffer_info[i];
7198 i -= rx_ring->count;
7199
7200 do {
7201 if (!igb_alloc_mapped_page(rx_ring, bi))
7202 break;
7203
7204 /* Refresh the desc even if buffer_addrs didn't change
7205 * because each write-back erases this info.
7206 */
7207 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7208
7209 rx_desc++;
7210 bi++;
7211 i++;
7212 if (unlikely(!i)) {
7213 rx_desc = IGB_RX_DESC(rx_ring, 0);
7214 bi = rx_ring->rx_buffer_info;
7215 i -= rx_ring->count;
7216 }
7217
7218 /* clear the status bits for the next_to_use descriptor */
7219 rx_desc->wb.upper.status_error = 0;
7220
7221 cleaned_count--;
7222 } while (cleaned_count);
7223
7224 i += rx_ring->count;
7225
7226 if (rx_ring->next_to_use != i) {
7227 /* record the next descriptor to use */
7228 rx_ring->next_to_use = i;
7229
7230 /* update next to alloc since we have filled the ring */
7231 rx_ring->next_to_alloc = i;
7232
7233 /* Force memory writes to complete before letting h/w
7234 * know there are new descriptors to fetch. (Only
7235 * applicable for weak-ordered memory model archs,
7236 * such as IA-64).
7237 */
7238 wmb();
7239 writel(i, rx_ring->tail);
7240 }
7241 }
7242
7243 /**
7244 * igb_mii_ioctl -
7245 * @netdev:
7246 * @ifreq:
7247 * @cmd:
7248 **/
7249 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7250 {
7251 struct igb_adapter *adapter = netdev_priv(netdev);
7252 struct mii_ioctl_data *data = if_mii(ifr);
7253
7254 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7255 return -EOPNOTSUPP;
7256
7257 switch (cmd) {
7258 case SIOCGMIIPHY:
7259 data->phy_id = adapter->hw.phy.addr;
7260 break;
7261 case SIOCGMIIREG:
7262 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7263 &data->val_out))
7264 return -EIO;
7265 break;
7266 case SIOCSMIIREG:
7267 default:
7268 return -EOPNOTSUPP;
7269 }
7270 return 0;
7271 }
7272
7273 /**
7274 * igb_ioctl -
7275 * @netdev:
7276 * @ifreq:
7277 * @cmd:
7278 **/
7279 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7280 {
7281 switch (cmd) {
7282 case SIOCGMIIPHY:
7283 case SIOCGMIIREG:
7284 case SIOCSMIIREG:
7285 return igb_mii_ioctl(netdev, ifr, cmd);
7286 case SIOCGHWTSTAMP:
7287 return igb_ptp_get_ts_config(netdev, ifr);
7288 case SIOCSHWTSTAMP:
7289 return igb_ptp_set_ts_config(netdev, ifr);
7290 default:
7291 return -EOPNOTSUPP;
7292 }
7293 }
7294
7295 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7296 {
7297 struct igb_adapter *adapter = hw->back;
7298
7299 pci_read_config_word(adapter->pdev, reg, value);
7300 }
7301
7302 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7303 {
7304 struct igb_adapter *adapter = hw->back;
7305
7306 pci_write_config_word(adapter->pdev, reg, *value);
7307 }
7308
7309 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7310 {
7311 struct igb_adapter *adapter = hw->back;
7312
7313 if (pcie_capability_read_word(adapter->pdev, reg, value))
7314 return -E1000_ERR_CONFIG;
7315
7316 return 0;
7317 }
7318
7319 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7320 {
7321 struct igb_adapter *adapter = hw->back;
7322
7323 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7324 return -E1000_ERR_CONFIG;
7325
7326 return 0;
7327 }
7328
7329 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7330 {
7331 struct igb_adapter *adapter = netdev_priv(netdev);
7332 struct e1000_hw *hw = &adapter->hw;
7333 u32 ctrl, rctl;
7334 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7335
7336 if (enable) {
