igb: Don't look for a PBA in the iNVM when flashless
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62
63 #define MAJ 5
64 #define MIN 0
65 #define BUILD 3
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71 "Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73 "Copyright (c) 2007-2013 Intel Corporation.";
74
75 static const struct e1000_info *igb_info_tbl[] = {
76 [board_82575] = &e1000_82575_info,
77 };
78
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
115 /* required last entry */
116 {0, }
117 };
118
119 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
120
121 void igb_reset(struct igb_adapter *);
122 static int igb_setup_all_tx_resources(struct igb_adapter *);
123 static int igb_setup_all_rx_resources(struct igb_adapter *);
124 static void igb_free_all_tx_resources(struct igb_adapter *);
125 static void igb_free_all_rx_resources(struct igb_adapter *);
126 static void igb_setup_mrqc(struct igb_adapter *);
127 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
128 static void igb_remove(struct pci_dev *pdev);
129 static int igb_sw_init(struct igb_adapter *);
130 static int igb_open(struct net_device *);
131 static int igb_close(struct net_device *);
132 static void igb_configure(struct igb_adapter *);
133 static void igb_configure_tx(struct igb_adapter *);
134 static void igb_configure_rx(struct igb_adapter *);
135 static void igb_clean_all_tx_rings(struct igb_adapter *);
136 static void igb_clean_all_rx_rings(struct igb_adapter *);
137 static void igb_clean_tx_ring(struct igb_ring *);
138 static void igb_clean_rx_ring(struct igb_ring *);
139 static void igb_set_rx_mode(struct net_device *);
140 static void igb_update_phy_info(unsigned long);
141 static void igb_watchdog(unsigned long);
142 static void igb_watchdog_task(struct work_struct *);
143 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
144 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
145 struct rtnl_link_stats64 *stats);
146 static int igb_change_mtu(struct net_device *, int);
147 static int igb_set_mac(struct net_device *, void *);
148 static void igb_set_uta(struct igb_adapter *adapter);
149 static irqreturn_t igb_intr(int irq, void *);
150 static irqreturn_t igb_intr_msi(int irq, void *);
151 static irqreturn_t igb_msix_other(int irq, void *);
152 static irqreturn_t igb_msix_ring(int irq, void *);
153 #ifdef CONFIG_IGB_DCA
154 static void igb_update_dca(struct igb_q_vector *);
155 static void igb_setup_dca(struct igb_adapter *);
156 #endif /* CONFIG_IGB_DCA */
157 static int igb_poll(struct napi_struct *, int);
158 static bool igb_clean_tx_irq(struct igb_q_vector *);
159 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
160 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
161 static void igb_tx_timeout(struct net_device *);
162 static void igb_reset_task(struct work_struct *);
163 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
164 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
165 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
166 static void igb_restore_vlan(struct igb_adapter *);
167 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
168 static void igb_ping_all_vfs(struct igb_adapter *);
169 static void igb_msg_task(struct igb_adapter *);
170 static void igb_vmm_control(struct igb_adapter *);
171 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
172 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
173 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
174 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
175 int vf, u16 vlan, u8 qos);
176 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
177 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
178 bool setting);
179 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
180 struct ifla_vf_info *ivi);
181 static void igb_check_vf_rate_limit(struct igb_adapter *);
182
183 #ifdef CONFIG_PCI_IOV
184 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
185 #endif
186
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 #ifdef CONFIG_PM_RUNTIME
193 static int igb_runtime_suspend(struct device *dev);
194 static int igb_runtime_resume(struct device *dev);
195 static int igb_runtime_idle(struct device *dev);
196 #endif
197 static const struct dev_pm_ops igb_pm_ops = {
198 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200 igb_runtime_idle)
201 };
202 #endif
203 static void igb_shutdown(struct pci_dev *);
204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205 #ifdef CONFIG_IGB_DCA
206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207 static struct notifier_block dca_notifier = {
208 .notifier_call = igb_notify_dca,
209 .next = NULL,
210 .priority = 0
211 };
212 #endif
213 #ifdef CONFIG_NET_POLL_CONTROLLER
214 /* for netdump / net console */
215 static void igb_netpoll(struct net_device *);
216 #endif
217 #ifdef CONFIG_PCI_IOV
218 static unsigned int max_vfs = 0;
219 module_param(max_vfs, uint, 0);
220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
221 "per physical function");
222 #endif /* CONFIG_PCI_IOV */
223
224 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
225 pci_channel_state_t);
226 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
227 static void igb_io_resume(struct pci_dev *);
228
229 static const struct pci_error_handlers igb_err_handler = {
230 .error_detected = igb_io_error_detected,
231 .slot_reset = igb_io_slot_reset,
232 .resume = igb_io_resume,
233 };
234
235 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236
237 static struct pci_driver igb_driver = {
238 .name = igb_driver_name,
239 .id_table = igb_pci_tbl,
240 .probe = igb_probe,
241 .remove = igb_remove,
242 #ifdef CONFIG_PM
243 .driver.pm = &igb_pm_ops,
244 #endif
245 .shutdown = igb_shutdown,
246 .sriov_configure = igb_pci_sriov_configure,
247 .err_handler = &igb_err_handler
248 };
249
250 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
251 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
252 MODULE_LICENSE("GPL");
253 MODULE_VERSION(DRV_VERSION);
254
255 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
256 static int debug = -1;
257 module_param(debug, int, 0);
258 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
259
260 struct igb_reg_info {
261 u32 ofs;
262 char *name;
263 };
264
265 static const struct igb_reg_info igb_reg_info_tbl[] = {
266
267 /* General Registers */
268 {E1000_CTRL, "CTRL"},
269 {E1000_STATUS, "STATUS"},
270 {E1000_CTRL_EXT, "CTRL_EXT"},
271
272 /* Interrupt Registers */
273 {E1000_ICR, "ICR"},
274
275 /* RX Registers */
276 {E1000_RCTL, "RCTL"},
277 {E1000_RDLEN(0), "RDLEN"},
278 {E1000_RDH(0), "RDH"},
279 {E1000_RDT(0), "RDT"},
280 {E1000_RXDCTL(0), "RXDCTL"},
281 {E1000_RDBAL(0), "RDBAL"},
282 {E1000_RDBAH(0), "RDBAH"},
283
284 /* TX Registers */
285 {E1000_TCTL, "TCTL"},
286 {E1000_TDBAL(0), "TDBAL"},
287 {E1000_TDBAH(0), "TDBAH"},
288 {E1000_TDLEN(0), "TDLEN"},
289 {E1000_TDH(0), "TDH"},
290 {E1000_TDT(0), "TDT"},
291 {E1000_TXDCTL(0), "TXDCTL"},
292 {E1000_TDFH, "TDFH"},
293 {E1000_TDFT, "TDFT"},
294 {E1000_TDFHS, "TDFHS"},
295 {E1000_TDFPC, "TDFPC"},
296
297 /* List Terminator */
298 {}
299 };
300
301 /* igb_regdump - register printout routine */
302 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
303 {
304 int n = 0;
305 char rname[16];
306 u32 regs[8];
307
308 switch (reginfo->ofs) {
309 case E1000_RDLEN(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDLEN(n));
312 break;
313 case E1000_RDH(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDH(n));
316 break;
317 case E1000_RDT(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RDT(n));
320 break;
321 case E1000_RXDCTL(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RXDCTL(n));
324 break;
325 case E1000_RDBAL(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAL(n));
328 break;
329 case E1000_RDBAH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDBAH(n));
332 break;
333 case E1000_TDBAL(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_RDBAL(n));
336 break;
337 case E1000_TDBAH(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDBAH(n));
340 break;
341 case E1000_TDLEN(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDLEN(n));
344 break;
345 case E1000_TDH(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TDH(n));
348 break;
349 case E1000_TDT(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TDT(n));
352 break;
353 case E1000_TXDCTL(0):
354 for (n = 0; n < 4; n++)
355 regs[n] = rd32(E1000_TXDCTL(n));
356 break;
357 default:
358 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359 return;
360 }
361
362 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
363 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
364 regs[2], regs[3]);
365 }
366
367 /* igb_dump - Print registers, Tx-rings and Rx-rings */
368 static void igb_dump(struct igb_adapter *adapter)
369 {
370 struct net_device *netdev = adapter->netdev;
371 struct e1000_hw *hw = &adapter->hw;
372 struct igb_reg_info *reginfo;
373 struct igb_ring *tx_ring;
374 union e1000_adv_tx_desc *tx_desc;
375 struct my_u0 { u64 a; u64 b; } *u0;
376 struct igb_ring *rx_ring;
377 union e1000_adv_rx_desc *rx_desc;
378 u32 staterr;
379 u16 i, n;
380
381 if (!netif_msg_hw(adapter))
382 return;
383
384 /* Print netdevice Info */
385 if (netdev) {
386 dev_info(&adapter->pdev->dev, "Net device Info\n");
387 pr_info("Device Name state trans_start "
388 "last_rx\n");
389 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
390 netdev->state, netdev->trans_start, netdev->last_rx);
391 }
392
393 /* Print Registers */
394 dev_info(&adapter->pdev->dev, "Register Dump\n");
395 pr_info(" Register Name Value\n");
396 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
397 reginfo->name; reginfo++) {
398 igb_regdump(hw, reginfo);
399 }
400
401 /* Print TX Ring Summary */
402 if (!netdev || !netif_running(netdev))
403 goto exit;
404
405 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
406 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
407 for (n = 0; n < adapter->num_tx_queues; n++) {
408 struct igb_tx_buffer *buffer_info;
409 tx_ring = adapter->tx_ring[n];
410 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
411 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
412 n, tx_ring->next_to_use, tx_ring->next_to_clean,
413 (u64)dma_unmap_addr(buffer_info, dma),
414 dma_unmap_len(buffer_info, len),
415 buffer_info->next_to_watch,
416 (u64)buffer_info->time_stamp);
417 }
418
419 /* Print TX Rings */
420 if (!netif_msg_tx_done(adapter))
421 goto rx_ring_summary;
422
423 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
424
425 /* Transmit Descriptor Formats
426 *
427 * Advanced Transmit Descriptor
428 * +--------------------------------------------------------------+
429 * 0 | Buffer Address [63:0] |
430 * +--------------------------------------------------------------+
431 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
432 * +--------------------------------------------------------------+
433 * 63 46 45 40 39 38 36 35 32 31 24 15 0
434 */
435
436 for (n = 0; n < adapter->num_tx_queues; n++) {
437 tx_ring = adapter->tx_ring[n];
438 pr_info("------------------------------------\n");
439 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
440 pr_info("------------------------------------\n");
441 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
442 "[bi->dma ] leng ntw timestamp "
443 "bi->skb\n");
444
445 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
446 const char *next_desc;
447 struct igb_tx_buffer *buffer_info;
448 tx_desc = IGB_TX_DESC(tx_ring, i);
449 buffer_info = &tx_ring->tx_buffer_info[i];
450 u0 = (struct my_u0 *)tx_desc;
451 if (i == tx_ring->next_to_use &&
452 i == tx_ring->next_to_clean)
453 next_desc = " NTC/U";
454 else if (i == tx_ring->next_to_use)
455 next_desc = " NTU";
456 else if (i == tx_ring->next_to_clean)
457 next_desc = " NTC";
458 else
459 next_desc = "";
460
461 pr_info("T [0x%03X] %016llX %016llX %016llX"
462 " %04X %p %016llX %p%s\n", i,
463 le64_to_cpu(u0->a),
464 le64_to_cpu(u0->b),
465 (u64)dma_unmap_addr(buffer_info, dma),
466 dma_unmap_len(buffer_info, len),
467 buffer_info->next_to_watch,
468 (u64)buffer_info->time_stamp,
469 buffer_info->skb, next_desc);
470
471 if (netif_msg_pktdata(adapter) && buffer_info->skb)
472 print_hex_dump(KERN_INFO, "",
473 DUMP_PREFIX_ADDRESS,
474 16, 1, buffer_info->skb->data,
475 dma_unmap_len(buffer_info, len),
476 true);
477 }
478 }
479
480 /* Print RX Rings Summary */
481 rx_ring_summary:
482 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
483 pr_info("Queue [NTU] [NTC]\n");
484 for (n = 0; n < adapter->num_rx_queues; n++) {
485 rx_ring = adapter->rx_ring[n];
486 pr_info(" %5d %5X %5X\n",
487 n, rx_ring->next_to_use, rx_ring->next_to_clean);
488 }
489
490 /* Print RX Rings */
491 if (!netif_msg_rx_status(adapter))
492 goto exit;
493
494 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
495
496 /* Advanced Receive Descriptor (Read) Format
497 * 63 1 0
498 * +-----------------------------------------------------+
499 * 0 | Packet Buffer Address [63:1] |A0/NSE|
500 * +----------------------------------------------+------+
501 * 8 | Header Buffer Address [63:1] | DD |
502 * +-----------------------------------------------------+
503 *
504 *
505 * Advanced Receive Descriptor (Write-Back) Format
506 *
507 * 63 48 47 32 31 30 21 20 17 16 4 3 0
508 * +------------------------------------------------------+
509 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
510 * | Checksum Ident | | | | Type | Type |
511 * +------------------------------------------------------+
512 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
513 * +------------------------------------------------------+
514 * 63 48 47 32 31 20 19 0
515 */
516
517 for (n = 0; n < adapter->num_rx_queues; n++) {
518 rx_ring = adapter->rx_ring[n];
519 pr_info("------------------------------------\n");
520 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
521 pr_info("------------------------------------\n");
522 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
523 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
524 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
525 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
526
527 for (i = 0; i < rx_ring->count; i++) {
528 const char *next_desc;
529 struct igb_rx_buffer *buffer_info;
530 buffer_info = &rx_ring->rx_buffer_info[i];
531 rx_desc = IGB_RX_DESC(rx_ring, i);
532 u0 = (struct my_u0 *)rx_desc;
533 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
534
535 if (i == rx_ring->next_to_use)
536 next_desc = " NTU";
537 else if (i == rx_ring->next_to_clean)
538 next_desc = " NTC";
539 else
540 next_desc = "";
541
542 if (staterr & E1000_RXD_STAT_DD) {
543 /* Descriptor Done */
544 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
545 "RWB", i,
546 le64_to_cpu(u0->a),
547 le64_to_cpu(u0->b),
548 next_desc);
549 } else {
550 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
551 "R ", i,
552 le64_to_cpu(u0->a),
553 le64_to_cpu(u0->b),
554 (u64)buffer_info->dma,
555 next_desc);
556
557 if (netif_msg_pktdata(adapter) &&
558 buffer_info->dma && buffer_info->page) {
559 print_hex_dump(KERN_INFO, "",
560 DUMP_PREFIX_ADDRESS,
561 16, 1,
562 page_address(buffer_info->page) +
563 buffer_info->page_offset,
564 IGB_RX_BUFSZ, true);
565 }
566 }
567 }
568 }
569
570 exit:
571 return;
572 }
573
574 /**
575 * igb_get_i2c_data - Reads the I2C SDA data bit
576 * @hw: pointer to hardware structure
577 * @i2cctl: Current value of I2CCTL register
578 *
579 * Returns the I2C data bit value
580 **/
581 static int igb_get_i2c_data(void *data)
582 {
583 struct igb_adapter *adapter = (struct igb_adapter *)data;
584 struct e1000_hw *hw = &adapter->hw;
585 s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
588 }
589
590 /**
591 * igb_set_i2c_data - Sets the I2C data bit
592 * @data: pointer to hardware structure
593 * @state: I2C data value (0 or 1) to set
594 *
595 * Sets the I2C data bit
596 **/
597 static void igb_set_i2c_data(void *data, int state)
598 {
599 struct igb_adapter *adapter = (struct igb_adapter *)data;
600 struct e1000_hw *hw = &adapter->hw;
601 s32 i2cctl = rd32(E1000_I2CPARAMS);
602
603 if (state)
604 i2cctl |= E1000_I2C_DATA_OUT;
605 else
606 i2cctl &= ~E1000_I2C_DATA_OUT;
607
608 i2cctl &= ~E1000_I2C_DATA_OE_N;
609 i2cctl |= E1000_I2C_CLK_OE_N;
610 wr32(E1000_I2CPARAMS, i2cctl);
611 wrfl();
612
613 }
614
615 /**
616 * igb_set_i2c_clk - Sets the I2C SCL clock
617 * @data: pointer to hardware structure
618 * @state: state to set clock
619 *
620 * Sets the I2C clock line to state
621 **/
622 static void igb_set_i2c_clk(void *data, int state)
623 {
624 struct igb_adapter *adapter = (struct igb_adapter *)data;
625 struct e1000_hw *hw = &adapter->hw;
626 s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628 if (state) {
629 i2cctl |= E1000_I2C_CLK_OUT;
630 i2cctl &= ~E1000_I2C_CLK_OE_N;
631 } else {
632 i2cctl &= ~E1000_I2C_CLK_OUT;
633 i2cctl &= ~E1000_I2C_CLK_OE_N;
634 }
635 wr32(E1000_I2CPARAMS, i2cctl);
636 wrfl();
637 }
638
639 /**
640 * igb_get_i2c_clk - Gets the I2C SCL clock state
641 * @data: pointer to hardware structure
642 *
643 * Gets the I2C clock state
644 **/
645 static int igb_get_i2c_clk(void *data)
646 {
647 struct igb_adapter *adapter = (struct igb_adapter *)data;
648 struct e1000_hw *hw = &adapter->hw;
649 s32 i2cctl = rd32(E1000_I2CPARAMS);
650
651 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
652 }
653
654 static const struct i2c_algo_bit_data igb_i2c_algo = {
655 .setsda = igb_set_i2c_data,
656 .setscl = igb_set_i2c_clk,
657 .getsda = igb_get_i2c_data,
658 .getscl = igb_get_i2c_clk,
659 .udelay = 5,
660 .timeout = 20,
661 };
662
663 /**
664 * igb_get_hw_dev - return device
665 * @hw: pointer to hardware structure
666 *
667 * used by hardware layer to print debugging information
668 **/
669 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
670 {
671 struct igb_adapter *adapter = hw->back;
672 return adapter->netdev;
673 }
674
675 /**
676 * igb_init_module - Driver Registration Routine
677 *
678 * igb_init_module is the first routine called when the driver is
679 * loaded. All it does is register with the PCI subsystem.
680 **/
681 static int __init igb_init_module(void)
682 {
683 int ret;
684 pr_info("%s - version %s\n",
685 igb_driver_string, igb_driver_version);
686
687 pr_info("%s\n", igb_copyright);
688
689 #ifdef CONFIG_IGB_DCA
690 dca_register_notify(&dca_notifier);
691 #endif
692 ret = pci_register_driver(&igb_driver);
693 return ret;
694 }
695
696 module_init(igb_init_module);
697
698 /**
699 * igb_exit_module - Driver Exit Cleanup Routine
700 *
701 * igb_exit_module is called just before the driver is removed
702 * from memory.
703 **/
704 static void __exit igb_exit_module(void)
705 {
706 #ifdef CONFIG_IGB_DCA
707 dca_unregister_notify(&dca_notifier);
708 #endif
709 pci_unregister_driver(&igb_driver);
710 }
711
712 module_exit(igb_exit_module);
713
714 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
715 /**
716 * igb_cache_ring_register - Descriptor ring to register mapping
717 * @adapter: board private structure to initialize
718 *
719 * Once we know the feature-set enabled for the device, we'll cache
720 * the register offset the descriptor ring is assigned to.
721 **/
722 static void igb_cache_ring_register(struct igb_adapter *adapter)
723 {
724 int i = 0, j = 0;
725 u32 rbase_offset = adapter->vfs_allocated_count;
726
727 switch (adapter->hw.mac.type) {
728 case e1000_82576:
729 /* The queues are allocated for virtualization such that VF 0
730 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
731 * In order to avoid collision we start at the first free queue
732 * and continue consuming queues in the same sequence
733 */
734 if (adapter->vfs_allocated_count) {
735 for (; i < adapter->rss_queues; i++)
736 adapter->rx_ring[i]->reg_idx = rbase_offset +
737 Q_IDX_82576(i);
738 }
739 case e1000_82575:
740 case e1000_82580:
741 case e1000_i350:
742 case e1000_i354:
743 case e1000_i210:
744 case e1000_i211:
745 default:
746 for (; i < adapter->num_rx_queues; i++)
747 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
748 for (; j < adapter->num_tx_queues; j++)
749 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
750 break;
751 }
752 }
753
754 /**
755 * igb_write_ivar - configure ivar for given MSI-X vector
756 * @hw: pointer to the HW structure
757 * @msix_vector: vector number we are allocating to a given ring
758 * @index: row index of IVAR register to write within IVAR table
759 * @offset: column offset of in IVAR, should be multiple of 8
760 *
761 * This function is intended to handle the writing of the IVAR register
762 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
763 * each containing an cause allocation for an Rx and Tx ring, and a
764 * variable number of rows depending on the number of queues supported.
765 **/
766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767 int index, int offset)
768 {
769 u32 ivar = array_rd32(E1000_IVAR0, index);
770
771 /* clear any bits that are currently set */
772 ivar &= ~((u32)0xFF << offset);
773
774 /* write vector and valid bit */
775 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776
777 array_wr32(E1000_IVAR0, index, ivar);
778 }
779
780 #define IGB_N0_QUEUE -1
781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782 {
783 struct igb_adapter *adapter = q_vector->adapter;
784 struct e1000_hw *hw = &adapter->hw;
785 int rx_queue = IGB_N0_QUEUE;
786 int tx_queue = IGB_N0_QUEUE;
787 u32 msixbm = 0;
788
789 if (q_vector->rx.ring)
790 rx_queue = q_vector->rx.ring->reg_idx;
791 if (q_vector->tx.ring)
792 tx_queue = q_vector->tx.ring->reg_idx;
793
794 switch (hw->mac.type) {
795 case e1000_82575:
796 /* The 82575 assigns vectors using a bitmask, which matches the
797 * bitmask for the EICR/EIMS/EIMC registers. To assign one
798 * or more queues to a vector, we write the appropriate bits
799 * into the MSIXBM register for that vector.
800 */
801 if (rx_queue > IGB_N0_QUEUE)
802 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803 if (tx_queue > IGB_N0_QUEUE)
804 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805 if (!adapter->msix_entries && msix_vector == 0)
806 msixbm |= E1000_EIMS_OTHER;
807 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808 q_vector->eims_value = msixbm;
809 break;
810 case e1000_82576:
811 /* 82576 uses a table that essentially consists of 2 columns
812 * with 8 rows. The ordering is column-major so we use the
813 * lower 3 bits as the row index, and the 4th bit as the
814 * column offset.
815 */
816 if (rx_queue > IGB_N0_QUEUE)
817 igb_write_ivar(hw, msix_vector,
818 rx_queue & 0x7,
819 (rx_queue & 0x8) << 1);
820 if (tx_queue > IGB_N0_QUEUE)
821 igb_write_ivar(hw, msix_vector,
822 tx_queue & 0x7,
823 ((tx_queue & 0x8) << 1) + 8);
824 q_vector->eims_value = 1 << msix_vector;
825 break;
826 case e1000_82580:
827 case e1000_i350:
828 case e1000_i354:
829 case e1000_i210:
830 case e1000_i211:
831 /* On 82580 and newer adapters the scheme is similar to 82576
832 * however instead of ordering column-major we have things
833 * ordered row-major. So we traverse the table by using
834 * bit 0 as the column offset, and the remaining bits as the
835 * row index.
836 */
837 if (rx_queue > IGB_N0_QUEUE)
838 igb_write_ivar(hw, msix_vector,
839 rx_queue >> 1,
840 (rx_queue & 0x1) << 4);
841 if (tx_queue > IGB_N0_QUEUE)
842 igb_write_ivar(hw, msix_vector,
843 tx_queue >> 1,
844 ((tx_queue & 0x1) << 4) + 8);
845 q_vector->eims_value = 1 << msix_vector;
846 break;
847 default:
848 BUG();
849 break;
850 }
851
852 /* add q_vector eims value to global eims_enable_mask */
853 adapter->eims_enable_mask |= q_vector->eims_value;
854
855 /* configure q_vector to set itr on first interrupt */
856 q_vector->set_itr = 1;
857 }
858
859 /**
860 * igb_configure_msix - Configure MSI-X hardware
861 * @adapter: board private structure to initialize
862 *
863 * igb_configure_msix sets up the hardware to properly
864 * generate MSI-X interrupts.
865 **/
866 static void igb_configure_msix(struct igb_adapter *adapter)
867 {
868 u32 tmp;
869 int i, vector = 0;
870 struct e1000_hw *hw = &adapter->hw;
871
872 adapter->eims_enable_mask = 0;
873
874 /* set vector for other causes, i.e. link changes */
875 switch (hw->mac.type) {
876 case e1000_82575:
877 tmp = rd32(E1000_CTRL_EXT);
878 /* enable MSI-X PBA support*/
879 tmp |= E1000_CTRL_EXT_PBA_CLR;
880
881 /* Auto-Mask interrupts upon ICR read. */
882 tmp |= E1000_CTRL_EXT_EIAME;
883 tmp |= E1000_CTRL_EXT_IRCA;
884
885 wr32(E1000_CTRL_EXT, tmp);
886
887 /* enable msix_other interrupt */
888 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889 adapter->eims_other = E1000_EIMS_OTHER;
890
891 break;
892
893 case e1000_82576:
894 case e1000_82580:
895 case e1000_i350:
896 case e1000_i354:
897 case e1000_i210:
898 case e1000_i211:
899 /* Turn on MSI-X capability first, or our settings
900 * won't stick. And it will take days to debug.
901 */
902 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903 E1000_GPIE_PBA | E1000_GPIE_EIAME |
904 E1000_GPIE_NSICR);
905
906 /* enable msix_other interrupt */
907 adapter->eims_other = 1 << vector;
908 tmp = (vector++ | E1000_IVAR_VALID) << 8;
909
910 wr32(E1000_IVAR_MISC, tmp);
911 break;
912 default:
913 /* do nothing, since nothing else supports MSI-X */
914 break;
915 } /* switch (hw->mac.type) */
916
917 adapter->eims_enable_mask |= adapter->eims_other;
918
919 for (i = 0; i < adapter->num_q_vectors; i++)
920 igb_assign_vector(adapter->q_vector[i], vector++);
921
922 wrfl();
923 }
924
925 /**
926 * igb_request_msix - Initialize MSI-X interrupts
927 * @adapter: board private structure to initialize
928 *
929 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
930 * kernel.
931 **/
932 static int igb_request_msix(struct igb_adapter *adapter)
933 {
934 struct net_device *netdev = adapter->netdev;
935 struct e1000_hw *hw = &adapter->hw;
936 int i, err = 0, vector = 0, free_vector = 0;
937
938 err = request_irq(adapter->msix_entries[vector].vector,
939 igb_msix_other, 0, netdev->name, adapter);
940 if (err)
941 goto err_out;
942
943 for (i = 0; i < adapter->num_q_vectors; i++) {
944 struct igb_q_vector *q_vector = adapter->q_vector[i];
945
946 vector++;
947
948 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
949
950 if (q_vector->rx.ring && q_vector->tx.ring)
951 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
952 q_vector->rx.ring->queue_index);
953 else if (q_vector->tx.ring)
954 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
955 q_vector->tx.ring->queue_index);
956 else if (q_vector->rx.ring)
957 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
958 q_vector->rx.ring->queue_index);
959 else
960 sprintf(q_vector->name, "%s-unused", netdev->name);
961
962 err = request_irq(adapter->msix_entries[vector].vector,
963 igb_msix_ring, 0, q_vector->name,
964 q_vector);
965 if (err)
966 goto err_free;
967 }
968
969 igb_configure_msix(adapter);
970 return 0;
971
972 err_free:
973 /* free already assigned IRQs */
974 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
975
976 vector--;
977 for (i = 0; i < vector; i++) {
978 free_irq(adapter->msix_entries[free_vector++].vector,
979 adapter->q_vector[i]);
980 }
981 err_out:
982 return err;
983 }
984
985 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
986 {
987 if (adapter->msix_entries) {
988 pci_disable_msix(adapter->pdev);
989 kfree(adapter->msix_entries);
990 adapter->msix_entries = NULL;
991 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
992 pci_disable_msi(adapter->pdev);
993 }
994 }
995
996 /**
997 * igb_free_q_vector - Free memory allocated for specific interrupt vector
998 * @adapter: board private structure to initialize
999 * @v_idx: Index of vector to be freed
1000 *
1001 * This function frees the memory allocated to the q_vector. In addition if
1002 * NAPI is enabled it will delete any references to the NAPI struct prior
1003 * to freeing the q_vector.
1004 **/
1005 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1006 {
1007 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1008
1009 if (q_vector->tx.ring)
1010 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1011
1012 if (q_vector->rx.ring)
1013 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1014
1015 adapter->q_vector[v_idx] = NULL;
1016 netif_napi_del(&q_vector->napi);
1017
1018 /* igb_get_stats64() might access the rings on this vector,
1019 * we must wait a grace period before freeing it.
1020 */
1021 kfree_rcu(q_vector, rcu);
1022 }
1023
1024 /**
1025 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1026 * @adapter: board private structure to initialize
1027 *
1028 * This function frees the memory allocated to the q_vectors. In addition if
1029 * NAPI is enabled it will delete any references to the NAPI struct prior
1030 * to freeing the q_vector.
1031 **/
1032 static void igb_free_q_vectors(struct igb_adapter *adapter)
1033 {
1034 int v_idx = adapter->num_q_vectors;
1035
1036 adapter->num_tx_queues = 0;
1037 adapter->num_rx_queues = 0;
1038 adapter->num_q_vectors = 0;
1039
1040 while (v_idx--)
1041 igb_free_q_vector(adapter, v_idx);
1042 }
1043
1044 /**
1045 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1046 * @adapter: board private structure to initialize
1047 *
1048 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1049 * MSI-X interrupts allocated.
1050 */
1051 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1052 {
1053 igb_free_q_vectors(adapter);
1054 igb_reset_interrupt_capability(adapter);
1055 }
1056
1057 /**
1058 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1059 * @adapter: board private structure to initialize
1060 * @msix: boolean value of MSIX capability
1061 *
1062 * Attempt to configure interrupts using the best available
1063 * capabilities of the hardware and kernel.
