farsync: Fix confusion about DMA address and buffer offset types
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58
59 #define MAJ 5
60 #define MIN 0
61 #define BUILD 5
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69 "Copyright (c) 2007-2014 Intel Corporation.";
70
71 static const struct e1000_info *igb_info_tbl[] = {
72 [board_82575] = &e1000_82575_info,
73 };
74
75 static const struct pci_device_id igb_pci_tbl[] = {
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111 /* required last entry */
112 {0, }
113 };
114
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140 struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159 netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171 int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174 bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 #endif
183
184 #ifdef CONFIG_PM
185 #ifdef CONFIG_PM_SLEEP
186 static int igb_suspend(struct device *);
187 #endif
188 static int igb_resume(struct device *);
189 #ifdef CONFIG_PM_RUNTIME
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 #endif
194 static const struct dev_pm_ops igb_pm_ops = {
195 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197 igb_runtime_idle)
198 };
199 #endif
200 static void igb_shutdown(struct pci_dev *);
201 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202 #ifdef CONFIG_IGB_DCA
203 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204 static struct notifier_block dca_notifier = {
205 .notifier_call = igb_notify_dca,
206 .next = NULL,
207 .priority = 0
208 };
209 #endif
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void igb_netpoll(struct net_device *);
213 #endif
214 #ifdef CONFIG_PCI_IOV
215 static unsigned int max_vfs;
216 module_param(max_vfs, uint, 0);
217 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218 #endif /* CONFIG_PCI_IOV */
219
220 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221 pci_channel_state_t);
222 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223 static void igb_io_resume(struct pci_dev *);
224
225 static const struct pci_error_handlers igb_err_handler = {
226 .error_detected = igb_io_error_detected,
227 .slot_reset = igb_io_slot_reset,
228 .resume = igb_io_resume,
229 };
230
231 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232
233 static struct pci_driver igb_driver = {
234 .name = igb_driver_name,
235 .id_table = igb_pci_tbl,
236 .probe = igb_probe,
237 .remove = igb_remove,
238 #ifdef CONFIG_PM
239 .driver.pm = &igb_pm_ops,
240 #endif
241 .shutdown = igb_shutdown,
242 .sriov_configure = igb_pci_sriov_configure,
243 .err_handler = &igb_err_handler
244 };
245
246 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION);
250
251 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252 static int debug = -1;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256 struct igb_reg_info {
257 u32 ofs;
258 char *name;
259 };
260
261 static const struct igb_reg_info igb_reg_info_tbl[] = {
262
263 /* General Registers */
264 {E1000_CTRL, "CTRL"},
265 {E1000_STATUS, "STATUS"},
266 {E1000_CTRL_EXT, "CTRL_EXT"},
267
268 /* Interrupt Registers */
269 {E1000_ICR, "ICR"},
270
271 /* RX Registers */
272 {E1000_RCTL, "RCTL"},
273 {E1000_RDLEN(0), "RDLEN"},
274 {E1000_RDH(0), "RDH"},
275 {E1000_RDT(0), "RDT"},
276 {E1000_RXDCTL(0), "RXDCTL"},
277 {E1000_RDBAL(0), "RDBAL"},
278 {E1000_RDBAH(0), "RDBAH"},
279
280 /* TX Registers */
281 {E1000_TCTL, "TCTL"},
282 {E1000_TDBAL(0), "TDBAL"},
283 {E1000_TDBAH(0), "TDBAH"},
284 {E1000_TDLEN(0), "TDLEN"},
285 {E1000_TDH(0), "TDH"},
286 {E1000_TDT(0), "TDT"},
287 {E1000_TXDCTL(0), "TXDCTL"},
288 {E1000_TDFH, "TDFH"},
289 {E1000_TDFT, "TDFT"},
290 {E1000_TDFHS, "TDFHS"},
291 {E1000_TDFPC, "TDFPC"},
292
293 /* List Terminator */
294 {}
295 };
296
297 /* igb_regdump - register printout routine */
298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299 {
300 int n = 0;
301 char rname[16];
302 u32 regs[8];
303
304 switch (reginfo->ofs) {
305 case E1000_RDLEN(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RDLEN(n));
308 break;
309 case E1000_RDH(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDH(n));
312 break;
313 case E1000_RDT(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDT(n));
316 break;
317 case E1000_RXDCTL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RXDCTL(n));
320 break;
321 case E1000_RDBAL(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RDBAL(n));
324 break;
325 case E1000_RDBAH(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAH(n));
328 break;
329 case E1000_TDBAL(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDBAL(n));
332 break;
333 case E1000_TDBAH(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDBAH(n));
336 break;
337 case E1000_TDLEN(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDLEN(n));
340 break;
341 case E1000_TDH(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDH(n));
344 break;
345 case E1000_TDT(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TDT(n));
348 break;
349 case E1000_TXDCTL(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TXDCTL(n));
352 break;
353 default:
354 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 return;
356 }
357
358 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360 regs[2], regs[3]);
361 }
362
363 /* igb_dump - Print registers, Tx-rings and Rx-rings */
364 static void igb_dump(struct igb_adapter *adapter)
365 {
366 struct net_device *netdev = adapter->netdev;
367 struct e1000_hw *hw = &adapter->hw;
368 struct igb_reg_info *reginfo;
369 struct igb_ring *tx_ring;
370 union e1000_adv_tx_desc *tx_desc;
371 struct my_u0 { u64 a; u64 b; } *u0;
372 struct igb_ring *rx_ring;
373 union e1000_adv_rx_desc *rx_desc;
374 u32 staterr;
375 u16 i, n;
376
377 if (!netif_msg_hw(adapter))
378 return;
379
380 /* Print netdevice Info */
381 if (netdev) {
382 dev_info(&adapter->pdev->dev, "Net device Info\n");
383 pr_info("Device Name state trans_start last_rx\n");
384 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385 netdev->state, netdev->trans_start, netdev->last_rx);
386 }
387
388 /* Print Registers */
389 dev_info(&adapter->pdev->dev, "Register Dump\n");
390 pr_info(" Register Name Value\n");
391 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392 reginfo->name; reginfo++) {
393 igb_regdump(hw, reginfo);
394 }
395
396 /* Print TX Ring Summary */
397 if (!netdev || !netif_running(netdev))
398 goto exit;
399
400 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
402 for (n = 0; n < adapter->num_tx_queues; n++) {
403 struct igb_tx_buffer *buffer_info;
404 tx_ring = adapter->tx_ring[n];
405 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407 n, tx_ring->next_to_use, tx_ring->next_to_clean,
408 (u64)dma_unmap_addr(buffer_info, dma),
409 dma_unmap_len(buffer_info, len),
410 buffer_info->next_to_watch,
411 (u64)buffer_info->time_stamp);
412 }
413
414 /* Print TX Rings */
415 if (!netif_msg_tx_done(adapter))
416 goto rx_ring_summary;
417
418 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419
420 /* Transmit Descriptor Formats
421 *
422 * Advanced Transmit Descriptor
423 * +--------------------------------------------------------------+
424 * 0 | Buffer Address [63:0] |
425 * +--------------------------------------------------------------+
426 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
427 * +--------------------------------------------------------------+
428 * 63 46 45 40 39 38 36 35 32 31 24 15 0
429 */
430
431 for (n = 0; n < adapter->num_tx_queues; n++) {
432 tx_ring = adapter->tx_ring[n];
433 pr_info("------------------------------------\n");
434 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435 pr_info("------------------------------------\n");
436 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
437
438 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439 const char *next_desc;
440 struct igb_tx_buffer *buffer_info;
441 tx_desc = IGB_TX_DESC(tx_ring, i);
442 buffer_info = &tx_ring->tx_buffer_info[i];
443 u0 = (struct my_u0 *)tx_desc;
444 if (i == tx_ring->next_to_use &&
445 i == tx_ring->next_to_clean)
446 next_desc = " NTC/U";
447 else if (i == tx_ring->next_to_use)
448 next_desc = " NTU";
449 else if (i == tx_ring->next_to_clean)
450 next_desc = " NTC";
451 else
452 next_desc = "";
453
454 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
455 i, le64_to_cpu(u0->a),
456 le64_to_cpu(u0->b),
457 (u64)dma_unmap_addr(buffer_info, dma),
458 dma_unmap_len(buffer_info, len),
459 buffer_info->next_to_watch,
460 (u64)buffer_info->time_stamp,
461 buffer_info->skb, next_desc);
462
463 if (netif_msg_pktdata(adapter) && buffer_info->skb)
464 print_hex_dump(KERN_INFO, "",
465 DUMP_PREFIX_ADDRESS,
466 16, 1, buffer_info->skb->data,
467 dma_unmap_len(buffer_info, len),
468 true);
469 }
470 }
471
472 /* Print RX Rings Summary */
473 rx_ring_summary:
474 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475 pr_info("Queue [NTU] [NTC]\n");
476 for (n = 0; n < adapter->num_rx_queues; n++) {
477 rx_ring = adapter->rx_ring[n];
478 pr_info(" %5d %5X %5X\n",
479 n, rx_ring->next_to_use, rx_ring->next_to_clean);
480 }
481
482 /* Print RX Rings */
483 if (!netif_msg_rx_status(adapter))
484 goto exit;
485
486 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487
488 /* Advanced Receive Descriptor (Read) Format
489 * 63 1 0
490 * +-----------------------------------------------------+
491 * 0 | Packet Buffer Address [63:1] |A0/NSE|
492 * +----------------------------------------------+------+
493 * 8 | Header Buffer Address [63:1] | DD |
494 * +-----------------------------------------------------+
495 *
496 *
497 * Advanced Receive Descriptor (Write-Back) Format
498 *
499 * 63 48 47 32 31 30 21 20 17 16 4 3 0
500 * +------------------------------------------------------+
501 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
502 * | Checksum Ident | | | | Type | Type |
503 * +------------------------------------------------------+
504 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505 * +------------------------------------------------------+
506 * 63 48 47 32 31 20 19 0
507 */
508
509 for (n = 0; n < adapter->num_rx_queues; n++) {
510 rx_ring = adapter->rx_ring[n];
511 pr_info("------------------------------------\n");
512 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513 pr_info("------------------------------------\n");
514 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
515 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516
517 for (i = 0; i < rx_ring->count; i++) {
518 const char *next_desc;
519 struct igb_rx_buffer *buffer_info;
520 buffer_info = &rx_ring->rx_buffer_info[i];
521 rx_desc = IGB_RX_DESC(rx_ring, i);
522 u0 = (struct my_u0 *)rx_desc;
523 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
524
525 if (i == rx_ring->next_to_use)
526 next_desc = " NTU";
527 else if (i == rx_ring->next_to_clean)
528 next_desc = " NTC";
529 else
530 next_desc = "";
531
532 if (staterr & E1000_RXD_STAT_DD) {
533 /* Descriptor Done */
534 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
535 "RWB", i,
536 le64_to_cpu(u0->a),
537 le64_to_cpu(u0->b),
538 next_desc);
539 } else {
540 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
541 "R ", i,
542 le64_to_cpu(u0->a),
543 le64_to_cpu(u0->b),
544 (u64)buffer_info->dma,
545 next_desc);
546
547 if (netif_msg_pktdata(adapter) &&
548 buffer_info->dma && buffer_info->page) {
549 print_hex_dump(KERN_INFO, "",
550 DUMP_PREFIX_ADDRESS,
551 16, 1,
552 page_address(buffer_info->page) +
553 buffer_info->page_offset,
554 IGB_RX_BUFSZ, true);
555 }
556 }
557 }
558 }
559
560 exit:
561 return;
562 }
563
564 /**
565 * igb_get_i2c_data - Reads the I2C SDA data bit
566 * @hw: pointer to hardware structure
567 * @i2cctl: Current value of I2CCTL register
568 *
569 * Returns the I2C data bit value
570 **/
571 static int igb_get_i2c_data(void *data)
572 {
573 struct igb_adapter *adapter = (struct igb_adapter *)data;
574 struct e1000_hw *hw = &adapter->hw;
575 s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577 return !!(i2cctl & E1000_I2C_DATA_IN);
578 }
579
580 /**
581 * igb_set_i2c_data - Sets the I2C data bit
582 * @data: pointer to hardware structure
583 * @state: I2C data value (0 or 1) to set
584 *
585 * Sets the I2C data bit
586 **/
587 static void igb_set_i2c_data(void *data, int state)
588 {
589 struct igb_adapter *adapter = (struct igb_adapter *)data;
590 struct e1000_hw *hw = &adapter->hw;
591 s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593 if (state)
594 i2cctl |= E1000_I2C_DATA_OUT;
595 else
596 i2cctl &= ~E1000_I2C_DATA_OUT;
597
598 i2cctl &= ~E1000_I2C_DATA_OE_N;
599 i2cctl |= E1000_I2C_CLK_OE_N;
600 wr32(E1000_I2CPARAMS, i2cctl);
601 wrfl();
602
603 }
604
605 /**
606 * igb_set_i2c_clk - Sets the I2C SCL clock
607 * @data: pointer to hardware structure
608 * @state: state to set clock
609 *
610 * Sets the I2C clock line to state
611 **/
612 static void igb_set_i2c_clk(void *data, int state)
613 {
614 struct igb_adapter *adapter = (struct igb_adapter *)data;
615 struct e1000_hw *hw = &adapter->hw;
616 s32 i2cctl = rd32(E1000_I2CPARAMS);
617
618 if (state) {
619 i2cctl |= E1000_I2C_CLK_OUT;
620 i2cctl &= ~E1000_I2C_CLK_OE_N;
621 } else {
622 i2cctl &= ~E1000_I2C_CLK_OUT;
623 i2cctl &= ~E1000_I2C_CLK_OE_N;
624 }
625 wr32(E1000_I2CPARAMS, i2cctl);
626 wrfl();
627 }
628
629 /**
630 * igb_get_i2c_clk - Gets the I2C SCL clock state
631 * @data: pointer to hardware structure
632 *
633 * Gets the I2C clock state
634 **/
635 static int igb_get_i2c_clk(void *data)
636 {
637 struct igb_adapter *adapter = (struct igb_adapter *)data;
638 struct e1000_hw *hw = &adapter->hw;
639 s32 i2cctl = rd32(E1000_I2CPARAMS);
640
641 return !!(i2cctl & E1000_I2C_CLK_IN);
642 }
643
644 static const struct i2c_algo_bit_data igb_i2c_algo = {
645 .setsda = igb_set_i2c_data,
646 .setscl = igb_set_i2c_clk,
647 .getsda = igb_get_i2c_data,
648 .getscl = igb_get_i2c_clk,
649 .udelay = 5,
650 .timeout = 20,
651 };
652
653 /**
654 * igb_get_hw_dev - return device
655 * @hw: pointer to hardware structure
656 *
657 * used by hardware layer to print debugging information
658 **/
659 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660 {
661 struct igb_adapter *adapter = hw->back;
662 return adapter->netdev;
663 }
664
665 /**
666 * igb_init_module - Driver Registration Routine
667 *
668 * igb_init_module is the first routine called when the driver is
669 * loaded. All it does is register with the PCI subsystem.