7337 /* enable VLAN tag insert/strip */
7338 ctrl = rd32(E1000_CTRL);
7339 ctrl |= E1000_CTRL_VME;
7340 wr32(E1000_CTRL, ctrl);
7341
7342 /* Disable CFI check */
7343 rctl = rd32(E1000_RCTL);
7344 rctl &= ~E1000_RCTL_CFIEN;
7345 wr32(E1000_RCTL, rctl);
7346 } else {
7347 /* disable VLAN tag insert/strip */
7348 ctrl = rd32(E1000_CTRL);
7349 ctrl &= ~E1000_CTRL_VME;
7350 wr32(E1000_CTRL, ctrl);
7351 }
7352
7353 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7354 }
7355
7356 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7357 __be16 proto, u16 vid)
7358 {
7359 struct igb_adapter *adapter = netdev_priv(netdev);
7360 struct e1000_hw *hw = &adapter->hw;
7361 int pf_id = adapter->vfs_allocated_count;
7362
7363 /* add the filter since PF can receive vlans w/o entry in vlvf */
7364 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7365 igb_vfta_set(hw, vid, pf_id, true, !!vid);
7366
7367 set_bit(vid, adapter->active_vlans);
7368
7369 return 0;
7370 }
7371
7372 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7373 __be16 proto, u16 vid)
7374 {
7375 struct igb_adapter *adapter = netdev_priv(netdev);
7376 int pf_id = adapter->vfs_allocated_count;
7377 struct e1000_hw *hw = &adapter->hw;
7378
7379 /* remove VID from filter table */
7380 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7381 igb_vfta_set(hw, vid, pf_id, false, true);
7382
7383 clear_bit(vid, adapter->active_vlans);
7384
7385 return 0;
7386 }
7387
7388 static void igb_restore_vlan(struct igb_adapter *adapter)
7389 {
7390 u16 vid = 1;
7391
7392 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7393 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7394
7395 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7396 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7397 }
7398
7399 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7400 {
7401 struct pci_dev *pdev = adapter->pdev;
7402 struct e1000_mac_info *mac = &adapter->hw.mac;
7403
7404 mac->autoneg = 0;
7405
7406 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7407 * for the switch() below to work
7408 */
7409 if ((spd & 1) || (dplx & ~1))
7410 goto err_inval;
7411
7412 /* Fiber NIC's only allow 1000 gbps Full duplex
7413 * and 100Mbps Full duplex for 100baseFx sfp
7414 */
7415 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7416 switch (spd + dplx) {
7417 case SPEED_10 + DUPLEX_HALF:
7418 case SPEED_10 + DUPLEX_FULL:
7419 case SPEED_100 + DUPLEX_HALF:
7420 goto err_inval;
7421 default:
7422 break;
7423 }
7424 }
7425
7426 switch (spd + dplx) {
7427 case SPEED_10 + DUPLEX_HALF:
7428 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7429 break;
7430 case SPEED_10 + DUPLEX_FULL:
7431 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7432 break;
7433 case SPEED_100 + DUPLEX_HALF:
7434 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7435 break;
7436 case SPEED_100 + DUPLEX_FULL:
7437 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7438 break;
7439 case SPEED_1000 + DUPLEX_FULL:
7440 mac->autoneg = 1;
7441 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7442 break;
7443 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7444 default:
7445 goto err_inval;
7446 }
7447
7448 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7449 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7450
7451 return 0;
7452
7453 err_inval:
7454 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7455 return -EINVAL;