1064 **/
1065 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1066 {
1067 int err;
1068 int numvecs, i;
1069
1070 if (!msix)
1071 goto msi_only;
1072
1073 /* Number of supported queues. */
1074 adapter->num_rx_queues = adapter->rss_queues;
1075 if (adapter->vfs_allocated_count)
1076 adapter->num_tx_queues = 1;
1077 else
1078 adapter->num_tx_queues = adapter->rss_queues;
1079
1080 /* start with one vector for every Rx queue */
1081 numvecs = adapter->num_rx_queues;
1082
1083 /* if Tx handler is separate add 1 for every Tx queue */
1084 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1085 numvecs += adapter->num_tx_queues;
1086
1087 /* store the number of vectors reserved for queues */
1088 adapter->num_q_vectors = numvecs;
1089
1090 /* add 1 vector for link status interrupts */
1091 numvecs++;
1092 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1093 GFP_KERNEL);
1094
1095 if (!adapter->msix_entries)
1096 goto msi_only;
1097
1098 for (i = 0; i < numvecs; i++)
1099 adapter->msix_entries[i].entry = i;
1100
1101 err = pci_enable_msix(adapter->pdev,
1102 adapter->msix_entries,
1103 numvecs);
1104 if (err == 0)
1105 return;
1106
1107 igb_reset_interrupt_capability(adapter);
1108
1109 /* If we can't do MSI-X, try MSI */
1110 msi_only:
1111 #ifdef CONFIG_PCI_IOV
1112 /* disable SR-IOV for non MSI-X configurations */
1113 if (adapter->vf_data) {
1114 struct e1000_hw *hw = &adapter->hw;
1115 /* disable iov and allow time for transactions to clear */
1116 pci_disable_sriov(adapter->pdev);
1117 msleep(500);
1118
1119 kfree(adapter->vf_data);
1120 adapter->vf_data = NULL;
1121 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1122 wrfl();
1123 msleep(100);
1124 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1125 }
1126 #endif
1127 adapter->vfs_allocated_count = 0;
1128 adapter->rss_queues = 1;
1129 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1130 adapter->num_rx_queues = 1;
1131 adapter->num_tx_queues = 1;
1132 adapter->num_q_vectors = 1;
1133 if (!pci_enable_msi(adapter->pdev))
1134 adapter->flags |= IGB_FLAG_HAS_MSI;
1135 }
1136
1137 static void igb_add_ring(struct igb_ring *ring,
1138 struct igb_ring_container *head)
1139 {
1140 head->ring = ring;
1141 head->count++;
1142 }
1143
1144 /**
1145 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1146 * @adapter: board private structure to initialize
1147 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1148 * @v_idx: index of vector in adapter struct
1149 * @txr_count: total number of Tx rings to allocate
1150 * @txr_idx: index of first Tx ring to allocate
1151 * @rxr_count: total number of Rx rings to allocate
1152 * @rxr_idx: index of first Rx ring to allocate
1153 *
1154 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1155 **/
1156 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1157 int v_count, int v_idx,
1158 int txr_count, int txr_idx,
1159 int rxr_count, int rxr_idx)
1160 {
1161 struct igb_q_vector *q_vector;
1162 struct igb_ring *ring;
1163 int ring_count, size;
1164
1165 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1166 if (txr_count > 1 || rxr_count > 1)
1167 return -ENOMEM;
1168
1169 ring_count = txr_count + rxr_count;
1170 size = sizeof(struct igb_q_vector) +
1171 (sizeof(struct igb_ring) * ring_count);
1172
1173 /* allocate q_vector and rings */
1174 q_vector = kzalloc(size, GFP_KERNEL);
1175 if (!q_vector)
1176 return -ENOMEM;
1177
1178 /* initialize NAPI */
1179 netif_napi_add(adapter->netdev, &q_vector->napi,
1180 igb_poll, 64);
1181
1182 /* tie q_vector and adapter together */
1183 adapter->q_vector[v_idx] = q_vector;
1184 q_vector->adapter = adapter;
1185
1186 /* initialize work limits */
1187 q_vector->tx.work_limit = adapter->tx_work_limit;
1188
1189 /* initialize ITR configuration */
1190 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1191 q_vector->itr_val = IGB_START_ITR;
1192
1193 /* initialize pointer to rings */
1194 ring = q_vector->ring;
1195
1196 /* intialize ITR */
1197 if (rxr_count) {
1198 /* rx or rx/tx vector */
1199 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1200 q_vector->itr_val = adapter->rx_itr_setting;
1201 } else {
1202 /* tx only vector */
1203 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1204 q_vector->itr_val = adapter->tx_itr_setting;
1205 }
1206
1207 if (txr_count) {
1208 /* assign generic ring traits */
1209 ring->dev = &adapter->pdev->dev;
1210 ring->netdev = adapter->netdev;
1211
1212 /* configure backlink on ring */
1213 ring->q_vector = q_vector;
1214
1215 /* update q_vector Tx values */
1216 igb_add_ring(ring, &q_vector->tx);
1217
1218 /* For 82575, context index must be unique per ring. */
1219 if (adapter->hw.mac.type == e1000_82575)
1220 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1221
1222 /* apply Tx specific ring traits */
1223 ring->count = adapter->tx_ring_count;
1224 ring->queue_index = txr_idx;
1225
1226 /* assign ring to adapter */
1227 adapter->tx_ring[txr_idx] = ring;
1228
1229 /* push pointer to next ring */
1230 ring++;
1231 }
1232
1233 if (rxr_count) {
1234 /* assign generic ring traits */
1235 ring->dev = &adapter->pdev->dev;
1236 ring->netdev = adapter->netdev;
1237
1238 /* configure backlink on ring */
1239 ring->q_vector = q_vector;
1240
1241 /* update q_vector Rx values */
1242 igb_add_ring(ring, &q_vector->rx);
1243
1244 /* set flag indicating ring supports SCTP checksum offload */
1245 if (adapter->hw.mac.type >= e1000_82576)
1246 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1247
1248 /*
1249 * On i350, i354, i210, and i211, loopback VLAN packets
1250 * have the tag byte-swapped.
1251 */
1252 if (adapter->hw.mac.type >= e1000_i350)
1253 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1254
1255 /* apply Rx specific ring traits */
1256 ring->count = adapter->rx_ring_count;
1257 ring->queue_index = rxr_idx;
1258
1259 /* assign ring to adapter */
1260 adapter->rx_ring[rxr_idx] = ring;
1261 }
1262
1263 return 0;
1264 }
1265
1266
1267 /**
1268 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1269 * @adapter: board private structure to initialize
1270 *
1271 * We allocate one q_vector per queue interrupt. If allocation fails we
1272 * return -ENOMEM.
1273 **/
1274 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1275 {
1276 int q_vectors = adapter->num_q_vectors;
1277 int rxr_remaining = adapter->num_rx_queues;
1278 int txr_remaining = adapter->num_tx_queues;
1279 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1280 int err;
1281
1282 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1283 for (; rxr_remaining; v_idx++) {
1284 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1285 0, 0, 1, rxr_idx);
1286
1287 if (err)
1288 goto err_out;
1289
1290 /* update counts and index */
1291 rxr_remaining--;
1292 rxr_idx++;
1293 }
1294 }
1295
1296 for (; v_idx < q_vectors; v_idx++) {
1297 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1298 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1299 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1300 tqpv, txr_idx, rqpv, rxr_idx);
1301
1302 if (err)
1303 goto err_out;
1304
1305 /* update counts and index */
1306 rxr_remaining -= rqpv;
1307 txr_remaining -= tqpv;
1308 rxr_idx++;
1309 txr_idx++;
1310 }
1311
1312 return 0;
1313
1314 err_out:
1315 adapter->num_tx_queues = 0;
1316 adapter->num_rx_queues = 0;
1317 adapter->num_q_vectors = 0;
1318
1319 while (v_idx--)
1320 igb_free_q_vector(adapter, v_idx);
1321
1322 return -ENOMEM;
1323 }
1324
1325 /**
1326 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1327 * @adapter: board private structure to initialize
1328 * @msix: boolean value of MSIX capability
1329 *
1330 * This function initializes the interrupts and allocates all of the queues.
1331 **/
1332 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1333 {
1334 struct pci_dev *pdev = adapter->pdev;
1335 int err;
1336
1337 igb_set_interrupt_capability(adapter, msix);
1338
1339 err = igb_alloc_q_vectors(adapter);
1340 if (err) {
1341 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1342 goto err_alloc_q_vectors;
1343 }
1344
1345 igb_cache_ring_register(adapter);
1346
1347 return 0;
1348
1349 err_alloc_q_vectors:
1350 igb_reset_interrupt_capability(adapter);
1351 return err;
1352 }
1353
1354 /**
1355 * igb_request_irq - initialize interrupts
1356 * @adapter: board private structure to initialize
1357 *
1358 * Attempts to configure interrupts using the best available
1359 * capabilities of the hardware and kernel.
1360 **/
1361 static int igb_request_irq(struct igb_adapter *adapter)
1362 {
1363 struct net_device *netdev = adapter->netdev;
1364 struct pci_dev *pdev = adapter->pdev;
1365 int err = 0;
1366
1367 if (adapter->msix_entries) {
1368 err = igb_request_msix(adapter);
1369 if (!err)
1370 goto request_done;
1371 /* fall back to MSI */
1372 igb_free_all_tx_resources(adapter);
1373 igb_free_all_rx_resources(adapter);
1374
1375 igb_clear_interrupt_scheme(adapter);
1376 err = igb_init_interrupt_scheme(adapter, false);
1377 if (err)
1378 goto request_done;
1379
1380 igb_setup_all_tx_resources(adapter);
1381 igb_setup_all_rx_resources(adapter);
1382 igb_configure(adapter);
1383 }
1384
1385 igb_assign_vector(adapter->q_vector[0], 0);
1386
1387 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1388 err = request_irq(pdev->irq, igb_intr_msi, 0,
1389 netdev->name, adapter);
1390 if (!err)
1391 goto request_done;
1392
1393 /* fall back to legacy interrupts */
1394 igb_reset_interrupt_capability(adapter);
1395 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1396 }
1397
1398 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1399 netdev->name, adapter);
1400
1401 if (err)
1402 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1403 err);
1404
1405 request_done:
1406 return err;
1407 }
1408
1409 static void igb_free_irq(struct igb_adapter *adapter)
1410 {
1411 if (adapter->msix_entries) {
1412 int vector = 0, i;
1413
1414 free_irq(adapter->msix_entries[vector++].vector, adapter);
1415
1416 for (i = 0; i < adapter->num_q_vectors; i++)
1417 free_irq(adapter->msix_entries[vector++].vector,
1418 adapter->q_vector[i]);
1419 } else {
1420 free_irq(adapter->pdev->irq, adapter);
1421 }
1422 }
1423
1424 /**
1425 * igb_irq_disable - Mask off interrupt generation on the NIC
1426 * @adapter: board private structure
1427 **/
1428 static void igb_irq_disable(struct igb_adapter *adapter)
1429 {
1430 struct e1000_hw *hw = &adapter->hw;
1431
1432 /* we need to be careful when disabling interrupts. The VFs are also
1433 * mapped into these registers and so clearing the bits can cause
1434 * issues on the VF drivers so we only need to clear what we set
1435 */
1436 if (adapter->msix_entries) {
1437 u32 regval = rd32(E1000_EIAM);
1438 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1439 wr32(E1000_EIMC, adapter->eims_enable_mask);
1440 regval = rd32(E1000_EIAC);
1441 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1442 }
1443
1444 wr32(E1000_IAM, 0);
1445 wr32(E1000_IMC, ~0);
1446 wrfl();
1447 if (adapter->msix_entries) {
1448 int i;
1449 for (i = 0; i < adapter->num_q_vectors; i++)
1450 synchronize_irq(adapter->msix_entries[i].vector);
1451 } else {
1452 synchronize_irq(adapter->pdev->irq);
1453 }
1454 }
1455
1456 /**
1457 * igb_irq_enable - Enable default interrupt generation settings
1458 * @adapter: board private structure
1459 **/
1460 static void igb_irq_enable(struct igb_adapter *adapter)
1461 {
1462 struct e1000_hw *hw = &adapter->hw;
1463
1464 if (adapter->msix_entries) {
1465 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1466 u32 regval = rd32(E1000_EIAC);
1467 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1468 regval = rd32(E1000_EIAM);
1469 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1470 wr32(E1000_EIMS, adapter->eims_enable_mask);
1471 if (adapter->vfs_allocated_count) {
1472 wr32(E1000_MBVFIMR, 0xFF);
1473 ims |= E1000_IMS_VMMB;
1474 }
1475 wr32(E1000_IMS, ims);
1476 } else {
1477 wr32(E1000_IMS, IMS_ENABLE_MASK |
1478 E1000_IMS_DRSTA);
1479 wr32(E1000_IAM, IMS_ENABLE_MASK |
1480 E1000_IMS_DRSTA);
1481 }
1482 }
1483
1484 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1485 {
1486 struct e1000_hw *hw = &adapter->hw;
1487 u16 vid = adapter->hw.mng_cookie.vlan_id;
1488 u16 old_vid = adapter->mng_vlan_id;
1489
1490 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1491 /* add VID to filter table */
1492 igb_vfta_set(hw, vid, true);
1493 adapter->mng_vlan_id = vid;
1494 } else {
1495 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1496 }
1497
1498 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1499 (vid != old_vid) &&
1500 !test_bit(old_vid, adapter->active_vlans)) {
1501 /* remove VID from filter table */
1502 igb_vfta_set(hw, old_vid, false);
1503 }
1504 }
1505
1506 /**
1507 * igb_release_hw_control - release control of the h/w to f/w
1508 * @adapter: address of board private structure
1509 *
1510 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1511 * For ASF and Pass Through versions of f/w this means that the
1512 * driver is no longer loaded.
1513 **/
1514 static void igb_release_hw_control(struct igb_adapter *adapter)
1515 {
1516 struct e1000_hw *hw = &adapter->hw;
1517 u32 ctrl_ext;
1518
1519 /* Let firmware take over control of h/w */
1520 ctrl_ext = rd32(E1000_CTRL_EXT);
1521 wr32(E1000_CTRL_EXT,
1522 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1523 }
1524
1525 /**
1526 * igb_get_hw_control - get control of the h/w from f/w
1527 * @adapter: address of board private structure
1528 *
1529 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1530 * For ASF and Pass Through versions of f/w this means that
1531 * the driver is loaded.
1532 **/
1533 static void igb_get_hw_control(struct igb_adapter *adapter)
1534 {
1535 struct e1000_hw *hw = &adapter->hw;
1536 u32 ctrl_ext;
1537
1538 /* Let firmware know the driver has taken over */
1539 ctrl_ext = rd32(E1000_CTRL_EXT);
1540 wr32(E1000_CTRL_EXT,
1541 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1542 }
1543
1544 /**
1545 * igb_configure - configure the hardware for RX and TX
1546 * @adapter: private board structure
1547 **/
1548 static void igb_configure(struct igb_adapter *adapter)
1549 {
1550 struct net_device *netdev = adapter->netdev;
1551 int i;
1552
1553 igb_get_hw_control(adapter);
1554 igb_set_rx_mode(netdev);
1555
1556 igb_restore_vlan(adapter);
1557
1558 igb_setup_tctl(adapter);
1559 igb_setup_mrqc(adapter);
1560 igb_setup_rctl(adapter);
1561
1562 igb_configure_tx(adapter);
1563 igb_configure_rx(adapter);
1564
1565 igb_rx_fifo_flush_82575(&adapter->hw);
1566
1567 /* call igb_desc_unused which always leaves
1568 * at least 1 descriptor unused to make sure
1569 * next_to_use != next_to_clean
1570 */
1571 for (i = 0; i < adapter->num_rx_queues; i++) {
1572 struct igb_ring *ring = adapter->rx_ring[i];
1573 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1574 }
1575 }
1576
1577 /**
1578 * igb_power_up_link - Power up the phy/serdes link
1579 * @adapter: address of board private structure
1580 **/
1581 void igb_power_up_link(struct igb_adapter *adapter)
1582 {
1583 igb_reset_phy(&adapter->hw);
1584
1585 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1586 igb_power_up_phy_copper(&adapter->hw);
1587 else
1588 igb_power_up_serdes_link_82575(&adapter->hw);
1589 }
1590
1591 /**
1592 * igb_power_down_link - Power down the phy/serdes link
1593 * @adapter: address of board private structure
1594 */
1595 static void igb_power_down_link(struct igb_adapter *adapter)
1596 {
1597 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1598 igb_power_down_phy_copper_82575(&adapter->hw);
1599 else
1600 igb_shutdown_serdes_link_82575(&adapter->hw);
1601 }
1602
1603 /**
1604 * igb_up - Open the interface and prepare it to handle traffic
1605 * @adapter: board private structure
1606 **/
1607 int igb_up(struct igb_adapter *adapter)
1608 {
1609 struct e1000_hw *hw = &adapter->hw;
1610 int i;
1611
1612 /* hardware has been reset, we need to reload some things */
1613 igb_configure(adapter);
1614
1615 clear_bit(__IGB_DOWN, &adapter->state);
1616
1617 for (i = 0; i < adapter->num_q_vectors; i++)
1618 napi_enable(&(adapter->q_vector[i]->napi));
1619
1620 if (adapter->msix_entries)
1621 igb_configure_msix(adapter);
1622 else
1623 igb_assign_vector(adapter->q_vector[0], 0);
1624
1625 /* Clear any pending interrupts. */
1626 rd32(E1000_ICR);
1627 igb_irq_enable(adapter);
1628
1629 /* notify VFs that reset has been completed */
1630 if (adapter->vfs_allocated_count) {
1631 u32 reg_data = rd32(E1000_CTRL_EXT);
1632 reg_data |= E1000_CTRL_EXT_PFRSTD;
1633 wr32(E1000_CTRL_EXT, reg_data);
1634 }
1635
1636 netif_tx_start_all_queues(adapter->netdev);
1637
1638 /* start the watchdog. */
1639 hw->mac.get_link_status = 1;
1640 schedule_work(&adapter->watchdog_task);
1641
1642 return 0;
1643 }
1644
1645 void igb_down(struct igb_adapter *adapter)
1646 {
1647 struct net_device *netdev = adapter->netdev;
1648 struct e1000_hw *hw = &adapter->hw;
1649 u32 tctl, rctl;
1650 int i;
1651
1652 /* signal that we're down so the interrupt handler does not
1653 * reschedule our watchdog timer
1654 */
1655 set_bit(__IGB_DOWN, &adapter->state);
1656
1657 /* disable receives in the hardware */
1658 rctl = rd32(E1000_RCTL);
1659 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1660 /* flush and sleep below */
1661
1662 netif_tx_stop_all_queues(netdev);
1663
1664 /* disable transmits in the hardware */
1665 tctl = rd32(E1000_TCTL);
1666 tctl &= ~E1000_TCTL_EN;
1667 wr32(E1000_TCTL, tctl);
1668 /* flush both disables and wait for them to finish */
1669 wrfl();
1670 msleep(10);
1671
1672 igb_irq_disable(adapter);
1673
1674 for (i = 0; i < adapter->num_q_vectors; i++) {
1675 napi_synchronize(&(adapter->q_vector[i]->napi));
1676 napi_disable(&(adapter->q_vector[i]->napi));
1677 }
1678
1679
1680 del_timer_sync(&adapter->watchdog_timer);
1681 del_timer_sync(&adapter->phy_info_timer);
1682
1683 netif_carrier_off(netdev);
1684
1685 /* record the stats before reset*/
1686 spin_lock(&adapter->stats64_lock);
1687 igb_update_stats(adapter, &adapter->stats64);
1688 spin_unlock(&adapter->stats64_lock);
1689
1690 adapter->link_speed = 0;
1691 adapter->link_duplex = 0;
1692
1693 if (!pci_channel_offline(adapter->pdev))
1694 igb_reset(adapter);
1695 igb_clean_all_tx_rings(adapter);
1696 igb_clean_all_rx_rings(adapter);
1697 #ifdef CONFIG_IGB_DCA
1698
1699 /* since we reset the hardware DCA settings were cleared */
1700 igb_setup_dca(adapter);
1701 #endif
1702 }
1703
1704 void igb_reinit_locked(struct igb_adapter *adapter)
1705 {
1706 WARN_ON(in_interrupt());
1707 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1708 msleep(1);
1709 igb_down(adapter);
1710 igb_up(adapter);
1711 clear_bit(__IGB_RESETTING, &adapter->state);
1712 }
1713
1714 void igb_reset(struct igb_adapter *adapter)
1715 {
1716 struct pci_dev *pdev = adapter->pdev;
1717 struct e1000_hw *hw = &adapter->hw;
1718 struct e1000_mac_info *mac = &hw->mac;
1719 struct e1000_fc_info *fc = &hw->fc;
1720 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1721
1722 /* Repartition Pba for greater than 9k mtu
1723 * To take effect CTRL.RST is required.
1724 */
1725 switch (mac->type) {
1726 case e1000_i350:
1727 case e1000_i354:
1728 case e1000_82580:
1729 pba = rd32(E1000_RXPBS);
1730 pba = igb_rxpbs_adjust_82580(pba);
1731 break;
1732 case e1000_82576:
1733 pba = rd32(E1000_RXPBS);
1734 pba &= E1000_RXPBS_SIZE_MASK_82576;
1735 break;
1736 case e1000_82575:
1737 case e1000_i210:
1738 case e1000_i211:
1739 default:
1740 pba = E1000_PBA_34K;
1741 break;
1742 }
1743
1744 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1745 (mac->type < e1000_82576)) {
1746 /* adjust PBA for jumbo frames */
1747 wr32(E1000_PBA, pba);
1748
1749 /* To maintain wire speed transmits, the Tx FIFO should be
1750 * large enough to accommodate two full transmit packets,
1751 * rounded up to the next 1KB and expressed in KB. Likewise,
1752 * the Rx FIFO should be large enough to accommodate at least
1753 * one full receive packet and is similarly rounded up and
1754 * expressed in KB.
1755 */
1756 pba = rd32(E1000_PBA);
1757 /* upper 16 bits has Tx packet buffer allocation size in KB */
1758 tx_space = pba >> 16;
1759 /* lower 16 bits has Rx packet buffer allocation size in KB */
1760 pba &= 0xffff;
1761 /* the Tx fifo also stores 16 bytes of information about the Tx
1762 * but don't include ethernet FCS because hardware appends it
1763 */
1764 min_tx_space = (adapter->max_frame_size +
1765 sizeof(union e1000_adv_tx_desc) -
1766 ETH_FCS_LEN) * 2;
1767 min_tx_space = ALIGN(min_tx_space, 1024);
1768 min_tx_space >>= 10;
1769 /* software strips receive CRC, so leave room for it */
1770 min_rx_space = adapter->max_frame_size;
1771 min_rx_space = ALIGN(min_rx_space, 1024);
1772 min_rx_space >>= 10;
1773
1774 /* If current Tx allocation is less than the min Tx FIFO size,
1775 * and the min Tx FIFO size is less than the current Rx FIFO
1776 * allocation, take space away from current Rx allocation
1777 */
1778 if (tx_space < min_tx_space &&
1779 ((min_tx_space - tx_space) < pba)) {
1780 pba = pba - (min_tx_space - tx_space);
1781
1782 /* if short on Rx space, Rx wins and must trump Tx
1783 * adjustment
1784 */
1785 if (pba < min_rx_space)
1786 pba = min_rx_space;
1787 }
1788 wr32(E1000_PBA, pba);
1789 }
1790
1791 /* flow control settings */
1792 /* The high water mark must be low enough to fit one full frame
1793 * (or the size used for early receive) above it in the Rx FIFO.
1794 * Set it to the lower of:
1795 * - 90% of the Rx FIFO size, or
1796 * - the full Rx FIFO size minus one full frame
1797 */
1798 hwm = min(((pba << 10) * 9 / 10),
1799 ((pba << 10) - 2 * adapter->max_frame_size));
1800
1801 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1802 fc->low_water = fc->high_water - 16;
1803 fc->pause_time = 0xFFFF;
1804 fc->send_xon = 1;
1805 fc->current_mode = fc->requested_mode;
1806
1807 /* disable receive for all VFs and wait one second */
1808 if (adapter->vfs_allocated_count) {
1809 int i;
1810 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1811 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1812
1813 /* ping all the active vfs to let them know we are going down */
1814 igb_ping_all_vfs(adapter);
1815
1816 /* disable transmits and receives */
1817 wr32(E1000_VFRE, 0);
1818 wr32(E1000_VFTE, 0);
1819 }
1820
1821 /* Allow time for pending master requests to run */
1822 hw->mac.ops.reset_hw(hw);
1823 wr32(E1000_WUC, 0);
1824
1825 if (hw->mac.ops.init_hw(hw))
1826 dev_err(&pdev->dev, "Hardware Error\n");
1827
1828 /* Flow control settings reset on hardware reset, so guarantee flow
1829 * control is off when forcing speed.
1830 */
1831 if (!hw->mac.autoneg)
1832 igb_force_mac_fc(hw);
1833
1834 igb_init_dmac(adapter, pba);
1835 #ifdef CONFIG_IGB_HWMON
1836 /* Re-initialize the thermal sensor on i350 devices. */
1837 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1838 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1839 /* If present, re-initialize the external thermal sensor
1840 * interface.
1841 */
1842 if (adapter->ets)
1843 mac->ops.init_thermal_sensor_thresh(hw);
1844 }
1845 }
1846 #endif
1847 if (!netif_running(adapter->netdev))
1848 igb_power_down_link(adapter);
1849
1850 igb_update_mng_vlan(adapter);
1851
1852 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1853 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1854
1855 /* Re-enable PTP, where applicable. */
1856 igb_ptp_reset(adapter);
1857
1858 igb_get_phy_info(hw);
1859 }
1860
1861 static netdev_features_t igb_fix_features(struct net_device *netdev,
1862 netdev_features_t features)
1863 {
1864 /* Since there is no support for separate Rx/Tx vlan accel
1865 * enable/disable make sure Tx flag is always in same state as Rx.
1866 */
1867 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1868 features |= NETIF_F_HW_VLAN_CTAG_TX;
1869 else
1870 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1871
1872 return features;
1873 }
1874
1875 static int igb_set_features(struct net_device *netdev,
1876 netdev_features_t features)
1877 {
1878 netdev_features_t changed = netdev->features ^ features;
1879 struct igb_adapter *adapter = netdev_priv(netdev);
1880
1881 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1882 igb_vlan_mode(netdev, features);
1883
1884 if (!(changed & NETIF_F_RXALL))
1885 return 0;
1886
1887 netdev->features = features;
1888
1889 if (netif_running(netdev))
1890 igb_reinit_locked(adapter);
1891 else
1892 igb_reset(adapter);
1893
1894 return 0;
1895 }
1896
1897 static const struct net_device_ops igb_netdev_ops = {
1898 .ndo_open = igb_open,
1899 .ndo_stop = igb_close,
1900 .ndo_start_xmit = igb_xmit_frame,
1901 .ndo_get_stats64 = igb_get_stats64,
1902 .ndo_set_rx_mode = igb_set_rx_mode,
1903 .ndo_set_mac_address = igb_set_mac,
1904 .ndo_change_mtu = igb_change_mtu,
1905 .ndo_do_ioctl = igb_ioctl,
1906 .ndo_tx_timeout = igb_tx_timeout,
1907 .ndo_validate_addr = eth_validate_addr,
1908 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1909 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1910 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1911 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1912 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1913 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
1914 .ndo_get_vf_config = igb_ndo_get_vf_config,
1915 #ifdef CONFIG_NET_POLL_CONTROLLER
1916 .ndo_poll_controller = igb_netpoll,
1917 #endif
1918 .ndo_fix_features = igb_fix_features,
1919 .ndo_set_features = igb_set_features,
1920 };
1921
1922 /**
1923 * igb_set_fw_version - Configure version string for ethtool
1924 * @adapter: adapter struct
1925 **/
1926 void igb_set_fw_version(struct igb_adapter *adapter)
1927 {
1928 struct e1000_hw *hw = &adapter->hw;
1929 struct e1000_fw_version fw;
1930
1931 igb_get_fw_version(hw, &fw);
1932
1933 switch (hw->mac.type) {
1934 case e1000_i210:
1935 case e1000_i211:
1936 if (!(igb_get_flash_presence_i210(hw))) {
1937 snprintf(adapter->fw_version,
1938 sizeof(adapter->fw_version),
1939 "%2d.%2d-%d",
1940 fw.invm_major, fw.invm_minor,
1941 fw.invm_img_type);
1942 break;
1943 }
1944 /* fall through */
1945 default:
1946 /* if option is rom valid, display its version too */
1947 if (fw.or_valid) {
1948 snprintf(adapter->fw_version,
1949 sizeof(adapter->fw_version),
1950 "%d.%d, 0x%08x, %d.%d.%d",
1951 fw.eep_major, fw.eep_minor, fw.etrack_id,
1952 fw.or_major, fw.or_build, fw.or_patch);
1953 /* no option rom */
1954 } else if (fw.etrack_id != 0X0000) {
1955 snprintf(adapter->fw_version,
1956 sizeof(adapter->fw_version),
1957 "%d.%d, 0x%08x",
1958 fw.eep_major, fw.eep_minor, fw.etrack_id);
1959 } else {
1960 snprintf(adapter->fw_version,
1961 sizeof(adapter->fw_version),
1962 "%d.%d.%d",
1963 fw.eep_major, fw.eep_minor, fw.eep_build);
1964 }
1965 break;
1966 }
1967 return;
1968 }
1969
1970 /**
1971 * igb_init_i2c - Init I2C interface
1972 * @adapter: pointer to adapter structure
1973 **/
1974 static s32 igb_init_i2c(struct igb_adapter *adapter)
1975 {
1976 s32 status = E1000_SUCCESS;
1977
1978 /* I2C interface supported on i350 devices */
1979 if (adapter->hw.mac.type != e1000_i350)
1980 return E1000_SUCCESS;
1981
1982 /* Initialize the i2c bus which is controlled by the registers.
1983 * This bus will use the i2c_algo_bit structue that implements
1984 * the protocol through toggling of the 4 bits in the register.