670 **/
671 static int __init igb_init_module(void)
672 {
673 int ret;
674
675 pr_info("%s - version %s\n",
676 igb_driver_string, igb_driver_version);
677 pr_info("%s\n", igb_copyright);
678
679 #ifdef CONFIG_IGB_DCA
680 dca_register_notify(&dca_notifier);
681 #endif
682 ret = pci_register_driver(&igb_driver);
683 return ret;
684 }
685
686 module_init(igb_init_module);
687
688 /**
689 * igb_exit_module - Driver Exit Cleanup Routine
690 *
691 * igb_exit_module is called just before the driver is removed
692 * from memory.
693 **/
694 static void __exit igb_exit_module(void)
695 {
696 #ifdef CONFIG_IGB_DCA
697 dca_unregister_notify(&dca_notifier);
698 #endif
699 pci_unregister_driver(&igb_driver);
700 }
701
702 module_exit(igb_exit_module);
703
704 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705 /**
706 * igb_cache_ring_register - Descriptor ring to register mapping
707 * @adapter: board private structure to initialize
708 *
709 * Once we know the feature-set enabled for the device, we'll cache
710 * the register offset the descriptor ring is assigned to.
711 **/
712 static void igb_cache_ring_register(struct igb_adapter *adapter)
713 {
714 int i = 0, j = 0;
715 u32 rbase_offset = adapter->vfs_allocated_count;
716
717 switch (adapter->hw.mac.type) {
718 case e1000_82576:
719 /* The queues are allocated for virtualization such that VF 0
720 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721 * In order to avoid collision we start at the first free queue
722 * and continue consuming queues in the same sequence
723 */
724 if (adapter->vfs_allocated_count) {
725 for (; i < adapter->rss_queues; i++)
726 adapter->rx_ring[i]->reg_idx = rbase_offset +
727 Q_IDX_82576(i);
728 }
729 /* Fall through */
730 case e1000_82575:
731 case e1000_82580:
732 case e1000_i350:
733 case e1000_i354:
734 case e1000_i210:
735 case e1000_i211:
736 /* Fall through */
737 default:
738 for (; i < adapter->num_rx_queues; i++)
739 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
740 for (; j < adapter->num_tx_queues; j++)
741 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
742 break;
743 }
744 }
745
746 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
747 {
748 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750 u32 value = 0;
751
752 if (E1000_REMOVED(hw_addr))
753 return ~value;
754
755 value = readl(&hw_addr[reg]);
756
757 /* reads should not return all F's */
758 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759 struct net_device *netdev = igb->netdev;
760 hw->hw_addr = NULL;
761 netif_device_detach(netdev);
762 netdev_err(netdev, "PCIe link lost, device now detached\n");
763 }
764
765 return value;
766 }
767
768 /**
769 * igb_write_ivar - configure ivar for given MSI-X vector
770 * @hw: pointer to the HW structure
771 * @msix_vector: vector number we are allocating to a given ring
772 * @index: row index of IVAR register to write within IVAR table
773 * @offset: column offset of in IVAR, should be multiple of 8
774 *
775 * This function is intended to handle the writing of the IVAR register
776 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
777 * each containing an cause allocation for an Rx and Tx ring, and a
778 * variable number of rows depending on the number of queues supported.
779 **/
780 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781 int index, int offset)
782 {
783 u32 ivar = array_rd32(E1000_IVAR0, index);
784
785 /* clear any bits that are currently set */
786 ivar &= ~((u32)0xFF << offset);
787
788 /* write vector and valid bit */
789 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
790
791 array_wr32(E1000_IVAR0, index, ivar);
792 }
793
794 #define IGB_N0_QUEUE -1
795 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
796 {
797 struct igb_adapter *adapter = q_vector->adapter;
798 struct e1000_hw *hw = &adapter->hw;
799 int rx_queue = IGB_N0_QUEUE;
800 int tx_queue = IGB_N0_QUEUE;
801 u32 msixbm = 0;
802
803 if (q_vector->rx.ring)
804 rx_queue = q_vector->rx.ring->reg_idx;
805 if (q_vector->tx.ring)
806 tx_queue = q_vector->tx.ring->reg_idx;
807
808 switch (hw->mac.type) {
809 case e1000_82575:
810 /* The 82575 assigns vectors using a bitmask, which matches the
811 * bitmask for the EICR/EIMS/EIMC registers. To assign one
812 * or more queues to a vector, we write the appropriate bits
813 * into the MSIXBM register for that vector.
814 */
815 if (rx_queue > IGB_N0_QUEUE)
816 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
817 if (tx_queue > IGB_N0_QUEUE)
818 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
819 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
820 msixbm |= E1000_EIMS_OTHER;
821 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
822 q_vector->eims_value = msixbm;
823 break;
824 case e1000_82576:
825 /* 82576 uses a table that essentially consists of 2 columns
826 * with 8 rows. The ordering is column-major so we use the
827 * lower 3 bits as the row index, and the 4th bit as the
828 * column offset.
829 */
830 if (rx_queue > IGB_N0_QUEUE)
831 igb_write_ivar(hw, msix_vector,
832 rx_queue & 0x7,
833 (rx_queue & 0x8) << 1);
834 if (tx_queue > IGB_N0_QUEUE)
835 igb_write_ivar(hw, msix_vector,
836 tx_queue & 0x7,
837 ((tx_queue & 0x8) << 1) + 8);
838 q_vector->eims_value = 1 << msix_vector;
839 break;
840 case e1000_82580:
841 case e1000_i350:
842 case e1000_i354:
843 case e1000_i210:
844 case e1000_i211:
845 /* On 82580 and newer adapters the scheme is similar to 82576
846 * however instead of ordering column-major we have things
847 * ordered row-major. So we traverse the table by using
848 * bit 0 as the column offset, and the remaining bits as the
849 * row index.
850 */
851 if (rx_queue > IGB_N0_QUEUE)
852 igb_write_ivar(hw, msix_vector,
853 rx_queue >> 1,
854 (rx_queue & 0x1) << 4);
855 if (tx_queue > IGB_N0_QUEUE)
856 igb_write_ivar(hw, msix_vector,
857 tx_queue >> 1,
858 ((tx_queue & 0x1) << 4) + 8);
859 q_vector->eims_value = 1 << msix_vector;
860 break;
861 default:
862 BUG();
863 break;
864 }
865
866 /* add q_vector eims value to global eims_enable_mask */
867 adapter->eims_enable_mask |= q_vector->eims_value;
868
869 /* configure q_vector to set itr on first interrupt */
870 q_vector->set_itr = 1;
871 }
872
873 /**
874 * igb_configure_msix - Configure MSI-X hardware
875 * @adapter: board private structure to initialize
876 *
877 * igb_configure_msix sets up the hardware to properly
878 * generate MSI-X interrupts.
879 **/
880 static void igb_configure_msix(struct igb_adapter *adapter)
881 {
882 u32 tmp;
883 int i, vector = 0;
884 struct e1000_hw *hw = &adapter->hw;
885
886 adapter->eims_enable_mask = 0;
887
888 /* set vector for other causes, i.e. link changes */
889 switch (hw->mac.type) {
890 case e1000_82575:
891 tmp = rd32(E1000_CTRL_EXT);
892 /* enable MSI-X PBA support*/
893 tmp |= E1000_CTRL_EXT_PBA_CLR;
894
895 /* Auto-Mask interrupts upon ICR read. */
896 tmp |= E1000_CTRL_EXT_EIAME;
897 tmp |= E1000_CTRL_EXT_IRCA;
898
899 wr32(E1000_CTRL_EXT, tmp);
900
901 /* enable msix_other interrupt */
902 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
903 adapter->eims_other = E1000_EIMS_OTHER;
904
905 break;
906
907 case e1000_82576:
908 case e1000_82580:
909 case e1000_i350:
910 case e1000_i354:
911 case e1000_i210:
912 case e1000_i211:
913 /* Turn on MSI-X capability first, or our settings
914 * won't stick. And it will take days to debug.
915 */
916 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917 E1000_GPIE_PBA | E1000_GPIE_EIAME |
918 E1000_GPIE_NSICR);
919
920 /* enable msix_other interrupt */
921 adapter->eims_other = 1 << vector;
922 tmp = (vector++ | E1000_IVAR_VALID) << 8;
923
924 wr32(E1000_IVAR_MISC, tmp);
925 break;
926 default:
927 /* do nothing, since nothing else supports MSI-X */
928 break;
929 } /* switch (hw->mac.type) */
930
931 adapter->eims_enable_mask |= adapter->eims_other;
932
933 for (i = 0; i < adapter->num_q_vectors; i++)
934 igb_assign_vector(adapter->q_vector[i], vector++);
935
936 wrfl();
937 }
938
939 /**
940 * igb_request_msix - Initialize MSI-X interrupts
941 * @adapter: board private structure to initialize
942 *
943 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
944 * kernel.
945 **/
946 static int igb_request_msix(struct igb_adapter *adapter)
947 {
948 struct net_device *netdev = adapter->netdev;
949 struct e1000_hw *hw = &adapter->hw;
950 int i, err = 0, vector = 0, free_vector = 0;
951
952 err = request_irq(adapter->msix_entries[vector].vector,
953 igb_msix_other, 0, netdev->name, adapter);
954 if (err)
955 goto err_out;
956
957 for (i = 0; i < adapter->num_q_vectors; i++) {
958 struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960 vector++;
961
962 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
963
964 if (q_vector->rx.ring && q_vector->tx.ring)
965 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966 q_vector->rx.ring->queue_index);
967 else if (q_vector->tx.ring)
968 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969 q_vector->tx.ring->queue_index);
970 else if (q_vector->rx.ring)
971 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972 q_vector->rx.ring->queue_index);
973 else
974 sprintf(q_vector->name, "%s-unused", netdev->name);
975
976 err = request_irq(adapter->msix_entries[vector].vector,
977 igb_msix_ring, 0, q_vector->name,
978 q_vector);
979 if (err)
980 goto err_free;
981 }
982
983 igb_configure_msix(adapter);
984 return 0;
985
986 err_free:
987 /* free already assigned IRQs */
988 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990 vector--;
991 for (i = 0; i < vector; i++) {
992 free_irq(adapter->msix_entries[free_vector++].vector,
993 adapter->q_vector[i]);
994 }
995 err_out:
996 return err;
997 }
998
999 /**
1000 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1001 * @adapter: board private structure to initialize
1002 * @v_idx: Index of vector to be freed
1003 *
1004 * This function frees the memory allocated to the q_vector.
1005 **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010 adapter->q_vector[v_idx] = NULL;
1011
1012 /* igb_get_stats64() might access the rings on this vector,
1013 * we must wait a grace period before freeing it.
1014 */
1015 kfree_rcu(q_vector, rcu);
1016 }
1017
1018 /**
1019 * igb_reset_q_vector - Reset config for interrupt vector
1020 * @adapter: board private structure to initialize
1021 * @v_idx: Index of vector to be reset
1022 *
1023 * If NAPI is enabled it will delete any references to the
1024 * NAPI struct. This is preparation for igb_free_q_vector.
1025 **/
1026 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1027 {
1028 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1029
1030 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1031 * allocated. So, q_vector is NULL so we should stop here.
1032 */
1033 if (!q_vector)
1034 return;
1035
1036 if (q_vector->tx.ring)
1037 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1038
1039 if (q_vector->rx.ring)
1040 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1041
1042 netif_napi_del(&q_vector->napi);
1043
1044 }
1045
1046 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1047 {
1048 int v_idx = adapter->num_q_vectors;
1049
1050 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1051 pci_disable_msix(adapter->pdev);
1052 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1053 pci_disable_msi(adapter->pdev);
1054
1055 while (v_idx--)
1056 igb_reset_q_vector(adapter, v_idx);
1057 }
1058
1059 /**
1060 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1061 * @adapter: board private structure to initialize
1062 *
1063 * This function frees the memory allocated to the q_vectors. In addition if
1064 * NAPI is enabled it will delete any references to the NAPI struct prior
1065 * to freeing the q_vector.
1066 **/
1067 static void igb_free_q_vectors(struct igb_adapter *adapter)
1068 {
1069 int v_idx = adapter->num_q_vectors;
1070
1071 adapter->num_tx_queues = 0;
1072 adapter->num_rx_queues = 0;
1073 adapter->num_q_vectors = 0;
1074
1075 while (v_idx--) {
1076 igb_reset_q_vector(adapter, v_idx);
1077 igb_free_q_vector(adapter, v_idx);
1078 }
1079 }
1080
1081 /**
1082 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1083 * @adapter: board private structure to initialize
1084 *
1085 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1086 * MSI-X interrupts allocated.
1087 */
1088 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1089 {
1090 igb_free_q_vectors(adapter);
1091 igb_reset_interrupt_capability(adapter);
1092 }
1093
1094 /**
1095 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1096 * @adapter: board private structure to initialize
1097 * @msix: boolean value of MSIX capability
1098 *
1099 * Attempt to configure interrupts using the best available
1100 * capabilities of the hardware and kernel.