7456 }
7457
7458 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7459 bool runtime)
7460 {
7461 struct net_device *netdev = pci_get_drvdata(pdev);
7462 struct igb_adapter *adapter = netdev_priv(netdev);
7463 struct e1000_hw *hw = &adapter->hw;
7464 u32 ctrl, rctl, status;
7465 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7466 #ifdef CONFIG_PM
7467 int retval = 0;
7468 #endif
7469
7470 netif_device_detach(netdev);
7471
7472 if (netif_running(netdev))
7473 __igb_close(netdev, true);
7474
7475 igb_clear_interrupt_scheme(adapter);
7476
7477 #ifdef CONFIG_PM
7478 retval = pci_save_state(pdev);
7479 if (retval)
7480 return retval;
7481 #endif
7482
7483 status = rd32(E1000_STATUS);
7484 if (status & E1000_STATUS_LU)
7485 wufc &= ~E1000_WUFC_LNKC;
7486
7487 if (wufc) {
7488 igb_setup_rctl(adapter);
7489 igb_set_rx_mode(netdev);
7490
7491 /* turn on all-multi mode if wake on multicast is enabled */
7492 if (wufc & E1000_WUFC_MC) {
7493 rctl = rd32(E1000_RCTL);
7494 rctl |= E1000_RCTL_MPE;
7495 wr32(E1000_RCTL, rctl);
7496 }
7497
7498 ctrl = rd32(E1000_CTRL);
7499 /* advertise wake from D3Cold */
7500 #define E1000_CTRL_ADVD3WUC 0x00100000
7501 /* phy power management enable */
7502 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7503 ctrl |= E1000_CTRL_ADVD3WUC;
7504 wr32(E1000_CTRL, ctrl);
7505
7506 /* Allow time for pending master requests to run */
7507 igb_disable_pcie_master(hw);
7508
7509 wr32(E1000_WUC, E1000_WUC_PME_EN);
7510 wr32(E1000_WUFC, wufc);
7511 } else {
7512 wr32(E1000_WUC, 0);
7513 wr32(E1000_WUFC, 0);
7514 }
7515
7516 *enable_wake = wufc || adapter->en_mng_pt;
7517 if (!*enable_wake)
7518 igb_power_down_link(adapter);
7519 else
7520 igb_power_up_link(adapter);
7521
7522 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7523 * would have already happened in close and is redundant.
7524 */
7525 igb_release_hw_control(adapter);
7526
7527 pci_disable_device(pdev);
7528
7529 return 0;
7530 }
7531
7532 #ifdef CONFIG_PM
7533 #ifdef CONFIG_PM_SLEEP
7534 static int igb_suspend(struct device *dev)
7535 {
7536 int retval;
7537 bool wake;
7538 struct pci_dev *pdev = to_pci_dev(dev);
7539
7540 retval = __igb_shutdown(pdev, &wake, 0);
7541 if (retval)
7542 return retval;
7543
7544 if (wake) {
7545 pci_prepare_to_sleep(pdev);
7546 } else {
7547 pci_wake_from_d3(pdev, false);
7548 pci_set_power_state(pdev, PCI_D3hot);
7549 }
7550
7551 return 0;
7552 }
7553 #endif /* CONFIG_PM_SLEEP */
7554
7555 static int igb_resume(struct device *dev)
7556 {
7557 struct pci_dev *pdev = to_pci_dev(dev);
7558 struct net_device *netdev = pci_get_drvdata(pdev);
7559 struct igb_adapter *adapter = netdev_priv(netdev);
7560 struct e1000_hw *hw = &adapter->hw;
7561 u32 err;
7562
7563 pci_set_power_state(pdev, PCI_D0);
7564 pci_restore_state(pdev);
7565 pci_save_state(pdev);
7566
7567 if (!pci_device_is_present(pdev))
7568 return -ENODEV;
7569 err = pci_enable_device_mem(pdev);
7570 if (err) {
7571 dev_err(&pdev->dev,
7572 "igb: Cannot enable PCI device from suspend\n");
7573 return err;
7574 }
7575 pci_set_master(pdev);
7576
7577 pci_enable_wake(pdev, PCI_D3hot, 0);
7578 pci_enable_wake(pdev, PCI_D3cold, 0);
7579
7580 if (igb_init_interrupt_scheme(adapter, true)) {
7581 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7582 return -ENOMEM;
7583 }
7584
7585 igb_reset(adapter);
7586
7587 /* let the f/w know that the h/w is now under the control of the
7588 * driver.