1985 */
1986 adapter->i2c_adap.owner = THIS_MODULE;
1987 adapter->i2c_algo = igb_i2c_algo;
1988 adapter->i2c_algo.data = adapter;
1989 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1990 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1991 strlcpy(adapter->i2c_adap.name, "igb BB",
1992 sizeof(adapter->i2c_adap.name));
1993 status = i2c_bit_add_bus(&adapter->i2c_adap);
1994 return status;
1995 }
1996
1997 /**
1998 * igb_probe - Device Initialization Routine
1999 * @pdev: PCI device information struct
2000 * @ent: entry in igb_pci_tbl
2001 *
2002 * Returns 0 on success, negative on failure
2003 *
2004 * igb_probe initializes an adapter identified by a pci_dev structure.
2005 * The OS initialization, configuring of the adapter private structure,
2006 * and a hardware reset occur.
2007 **/
2008 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2009 {
2010 struct net_device *netdev;
2011 struct igb_adapter *adapter;
2012 struct e1000_hw *hw;
2013 u16 eeprom_data = 0;
2014 s32 ret_val;
2015 static int global_quad_port_a; /* global quad port a indication */
2016 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2017 unsigned long mmio_start, mmio_len;
2018 int err, pci_using_dac;
2019 u8 part_str[E1000_PBANUM_LENGTH];
2020
2021 /* Catch broken hardware that put the wrong VF device ID in
2022 * the PCIe SR-IOV capability.
2023 */
2024 if (pdev->is_virtfn) {
2025 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2026 pci_name(pdev), pdev->vendor, pdev->device);
2027 return -EINVAL;
2028 }
2029
2030 err = pci_enable_device_mem(pdev);
2031 if (err)
2032 return err;
2033
2034 pci_using_dac = 0;
2035 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2036 if (!err) {
2037 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2038 if (!err)
2039 pci_using_dac = 1;
2040 } else {
2041 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2042 if (err) {
2043 err = dma_set_coherent_mask(&pdev->dev,
2044 DMA_BIT_MASK(32));
2045 if (err) {
2046 dev_err(&pdev->dev,
2047 "No usable DMA configuration, aborting\n");
2048 goto err_dma;
2049 }
2050 }
2051 }
2052
2053 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2054 IORESOURCE_MEM),
2055 igb_driver_name);
2056 if (err)
2057 goto err_pci_reg;
2058
2059 pci_enable_pcie_error_reporting(pdev);
2060
2061 pci_set_master(pdev);
2062 pci_save_state(pdev);
2063
2064 err = -ENOMEM;
2065 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2066 IGB_MAX_TX_QUEUES);
2067 if (!netdev)
2068 goto err_alloc_etherdev;
2069
2070 SET_NETDEV_DEV(netdev, &pdev->dev);
2071
2072 pci_set_drvdata(pdev, netdev);
2073 adapter = netdev_priv(netdev);
2074 adapter->netdev = netdev;
2075 adapter->pdev = pdev;
2076 hw = &adapter->hw;
2077 hw->back = adapter;
2078 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2079
2080 mmio_start = pci_resource_start(pdev, 0);
2081 mmio_len = pci_resource_len(pdev, 0);
2082
2083 err = -EIO;
2084 hw->hw_addr = ioremap(mmio_start, mmio_len);
2085 if (!hw->hw_addr)
2086 goto err_ioremap;
2087
2088 netdev->netdev_ops = &igb_netdev_ops;
2089 igb_set_ethtool_ops(netdev);
2090 netdev->watchdog_timeo = 5 * HZ;
2091
2092 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2093
2094 netdev->mem_start = mmio_start;
2095 netdev->mem_end = mmio_start + mmio_len;
2096
2097 /* PCI config space info */
2098 hw->vendor_id = pdev->vendor;
2099 hw->device_id = pdev->device;
2100 hw->revision_id = pdev->revision;
2101 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2102 hw->subsystem_device_id = pdev->subsystem_device;
2103
2104 /* Copy the default MAC, PHY and NVM function pointers */
2105 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2106 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2107 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2108 /* Initialize skew-specific constants */
2109 err = ei->get_invariants(hw);
2110 if (err)
2111 goto err_sw_init;
2112
2113 /* setup the private structure */
2114 err = igb_sw_init(adapter);
2115 if (err)
2116 goto err_sw_init;
2117
2118 igb_get_bus_info_pcie(hw);
2119
2120 hw->phy.autoneg_wait_to_complete = false;
2121
2122 /* Copper options */
2123 if (hw->phy.media_type == e1000_media_type_copper) {
2124 hw->phy.mdix = AUTO_ALL_MODES;
2125 hw->phy.disable_polarity_correction = false;
2126 hw->phy.ms_type = e1000_ms_hw_default;
2127 }
2128
2129 if (igb_check_reset_block(hw))
2130 dev_info(&pdev->dev,
2131 "PHY reset is blocked due to SOL/IDER session.\n");
2132
2133 /* features is initialized to 0 in allocation, it might have bits
2134 * set by igb_sw_init so we should use an or instead of an
2135 * assignment.
2136 */
2137 netdev->features |= NETIF_F_SG |
2138 NETIF_F_IP_CSUM |
2139 NETIF_F_IPV6_CSUM |
2140 NETIF_F_TSO |
2141 NETIF_F_TSO6 |
2142 NETIF_F_RXHASH |
2143 NETIF_F_RXCSUM |
2144 NETIF_F_HW_VLAN_CTAG_RX |
2145 NETIF_F_HW_VLAN_CTAG_TX;
2146
2147 /* copy netdev features into list of user selectable features */
2148 netdev->hw_features |= netdev->features;
2149 netdev->hw_features |= NETIF_F_RXALL;
2150
2151 /* set this bit last since it cannot be part of hw_features */
2152 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2153
2154 netdev->vlan_features |= NETIF_F_TSO |
2155 NETIF_F_TSO6 |
2156 NETIF_F_IP_CSUM |
2157 NETIF_F_IPV6_CSUM |
2158 NETIF_F_SG;
2159
2160 netdev->priv_flags |= IFF_SUPP_NOFCS;
2161
2162 if (pci_using_dac) {
2163 netdev->features |= NETIF_F_HIGHDMA;
2164 netdev->vlan_features |= NETIF_F_HIGHDMA;
2165 }
2166
2167 if (hw->mac.type >= e1000_82576) {
2168 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2169 netdev->features |= NETIF_F_SCTP_CSUM;
2170 }
2171
2172 netdev->priv_flags |= IFF_UNICAST_FLT;
2173
2174 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2175
2176 /* before reading the NVM, reset the controller to put the device in a
2177 * known good starting state
2178 */
2179 hw->mac.ops.reset_hw(hw);
2180
2181 /* make sure the NVM is good , i211/i210 parts can have special NVM
2182 * that doesn't contain a checksum
2183 */
2184 switch (hw->mac.type) {
2185 case e1000_i210:
2186 case e1000_i211:
2187 if (igb_get_flash_presence_i210(hw)) {
2188 if (hw->nvm.ops.validate(hw) < 0) {
2189 dev_err(&pdev->dev,
2190 "The NVM Checksum Is Not Valid\n");
2191 err = -EIO;
2192 goto err_eeprom;
2193 }
2194 }
2195 break;
2196 default:
2197 if (hw->nvm.ops.validate(hw) < 0) {
2198 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2199 err = -EIO;
2200 goto err_eeprom;
2201 }
2202 break;
2203 }
2204
2205 /* copy the MAC address out of the NVM */
2206 if (hw->mac.ops.read_mac_addr(hw))
2207 dev_err(&pdev->dev, "NVM Read Error\n");
2208
2209 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2210
2211 if (!is_valid_ether_addr(netdev->dev_addr)) {
2212 dev_err(&pdev->dev, "Invalid MAC Address\n");
2213 err = -EIO;
2214 goto err_eeprom;
2215 }
2216
2217 /* get firmware version for ethtool -i */
2218 igb_set_fw_version(adapter);
2219
2220 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2221 (unsigned long) adapter);
2222 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2223 (unsigned long) adapter);
2224
2225 INIT_WORK(&adapter->reset_task, igb_reset_task);
2226 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2227
2228 /* Initialize link properties that are user-changeable */
2229 adapter->fc_autoneg = true;
2230 hw->mac.autoneg = true;
2231 hw->phy.autoneg_advertised = 0x2f;
2232
2233 hw->fc.requested_mode = e1000_fc_default;
2234 hw->fc.current_mode = e1000_fc_default;
2235
2236 igb_validate_mdi_setting(hw);
2237
2238 /* By default, support wake on port A */
2239 if (hw->bus.func == 0)
2240 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2241
2242 /* Check the NVM for wake support on non-port A ports */
2243 if (hw->mac.type >= e1000_82580)
2244 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2245 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2246 &eeprom_data);
2247 else if (hw->bus.func == 1)
2248 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2249
2250 if (eeprom_data & IGB_EEPROM_APME)
2251 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2252
2253 /* now that we have the eeprom settings, apply the special cases where
2254 * the eeprom may be wrong or the board simply won't support wake on
2255 * lan on a particular port
2256 */
2257 switch (pdev->device) {
2258 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2259 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2260 break;
2261 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2262 case E1000_DEV_ID_82576_FIBER:
2263 case E1000_DEV_ID_82576_SERDES:
2264 /* Wake events only supported on port A for dual fiber
2265 * regardless of eeprom setting
2266 */
2267 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2268 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2269 break;
2270 case E1000_DEV_ID_82576_QUAD_COPPER:
2271 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2272 /* if quad port adapter, disable WoL on all but port A */
2273 if (global_quad_port_a != 0)
2274 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2275 else
2276 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2277 /* Reset for multiple quad port adapters */
2278 if (++global_quad_port_a == 4)
2279 global_quad_port_a = 0;
2280 break;
2281 default:
2282 /* If the device can't wake, don't set software support */
2283 if (!device_can_wakeup(&adapter->pdev->dev))
2284 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2285 }
2286
2287 /* initialize the wol settings based on the eeprom settings */
2288 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2289 adapter->wol |= E1000_WUFC_MAG;
2290
2291 /* Some vendors want WoL disabled by default, but still supported */
2292 if ((hw->mac.type == e1000_i350) &&
2293 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2294 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2295 adapter->wol = 0;
2296 }
2297
2298 device_set_wakeup_enable(&adapter->pdev->dev,
2299 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2300
2301 /* reset the hardware with the new settings */
2302 igb_reset(adapter);
2303
2304 /* Init the I2C interface */
2305 err = igb_init_i2c(adapter);
2306 if (err) {
2307 dev_err(&pdev->dev, "failed to init i2c interface\n");
2308 goto err_eeprom;
2309 }
2310
2311 /* let the f/w know that the h/w is now under the control of the
2312 * driver. */
2313 igb_get_hw_control(adapter);
2314
2315 strcpy(netdev->name, "eth%d");
2316 err = register_netdev(netdev);
2317 if (err)
2318 goto err_register;
2319
2320 /* carrier off reporting is important to ethtool even BEFORE open */
2321 netif_carrier_off(netdev);
2322
2323 #ifdef CONFIG_IGB_DCA
2324 if (dca_add_requester(&pdev->dev) == 0) {
2325 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2326 dev_info(&pdev->dev, "DCA enabled\n");
2327 igb_setup_dca(adapter);
2328 }
2329
2330 #endif
2331 #ifdef CONFIG_IGB_HWMON
2332 /* Initialize the thermal sensor on i350 devices. */
2333 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2334 u16 ets_word;
2335
2336 /* Read the NVM to determine if this i350 device supports an
2337 * external thermal sensor.
2338 */
2339 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2340 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2341 adapter->ets = true;
2342 else
2343 adapter->ets = false;
2344 if (igb_sysfs_init(adapter))
2345 dev_err(&pdev->dev,
2346 "failed to allocate sysfs resources\n");
2347 } else {
2348 adapter->ets = false;
2349 }
2350 #endif
2351 /* do hw tstamp init after resetting */
2352 igb_ptp_init(adapter);
2353
2354 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2355 /* print bus type/speed/width info, not applicable to i354 */
2356 if (hw->mac.type != e1000_i354) {
2357 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2358 netdev->name,
2359 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2360 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2361 "unknown"),
2362 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2363 "Width x4" :
2364 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2365 "Width x2" :
2366 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2367 "Width x1" : "unknown"), netdev->dev_addr);
2368 }
2369
2370 if ((hw->mac.type >= e1000_i210 ||
2371 igb_get_flash_presence_i210(hw))) {
2372 ret_val = igb_read_part_string(hw, part_str,
2373 E1000_PBANUM_LENGTH);
2374 } else {
2375 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2376 }
2377
2378 if (ret_val)
2379 strcpy(part_str, "Unknown");
2380 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2381 dev_info(&pdev->dev,
2382 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2383 adapter->msix_entries ? "MSI-X" :
2384 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2385 adapter->num_rx_queues, adapter->num_tx_queues);
2386 switch (hw->mac.type) {
2387 case e1000_i350:
2388 case e1000_i210:
2389 case e1000_i211:
2390 igb_set_eee_i350(hw);
2391 break;
2392 case e1000_i354:
2393 if (hw->phy.media_type == e1000_media_type_copper) {
2394 if ((rd32(E1000_CTRL_EXT) &
2395 E1000_CTRL_EXT_LINK_MODE_SGMII))
2396 igb_set_eee_i354(hw);
2397 }
2398 break;
2399 default:
2400 break;
2401 }
2402
2403 pm_runtime_put_noidle(&pdev->dev);
2404 return 0;
2405
2406 err_register:
2407 igb_release_hw_control(adapter);
2408 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2409 err_eeprom:
2410 if (!igb_check_reset_block(hw))
2411 igb_reset_phy(hw);
2412
2413 if (hw->flash_address)
2414 iounmap(hw->flash_address);
2415 err_sw_init:
2416 igb_clear_interrupt_scheme(adapter);
2417 iounmap(hw->hw_addr);
2418 err_ioremap:
2419 free_netdev(netdev);
2420 err_alloc_etherdev:
2421 pci_release_selected_regions(pdev,
2422 pci_select_bars(pdev, IORESOURCE_MEM));
2423 err_pci_reg:
2424 err_dma:
2425 pci_disable_device(pdev);
2426 return err;
2427 }
2428
2429 #ifdef CONFIG_PCI_IOV
2430 static int igb_disable_sriov(struct pci_dev *pdev)
2431 {
2432 struct net_device *netdev = pci_get_drvdata(pdev);
2433 struct igb_adapter *adapter = netdev_priv(netdev);
2434 struct e1000_hw *hw = &adapter->hw;
2435
2436 /* reclaim resources allocated to VFs */
2437 if (adapter->vf_data) {
2438 /* disable iov and allow time for transactions to clear */
2439 if (pci_vfs_assigned(pdev)) {
2440 dev_warn(&pdev->dev,
2441 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2442 return -EPERM;
2443 } else {
2444 pci_disable_sriov(pdev);
2445 msleep(500);
2446 }
2447
2448 kfree(adapter->vf_data);
2449 adapter->vf_data = NULL;
2450 adapter->vfs_allocated_count = 0;
2451 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2452 wrfl();
2453 msleep(100);
2454 dev_info(&pdev->dev, "IOV Disabled\n");
2455
2456 /* Re-enable DMA Coalescing flag since IOV is turned off */
2457 adapter->flags |= IGB_FLAG_DMAC;
2458 }
2459
2460 return 0;
2461 }
2462
2463 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2464 {
2465 struct net_device *netdev = pci_get_drvdata(pdev);
2466 struct igb_adapter *adapter = netdev_priv(netdev);
2467 int old_vfs = pci_num_vf(pdev);
2468 int err = 0;
2469 int i;
2470
2471 if (!adapter->msix_entries) {
2472 err = -EPERM;
2473 goto out;
2474 }
2475
2476 if (!num_vfs)
2477 goto out;
2478 else if (old_vfs && old_vfs == num_vfs)
2479 goto out;
2480 else if (old_vfs && old_vfs != num_vfs)
2481 err = igb_disable_sriov(pdev);
2482
2483 if (err)
2484 goto out;
2485
2486 if (num_vfs > 7) {
2487 err = -EPERM;
2488 goto out;
2489 }
2490
2491 adapter->vfs_allocated_count = num_vfs;
2492
2493 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2494 sizeof(struct vf_data_storage), GFP_KERNEL);
2495
2496 /* if allocation failed then we do not support SR-IOV */
2497 if (!adapter->vf_data) {
2498 adapter->vfs_allocated_count = 0;
2499 dev_err(&pdev->dev,
2500 "Unable to allocate memory for VF Data Storage\n");
2501 err = -ENOMEM;
2502 goto out;
2503 }
2504
2505 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2506 if (err)
2507 goto err_out;
2508
2509 dev_info(&pdev->dev, "%d VFs allocated\n",
2510 adapter->vfs_allocated_count);
2511 for (i = 0; i < adapter->vfs_allocated_count; i++)
2512 igb_vf_configure(adapter, i);
2513
2514 /* DMA Coalescing is not supported in IOV mode. */
2515 adapter->flags &= ~IGB_FLAG_DMAC;
2516 goto out;
2517
2518 err_out:
2519 kfree(adapter->vf_data);
2520 adapter->vf_data = NULL;
2521 adapter->vfs_allocated_count = 0;
2522 out:
2523 return err;
2524 }
2525
2526 #endif
2527 /**
2528 * igb_remove_i2c - Cleanup I2C interface
2529 * @adapter: pointer to adapter structure
2530 **/
2531 static void igb_remove_i2c(struct igb_adapter *adapter)
2532 {
2533 /* free the adapter bus structure */
2534 i2c_del_adapter(&adapter->i2c_adap);
2535 }
2536
2537 /**
2538 * igb_remove - Device Removal Routine
2539 * @pdev: PCI device information struct
2540 *
2541 * igb_remove is called by the PCI subsystem to alert the driver
2542 * that it should release a PCI device. The could be caused by a
2543 * Hot-Plug event, or because the driver is going to be removed from
2544 * memory.
2545 **/
2546 static void igb_remove(struct pci_dev *pdev)
2547 {
2548 struct net_device *netdev = pci_get_drvdata(pdev);
2549 struct igb_adapter *adapter = netdev_priv(netdev);
2550 struct e1000_hw *hw = &adapter->hw;
2551
2552 pm_runtime_get_noresume(&pdev->dev);
2553 #ifdef CONFIG_IGB_HWMON
2554 igb_sysfs_exit(adapter);
2555 #endif
2556 igb_remove_i2c(adapter);
2557 igb_ptp_stop(adapter);
2558 /* The watchdog timer may be rescheduled, so explicitly
2559 * disable watchdog from being rescheduled.
2560 */
2561 set_bit(__IGB_DOWN, &adapter->state);
2562 del_timer_sync(&adapter->watchdog_timer);
2563 del_timer_sync(&adapter->phy_info_timer);
2564
2565 cancel_work_sync(&adapter->reset_task);
2566 cancel_work_sync(&adapter->watchdog_task);
2567
2568 #ifdef CONFIG_IGB_DCA
2569 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2570 dev_info(&pdev->dev, "DCA disabled\n");
2571 dca_remove_requester(&pdev->dev);
2572 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2573 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2574 }
2575 #endif
2576
2577 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2578 * would have already happened in close and is redundant.
2579 */
2580 igb_release_hw_control(adapter);
2581
2582 unregister_netdev(netdev);
2583
2584 igb_clear_interrupt_scheme(adapter);
2585
2586 #ifdef CONFIG_PCI_IOV
2587 igb_disable_sriov(pdev);
2588 #endif
2589
2590 iounmap(hw->hw_addr);
2591 if (hw->flash_address)
2592 iounmap(hw->flash_address);
2593 pci_release_selected_regions(pdev,
2594 pci_select_bars(pdev, IORESOURCE_MEM));
2595
2596 kfree(adapter->shadow_vfta);
2597 free_netdev(netdev);
2598
2599 pci_disable_pcie_error_reporting(pdev);
2600
2601 pci_disable_device(pdev);
2602 }
2603
2604 /**
2605 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2606 * @adapter: board private structure to initialize
2607 *
2608 * This function initializes the vf specific data storage and then attempts to
2609 * allocate the VFs. The reason for ordering it this way is because it is much
2610 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2611 * the memory for the VFs.
2612 **/
2613 static void igb_probe_vfs(struct igb_adapter *adapter)
2614 {
2615 #ifdef CONFIG_PCI_IOV
2616 struct pci_dev *pdev = adapter->pdev;
2617 struct e1000_hw *hw = &adapter->hw;
2618
2619 /* Virtualization features not supported on i210 family. */
2620 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2621 return;
2622
2623 pci_sriov_set_totalvfs(pdev, 7);
2624 igb_enable_sriov(pdev, max_vfs);
2625
2626 #endif /* CONFIG_PCI_IOV */
2627 }
2628
2629 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2630 {
2631 struct e1000_hw *hw = &adapter->hw;
2632 u32 max_rss_queues;
2633
2634 /* Determine the maximum number of RSS queues supported. */
2635 switch (hw->mac.type) {
2636 case e1000_i211:
2637 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2638 break;
2639 case e1000_82575:
2640 case e1000_i210:
2641 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2642 break;
2643 case e1000_i350:
2644 /* I350 cannot do RSS and SR-IOV at the same time */
2645 if (!!adapter->vfs_allocated_count) {
2646 max_rss_queues = 1;
2647 break;
2648 }
2649 /* fall through */
2650 case e1000_82576:
2651 if (!!adapter->vfs_allocated_count) {
2652 max_rss_queues = 2;
2653 break;
2654 }
2655 /* fall through */
2656 case e1000_82580:
2657 case e1000_i354:
2658 default:
2659 max_rss_queues = IGB_MAX_RX_QUEUES;
2660 break;
2661 }
2662
2663 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2664
2665 /* Determine if we need to pair queues. */
2666 switch (hw->mac.type) {
2667 case e1000_82575:
2668 case e1000_i211:
2669 /* Device supports enough interrupts without queue pairing. */
2670 break;
2671 case e1000_82576:
2672 /* If VFs are going to be allocated with RSS queues then we
2673 * should pair the queues in order to conserve interrupts due
2674 * to limited supply.
2675 */
2676 if ((adapter->rss_queues > 1) &&
2677 (adapter->vfs_allocated_count > 6))
2678 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2679 /* fall through */
2680 case e1000_82580:
2681 case e1000_i350:
2682 case e1000_i354:
2683 case e1000_i210:
2684 default:
2685 /* If rss_queues > half of max_rss_queues, pair the queues in
2686 * order to conserve interrupts due to limited supply.
2687 */
2688 if (adapter->rss_queues > (max_rss_queues / 2))
2689 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2690 break;
2691 }
2692 }
2693
2694 /**
2695 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2696 * @adapter: board private structure to initialize
2697 *
2698 * igb_sw_init initializes the Adapter private data structure.
2699 * Fields are initialized based on PCI device information and
2700 * OS network device settings (MTU size).
2701 **/
2702 static int igb_sw_init(struct igb_adapter *adapter)
2703 {
2704 struct e1000_hw *hw = &adapter->hw;
2705 struct net_device *netdev = adapter->netdev;
2706 struct pci_dev *pdev = adapter->pdev;
2707
2708 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2709
2710 /* set default ring sizes */
2711 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2712 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2713
2714 /* set default ITR values */
2715 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2716 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2717
2718 /* set default work limits */
2719 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2720
2721 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2722 VLAN_HLEN;
2723 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2724
2725 spin_lock_init(&adapter->stats64_lock);
2726 #ifdef CONFIG_PCI_IOV
2727 switch (hw->mac.type) {
2728 case e1000_82576:
2729 case e1000_i350:
2730 if (max_vfs > 7) {
2731 dev_warn(&pdev->dev,
2732 "Maximum of 7 VFs per PF, using max\n");
2733 max_vfs = adapter->vfs_allocated_count = 7;
2734 } else
2735 adapter->vfs_allocated_count = max_vfs;
2736 if (adapter->vfs_allocated_count)
2737 dev_warn(&pdev->dev,
2738 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2739 break;
2740 default:
2741 break;
2742 }
2743 #endif /* CONFIG_PCI_IOV */
2744
2745 igb_init_queue_configuration(adapter);
2746
2747 /* Setup and initialize a copy of the hw vlan table array */
2748 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2749 GFP_ATOMIC);
2750
2751 /* This call may decrease the number of queues */
2752 if (igb_init_interrupt_scheme(adapter, true)) {
2753 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2754 return -ENOMEM;
2755 }
2756
2757 igb_probe_vfs(adapter);
2758
2759 /* Explicitly disable IRQ since the NIC can be in any state. */
2760 igb_irq_disable(adapter);
2761
2762 if (hw->mac.type >= e1000_i350)
2763 adapter->flags &= ~IGB_FLAG_DMAC;
2764
2765 set_bit(__IGB_DOWN, &adapter->state);
2766 return 0;
2767 }
2768
2769 /**
2770 * igb_open - Called when a network interface is made active
2771 * @netdev: network interface device structure
2772 *
2773 * Returns 0 on success, negative value on failure
2774 *
2775 * The open entry point is called when a network interface is made
2776 * active by the system (IFF_UP). At this point all resources needed
2777 * for transmit and receive operations are allocated, the interrupt
2778 * handler is registered with the OS, the watchdog timer is started,
2779 * and the stack is notified that the interface is ready.
2780 **/
2781 static int __igb_open(struct net_device *netdev, bool resuming)
2782 {
2783 struct igb_adapter *adapter = netdev_priv(netdev);
2784 struct e1000_hw *hw = &adapter->hw;
2785 struct pci_dev *pdev = adapter->pdev;
2786 int err;
2787 int i;
2788
2789 /* disallow open during test */
2790 if (test_bit(__IGB_TESTING, &adapter->state)) {
2791 WARN_ON(resuming);
2792 return -EBUSY;
2793 }
2794
2795 if (!resuming)
2796 pm_runtime_get_sync(&pdev->dev);
2797
2798 netif_carrier_off(netdev);
2799
2800 /* allocate transmit descriptors */
2801 err = igb_setup_all_tx_resources(adapter);
2802 if (err)
2803 goto err_setup_tx;
2804
2805 /* allocate receive descriptors */
2806 err = igb_setup_all_rx_resources(adapter);
2807 if (err)
2808 goto err_setup_rx;
2809
2810 igb_power_up_link(adapter);
2811
2812 /* before we allocate an interrupt, we must be ready to handle it.
2813 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2814 * as soon as we call pci_request_irq, so we have to setup our
2815 * clean_rx handler before we do so.
2816 */
2817 igb_configure(adapter);
2818
2819 err = igb_request_irq(adapter);
2820 if (err)
2821 goto err_req_irq;
2822
2823 /* Notify the stack of the actual queue counts. */
2824 err = netif_set_real_num_tx_queues(adapter->netdev,
2825 adapter->num_tx_queues);
2826 if (err)
2827 goto err_set_queues;
2828
2829 err = netif_set_real_num_rx_queues(adapter->netdev,
2830 adapter->num_rx_queues);
2831 if (err)
2832 goto err_set_queues;
2833
2834 /* From here on the code is the same as igb_up() */
2835 clear_bit(__IGB_DOWN, &adapter->state);
2836
2837 for (i = 0; i < adapter->num_q_vectors; i++)
2838 napi_enable(&(adapter->q_vector[i]->napi));
2839
2840 /* Clear any pending interrupts. */
2841 rd32(E1000_ICR);
2842
2843 igb_irq_enable(adapter);
2844
2845 /* notify VFs that reset has been completed */
2846 if (adapter->vfs_allocated_count) {
2847 u32 reg_data = rd32(E1000_CTRL_EXT);
2848 reg_data |= E1000_CTRL_EXT_PFRSTD;
2849 wr32(E1000_CTRL_EXT, reg_data);
2850 }
2851
2852 netif_tx_start_all_queues(netdev);
2853
2854 if (!resuming)
2855 pm_runtime_put(&pdev->dev);
2856
2857 /* start the watchdog. */
2858 hw->mac.get_link_status = 1;
2859 schedule_work(&adapter->watchdog_task);
2860
2861 return 0;
2862
2863 err_set_queues:
2864 igb_free_irq(adapter);
2865 err_req_irq:
2866 igb_release_hw_control(adapter);
2867 igb_power_down_link(adapter);
2868 igb_free_all_rx_resources(adapter);
2869 err_setup_rx:
2870 igb_free_all_tx_resources(adapter);
2871 err_setup_tx:
2872 igb_reset(adapter);
2873 if (!resuming)
2874 pm_runtime_put(&pdev->dev);
2875
2876 return err;
2877 }
2878
2879 static int igb_open(struct net_device *netdev)
2880 {
2881 return __igb_open(netdev, false);
2882 }
2883
2884 /**
2885 * igb_close - Disables a network interface
2886 * @netdev: network interface device structure
2887 *
2888 * Returns 0, this is not allowed to fail
2889 *
2890 * The close entry point is called when an interface is de-activated
2891 * by the OS. The hardware is still under the driver's control, but
2892 * needs to be disabled. A global MAC reset is issued to stop the
2893 * hardware, and all transmit and receive resources are freed.