1101 **/
1102 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1103 {
1104 int err;
1105 int numvecs, i;
1106
1107 if (!msix)
1108 goto msi_only;
1109 adapter->flags |= IGB_FLAG_HAS_MSIX;
1110
1111 /* Number of supported queues. */
1112 adapter->num_rx_queues = adapter->rss_queues;
1113 if (adapter->vfs_allocated_count)
1114 adapter->num_tx_queues = 1;
1115 else
1116 adapter->num_tx_queues = adapter->rss_queues;
1117
1118 /* start with one vector for every Rx queue */
1119 numvecs = adapter->num_rx_queues;
1120
1121 /* if Tx handler is separate add 1 for every Tx queue */
1122 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1123 numvecs += adapter->num_tx_queues;
1124
1125 /* store the number of vectors reserved for queues */
1126 adapter->num_q_vectors = numvecs;
1127
1128 /* add 1 vector for link status interrupts */
1129 numvecs++;
1130 for (i = 0; i < numvecs; i++)
1131 adapter->msix_entries[i].entry = i;
1132
1133 err = pci_enable_msix_range(adapter->pdev,
1134 adapter->msix_entries,
1135 numvecs,
1136 numvecs);
1137 if (err > 0)
1138 return;
1139
1140 igb_reset_interrupt_capability(adapter);
1141
1142 /* If we can't do MSI-X, try MSI */
1143 msi_only:
1144 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1145 #ifdef CONFIG_PCI_IOV
1146 /* disable SR-IOV for non MSI-X configurations */
1147 if (adapter->vf_data) {
1148 struct e1000_hw *hw = &adapter->hw;
1149 /* disable iov and allow time for transactions to clear */
1150 pci_disable_sriov(adapter->pdev);
1151 msleep(500);
1152
1153 kfree(adapter->vf_data);
1154 adapter->vf_data = NULL;
1155 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1156 wrfl();
1157 msleep(100);
1158 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1159 }
1160 #endif
1161 adapter->vfs_allocated_count = 0;
1162 adapter->rss_queues = 1;
1163 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1164 adapter->num_rx_queues = 1;
1165 adapter->num_tx_queues = 1;
1166 adapter->num_q_vectors = 1;
1167 if (!pci_enable_msi(adapter->pdev))
1168 adapter->flags |= IGB_FLAG_HAS_MSI;
1169 }
1170
1171 static void igb_add_ring(struct igb_ring *ring,
1172 struct igb_ring_container *head)
1173 {
1174 head->ring = ring;
1175 head->count++;
1176 }
1177
1178 /**
1179 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1180 * @adapter: board private structure to initialize
1181 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1182 * @v_idx: index of vector in adapter struct
1183 * @txr_count: total number of Tx rings to allocate
1184 * @txr_idx: index of first Tx ring to allocate
1185 * @rxr_count: total number of Rx rings to allocate
1186 * @rxr_idx: index of first Rx ring to allocate
1187 *
1188 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1189 **/
1190 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1191 int v_count, int v_idx,
1192 int txr_count, int txr_idx,
1193 int rxr_count, int rxr_idx)
1194 {
1195 struct igb_q_vector *q_vector;
1196 struct igb_ring *ring;
1197 int ring_count, size;
1198
1199 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1200 if (txr_count > 1 || rxr_count > 1)
1201 return -ENOMEM;
1202
1203 ring_count = txr_count + rxr_count;
1204 size = sizeof(struct igb_q_vector) +
1205 (sizeof(struct igb_ring) * ring_count);
1206
1207 /* allocate q_vector and rings */
1208 q_vector = adapter->q_vector[v_idx];
1209 if (!q_vector)
1210 q_vector = kzalloc(size, GFP_KERNEL);
1211 if (!q_vector)
1212 return -ENOMEM;
1213
1214 /* initialize NAPI */
1215 netif_napi_add(adapter->netdev, &q_vector->napi,
1216 igb_poll, 64);
1217
1218 /* tie q_vector and adapter together */
1219 adapter->q_vector[v_idx] = q_vector;
1220 q_vector->adapter = adapter;
1221
1222 /* initialize work limits */
1223 q_vector->tx.work_limit = adapter->tx_work_limit;
1224
1225 /* initialize ITR configuration */
1226 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1227 q_vector->itr_val = IGB_START_ITR;
1228
1229 /* initialize pointer to rings */
1230 ring = q_vector->ring;
1231
1232 /* intialize ITR */
1233 if (rxr_count) {
1234 /* rx or rx/tx vector */
1235 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1236 q_vector->itr_val = adapter->rx_itr_setting;
1237 } else {
1238 /* tx only vector */
1239 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1240 q_vector->itr_val = adapter->tx_itr_setting;
1241 }
1242
1243 if (txr_count) {
1244 /* assign generic ring traits */
1245 ring->dev = &adapter->pdev->dev;
1246 ring->netdev = adapter->netdev;
1247
1248 /* configure backlink on ring */
1249 ring->q_vector = q_vector;
1250
1251 /* update q_vector Tx values */
1252 igb_add_ring(ring, &q_vector->tx);
1253
1254 /* For 82575, context index must be unique per ring. */
1255 if (adapter->hw.mac.type == e1000_82575)
1256 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1257
1258 /* apply Tx specific ring traits */
1259 ring->count = adapter->tx_ring_count;
1260 ring->queue_index = txr_idx;
1261
1262 u64_stats_init(&ring->tx_syncp);
1263 u64_stats_init(&ring->tx_syncp2);
1264
1265 /* assign ring to adapter */
1266 adapter->tx_ring[txr_idx] = ring;
1267
1268 /* push pointer to next ring */
1269 ring++;
1270 }
1271
1272 if (rxr_count) {
1273 /* assign generic ring traits */
1274 ring->dev = &adapter->pdev->dev;
1275 ring->netdev = adapter->netdev;
1276
1277 /* configure backlink on ring */
1278 ring->q_vector = q_vector;
1279
1280 /* update q_vector Rx values */
1281 igb_add_ring(ring, &q_vector->rx);
1282
1283 /* set flag indicating ring supports SCTP checksum offload */
1284 if (adapter->hw.mac.type >= e1000_82576)
1285 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1286
1287 /* On i350, i354, i210, and i211, loopback VLAN packets
1288 * have the tag byte-swapped.
1289 */
1290 if (adapter->hw.mac.type >= e1000_i350)
1291 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1292
1293 /* apply Rx specific ring traits */
1294 ring->count = adapter->rx_ring_count;
1295 ring->queue_index = rxr_idx;
1296
1297 u64_stats_init(&ring->rx_syncp);
1298
1299 /* assign ring to adapter */
1300 adapter->rx_ring[rxr_idx] = ring;
1301 }
1302
1303 return 0;
1304 }
1305
1306
1307 /**
1308 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1309 * @adapter: board private structure to initialize
1310 *
1311 * We allocate one q_vector per queue interrupt. If allocation fails we
1312 * return -ENOMEM.
1313 **/
1314 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1315 {
1316 int q_vectors = adapter->num_q_vectors;
1317 int rxr_remaining = adapter->num_rx_queues;
1318 int txr_remaining = adapter->num_tx_queues;
1319 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1320 int err;
1321
1322 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1323 for (; rxr_remaining; v_idx++) {
1324 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1325 0, 0, 1, rxr_idx);
1326
1327 if (err)
1328 goto err_out;
1329
1330 /* update counts and index */
1331 rxr_remaining--;
1332 rxr_idx++;
1333 }
1334 }
1335
1336 for (; v_idx < q_vectors; v_idx++) {
1337 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1338 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1339
1340 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1341 tqpv, txr_idx, rqpv, rxr_idx);
1342
1343 if (err)
1344 goto err_out;
1345
1346 /* update counts and index */
1347 rxr_remaining -= rqpv;
1348 txr_remaining -= tqpv;
1349 rxr_idx++;
1350 txr_idx++;
1351 }
1352
1353 return 0;
1354
1355 err_out:
1356 adapter->num_tx_queues = 0;
1357 adapter->num_rx_queues = 0;
1358 adapter->num_q_vectors = 0;
1359
1360 while (v_idx--)
1361 igb_free_q_vector(adapter, v_idx);
1362
1363 return -ENOMEM;
1364 }
1365
1366 /**
1367 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1368 * @adapter: board private structure to initialize
1369 * @msix: boolean value of MSIX capability
1370 *
1371 * This function initializes the interrupts and allocates all of the queues.
1372 **/
1373 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1374 {
1375 struct pci_dev *pdev = adapter->pdev;
1376 int err;
1377
1378 igb_set_interrupt_capability(adapter, msix);
1379
1380 err = igb_alloc_q_vectors(adapter);
1381 if (err) {
1382 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1383 goto err_alloc_q_vectors;
1384 }
1385
1386 igb_cache_ring_register(adapter);
1387
1388 return 0;
1389
1390 err_alloc_q_vectors:
1391 igb_reset_interrupt_capability(adapter);
1392 return err;
1393 }
1394
1395 /**
1396 * igb_request_irq - initialize interrupts
1397 * @adapter: board private structure to initialize
1398 *
1399 * Attempts to configure interrupts using the best available
1400 * capabilities of the hardware and kernel.
1401 **/
1402 static int igb_request_irq(struct igb_adapter *adapter)
1403 {
1404 struct net_device *netdev = adapter->netdev;
1405 struct pci_dev *pdev = adapter->pdev;
1406 int err = 0;
1407
1408 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1409 err = igb_request_msix(adapter);
1410 if (!err)
1411 goto request_done;
1412 /* fall back to MSI */
1413 igb_free_all_tx_resources(adapter);
1414 igb_free_all_rx_resources(adapter);
1415
1416 igb_clear_interrupt_scheme(adapter);
1417 err = igb_init_interrupt_scheme(adapter, false);
1418 if (err)
1419 goto request_done;
1420
1421 igb_setup_all_tx_resources(adapter);
1422 igb_setup_all_rx_resources(adapter);
1423 igb_configure(adapter);
1424 }
1425
1426 igb_assign_vector(adapter->q_vector[0], 0);
1427
1428 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1429 err = request_irq(pdev->irq, igb_intr_msi, 0,
1430 netdev->name, adapter);
1431 if (!err)
1432 goto request_done;
1433
1434 /* fall back to legacy interrupts */
1435 igb_reset_interrupt_capability(adapter);
1436 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1437 }
1438
1439 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1440 netdev->name, adapter);
1441
1442 if (err)
1443 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1444 err);
1445
1446 request_done:
1447 return err;
1448 }
1449
1450 static void igb_free_irq(struct igb_adapter *adapter)
1451 {
1452 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1453 int vector = 0, i;
1454
1455 free_irq(adapter->msix_entries[vector++].vector, adapter);
1456
1457 for (i = 0; i < adapter->num_q_vectors; i++)
1458 free_irq(adapter->msix_entries[vector++].vector,
1459 adapter->q_vector[i]);
1460 } else {
1461 free_irq(adapter->pdev->irq, adapter);
1462 }
1463 }
1464
1465 /**
1466 * igb_irq_disable - Mask off interrupt generation on the NIC
1467 * @adapter: board private structure
1468 **/
1469 static void igb_irq_disable(struct igb_adapter *adapter)
1470 {
1471 struct e1000_hw *hw = &adapter->hw;
1472
1473 /* we need to be careful when disabling interrupts. The VFs are also
1474 * mapped into these registers and so clearing the bits can cause
1475 * issues on the VF drivers so we only need to clear what we set
1476 */
1477 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1478 u32 regval = rd32(E1000_EIAM);
1479
1480 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1481 wr32(E1000_EIMC, adapter->eims_enable_mask);
1482 regval = rd32(E1000_EIAC);
1483 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484 }
1485
1486 wr32(E1000_IAM, 0);
1487 wr32(E1000_IMC, ~0);
1488 wrfl();
1489 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490 int i;
1491
1492 for (i = 0; i < adapter->num_q_vectors; i++)
1493 synchronize_irq(adapter->msix_entries[i].vector);
1494 } else {
1495 synchronize_irq(adapter->pdev->irq);
1496 }
1497 }
1498
1499 /**
1500 * igb_irq_enable - Enable default interrupt generation settings
1501 * @adapter: board private structure
1502 **/
1503 static void igb_irq_enable(struct igb_adapter *adapter)
1504 {
1505 struct e1000_hw *hw = &adapter->hw;
1506
1507 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1509 u32 regval = rd32(E1000_EIAC);
1510
1511 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1512 regval = rd32(E1000_EIAM);
1513 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1514 wr32(E1000_EIMS, adapter->eims_enable_mask);
1515 if (adapter->vfs_allocated_count) {
1516 wr32(E1000_MBVFIMR, 0xFF);
1517 ims |= E1000_IMS_VMMB;
1518 }
1519 wr32(E1000_IMS, ims);
1520 } else {
1521 wr32(E1000_IMS, IMS_ENABLE_MASK |
1522 E1000_IMS_DRSTA);
1523 wr32(E1000_IAM, IMS_ENABLE_MASK |
1524 E1000_IMS_DRSTA);
1525 }
1526 }
1527
1528 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1529 {
1530 struct e1000_hw *hw = &adapter->hw;
1531 u16 vid = adapter->hw.mng_cookie.vlan_id;
1532 u16 old_vid = adapter->mng_vlan_id;
1533
1534 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1535 /* add VID to filter table */
1536 igb_vfta_set(hw, vid, true);
1537 adapter->mng_vlan_id = vid;
1538 } else {
1539 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1540 }
1541
1542 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1543 (vid != old_vid) &&
1544 !test_bit(old_vid, adapter->active_vlans)) {
1545 /* remove VID from filter table */
1546 igb_vfta_set(hw, old_vid, false);
1547 }
1548 }
1549
1550 /**
1551 * igb_release_hw_control - release control of the h/w to f/w
1552 * @adapter: address of board private structure
1553 *
1554 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1555 * For ASF and Pass Through versions of f/w this means that the
1556 * driver is no longer loaded.
1557 **/
1558 static void igb_release_hw_control(struct igb_adapter *adapter)
1559 {
1560 struct e1000_hw *hw = &adapter->hw;
1561 u32 ctrl_ext;
1562
1563 /* Let firmware take over control of h/w */
1564 ctrl_ext = rd32(E1000_CTRL_EXT);
1565 wr32(E1000_CTRL_EXT,
1566 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1567 }
1568
1569 /**
1570 * igb_get_hw_control - get control of the h/w from f/w
1571 * @adapter: address of board private structure
1572 *
1573 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1574 * For ASF and Pass Through versions of f/w this means that
1575 * the driver is loaded.
1576 **/
1577 static void igb_get_hw_control(struct igb_adapter *adapter)
1578 {
1579 struct e1000_hw *hw = &adapter->hw;
1580 u32 ctrl_ext;
1581
1582 /* Let firmware know the driver has taken over */
1583 ctrl_ext = rd32(E1000_CTRL_EXT);
1584 wr32(E1000_CTRL_EXT,
1585 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1586 }
1587
1588 /**
1589 * igb_configure - configure the hardware for RX and TX
1590 * @adapter: private board structure
1591 **/
1592 static void igb_configure(struct igb_adapter *adapter)
1593 {
1594 struct net_device *netdev = adapter->netdev;
1595 int i;
1596
1597 igb_get_hw_control(adapter);
1598 igb_set_rx_mode(netdev);
1599
1600 igb_restore_vlan(adapter);
1601
1602 igb_setup_tctl(adapter);
1603 igb_setup_mrqc(adapter);
1604 igb_setup_rctl(adapter);
1605
1606 igb_configure_tx(adapter);
1607 igb_configure_rx(adapter);
1608
1609 igb_rx_fifo_flush_82575(&adapter->hw);
1610
1611 /* call igb_desc_unused which always leaves
1612 * at least 1 descriptor unused to make sure
1613 * next_to_use != next_to_clean
1614 */
1615 for (i = 0; i < adapter->num_rx_queues; i++) {
1616 struct igb_ring *ring = adapter->rx_ring[i];
1617 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1618 }
1619 }
1620
1621 /**
1622 * igb_power_up_link - Power up the phy/serdes link
1623 * @adapter: address of board private structure
1624 **/
1625 void igb_power_up_link(struct igb_adapter *adapter)
1626 {
1627 igb_reset_phy(&adapter->hw);
1628
1629 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1630 igb_power_up_phy_copper(&adapter->hw);
1631 else
1632 igb_power_up_serdes_link_82575(&adapter->hw);
1633 }
1634
1635 /**
1636 * igb_power_down_link - Power down the phy/serdes link
1637 * @adapter: address of board private structure
1638 */
1639 static void igb_power_down_link(struct igb_adapter *adapter)
1640 {
1641 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1642 igb_power_down_phy_copper_82575(&adapter->hw);
1643 else
1644 igb_shutdown_serdes_link_82575(&adapter->hw);
1645 }
1646
1647 /**
1648 * Detect and switch function for Media Auto Sense
1649 * @adapter: address of the board private structure
1650 **/
1651 static void igb_check_swap_media(struct igb_adapter *adapter)
1652 {
1653 struct e1000_hw *hw = &adapter->hw;
1654 u32 ctrl_ext, connsw;
1655 bool swap_now = false;
1656
1657 ctrl_ext = rd32(E1000_CTRL_EXT);
1658 connsw = rd32(E1000_CONNSW);
1659
1660 /* need to live swap if current media is copper and we have fiber/serdes
1661 * to go to.