7589 */
7590 igb_get_hw_control(adapter);
7591
7592 wr32(E1000_WUS, ~0);
7593
7594 if (netdev->flags & IFF_UP) {
7595 rtnl_lock();
7596 err = __igb_open(netdev, true);
7597 rtnl_unlock();
7598 if (err)
7599 return err;
7600 }
7601
7602 netif_device_attach(netdev);
7603 return 0;
7604 }
7605
7606 static int igb_runtime_idle(struct device *dev)
7607 {
7608 struct pci_dev *pdev = to_pci_dev(dev);
7609 struct net_device *netdev = pci_get_drvdata(pdev);
7610 struct igb_adapter *adapter = netdev_priv(netdev);
7611
7612 if (!igb_has_link(adapter))
7613 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7614
7615 return -EBUSY;
7616 }
7617
7618 static int igb_runtime_suspend(struct device *dev)
7619 {
7620 struct pci_dev *pdev = to_pci_dev(dev);
7621 int retval;
7622 bool wake;
7623
7624 retval = __igb_shutdown(pdev, &wake, 1);
7625 if (retval)
7626 return retval;
7627
7628 if (wake) {
7629 pci_prepare_to_sleep(pdev);
7630 } else {
7631 pci_wake_from_d3(pdev, false);
7632 pci_set_power_state(pdev, PCI_D3hot);
7633 }
7634
7635 return 0;
7636 }
7637
7638 static int igb_runtime_resume(struct device *dev)
7639 {
7640 return igb_resume(dev);
7641 }
7642 #endif /* CONFIG_PM */
7643
7644 static void igb_shutdown(struct pci_dev *pdev)
7645 {
7646 bool wake;
7647
7648 __igb_shutdown(pdev, &wake, 0);
7649
7650 if (system_state == SYSTEM_POWER_OFF) {
7651 pci_wake_from_d3(pdev, wake);
7652 pci_set_power_state(pdev, PCI_D3hot);
7653 }
7654 }
7655
7656 #ifdef CONFIG_PCI_IOV
7657 static int igb_sriov_reinit(struct pci_dev *dev)
7658 {
7659 struct net_device *netdev = pci_get_drvdata(dev);
7660 struct igb_adapter *adapter = netdev_priv(netdev);
7661 struct pci_dev *pdev = adapter->pdev;
7662
7663 rtnl_lock();
7664
7665 if (netif_running(netdev))
7666 igb_close(netdev);
7667 else
7668 igb_reset(adapter);
7669
7670 igb_clear_interrupt_scheme(adapter);
7671
7672 igb_init_queue_configuration(adapter);
7673
7674 if (igb_init_interrupt_scheme(adapter, true)) {
7675 rtnl_unlock();
7676 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7677 return -ENOMEM;
7678 }
7679
7680 if (netif_running(netdev))
7681 igb_open(netdev);
7682
7683 rtnl_unlock();
7684
7685 return 0;
7686 }
7687
7688 static int igb_pci_disable_sriov(struct pci_dev *dev)
7689 {
7690 int err = igb_disable_sriov(dev);
7691
7692 if (!err)
7693 err = igb_sriov_reinit(dev);
7694
7695 return err;
7696 }
7697
7698 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7699 {
7700 int err = igb_enable_sriov(dev, num_vfs);
7701
7702 if (err)
7703 goto out;
7704
7705 err = igb_sriov_reinit(dev);
7706 if (!err)
7707 return num_vfs;
7708
7709 out:
7710 return err;
7711 }
7712
7713 #endif
7714 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7715 {
7716 #ifdef CONFIG_PCI_IOV
7717 if (num_vfs == 0)
7718 return igb_pci_disable_sriov(dev);
7719 else
7720 return igb_pci_enable_sriov(dev, num_vfs);
7721 #endif
7722 return 0;
7723 }
7724
7725 #ifdef CONFIG_NET_POLL_CONTROLLER
7726 /* Polling 'interrupt' - used by things like netconsole to send skbs
7727 * without having to re-enable interrupts. It's not called while
7728 * the interrupt routine is executing.
7729 */
7730 static void igb_netpoll(struct net_device *netdev)
7731 {
7732 struct igb_adapter *adapter = netdev_priv(netdev);
7733 struct e1000_hw *hw = &adapter->hw;
7734 struct igb_q_vector *q_vector;
7735 int i;
7736
7737 for (i = 0; i < adapter->num_q_vectors; i++) {
7738 q_vector = adapter->q_vector[i];
7739 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7740 wr32(E1000_EIMC, q_vector->eims_value);
7741 else
7742 igb_irq_disable(adapter);
7743 napi_schedule(&q_vector->napi);
7744 }
7745 }
7746 #endif /* CONFIG_NET_POLL_CONTROLLER */
7747
7748 /**
7749 * igb_io_error_detected - called when PCI error is detected
7750 * @pdev: Pointer to PCI device
7751 * @state: The current pci connection state
7752 *
7753 * This function is called after a PCI bus error affecting
7754 * this device has been detected.