2894 **/
2895 static int __igb_close(struct net_device *netdev, bool suspending)
2896 {
2897 struct igb_adapter *adapter = netdev_priv(netdev);
2898 struct pci_dev *pdev = adapter->pdev;
2899
2900 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2901
2902 if (!suspending)
2903 pm_runtime_get_sync(&pdev->dev);
2904
2905 igb_down(adapter);
2906 igb_free_irq(adapter);
2907
2908 igb_free_all_tx_resources(adapter);
2909 igb_free_all_rx_resources(adapter);
2910
2911 if (!suspending)
2912 pm_runtime_put_sync(&pdev->dev);
2913 return 0;
2914 }
2915
2916 static int igb_close(struct net_device *netdev)
2917 {
2918 return __igb_close(netdev, false);
2919 }
2920
2921 /**
2922 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2923 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2924 *
2925 * Return 0 on success, negative on failure
2926 **/
2927 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2928 {
2929 struct device *dev = tx_ring->dev;
2930 int size;
2931
2932 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2933
2934 tx_ring->tx_buffer_info = vzalloc(size);
2935 if (!tx_ring->tx_buffer_info)
2936 goto err;
2937
2938 /* round up to nearest 4K */
2939 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2940 tx_ring->size = ALIGN(tx_ring->size, 4096);
2941
2942 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2943 &tx_ring->dma, GFP_KERNEL);
2944 if (!tx_ring->desc)
2945 goto err;
2946
2947 tx_ring->next_to_use = 0;
2948 tx_ring->next_to_clean = 0;
2949
2950 return 0;
2951
2952 err:
2953 vfree(tx_ring->tx_buffer_info);
2954 tx_ring->tx_buffer_info = NULL;
2955 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2956 return -ENOMEM;
2957 }
2958
2959 /**
2960 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2961 * (Descriptors) for all queues
2962 * @adapter: board private structure
2963 *
2964 * Return 0 on success, negative on failure
2965 **/
2966 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2967 {
2968 struct pci_dev *pdev = adapter->pdev;
2969 int i, err = 0;
2970
2971 for (i = 0; i < adapter->num_tx_queues; i++) {
2972 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2973 if (err) {
2974 dev_err(&pdev->dev,
2975 "Allocation for Tx Queue %u failed\n", i);
2976 for (i--; i >= 0; i--)
2977 igb_free_tx_resources(adapter->tx_ring[i]);
2978 break;
2979 }
2980 }
2981
2982 return err;
2983 }
2984
2985 /**
2986 * igb_setup_tctl - configure the transmit control registers
2987 * @adapter: Board private structure
2988 **/
2989 void igb_setup_tctl(struct igb_adapter *adapter)
2990 {
2991 struct e1000_hw *hw = &adapter->hw;
2992 u32 tctl;
2993
2994 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2995 wr32(E1000_TXDCTL(0), 0);
2996
2997 /* Program the Transmit Control Register */
2998 tctl = rd32(E1000_TCTL);
2999 tctl &= ~E1000_TCTL_CT;
3000 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3001 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3002
3003 igb_config_collision_dist(hw);
3004
3005 /* Enable transmits */
3006 tctl |= E1000_TCTL_EN;
3007
3008 wr32(E1000_TCTL, tctl);
3009 }
3010
3011 /**
3012 * igb_configure_tx_ring - Configure transmit ring after Reset
3013 * @adapter: board private structure
3014 * @ring: tx ring to configure
3015 *
3016 * Configure a transmit ring after a reset.
3017 **/
3018 void igb_configure_tx_ring(struct igb_adapter *adapter,
3019 struct igb_ring *ring)
3020 {
3021 struct e1000_hw *hw = &adapter->hw;
3022 u32 txdctl = 0;
3023 u64 tdba = ring->dma;
3024 int reg_idx = ring->reg_idx;
3025
3026 /* disable the queue */
3027 wr32(E1000_TXDCTL(reg_idx), 0);
3028 wrfl();
3029 mdelay(10);
3030
3031 wr32(E1000_TDLEN(reg_idx),
3032 ring->count * sizeof(union e1000_adv_tx_desc));
3033 wr32(E1000_TDBAL(reg_idx),
3034 tdba & 0x00000000ffffffffULL);
3035 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3036
3037 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3038 wr32(E1000_TDH(reg_idx), 0);
3039 writel(0, ring->tail);
3040
3041 txdctl |= IGB_TX_PTHRESH;
3042 txdctl |= IGB_TX_HTHRESH << 8;
3043 txdctl |= IGB_TX_WTHRESH << 16;
3044
3045 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3046 wr32(E1000_TXDCTL(reg_idx), txdctl);
3047 }
3048
3049 /**
3050 * igb_configure_tx - Configure transmit Unit after Reset
3051 * @adapter: board private structure
3052 *
3053 * Configure the Tx unit of the MAC after a reset.
3054 **/
3055 static void igb_configure_tx(struct igb_adapter *adapter)
3056 {
3057 int i;
3058
3059 for (i = 0; i < adapter->num_tx_queues; i++)
3060 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3061 }
3062
3063 /**
3064 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3065 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3066 *
3067 * Returns 0 on success, negative on failure
3068 **/
3069 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3070 {
3071 struct device *dev = rx_ring->dev;
3072 int size;
3073
3074 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3075
3076 rx_ring->rx_buffer_info = vzalloc(size);
3077 if (!rx_ring->rx_buffer_info)
3078 goto err;
3079
3080 /* Round up to nearest 4K */
3081 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3082 rx_ring->size = ALIGN(rx_ring->size, 4096);
3083
3084 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3085 &rx_ring->dma, GFP_KERNEL);
3086 if (!rx_ring->desc)
3087 goto err;
3088
3089 rx_ring->next_to_alloc = 0;
3090 rx_ring->next_to_clean = 0;
3091 rx_ring->next_to_use = 0;
3092
3093 return 0;
3094
3095 err:
3096 vfree(rx_ring->rx_buffer_info);
3097 rx_ring->rx_buffer_info = NULL;
3098 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3099 return -ENOMEM;
3100 }
3101
3102 /**
3103 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3104 * (Descriptors) for all queues
3105 * @adapter: board private structure
3106 *
3107 * Return 0 on success, negative on failure
3108 **/
3109 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3110 {
3111 struct pci_dev *pdev = adapter->pdev;
3112 int i, err = 0;
3113
3114 for (i = 0; i < adapter->num_rx_queues; i++) {
3115 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3116 if (err) {
3117 dev_err(&pdev->dev,
3118 "Allocation for Rx Queue %u failed\n", i);
3119 for (i--; i >= 0; i--)
3120 igb_free_rx_resources(adapter->rx_ring[i]);
3121 break;
3122 }
3123 }
3124
3125 return err;
3126 }
3127
3128 /**
3129 * igb_setup_mrqc - configure the multiple receive queue control registers
3130 * @adapter: Board private structure
3131 **/
3132 static void igb_setup_mrqc(struct igb_adapter *adapter)
3133 {
3134 struct e1000_hw *hw = &adapter->hw;
3135 u32 mrqc, rxcsum;
3136 u32 j, num_rx_queues;
3137 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3138 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3139 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3140 0xFA01ACBE };
3141
3142 /* Fill out hash function seeds */
3143 for (j = 0; j < 10; j++)
3144 wr32(E1000_RSSRK(j), rsskey[j]);
3145
3146 num_rx_queues = adapter->rss_queues;
3147
3148 switch (hw->mac.type) {
3149 case e1000_82576:
3150 /* 82576 supports 2 RSS queues for SR-IOV */
3151 if (adapter->vfs_allocated_count)
3152 num_rx_queues = 2;
3153 break;
3154 default:
3155 break;
3156 }
3157
3158 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3159 for (j = 0; j < IGB_RETA_SIZE; j++)
3160 adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3161 adapter->rss_indir_tbl_init = num_rx_queues;
3162 }
3163 igb_write_rss_indir_tbl(adapter);
3164
3165 /* Disable raw packet checksumming so that RSS hash is placed in
3166 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3167 * offloads as they are enabled by default
3168 */
3169 rxcsum = rd32(E1000_RXCSUM);
3170 rxcsum |= E1000_RXCSUM_PCSD;
3171
3172 if (adapter->hw.mac.type >= e1000_82576)
3173 /* Enable Receive Checksum Offload for SCTP */
3174 rxcsum |= E1000_RXCSUM_CRCOFL;
3175
3176 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3177 wr32(E1000_RXCSUM, rxcsum);
3178
3179 /* Generate RSS hash based on packet types, TCP/UDP
3180 * port numbers and/or IPv4/v6 src and dst addresses
3181 */
3182 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3183 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3184 E1000_MRQC_RSS_FIELD_IPV6 |
3185 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3186 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3187
3188 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3189 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3190 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3191 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3192
3193 /* If VMDq is enabled then we set the appropriate mode for that, else
3194 * we default to RSS so that an RSS hash is calculated per packet even
3195 * if we are only using one queue
3196 */
3197 if (adapter->vfs_allocated_count) {
3198 if (hw->mac.type > e1000_82575) {
3199 /* Set the default pool for the PF's first queue */
3200 u32 vtctl = rd32(E1000_VT_CTL);
3201 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3202 E1000_VT_CTL_DISABLE_DEF_POOL);
3203 vtctl |= adapter->vfs_allocated_count <<
3204 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3205 wr32(E1000_VT_CTL, vtctl);
3206 }
3207 if (adapter->rss_queues > 1)
3208 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3209 else
3210 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3211 } else {
3212 if (hw->mac.type != e1000_i211)
3213 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3214 }
3215 igb_vmm_control(adapter);
3216
3217 wr32(E1000_MRQC, mrqc);
3218 }
3219
3220 /**
3221 * igb_setup_rctl - configure the receive control registers
3222 * @adapter: Board private structure
3223 **/
3224 void igb_setup_rctl(struct igb_adapter *adapter)
3225 {
3226 struct e1000_hw *hw = &adapter->hw;
3227 u32 rctl;
3228
3229 rctl = rd32(E1000_RCTL);
3230
3231 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3232 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3233
3234 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3235 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3236
3237 /* enable stripping of CRC. It's unlikely this will break BMC
3238 * redirection as it did with e1000. Newer features require
3239 * that the HW strips the CRC.
3240 */
3241 rctl |= E1000_RCTL_SECRC;
3242
3243 /* disable store bad packets and clear size bits. */
3244 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3245
3246 /* enable LPE to prevent packets larger than max_frame_size */
3247 rctl |= E1000_RCTL_LPE;
3248
3249 /* disable queue 0 to prevent tail write w/o re-config */
3250 wr32(E1000_RXDCTL(0), 0);
3251
3252 /* Attention!!! For SR-IOV PF driver operations you must enable
3253 * queue drop for all VF and PF queues to prevent head of line blocking
3254 * if an un-trusted VF does not provide descriptors to hardware.
3255 */
3256 if (adapter->vfs_allocated_count) {
3257 /* set all queue drop enable bits */
3258 wr32(E1000_QDE, ALL_QUEUES);
3259 }
3260
3261 /* This is useful for sniffing bad packets. */
3262 if (adapter->netdev->features & NETIF_F_RXALL) {
3263 /* UPE and MPE will be handled by normal PROMISC logic
3264 * in e1000e_set_rx_mode
3265 */
3266 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3267 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3268 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3269
3270 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3271 E1000_RCTL_DPF | /* Allow filtered pause */
3272 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3273 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3274 * and that breaks VLANs.
3275 */
3276 }
3277
3278 wr32(E1000_RCTL, rctl);
3279 }
3280
3281 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3282 int vfn)
3283 {
3284 struct e1000_hw *hw = &adapter->hw;
3285 u32 vmolr;
3286
3287 /* if it isn't the PF check to see if VFs are enabled and
3288 * increase the size to support vlan tags
3289 */
3290 if (vfn < adapter->vfs_allocated_count &&
3291 adapter->vf_data[vfn].vlans_enabled)
3292 size += VLAN_TAG_SIZE;
3293
3294 vmolr = rd32(E1000_VMOLR(vfn));
3295 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3296 vmolr |= size | E1000_VMOLR_LPE;
3297 wr32(E1000_VMOLR(vfn), vmolr);
3298
3299 return 0;
3300 }
3301
3302 /**
3303 * igb_rlpml_set - set maximum receive packet size
3304 * @adapter: board private structure
3305 *
3306 * Configure maximum receivable packet size.
3307 **/
3308 static void igb_rlpml_set(struct igb_adapter *adapter)
3309 {
3310 u32 max_frame_size = adapter->max_frame_size;
3311 struct e1000_hw *hw = &adapter->hw;
3312 u16 pf_id = adapter->vfs_allocated_count;
3313
3314 if (pf_id) {
3315 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3316 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3317 * to our max jumbo frame size, in case we need to enable
3318 * jumbo frames on one of the rings later.
3319 * This will not pass over-length frames into the default
3320 * queue because it's gated by the VMOLR.RLPML.
3321 */
3322 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3323 }
3324
3325 wr32(E1000_RLPML, max_frame_size);
3326 }
3327
3328 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3329 int vfn, bool aupe)
3330 {
3331 struct e1000_hw *hw = &adapter->hw;
3332 u32 vmolr;
3333
3334 /* This register exists only on 82576 and newer so if we are older then
3335 * we should exit and do nothing
3336 */
3337 if (hw->mac.type < e1000_82576)
3338 return;
3339
3340 vmolr = rd32(E1000_VMOLR(vfn));
3341 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3342 if (aupe)
3343 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3344 else
3345 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3346
3347 /* clear all bits that might not be set */
3348 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3349
3350 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3351 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3352 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3353 * multicast packets
3354 */
3355 if (vfn <= adapter->vfs_allocated_count)
3356 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3357
3358 wr32(E1000_VMOLR(vfn), vmolr);
3359 }
3360
3361 /**
3362 * igb_configure_rx_ring - Configure a receive ring after Reset
3363 * @adapter: board private structure
3364 * @ring: receive ring to be configured
3365 *
3366 * Configure the Rx unit of the MAC after a reset.
3367 **/
3368 void igb_configure_rx_ring(struct igb_adapter *adapter,
3369 struct igb_ring *ring)
3370 {
3371 struct e1000_hw *hw = &adapter->hw;
3372 u64 rdba = ring->dma;
3373 int reg_idx = ring->reg_idx;
3374 u32 srrctl = 0, rxdctl = 0;
3375
3376 /* disable the queue */
3377 wr32(E1000_RXDCTL(reg_idx), 0);
3378
3379 /* Set DMA base address registers */
3380 wr32(E1000_RDBAL(reg_idx),
3381 rdba & 0x00000000ffffffffULL);
3382 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3383 wr32(E1000_RDLEN(reg_idx),
3384 ring->count * sizeof(union e1000_adv_rx_desc));
3385
3386 /* initialize head and tail */
3387 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3388 wr32(E1000_RDH(reg_idx), 0);
3389 writel(0, ring->tail);
3390
3391 /* set descriptor configuration */
3392 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3393 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3394 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3395 if (hw->mac.type >= e1000_82580)
3396 srrctl |= E1000_SRRCTL_TIMESTAMP;
3397 /* Only set Drop Enable if we are supporting multiple queues */
3398 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3399 srrctl |= E1000_SRRCTL_DROP_EN;
3400
3401 wr32(E1000_SRRCTL(reg_idx), srrctl);
3402
3403 /* set filtering for VMDQ pools */
3404 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3405
3406 rxdctl |= IGB_RX_PTHRESH;
3407 rxdctl |= IGB_RX_HTHRESH << 8;
3408 rxdctl |= IGB_RX_WTHRESH << 16;
3409
3410 /* enable receive descriptor fetching */
3411 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3412 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3413 }
3414
3415 /**
3416 * igb_configure_rx - Configure receive Unit after Reset
3417 * @adapter: board private structure
3418 *
3419 * Configure the Rx unit of the MAC after a reset.
3420 **/
3421 static void igb_configure_rx(struct igb_adapter *adapter)
3422 {
3423 int i;
3424
3425 /* set UTA to appropriate mode */
3426 igb_set_uta(adapter);
3427
3428 /* set the correct pool for the PF default MAC address in entry 0 */
3429 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3430 adapter->vfs_allocated_count);
3431
3432 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3433 * the Base and Length of the Rx Descriptor Ring
3434 */
3435 for (i = 0; i < adapter->num_rx_queues; i++)
3436 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3437 }
3438
3439 /**
3440 * igb_free_tx_resources - Free Tx Resources per Queue
3441 * @tx_ring: Tx descriptor ring for a specific queue
3442 *
3443 * Free all transmit software resources
3444 **/
3445 void igb_free_tx_resources(struct igb_ring *tx_ring)
3446 {
3447 igb_clean_tx_ring(tx_ring);
3448
3449 vfree(tx_ring->tx_buffer_info);
3450 tx_ring->tx_buffer_info = NULL;
3451
3452 /* if not set, then don't free */
3453 if (!tx_ring->desc)
3454 return;
3455
3456 dma_free_coherent(tx_ring->dev, tx_ring->size,
3457 tx_ring->desc, tx_ring->dma);
3458
3459 tx_ring->desc = NULL;
3460 }
3461
3462 /**
3463 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3464 * @adapter: board private structure
3465 *
3466 * Free all transmit software resources
3467 **/
3468 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3469 {
3470 int i;
3471
3472 for (i = 0; i < adapter->num_tx_queues; i++)
3473 igb_free_tx_resources(adapter->tx_ring[i]);
3474 }
3475
3476 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3477 struct igb_tx_buffer *tx_buffer)
3478 {
3479 if (tx_buffer->skb) {
3480 dev_kfree_skb_any(tx_buffer->skb);
3481 if (dma_unmap_len(tx_buffer, len))
3482 dma_unmap_single(ring->dev,
3483 dma_unmap_addr(tx_buffer, dma),
3484 dma_unmap_len(tx_buffer, len),
3485 DMA_TO_DEVICE);
3486 } else if (dma_unmap_len(tx_buffer, len)) {
3487 dma_unmap_page(ring->dev,
3488 dma_unmap_addr(tx_buffer, dma),
3489 dma_unmap_len(tx_buffer, len),
3490 DMA_TO_DEVICE);
3491 }
3492 tx_buffer->next_to_watch = NULL;
3493 tx_buffer->skb = NULL;
3494 dma_unmap_len_set(tx_buffer, len, 0);
3495 /* buffer_info must be completely set up in the transmit path */
3496 }
3497
3498 /**
3499 * igb_clean_tx_ring - Free Tx Buffers
3500 * @tx_ring: ring to be cleaned
3501 **/
3502 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3503 {
3504 struct igb_tx_buffer *buffer_info;
3505 unsigned long size;
3506 u16 i;
3507
3508 if (!tx_ring->tx_buffer_info)
3509 return;
3510 /* Free all the Tx ring sk_buffs */
3511
3512 for (i = 0; i < tx_ring->count; i++) {
3513 buffer_info = &tx_ring->tx_buffer_info[i];
3514 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3515 }
3516
3517 netdev_tx_reset_queue(txring_txq(tx_ring));
3518
3519 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3520 memset(tx_ring->tx_buffer_info, 0, size);
3521
3522 /* Zero out the descriptor ring */
3523 memset(tx_ring->desc, 0, tx_ring->size);
3524
3525 tx_ring->next_to_use = 0;
3526 tx_ring->next_to_clean = 0;
3527 }
3528
3529 /**
3530 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3531 * @adapter: board private structure
3532 **/
3533 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3534 {
3535 int i;
3536
3537 for (i = 0; i < adapter->num_tx_queues; i++)
3538 igb_clean_tx_ring(adapter->tx_ring[i]);
3539 }
3540
3541 /**
3542 * igb_free_rx_resources - Free Rx Resources
3543 * @rx_ring: ring to clean the resources from
3544 *
3545 * Free all receive software resources
3546 **/
3547 void igb_free_rx_resources(struct igb_ring *rx_ring)
3548 {
3549 igb_clean_rx_ring(rx_ring);
3550
3551 vfree(rx_ring->rx_buffer_info);
3552 rx_ring->rx_buffer_info = NULL;
3553
3554 /* if not set, then don't free */
3555 if (!rx_ring->desc)
3556 return;
3557
3558 dma_free_coherent(rx_ring->dev, rx_ring->size,
3559 rx_ring->desc, rx_ring->dma);
3560
3561 rx_ring->desc = NULL;
3562 }
3563
3564 /**
3565 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3566 * @adapter: board private structure
3567 *
3568 * Free all receive software resources
3569 **/
3570 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3571 {
3572 int i;
3573
3574 for (i = 0; i < adapter->num_rx_queues; i++)
3575 igb_free_rx_resources(adapter->rx_ring[i]);
3576 }
3577
3578 /**
3579 * igb_clean_rx_ring - Free Rx Buffers per Queue
3580 * @rx_ring: ring to free buffers from
3581 **/
3582 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3583 {
3584 unsigned long size;
3585 u16 i;
3586
3587 if (rx_ring->skb)
3588 dev_kfree_skb(rx_ring->skb);
3589 rx_ring->skb = NULL;
3590
3591 if (!rx_ring->rx_buffer_info)
3592 return;
3593
3594 /* Free all the Rx ring sk_buffs */
3595 for (i = 0; i < rx_ring->count; i++) {
3596 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3597
3598 if (!buffer_info->page)
3599 continue;
3600
3601 dma_unmap_page(rx_ring->dev,
3602 buffer_info->dma,
3603 PAGE_SIZE,
3604 DMA_FROM_DEVICE);
3605 __free_page(buffer_info->page);
3606
3607 buffer_info->page = NULL;
3608 }
3609
3610 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3611 memset(rx_ring->rx_buffer_info, 0, size);
3612
3613 /* Zero out the descriptor ring */
3614 memset(rx_ring->desc, 0, rx_ring->size);
3615
3616 rx_ring->next_to_alloc = 0;
3617 rx_ring->next_to_clean = 0;
3618 rx_ring->next_to_use = 0;
3619 }
3620
3621 /**
3622 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3623 * @adapter: board private structure
3624 **/
3625 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3626 {
3627 int i;
3628
3629 for (i = 0; i < adapter->num_rx_queues; i++)
3630 igb_clean_rx_ring(adapter->rx_ring[i]);
3631 }
3632
3633 /**
3634 * igb_set_mac - Change the Ethernet Address of the NIC
3635 * @netdev: network interface device structure
3636 * @p: pointer to an address structure
3637 *
3638 * Returns 0 on success, negative on failure
3639 **/
3640 static int igb_set_mac(struct net_device *netdev, void *p)
3641 {
3642 struct igb_adapter *adapter = netdev_priv(netdev);
3643 struct e1000_hw *hw = &adapter->hw;
3644 struct sockaddr *addr = p;
3645
3646 if (!is_valid_ether_addr(addr->sa_data))
3647 return -EADDRNOTAVAIL;
3648
3649 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3650 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3651
3652 /* set the correct pool for the new PF MAC address in entry 0 */
3653 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3654 adapter->vfs_allocated_count);
3655
3656 return 0;
3657 }
3658
3659 /**
3660 * igb_write_mc_addr_list - write multicast addresses to MTA
3661 * @netdev: network interface device structure
3662 *
3663 * Writes multicast address list to the MTA hash table.
3664 * Returns: -ENOMEM on failure
3665 * 0 on no addresses written
3666 * X on writing X addresses to MTA
3667 **/
3668 static int igb_write_mc_addr_list(struct net_device *netdev)
3669 {
3670 struct igb_adapter *adapter = netdev_priv(netdev);
3671 struct e1000_hw *hw = &adapter->hw;
3672 struct netdev_hw_addr *ha;
3673 u8 *mta_list;
3674 int i;
3675
3676 if (netdev_mc_empty(netdev)) {
3677 /* nothing to program, so clear mc list */
3678 igb_update_mc_addr_list(hw, NULL, 0);
3679 igb_restore_vf_multicasts(adapter);
3680 return 0;
3681 }
3682
3683 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3684 if (!mta_list)
3685 return -ENOMEM;
3686
3687 /* The shared function expects a packed array of only addresses. */
3688 i = 0;
3689 netdev_for_each_mc_addr(ha, netdev)
3690 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3691
3692 igb_update_mc_addr_list(hw, mta_list, i);
3693 kfree(mta_list);
3694
3695 return netdev_mc_count(netdev);
3696 }
3697
3698 /**
3699 * igb_write_uc_addr_list - write unicast addresses to RAR table
3700 * @netdev: network interface device structure
3701 *
3702 * Writes unicast address list to the RAR table.
3703 * Returns: -ENOMEM on failure/insufficient address space
3704 * 0 on no addresses written
3705 * X on writing X addresses to the RAR table
3706 **/
3707 static int igb_write_uc_addr_list(struct net_device *netdev)
3708 {
3709 struct igb_adapter *adapter = netdev_priv(netdev);
3710 struct e1000_hw *hw = &adapter->hw;
3711 unsigned int vfn = adapter->vfs_allocated_count;
3712 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3713 int count = 0;
3714
3715 /* return ENOMEM indicating insufficient memory for addresses */
3716 if (netdev_uc_count(netdev) > rar_entries)
3717 return -ENOMEM;
3718
3719 if (!netdev_uc_empty(netdev) && rar_entries) {
3720 struct netdev_hw_addr *ha;
3721
3722 netdev_for_each_uc_addr(ha, netdev) {
3723 if (!rar_entries)
3724 break;
3725 igb_rar_set_qsel(adapter, ha->addr,
3726 rar_entries--,
3727 vfn);
3728 count++;
3729 }
3730 }
3731 /* write the addresses in reverse order to avoid write combining */
3732 for (; rar_entries > 0 ; rar_entries--) {
3733 wr32(E1000_RAH(rar_entries), 0);
3734 wr32(E1000_RAL(rar_entries), 0);
3735 }
3736 wrfl();
3737
3738 return count;
3739 }
3740
3741 /**
3742 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3743 * @netdev: network interface device structure
3744 *
3745 * The set_rx_mode entry point is called whenever the unicast or multicast
3746 * address lists or the network interface flags are updated. This routine is
3747 * responsible for configuring the hardware for proper unicast, multicast,
3748 * promiscuous mode, and all-multi behavior.
3749 **/
3750 static void igb_set_rx_mode(struct net_device *netdev)
3751 {
3752 struct igb_adapter *adapter = netdev_priv(netdev);
3753 struct e1000_hw *hw = &adapter->hw;
3754 unsigned int vfn = adapter->vfs_allocated_count;
3755 u32 rctl, vmolr = 0;
3756 int count;
3757
3758 /* Check for Promiscuous and All Multicast modes */
3759 rctl = rd32(E1000_RCTL);
3760
3761 /* clear the effected bits */
3762 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3763
3764 if (netdev->flags & IFF_PROMISC) {
3765 /* retain VLAN HW filtering if in VT mode */
3766 if (adapter->vfs_allocated_count)
3767 rctl |= E1000_RCTL_VFE;
3768 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3769 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3770 } else {
3771 if (netdev->flags & IFF_ALLMULTI) {
3772 rctl |= E1000_RCTL_MPE;
3773 vmolr |= E1000_VMOLR_MPME;
3774 } else {
3775 /* Write addresses to the MTA, if the attempt fails
3776 * then we should just turn on promiscuous mode so
3777 * that we can at least receive multicast traffic
3778 */
3779 count = igb_write_mc_addr_list(netdev);
3780 if (count < 0) {
3781 rctl |= E1000_RCTL_MPE;
3782 vmolr |= E1000_VMOLR_MPME;
3783 } else if (count) {
3784 vmolr |= E1000_VMOLR_ROMPE;
3785 }
3786 }
3787 /* Write addresses to available RAR registers, if there is not
3788 * sufficient space to store all the addresses then enable
3789 * unicast promiscuous mode
3790 */
3791 count = igb_write_uc_addr_list(netdev);
3792 if (count < 0) {
3793 rctl |= E1000_RCTL_UPE;
3794 vmolr |= E1000_VMOLR_ROPE;
3795 }
3796 rctl |= E1000_RCTL_VFE;
3797 }
3798 wr32(E1000_RCTL, rctl);
3799
3800 /* In order to support SR-IOV and eventually VMDq it is necessary to set
3801 * the VMOLR to enable the appropriate modes. Without this workaround
3802 * we will have issues with VLAN tag stripping not being done for frames
3803 * that are only arriving because we are the default pool
3804 */
3805 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3806 return;
3807
3808 vmolr |= rd32(E1000_VMOLR(vfn)) &
3809 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3810 wr32(E1000_VMOLR(vfn), vmolr);
3811 igb_restore_vf_multicasts(adapter);
3812 }
3813
3814 static void igb_check_wvbr(struct igb_adapter *adapter)
3815 {
3816 struct e1000_hw *hw = &adapter->hw;
3817 u32 wvbr = 0;
3818
3819 switch (hw->mac.type) {
3820 case e1000_82576:
3821 case e1000_i350:
3822 if (!(wvbr = rd32(E1000_WVBR)))
3823 return;
3824 break;
3825 default:
3826 break;
3827 }
3828
3829 adapter->wvbr |= wvbr;
3830 }
3831
3832 #define IGB_STAGGERED_QUEUE_OFFSET 8
3833
3834 static void igb_spoof_check(struct igb_adapter *adapter)
3835 {
3836 int j;
3837
3838 if (!adapter->wvbr)
3839 return;
3840
3841 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3842 if (adapter->wvbr & (1 << j) ||
3843 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3844 dev_warn(&adapter->pdev->dev,
3845 "Spoof event(s) detected on VF %d\n", j);
3846 adapter->wvbr &=
3847 ~((1 << j) |
3848 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3849 }
3850 }
3851 }
3852
3853 /* Need to wait a few seconds after link up to get diagnostic information from
3854 * the phy
3855 */
3856 static void igb_update_phy_info(unsigned long data)
3857 {
3858 struct igb_adapter *adapter = (struct igb_adapter *) data;
3859 igb_get_phy_info(&adapter->hw);
3860 }
3861
3862 /**
3863 * igb_has_link - check shared code for link and determine up/down
3864 * @adapter: pointer to driver private info
3865 **/
3866 bool igb_has_link(struct igb_adapter *adapter)
3867 {
3868 struct e1000_hw *hw = &adapter->hw;
3869 bool link_active = false;
3870
3871 /* get_link_status is set on LSC (link status) interrupt or
3872 * rx sequence error interrupt. get_link_status will stay
3873 * false until the e1000_check_for_link establishes link
3874 * for copper adapters ONLY
3875 */
3876 switch (hw->phy.media_type) {
3877 case e1000_media_type_copper:
3878 if (!hw->mac.get_link_status)
3879 return true;
3880 case e1000_media_type_internal_serdes:
3881 hw->mac.ops.check_for_link(hw);
3882 link_active = !hw->mac.get_link_status;
3883 break;
3884 default:
3885 case e1000_media_type_unknown:
3886 break;
3887 }
3888
3889 return link_active;
3890 }
3891
3892 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3893 {
3894 bool ret = false;
3895 u32 ctrl_ext, thstat;
3896
3897 /* check for thermal sensor event on i350 copper only */
3898 if (hw->mac.type == e1000_i350) {
3899 thstat = rd32(E1000_THSTAT);
3900 ctrl_ext = rd32(E1000_CTRL_EXT);
3901
3902 if ((hw->phy.media_type == e1000_media_type_copper) &&
3903 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3904 ret = !!(thstat & event);
3905 }
3906
3907 return ret;
3908 }
3909
3910 /**
3911 * igb_watchdog - Timer Call-back
3912 * @data: pointer to adapter cast into an unsigned long
3913 **/
3914 static void igb_watchdog(unsigned long data)
3915 {
3916 struct igb_adapter *adapter = (struct igb_adapter *)data;
3917 /* Do the rest outside of interrupt context */
3918 schedule_work(&adapter->watchdog_task);
3919 }
3920
3921 static void igb_watchdog_task(struct work_struct *work)
3922 {
3923 struct igb_adapter *adapter = container_of(work,
3924 struct igb_adapter,
3925 watchdog_task);
3926 struct e1000_hw *hw = &adapter->hw;
3927 struct e1000_phy_info *phy = &hw->phy;
3928 struct net_device *netdev = adapter->netdev;
3929 u32 link;
3930 int i;
3931
3932 link = igb_has_link(adapter);
3933 if (link) {
3934 /* Cancel scheduled suspend requests. */
3935 pm_runtime_resume(netdev->dev.parent);
3936
3937 if (!netif_carrier_ok(netdev)) {
3938 u32 ctrl;
3939 hw->mac.ops.get_speed_and_duplex(hw,
3940 &adapter->link_speed,
3941 &adapter->link_duplex);
3942
3943 ctrl = rd32(E1000_CTRL);
3944 /* Links status message must follow this format */
3945 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3946 "Duplex, Flow Control: %s\n",
3947 netdev->name,
3948 adapter->link_speed,
3949 adapter->link_duplex == FULL_DUPLEX ?