1662 */
1663
1664 if ((hw->phy.media_type == e1000_media_type_copper) &&
1665 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1666 swap_now = true;
1667 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1668 /* copper signal takes time to appear */
1669 if (adapter->copper_tries < 4) {
1670 adapter->copper_tries++;
1671 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1672 wr32(E1000_CONNSW, connsw);
1673 return;
1674 } else {
1675 adapter->copper_tries = 0;
1676 if ((connsw & E1000_CONNSW_PHYSD) &&
1677 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1678 swap_now = true;
1679 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1680 wr32(E1000_CONNSW, connsw);
1681 }
1682 }
1683 }
1684
1685 if (!swap_now)
1686 return;
1687
1688 switch (hw->phy.media_type) {
1689 case e1000_media_type_copper:
1690 netdev_info(adapter->netdev,
1691 "MAS: changing media to fiber/serdes\n");
1692 ctrl_ext |=
1693 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1694 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1695 adapter->copper_tries = 0;
1696 break;
1697 case e1000_media_type_internal_serdes:
1698 case e1000_media_type_fiber:
1699 netdev_info(adapter->netdev,
1700 "MAS: changing media to copper\n");
1701 ctrl_ext &=
1702 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1703 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1704 break;
1705 default:
1706 /* shouldn't get here during regular operation */
1707 netdev_err(adapter->netdev,
1708 "AMS: Invalid media type found, returning\n");
1709 break;
1710 }
1711 wr32(E1000_CTRL_EXT, ctrl_ext);
1712 }
1713
1714 /**
1715 * igb_up - Open the interface and prepare it to handle traffic
1716 * @adapter: board private structure
1717 **/
1718 int igb_up(struct igb_adapter *adapter)
1719 {
1720 struct e1000_hw *hw = &adapter->hw;
1721 int i;
1722
1723 /* hardware has been reset, we need to reload some things */
1724 igb_configure(adapter);
1725
1726 clear_bit(__IGB_DOWN, &adapter->state);
1727
1728 for (i = 0; i < adapter->num_q_vectors; i++)
1729 napi_enable(&(adapter->q_vector[i]->napi));
1730
1731 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1732 igb_configure_msix(adapter);
1733 else
1734 igb_assign_vector(adapter->q_vector[0], 0);
1735
1736 /* Clear any pending interrupts. */
1737 rd32(E1000_ICR);
1738 igb_irq_enable(adapter);
1739
1740 /* notify VFs that reset has been completed */
1741 if (adapter->vfs_allocated_count) {
1742 u32 reg_data = rd32(E1000_CTRL_EXT);
1743
1744 reg_data |= E1000_CTRL_EXT_PFRSTD;
1745 wr32(E1000_CTRL_EXT, reg_data);
1746 }
1747
1748 netif_tx_start_all_queues(adapter->netdev);
1749
1750 /* start the watchdog. */
1751 hw->mac.get_link_status = 1;
1752 schedule_work(&adapter->watchdog_task);
1753
1754 if ((adapter->flags & IGB_FLAG_EEE) &&
1755 (!hw->dev_spec._82575.eee_disable))
1756 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1757
1758 return 0;
1759 }
1760
1761 void igb_down(struct igb_adapter *adapter)
1762 {
1763 struct net_device *netdev = adapter->netdev;
1764 struct e1000_hw *hw = &adapter->hw;
1765 u32 tctl, rctl;
1766 int i;
1767
1768 /* signal that we're down so the interrupt handler does not
1769 * reschedule our watchdog timer
1770 */
1771 set_bit(__IGB_DOWN, &adapter->state);
1772
1773 /* disable receives in the hardware */
1774 rctl = rd32(E1000_RCTL);
1775 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1776 /* flush and sleep below */
1777
1778 netif_tx_stop_all_queues(netdev);
1779
1780 /* disable transmits in the hardware */
1781 tctl = rd32(E1000_TCTL);
1782 tctl &= ~E1000_TCTL_EN;
1783 wr32(E1000_TCTL, tctl);
1784 /* flush both disables and wait for them to finish */
1785 wrfl();
1786 usleep_range(10000, 11000);
1787
1788 igb_irq_disable(adapter);
1789
1790 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1791
1792 for (i = 0; i < adapter->num_q_vectors; i++) {
1793 napi_synchronize(&(adapter->q_vector[i]->napi));
1794 napi_disable(&(adapter->q_vector[i]->napi));
1795 }
1796
1797
1798 del_timer_sync(&adapter->watchdog_timer);
1799 del_timer_sync(&adapter->phy_info_timer);
1800
1801 netif_carrier_off(netdev);
1802
1803 /* record the stats before reset*/
1804 spin_lock(&adapter->stats64_lock);
1805 igb_update_stats(adapter, &adapter->stats64);
1806 spin_unlock(&adapter->stats64_lock);
1807
1808 adapter->link_speed = 0;
1809 adapter->link_duplex = 0;
1810
1811 if (!pci_channel_offline(adapter->pdev))
1812 igb_reset(adapter);
1813 igb_clean_all_tx_rings(adapter);
1814 igb_clean_all_rx_rings(adapter);
1815 #ifdef CONFIG_IGB_DCA
1816
1817 /* since we reset the hardware DCA settings were cleared */
1818 igb_setup_dca(adapter);
1819 #endif
1820 }
1821
1822 void igb_reinit_locked(struct igb_adapter *adapter)
1823 {
1824 WARN_ON(in_interrupt());
1825 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1826 usleep_range(1000, 2000);
1827 igb_down(adapter);
1828 igb_up(adapter);
1829 clear_bit(__IGB_RESETTING, &adapter->state);
1830 }
1831
1832 /** igb_enable_mas - Media Autosense re-enable after swap
1833 *
1834 * @adapter: adapter struct
1835 **/
1836 static s32 igb_enable_mas(struct igb_adapter *adapter)
1837 {
1838 struct e1000_hw *hw = &adapter->hw;
1839 u32 connsw;
1840 s32 ret_val = 0;
1841
1842 connsw = rd32(E1000_CONNSW);
1843 if (!(hw->phy.media_type == e1000_media_type_copper))
1844 return ret_val;
1845
1846 /* configure for SerDes media detect */
1847 if (!(connsw & E1000_CONNSW_SERDESD)) {
1848 connsw |= E1000_CONNSW_ENRGSRC;
1849 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1850 wr32(E1000_CONNSW, connsw);
1851 wrfl();
1852 } else if (connsw & E1000_CONNSW_SERDESD) {
1853 /* already SerDes, no need to enable anything */
1854 return ret_val;
1855 } else {
1856 netdev_info(adapter->netdev,
1857 "MAS: Unable to configure feature, disabling..\n");
1858 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1859 }
1860 return ret_val;
1861 }
1862
1863 void igb_reset(struct igb_adapter *adapter)
1864 {
1865 struct pci_dev *pdev = adapter->pdev;
1866 struct e1000_hw *hw = &adapter->hw;
1867 struct e1000_mac_info *mac = &hw->mac;
1868 struct e1000_fc_info *fc = &hw->fc;
1869 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1870
1871 /* Repartition Pba for greater than 9k mtu
1872 * To take effect CTRL.RST is required.
1873 */
1874 switch (mac->type) {
1875 case e1000_i350:
1876 case e1000_i354:
1877 case e1000_82580:
1878 pba = rd32(E1000_RXPBS);
1879 pba = igb_rxpbs_adjust_82580(pba);
1880 break;
1881 case e1000_82576:
1882 pba = rd32(E1000_RXPBS);
1883 pba &= E1000_RXPBS_SIZE_MASK_82576;
1884 break;
1885 case e1000_82575:
1886 case e1000_i210:
1887 case e1000_i211:
1888 default:
1889 pba = E1000_PBA_34K;
1890 break;
1891 }
1892
1893 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1894 (mac->type < e1000_82576)) {
1895 /* adjust PBA for jumbo frames */
1896 wr32(E1000_PBA, pba);
1897
1898 /* To maintain wire speed transmits, the Tx FIFO should be
1899 * large enough to accommodate two full transmit packets,
1900 * rounded up to the next 1KB and expressed in KB. Likewise,
1901 * the Rx FIFO should be large enough to accommodate at least
1902 * one full receive packet and is similarly rounded up and
1903 * expressed in KB.
1904 */
1905 pba = rd32(E1000_PBA);
1906 /* upper 16 bits has Tx packet buffer allocation size in KB */
1907 tx_space = pba >> 16;
1908 /* lower 16 bits has Rx packet buffer allocation size in KB */
1909 pba &= 0xffff;
1910 /* the Tx fifo also stores 16 bytes of information about the Tx
1911 * but don't include ethernet FCS because hardware appends it
1912 */
1913 min_tx_space = (adapter->max_frame_size +
1914 sizeof(union e1000_adv_tx_desc) -
1915 ETH_FCS_LEN) * 2;
1916 min_tx_space = ALIGN(min_tx_space, 1024);
1917 min_tx_space >>= 10;
1918 /* software strips receive CRC, so leave room for it */
1919 min_rx_space = adapter->max_frame_size;
1920 min_rx_space = ALIGN(min_rx_space, 1024);
1921 min_rx_space >>= 10;
1922
1923 /* If current Tx allocation is less than the min Tx FIFO size,
1924 * and the min Tx FIFO size is less than the current Rx FIFO
1925 * allocation, take space away from current Rx allocation
1926 */
1927 if (tx_space < min_tx_space &&
1928 ((min_tx_space - tx_space) < pba)) {
1929 pba = pba - (min_tx_space - tx_space);
1930
1931 /* if short on Rx space, Rx wins and must trump Tx
1932 * adjustment
1933 */
1934 if (pba < min_rx_space)
1935 pba = min_rx_space;
1936 }
1937 wr32(E1000_PBA, pba);
1938 }
1939
1940 /* flow control settings */
1941 /* The high water mark must be low enough to fit one full frame
1942 * (or the size used for early receive) above it in the Rx FIFO.
1943 * Set it to the lower of:
1944 * - 90% of the Rx FIFO size, or
1945 * - the full Rx FIFO size minus one full frame
1946 */
1947 hwm = min(((pba << 10) * 9 / 10),
1948 ((pba << 10) - 2 * adapter->max_frame_size));
1949
1950 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1951 fc->low_water = fc->high_water - 16;
1952 fc->pause_time = 0xFFFF;
1953 fc->send_xon = 1;
1954 fc->current_mode = fc->requested_mode;
1955
1956 /* disable receive for all VFs and wait one second */
1957 if (adapter->vfs_allocated_count) {
1958 int i;
1959
1960 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1961 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1962
1963 /* ping all the active vfs to let them know we are going down */
1964 igb_ping_all_vfs(adapter);
1965
1966 /* disable transmits and receives */
1967 wr32(E1000_VFRE, 0);
1968 wr32(E1000_VFTE, 0);
1969 }
1970
1971 /* Allow time for pending master requests to run */
1972 hw->mac.ops.reset_hw(hw);
1973 wr32(E1000_WUC, 0);
1974
1975 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1976 /* need to resetup here after media swap */
1977 adapter->ei.get_invariants(hw);
1978 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1979 }
1980 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1981 if (igb_enable_mas(adapter))
1982 dev_err(&pdev->dev,
1983 "Error enabling Media Auto Sense\n");
1984 }
1985 if (hw->mac.ops.init_hw(hw))
1986 dev_err(&pdev->dev, "Hardware Error\n");
1987
1988 /* Flow control settings reset on hardware reset, so guarantee flow
1989 * control is off when forcing speed.
1990 */
1991 if (!hw->mac.autoneg)
1992 igb_force_mac_fc(hw);
1993
1994 igb_init_dmac(adapter, pba);
1995 #ifdef CONFIG_IGB_HWMON
1996 /* Re-initialize the thermal sensor on i350 devices. */
1997 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1998 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1999 /* If present, re-initialize the external thermal sensor
2000 * interface.
2001 */
2002 if (adapter->ets)
2003 mac->ops.init_thermal_sensor_thresh(hw);
2004 }
2005 }
2006 #endif
2007 /* Re-establish EEE setting */
2008 if (hw->phy.media_type == e1000_media_type_copper) {
2009 switch (mac->type) {
2010 case e1000_i350:
2011 case e1000_i210:
2012 case e1000_i211:
2013 igb_set_eee_i350(hw);
2014 break;
2015 case e1000_i354:
2016 igb_set_eee_i354(hw);
2017 break;
2018 default:
2019 break;
2020 }
2021 }
2022 if (!netif_running(adapter->netdev))
2023 igb_power_down_link(adapter);
2024
2025 igb_update_mng_vlan(adapter);
2026
2027 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2028 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2029
2030 /* Re-enable PTP, where applicable. */
2031 igb_ptp_reset(adapter);
2032
2033 igb_get_phy_info(hw);
2034 }
2035
2036 static netdev_features_t igb_fix_features(struct net_device *netdev,
2037 netdev_features_t features)
2038 {
2039 /* Since there is no support for separate Rx/Tx vlan accel
2040 * enable/disable make sure Tx flag is always in same state as Rx.