7755 **/
7756 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7757 pci_channel_state_t state)
7758 {
7759 struct net_device *netdev = pci_get_drvdata(pdev);
7760 struct igb_adapter *adapter = netdev_priv(netdev);
7761
7762 netif_device_detach(netdev);
7763
7764 if (state == pci_channel_io_perm_failure)
7765 return PCI_ERS_RESULT_DISCONNECT;
7766
7767 if (netif_running(netdev))
7768 igb_down(adapter);
7769 pci_disable_device(pdev);
7770
7771 /* Request a slot slot reset. */
7772 return PCI_ERS_RESULT_NEED_RESET;
7773 }
7774
7775 /**
7776 * igb_io_slot_reset - called after the pci bus has been reset.
7777 * @pdev: Pointer to PCI device
7778 *
7779 * Restart the card from scratch, as if from a cold-boot. Implementation
7780 * resembles the first-half of the igb_resume routine.
7781 **/
7782 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7783 {
7784 struct net_device *netdev = pci_get_drvdata(pdev);
7785 struct igb_adapter *adapter = netdev_priv(netdev);
7786 struct e1000_hw *hw = &adapter->hw;
7787 pci_ers_result_t result;
7788 int err;
7789
7790 if (pci_enable_device_mem(pdev)) {
7791 dev_err(&pdev->dev,
7792 "Cannot re-enable PCI device after reset.\n");
7793 result = PCI_ERS_RESULT_DISCONNECT;
7794 } else {
7795 pci_set_master(pdev);
7796 pci_restore_state(pdev);
7797 pci_save_state(pdev);
7798
7799 pci_enable_wake(pdev, PCI_D3hot, 0);
7800 pci_enable_wake(pdev, PCI_D3cold, 0);
7801
7802 igb_reset(adapter);
7803 wr32(E1000_WUS, ~0);
7804 result = PCI_ERS_RESULT_RECOVERED;
7805 }
7806
7807 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7808 if (err) {
7809 dev_err(&pdev->dev,
7810 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7811 err);
7812 /* non-fatal, continue */
7813 }
7814
7815 return result;
7816 }
7817
7818 /**
7819 * igb_io_resume - called when traffic can start flowing again.
7820 * @pdev: Pointer to PCI device
7821 *
7822 * This callback is called when the error recovery driver tells us that
7823 * its OK to resume normal operation. Implementation resembles the
7824 * second-half of the igb_resume routine.
7825 */
7826 static void igb_io_resume(struct pci_dev *pdev)
7827 {
7828 struct net_device *netdev = pci_get_drvdata(pdev);
7829 struct igb_adapter *adapter = netdev_priv(netdev);
7830
7831 if (netif_running(netdev)) {
7832 if (igb_up(adapter)) {
7833 dev_err(&pdev->dev, "igb_up failed after reset\n");
7834 return;
7835 }
7836 }
7837
7838 netif_device_attach(netdev);
7839
7840 /* let the f/w know that the h/w is now under the control of the
7841 * driver.