3950 "Full" : "Half",
3951 (ctrl & E1000_CTRL_TFCE) &&
3952 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3953 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3954 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
3955
3956 /* check if SmartSpeed worked */
3957 igb_check_downshift(hw);
3958 if (phy->speed_downgraded)
3959 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3960
3961 /* check for thermal sensor event */
3962 if (igb_thermal_sensor_event(hw,
3963 E1000_THSTAT_LINK_THROTTLE)) {
3964 netdev_info(netdev, "The network adapter link "
3965 "speed was downshifted because it "
3966 "overheated\n");
3967 }
3968
3969 /* adjust timeout factor according to speed/duplex */
3970 adapter->tx_timeout_factor = 1;
3971 switch (adapter->link_speed) {
3972 case SPEED_10:
3973 adapter->tx_timeout_factor = 14;
3974 break;
3975 case SPEED_100:
3976 /* maybe add some timeout factor ? */
3977 break;
3978 }
3979
3980 netif_carrier_on(netdev);
3981
3982 igb_ping_all_vfs(adapter);
3983 igb_check_vf_rate_limit(adapter);
3984
3985 /* link state has changed, schedule phy info update */
3986 if (!test_bit(__IGB_DOWN, &adapter->state))
3987 mod_timer(&adapter->phy_info_timer,
3988 round_jiffies(jiffies + 2 * HZ));
3989 }
3990 } else {
3991 if (netif_carrier_ok(netdev)) {
3992 adapter->link_speed = 0;
3993 adapter->link_duplex = 0;
3994
3995 /* check for thermal sensor event */
3996 if (igb_thermal_sensor_event(hw,
3997 E1000_THSTAT_PWR_DOWN)) {
3998 netdev_err(netdev, "The network adapter was "
3999 "stopped because it overheated\n");
4000 }
4001
4002 /* Links status message must follow this format */
4003 printk(KERN_INFO "igb: %s NIC Link is Down\n",
4004 netdev->name);
4005 netif_carrier_off(netdev);
4006
4007 igb_ping_all_vfs(adapter);
4008
4009 /* link state has changed, schedule phy info update */
4010 if (!test_bit(__IGB_DOWN, &adapter->state))
4011 mod_timer(&adapter->phy_info_timer,
4012 round_jiffies(jiffies + 2 * HZ));
4013
4014 pm_schedule_suspend(netdev->dev.parent,
4015 MSEC_PER_SEC * 5);
4016 }
4017 }
4018
4019 spin_lock(&adapter->stats64_lock);
4020 igb_update_stats(adapter, &adapter->stats64);
4021 spin_unlock(&adapter->stats64_lock);
4022
4023 for (i = 0; i < adapter->num_tx_queues; i++) {
4024 struct igb_ring *tx_ring = adapter->tx_ring[i];
4025 if (!netif_carrier_ok(netdev)) {
4026 /* We've lost link, so the controller stops DMA,
4027 * but we've got queued Tx work that's never going
4028 * to get done, so reset controller to flush Tx.
4029 * (Do the reset outside of interrupt context).
4030 */
4031 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4032 adapter->tx_timeout_count++;
4033 schedule_work(&adapter->reset_task);
4034 /* return immediately since reset is imminent */
4035 return;
4036 }
4037 }
4038
4039 /* Force detection of hung controller every watchdog period */
4040 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4041 }
4042
4043 /* Cause software interrupt to ensure Rx ring is cleaned */
4044 if (adapter->msix_entries) {
4045 u32 eics = 0;
4046 for (i = 0; i < adapter->num_q_vectors; i++)
4047 eics |= adapter->q_vector[i]->eims_value;
4048 wr32(E1000_EICS, eics);
4049 } else {
4050 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4051 }
4052
4053 igb_spoof_check(adapter);
4054 igb_ptp_rx_hang(adapter);
4055
4056 /* Reset the timer */
4057 if (!test_bit(__IGB_DOWN, &adapter->state))
4058 mod_timer(&adapter->watchdog_timer,
4059 round_jiffies(jiffies + 2 * HZ));
4060 }
4061
4062 enum latency_range {
4063 lowest_latency = 0,
4064 low_latency = 1,
4065 bulk_latency = 2,
4066 latency_invalid = 255
4067 };
4068
4069 /**
4070 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4071 * @q_vector: pointer to q_vector
4072 *
4073 * Stores a new ITR value based on strictly on packet size. This
4074 * algorithm is less sophisticated than that used in igb_update_itr,
4075 * due to the difficulty of synchronizing statistics across multiple
4076 * receive rings. The divisors and thresholds used by this function
4077 * were determined based on theoretical maximum wire speed and testing
4078 * data, in order to minimize response time while increasing bulk
4079 * throughput.
4080 * This functionality is controlled by the InterruptThrottleRate module
4081 * parameter (see igb_param.c)
4082 * NOTE: This function is called only when operating in a multiqueue
4083 * receive environment.
4084 **/
4085 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4086 {
4087 int new_val = q_vector->itr_val;
4088 int avg_wire_size = 0;
4089 struct igb_adapter *adapter = q_vector->adapter;
4090 unsigned int packets;
4091
4092 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4093 * ints/sec - ITR timer value of 120 ticks.
4094 */
4095 if (adapter->link_speed != SPEED_1000) {
4096 new_val = IGB_4K_ITR;
4097 goto set_itr_val;
4098 }
4099
4100 packets = q_vector->rx.total_packets;
4101 if (packets)
4102 avg_wire_size = q_vector->rx.total_bytes / packets;
4103
4104 packets = q_vector->tx.total_packets;
4105 if (packets)
4106 avg_wire_size = max_t(u32, avg_wire_size,
4107 q_vector->tx.total_bytes / packets);
4108
4109 /* if avg_wire_size isn't set no work was done */
4110 if (!avg_wire_size)
4111 goto clear_counts;
4112
4113 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4114 avg_wire_size += 24;
4115
4116 /* Don't starve jumbo frames */
4117 avg_wire_size = min(avg_wire_size, 3000);
4118
4119 /* Give a little boost to mid-size frames */
4120 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4121 new_val = avg_wire_size / 3;
4122 else
4123 new_val = avg_wire_size / 2;
4124
4125 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4126 if (new_val < IGB_20K_ITR &&
4127 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4128 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4129 new_val = IGB_20K_ITR;
4130
4131 set_itr_val:
4132 if (new_val != q_vector->itr_val) {
4133 q_vector->itr_val = new_val;
4134 q_vector->set_itr = 1;
4135 }
4136 clear_counts:
4137 q_vector->rx.total_bytes = 0;
4138 q_vector->rx.total_packets = 0;
4139 q_vector->tx.total_bytes = 0;
4140 q_vector->tx.total_packets = 0;
4141 }
4142
4143 /**
4144 * igb_update_itr - update the dynamic ITR value based on statistics
4145 * @q_vector: pointer to q_vector
4146 * @ring_container: ring info to update the itr for
4147 *
4148 * Stores a new ITR value based on packets and byte
4149 * counts during the last interrupt. The advantage of per interrupt
4150 * computation is faster updates and more accurate ITR for the current
4151 * traffic pattern. Constants in this function were computed
4152 * based on theoretical maximum wire speed and thresholds were set based
4153 * on testing data as well as attempting to minimize response time
4154 * while increasing bulk throughput.
4155 * this functionality is controlled by the InterruptThrottleRate module
4156 * parameter (see igb_param.c)
4157 * NOTE: These calculations are only valid when operating in a single-
4158 * queue environment.
4159 **/
4160 static void igb_update_itr(struct igb_q_vector *q_vector,
4161 struct igb_ring_container *ring_container)
4162 {
4163 unsigned int packets = ring_container->total_packets;
4164 unsigned int bytes = ring_container->total_bytes;
4165 u8 itrval = ring_container->itr;
4166
4167 /* no packets, exit with status unchanged */
4168 if (packets == 0)
4169 return;
4170
4171 switch (itrval) {
4172 case lowest_latency:
4173 /* handle TSO and jumbo frames */
4174 if (bytes/packets > 8000)
4175 itrval = bulk_latency;
4176 else if ((packets < 5) && (bytes > 512))
4177 itrval = low_latency;
4178 break;
4179 case low_latency: /* 50 usec aka 20000 ints/s */
4180 if (bytes > 10000) {
4181 /* this if handles the TSO accounting */
4182 if (bytes/packets > 8000) {
4183 itrval = bulk_latency;
4184 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4185 itrval = bulk_latency;
4186 } else if ((packets > 35)) {
4187 itrval = lowest_latency;
4188 }
4189 } else if (bytes/packets > 2000) {
4190 itrval = bulk_latency;
4191 } else if (packets <= 2 && bytes < 512) {
4192 itrval = lowest_latency;
4193 }
4194 break;
4195 case bulk_latency: /* 250 usec aka 4000 ints/s */
4196 if (bytes > 25000) {
4197 if (packets > 35)
4198 itrval = low_latency;
4199 } else if (bytes < 1500) {
4200 itrval = low_latency;
4201 }
4202 break;
4203 }
4204
4205 /* clear work counters since we have the values we need */
4206 ring_container->total_bytes = 0;
4207 ring_container->total_packets = 0;
4208
4209 /* write updated itr to ring container */
4210 ring_container->itr = itrval;
4211 }
4212
4213 static void igb_set_itr(struct igb_q_vector *q_vector)
4214 {
4215 struct igb_adapter *adapter = q_vector->adapter;
4216 u32 new_itr = q_vector->itr_val;
4217 u8 current_itr = 0;
4218
4219 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4220 if (adapter->link_speed != SPEED_1000) {
4221 current_itr = 0;
4222 new_itr = IGB_4K_ITR;
4223 goto set_itr_now;
4224 }
4225
4226 igb_update_itr(q_vector, &q_vector->tx);
4227 igb_update_itr(q_vector, &q_vector->rx);
4228
4229 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4230
4231 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4232 if (current_itr == lowest_latency &&
4233 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4234 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4235 current_itr = low_latency;
4236
4237 switch (current_itr) {
4238 /* counts and packets in update_itr are dependent on these numbers */
4239 case lowest_latency:
4240 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4241 break;
4242 case low_latency:
4243 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4244 break;
4245 case bulk_latency:
4246 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4247 break;
4248 default:
4249 break;
4250 }
4251
4252 set_itr_now:
4253 if (new_itr != q_vector->itr_val) {
4254 /* this attempts to bias the interrupt rate towards Bulk
4255 * by adding intermediate steps when interrupt rate is
4256 * increasing
4257 */
4258 new_itr = new_itr > q_vector->itr_val ?
4259 max((new_itr * q_vector->itr_val) /
4260 (new_itr + (q_vector->itr_val >> 2)),
4261 new_itr) : new_itr;
4262 /* Don't write the value here; it resets the adapter's
4263 * internal timer, and causes us to delay far longer than
4264 * we should between interrupts. Instead, we write the ITR
4265 * value at the beginning of the next interrupt so the timing
4266 * ends up being correct.
4267 */
4268 q_vector->itr_val = new_itr;
4269 q_vector->set_itr = 1;
4270 }
4271 }
4272
4273 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4274 u32 type_tucmd, u32 mss_l4len_idx)
4275 {
4276 struct e1000_adv_tx_context_desc *context_desc;
4277 u16 i = tx_ring->next_to_use;
4278
4279 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4280
4281 i++;
4282 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4283
4284 /* set bits to identify this as an advanced context descriptor */
4285 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4286
4287 /* For 82575, context index must be unique per ring. */
4288 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4289 mss_l4len_idx |= tx_ring->reg_idx << 4;
4290
4291 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4292 context_desc->seqnum_seed = 0;
4293 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4294 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4295 }
4296
4297 static int igb_tso(struct igb_ring *tx_ring,
4298 struct igb_tx_buffer *first,
4299 u8 *hdr_len)
4300 {
4301 struct sk_buff *skb = first->skb;
4302 u32 vlan_macip_lens, type_tucmd;
4303 u32 mss_l4len_idx, l4len;
4304
4305 if (skb->ip_summed != CHECKSUM_PARTIAL)
4306 return 0;
4307
4308 if (!skb_is_gso(skb))
4309 return 0;
4310
4311 if (skb_header_cloned(skb)) {
4312 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4313 if (err)
4314 return err;
4315 }
4316
4317 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4318 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4319
4320 if (first->protocol == __constant_htons(ETH_P_IP)) {
4321 struct iphdr *iph = ip_hdr(skb);
4322 iph->tot_len = 0;
4323 iph->check = 0;
4324 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4325 iph->daddr, 0,
4326 IPPROTO_TCP,
4327 0);
4328 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4329 first->tx_flags |= IGB_TX_FLAGS_TSO |
4330 IGB_TX_FLAGS_CSUM |
4331 IGB_TX_FLAGS_IPV4;
4332 } else if (skb_is_gso_v6(skb)) {
4333 ipv6_hdr(skb)->payload_len = 0;
4334 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4335 &ipv6_hdr(skb)->daddr,
4336 0, IPPROTO_TCP, 0);
4337 first->tx_flags |= IGB_TX_FLAGS_TSO |
4338 IGB_TX_FLAGS_CSUM;
4339 }
4340
4341 /* compute header lengths */
4342 l4len = tcp_hdrlen(skb);
4343 *hdr_len = skb_transport_offset(skb) + l4len;
4344
4345 /* update gso size and bytecount with header size */
4346 first->gso_segs = skb_shinfo(skb)->gso_segs;
4347 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4348
4349 /* MSS L4LEN IDX */
4350 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4351 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4352
4353 /* VLAN MACLEN IPLEN */
4354 vlan_macip_lens = skb_network_header_len(skb);
4355 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4356 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4357
4358 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4359
4360 return 1;
4361 }
4362
4363 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4364 {
4365 struct sk_buff *skb = first->skb;
4366 u32 vlan_macip_lens = 0;
4367 u32 mss_l4len_idx = 0;
4368 u32 type_tucmd = 0;
4369
4370 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4371 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4372 return;
4373 } else {
4374 u8 l4_hdr = 0;
4375 switch (first->protocol) {
4376 case __constant_htons(ETH_P_IP):
4377 vlan_macip_lens |= skb_network_header_len(skb);
4378 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4379 l4_hdr = ip_hdr(skb)->protocol;
4380 break;
4381 case __constant_htons(ETH_P_IPV6):
4382 vlan_macip_lens |= skb_network_header_len(skb);
4383 l4_hdr = ipv6_hdr(skb)->nexthdr;
4384 break;
4385 default:
4386 if (unlikely(net_ratelimit())) {
4387 dev_warn(tx_ring->dev,
4388 "partial checksum but proto=%x!\n",
4389 first->protocol);
4390 }
4391 break;
4392 }
4393
4394 switch (l4_hdr) {
4395 case IPPROTO_TCP:
4396 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4397 mss_l4len_idx = tcp_hdrlen(skb) <<
4398 E1000_ADVTXD_L4LEN_SHIFT;
4399 break;
4400 case IPPROTO_SCTP:
4401 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4402 mss_l4len_idx = sizeof(struct sctphdr) <<
4403 E1000_ADVTXD_L4LEN_SHIFT;
4404 break;
4405 case IPPROTO_UDP:
4406 mss_l4len_idx = sizeof(struct udphdr) <<
4407 E1000_ADVTXD_L4LEN_SHIFT;
4408 break;
4409 default:
4410 if (unlikely(net_ratelimit())) {
4411 dev_warn(tx_ring->dev,
4412 "partial checksum but l4 proto=%x!\n",
4413 l4_hdr);
4414 }
4415 break;
4416 }
4417
4418 /* update TX checksum flag */
4419 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4420 }
4421
4422 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4423 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4424
4425 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4426 }
4427
4428 #define IGB_SET_FLAG(_input, _flag, _result) \
4429 ((_flag <= _result) ? \
4430 ((u32)(_input & _flag) * (_result / _flag)) : \
4431 ((u32)(_input & _flag) / (_flag / _result)))
4432
4433 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4434 {
4435 /* set type for advanced descriptor with frame checksum insertion */
4436 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4437 E1000_ADVTXD_DCMD_DEXT |
4438 E1000_ADVTXD_DCMD_IFCS;
4439
4440 /* set HW vlan bit if vlan is present */
4441 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4442 (E1000_ADVTXD_DCMD_VLE));
4443
4444 /* set segmentation bits for TSO */
4445 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4446 (E1000_ADVTXD_DCMD_TSE));
4447
4448 /* set timestamp bit if present */
4449 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4450 (E1000_ADVTXD_MAC_TSTAMP));
4451
4452 /* insert frame checksum */
4453 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4454
4455 return cmd_type;
4456 }
4457
4458 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4459 union e1000_adv_tx_desc *tx_desc,
4460 u32 tx_flags, unsigned int paylen)
4461 {
4462 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4463
4464 /* 82575 requires a unique index per ring */
4465 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4466 olinfo_status |= tx_ring->reg_idx << 4;
4467
4468 /* insert L4 checksum */
4469 olinfo_status |= IGB_SET_FLAG(tx_flags,
4470 IGB_TX_FLAGS_CSUM,
4471 (E1000_TXD_POPTS_TXSM << 8));
4472
4473 /* insert IPv4 checksum */
4474 olinfo_status |= IGB_SET_FLAG(tx_flags,
4475 IGB_TX_FLAGS_IPV4,
4476 (E1000_TXD_POPTS_IXSM << 8));
4477
4478 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4479 }
4480
4481 static void igb_tx_map(struct igb_ring *tx_ring,
4482 struct igb_tx_buffer *first,
4483 const u8 hdr_len)
4484 {
4485 struct sk_buff *skb = first->skb;
4486 struct igb_tx_buffer *tx_buffer;
4487 union e1000_adv_tx_desc *tx_desc;
4488 struct skb_frag_struct *frag;
4489 dma_addr_t dma;
4490 unsigned int data_len, size;
4491 u32 tx_flags = first->tx_flags;
4492 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4493 u16 i = tx_ring->next_to_use;
4494
4495 tx_desc = IGB_TX_DESC(tx_ring, i);
4496
4497 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4498
4499 size = skb_headlen(skb);
4500 data_len = skb->data_len;
4501
4502 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4503
4504 tx_buffer = first;
4505
4506 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4507 if (dma_mapping_error(tx_ring->dev, dma))
4508 goto dma_error;
4509
4510 /* record length, and DMA address */
4511 dma_unmap_len_set(tx_buffer, len, size);
4512 dma_unmap_addr_set(tx_buffer, dma, dma);
4513
4514 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4515
4516 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4517 tx_desc->read.cmd_type_len =
4518 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4519
4520 i++;
4521 tx_desc++;
4522 if (i == tx_ring->count) {
4523 tx_desc = IGB_TX_DESC(tx_ring, 0);
4524 i = 0;
4525 }
4526 tx_desc->read.olinfo_status = 0;
4527
4528 dma += IGB_MAX_DATA_PER_TXD;
4529 size -= IGB_MAX_DATA_PER_TXD;
4530
4531 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4532 }
4533
4534 if (likely(!data_len))
4535 break;
4536
4537 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4538
4539 i++;
4540 tx_desc++;
4541 if (i == tx_ring->count) {
4542 tx_desc = IGB_TX_DESC(tx_ring, 0);
4543 i = 0;
4544 }
4545 tx_desc->read.olinfo_status = 0;
4546
4547 size = skb_frag_size(frag);
4548 data_len -= size;
4549
4550 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4551 size, DMA_TO_DEVICE);
4552
4553 tx_buffer = &tx_ring->tx_buffer_info[i];
4554 }
4555
4556 /* write last descriptor with RS and EOP bits */
4557 cmd_type |= size | IGB_TXD_DCMD;
4558 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4559
4560 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4561
4562 /* set the timestamp */
4563 first->time_stamp = jiffies;
4564
4565 /* Force memory writes to complete before letting h/w know there
4566 * are new descriptors to fetch. (Only applicable for weak-ordered
4567 * memory model archs, such as IA-64).
4568 *
4569 * We also need this memory barrier to make certain all of the
4570 * status bits have been updated before next_to_watch is written.
4571 */
4572 wmb();
4573
4574 /* set next_to_watch value indicating a packet is present */
4575 first->next_to_watch = tx_desc;
4576
4577 i++;
4578 if (i == tx_ring->count)
4579 i = 0;
4580
4581 tx_ring->next_to_use = i;
4582
4583 writel(i, tx_ring->tail);
4584
4585 /* we need this if more than one processor can write to our tail
4586 * at a time, it synchronizes IO on IA64/Altix systems
4587 */
4588 mmiowb();
4589
4590 return;
4591
4592 dma_error:
4593 dev_err(tx_ring->dev, "TX DMA map failed\n");
4594
4595 /* clear dma mappings for failed tx_buffer_info map */
4596 for (;;) {
4597 tx_buffer = &tx_ring->tx_buffer_info[i];
4598 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4599 if (tx_buffer == first)
4600 break;
4601 if (i == 0)
4602 i = tx_ring->count;
4603 i--;
4604 }
4605
4606 tx_ring->next_to_use = i;
4607 }
4608
4609 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4610 {
4611 struct net_device *netdev = tx_ring->netdev;
4612
4613 netif_stop_subqueue(netdev, tx_ring->queue_index);
4614
4615 /* Herbert's original patch had:
4616 * smp_mb__after_netif_stop_queue();
4617 * but since that doesn't exist yet, just open code it.
4618 */
4619 smp_mb();
4620
4621 /* We need to check again in a case another CPU has just
4622 * made room available.
4623 */
4624 if (igb_desc_unused(tx_ring) < size)
4625 return -EBUSY;
4626
4627 /* A reprieve! */
4628 netif_wake_subqueue(netdev, tx_ring->queue_index);
4629
4630 u64_stats_update_begin(&tx_ring->tx_syncp2);
4631 tx_ring->tx_stats.restart_queue2++;
4632 u64_stats_update_end(&tx_ring->tx_syncp2);
4633
4634 return 0;
4635 }
4636
4637 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4638 {
4639 if (igb_desc_unused(tx_ring) >= size)
4640 return 0;
4641 return __igb_maybe_stop_tx(tx_ring, size);
4642 }
4643
4644 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4645 struct igb_ring *tx_ring)
4646 {
4647 struct igb_tx_buffer *first;
4648 int tso;
4649 u32 tx_flags = 0;
4650 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4651 __be16 protocol = vlan_get_protocol(skb);
4652 u8 hdr_len = 0;
4653
4654 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4655 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4656 * + 2 desc gap to keep tail from touching head,
4657 * + 1 desc for context descriptor,
4658 * otherwise try next time
4659 */
4660 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4661 unsigned short f;
4662 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4663 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4664 } else {
4665 count += skb_shinfo(skb)->nr_frags;
4666 }
4667
4668 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4669 /* this is a hard error */
4670 return NETDEV_TX_BUSY;
4671 }
4672
4673 /* record the location of the first descriptor for this packet */
4674 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4675 first->skb = skb;
4676 first->bytecount = skb->len;
4677 first->gso_segs = 1;
4678
4679 skb_tx_timestamp(skb);
4680
4681 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4682 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4683
4684 if (!(adapter->ptp_tx_skb)) {
4685 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4686 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4687
4688 adapter->ptp_tx_skb = skb_get(skb);
4689 adapter->ptp_tx_start = jiffies;
4690 if (adapter->hw.mac.type == e1000_82576)
4691 schedule_work(&adapter->ptp_tx_work);
4692 }
4693 }
4694
4695 if (vlan_tx_tag_present(skb)) {
4696 tx_flags |= IGB_TX_FLAGS_VLAN;
4697 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4698 }
4699
4700 /* record initial flags and protocol */
4701 first->tx_flags = tx_flags;
4702 first->protocol = protocol;
4703
4704 tso = igb_tso(tx_ring, first, &hdr_len);
4705 if (tso < 0)
4706 goto out_drop;
4707 else if (!tso)
4708 igb_tx_csum(tx_ring, first);
4709
4710 igb_tx_map(tx_ring, first, hdr_len);
4711
4712 /* Make sure there is space in the ring for the next send. */
4713 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4714
4715 return NETDEV_TX_OK;
4716
4717 out_drop:
4718 igb_unmap_and_free_tx_resource(tx_ring, first);
4719
4720 return NETDEV_TX_OK;
4721 }
4722
4723 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4724 struct sk_buff *skb)
4725 {
4726 unsigned int r_idx = skb->queue_mapping;
4727
4728 if (r_idx >= adapter->num_tx_queues)
4729 r_idx = r_idx % adapter->num_tx_queues;
4730
4731 return adapter->tx_ring[r_idx];
4732 }
4733
4734 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4735 struct net_device *netdev)
4736 {
4737 struct igb_adapter *adapter = netdev_priv(netdev);
4738
4739 if (test_bit(__IGB_DOWN, &adapter->state)) {
4740 dev_kfree_skb_any(skb);
4741 return NETDEV_TX_OK;
4742 }
4743
4744 if (skb->len <= 0) {
4745 dev_kfree_skb_any(skb);
4746 return NETDEV_TX_OK;
4747 }
4748
4749 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4750 * in order to meet this minimum size requirement.
4751 */
4752 if (unlikely(skb->len < 17)) {
4753 if (skb_pad(skb, 17 - skb->len))
4754 return NETDEV_TX_OK;
4755 skb->len = 17;
4756 skb_set_tail_pointer(skb, 17);
4757 }
4758
4759 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4760 }
4761
4762 /**
4763 * igb_tx_timeout - Respond to a Tx Hang
4764 * @netdev: network interface device structure
4765 **/
4766 static void igb_tx_timeout(struct net_device *netdev)
4767 {
4768 struct igb_adapter *adapter = netdev_priv(netdev);
4769 struct e1000_hw *hw = &adapter->hw;
4770
4771 /* Do the reset outside of interrupt context */
4772 adapter->tx_timeout_count++;
4773
4774 if (hw->mac.type >= e1000_82580)
4775 hw->dev_spec._82575.global_device_reset = true;
4776
4777 schedule_work(&adapter->reset_task);
4778 wr32(E1000_EICS,
4779 (adapter->eims_enable_mask & ~adapter->eims_other));
4780 }
4781
4782 static void igb_reset_task(struct work_struct *work)
4783 {
4784 struct igb_adapter *adapter;
4785 adapter = container_of(work, struct igb_adapter, reset_task);
4786
4787 igb_dump(adapter);
4788 netdev_err(adapter->netdev, "Reset adapter\n");
4789 igb_reinit_locked(adapter);
4790 }
4791
4792 /**
4793 * igb_get_stats64 - Get System Network Statistics
4794 * @netdev: network interface device structure
4795 * @stats: rtnl_link_stats64 pointer
4796 **/
4797 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4798 struct rtnl_link_stats64 *stats)
4799 {
4800 struct igb_adapter *adapter = netdev_priv(netdev);
4801
4802 spin_lock(&adapter->stats64_lock);
4803 igb_update_stats(adapter, &adapter->stats64);
4804 memcpy(stats, &adapter->stats64, sizeof(*stats));
4805 spin_unlock(&adapter->stats64_lock);
4806
4807 return stats;
4808 }
4809
4810 /**
4811 * igb_change_mtu - Change the Maximum Transfer Unit
4812 * @netdev: network interface device structure
4813 * @new_mtu: new value for maximum frame size
4814 *
4815 * Returns 0 on success, negative on failure
4816 **/
4817 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4818 {
4819 struct igb_adapter *adapter = netdev_priv(netdev);
4820 struct pci_dev *pdev = adapter->pdev;
4821 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4822
4823 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4824 dev_err(&pdev->dev, "Invalid MTU setting\n");
4825 return -EINVAL;
4826 }
4827
4828 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4829 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4830 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4831 return -EINVAL;
4832 }
4833
4834 /* adjust max frame to be at least the size of a standard frame */
4835 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4836 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4837
4838 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4839 msleep(1);
4840
4841 /* igb_down has a dependency on max_frame_size */
4842 adapter->max_frame_size = max_frame;
4843
4844 if (netif_running(netdev))
4845 igb_down(adapter);
4846
4847 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4848 netdev->mtu, new_mtu);
4849 netdev->mtu = new_mtu;
4850
4851 if (netif_running(netdev))
4852 igb_up(adapter);
4853 else
4854 igb_reset(adapter);
4855
4856 clear_bit(__IGB_RESETTING, &adapter->state);
4857
4858 return 0;
4859 }
4860
4861 /**
4862 * igb_update_stats - Update the board statistics counters
4863 * @adapter: board private structure
4864 **/
4865 void igb_update_stats(struct igb_adapter *adapter,
4866 struct rtnl_link_stats64 *net_stats)
4867 {
4868 struct e1000_hw *hw = &adapter->hw;
4869 struct pci_dev *pdev = adapter->pdev;
4870 u32 reg, mpc;
4871 u16 phy_tmp;
4872 int i;
4873 u64 bytes, packets;
4874 unsigned int start;
4875 u64 _bytes, _packets;
4876
4877 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4878
4879 /* Prevent stats update while adapter is being reset, or if the pci
4880 * connection is down.