2041 */
2042 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2043 features |= NETIF_F_HW_VLAN_CTAG_TX;
2044 else
2045 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2046
2047 return features;
2048 }
2049
2050 static int igb_set_features(struct net_device *netdev,
2051 netdev_features_t features)
2052 {
2053 netdev_features_t changed = netdev->features ^ features;
2054 struct igb_adapter *adapter = netdev_priv(netdev);
2055
2056 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2057 igb_vlan_mode(netdev, features);
2058
2059 if (!(changed & NETIF_F_RXALL))
2060 return 0;
2061
2062 netdev->features = features;
2063
2064 if (netif_running(netdev))
2065 igb_reinit_locked(adapter);
2066 else
2067 igb_reset(adapter);
2068
2069 return 0;
2070 }
2071
2072 static const struct net_device_ops igb_netdev_ops = {
2073 .ndo_open = igb_open,
2074 .ndo_stop = igb_close,
2075 .ndo_start_xmit = igb_xmit_frame,
2076 .ndo_get_stats64 = igb_get_stats64,
2077 .ndo_set_rx_mode = igb_set_rx_mode,
2078 .ndo_set_mac_address = igb_set_mac,
2079 .ndo_change_mtu = igb_change_mtu,
2080 .ndo_do_ioctl = igb_ioctl,
2081 .ndo_tx_timeout = igb_tx_timeout,
2082 .ndo_validate_addr = eth_validate_addr,
2083 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2084 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2085 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2086 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2087 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2088 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2089 .ndo_get_vf_config = igb_ndo_get_vf_config,
2090 #ifdef CONFIG_NET_POLL_CONTROLLER
2091 .ndo_poll_controller = igb_netpoll,
2092 #endif
2093 .ndo_fix_features = igb_fix_features,
2094 .ndo_set_features = igb_set_features,
2095 };
2096
2097 /**
2098 * igb_set_fw_version - Configure version string for ethtool
2099 * @adapter: adapter struct
2100 **/
2101 void igb_set_fw_version(struct igb_adapter *adapter)
2102 {
2103 struct e1000_hw *hw = &adapter->hw;
2104 struct e1000_fw_version fw;
2105
2106 igb_get_fw_version(hw, &fw);
2107
2108 switch (hw->mac.type) {
2109 case e1000_i210:
2110 case e1000_i211:
2111 if (!(igb_get_flash_presence_i210(hw))) {
2112 snprintf(adapter->fw_version,
2113 sizeof(adapter->fw_version),
2114 "%2d.%2d-%d",
2115 fw.invm_major, fw.invm_minor,
2116 fw.invm_img_type);
2117 break;
2118 }
2119 /* fall through */
2120 default:
2121 /* if option is rom valid, display its version too */
2122 if (fw.or_valid) {
2123 snprintf(adapter->fw_version,
2124 sizeof(adapter->fw_version),
2125 "%d.%d, 0x%08x, %d.%d.%d",
2126 fw.eep_major, fw.eep_minor, fw.etrack_id,
2127 fw.or_major, fw.or_build, fw.or_patch);
2128 /* no option rom */
2129 } else if (fw.etrack_id != 0X0000) {
2130 snprintf(adapter->fw_version,
2131 sizeof(adapter->fw_version),
2132 "%d.%d, 0x%08x",
2133 fw.eep_major, fw.eep_minor, fw.etrack_id);
2134 } else {
2135 snprintf(adapter->fw_version,
2136 sizeof(adapter->fw_version),
2137 "%d.%d.%d",
2138 fw.eep_major, fw.eep_minor, fw.eep_build);
2139 }
2140 break;
2141 }
2142 }
2143
2144 /**
2145 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2146 *
2147 * @adapter: adapter struct
2148 **/
2149 static void igb_init_mas(struct igb_adapter *adapter)
2150 {
2151 struct e1000_hw *hw = &adapter->hw;
2152 u16 eeprom_data;
2153
2154 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2155 switch (hw->bus.func) {
2156 case E1000_FUNC_0:
2157 if (eeprom_data & IGB_MAS_ENABLE_0) {
2158 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2159 netdev_info(adapter->netdev,
2160 "MAS: Enabling Media Autosense for port %d\n",
2161 hw->bus.func);
2162 }
2163 break;
2164 case E1000_FUNC_1:
2165 if (eeprom_data & IGB_MAS_ENABLE_1) {
2166 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2167 netdev_info(adapter->netdev,
2168 "MAS: Enabling Media Autosense for port %d\n",
2169 hw->bus.func);
2170 }
2171 break;
2172 case E1000_FUNC_2:
2173 if (eeprom_data & IGB_MAS_ENABLE_2) {
2174 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2175 netdev_info(adapter->netdev,
2176 "MAS: Enabling Media Autosense for port %d\n",
2177 hw->bus.func);
2178 }
2179 break;
2180 case E1000_FUNC_3:
2181 if (eeprom_data & IGB_MAS_ENABLE_3) {
2182 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2183 netdev_info(adapter->netdev,
2184 "MAS: Enabling Media Autosense for port %d\n",
2185 hw->bus.func);
2186 }
2187 break;
2188 default:
2189 /* Shouldn't get here */
2190 netdev_err(adapter->netdev,
2191 "MAS: Invalid port configuration, returning\n");
2192 break;
2193 }
2194 }
2195
2196 /**
2197 * igb_init_i2c - Init I2C interface
2198 * @adapter: pointer to adapter structure
2199 **/
2200 static s32 igb_init_i2c(struct igb_adapter *adapter)
2201 {
2202 s32 status = E1000_SUCCESS;
2203
2204 /* I2C interface supported on i350 devices */
2205 if (adapter->hw.mac.type != e1000_i350)
2206 return E1000_SUCCESS;
2207
2208 /* Initialize the i2c bus which is controlled by the registers.
2209 * This bus will use the i2c_algo_bit structue that implements
2210 * the protocol through toggling of the 4 bits in the register.
2211 */
2212 adapter->i2c_adap.owner = THIS_MODULE;
2213 adapter->i2c_algo = igb_i2c_algo;
2214 adapter->i2c_algo.data = adapter;
2215 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2216 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2217 strlcpy(adapter->i2c_adap.name, "igb BB",
2218 sizeof(adapter->i2c_adap.name));
2219 status = i2c_bit_add_bus(&adapter->i2c_adap);
2220 return status;
2221 }
2222
2223 /**
2224 * igb_probe - Device Initialization Routine
2225 * @pdev: PCI device information struct
2226 * @ent: entry in igb_pci_tbl
2227 *
2228 * Returns 0 on success, negative on failure
2229 *
2230 * igb_probe initializes an adapter identified by a pci_dev structure.
2231 * The OS initialization, configuring of the adapter private structure,
2232 * and a hardware reset occur.
2233 **/
2234 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2235 {
2236 struct net_device *netdev;
2237 struct igb_adapter *adapter;
2238 struct e1000_hw *hw;
2239 u16 eeprom_data = 0;
2240 s32 ret_val;
2241 static int global_quad_port_a; /* global quad port a indication */
2242 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2243 int err, pci_using_dac;
2244 u8 part_str[E1000_PBANUM_LENGTH];
2245
2246 /* Catch broken hardware that put the wrong VF device ID in
2247 * the PCIe SR-IOV capability.
2248 */
2249 if (pdev->is_virtfn) {
2250 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2251 pci_name(pdev), pdev->vendor, pdev->device);
2252 return -EINVAL;
2253 }
2254
2255 err = pci_enable_device_mem(pdev);
2256 if (err)
2257 return err;
2258
2259 pci_using_dac = 0;
2260 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2261 if (!err) {
2262 pci_using_dac = 1;
2263 } else {
2264 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2265 if (err) {
2266 dev_err(&pdev->dev,
2267 "No usable DMA configuration, aborting\n");
2268 goto err_dma;
2269 }
2270 }
2271
2272 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2273 IORESOURCE_MEM),
2274 igb_driver_name);
2275 if (err)
2276 goto err_pci_reg;
2277
2278 pci_enable_pcie_error_reporting(pdev);
2279
2280 pci_set_master(pdev);
2281 pci_save_state(pdev);
2282
2283 err = -ENOMEM;
2284 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2285 IGB_MAX_TX_QUEUES);
2286 if (!netdev)
2287 goto err_alloc_etherdev;
2288
2289 SET_NETDEV_DEV(netdev, &pdev->dev);
2290
2291 pci_set_drvdata(pdev, netdev);
2292 adapter = netdev_priv(netdev);
2293 adapter->netdev = netdev;
2294 adapter->pdev = pdev;
2295 hw = &adapter->hw;
2296 hw->back = adapter;
2297 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2298
2299 err = -EIO;
2300 hw->hw_addr = pci_iomap(pdev, 0, 0);
2301 if (!hw->hw_addr)
2302 goto err_ioremap;
2303
2304 netdev->netdev_ops = &igb_netdev_ops;
2305 igb_set_ethtool_ops(netdev);
2306 netdev->watchdog_timeo = 5 * HZ;
2307
2308 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2309
2310 netdev->mem_start = pci_resource_start(pdev, 0);
2311 netdev->mem_end = pci_resource_end(pdev, 0);
2312
2313 /* PCI config space info */
2314 hw->vendor_id = pdev->vendor;
2315 hw->device_id = pdev->device;
2316 hw->revision_id = pdev->revision;
2317 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2318 hw->subsystem_device_id = pdev->subsystem_device;
2319
2320 /* Copy the default MAC, PHY and NVM function pointers */
2321 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2322 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2323 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2324 /* Initialize skew-specific constants */
2325 err = ei->get_invariants(hw);
2326 if (err)
2327 goto err_sw_init;
2328
2329 /* setup the private structure */
2330 err = igb_sw_init(adapter);
2331 if (err)
2332 goto err_sw_init;
2333
2334 igb_get_bus_info_pcie(hw);
2335
2336 hw->phy.autoneg_wait_to_complete = false;
2337
2338 /* Copper options */
2339 if (hw->phy.media_type == e1000_media_type_copper) {
2340 hw->phy.mdix = AUTO_ALL_MODES;
2341 hw->phy.disable_polarity_correction = false;
2342 hw->phy.ms_type = e1000_ms_hw_default;
2343 }
2344
2345 if (igb_check_reset_block(hw))
2346 dev_info(&pdev->dev,
2347 "PHY reset is blocked due to SOL/IDER session.\n");
2348
2349 /* features is initialized to 0 in allocation, it might have bits
2350 * set by igb_sw_init so we should use an or instead of an
2351 * assignment.
2352 */
2353 netdev->features |= NETIF_F_SG |
2354 NETIF_F_IP_CSUM |
2355 NETIF_F_IPV6_CSUM |
2356 NETIF_F_TSO |
2357 NETIF_F_TSO6 |
2358 NETIF_F_RXHASH |
2359 NETIF_F_RXCSUM |
2360 NETIF_F_HW_VLAN_CTAG_RX |
2361 NETIF_F_HW_VLAN_CTAG_TX;
2362
2363 /* copy netdev features into list of user selectable features */
2364 netdev->hw_features |= netdev->features;
2365 netdev->hw_features |= NETIF_F_RXALL;
2366
2367 /* set this bit last since it cannot be part of hw_features */
2368 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2369
2370 netdev->vlan_features |= NETIF_F_TSO |
2371 NETIF_F_TSO6 |
2372 NETIF_F_IP_CSUM |
2373 NETIF_F_IPV6_CSUM |
2374 NETIF_F_SG;
2375
2376 netdev->priv_flags |= IFF_SUPP_NOFCS;
2377
2378 if (pci_using_dac) {
2379 netdev->features |= NETIF_F_HIGHDMA;
2380 netdev->vlan_features |= NETIF_F_HIGHDMA;
2381 }
2382
2383 if (hw->mac.type >= e1000_82576) {
2384 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2385 netdev->features |= NETIF_F_SCTP_CSUM;
2386 }
2387
2388 netdev->priv_flags |= IFF_UNICAST_FLT;
2389
2390 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2391
2392 /* before reading the NVM, reset the controller to put the device in a
2393 * known good starting state
2394 */
2395 hw->mac.ops.reset_hw(hw);
2396
2397 /* make sure the NVM is good , i211/i210 parts can have special NVM
2398 * that doesn't contain a checksum
2399 */
2400 switch (hw->mac.type) {
2401 case e1000_i210:
2402 case e1000_i211:
2403 if (igb_get_flash_presence_i210(hw)) {
2404 if (hw->nvm.ops.validate(hw) < 0) {
2405 dev_err(&pdev->dev,
2406 "The NVM Checksum Is Not Valid\n");
2407 err = -EIO;
2408 goto err_eeprom;
2409 }
2410 }
2411 break;
2412 default:
2413 if (hw->nvm.ops.validate(hw) < 0) {
2414 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2415 err = -EIO;
2416 goto err_eeprom;
2417 }
2418 break;
2419 }
2420
2421 /* copy the MAC address out of the NVM */
2422 if (hw->mac.ops.read_mac_addr(hw))
2423 dev_err(&pdev->dev, "NVM Read Error\n");
2424
2425 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2426
2427 if (!is_valid_ether_addr(netdev->dev_addr)) {
2428 dev_err(&pdev->dev, "Invalid MAC Address\n");
2429 err = -EIO;
2430 goto err_eeprom;
2431 }
2432
2433 /* get firmware version for ethtool -i */
2434 igb_set_fw_version(adapter);
2435
2436 /* configure RXPBSIZE and TXPBSIZE */
2437 if (hw->mac.type == e1000_i210) {
2438 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2439 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2440 }
2441
2442 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2443 (unsigned long) adapter);
2444 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2445 (unsigned long) adapter);
2446
2447 INIT_WORK(&adapter->reset_task, igb_reset_task);
2448 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2449
2450 /* Initialize link properties that are user-changeable */
2451 adapter->fc_autoneg = true;
2452 hw->mac.autoneg = true;
2453 hw->phy.autoneg_advertised = 0x2f;
2454
2455 hw->fc.requested_mode = e1000_fc_default;
2456 hw->fc.current_mode = e1000_fc_default;
2457
2458 igb_validate_mdi_setting(hw);
2459
2460 /* By default, support wake on port A */
2461 if (hw->bus.func == 0)
2462 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2463
2464 /* Check the NVM for wake support on non-port A ports */
2465 if (hw->mac.type >= e1000_82580)
2466 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2467 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2468 &eeprom_data);
2469 else if (hw->bus.func == 1)
2470 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2471
2472 if (eeprom_data & IGB_EEPROM_APME)
2473 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2474
2475 /* now that we have the eeprom settings, apply the special cases where
2476 * the eeprom may be wrong or the board simply won't support wake on
2477 * lan on a particular port
2478 */
2479 switch (pdev->device) {
2480 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2481 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2482 break;
2483 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2484 case E1000_DEV_ID_82576_FIBER:
2485 case E1000_DEV_ID_82576_SERDES:
2486 /* Wake events only supported on port A for dual fiber
2487 * regardless of eeprom setting
2488 */
2489 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2490 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2491 break;
2492 case E1000_DEV_ID_82576_QUAD_COPPER:
2493 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2494 /* if quad port adapter, disable WoL on all but port A */
2495 if (global_quad_port_a != 0)
2496 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2497 else
2498 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2499 /* Reset for multiple quad port adapters */
2500 if (++global_quad_port_a == 4)
2501 global_quad_port_a = 0;
2502 break;
2503 default:
2504 /* If the device can't wake, don't set software support */
2505 if (!device_can_wakeup(&adapter->pdev->dev))
2506 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2507 }
2508
2509 /* initialize the wol settings based on the eeprom settings */
2510 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2511 adapter->wol |= E1000_WUFC_MAG;
2512
2513 /* Some vendors want WoL disabled by default, but still supported */
2514 if ((hw->mac.type == e1000_i350) &&
2515 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2516 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2517 adapter->wol = 0;
2518 }
2519
2520 device_set_wakeup_enable(&adapter->pdev->dev,
2521 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2522
2523 /* reset the hardware with the new settings */
2524 igb_reset(adapter);
2525
2526 /* Init the I2C interface */
2527 err = igb_init_i2c(adapter);
2528 if (err) {
2529 dev_err(&pdev->dev, "failed to init i2c interface\n");
2530 goto err_eeprom;
2531 }
2532
2533 /* let the f/w know that the h/w is now under the control of the
2534 * driver.