7842 */
7843 igb_get_hw_control(adapter);
7844 }
7845
7846 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7847 u8 qsel)
7848 {
7849 struct e1000_hw *hw = &adapter->hw;
7850 u32 rar_low, rar_high;
7851
7852 /* HW expects these to be in network order when they are plugged
7853 * into the registers which are little endian. In order to guarantee
7854 * that ordering we need to do an leXX_to_cpup here in order to be
7855 * ready for the byteswap that occurs with writel
7856 */
7857 rar_low = le32_to_cpup((__le32 *)(addr));
7858 rar_high = le16_to_cpup((__le16 *)(addr + 4));
7859
7860 /* Indicate to hardware the Address is Valid. */
7861 rar_high |= E1000_RAH_AV;
7862
7863 if (hw->mac.type == e1000_82575)
7864 rar_high |= E1000_RAH_POOL_1 * qsel;
7865 else
7866 rar_high |= E1000_RAH_POOL_1 << qsel;
7867
7868 wr32(E1000_RAL(index), rar_low);
7869 wrfl();
7870 wr32(E1000_RAH(index), rar_high);
7871 wrfl();
7872 }
7873
7874 static int igb_set_vf_mac(struct igb_adapter *adapter,
7875 int vf, unsigned char *mac_addr)
7876 {
7877 struct e1000_hw *hw = &adapter->hw;
7878 /* VF MAC addresses start at end of receive addresses and moves
7879 * towards the first, as a result a collision should not be possible
7880 */
7881 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7882
7883 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7884
7885 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7886
7887 return 0;
7888 }
7889
7890 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7891 {
7892 struct igb_adapter *adapter = netdev_priv(netdev);
7893 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7894 return -EINVAL;
7895 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7896 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7897 dev_info(&adapter->pdev->dev,
7898 "Reload the VF driver to make this change effective.");
7899 if (test_bit(__IGB_DOWN, &adapter->state)) {
7900 dev_warn(&adapter->pdev->dev,
7901 "The VF MAC address has been set, but the PF device is not up.\n");
7902 dev_warn(&adapter->pdev->dev,
7903 "Bring the PF device up before attempting to use the VF device.\n");
7904 }
7905 return igb_set_vf_mac(adapter, vf, mac);
7906 }
7907
7908 static int igb_link_mbps(int internal_link_speed)
7909 {
7910 switch (internal_link_speed) {
7911 case SPEED_100:
7912 return 100;
7913 case SPEED_1000:
7914 return 1000;
7915 default:
7916 return 0;
7917 }
7918 }
7919
7920 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7921 int link_speed)
7922 {
7923 int rf_dec, rf_int;
7924 u32 bcnrc_val;
7925
7926 if (tx_rate != 0) {
7927 /* Calculate the rate factor values to set */
7928 rf_int = link_speed / tx_rate;
7929 rf_dec = (link_speed - (rf_int * tx_rate));
7930 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
7931 tx_rate;
7932
7933 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7934 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7935 E1000_RTTBCNRC_RF_INT_MASK);
7936 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7937 } else {
7938 bcnrc_val = 0;
7939 }
7940
7941 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7942 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7943 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7944 */
7945 wr32(E1000_RTTBCNRM, 0x14);
7946 wr32(E1000_RTTBCNRC, bcnrc_val);
7947 }
7948
7949 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7950 {
7951 int actual_link_speed, i;
7952 bool reset_rate = false;
7953
7954 /* VF TX rate limit was not set or not supported */
7955 if ((adapter->vf_rate_link_speed == 0) ||
7956 (adapter->hw.mac.type != e1000_82576))
7957 return;
7958
7959 actual_link_speed = igb_link_mbps(adapter->link_speed);
7960 if (actual_link_speed != adapter->vf_rate_link_speed) {
7961 reset_rate = true;
7962 adapter->vf_rate_link_speed = 0;
7963 dev_info(&adapter->pdev->dev,
7964 "Link speed has been changed. VF Transmit rate is disabled\n");
7965 }
7966
7967 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7968 if (reset_rate)
7969 adapter->vf_data[i].tx_rate = 0;
7970
7971 igb_set_vf_rate_limit(&adapter->hw, i,
7972 adapter->vf_data[i].tx_rate,
7973 actual_link_speed);
7974 }
7975 }