4881 */
4882 if (adapter->link_speed == 0)
4883 return;
4884 if (pci_channel_offline(pdev))
4885 return;
4886
4887 bytes = 0;
4888 packets = 0;
4889
4890 rcu_read_lock();
4891 for (i = 0; i < adapter->num_rx_queues; i++) {
4892 u32 rqdpc = rd32(E1000_RQDPC(i));
4893 struct igb_ring *ring = adapter->rx_ring[i];
4894
4895 if (rqdpc) {
4896 ring->rx_stats.drops += rqdpc;
4897 net_stats->rx_fifo_errors += rqdpc;
4898 }
4899
4900 do {
4901 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4902 _bytes = ring->rx_stats.bytes;
4903 _packets = ring->rx_stats.packets;
4904 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4905 bytes += _bytes;
4906 packets += _packets;
4907 }
4908
4909 net_stats->rx_bytes = bytes;
4910 net_stats->rx_packets = packets;
4911
4912 bytes = 0;
4913 packets = 0;
4914 for (i = 0; i < adapter->num_tx_queues; i++) {
4915 struct igb_ring *ring = adapter->tx_ring[i];
4916 do {
4917 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4918 _bytes = ring->tx_stats.bytes;
4919 _packets = ring->tx_stats.packets;
4920 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4921 bytes += _bytes;
4922 packets += _packets;
4923 }
4924 net_stats->tx_bytes = bytes;
4925 net_stats->tx_packets = packets;
4926 rcu_read_unlock();
4927
4928 /* read stats registers */
4929 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4930 adapter->stats.gprc += rd32(E1000_GPRC);
4931 adapter->stats.gorc += rd32(E1000_GORCL);
4932 rd32(E1000_GORCH); /* clear GORCL */
4933 adapter->stats.bprc += rd32(E1000_BPRC);
4934 adapter->stats.mprc += rd32(E1000_MPRC);
4935 adapter->stats.roc += rd32(E1000_ROC);
4936
4937 adapter->stats.prc64 += rd32(E1000_PRC64);
4938 adapter->stats.prc127 += rd32(E1000_PRC127);
4939 adapter->stats.prc255 += rd32(E1000_PRC255);
4940 adapter->stats.prc511 += rd32(E1000_PRC511);
4941 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4942 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4943 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4944 adapter->stats.sec += rd32(E1000_SEC);
4945
4946 mpc = rd32(E1000_MPC);
4947 adapter->stats.mpc += mpc;
4948 net_stats->rx_fifo_errors += mpc;
4949 adapter->stats.scc += rd32(E1000_SCC);
4950 adapter->stats.ecol += rd32(E1000_ECOL);
4951 adapter->stats.mcc += rd32(E1000_MCC);
4952 adapter->stats.latecol += rd32(E1000_LATECOL);
4953 adapter->stats.dc += rd32(E1000_DC);
4954 adapter->stats.rlec += rd32(E1000_RLEC);
4955 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4956 adapter->stats.xontxc += rd32(E1000_XONTXC);
4957 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4958 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4959 adapter->stats.fcruc += rd32(E1000_FCRUC);
4960 adapter->stats.gptc += rd32(E1000_GPTC);
4961 adapter->stats.gotc += rd32(E1000_GOTCL);
4962 rd32(E1000_GOTCH); /* clear GOTCL */
4963 adapter->stats.rnbc += rd32(E1000_RNBC);
4964 adapter->stats.ruc += rd32(E1000_RUC);
4965 adapter->stats.rfc += rd32(E1000_RFC);
4966 adapter->stats.rjc += rd32(E1000_RJC);
4967 adapter->stats.tor += rd32(E1000_TORH);
4968 adapter->stats.tot += rd32(E1000_TOTH);
4969 adapter->stats.tpr += rd32(E1000_TPR);
4970
4971 adapter->stats.ptc64 += rd32(E1000_PTC64);
4972 adapter->stats.ptc127 += rd32(E1000_PTC127);
4973 adapter->stats.ptc255 += rd32(E1000_PTC255);
4974 adapter->stats.ptc511 += rd32(E1000_PTC511);
4975 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4976 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4977
4978 adapter->stats.mptc += rd32(E1000_MPTC);
4979 adapter->stats.bptc += rd32(E1000_BPTC);
4980
4981 adapter->stats.tpt += rd32(E1000_TPT);
4982 adapter->stats.colc += rd32(E1000_COLC);
4983
4984 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4985 /* read internal phy specific stats */
4986 reg = rd32(E1000_CTRL_EXT);
4987 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4988 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4989
4990 /* this stat has invalid values on i210/i211 */
4991 if ((hw->mac.type != e1000_i210) &&
4992 (hw->mac.type != e1000_i211))
4993 adapter->stats.tncrs += rd32(E1000_TNCRS);
4994 }
4995
4996 adapter->stats.tsctc += rd32(E1000_TSCTC);
4997 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4998
4999 adapter->stats.iac += rd32(E1000_IAC);
5000 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5001 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5002 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5003 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5004 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5005 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5006 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5007 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5008
5009 /* Fill out the OS statistics structure */
5010 net_stats->multicast = adapter->stats.mprc;
5011 net_stats->collisions = adapter->stats.colc;
5012
5013 /* Rx Errors */
5014
5015 /* RLEC on some newer hardware can be incorrect so build
5016 * our own version based on RUC and ROC
5017 */
5018 net_stats->rx_errors = adapter->stats.rxerrc +
5019 adapter->stats.crcerrs + adapter->stats.algnerrc +
5020 adapter->stats.ruc + adapter->stats.roc +
5021 adapter->stats.cexterr;
5022 net_stats->rx_length_errors = adapter->stats.ruc +
5023 adapter->stats.roc;
5024 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5025 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5026 net_stats->rx_missed_errors = adapter->stats.mpc;
5027
5028 /* Tx Errors */
5029 net_stats->tx_errors = adapter->stats.ecol +
5030 adapter->stats.latecol;
5031 net_stats->tx_aborted_errors = adapter->stats.ecol;
5032 net_stats->tx_window_errors = adapter->stats.latecol;
5033 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5034
5035 /* Tx Dropped needs to be maintained elsewhere */
5036
5037 /* Phy Stats */
5038 if (hw->phy.media_type == e1000_media_type_copper) {
5039 if ((adapter->link_speed == SPEED_1000) &&
5040 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5041 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5042 adapter->phy_stats.idle_errors += phy_tmp;
5043 }
5044 }
5045
5046 /* Management Stats */
5047 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5048 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5049 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5050
5051 /* OS2BMC Stats */
5052 reg = rd32(E1000_MANC);
5053 if (reg & E1000_MANC_EN_BMC2OS) {
5054 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5055 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5056 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5057 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5058 }
5059 }
5060
5061 static irqreturn_t igb_msix_other(int irq, void *data)
5062 {
5063 struct igb_adapter *adapter = data;
5064 struct e1000_hw *hw = &adapter->hw;
5065 u32 icr = rd32(E1000_ICR);
5066 /* reading ICR causes bit 31 of EICR to be cleared */
5067
5068 if (icr & E1000_ICR_DRSTA)
5069 schedule_work(&adapter->reset_task);
5070
5071 if (icr & E1000_ICR_DOUTSYNC) {
5072 /* HW is reporting DMA is out of sync */
5073 adapter->stats.doosync++;
5074 /* The DMA Out of Sync is also indication of a spoof event
5075 * in IOV mode. Check the Wrong VM Behavior register to
5076 * see if it is really a spoof event.
5077 */
5078 igb_check_wvbr(adapter);
5079 }
5080
5081 /* Check for a mailbox event */
5082 if (icr & E1000_ICR_VMMB)
5083 igb_msg_task(adapter);
5084
5085 if (icr & E1000_ICR_LSC) {
5086 hw->mac.get_link_status = 1;
5087 /* guard against interrupt when we're going down */
5088 if (!test_bit(__IGB_DOWN, &adapter->state))
5089 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5090 }
5091
5092 if (icr & E1000_ICR_TS) {
5093 u32 tsicr = rd32(E1000_TSICR);
5094
5095 if (tsicr & E1000_TSICR_TXTS) {
5096 /* acknowledge the interrupt */
5097 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5098 /* retrieve hardware timestamp */
5099 schedule_work(&adapter->ptp_tx_work);
5100 }
5101 }
5102
5103 wr32(E1000_EIMS, adapter->eims_other);
5104
5105 return IRQ_HANDLED;
5106 }
5107
5108 static void igb_write_itr(struct igb_q_vector *q_vector)
5109 {
5110 struct igb_adapter *adapter = q_vector->adapter;
5111 u32 itr_val = q_vector->itr_val & 0x7FFC;
5112
5113 if (!q_vector->set_itr)
5114 return;
5115
5116 if (!itr_val)
5117 itr_val = 0x4;
5118
5119 if (adapter->hw.mac.type == e1000_82575)
5120 itr_val |= itr_val << 16;
5121 else
5122 itr_val |= E1000_EITR_CNT_IGNR;
5123
5124 writel(itr_val, q_vector->itr_register);
5125 q_vector->set_itr = 0;
5126 }
5127
5128 static irqreturn_t igb_msix_ring(int irq, void *data)
5129 {
5130 struct igb_q_vector *q_vector = data;
5131
5132 /* Write the ITR value calculated from the previous interrupt. */
5133 igb_write_itr(q_vector);
5134
5135 napi_schedule(&q_vector->napi);
5136
5137 return IRQ_HANDLED;
5138 }
5139
5140 #ifdef CONFIG_IGB_DCA
5141 static void igb_update_tx_dca(struct igb_adapter *adapter,
5142 struct igb_ring *tx_ring,
5143 int cpu)
5144 {
5145 struct e1000_hw *hw = &adapter->hw;
5146 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5147
5148 if (hw->mac.type != e1000_82575)
5149 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5150
5151 /* We can enable relaxed ordering for reads, but not writes when
5152 * DCA is enabled. This is due to a known issue in some chipsets
5153 * which will cause the DCA tag to be cleared.
5154 */
5155 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5156 E1000_DCA_TXCTRL_DATA_RRO_EN |
5157 E1000_DCA_TXCTRL_DESC_DCA_EN;
5158
5159 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5160 }
5161
5162 static void igb_update_rx_dca(struct igb_adapter *adapter,
5163 struct igb_ring *rx_ring,
5164 int cpu)
5165 {
5166 struct e1000_hw *hw = &adapter->hw;
5167 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5168
5169 if (hw->mac.type != e1000_82575)
5170 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5171
5172 /* We can enable relaxed ordering for reads, but not writes when
5173 * DCA is enabled. This is due to a known issue in some chipsets
5174 * which will cause the DCA tag to be cleared.
5175 */
5176 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5177 E1000_DCA_RXCTRL_DESC_DCA_EN;
5178
5179 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5180 }
5181
5182 static void igb_update_dca(struct igb_q_vector *q_vector)
5183 {
5184 struct igb_adapter *adapter = q_vector->adapter;
5185 int cpu = get_cpu();
5186
5187 if (q_vector->cpu == cpu)
5188 goto out_no_update;
5189
5190 if (q_vector->tx.ring)
5191 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5192
5193 if (q_vector->rx.ring)
5194 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5195
5196 q_vector->cpu = cpu;
5197 out_no_update:
5198 put_cpu();
5199 }
5200
5201 static void igb_setup_dca(struct igb_adapter *adapter)
5202 {
5203 struct e1000_hw *hw = &adapter->hw;
5204 int i;
5205
5206 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5207 return;
5208
5209 /* Always use CB2 mode, difference is masked in the CB driver. */
5210 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5211
5212 for (i = 0; i < adapter->num_q_vectors; i++) {
5213 adapter->q_vector[i]->cpu = -1;
5214 igb_update_dca(adapter->q_vector[i]);
5215 }
5216 }
5217
5218 static int __igb_notify_dca(struct device *dev, void *data)
5219 {
5220 struct net_device *netdev = dev_get_drvdata(dev);
5221 struct igb_adapter *adapter = netdev_priv(netdev);
5222 struct pci_dev *pdev = adapter->pdev;
5223 struct e1000_hw *hw = &adapter->hw;
5224 unsigned long event = *(unsigned long *)data;
5225
5226 switch (event) {
5227 case DCA_PROVIDER_ADD:
5228 /* if already enabled, don't do it again */
5229 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5230 break;
5231 if (dca_add_requester(dev) == 0) {
5232 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5233 dev_info(&pdev->dev, "DCA enabled\n");
5234 igb_setup_dca(adapter);
5235 break;
5236 }
5237 /* Fall Through since DCA is disabled. */
5238 case DCA_PROVIDER_REMOVE:
5239 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5240 /* without this a class_device is left
5241 * hanging around in the sysfs model
5242 */
5243 dca_remove_requester(dev);
5244 dev_info(&pdev->dev, "DCA disabled\n");
5245 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5246 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5247 }
5248 break;
5249 }
5250
5251 return 0;
5252 }
5253
5254 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5255 void *p)
5256 {
5257 int ret_val;
5258
5259 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5260 __igb_notify_dca);
5261
5262 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5263 }
5264 #endif /* CONFIG_IGB_DCA */
5265
5266 #ifdef CONFIG_PCI_IOV
5267 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5268 {
5269 unsigned char mac_addr[ETH_ALEN];
5270
5271 eth_zero_addr(mac_addr);
5272 igb_set_vf_mac(adapter, vf, mac_addr);
5273
5274 /* By default spoof check is enabled for all VFs */
5275 adapter->vf_data[vf].spoofchk_enabled = true;
5276
5277 return 0;
5278 }
5279
5280 #endif
5281 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5282 {
5283 struct e1000_hw *hw = &adapter->hw;
5284 u32 ping;
5285 int i;
5286
5287 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5288 ping = E1000_PF_CONTROL_MSG;
5289 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5290 ping |= E1000_VT_MSGTYPE_CTS;
5291 igb_write_mbx(hw, &ping, 1, i);
5292 }
5293 }
5294
5295 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5296 {
5297 struct e1000_hw *hw = &adapter->hw;
5298 u32 vmolr = rd32(E1000_VMOLR(vf));
5299 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5300
5301 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5302 IGB_VF_FLAG_MULTI_PROMISC);
5303 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5304
5305 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5306 vmolr |= E1000_VMOLR_MPME;
5307 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5308 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5309 } else {
5310 /* if we have hashes and we are clearing a multicast promisc
5311 * flag we need to write the hashes to the MTA as this step
5312 * was previously skipped
5313 */
5314 if (vf_data->num_vf_mc_hashes > 30) {
5315 vmolr |= E1000_VMOLR_MPME;
5316 } else if (vf_data->num_vf_mc_hashes) {
5317 int j;
5318 vmolr |= E1000_VMOLR_ROMPE;
5319 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5320 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5321 }
5322 }
5323
5324 wr32(E1000_VMOLR(vf), vmolr);
5325
5326 /* there are flags left unprocessed, likely not supported */
5327 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5328 return -EINVAL;
5329
5330 return 0;
5331 }
5332
5333 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5334 u32 *msgbuf, u32 vf)
5335 {
5336 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5337 u16 *hash_list = (u16 *)&msgbuf[1];
5338 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5339 int i;
5340
5341 /* salt away the number of multicast addresses assigned
5342 * to this VF for later use to restore when the PF multi cast
5343 * list changes
5344 */
5345 vf_data->num_vf_mc_hashes = n;
5346
5347 /* only up to 30 hash values supported */
5348 if (n > 30)
5349 n = 30;
5350
5351 /* store the hashes for later use */
5352 for (i = 0; i < n; i++)
5353 vf_data->vf_mc_hashes[i] = hash_list[i];
5354
5355 /* Flush and reset the mta with the new values */
5356 igb_set_rx_mode(adapter->netdev);
5357
5358 return 0;
5359 }
5360
5361 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5362 {
5363 struct e1000_hw *hw = &adapter->hw;
5364 struct vf_data_storage *vf_data;
5365 int i, j;
5366
5367 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5368 u32 vmolr = rd32(E1000_VMOLR(i));
5369 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5370
5371 vf_data = &adapter->vf_data[i];
5372
5373 if ((vf_data->num_vf_mc_hashes > 30) ||
5374 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5375 vmolr |= E1000_VMOLR_MPME;
5376 } else if (vf_data->num_vf_mc_hashes) {
5377 vmolr |= E1000_VMOLR_ROMPE;
5378 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5379 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5380 }
5381 wr32(E1000_VMOLR(i), vmolr);
5382 }
5383 }
5384
5385 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5386 {
5387 struct e1000_hw *hw = &adapter->hw;
5388 u32 pool_mask, reg, vid;
5389 int i;
5390
5391 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5392
5393 /* Find the vlan filter for this id */
5394 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5395 reg = rd32(E1000_VLVF(i));
5396
5397 /* remove the vf from the pool */
5398 reg &= ~pool_mask;
5399
5400 /* if pool is empty then remove entry from vfta */
5401 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5402 (reg & E1000_VLVF_VLANID_ENABLE)) {
5403 reg = 0;
5404 vid = reg & E1000_VLVF_VLANID_MASK;
5405 igb_vfta_set(hw, vid, false);
5406 }
5407
5408 wr32(E1000_VLVF(i), reg);
5409 }
5410
5411 adapter->vf_data[vf].vlans_enabled = 0;
5412 }
5413
5414 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5415 {
5416 struct e1000_hw *hw = &adapter->hw;
5417 u32 reg, i;
5418
5419 /* The vlvf table only exists on 82576 hardware and newer */
5420 if (hw->mac.type < e1000_82576)
5421 return -1;
5422
5423 /* we only need to do this if VMDq is enabled */
5424 if (!adapter->vfs_allocated_count)
5425 return -1;
5426
5427 /* Find the vlan filter for this id */
5428 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5429 reg = rd32(E1000_VLVF(i));
5430 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5431 vid == (reg & E1000_VLVF_VLANID_MASK))
5432 break;
5433 }
5434
5435 if (add) {
5436 if (i == E1000_VLVF_ARRAY_SIZE) {
5437 /* Did not find a matching VLAN ID entry that was
5438 * enabled. Search for a free filter entry, i.e.
5439 * one without the enable bit set
5440 */
5441 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5442 reg = rd32(E1000_VLVF(i));
5443 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5444 break;
5445 }
5446 }
5447 if (i < E1000_VLVF_ARRAY_SIZE) {
5448 /* Found an enabled/available entry */
5449 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5450
5451 /* if !enabled we need to set this up in vfta */
5452 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5453 /* add VID to filter table */
5454 igb_vfta_set(hw, vid, true);
5455 reg |= E1000_VLVF_VLANID_ENABLE;
5456 }
5457 reg &= ~E1000_VLVF_VLANID_MASK;
5458 reg |= vid;
5459 wr32(E1000_VLVF(i), reg);
5460
5461 /* do not modify RLPML for PF devices */
5462 if (vf >= adapter->vfs_allocated_count)
5463 return 0;
5464
5465 if (!adapter->vf_data[vf].vlans_enabled) {
5466 u32 size;
5467 reg = rd32(E1000_VMOLR(vf));
5468 size = reg & E1000_VMOLR_RLPML_MASK;
5469 size += 4;
5470 reg &= ~E1000_VMOLR_RLPML_MASK;
5471 reg |= size;
5472 wr32(E1000_VMOLR(vf), reg);
5473 }
5474
5475 adapter->vf_data[vf].vlans_enabled++;
5476 }
5477 } else {
5478 if (i < E1000_VLVF_ARRAY_SIZE) {
5479 /* remove vf from the pool */
5480 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5481 /* if pool is empty then remove entry from vfta */
5482 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5483 reg = 0;
5484 igb_vfta_set(hw, vid, false);
5485 }
5486 wr32(E1000_VLVF(i), reg);
5487
5488 /* do not modify RLPML for PF devices */
5489 if (vf >= adapter->vfs_allocated_count)
5490 return 0;
5491
5492 adapter->vf_data[vf].vlans_enabled--;
5493 if (!adapter->vf_data[vf].vlans_enabled) {
5494 u32 size;
5495 reg = rd32(E1000_VMOLR(vf));
5496 size = reg & E1000_VMOLR_RLPML_MASK;
5497 size -= 4;
5498 reg &= ~E1000_VMOLR_RLPML_MASK;
5499 reg |= size;
5500 wr32(E1000_VMOLR(vf), reg);
5501 }
5502 }
5503 }
5504 return 0;
5505 }
5506
5507 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5508 {
5509 struct e1000_hw *hw = &adapter->hw;
5510
5511 if (vid)
5512 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5513 else
5514 wr32(E1000_VMVIR(vf), 0);
5515 }
5516
5517 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5518 int vf, u16 vlan, u8 qos)
5519 {
5520 int err = 0;
5521 struct igb_adapter *adapter = netdev_priv(netdev);
5522
5523 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5524 return -EINVAL;
5525 if (vlan || qos) {
5526 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5527 if (err)
5528 goto out;
5529 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5530 igb_set_vmolr(adapter, vf, !vlan);
5531 adapter->vf_data[vf].pf_vlan = vlan;
5532 adapter->vf_data[vf].pf_qos = qos;
5533 dev_info(&adapter->pdev->dev,
5534 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5535 if (test_bit(__IGB_DOWN, &adapter->state)) {
5536 dev_warn(&adapter->pdev->dev,
5537 "The VF VLAN has been set, but the PF device is not up.\n");
5538 dev_warn(&adapter->pdev->dev,
5539 "Bring the PF device up before attempting to use the VF device.\n");
5540 }
5541 } else {
5542 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5543 false, vf);
5544 igb_set_vmvir(adapter, vlan, vf);
5545 igb_set_vmolr(adapter, vf, true);
5546 adapter->vf_data[vf].pf_vlan = 0;
5547 adapter->vf_data[vf].pf_qos = 0;
5548 }
5549 out:
5550 return err;
5551 }
5552
5553 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5554 {
5555 struct e1000_hw *hw = &adapter->hw;
5556 int i;
5557 u32 reg;
5558
5559 /* Find the vlan filter for this id */
5560 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5561 reg = rd32(E1000_VLVF(i));
5562 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5563 vid == (reg & E1000_VLVF_VLANID_MASK))
5564 break;
5565 }
5566
5567 if (i >= E1000_VLVF_ARRAY_SIZE)
5568 i = -1;
5569
5570 return i;
5571 }
5572
5573 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5574 {
5575 struct e1000_hw *hw = &adapter->hw;
5576 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5577 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5578 int err = 0;
5579
5580 /* If in promiscuous mode we need to make sure the PF also has
5581 * the VLAN filter set.
5582 */
5583 if (add && (adapter->netdev->flags & IFF_PROMISC))
5584 err = igb_vlvf_set(adapter, vid, add,
5585 adapter->vfs_allocated_count);
5586 if (err)
5587 goto out;
5588
5589 err = igb_vlvf_set(adapter, vid, add, vf);
5590
5591 if (err)
5592 goto out;
5593
5594 /* Go through all the checks to see if the VLAN filter should
5595 * be wiped completely.
5596 */
5597 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5598 u32 vlvf, bits;
5599
5600 int regndx = igb_find_vlvf_entry(adapter, vid);
5601 if (regndx < 0)
5602 goto out;
5603 /* See if any other pools are set for this VLAN filter
5604 * entry other than the PF.
5605 */
5606 vlvf = bits = rd32(E1000_VLVF(regndx));
5607 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5608 adapter->vfs_allocated_count);
5609 /* If the filter was removed then ensure PF pool bit
5610 * is cleared if the PF only added itself to the pool
5611 * because the PF is in promiscuous mode.
5612 */
5613 if ((vlvf & VLAN_VID_MASK) == vid &&
5614 !test_bit(vid, adapter->active_vlans) &&
5615 !bits)
5616 igb_vlvf_set(adapter, vid, add,
5617 adapter->vfs_allocated_count);
5618 }
5619
5620 out:
5621 return err;
5622 }
5623
5624 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5625 {
5626 /* clear flags - except flag that indicates PF has set the MAC */
5627 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5628 adapter->vf_data[vf].last_nack = jiffies;
5629
5630 /* reset offloads to defaults */
5631 igb_set_vmolr(adapter, vf, true);
5632
5633 /* reset vlans for device */
5634 igb_clear_vf_vfta(adapter, vf);
5635 if (adapter->vf_data[vf].pf_vlan)
5636 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5637 adapter->vf_data[vf].pf_vlan,
5638 adapter->vf_data[vf].pf_qos);
5639 else
5640 igb_clear_vf_vfta(adapter, vf);
5641
5642 /* reset multicast table array for vf */
5643 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5644
5645 /* Flush and reset the mta with the new values */
5646 igb_set_rx_mode(adapter->netdev);
5647 }
5648
5649 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5650 {
5651 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5652
5653 /* clear mac address as we were hotplug removed/added */
5654 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5655 eth_zero_addr(vf_mac);
5656
5657 /* process remaining reset events */
5658 igb_vf_reset(adapter, vf);
5659 }
5660
5661 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5662 {
5663 struct e1000_hw *hw = &adapter->hw;
5664 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5665 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5666 u32 reg, msgbuf[3];
5667 u8 *addr = (u8 *)(&msgbuf[1]);
5668
5669 /* process all the same items cleared in a function level reset */
5670 igb_vf_reset(adapter, vf);
5671
5672 /* set vf mac address */
5673 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5674
5675 /* enable transmit and receive for vf */
5676 reg = rd32(E1000_VFTE);
5677 wr32(E1000_VFTE, reg | (1 << vf));
5678 reg = rd32(E1000_VFRE);
5679 wr32(E1000_VFRE, reg | (1 << vf));
5680
5681 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5682
5683 /* reply to reset with ack and vf mac address */
5684 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5685 memcpy(addr, vf_mac, 6);
5686 igb_write_mbx(hw, msgbuf, 3, vf);
5687 }
5688
5689 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5690 {
5691 /* The VF MAC Address is stored in a packed array of bytes
5692 * starting at the second 32 bit word of the msg array
5693 */
5694 unsigned char *addr = (char *)&msg[1];
5695 int err = -1;
5696
5697 if (is_valid_ether_addr(addr))
5698 err = igb_set_vf_mac(adapter, vf, addr);
5699
5700 return err;
5701 }
5702
5703 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5704 {
5705 struct e1000_hw *hw = &adapter->hw;
5706 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5707 u32 msg = E1000_VT_MSGTYPE_NACK;
5708
5709 /* if device isn't clear to send it shouldn't be reading either */
5710 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5711 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5712 igb_write_mbx(hw, &msg, 1, vf);
5713 vf_data->last_nack = jiffies;
5714 }
5715 }
5716
5717 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5718 {
5719 struct pci_dev *pdev = adapter->pdev;
5720 u32 msgbuf[E1000_VFMAILBOX_SIZE];
5721 struct e1000_hw *hw = &adapter->hw;
5722 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5723 s32 retval;
5724
5725 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5726
5727 if (retval) {
5728 /* if receive failed revoke VF CTS stats and restart init */
5729 dev_err(&pdev->dev, "Error receiving message from VF\n");
5730 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5731 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5732 return;
5733 goto out;
5734 }
5735
5736 /* this is a message we already processed, do nothing */
5737 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5738 return;
5739
5740 /* until the vf completes a reset it should not be
5741 * allowed to start any configuration.
5742 */
5743 if (msgbuf[0] == E1000_VF_RESET) {
5744 igb_vf_reset_msg(adapter, vf);
5745 return;
5746 }
5747
5748 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5749 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5750 return;
5751 retval = -1;
5752 goto out;
5753 }
5754
5755 switch ((msgbuf[0] & 0xFFFF)) {
5756 case E1000_VF_SET_MAC_ADDR:
5757 retval = -EINVAL;
5758 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5759 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5760 else
5761 dev_warn(&pdev->dev,
5762 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5763 vf);
5764 break;
5765 case E1000_VF_SET_PROMISC:
5766 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5767 break;
5768 case E1000_VF_SET_MULTICAST:
5769 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5770 break;
5771 case E1000_VF_SET_LPE:
5772 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5773 break;
5774 case E1000_VF_SET_VLAN:
5775 retval = -1;
5776 if (vf_data->pf_vlan)
5777 dev_warn(&pdev->dev,
5778 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5779 vf);
5780 else
5781 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5782 break;
5783 default:
5784 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5785 retval = -1;
5786 break;
5787 }
5788
5789 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5790 out:
5791 /* notify the VF of the results of what it sent us */
5792 if (retval)
5793 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5794 else
5795 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5796
5797 igb_write_mbx(hw, msgbuf, 1, vf);
5798 }
5799
5800 static void igb_msg_task(struct igb_adapter *adapter)
5801 {
5802 struct e1000_hw *hw = &adapter->hw;
5803 u32 vf;
5804
5805 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5806 /* process any reset requests */
5807 if (!igb_check_for_rst(hw, vf))
5808 igb_vf_reset_event(adapter, vf);
5809
5810 /* process any messages pending */
5811 if (!igb_check_for_msg(hw, vf))
5812 igb_rcv_msg_from_vf(adapter, vf);
5813
5814 /* process any acks */
5815 if (!igb_check_for_ack(hw, vf))
5816 igb_rcv_ack_from_vf(adapter, vf);
5817 }
5818 }
5819
5820 /**
5821 * igb_set_uta - Set unicast filter table address
5822 * @adapter: board private structure
5823 *
5824 * The unicast table address is a register array of 32-bit registers.