2535 */
2536 igb_get_hw_control(adapter);
2537
2538 strcpy(netdev->name, "eth%d");
2539 err = register_netdev(netdev);
2540 if (err)
2541 goto err_register;
2542
2543 /* carrier off reporting is important to ethtool even BEFORE open */
2544 netif_carrier_off(netdev);
2545
2546 #ifdef CONFIG_IGB_DCA
2547 if (dca_add_requester(&pdev->dev) == 0) {
2548 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2549 dev_info(&pdev->dev, "DCA enabled\n");
2550 igb_setup_dca(adapter);
2551 }
2552
2553 #endif
2554 #ifdef CONFIG_IGB_HWMON
2555 /* Initialize the thermal sensor on i350 devices. */
2556 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2557 u16 ets_word;
2558
2559 /* Read the NVM to determine if this i350 device supports an
2560 * external thermal sensor.
2561 */
2562 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2563 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2564 adapter->ets = true;
2565 else
2566 adapter->ets = false;
2567 if (igb_sysfs_init(adapter))
2568 dev_err(&pdev->dev,
2569 "failed to allocate sysfs resources\n");
2570 } else {
2571 adapter->ets = false;
2572 }
2573 #endif
2574 /* Check if Media Autosense is enabled */
2575 adapter->ei = *ei;
2576 if (hw->dev_spec._82575.mas_capable)
2577 igb_init_mas(adapter);
2578
2579 /* do hw tstamp init after resetting */
2580 igb_ptp_init(adapter);
2581
2582 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2583 /* print bus type/speed/width info, not applicable to i354 */
2584 if (hw->mac.type != e1000_i354) {
2585 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2586 netdev->name,
2587 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2588 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2589 "unknown"),
2590 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2591 "Width x4" :
2592 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2593 "Width x2" :
2594 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2595 "Width x1" : "unknown"), netdev->dev_addr);
2596 }
2597
2598 if ((hw->mac.type >= e1000_i210 ||
2599 igb_get_flash_presence_i210(hw))) {
2600 ret_val = igb_read_part_string(hw, part_str,
2601 E1000_PBANUM_LENGTH);
2602 } else {
2603 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2604 }
2605
2606 if (ret_val)
2607 strcpy(part_str, "Unknown");
2608 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2609 dev_info(&pdev->dev,
2610 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2611 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2612 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2613 adapter->num_rx_queues, adapter->num_tx_queues);
2614 if (hw->phy.media_type == e1000_media_type_copper) {
2615 switch (hw->mac.type) {
2616 case e1000_i350:
2617 case e1000_i210:
2618 case e1000_i211:
2619 /* Enable EEE for internal copper PHY devices */
2620 err = igb_set_eee_i350(hw);
2621 if ((!err) &&
2622 (!hw->dev_spec._82575.eee_disable)) {
2623 adapter->eee_advert =
2624 MDIO_EEE_100TX | MDIO_EEE_1000T;
2625 adapter->flags |= IGB_FLAG_EEE;
2626 }
2627 break;
2628 case e1000_i354:
2629 if ((rd32(E1000_CTRL_EXT) &
2630 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2631 err = igb_set_eee_i354(hw);
2632 if ((!err) &&
2633 (!hw->dev_spec._82575.eee_disable)) {
2634 adapter->eee_advert =
2635 MDIO_EEE_100TX | MDIO_EEE_1000T;
2636 adapter->flags |= IGB_FLAG_EEE;
2637 }
2638 }
2639 break;
2640 default:
2641 break;
2642 }
2643 }
2644 pm_runtime_put_noidle(&pdev->dev);
2645 return 0;
2646
2647 err_register:
2648 igb_release_hw_control(adapter);
2649 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2650 err_eeprom:
2651 if (!igb_check_reset_block(hw))
2652 igb_reset_phy(hw);
2653
2654 if (hw->flash_address)
2655 iounmap(hw->flash_address);
2656 err_sw_init:
2657 igb_clear_interrupt_scheme(adapter);
2658 pci_iounmap(pdev, hw->hw_addr);
2659 err_ioremap:
2660 free_netdev(netdev);
2661 err_alloc_etherdev:
2662 pci_release_selected_regions(pdev,
2663 pci_select_bars(pdev, IORESOURCE_MEM));
2664 err_pci_reg:
2665 err_dma:
2666 pci_disable_device(pdev);
2667 return err;
2668 }
2669
2670 #ifdef CONFIG_PCI_IOV
2671 static int igb_disable_sriov(struct pci_dev *pdev)
2672 {
2673 struct net_device *netdev = pci_get_drvdata(pdev);
2674 struct igb_adapter *adapter = netdev_priv(netdev);
2675 struct e1000_hw *hw = &adapter->hw;
2676
2677 /* reclaim resources allocated to VFs */
2678 if (adapter->vf_data) {
2679 /* disable iov and allow time for transactions to clear */
2680 if (pci_vfs_assigned(pdev)) {
2681 dev_warn(&pdev->dev,
2682 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2683 return -EPERM;
2684 } else {
2685 pci_disable_sriov(pdev);
2686 msleep(500);
2687 }
2688
2689 kfree(adapter->vf_data);
2690 adapter->vf_data = NULL;
2691 adapter->vfs_allocated_count = 0;
2692 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2693 wrfl();
2694 msleep(100);
2695 dev_info(&pdev->dev, "IOV Disabled\n");
2696
2697 /* Re-enable DMA Coalescing flag since IOV is turned off */
2698 adapter->flags |= IGB_FLAG_DMAC;
2699 }
2700
2701 return 0;
2702 }
2703
2704 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2705 {
2706 struct net_device *netdev = pci_get_drvdata(pdev);
2707 struct igb_adapter *adapter = netdev_priv(netdev);
2708 int old_vfs = pci_num_vf(pdev);
2709 int err = 0;
2710 int i;
2711
2712 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2713 err = -EPERM;
2714 goto out;
2715 }
2716 if (!num_vfs)
2717 goto out;
2718
2719 if (old_vfs) {
2720 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2721 old_vfs, max_vfs);
2722 adapter->vfs_allocated_count = old_vfs;
2723 } else
2724 adapter->vfs_allocated_count = num_vfs;
2725
2726 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2727 sizeof(struct vf_data_storage), GFP_KERNEL);
2728
2729 /* if allocation failed then we do not support SR-IOV */
2730 if (!adapter->vf_data) {
2731 adapter->vfs_allocated_count = 0;
2732 dev_err(&pdev->dev,
2733 "Unable to allocate memory for VF Data Storage\n");
2734 err = -ENOMEM;
2735 goto out;
2736 }
2737
2738 /* only call pci_enable_sriov() if no VFs are allocated already */
2739 if (!old_vfs) {
2740 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2741 if (err)
2742 goto err_out;
2743 }
2744 dev_info(&pdev->dev, "%d VFs allocated\n",
2745 adapter->vfs_allocated_count);
2746 for (i = 0; i < adapter->vfs_allocated_count; i++)
2747 igb_vf_configure(adapter, i);
2748
2749 /* DMA Coalescing is not supported in IOV mode. */
2750 adapter->flags &= ~IGB_FLAG_DMAC;
2751 goto out;
2752
2753 err_out:
2754 kfree(adapter->vf_data);
2755 adapter->vf_data = NULL;
2756 adapter->vfs_allocated_count = 0;
2757 out:
2758 return err;
2759 }
2760
2761 #endif
2762 /**
2763 * igb_remove_i2c - Cleanup I2C interface
2764 * @adapter: pointer to adapter structure
2765 **/
2766 static void igb_remove_i2c(struct igb_adapter *adapter)
2767 {
2768 /* free the adapter bus structure */
2769 i2c_del_adapter(&adapter->i2c_adap);
2770 }
2771
2772 /**
2773 * igb_remove - Device Removal Routine
2774 * @pdev: PCI device information struct
2775 *
2776 * igb_remove is called by the PCI subsystem to alert the driver
2777 * that it should release a PCI device. The could be caused by a
2778 * Hot-Plug event, or because the driver is going to be removed from
2779 * memory.
2780 **/
2781 static void igb_remove(struct pci_dev *pdev)
2782 {
2783 struct net_device *netdev = pci_get_drvdata(pdev);
2784 struct igb_adapter *adapter = netdev_priv(netdev);
2785 struct e1000_hw *hw = &adapter->hw;
2786
2787 pm_runtime_get_noresume(&pdev->dev);
2788 #ifdef CONFIG_IGB_HWMON
2789 igb_sysfs_exit(adapter);
2790 #endif
2791 igb_remove_i2c(adapter);
2792 igb_ptp_stop(adapter);
2793 /* The watchdog timer may be rescheduled, so explicitly
2794 * disable watchdog from being rescheduled.
2795 */
2796 set_bit(__IGB_DOWN, &adapter->state);
2797 del_timer_sync(&adapter->watchdog_timer);
2798 del_timer_sync(&adapter->phy_info_timer);
2799
2800 cancel_work_sync(&adapter->reset_task);
2801 cancel_work_sync(&adapter->watchdog_task);
2802
2803 #ifdef CONFIG_IGB_DCA
2804 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2805 dev_info(&pdev->dev, "DCA disabled\n");
2806 dca_remove_requester(&pdev->dev);
2807 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2808 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2809 }
2810 #endif
2811
2812 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2813 * would have already happened in close and is redundant.
2814 */
2815 igb_release_hw_control(adapter);
2816
2817 unregister_netdev(netdev);
2818
2819 igb_clear_interrupt_scheme(adapter);
2820
2821 #ifdef CONFIG_PCI_IOV
2822 igb_disable_sriov(pdev);
2823 #endif
2824
2825 pci_iounmap(pdev, hw->hw_addr);
2826 if (hw->flash_address)
2827 iounmap(hw->flash_address);
2828 pci_release_selected_regions(pdev,
2829 pci_select_bars(pdev, IORESOURCE_MEM));
2830
2831 kfree(adapter->shadow_vfta);
2832 free_netdev(netdev);
2833
2834 pci_disable_pcie_error_reporting(pdev);
2835
2836 pci_disable_device(pdev);
2837 }
2838
2839 /**
2840 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2841 * @adapter: board private structure to initialize
2842 *
2843 * This function initializes the vf specific data storage and then attempts to
2844 * allocate the VFs. The reason for ordering it this way is because it is much
2845 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2846 * the memory for the VFs.
2847 **/
2848 static void igb_probe_vfs(struct igb_adapter *adapter)
2849 {
2850 #ifdef CONFIG_PCI_IOV
2851 struct pci_dev *pdev = adapter->pdev;
2852 struct e1000_hw *hw = &adapter->hw;
2853
2854 /* Virtualization features not supported on i210 family. */
2855 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2856 return;
2857
2858 pci_sriov_set_totalvfs(pdev, 7);
2859 igb_pci_enable_sriov(pdev, max_vfs);
2860
2861 #endif /* CONFIG_PCI_IOV */
2862 }
2863
2864 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2865 {
2866 struct e1000_hw *hw = &adapter->hw;
2867 u32 max_rss_queues;
2868
2869 /* Determine the maximum number of RSS queues supported. */
2870 switch (hw->mac.type) {
2871 case e1000_i211:
2872 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2873 break;
2874 case e1000_82575:
2875 case e1000_i210:
2876 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2877 break;
2878 case e1000_i350:
2879 /* I350 cannot do RSS and SR-IOV at the same time */
2880 if (!!adapter->vfs_allocated_count) {
2881 max_rss_queues = 1;
2882 break;
2883 }
2884 /* fall through */
2885 case e1000_82576:
2886 if (!!adapter->vfs_allocated_count) {
2887 max_rss_queues = 2;
2888 break;
2889 }
2890 /* fall through */
2891 case e1000_82580:
2892 case e1000_i354:
2893 default:
2894 max_rss_queues = IGB_MAX_RX_QUEUES;
2895 break;
2896 }
2897
2898 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2899
2900 /* Determine if we need to pair queues. */
2901 switch (hw->mac.type) {
2902 case e1000_82575:
2903 case e1000_i211:
2904 /* Device supports enough interrupts without queue pairing. */
2905 break;
2906 case e1000_82576:
2907 /* If VFs are going to be allocated with RSS queues then we
2908 * should pair the queues in order to conserve interrupts due
2909 * to limited supply.
2910 */
2911 if ((adapter->rss_queues > 1) &&
2912 (adapter->vfs_allocated_count > 6))
2913 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2914 /* fall through */
2915 case e1000_82580:
2916 case e1000_i350:
2917 case e1000_i354:
2918 case e1000_i210:
2919 default:
2920 /* If rss_queues > half of max_rss_queues, pair the queues in
2921 * order to conserve interrupts due to limited supply.
2922 */
2923 if (adapter->rss_queues > (max_rss_queues / 2))
2924 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2925 break;
2926 }
2927 }
2928
2929 /**
2930 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2931 * @adapter: board private structure to initialize
2932 *
2933 * igb_sw_init initializes the Adapter private data structure.
2934 * Fields are initialized based on PCI device information and
2935 * OS network device settings (MTU size).
2936 **/
2937 static int igb_sw_init(struct igb_adapter *adapter)
2938 {
2939 struct e1000_hw *hw = &adapter->hw;
2940 struct net_device *netdev = adapter->netdev;
2941 struct pci_dev *pdev = adapter->pdev;
2942
2943 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2944
2945 /* set default ring sizes */
2946 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2947 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2948
2949 /* set default ITR values */
2950 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2951 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2952
2953 /* set default work limits */
2954 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2955
2956 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2957 VLAN_HLEN;
2958 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2959
2960 spin_lock_init(&adapter->stats64_lock);
2961 #ifdef CONFIG_PCI_IOV
2962 switch (hw->mac.type) {
2963 case e1000_82576:
2964 case e1000_i350:
2965 if (max_vfs > 7) {
2966 dev_warn(&pdev->dev,
2967 "Maximum of 7 VFs per PF, using max\n");
2968 max_vfs = adapter->vfs_allocated_count = 7;
2969 } else
2970 adapter->vfs_allocated_count = max_vfs;
2971 if (adapter->vfs_allocated_count)
2972 dev_warn(&pdev->dev,
2973 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2974 break;
2975 default:
2976 break;
2977 }
2978 #endif /* CONFIG_PCI_IOV */
2979
2980 igb_init_queue_configuration(adapter);
2981
2982 /* Setup and initialize a copy of the hw vlan table array */
2983 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2984 GFP_ATOMIC);
2985
2986 /* This call may decrease the number of queues */
2987 if (igb_init_interrupt_scheme(adapter, true)) {
2988 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2989 return -ENOMEM;
2990 }
2991
2992 igb_probe_vfs(adapter);
2993
2994 /* Explicitly disable IRQ since the NIC can be in any state. */
2995 igb_irq_disable(adapter);
2996
2997 if (hw->mac.type >= e1000_i350)
2998 adapter->flags &= ~IGB_FLAG_DMAC;
2999
3000 set_bit(__IGB_DOWN, &adapter->state);
3001 return 0;
3002 }
3003
3004 /**
3005 * igb_open - Called when a network interface is made active
3006 * @netdev: network interface device structure
3007 *
3008 * Returns 0 on success, negative value on failure
3009 *
3010 * The open entry point is called when a network interface is made
3011 * active by the system (IFF_UP). At this point all resources needed
3012 * for transmit and receive operations are allocated, the interrupt
3013 * handler is registered with the OS, the watchdog timer is started,
3014 * and the stack is notified that the interface is ready.