7976
7977 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7978 int min_tx_rate, int max_tx_rate)
7979 {
7980 struct igb_adapter *adapter = netdev_priv(netdev);
7981 struct e1000_hw *hw = &adapter->hw;
7982 int actual_link_speed;
7983
7984 if (hw->mac.type != e1000_82576)
7985 return -EOPNOTSUPP;
7986
7987 if (min_tx_rate)
7988 return -EINVAL;
7989
7990 actual_link_speed = igb_link_mbps(adapter->link_speed);
7991 if ((vf >= adapter->vfs_allocated_count) ||
7992 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7993 (max_tx_rate < 0) ||
7994 (max_tx_rate > actual_link_speed))
7995 return -EINVAL;
7996
7997 adapter->vf_rate_link_speed = actual_link_speed;
7998 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7999 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8000
8001 return 0;
8002 }
8003
8004 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8005 bool setting)
8006 {
8007 struct igb_adapter *adapter = netdev_priv(netdev);
8008 struct e1000_hw *hw = &adapter->hw;
8009 u32 reg_val, reg_offset;
8010
8011 if (!adapter->vfs_allocated_count)
8012 return -EOPNOTSUPP;
8013
8014 if (vf >= adapter->vfs_allocated_count)
8015 return -EINVAL;
8016
8017 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8018 reg_val = rd32(reg_offset);
8019 if (setting)
8020 reg_val |= (BIT(vf) |
8021 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8022 else
8023 reg_val &= ~(BIT(vf) |
8024 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8025 wr32(reg_offset, reg_val);
8026
8027 adapter->vf_data[vf].spoofchk_enabled = setting;
8028 return 0;
8029 }
8030
8031 static int igb_ndo_get_vf_config(struct net_device *netdev,
8032 int vf, struct ifla_vf_info *ivi)
8033 {
8034 struct igb_adapter *adapter = netdev_priv(netdev);
8035 if (vf >= adapter->vfs_allocated_count)
8036 return -EINVAL;
8037 ivi->vf = vf;
8038 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8039 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8040 ivi->min_tx_rate = 0;
8041 ivi->vlan = adapter->vf_data[vf].pf_vlan;
8042 ivi->qos = adapter->vf_data[vf].pf_qos;
8043 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8044 return 0;
8045 }
8046
8047 static void igb_vmm_control(struct igb_adapter *adapter)
8048 {
8049 struct e1000_hw *hw = &adapter->hw;
8050 u32 reg;
8051
8052 switch (hw->mac.type) {
8053 case e1000_82575:
8054 case e1000_i210:
8055 case e1000_i211:
8056 case e1000_i354:
8057 default:
8058 /* replication is not supported for 82575 */
8059 return;
8060 case e1000_82576:
8061 /* notify HW that the MAC is adding vlan tags */
8062 reg = rd32(E1000_DTXCTL);
8063 reg |= E1000_DTXCTL_VLAN_ADDED;
8064 wr32(E1000_DTXCTL, reg);
8065 /* Fall through */
8066 case e1000_82580:
8067 /* enable replication vlan tag stripping */
8068 reg = rd32(E1000_RPLOLR);
8069 reg |= E1000_RPLOLR_STRVLAN;
8070 wr32(E1000_RPLOLR, reg);
8071 /* Fall through */
8072 case e1000_i350:
8073 /* none of the above registers are supported by i350 */
8074 break;
8075 }
8076
8077 if (adapter->vfs_allocated_count) {
8078 igb_vmdq_set_loopback_pf(hw, true);
8079 igb_vmdq_set_replication_pf(hw, true);
8080 igb_vmdq_set_anti_spoofing_pf(hw, true,
8081 adapter->vfs_allocated_count);
8082 } else {
8083 igb_vmdq_set_loopback_pf(hw, false);
8084 igb_vmdq_set_replication_pf(hw, false);
8085 }
8086 }
8087
8088 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8089 {
8090 struct e1000_hw *hw = &adapter->hw;
8091 u32 dmac_thr;
8092 u16 hwm;
8093
8094 if (hw->mac.type > e1000_82580) {
8095 if (adapter->flags & IGB_FLAG_DMAC) {
8096 u32 reg;
8097
8098 /* force threshold to 0. */
8099 wr32(E1000_DMCTXTH, 0);
8100
8101 /* DMA Coalescing high water mark needs to be greater
8102 * than the Rx threshold. Set hwm to PBA - max frame
8103 * size in 16B units, capping it at PBA - 6KB.
8104 */
8105 hwm = 64 * (pba - 6);
8106 reg = rd32(E1000_FCRTC);
8107 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8108 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8109 & E1000_FCRTC_RTH_COAL_MASK);
8110 wr32(E1000_FCRTC, reg);
8111
8112 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8113 * frame size, capping it at PBA - 10KB.