5825 * The table is meant to be used in a way similar to how the MTA is used
5826 * however due to certain limitations in the hardware it is necessary to
5827 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5828 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
5829 **/
5830 static void igb_set_uta(struct igb_adapter *adapter)
5831 {
5832 struct e1000_hw *hw = &adapter->hw;
5833 int i;
5834
5835 /* The UTA table only exists on 82576 hardware and newer */
5836 if (hw->mac.type < e1000_82576)
5837 return;
5838
5839 /* we only need to do this if VMDq is enabled */
5840 if (!adapter->vfs_allocated_count)
5841 return;
5842
5843 for (i = 0; i < hw->mac.uta_reg_count; i++)
5844 array_wr32(E1000_UTA, i, ~0);
5845 }
5846
5847 /**
5848 * igb_intr_msi - Interrupt Handler
5849 * @irq: interrupt number
5850 * @data: pointer to a network interface device structure
5851 **/
5852 static irqreturn_t igb_intr_msi(int irq, void *data)
5853 {
5854 struct igb_adapter *adapter = data;
5855 struct igb_q_vector *q_vector = adapter->q_vector[0];
5856 struct e1000_hw *hw = &adapter->hw;
5857 /* read ICR disables interrupts using IAM */
5858 u32 icr = rd32(E1000_ICR);
5859
5860 igb_write_itr(q_vector);
5861
5862 if (icr & E1000_ICR_DRSTA)
5863 schedule_work(&adapter->reset_task);
5864
5865 if (icr & E1000_ICR_DOUTSYNC) {
5866 /* HW is reporting DMA is out of sync */
5867 adapter->stats.doosync++;
5868 }
5869
5870 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5871 hw->mac.get_link_status = 1;
5872 if (!test_bit(__IGB_DOWN, &adapter->state))
5873 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5874 }
5875
5876 if (icr & E1000_ICR_TS) {
5877 u32 tsicr = rd32(E1000_TSICR);
5878
5879 if (tsicr & E1000_TSICR_TXTS) {
5880 /* acknowledge the interrupt */
5881 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5882 /* retrieve hardware timestamp */
5883 schedule_work(&adapter->ptp_tx_work);
5884 }
5885 }
5886
5887 napi_schedule(&q_vector->napi);
5888
5889 return IRQ_HANDLED;
5890 }
5891
5892 /**
5893 * igb_intr - Legacy Interrupt Handler
5894 * @irq: interrupt number
5895 * @data: pointer to a network interface device structure
5896 **/
5897 static irqreturn_t igb_intr(int irq, void *data)
5898 {
5899 struct igb_adapter *adapter = data;
5900 struct igb_q_vector *q_vector = adapter->q_vector[0];
5901 struct e1000_hw *hw = &adapter->hw;
5902 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5903 * need for the IMC write
5904 */
5905 u32 icr = rd32(E1000_ICR);
5906
5907 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5908 * not set, then the adapter didn't send an interrupt
5909 */
5910 if (!(icr & E1000_ICR_INT_ASSERTED))
5911 return IRQ_NONE;
5912
5913 igb_write_itr(q_vector);
5914
5915 if (icr & E1000_ICR_DRSTA)
5916 schedule_work(&adapter->reset_task);
5917
5918 if (icr & E1000_ICR_DOUTSYNC) {
5919 /* HW is reporting DMA is out of sync */
5920 adapter->stats.doosync++;
5921 }
5922
5923 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5924 hw->mac.get_link_status = 1;
5925 /* guard against interrupt when we're going down */
5926 if (!test_bit(__IGB_DOWN, &adapter->state))
5927 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5928 }
5929
5930 if (icr & E1000_ICR_TS) {
5931 u32 tsicr = rd32(E1000_TSICR);
5932
5933 if (tsicr & E1000_TSICR_TXTS) {
5934 /* acknowledge the interrupt */
5935 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5936 /* retrieve hardware timestamp */
5937 schedule_work(&adapter->ptp_tx_work);
5938 }
5939 }
5940
5941 napi_schedule(&q_vector->napi);
5942
5943 return IRQ_HANDLED;
5944 }
5945
5946 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5947 {
5948 struct igb_adapter *adapter = q_vector->adapter;
5949 struct e1000_hw *hw = &adapter->hw;
5950
5951 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5952 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5953 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5954 igb_set_itr(q_vector);
5955 else
5956 igb_update_ring_itr(q_vector);
5957 }
5958
5959 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5960 if (adapter->msix_entries)
5961 wr32(E1000_EIMS, q_vector->eims_value);
5962 else
5963 igb_irq_enable(adapter);
5964 }
5965 }
5966
5967 /**
5968 * igb_poll - NAPI Rx polling callback
5969 * @napi: napi polling structure
5970 * @budget: count of how many packets we should handle
5971 **/
5972 static int igb_poll(struct napi_struct *napi, int budget)
5973 {
5974 struct igb_q_vector *q_vector = container_of(napi,
5975 struct igb_q_vector,
5976 napi);
5977 bool clean_complete = true;
5978
5979 #ifdef CONFIG_IGB_DCA
5980 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5981 igb_update_dca(q_vector);
5982 #endif
5983 if (q_vector->tx.ring)
5984 clean_complete = igb_clean_tx_irq(q_vector);
5985
5986 if (q_vector->rx.ring)
5987 clean_complete &= igb_clean_rx_irq(q_vector, budget);
5988
5989 /* If all work not completed, return budget and keep polling */
5990 if (!clean_complete)
5991 return budget;
5992
5993 /* If not enough Rx work done, exit the polling mode */
5994 napi_complete(napi);
5995 igb_ring_irq_enable(q_vector);
5996
5997 return 0;
5998 }
5999
6000 /**
6001 * igb_clean_tx_irq - Reclaim resources after transmit completes
6002 * @q_vector: pointer to q_vector containing needed info
6003 *
6004 * returns true if ring is completely cleaned
6005 **/
6006 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6007 {
6008 struct igb_adapter *adapter = q_vector->adapter;
6009 struct igb_ring *tx_ring = q_vector->tx.ring;
6010 struct igb_tx_buffer *tx_buffer;
6011 union e1000_adv_tx_desc *tx_desc;
6012 unsigned int total_bytes = 0, total_packets = 0;
6013 unsigned int budget = q_vector->tx.work_limit;
6014 unsigned int i = tx_ring->next_to_clean;
6015
6016 if (test_bit(__IGB_DOWN, &adapter->state))
6017 return true;
6018
6019 tx_buffer = &tx_ring->tx_buffer_info[i];
6020 tx_desc = IGB_TX_DESC(tx_ring, i);
6021 i -= tx_ring->count;
6022
6023 do {
6024 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6025
6026 /* if next_to_watch is not set then there is no work pending */
6027 if (!eop_desc)
6028 break;
6029
6030 /* prevent any other reads prior to eop_desc */
6031 read_barrier_depends();
6032
6033 /* if DD is not set pending work has not been completed */
6034 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6035 break;
6036
6037 /* clear next_to_watch to prevent false hangs */
6038 tx_buffer->next_to_watch = NULL;
6039
6040 /* update the statistics for this packet */
6041 total_bytes += tx_buffer->bytecount;
6042 total_packets += tx_buffer->gso_segs;
6043
6044 /* free the skb */
6045 dev_kfree_skb_any(tx_buffer->skb);
6046
6047 /* unmap skb header data */
6048 dma_unmap_single(tx_ring->dev,
6049 dma_unmap_addr(tx_buffer, dma),
6050 dma_unmap_len(tx_buffer, len),
6051 DMA_TO_DEVICE);
6052
6053 /* clear tx_buffer data */
6054 tx_buffer->skb = NULL;
6055 dma_unmap_len_set(tx_buffer, len, 0);
6056
6057 /* clear last DMA location and unmap remaining buffers */
6058 while (tx_desc != eop_desc) {
6059 tx_buffer++;
6060 tx_desc++;
6061 i++;
6062 if (unlikely(!i)) {
6063 i -= tx_ring->count;
6064 tx_buffer = tx_ring->tx_buffer_info;
6065 tx_desc = IGB_TX_DESC(tx_ring, 0);
6066 }
6067
6068 /* unmap any remaining paged data */
6069 if (dma_unmap_len(tx_buffer, len)) {
6070 dma_unmap_page(tx_ring->dev,
6071 dma_unmap_addr(tx_buffer, dma),
6072 dma_unmap_len(tx_buffer, len),
6073 DMA_TO_DEVICE);
6074 dma_unmap_len_set(tx_buffer, len, 0);
6075 }
6076 }
6077
6078 /* move us one more past the eop_desc for start of next pkt */
6079 tx_buffer++;
6080 tx_desc++;
6081 i++;
6082 if (unlikely(!i)) {
6083 i -= tx_ring->count;
6084 tx_buffer = tx_ring->tx_buffer_info;
6085 tx_desc = IGB_TX_DESC(tx_ring, 0);
6086 }
6087
6088 /* issue prefetch for next Tx descriptor */
6089 prefetch(tx_desc);
6090
6091 /* update budget accounting */
6092 budget--;
6093 } while (likely(budget));
6094
6095 netdev_tx_completed_queue(txring_txq(tx_ring),
6096 total_packets, total_bytes);
6097 i += tx_ring->count;
6098 tx_ring->next_to_clean = i;
6099 u64_stats_update_begin(&tx_ring->tx_syncp);
6100 tx_ring->tx_stats.bytes += total_bytes;
6101 tx_ring->tx_stats.packets += total_packets;
6102 u64_stats_update_end(&tx_ring->tx_syncp);
6103 q_vector->tx.total_bytes += total_bytes;
6104 q_vector->tx.total_packets += total_packets;
6105
6106 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6107 struct e1000_hw *hw = &adapter->hw;
6108
6109 /* Detect a transmit hang in hardware, this serializes the
6110 * check with the clearing of time_stamp and movement of i
6111 */
6112 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6113 if (tx_buffer->next_to_watch &&
6114 time_after(jiffies, tx_buffer->time_stamp +
6115 (adapter->tx_timeout_factor * HZ)) &&
6116 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6117
6118 /* detected Tx unit hang */
6119 dev_err(tx_ring->dev,
6120 "Detected Tx Unit Hang\n"
6121 " Tx Queue <%d>\n"
6122 " TDH <%x>\n"
6123 " TDT <%x>\n"
6124 " next_to_use <%x>\n"
6125 " next_to_clean <%x>\n"
6126 "buffer_info[next_to_clean]\n"
6127 " time_stamp <%lx>\n"
6128 " next_to_watch <%p>\n"
6129 " jiffies <%lx>\n"
6130 " desc.status <%x>\n",
6131 tx_ring->queue_index,
6132 rd32(E1000_TDH(tx_ring->reg_idx)),
6133 readl(tx_ring->tail),
6134 tx_ring->next_to_use,
6135 tx_ring->next_to_clean,
6136 tx_buffer->time_stamp,
6137 tx_buffer->next_to_watch,
6138 jiffies,
6139 tx_buffer->next_to_watch->wb.status);
6140 netif_stop_subqueue(tx_ring->netdev,
6141 tx_ring->queue_index);
6142
6143 /* we are about to reset, no point in enabling stuff */
6144 return true;
6145 }
6146 }
6147
6148 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6149 if (unlikely(total_packets &&
6150 netif_carrier_ok(tx_ring->netdev) &&
6151 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6152 /* Make sure that anybody stopping the queue after this
6153 * sees the new next_to_clean.
6154 */
6155 smp_mb();
6156 if (__netif_subqueue_stopped(tx_ring->netdev,
6157 tx_ring->queue_index) &&
6158 !(test_bit(__IGB_DOWN, &adapter->state))) {
6159 netif_wake_subqueue(tx_ring->netdev,
6160 tx_ring->queue_index);
6161
6162 u64_stats_update_begin(&tx_ring->tx_syncp);
6163 tx_ring->tx_stats.restart_queue++;
6164 u64_stats_update_end(&tx_ring->tx_syncp);
6165 }
6166 }
6167
6168 return !!budget;
6169 }
6170
6171 /**
6172 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6173 * @rx_ring: rx descriptor ring to store buffers on
6174 * @old_buff: donor buffer to have page reused
6175 *
6176 * Synchronizes page for reuse by the adapter
6177 **/
6178 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6179 struct igb_rx_buffer *old_buff)
6180 {
6181 struct igb_rx_buffer *new_buff;
6182 u16 nta = rx_ring->next_to_alloc;
6183
6184 new_buff = &rx_ring->rx_buffer_info[nta];
6185
6186 /* update, and store next to alloc */
6187 nta++;
6188 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6189
6190 /* transfer page from old buffer to new buffer */
6191 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6192
6193 /* sync the buffer for use by the device */
6194 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6195 old_buff->page_offset,
6196 IGB_RX_BUFSZ,
6197 DMA_FROM_DEVICE);
6198 }
6199
6200 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6201 struct page *page,
6202 unsigned int truesize)
6203 {
6204 /* avoid re-using remote pages */
6205 if (unlikely(page_to_nid(page) != numa_node_id()))
6206 return false;
6207
6208 #if (PAGE_SIZE < 8192)
6209 /* if we are only owner of page we can reuse it */
6210 if (unlikely(page_count(page) != 1))
6211 return false;
6212
6213 /* flip page offset to other buffer */
6214 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6215
6216 /* since we are the only owner of the page and we need to
6217 * increment it, just set the value to 2 in order to avoid
6218 * an unnecessary locked operation
6219 */
6220 atomic_set(&page->_count, 2);
6221 #else
6222 /* move offset up to the next cache line */
6223 rx_buffer->page_offset += truesize;
6224
6225 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6226 return false;
6227
6228 /* bump ref count on page before it is given to the stack */
6229 get_page(page);
6230 #endif
6231
6232 return true;
6233 }
6234
6235 /**
6236 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6237 * @rx_ring: rx descriptor ring to transact packets on
6238 * @rx_buffer: buffer containing page to add
6239 * @rx_desc: descriptor containing length of buffer written by hardware
6240 * @skb: sk_buff to place the data into
6241 *
6242 * This function will add the data contained in rx_buffer->page to the skb.
6243 * This is done either through a direct copy if the data in the buffer is
6244 * less than the skb header size, otherwise it will just attach the page as
6245 * a frag to the skb.
6246 *
6247 * The function will then update the page offset if necessary and return
6248 * true if the buffer can be reused by the adapter.
6249 **/
6250 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6251 struct igb_rx_buffer *rx_buffer,
6252 union e1000_adv_rx_desc *rx_desc,
6253 struct sk_buff *skb)
6254 {
6255 struct page *page = rx_buffer->page;
6256 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6257 #if (PAGE_SIZE < 8192)
6258 unsigned int truesize = IGB_RX_BUFSZ;
6259 #else
6260 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6261 #endif
6262
6263 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6264 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6265
6266 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6267 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6268 va += IGB_TS_HDR_LEN;
6269 size -= IGB_TS_HDR_LEN;
6270 }
6271
6272 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6273
6274 /* we can reuse buffer as-is, just make sure it is local */
6275 if (likely(page_to_nid(page) == numa_node_id()))
6276 return true;
6277
6278 /* this page cannot be reused so discard it */
6279 put_page(page);
6280 return false;
6281 }
6282
6283 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6284 rx_buffer->page_offset, size, truesize);
6285
6286 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6287 }
6288
6289 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6290 union e1000_adv_rx_desc *rx_desc,
6291 struct sk_buff *skb)
6292 {
6293 struct igb_rx_buffer *rx_buffer;
6294 struct page *page;
6295
6296 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6297
6298 page = rx_buffer->page;
6299 prefetchw(page);
6300
6301 if (likely(!skb)) {
6302 void *page_addr = page_address(page) +
6303 rx_buffer->page_offset;
6304
6305 /* prefetch first cache line of first page */
6306 prefetch(page_addr);
6307 #if L1_CACHE_BYTES < 128
6308 prefetch(page_addr + L1_CACHE_BYTES);
6309 #endif
6310
6311 /* allocate a skb to store the frags */
6312 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6313 IGB_RX_HDR_LEN);
6314 if (unlikely(!skb)) {
6315 rx_ring->rx_stats.alloc_failed++;
6316 return NULL;
6317 }
6318
6319 /* we will be copying header into skb->data in
6320 * pskb_may_pull so it is in our interest to prefetch
6321 * it now to avoid a possible cache miss
6322 */
6323 prefetchw(skb->data);
6324 }
6325
6326 /* we are reusing so sync this buffer for CPU use */
6327 dma_sync_single_range_for_cpu(rx_ring->dev,
6328 rx_buffer->dma,
6329 rx_buffer->page_offset,
6330 IGB_RX_BUFSZ,
6331 DMA_FROM_DEVICE);
6332
6333 /* pull page into skb */
6334 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6335 /* hand second half of page back to the ring */
6336 igb_reuse_rx_page(rx_ring, rx_buffer);
6337 } else {
6338 /* we are not reusing the buffer so unmap it */
6339 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6340 PAGE_SIZE, DMA_FROM_DEVICE);
6341 }
6342
6343 /* clear contents of rx_buffer */
6344 rx_buffer->page = NULL;
6345
6346 return skb;
6347 }
6348
6349 static inline void igb_rx_checksum(struct igb_ring *ring,
6350 union e1000_adv_rx_desc *rx_desc,
6351 struct sk_buff *skb)
6352 {
6353 skb_checksum_none_assert(skb);
6354
6355 /* Ignore Checksum bit is set */
6356 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6357 return;
6358
6359 /* Rx checksum disabled via ethtool */
6360 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6361 return;
6362
6363 /* TCP/UDP checksum error bit is set */
6364 if (igb_test_staterr(rx_desc,
6365 E1000_RXDEXT_STATERR_TCPE |
6366 E1000_RXDEXT_STATERR_IPE)) {
6367 /* work around errata with sctp packets where the TCPE aka
6368 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6369 * packets, (aka let the stack check the crc32c)
6370 */
6371 if (!((skb->len == 60) &&
6372 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6373 u64_stats_update_begin(&ring->rx_syncp);
6374 ring->rx_stats.csum_err++;
6375 u64_stats_update_end(&ring->rx_syncp);
6376 }
6377 /* let the stack verify checksum errors */
6378 return;
6379 }
6380 /* It must be a TCP or UDP packet with a valid checksum */
6381 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6382 E1000_RXD_STAT_UDPCS))
6383 skb->ip_summed = CHECKSUM_UNNECESSARY;
6384
6385 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6386 le32_to_cpu(rx_desc->wb.upper.status_error));
6387 }
6388
6389 static inline void igb_rx_hash(struct igb_ring *ring,
6390 union e1000_adv_rx_desc *rx_desc,
6391 struct sk_buff *skb)
6392 {
6393 if (ring->netdev->features & NETIF_F_RXHASH)
6394 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6395 }
6396
6397 /**
6398 * igb_is_non_eop - process handling of non-EOP buffers
6399 * @rx_ring: Rx ring being processed
6400 * @rx_desc: Rx descriptor for current buffer
6401 * @skb: current socket buffer containing buffer in progress
6402 *
6403 * This function updates next to clean. If the buffer is an EOP buffer
6404 * this function exits returning false, otherwise it will place the
6405 * sk_buff in the next buffer to be chained and return true indicating
6406 * that this is in fact a non-EOP buffer.
6407 **/
6408 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6409 union e1000_adv_rx_desc *rx_desc)
6410 {
6411 u32 ntc = rx_ring->next_to_clean + 1;
6412
6413 /* fetch, update, and store next to clean */
6414 ntc = (ntc < rx_ring->count) ? ntc : 0;
6415 rx_ring->next_to_clean = ntc;
6416
6417 prefetch(IGB_RX_DESC(rx_ring, ntc));
6418
6419 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6420 return false;
6421
6422 return true;
6423 }
6424
6425 /**
6426 * igb_get_headlen - determine size of header for LRO/GRO
6427 * @data: pointer to the start of the headers
6428 * @max_len: total length of section to find headers in
6429 *
6430 * This function is meant to determine the length of headers that will
6431 * be recognized by hardware for LRO, and GRO offloads. The main
6432 * motivation of doing this is to only perform one pull for IPv4 TCP
6433 * packets so that we can do basic things like calculating the gso_size
6434 * based on the average data per packet.
6435 **/
6436 static unsigned int igb_get_headlen(unsigned char *data,
6437 unsigned int max_len)
6438 {
6439 union {
6440 unsigned char *network;
6441 /* l2 headers */
6442 struct ethhdr *eth;
6443 struct vlan_hdr *vlan;
6444 /* l3 headers */
6445 struct iphdr *ipv4;
6446 struct ipv6hdr *ipv6;
6447 } hdr;
6448 __be16 protocol;
6449 u8 nexthdr = 0; /* default to not TCP */
6450 u8 hlen;
6451
6452 /* this should never happen, but better safe than sorry */
6453 if (max_len < ETH_HLEN)
6454 return max_len;
6455
6456 /* initialize network frame pointer */
6457 hdr.network = data;
6458
6459 /* set first protocol and move network header forward */
6460 protocol = hdr.eth->h_proto;
6461 hdr.network += ETH_HLEN;
6462
6463 /* handle any vlan tag if present */
6464 if (protocol == __constant_htons(ETH_P_8021Q)) {
6465 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6466 return max_len;
6467
6468 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6469 hdr.network += VLAN_HLEN;
6470 }
6471
6472 /* handle L3 protocols */
6473 if (protocol == __constant_htons(ETH_P_IP)) {
6474 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6475 return max_len;
6476
6477 /* access ihl as a u8 to avoid unaligned access on ia64 */
6478 hlen = (hdr.network[0] & 0x0F) << 2;
6479
6480 /* verify hlen meets minimum size requirements */
6481 if (hlen < sizeof(struct iphdr))
6482 return hdr.network - data;
6483
6484 /* record next protocol if header is present */
6485 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6486 nexthdr = hdr.ipv4->protocol;
6487 } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6488 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6489 return max_len;
6490
6491 /* record next protocol */
6492 nexthdr = hdr.ipv6->nexthdr;
6493 hlen = sizeof(struct ipv6hdr);
6494 } else {
6495 return hdr.network - data;
6496 }
6497
6498 /* relocate pointer to start of L4 header */
6499 hdr.network += hlen;
6500
6501 /* finally sort out TCP */
6502 if (nexthdr == IPPROTO_TCP) {
6503 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6504 return max_len;
6505
6506 /* access doff as a u8 to avoid unaligned access on ia64 */
6507 hlen = (hdr.network[12] & 0xF0) >> 2;
6508
6509 /* verify hlen meets minimum size requirements */
6510 if (hlen < sizeof(struct tcphdr))
6511 return hdr.network - data;
6512
6513 hdr.network += hlen;
6514 } else if (nexthdr == IPPROTO_UDP) {
6515 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6516 return max_len;
6517
6518 hdr.network += sizeof(struct udphdr);
6519 }
6520
6521 /* If everything has gone correctly hdr.network should be the
6522 * data section of the packet and will be the end of the header.
6523 * If not then it probably represents the end of the last recognized
6524 * header.
6525 */
6526 if ((hdr.network - data) < max_len)
6527 return hdr.network - data;
6528 else
6529 return max_len;
6530 }
6531
6532 /**
6533 * igb_pull_tail - igb specific version of skb_pull_tail
6534 * @rx_ring: rx descriptor ring packet is being transacted on
6535 * @rx_desc: pointer to the EOP Rx descriptor
6536 * @skb: pointer to current skb being adjusted
6537 *
6538 * This function is an igb specific version of __pskb_pull_tail. The
6539 * main difference between this version and the original function is that
6540 * this function can make several assumptions about the state of things
6541 * that allow for significant optimizations versus the standard function.
6542 * As a result we can do things like drop a frag and maintain an accurate
6543 * truesize for the skb.
6544 */
6545 static void igb_pull_tail(struct igb_ring *rx_ring,
6546 union e1000_adv_rx_desc *rx_desc,
6547 struct sk_buff *skb)
6548 {
6549 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6550 unsigned char *va;
6551 unsigned int pull_len;
6552
6553 /* it is valid to use page_address instead of kmap since we are
6554 * working with pages allocated out of the lomem pool per
6555 * alloc_page(GFP_ATOMIC)
6556 */
6557 va = skb_frag_address(frag);
6558
6559 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6560 /* retrieve timestamp from buffer */
6561 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6562
6563 /* update pointers to remove timestamp header */
6564 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6565 frag->page_offset += IGB_TS_HDR_LEN;
6566 skb->data_len -= IGB_TS_HDR_LEN;
6567 skb->len -= IGB_TS_HDR_LEN;
6568
6569 /* move va to start of packet data */
6570 va += IGB_TS_HDR_LEN;
6571 }
6572
6573 /* we need the header to contain the greater of either ETH_HLEN or
6574 * 60 bytes if the skb->len is less than 60 for skb_pad.
6575 */
6576 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6577
6578 /* align pull length to size of long to optimize memcpy performance */
6579 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6580
6581 /* update all of the pointers */
6582 skb_frag_size_sub(frag, pull_len);
6583 frag->page_offset += pull_len;
6584 skb->data_len -= pull_len;
6585 skb->tail += pull_len;
6586 }
6587
6588 /**
6589 * igb_cleanup_headers - Correct corrupted or empty headers
6590 * @rx_ring: rx descriptor ring packet is being transacted on
6591 * @rx_desc: pointer to the EOP Rx descriptor
6592 * @skb: pointer to current skb being fixed
6593 *
6594 * Address the case where we are pulling data in on pages only
6595 * and as such no data is present in the skb header.
6596 *
6597 * In addition if skb is not at least 60 bytes we need to pad it so that
6598 * it is large enough to qualify as a valid Ethernet frame.
6599 *
6600 * Returns true if an error was encountered and skb was freed.
6601 **/
6602 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6603 union e1000_adv_rx_desc *rx_desc,
6604 struct sk_buff *skb)
6605 {
6606 if (unlikely((igb_test_staterr(rx_desc,
6607 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6608 struct net_device *netdev = rx_ring->netdev;
6609 if (!(netdev->features & NETIF_F_RXALL)) {
6610 dev_kfree_skb_any(skb);
6611 return true;
6612 }
6613 }
6614
6615 /* place header in linear portion of buffer */
6616 if (skb_is_nonlinear(skb))
6617 igb_pull_tail(rx_ring, rx_desc, skb);
6618
6619 /* if skb_pad returns an error the skb was freed */
6620 if (unlikely(skb->len < 60)) {
6621 int pad_len = 60 - skb->len;
6622
6623 if (skb_pad(skb, pad_len))
6624 return true;
6625 __skb_put(skb, pad_len);
6626 }
6627
6628 return false;
6629 }
6630
6631 /**
6632 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6633 * @rx_ring: rx descriptor ring packet is being transacted on
6634 * @rx_desc: pointer to the EOP Rx descriptor
6635 * @skb: pointer to current skb being populated
6636 *
6637 * This function checks the ring, descriptor, and packet information in
6638 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6639 * other fields within the skb.
6640 **/
6641 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6642 union e1000_adv_rx_desc *rx_desc,
6643 struct sk_buff *skb)
6644 {
6645 struct net_device *dev = rx_ring->netdev;
6646
6647 igb_rx_hash(rx_ring, rx_desc, skb);
6648
6649 igb_rx_checksum(rx_ring, rx_desc, skb);
6650
6651 igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6652
6653 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6654 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6655 u16 vid;
6656 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6657 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6658 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6659 else
6660 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6661
6662 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6663 }
6664
6665 skb_record_rx_queue(skb, rx_ring->queue_index);
6666
6667 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6668 }
6669
6670 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6671 {
6672 struct igb_ring *rx_ring = q_vector->rx.ring;
6673 struct sk_buff *skb = rx_ring->skb;
6674 unsigned int total_bytes = 0, total_packets = 0;
6675 u16 cleaned_count = igb_desc_unused(rx_ring);
6676
6677 do {
6678 union e1000_adv_rx_desc *rx_desc;
6679
6680 /* return some buffers to hardware, one at a time is too slow */
6681 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6682 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6683 cleaned_count = 0;
6684 }
6685
6686 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6687
6688 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6689 break;
6690
6691 /* This memory barrier is needed to keep us from reading
6692 * any other fields out of the rx_desc until we know the
6693 * RXD_STAT_DD bit is set
6694 */
6695 rmb();
6696
6697 /* retrieve a buffer from the ring */
6698 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6699
6700 /* exit if we failed to retrieve a buffer */
6701 if (!skb)
6702 break;
6703
6704 cleaned_count++;
6705
6706 /* fetch next buffer in frame if non-eop */
6707 if (igb_is_non_eop(rx_ring, rx_desc))
6708 continue;
6709
6710 /* verify the packet layout is correct */
6711 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6712 skb = NULL;
6713 continue;
6714 }
6715
6716 /* probably a little skewed due to removing CRC */
6717 total_bytes += skb->len;
6718
6719 /* populate checksum, timestamp, VLAN, and protocol */
6720 igb_process_skb_fields(rx_ring, rx_desc, skb);
6721
6722 napi_gro_receive(&q_vector->napi, skb);
6723
6724 /* reset skb pointer */
6725 skb = NULL;
6726
6727 /* update budget accounting */
6728 total_packets++;
6729 } while (likely(total_packets < budget));
6730
6731 /* place incomplete frames back on ring for completion */
6732 rx_ring->skb = skb;
6733
6734 u64_stats_update_begin(&rx_ring->rx_syncp);
6735 rx_ring->rx_stats.packets += total_packets;
6736 rx_ring->rx_stats.bytes += total_bytes;
6737 u64_stats_update_end(&rx_ring->rx_syncp);
6738 q_vector->rx.total_packets += total_packets;
6739 q_vector->rx.total_bytes += total_bytes;
6740
6741 if (cleaned_count)
6742 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6743
6744 return (total_packets < budget);
6745 }
6746
6747 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6748 struct igb_rx_buffer *bi)
6749 {
6750 struct page *page = bi->page;
6751 dma_addr_t dma;
6752
6753 /* since we are recycling buffers we should seldom need to alloc */
6754 if (likely(page))
6755 return true;
6756
6757 /* alloc new page for storage */
6758 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6759 if (unlikely(!page)) {
6760 rx_ring->rx_stats.alloc_failed++;
6761 return false;
6762 }
6763
6764 /* map page for use */
6765 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6766
6767 /* if mapping failed free memory back to system since
6768 * there isn't much point in holding memory we can't use
6769 */
6770 if (dma_mapping_error(rx_ring->dev, dma)) {
6771 __free_page(page);
6772
6773 rx_ring->rx_stats.alloc_failed++;
6774 return false;
6775 }
6776
6777 bi->dma = dma;
6778 bi->page = page;
6779 bi->page_offset = 0;
6780
6781 return true;
6782 }
6783
6784 /**
6785 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6786 * @adapter: address of board private structure
6787 **/
6788 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6789 {
6790 union e1000_adv_rx_desc *rx_desc;
6791 struct igb_rx_buffer *bi;
6792 u16 i = rx_ring->next_to_use;
6793
6794 /* nothing to do */
6795 if (!cleaned_count)
6796 return;
6797
6798 rx_desc = IGB_RX_DESC(rx_ring, i);
6799 bi = &rx_ring->rx_buffer_info[i];
6800 i -= rx_ring->count;
6801
6802 do {
6803 if (!igb_alloc_mapped_page(rx_ring, bi))
6804 break;
6805
6806 /* Refresh the desc even if buffer_addrs didn't change
6807 * because each write-back erases this info.
6808 */
6809 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6810
6811 rx_desc++;
6812 bi++;
6813 i++;
6814 if (unlikely(!i)) {
6815 rx_desc = IGB_RX_DESC(rx_ring, 0);
6816 bi = rx_ring->rx_buffer_info;
6817 i -= rx_ring->count;
6818 }
6819
6820 /* clear the hdr_addr for the next_to_use descriptor */
6821 rx_desc->read.hdr_addr = 0;
6822
6823 cleaned_count--;
6824 } while (cleaned_count);
6825
6826 i += rx_ring->count;
6827
6828 if (rx_ring->next_to_use != i) {
6829 /* record the next descriptor to use */
6830 rx_ring->next_to_use = i;
6831
6832 /* update next to alloc since we have filled the ring */
6833 rx_ring->next_to_alloc = i;
6834
6835 /* Force memory writes to complete before letting h/w
6836 * know there are new descriptors to fetch. (Only
6837 * applicable for weak-ordered memory model archs,
6838 * such as IA-64).