3015 **/
3016 static int __igb_open(struct net_device *netdev, bool resuming)
3017 {
3018 struct igb_adapter *adapter = netdev_priv(netdev);
3019 struct e1000_hw *hw = &adapter->hw;
3020 struct pci_dev *pdev = adapter->pdev;
3021 int err;
3022 int i;
3023
3024 /* disallow open during test */
3025 if (test_bit(__IGB_TESTING, &adapter->state)) {
3026 WARN_ON(resuming);
3027 return -EBUSY;
3028 }
3029
3030 if (!resuming)
3031 pm_runtime_get_sync(&pdev->dev);
3032
3033 netif_carrier_off(netdev);
3034
3035 /* allocate transmit descriptors */
3036 err = igb_setup_all_tx_resources(adapter);
3037 if (err)
3038 goto err_setup_tx;
3039
3040 /* allocate receive descriptors */
3041 err = igb_setup_all_rx_resources(adapter);
3042 if (err)
3043 goto err_setup_rx;
3044
3045 igb_power_up_link(adapter);
3046
3047 /* before we allocate an interrupt, we must be ready to handle it.
3048 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3049 * as soon as we call pci_request_irq, so we have to setup our
3050 * clean_rx handler before we do so.
3051 */
3052 igb_configure(adapter);
3053
3054 err = igb_request_irq(adapter);
3055 if (err)
3056 goto err_req_irq;
3057
3058 /* Notify the stack of the actual queue counts. */
3059 err = netif_set_real_num_tx_queues(adapter->netdev,
3060 adapter->num_tx_queues);
3061 if (err)
3062 goto err_set_queues;
3063
3064 err = netif_set_real_num_rx_queues(adapter->netdev,
3065 adapter->num_rx_queues);
3066 if (err)
3067 goto err_set_queues;
3068
3069 /* From here on the code is the same as igb_up() */
3070 clear_bit(__IGB_DOWN, &adapter->state);
3071
3072 for (i = 0; i < adapter->num_q_vectors; i++)
3073 napi_enable(&(adapter->q_vector[i]->napi));
3074
3075 /* Clear any pending interrupts. */
3076 rd32(E1000_ICR);
3077
3078 igb_irq_enable(adapter);
3079
3080 /* notify VFs that reset has been completed */
3081 if (adapter->vfs_allocated_count) {
3082 u32 reg_data = rd32(E1000_CTRL_EXT);
3083
3084 reg_data |= E1000_CTRL_EXT_PFRSTD;
3085 wr32(E1000_CTRL_EXT, reg_data);
3086 }
3087
3088 netif_tx_start_all_queues(netdev);
3089
3090 if (!resuming)
3091 pm_runtime_put(&pdev->dev);
3092
3093 /* start the watchdog. */
3094 hw->mac.get_link_status = 1;
3095 schedule_work(&adapter->watchdog_task);
3096
3097 return 0;
3098
3099 err_set_queues:
3100 igb_free_irq(adapter);
3101 err_req_irq:
3102 igb_release_hw_control(adapter);
3103 igb_power_down_link(adapter);
3104 igb_free_all_rx_resources(adapter);
3105 err_setup_rx:
3106 igb_free_all_tx_resources(adapter);
3107 err_setup_tx:
3108 igb_reset(adapter);
3109 if (!resuming)
3110 pm_runtime_put(&pdev->dev);
3111
3112 return err;
3113 }
3114
3115 static int igb_open(struct net_device *netdev)
3116 {
3117 return __igb_open(netdev, false);
3118 }
3119
3120 /**
3121 * igb_close - Disables a network interface
3122 * @netdev: network interface device structure
3123 *
3124 * Returns 0, this is not allowed to fail
3125 *
3126 * The close entry point is called when an interface is de-activated
3127 * by the OS. The hardware is still under the driver's control, but
3128 * needs to be disabled. A global MAC reset is issued to stop the
3129 * hardware, and all transmit and receive resources are freed.
3130 **/
3131 static int __igb_close(struct net_device *netdev, bool suspending)
3132 {
3133 struct igb_adapter *adapter = netdev_priv(netdev);
3134 struct pci_dev *pdev = adapter->pdev;
3135
3136 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3137
3138 if (!suspending)
3139 pm_runtime_get_sync(&pdev->dev);
3140
3141 igb_down(adapter);
3142 igb_free_irq(adapter);
3143
3144 igb_free_all_tx_resources(adapter);
3145 igb_free_all_rx_resources(adapter);
3146
3147 if (!suspending)
3148 pm_runtime_put_sync(&pdev->dev);
3149 return 0;
3150 }
3151
3152 static int igb_close(struct net_device *netdev)
3153 {
3154 return __igb_close(netdev, false);
3155 }
3156
3157 /**
3158 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3159 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3160 *
3161 * Return 0 on success, negative on failure
3162 **/
3163 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3164 {
3165 struct device *dev = tx_ring->dev;
3166 int size;
3167
3168 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3169
3170 tx_ring->tx_buffer_info = vzalloc(size);
3171 if (!tx_ring->tx_buffer_info)
3172 goto err;
3173
3174 /* round up to nearest 4K */
3175 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3176 tx_ring->size = ALIGN(tx_ring->size, 4096);
3177
3178 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3179 &tx_ring->dma, GFP_KERNEL);
3180 if (!tx_ring->desc)
3181 goto err;
3182
3183 tx_ring->next_to_use = 0;
3184 tx_ring->next_to_clean = 0;
3185
3186 return 0;
3187
3188 err:
3189 vfree(tx_ring->tx_buffer_info);
3190 tx_ring->tx_buffer_info = NULL;
3191 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3192 return -ENOMEM;
3193 }
3194
3195 /**
3196 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3197 * (Descriptors) for all queues
3198 * @adapter: board private structure
3199 *
3200 * Return 0 on success, negative on failure
3201 **/
3202 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3203 {
3204 struct pci_dev *pdev = adapter->pdev;
3205 int i, err = 0;
3206
3207 for (i = 0; i < adapter->num_tx_queues; i++) {
3208 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3209 if (err) {
3210 dev_err(&pdev->dev,
3211 "Allocation for Tx Queue %u failed\n", i);
3212 for (i--; i >= 0; i--)
3213 igb_free_tx_resources(adapter->tx_ring[i]);
3214 break;
3215 }
3216 }
3217
3218 return err;
3219 }
3220
3221 /**
3222 * igb_setup_tctl - configure the transmit control registers
3223 * @adapter: Board private structure
3224 **/
3225 void igb_setup_tctl(struct igb_adapter *adapter)
3226 {
3227 struct e1000_hw *hw = &adapter->hw;
3228 u32 tctl;
3229
3230 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3231 wr32(E1000_TXDCTL(0), 0);
3232
3233 /* Program the Transmit Control Register */
3234 tctl = rd32(E1000_TCTL);
3235 tctl &= ~E1000_TCTL_CT;
3236 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3237 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3238
3239 igb_config_collision_dist(hw);
3240
3241 /* Enable transmits */
3242 tctl |= E1000_TCTL_EN;
3243
3244 wr32(E1000_TCTL, tctl);
3245 }
3246
3247 /**
3248 * igb_configure_tx_ring - Configure transmit ring after Reset
3249 * @adapter: board private structure
3250 * @ring: tx ring to configure
3251 *
3252 * Configure a transmit ring after a reset.
3253 **/
3254 void igb_configure_tx_ring(struct igb_adapter *adapter,
3255 struct igb_ring *ring)
3256 {
3257 struct e1000_hw *hw = &adapter->hw;
3258 u32 txdctl = 0;
3259 u64 tdba = ring->dma;
3260 int reg_idx = ring->reg_idx;
3261
3262 /* disable the queue */
3263 wr32(E1000_TXDCTL(reg_idx), 0);
3264 wrfl();
3265 mdelay(10);
3266
3267 wr32(E1000_TDLEN(reg_idx),
3268 ring->count * sizeof(union e1000_adv_tx_desc));
3269 wr32(E1000_TDBAL(reg_idx),
3270 tdba & 0x00000000ffffffffULL);
3271 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3272
3273 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3274 wr32(E1000_TDH(reg_idx), 0);
3275 writel(0, ring->tail);
3276
3277 txdctl |= IGB_TX_PTHRESH;
3278 txdctl |= IGB_TX_HTHRESH << 8;
3279 txdctl |= IGB_TX_WTHRESH << 16;
3280
3281 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3282 wr32(E1000_TXDCTL(reg_idx), txdctl);
3283 }
3284
3285 /**
3286 * igb_configure_tx - Configure transmit Unit after Reset
3287 * @adapter: board private structure
3288 *
3289 * Configure the Tx unit of the MAC after a reset.
3290 **/
3291 static void igb_configure_tx(struct igb_adapter *adapter)
3292 {
3293 int i;
3294
3295 for (i = 0; i < adapter->num_tx_queues; i++)
3296 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3297 }
3298
3299 /**
3300 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3301 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3302 *
3303 * Returns 0 on success, negative on failure
3304 **/
3305 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3306 {
3307 struct device *dev = rx_ring->dev;
3308 int size;
3309
3310 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3311
3312 rx_ring->rx_buffer_info = vzalloc(size);
3313 if (!rx_ring->rx_buffer_info)
3314 goto err;
3315
3316 /* Round up to nearest 4K */
3317 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3318 rx_ring->size = ALIGN(rx_ring->size, 4096);
3319
3320 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3321 &rx_ring->dma, GFP_KERNEL);
3322 if (!rx_ring->desc)
3323 goto err;
3324
3325 rx_ring->next_to_alloc = 0;
3326 rx_ring->next_to_clean = 0;
3327 rx_ring->next_to_use = 0;
3328
3329 return 0;
3330
3331 err:
3332 vfree(rx_ring->rx_buffer_info);
3333 rx_ring->rx_buffer_info = NULL;
3334 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3335 return -ENOMEM;
3336 }
3337
3338 /**
3339 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3340 * (Descriptors) for all queues
3341 * @adapter: board private structure
3342 *
3343 * Return 0 on success, negative on failure
3344 **/
3345 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3346 {
3347 struct pci_dev *pdev = adapter->pdev;
3348 int i, err = 0;
3349
3350 for (i = 0; i < adapter->num_rx_queues; i++) {
3351 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3352 if (err) {
3353 dev_err(&pdev->dev,
3354 "Allocation for Rx Queue %u failed\n", i);
3355 for (i--; i >= 0; i--)
3356 igb_free_rx_resources(adapter->rx_ring[i]);
3357 break;
3358 }
3359 }
3360
3361 return err;
3362 }
3363
3364 /**
3365 * igb_setup_mrqc - configure the multiple receive queue control registers
3366 * @adapter: Board private structure
3367 **/
3368 static void igb_setup_mrqc(struct igb_adapter *adapter)
3369 {
3370 struct e1000_hw *hw = &adapter->hw;
3371 u32 mrqc, rxcsum;
3372 u32 j, num_rx_queues;
3373 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3374 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3375 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3376 0xFA01ACBE };
3377
3378 /* Fill out hash function seeds */
3379 for (j = 0; j < 10; j++)
3380 wr32(E1000_RSSRK(j), rsskey[j]);
3381
3382 num_rx_queues = adapter->rss_queues;
3383
3384 switch (hw->mac.type) {
3385 case e1000_82576:
3386 /* 82576 supports 2 RSS queues for SR-IOV */
3387 if (adapter->vfs_allocated_count)
3388 num_rx_queues = 2;
3389 break;
3390 default:
3391 break;
3392 }
3393
3394 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3395 for (j = 0; j < IGB_RETA_SIZE; j++)
3396 adapter->rss_indir_tbl[j] =
3397 (j * num_rx_queues) / IGB_RETA_SIZE;
3398 adapter->rss_indir_tbl_init = num_rx_queues;
3399 }
3400 igb_write_rss_indir_tbl(adapter);
3401
3402 /* Disable raw packet checksumming so that RSS hash is placed in
3403 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3404 * offloads as they are enabled by default
3405 */
3406 rxcsum = rd32(E1000_RXCSUM);
3407 rxcsum |= E1000_RXCSUM_PCSD;
3408
3409 if (adapter->hw.mac.type >= e1000_82576)
3410 /* Enable Receive Checksum Offload for SCTP */
3411 rxcsum |= E1000_RXCSUM_CRCOFL;
3412
3413 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3414 wr32(E1000_RXCSUM, rxcsum);
3415
3416 /* Generate RSS hash based on packet types, TCP/UDP
3417 * port numbers and/or IPv4/v6 src and dst addresses
3418 */
3419 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3420 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3421 E1000_MRQC_RSS_FIELD_IPV6 |
3422 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3423 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3424
3425 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3426 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3427 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3428 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3429
3430 /* If VMDq is enabled then we set the appropriate mode for that, else
3431 * we default to RSS so that an RSS hash is calculated per packet even
3432 * if we are only using one queue
3433 */
3434 if (adapter->vfs_allocated_count) {
3435 if (hw->mac.type > e1000_82575) {
3436 /* Set the default pool for the PF's first queue */
3437 u32 vtctl = rd32(E1000_VT_CTL);
3438
3439 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3440 E1000_VT_CTL_DISABLE_DEF_POOL);
3441 vtctl |= adapter->vfs_allocated_count <<
3442 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3443 wr32(E1000_VT_CTL, vtctl);
3444 }
3445 if (adapter->rss_queues > 1)
3446 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3447 else
3448 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3449 } else {
3450 if (hw->mac.type != e1000_i211)
3451 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3452 }
3453 igb_vmm_control(adapter);
3454
3455 wr32(E1000_MRQC, mrqc);
3456 }
3457
3458 /**
3459 * igb_setup_rctl - configure the receive control registers
3460 * @adapter: Board private structure
3461 **/
3462 void igb_setup_rctl(struct igb_adapter *adapter)
3463 {
3464 struct e1000_hw *hw = &adapter->hw;
3465 u32 rctl;
3466
3467 rctl = rd32(E1000_RCTL);
3468
3469 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3470 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3471
3472 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3473 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3474
3475 /* enable stripping of CRC. It's unlikely this will break BMC
3476 * redirection as it did with e1000. Newer features require
3477 * that the HW strips the CRC.
3478 */
3479 rctl |= E1000_RCTL_SECRC;
3480
3481 /* disable store bad packets and clear size bits. */
3482 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3483
3484 /* enable LPE to prevent packets larger than max_frame_size */
3485 rctl |= E1000_RCTL_LPE;
3486
3487 /* disable queue 0 to prevent tail write w/o re-config */
3488 wr32(E1000_RXDCTL(0), 0);
3489
3490 /* Attention!!! For SR-IOV PF driver operations you must enable
3491 * queue drop for all VF and PF queues to prevent head of line blocking
3492 * if an un-trusted VF does not provide descriptors to hardware.