8114 */
8115 dmac_thr = pba - 10;
8116 reg = rd32(E1000_DMACR);
8117 reg &= ~E1000_DMACR_DMACTHR_MASK;
8118 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8119 & E1000_DMACR_DMACTHR_MASK);
8120
8121 /* transition to L0x or L1 if available..*/
8122 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8123
8124 /* watchdog timer= +-1000 usec in 32usec intervals */
8125 reg |= (1000 >> 5);
8126
8127 /* Disable BMC-to-OS Watchdog Enable */
8128 if (hw->mac.type != e1000_i354)
8129 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8130
8131 wr32(E1000_DMACR, reg);
8132
8133 /* no lower threshold to disable
8134 * coalescing(smart fifb)-UTRESH=0
8135 */
8136 wr32(E1000_DMCRTRH, 0);
8137
8138 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8139
8140 wr32(E1000_DMCTLX, reg);
8141
8142 /* free space in tx packet buffer to wake from
8143 * DMA coal
8144 */
8145 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8146 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8147
8148 /* make low power state decision controlled
8149 * by DMA coal
8150 */
8151 reg = rd32(E1000_PCIEMISC);
8152 reg &= ~E1000_PCIEMISC_LX_DECISION;
8153 wr32(E1000_PCIEMISC, reg);
8154 } /* endif adapter->dmac is not disabled */
8155 } else if (hw->mac.type == e1000_82580) {
8156 u32 reg = rd32(E1000_PCIEMISC);
8157
8158 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8159 wr32(E1000_DMACR, 0);
8160 }
8161 }
8162
8163 /**
8164 * igb_read_i2c_byte - Reads 8 bit word over I2C
8165 * @hw: pointer to hardware structure
8166 * @byte_offset: byte offset to read
8167 * @dev_addr: device address
8168 * @data: value read
8169 *
8170 * Performs byte read operation over I2C interface at
8171 * a specified device address.
8172 **/
8173 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8174 u8 dev_addr, u8 *data)
8175 {
8176 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8177 struct i2c_client *this_client = adapter->i2c_client;
8178 s32 status;
8179 u16 swfw_mask = 0;
8180
8181 if (!this_client)
8182 return E1000_ERR_I2C;
8183
8184 swfw_mask = E1000_SWFW_PHY0_SM;
8185
8186 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8187 return E1000_ERR_SWFW_SYNC;
8188
8189 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8190 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8191
8192 if (status < 0)
8193 return E1000_ERR_I2C;
8194 else {
8195 *data = status;
8196 return 0;
8197 }
8198 }
8199
8200 /**
8201 * igb_write_i2c_byte - Writes 8 bit word over I2C
8202 * @hw: pointer to hardware structure
8203 * @byte_offset: byte offset to write
8204 * @dev_addr: device address
8205 * @data: value to write
8206 *
8207 * Performs byte write operation over I2C interface at
8208 * a specified device address.
8209 **/
8210 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8211 u8 dev_addr, u8 data)
8212 {
8213 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8214 struct i2c_client *this_client = adapter->i2c_client;
8215 s32 status;
8216 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8217
8218 if (!this_client)
8219 return E1000_ERR_I2C;
8220
8221 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8222 return E1000_ERR_SWFW_SYNC;
8223 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8224 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8225
8226 if (status)
8227 return E1000_ERR_I2C;
8228 else
8229 return 0;
8230
8231 }
8232
8233 int igb_reinit_queues(struct igb_adapter *adapter)
8234 {
8235 struct net_device *netdev = adapter->netdev;
8236 struct pci_dev *pdev = adapter->pdev;
8237 int err = 0;
8238
8239 if (netif_running(netdev))
8240 igb_close(netdev);
8241
8242 igb_reset_interrupt_capability(adapter);
8243
8244 if (igb_init_interrupt_scheme(adapter, true)) {
8245 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8246 return -ENOMEM;
8247 }
8248
8249 if (netif_running(netdev))
8250 err = igb_open(netdev);
8251
8252 return err;
8253 }
8254 /* igb_main.c */
This page took 0.40792 seconds and 5 git commands to generate.