6839 */
6840 wmb();
6841 writel(i, rx_ring->tail);
6842 }
6843 }
6844
6845 /**
6846 * igb_mii_ioctl -
6847 * @netdev:
6848 * @ifreq:
6849 * @cmd:
6850 **/
6851 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6852 {
6853 struct igb_adapter *adapter = netdev_priv(netdev);
6854 struct mii_ioctl_data *data = if_mii(ifr);
6855
6856 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6857 return -EOPNOTSUPP;
6858
6859 switch (cmd) {
6860 case SIOCGMIIPHY:
6861 data->phy_id = adapter->hw.phy.addr;
6862 break;
6863 case SIOCGMIIREG:
6864 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6865 &data->val_out))
6866 return -EIO;
6867 break;
6868 case SIOCSMIIREG:
6869 default:
6870 return -EOPNOTSUPP;
6871 }
6872 return 0;
6873 }
6874
6875 /**
6876 * igb_ioctl -
6877 * @netdev:
6878 * @ifreq:
6879 * @cmd:
6880 **/
6881 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6882 {
6883 switch (cmd) {
6884 case SIOCGMIIPHY:
6885 case SIOCGMIIREG:
6886 case SIOCSMIIREG:
6887 return igb_mii_ioctl(netdev, ifr, cmd);
6888 case SIOCSHWTSTAMP:
6889 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6890 default:
6891 return -EOPNOTSUPP;
6892 }
6893 }
6894
6895 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6896 {
6897 struct igb_adapter *adapter = hw->back;
6898
6899 if (pcie_capability_read_word(adapter->pdev, reg, value))
6900 return -E1000_ERR_CONFIG;
6901
6902 return 0;
6903 }
6904
6905 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6906 {
6907 struct igb_adapter *adapter = hw->back;
6908
6909 if (pcie_capability_write_word(adapter->pdev, reg, *value))
6910 return -E1000_ERR_CONFIG;
6911
6912 return 0;
6913 }
6914
6915 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6916 {
6917 struct igb_adapter *adapter = netdev_priv(netdev);
6918 struct e1000_hw *hw = &adapter->hw;
6919 u32 ctrl, rctl;
6920 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6921
6922 if (enable) {
6923 /* enable VLAN tag insert/strip */
6924 ctrl = rd32(E1000_CTRL);
6925 ctrl |= E1000_CTRL_VME;
6926 wr32(E1000_CTRL, ctrl);
6927
6928 /* Disable CFI check */
6929 rctl = rd32(E1000_RCTL);
6930 rctl &= ~E1000_RCTL_CFIEN;
6931 wr32(E1000_RCTL, rctl);
6932 } else {
6933 /* disable VLAN tag insert/strip */
6934 ctrl = rd32(E1000_CTRL);
6935 ctrl &= ~E1000_CTRL_VME;
6936 wr32(E1000_CTRL, ctrl);
6937 }
6938
6939 igb_rlpml_set(adapter);
6940 }
6941
6942 static int igb_vlan_rx_add_vid(struct net_device *netdev,
6943 __be16 proto, u16 vid)
6944 {
6945 struct igb_adapter *adapter = netdev_priv(netdev);
6946 struct e1000_hw *hw = &adapter->hw;
6947 int pf_id = adapter->vfs_allocated_count;
6948
6949 /* attempt to add filter to vlvf array */
6950 igb_vlvf_set(adapter, vid, true, pf_id);
6951
6952 /* add the filter since PF can receive vlans w/o entry in vlvf */
6953 igb_vfta_set(hw, vid, true);
6954
6955 set_bit(vid, adapter->active_vlans);
6956
6957 return 0;
6958 }
6959
6960 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6961 __be16 proto, u16 vid)
6962 {
6963 struct igb_adapter *adapter = netdev_priv(netdev);
6964 struct e1000_hw *hw = &adapter->hw;
6965 int pf_id = adapter->vfs_allocated_count;
6966 s32 err;
6967
6968 /* remove vlan from VLVF table array */
6969 err = igb_vlvf_set(adapter, vid, false, pf_id);
6970
6971 /* if vid was not present in VLVF just remove it from table */
6972 if (err)
6973 igb_vfta_set(hw, vid, false);
6974
6975 clear_bit(vid, adapter->active_vlans);
6976
6977 return 0;
6978 }
6979
6980 static void igb_restore_vlan(struct igb_adapter *adapter)
6981 {
6982 u16 vid;
6983
6984 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6985
6986 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6987 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
6988 }
6989
6990 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6991 {
6992 struct pci_dev *pdev = adapter->pdev;
6993 struct e1000_mac_info *mac = &adapter->hw.mac;
6994
6995 mac->autoneg = 0;
6996
6997 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6998 * for the switch() below to work
6999 */
7000 if ((spd & 1) || (dplx & ~1))
7001 goto err_inval;
7002
7003 /* Fiber NIC's only allow 1000 gbps Full duplex
7004 * and 100Mbps Full duplex for 100baseFx sfp
7005 */
7006 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7007 switch (spd + dplx) {
7008 case SPEED_10 + DUPLEX_HALF:
7009 case SPEED_10 + DUPLEX_FULL:
7010 case SPEED_100 + DUPLEX_HALF:
7011 goto err_inval;
7012 default:
7013 break;
7014 }
7015 }
7016
7017 switch (spd + dplx) {
7018 case SPEED_10 + DUPLEX_HALF:
7019 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7020 break;
7021 case SPEED_10 + DUPLEX_FULL:
7022 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7023 break;
7024 case SPEED_100 + DUPLEX_HALF:
7025 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7026 break;
7027 case SPEED_100 + DUPLEX_FULL:
7028 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7029 break;
7030 case SPEED_1000 + DUPLEX_FULL:
7031 mac->autoneg = 1;
7032 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7033 break;
7034 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7035 default:
7036 goto err_inval;
7037 }
7038
7039 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7040 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7041
7042 return 0;
7043
7044 err_inval:
7045 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7046 return -EINVAL;
7047 }
7048
7049 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7050 bool runtime)
7051 {
7052 struct net_device *netdev = pci_get_drvdata(pdev);
7053 struct igb_adapter *adapter = netdev_priv(netdev);
7054 struct e1000_hw *hw = &adapter->hw;
7055 u32 ctrl, rctl, status;
7056 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7057 #ifdef CONFIG_PM
7058 int retval = 0;
7059 #endif
7060
7061 netif_device_detach(netdev);
7062
7063 if (netif_running(netdev))
7064 __igb_close(netdev, true);
7065
7066 igb_clear_interrupt_scheme(adapter);
7067
7068 #ifdef CONFIG_PM
7069 retval = pci_save_state(pdev);
7070 if (retval)
7071 return retval;
7072 #endif
7073
7074 status = rd32(E1000_STATUS);
7075 if (status & E1000_STATUS_LU)
7076 wufc &= ~E1000_WUFC_LNKC;
7077
7078 if (wufc) {
7079 igb_setup_rctl(adapter);
7080 igb_set_rx_mode(netdev);
7081
7082 /* turn on all-multi mode if wake on multicast is enabled */
7083 if (wufc & E1000_WUFC_MC) {
7084 rctl = rd32(E1000_RCTL);
7085 rctl |= E1000_RCTL_MPE;
7086 wr32(E1000_RCTL, rctl);
7087 }
7088
7089 ctrl = rd32(E1000_CTRL);
7090 /* advertise wake from D3Cold */
7091 #define E1000_CTRL_ADVD3WUC 0x00100000
7092 /* phy power management enable */
7093 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7094 ctrl |= E1000_CTRL_ADVD3WUC;
7095 wr32(E1000_CTRL, ctrl);
7096
7097 /* Allow time for pending master requests to run */
7098 igb_disable_pcie_master(hw);
7099
7100 wr32(E1000_WUC, E1000_WUC_PME_EN);
7101 wr32(E1000_WUFC, wufc);
7102 } else {
7103 wr32(E1000_WUC, 0);
7104 wr32(E1000_WUFC, 0);
7105 }
7106
7107 *enable_wake = wufc || adapter->en_mng_pt;
7108 if (!*enable_wake)
7109 igb_power_down_link(adapter);
7110 else
7111 igb_power_up_link(adapter);
7112
7113 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7114 * would have already happened in close and is redundant.
7115 */
7116 igb_release_hw_control(adapter);
7117
7118 pci_disable_device(pdev);
7119
7120 return 0;
7121 }
7122
7123 #ifdef CONFIG_PM
7124 #ifdef CONFIG_PM_SLEEP
7125 static int igb_suspend(struct device *dev)
7126 {
7127 int retval;
7128 bool wake;
7129 struct pci_dev *pdev = to_pci_dev(dev);
7130
7131 retval = __igb_shutdown(pdev, &wake, 0);
7132 if (retval)
7133 return retval;
7134
7135 if (wake) {
7136 pci_prepare_to_sleep(pdev);
7137 } else {
7138 pci_wake_from_d3(pdev, false);
7139 pci_set_power_state(pdev, PCI_D3hot);
7140 }
7141
7142 return 0;
7143 }
7144 #endif /* CONFIG_PM_SLEEP */
7145
7146 static int igb_resume(struct device *dev)
7147 {
7148 struct pci_dev *pdev = to_pci_dev(dev);
7149 struct net_device *netdev = pci_get_drvdata(pdev);
7150 struct igb_adapter *adapter = netdev_priv(netdev);
7151 struct e1000_hw *hw = &adapter->hw;
7152 u32 err;
7153
7154 pci_set_power_state(pdev, PCI_D0);
7155 pci_restore_state(pdev);
7156 pci_save_state(pdev);
7157
7158 err = pci_enable_device_mem(pdev);
7159 if (err) {
7160 dev_err(&pdev->dev,
7161 "igb: Cannot enable PCI device from suspend\n");
7162 return err;
7163 }
7164 pci_set_master(pdev);
7165
7166 pci_enable_wake(pdev, PCI_D3hot, 0);
7167 pci_enable_wake(pdev, PCI_D3cold, 0);
7168
7169 if (igb_init_interrupt_scheme(adapter, true)) {
7170 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7171 return -ENOMEM;
7172 }
7173
7174 igb_reset(adapter);
7175
7176 /* let the f/w know that the h/w is now under the control of the
7177 * driver.
7178 */
7179 igb_get_hw_control(adapter);
7180
7181 wr32(E1000_WUS, ~0);
7182
7183 if (netdev->flags & IFF_UP) {
7184 rtnl_lock();
7185 err = __igb_open(netdev, true);
7186 rtnl_unlock();
7187 if (err)
7188 return err;
7189 }
7190
7191 netif_device_attach(netdev);
7192 return 0;
7193 }
7194
7195 #ifdef CONFIG_PM_RUNTIME
7196 static int igb_runtime_idle(struct device *dev)
7197 {
7198 struct pci_dev *pdev = to_pci_dev(dev);
7199 struct net_device *netdev = pci_get_drvdata(pdev);
7200 struct igb_adapter *adapter = netdev_priv(netdev);
7201
7202 if (!igb_has_link(adapter))
7203 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7204
7205 return -EBUSY;
7206 }
7207
7208 static int igb_runtime_suspend(struct device *dev)
7209 {
7210 struct pci_dev *pdev = to_pci_dev(dev);
7211 int retval;
7212 bool wake;
7213
7214 retval = __igb_shutdown(pdev, &wake, 1);
7215 if (retval)
7216 return retval;
7217
7218 if (wake) {
7219 pci_prepare_to_sleep(pdev);
7220 } else {
7221 pci_wake_from_d3(pdev, false);
7222 pci_set_power_state(pdev, PCI_D3hot);
7223 }
7224
7225 return 0;
7226 }
7227
7228 static int igb_runtime_resume(struct device *dev)
7229 {
7230 return igb_resume(dev);
7231 }
7232 #endif /* CONFIG_PM_RUNTIME */
7233 #endif
7234
7235 static void igb_shutdown(struct pci_dev *pdev)
7236 {
7237 bool wake;
7238
7239 __igb_shutdown(pdev, &wake, 0);
7240
7241 if (system_state == SYSTEM_POWER_OFF) {
7242 pci_wake_from_d3(pdev, wake);
7243 pci_set_power_state(pdev, PCI_D3hot);
7244 }
7245 }
7246
7247 #ifdef CONFIG_PCI_IOV
7248 static int igb_sriov_reinit(struct pci_dev *dev)
7249 {
7250 struct net_device *netdev = pci_get_drvdata(dev);
7251 struct igb_adapter *adapter = netdev_priv(netdev);
7252 struct pci_dev *pdev = adapter->pdev;
7253
7254 rtnl_lock();
7255
7256 if (netif_running(netdev))
7257 igb_close(netdev);
7258
7259 igb_clear_interrupt_scheme(adapter);
7260
7261 igb_init_queue_configuration(adapter);
7262
7263 if (igb_init_interrupt_scheme(adapter, true)) {
7264 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7265 return -ENOMEM;
7266 }
7267
7268 if (netif_running(netdev))
7269 igb_open(netdev);
7270
7271 rtnl_unlock();
7272
7273 return 0;
7274 }
7275
7276 static int igb_pci_disable_sriov(struct pci_dev *dev)
7277 {
7278 int err = igb_disable_sriov(dev);
7279
7280 if (!err)
7281 err = igb_sriov_reinit(dev);
7282
7283 return err;
7284 }
7285
7286 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7287 {
7288 int err = igb_enable_sriov(dev, num_vfs);
7289
7290 if (err)
7291 goto out;
7292
7293 err = igb_sriov_reinit(dev);
7294 if (!err)
7295 return num_vfs;
7296
7297 out:
7298 return err;
7299 }
7300
7301 #endif
7302 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7303 {
7304 #ifdef CONFIG_PCI_IOV
7305 if (num_vfs == 0)
7306 return igb_pci_disable_sriov(dev);
7307 else
7308 return igb_pci_enable_sriov(dev, num_vfs);
7309 #endif
7310 return 0;
7311 }
7312
7313 #ifdef CONFIG_NET_POLL_CONTROLLER
7314 /* Polling 'interrupt' - used by things like netconsole to send skbs
7315 * without having to re-enable interrupts. It's not called while
7316 * the interrupt routine is executing.
7317 */
7318 static void igb_netpoll(struct net_device *netdev)
7319 {
7320 struct igb_adapter *adapter = netdev_priv(netdev);
7321 struct e1000_hw *hw = &adapter->hw;
7322 struct igb_q_vector *q_vector;
7323 int i;
7324
7325 for (i = 0; i < adapter->num_q_vectors; i++) {
7326 q_vector = adapter->q_vector[i];
7327 if (adapter->msix_entries)
7328 wr32(E1000_EIMC, q_vector->eims_value);
7329 else
7330 igb_irq_disable(adapter);
7331 napi_schedule(&q_vector->napi);
7332 }
7333 }
7334 #endif /* CONFIG_NET_POLL_CONTROLLER */
7335
7336 /**
7337 * igb_io_error_detected - called when PCI error is detected
7338 * @pdev: Pointer to PCI device
7339 * @state: The current pci connection state
7340 *
7341 * This function is called after a PCI bus error affecting
7342 * this device has been detected.
7343 **/
7344 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7345 pci_channel_state_t state)
7346 {
7347 struct net_device *netdev = pci_get_drvdata(pdev);
7348 struct igb_adapter *adapter = netdev_priv(netdev);
7349
7350 netif_device_detach(netdev);
7351
7352 if (state == pci_channel_io_perm_failure)
7353 return PCI_ERS_RESULT_DISCONNECT;
7354
7355 if (netif_running(netdev))
7356 igb_down(adapter);
7357 pci_disable_device(pdev);
7358
7359 /* Request a slot slot reset. */
7360 return PCI_ERS_RESULT_NEED_RESET;
7361 }
7362
7363 /**
7364 * igb_io_slot_reset - called after the pci bus has been reset.
7365 * @pdev: Pointer to PCI device
7366 *
7367 * Restart the card from scratch, as if from a cold-boot. Implementation
7368 * resembles the first-half of the igb_resume routine.
7369 **/
7370 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7371 {
7372 struct net_device *netdev = pci_get_drvdata(pdev);
7373 struct igb_adapter *adapter = netdev_priv(netdev);
7374 struct e1000_hw *hw = &adapter->hw;
7375 pci_ers_result_t result;
7376 int err;
7377
7378 if (pci_enable_device_mem(pdev)) {
7379 dev_err(&pdev->dev,
7380 "Cannot re-enable PCI device after reset.\n");
7381 result = PCI_ERS_RESULT_DISCONNECT;
7382 } else {
7383 pci_set_master(pdev);
7384 pci_restore_state(pdev);
7385 pci_save_state(pdev);
7386
7387 pci_enable_wake(pdev, PCI_D3hot, 0);
7388 pci_enable_wake(pdev, PCI_D3cold, 0);
7389
7390 igb_reset(adapter);
7391 wr32(E1000_WUS, ~0);
7392 result = PCI_ERS_RESULT_RECOVERED;
7393 }
7394
7395 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7396 if (err) {
7397 dev_err(&pdev->dev,
7398 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7399 err);
7400 /* non-fatal, continue */
7401 }
7402
7403 return result;
7404 }
7405
7406 /**
7407 * igb_io_resume - called when traffic can start flowing again.
7408 * @pdev: Pointer to PCI device
7409 *
7410 * This callback is called when the error recovery driver tells us that
7411 * its OK to resume normal operation. Implementation resembles the
7412 * second-half of the igb_resume routine.
7413 */
7414 static void igb_io_resume(struct pci_dev *pdev)
7415 {
7416 struct net_device *netdev = pci_get_drvdata(pdev);
7417 struct igb_adapter *adapter = netdev_priv(netdev);
7418
7419 if (netif_running(netdev)) {
7420 if (igb_up(adapter)) {
7421 dev_err(&pdev->dev, "igb_up failed after reset\n");
7422 return;
7423 }
7424 }
7425
7426 netif_device_attach(netdev);
7427
7428 /* let the f/w know that the h/w is now under the control of the
7429 * driver.
7430 */
7431 igb_get_hw_control(adapter);
7432 }
7433
7434 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7435 u8 qsel)
7436 {
7437 u32 rar_low, rar_high;
7438 struct e1000_hw *hw = &adapter->hw;
7439
7440 /* HW expects these in little endian so we reverse the byte order
7441 * from network order (big endian) to little endian
7442 */
7443 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7444 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7445 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7446
7447 /* Indicate to hardware the Address is Valid. */
7448 rar_high |= E1000_RAH_AV;
7449
7450 if (hw->mac.type == e1000_82575)
7451 rar_high |= E1000_RAH_POOL_1 * qsel;
7452 else
7453 rar_high |= E1000_RAH_POOL_1 << qsel;
7454
7455 wr32(E1000_RAL(index), rar_low);
7456 wrfl();
7457 wr32(E1000_RAH(index), rar_high);
7458 wrfl();
7459 }
7460
7461 static int igb_set_vf_mac(struct igb_adapter *adapter,
7462 int vf, unsigned char *mac_addr)
7463 {
7464 struct e1000_hw *hw = &adapter->hw;
7465 /* VF MAC addresses start at end of receive addresses and moves
7466 * towards the first, as a result a collision should not be possible
7467 */
7468 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7469
7470 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7471
7472 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7473
7474 return 0;
7475 }
7476
7477 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7478 {
7479 struct igb_adapter *adapter = netdev_priv(netdev);
7480 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7481 return -EINVAL;
7482 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7483 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7484 dev_info(&adapter->pdev->dev,
7485 "Reload the VF driver to make this change effective.");
7486 if (test_bit(__IGB_DOWN, &adapter->state)) {
7487 dev_warn(&adapter->pdev->dev,
7488 "The VF MAC address has been set, but the PF device is not up.\n");
7489 dev_warn(&adapter->pdev->dev,
7490 "Bring the PF device up before attempting to use the VF device.\n");
7491 }
7492 return igb_set_vf_mac(adapter, vf, mac);
7493 }
7494
7495 static int igb_link_mbps(int internal_link_speed)
7496 {
7497 switch (internal_link_speed) {
7498 case SPEED_100:
7499 return 100;
7500 case SPEED_1000:
7501 return 1000;
7502 default:
7503 return 0;
7504 }
7505 }
7506
7507 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7508 int link_speed)
7509 {
7510 int rf_dec, rf_int;
7511 u32 bcnrc_val;
7512
7513 if (tx_rate != 0) {
7514 /* Calculate the rate factor values to set */
7515 rf_int = link_speed / tx_rate;
7516 rf_dec = (link_speed - (rf_int * tx_rate));
7517 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7518 tx_rate;
7519
7520 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7521 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7522 E1000_RTTBCNRC_RF_INT_MASK);
7523 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7524 } else {
7525 bcnrc_val = 0;
7526 }
7527
7528 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7529 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7530 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7531 */
7532 wr32(E1000_RTTBCNRM, 0x14);
7533 wr32(E1000_RTTBCNRC, bcnrc_val);
7534 }
7535
7536 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7537 {
7538 int actual_link_speed, i;
7539 bool reset_rate = false;
7540
7541 /* VF TX rate limit was not set or not supported */
7542 if ((adapter->vf_rate_link_speed == 0) ||
7543 (adapter->hw.mac.type != e1000_82576))
7544 return;
7545
7546 actual_link_speed = igb_link_mbps(adapter->link_speed);
7547 if (actual_link_speed != adapter->vf_rate_link_speed) {
7548 reset_rate = true;
7549 adapter->vf_rate_link_speed = 0;
7550 dev_info(&adapter->pdev->dev,
7551 "Link speed has been changed. VF Transmit rate is disabled\n");
7552 }
7553
7554 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7555 if (reset_rate)
7556 adapter->vf_data[i].tx_rate = 0;
7557
7558 igb_set_vf_rate_limit(&adapter->hw, i,
7559 adapter->vf_data[i].tx_rate,
7560 actual_link_speed);
7561 }
7562 }
7563
7564 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7565 {
7566 struct igb_adapter *adapter = netdev_priv(netdev);
7567 struct e1000_hw *hw = &adapter->hw;
7568 int actual_link_speed;
7569
7570 if (hw->mac.type != e1000_82576)
7571 return -EOPNOTSUPP;
7572
7573 actual_link_speed = igb_link_mbps(adapter->link_speed);
7574 if ((vf >= adapter->vfs_allocated_count) ||
7575 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7576 (tx_rate < 0) || (tx_rate > actual_link_speed))
7577 return -EINVAL;
7578
7579 adapter->vf_rate_link_speed = actual_link_speed;
7580 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7581 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7582
7583 return 0;
7584 }
7585
7586 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7587 bool setting)
7588 {
7589 struct igb_adapter *adapter = netdev_priv(netdev);
7590 struct e1000_hw *hw = &adapter->hw;
7591 u32 reg_val, reg_offset;
7592
7593 if (!adapter->vfs_allocated_count)
7594 return -EOPNOTSUPP;
7595
7596 if (vf >= adapter->vfs_allocated_count)
7597 return -EINVAL;
7598
7599 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7600 reg_val = rd32(reg_offset);
7601 if (setting)
7602 reg_val |= ((1 << vf) |
7603 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7604 else
7605 reg_val &= ~((1 << vf) |
7606 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7607 wr32(reg_offset, reg_val);
7608
7609 adapter->vf_data[vf].spoofchk_enabled = setting;
7610 return E1000_SUCCESS;
7611 }
7612
7613 static int igb_ndo_get_vf_config(struct net_device *netdev,
7614 int vf, struct ifla_vf_info *ivi)
7615 {
7616 struct igb_adapter *adapter = netdev_priv(netdev);
7617 if (vf >= adapter->vfs_allocated_count)
7618 return -EINVAL;
7619 ivi->vf = vf;
7620 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7621 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7622 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7623 ivi->qos = adapter->vf_data[vf].pf_qos;
7624 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7625 return 0;
7626 }
7627
7628 static void igb_vmm_control(struct igb_adapter *adapter)
7629 {
7630 struct e1000_hw *hw = &adapter->hw;
7631 u32 reg;
7632
7633 switch (hw->mac.type) {
7634 case e1000_82575:
7635 case e1000_i210:
7636 case e1000_i211:
7637 case e1000_i354:
7638 default:
7639 /* replication is not supported for 82575 */
7640 return;
7641 case e1000_82576:
7642 /* notify HW that the MAC is adding vlan tags */
7643 reg = rd32(E1000_DTXCTL);
7644 reg |= E1000_DTXCTL_VLAN_ADDED;
7645 wr32(E1000_DTXCTL, reg);
7646 case e1000_82580:
7647 /* enable replication vlan tag stripping */
7648 reg = rd32(E1000_RPLOLR);
7649 reg |= E1000_RPLOLR_STRVLAN;
7650 wr32(E1000_RPLOLR, reg);
7651 case e1000_i350:
7652 /* none of the above registers are supported by i350 */
7653 break;
7654 }
7655
7656 if (adapter->vfs_allocated_count) {
7657 igb_vmdq_set_loopback_pf(hw, true);
7658 igb_vmdq_set_replication_pf(hw, true);
7659 igb_vmdq_set_anti_spoofing_pf(hw, true,
7660 adapter->vfs_allocated_count);
7661 } else {
7662 igb_vmdq_set_loopback_pf(hw, false);
7663 igb_vmdq_set_replication_pf(hw, false);
7664 }
7665 }
7666
7667 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7668 {
7669 struct e1000_hw *hw = &adapter->hw;
7670 u32 dmac_thr;
7671 u16 hwm;
7672
7673 if (hw->mac.type > e1000_82580) {
7674 if (adapter->flags & IGB_FLAG_DMAC) {
7675 u32 reg;
7676
7677 /* force threshold to 0. */
7678 wr32(E1000_DMCTXTH, 0);
7679
7680 /* DMA Coalescing high water mark needs to be greater
7681 * than the Rx threshold. Set hwm to PBA - max frame
7682 * size in 16B units, capping it at PBA - 6KB.
7683 */
7684 hwm = 64 * pba - adapter->max_frame_size / 16;
7685 if (hwm < 64 * (pba - 6))
7686 hwm = 64 * (pba - 6);
7687 reg = rd32(E1000_FCRTC);
7688 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7689 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7690 & E1000_FCRTC_RTH_COAL_MASK);
7691 wr32(E1000_FCRTC, reg);
7692
7693 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7694 * frame size, capping it at PBA - 10KB.
7695 */
7696 dmac_thr = pba - adapter->max_frame_size / 512;
7697 if (dmac_thr < pba - 10)
7698 dmac_thr = pba - 10;
7699 reg = rd32(E1000_DMACR);
7700 reg &= ~E1000_DMACR_DMACTHR_MASK;
7701 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7702 & E1000_DMACR_DMACTHR_MASK);
7703
7704 /* transition to L0x or L1 if available..*/
7705 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7706
7707 /* watchdog timer= +-1000 usec in 32usec intervals */
7708 reg |= (1000 >> 5);
7709
7710 /* Disable BMC-to-OS Watchdog Enable */
7711 if (hw->mac.type != e1000_i354)
7712 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7713
7714 wr32(E1000_DMACR, reg);
7715
7716 /* no lower threshold to disable
7717 * coalescing(smart fifb)-UTRESH=0
7718 */
7719 wr32(E1000_DMCRTRH, 0);
7720
7721 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7722
7723 wr32(E1000_DMCTLX, reg);
7724
7725 /* free space in tx packet buffer to wake from
7726 * DMA coal
7727 */
7728 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7729 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7730
7731 /* make low power state decision controlled
7732 * by DMA coal
7733 */
7734 reg = rd32(E1000_PCIEMISC);
7735 reg &= ~E1000_PCIEMISC_LX_DECISION;
7736 wr32(E1000_PCIEMISC, reg);
7737 } /* endif adapter->dmac is not disabled */
7738 } else if (hw->mac.type == e1000_82580) {
7739 u32 reg = rd32(E1000_PCIEMISC);
7740 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7741 wr32(E1000_DMACR, 0);
7742 }
7743 }
7744
7745 /**
7746 * igb_read_i2c_byte - Reads 8 bit word over I2C
7747 * @hw: pointer to hardware structure
7748 * @byte_offset: byte offset to read
7749 * @dev_addr: device address
7750 * @data: value read
7751 *
7752 * Performs byte read operation over I2C interface at
7753 * a specified device address.
7754 **/
7755 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7756 u8 dev_addr, u8 *data)
7757 {
7758 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7759 struct i2c_client *this_client = adapter->i2c_client;
7760 s32 status;
7761 u16 swfw_mask = 0;
7762
7763 if (!this_client)
7764 return E1000_ERR_I2C;
7765
7766 swfw_mask = E1000_SWFW_PHY0_SM;
7767
7768 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7769 != E1000_SUCCESS)
7770 return E1000_ERR_SWFW_SYNC;
7771
7772 status = i2c_smbus_read_byte_data(this_client, byte_offset);
7773 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7774
7775 if (status < 0)
7776 return E1000_ERR_I2C;
7777 else {
7778 *data = status;
7779 return E1000_SUCCESS;
7780 }
7781 }
7782
7783 /**
7784 * igb_write_i2c_byte - Writes 8 bit word over I2C
7785 * @hw: pointer to hardware structure
7786 * @byte_offset: byte offset to write
7787 * @dev_addr: device address
7788 * @data: value to write
7789 *
7790 * Performs byte write operation over I2C interface at
7791 * a specified device address.
7792 **/
7793 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7794 u8 dev_addr, u8 data)
7795 {
7796 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7797 struct i2c_client *this_client = adapter->i2c_client;
7798 s32 status;
7799 u16 swfw_mask = E1000_SWFW_PHY0_SM;
7800
7801 if (!this_client)
7802 return E1000_ERR_I2C;
7803
7804 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7805 return E1000_ERR_SWFW_SYNC;
7806 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7807 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7808
7809 if (status)
7810 return E1000_ERR_I2C;
7811 else
7812 return E1000_SUCCESS;
7813
7814 }
7815 /* igb_main.c */
This page took 0.257335 seconds and 6 git commands to generate.