3493 */
3494 if (adapter->vfs_allocated_count) {
3495 /* set all queue drop enable bits */
3496 wr32(E1000_QDE, ALL_QUEUES);
3497 }
3498
3499 /* This is useful for sniffing bad packets. */
3500 if (adapter->netdev->features & NETIF_F_RXALL) {
3501 /* UPE and MPE will be handled by normal PROMISC logic
3502 * in e1000e_set_rx_mode
3503 */
3504 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3505 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3506 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3507
3508 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3509 E1000_RCTL_DPF | /* Allow filtered pause */
3510 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3511 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3512 * and that breaks VLANs.
3513 */
3514 }
3515
3516 wr32(E1000_RCTL, rctl);
3517 }
3518
3519 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3520 int vfn)
3521 {
3522 struct e1000_hw *hw = &adapter->hw;
3523 u32 vmolr;
3524
3525 /* if it isn't the PF check to see if VFs are enabled and
3526 * increase the size to support vlan tags
3527 */
3528 if (vfn < adapter->vfs_allocated_count &&
3529 adapter->vf_data[vfn].vlans_enabled)
3530 size += VLAN_TAG_SIZE;
3531
3532 vmolr = rd32(E1000_VMOLR(vfn));
3533 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3534 vmolr |= size | E1000_VMOLR_LPE;
3535 wr32(E1000_VMOLR(vfn), vmolr);
3536
3537 return 0;
3538 }
3539
3540 /**
3541 * igb_rlpml_set - set maximum receive packet size
3542 * @adapter: board private structure
3543 *
3544 * Configure maximum receivable packet size.
3545 **/
3546 static void igb_rlpml_set(struct igb_adapter *adapter)
3547 {
3548 u32 max_frame_size = adapter->max_frame_size;
3549 struct e1000_hw *hw = &adapter->hw;
3550 u16 pf_id = adapter->vfs_allocated_count;
3551
3552 if (pf_id) {
3553 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3554 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3555 * to our max jumbo frame size, in case we need to enable
3556 * jumbo frames on one of the rings later.
3557 * This will not pass over-length frames into the default
3558 * queue because it's gated by the VMOLR.RLPML.
3559 */
3560 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3561 }
3562
3563 wr32(E1000_RLPML, max_frame_size);
3564 }
3565
3566 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3567 int vfn, bool aupe)
3568 {
3569 struct e1000_hw *hw = &adapter->hw;
3570 u32 vmolr;
3571
3572 /* This register exists only on 82576 and newer so if we are older then
3573 * we should exit and do nothing
3574 */
3575 if (hw->mac.type < e1000_82576)
3576 return;
3577
3578 vmolr = rd32(E1000_VMOLR(vfn));
3579 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3580 if (hw->mac.type == e1000_i350) {
3581 u32 dvmolr;
3582
3583 dvmolr = rd32(E1000_DVMOLR(vfn));
3584 dvmolr |= E1000_DVMOLR_STRVLAN;
3585 wr32(E1000_DVMOLR(vfn), dvmolr);
3586 }
3587 if (aupe)
3588 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3589 else
3590 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3591
3592 /* clear all bits that might not be set */
3593 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3594
3595 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3596 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3597 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3598 * multicast packets
3599 */
3600 if (vfn <= adapter->vfs_allocated_count)
3601 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3602
3603 wr32(E1000_VMOLR(vfn), vmolr);
3604 }
3605
3606 /**
3607 * igb_configure_rx_ring - Configure a receive ring after Reset
3608 * @adapter: board private structure
3609 * @ring: receive ring to be configured
3610 *
3611 * Configure the Rx unit of the MAC after a reset.
3612 **/
3613 void igb_configure_rx_ring(struct igb_adapter *adapter,
3614 struct igb_ring *ring)
3615 {
3616 struct e1000_hw *hw = &adapter->hw;
3617 u64 rdba = ring->dma;
3618 int reg_idx = ring->reg_idx;
3619 u32 srrctl = 0, rxdctl = 0;
3620
3621 /* disable the queue */
3622 wr32(E1000_RXDCTL(reg_idx), 0);
3623
3624 /* Set DMA base address registers */
3625 wr32(E1000_RDBAL(reg_idx),
3626 rdba & 0x00000000ffffffffULL);
3627 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3628 wr32(E1000_RDLEN(reg_idx),
3629 ring->count * sizeof(union e1000_adv_rx_desc));
3630
3631 /* initialize head and tail */
3632 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3633 wr32(E1000_RDH(reg_idx), 0);
3634 writel(0, ring->tail);
3635
3636 /* set descriptor configuration */
3637 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3638 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3639 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3640 if (hw->mac.type >= e1000_82580)
3641 srrctl |= E1000_SRRCTL_TIMESTAMP;
3642 /* Only set Drop Enable if we are supporting multiple queues */
3643 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3644 srrctl |= E1000_SRRCTL_DROP_EN;
3645
3646 wr32(E1000_SRRCTL(reg_idx), srrctl);
3647
3648 /* set filtering for VMDQ pools */
3649 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3650
3651 rxdctl |= IGB_RX_PTHRESH;
3652 rxdctl |= IGB_RX_HTHRESH << 8;
3653 rxdctl |= IGB_RX_WTHRESH << 16;
3654
3655 /* enable receive descriptor fetching */
3656 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3657 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3658 }
3659
3660 /**
3661 * igb_configure_rx - Configure receive Unit after Reset
3662 * @adapter: board private structure
3663 *
3664 * Configure the Rx unit of the MAC after a reset.
3665 **/
3666 static void igb_configure_rx(struct igb_adapter *adapter)
3667 {
3668 int i;
3669
3670 /* set UTA to appropriate mode */
3671 igb_set_uta(adapter);
3672
3673 /* set the correct pool for the PF default MAC address in entry 0 */
3674 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3675 adapter->vfs_allocated_count);
3676
3677 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3678 * the Base and Length of the Rx Descriptor Ring
3679 */
3680 for (i = 0; i < adapter->num_rx_queues; i++)
3681 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3682 }
3683
3684 /**
3685 * igb_free_tx_resources - Free Tx Resources per Queue
3686 * @tx_ring: Tx descriptor ring for a specific queue
3687 *
3688 * Free all transmit software resources
3689 **/
3690 void igb_free_tx_resources(struct igb_ring *tx_ring)
3691 {
3692 igb_clean_tx_ring(tx_ring);
3693
3694 vfree(tx_ring->tx_buffer_info);
3695 tx_ring->tx_buffer_info = NULL;
3696
3697 /* if not set, then don't free */
3698 if (!tx_ring->desc)
3699 return;
3700
3701 dma_free_coherent(tx_ring->dev, tx_ring->size,
3702 tx_ring->desc, tx_ring->dma);
3703
3704 tx_ring->desc = NULL;
3705 }
3706
3707 /**
3708 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3709 * @adapter: board private structure
3710 *
3711 * Free all transmit software resources
3712 **/
3713 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3714 {
3715 int i;
3716
3717 for (i = 0; i < adapter->num_tx_queues; i++)
3718 igb_free_tx_resources(adapter->tx_ring[i]);
3719 }
3720
3721 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3722 struct igb_tx_buffer *tx_buffer)
3723 {
3724 if (tx_buffer->skb) {
3725 dev_kfree_skb_any(tx_buffer->skb);
3726 if (dma_unmap_len(tx_buffer, len))
3727 dma_unmap_single(ring->dev,
3728 dma_unmap_addr(tx_buffer, dma),
3729 dma_unmap_len(tx_buffer, len),
3730 DMA_TO_DEVICE);
3731 } else if (dma_unmap_len(tx_buffer, len)) {
3732 dma_unmap_page(ring->dev,
3733 dma_unmap_addr(tx_buffer, dma),
3734 dma_unmap_len(tx_buffer, len),
3735 DMA_TO_DEVICE);
3736 }
3737 tx_buffer->next_to_watch = NULL;
3738 tx_buffer->skb = NULL;
3739 dma_unmap_len_set(tx_buffer, len, 0);
3740 /* buffer_info must be completely set up in the transmit path */
3741 }
3742
3743 /**
3744 * igb_clean_tx_ring - Free Tx Buffers
3745 * @tx_ring: ring to be cleaned
3746 **/
3747 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3748 {
3749 struct igb_tx_buffer *buffer_info;
3750 unsigned long size;
3751 u16 i;
3752
3753 if (!tx_ring->tx_buffer_info)
3754 return;
3755 /* Free all the Tx ring sk_buffs */
3756
3757 for (i = 0; i < tx_ring->count; i++) {
3758 buffer_info = &tx_ring->tx_buffer_info[i];
3759 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3760 }
3761
3762 netdev_tx_reset_queue(txring_txq(tx_ring));
3763
3764 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3765 memset(tx_ring->tx_buffer_info, 0, size);
3766
3767 /* Zero out the descriptor ring */
3768 memset(tx_ring->desc, 0, tx_ring->size);
3769
3770 tx_ring->next_to_use = 0;
3771 tx_ring->next_to_clean = 0;
3772 }
3773
3774 /**
3775 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3776 * @adapter: board private structure
3777 **/
3778 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3779 {
3780 int i;
3781
3782 for (i = 0; i < adapter->num_tx_queues; i++)
3783 igb_clean_tx_ring(adapter->tx_ring[i]);
3784 }
3785
3786 /**
3787 * igb_free_rx_resources - Free Rx Resources
3788 * @rx_ring: ring to clean the resources from
3789 *
3790 * Free all receive software resources
3791 **/
3792 void igb_free_rx_resources(struct igb_ring *rx_ring)
3793 {
3794 igb_clean_rx_ring(rx_ring);
3795
3796 vfree(rx_ring->rx_buffer_info);
3797 rx_ring->rx_buffer_info = NULL;
3798
3799 /* if not set, then don't free */
3800 if (!rx_ring->desc)
3801 return;
3802
3803 dma_free_coherent(rx_ring->dev, rx_ring->size,
3804 rx_ring->desc, rx_ring->dma);
3805
3806 rx_ring->desc = NULL;
3807 }
3808
3809 /**
3810 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3811 * @adapter: board private structure
3812 *
3813 * Free all receive software resources
3814 **/
3815 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3816 {
3817 int i;
3818
3819 for (i = 0; i < adapter->num_rx_queues; i++)
3820 igb_free_rx_resources(adapter->rx_ring[i]);
3821 }
3822
3823 /**
3824 * igb_clean_rx_ring - Free Rx Buffers per Queue
3825 * @rx_ring: ring to free buffers from
3826 **/
3827 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3828 {
3829 unsigned long size;
3830 u16 i;
3831
3832 if (rx_ring->skb)
3833 dev_kfree_skb(rx_ring->skb);
3834 rx_ring->skb = NULL;
3835
3836 if (!rx_ring->rx_buffer_info)
3837 return;
3838
3839 /* Free all the Rx ring sk_buffs */
3840 for (i = 0; i < rx_ring->count; i++) {
3841 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3842
3843 if (!buffer_info->page)
3844 continue;
3845
3846 dma_unmap_page(rx_ring->dev,
3847 buffer_info->dma,
3848 PAGE_SIZE,
3849 DMA_FROM_DEVICE);
3850 __free_page(buffer_info->page);
3851
3852 buffer_info->page = NULL;
3853 }
3854
3855 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3856 memset(rx_ring->rx_buffer_info, 0, size);
3857
3858 /* Zero out the descriptor ring */
3859 memset(rx_ring->desc, 0, rx_ring->size);
3860
3861 rx_ring->next_to_alloc = 0;
3862 rx_ring->next_to_clean = 0;
3863 rx_ring->next_to_use = 0;
3864 }
3865
3866 /**
3867 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3868 * @adapter: board private structure
3869 **/
3870 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3871 {
3872 int i;
3873
3874 for (i = 0; i < adapter->num_rx_queues; i++)
3875 igb_clean_rx_ring(adapter->rx_ring[i]);
3876 }
3877
3878 /**
3879 * igb_set_mac - Change the Ethernet Address of the NIC
3880 * @netdev: network interface device structure
3881 * @p: pointer to an address structure
3882 *
3883 * Returns 0 on success, negative on failure
3884 **/
3885 static int igb_set_mac(struct net_device *netdev, void *p)
3886 {
3887 struct igb_adapter *adapter = netdev_priv(netdev);
3888 struct e1000_hw *hw = &adapter->hw;
3889 struct sockaddr *addr = p;
3890
3891 if (!is_valid_ether_addr(addr->sa_data))
3892 return -EADDRNOTAVAIL;
3893
3894 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3895 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3896
3897 /* set the correct pool for the new PF MAC address in entry 0 */
3898 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3899 adapter->vfs_allocated_count);
3900
3901 return 0;
3902 }
3903
3904 /**
3905 * igb_write_mc_addr_list - write multicast addresses to MTA
3906 * @netdev: network interface device structure
3907 *
3908 * Writes multicast address list to the MTA hash table.
3909 * Returns: -ENOMEM on failure
3910 * 0 on no addresses written
3911 * X on writing X addresses to MTA
3912 **/
3913 static int igb_write_mc_addr_list(struct net_device *netdev)
3914 {
3915 struct igb_adapter *adapter = netdev_priv(netdev);
3916 struct e1000_hw *hw = &adapter->hw;
3917 struct netdev_hw_addr *ha;
3918 u8 *mta_list;
3919 int i;
3920
3921 if (netdev_mc_empty(netdev)) {
3922 /* nothing to program, so clear mc list */
3923 igb_update_mc_addr_list(hw, NULL, 0);
3924 igb_restore_vf_multicasts(adapter);
3925 return 0;
3926 }
3927
3928 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3929 if (!mta_list)
3930 return -ENOMEM;
3931
3932 /* The shared function expects a packed array of only addresses. */
3933 i = 0;
3934 netdev_for_each_mc_addr(ha, netdev)
3935 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3936
3937 igb_update_mc_addr_list(hw, mta_list, i);
3938 kfree(mta_list);
3939
3940 return netdev_mc_count(netdev);
3941 }
3942
3943 /**
3944 * igb_write_uc_addr_list - write unicast addresses to RAR table
3945 * @netdev: network interface device structure
3946 *
3947 * Writes unicast address list to the RAR table.
3948 * Returns: -ENOMEM on failure/insufficient address space
3949 * 0 on no addresses written
3950 * X on writing X addresses to the RAR table
3951 **/
3952 static int igb_write_uc_addr_list(struct net_device *netdev)
3953 {
3954 struct igb_adapter *adapter = netdev_priv(netdev);
3955 struct e1000_hw *hw = &adapter->hw;
3956 unsigned int vfn = adapter->vfs_allocated_count;
3957 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3958 int count = 0;
3959
3960 /* return ENOMEM indicating insufficient memory for addresses */
3961 if (netdev_uc_count(netdev) > rar_entries)
3962 return -ENOMEM;
3963
3964 if (!netdev_uc_empty(netdev) && rar_entries) {
3965 struct netdev_hw_addr *ha;
3966
3967 netdev_for_each_uc_addr(ha, netdev) {
3968 if (!rar_entries)
3969 break;
3970 igb_rar_set_qsel(adapter, ha->addr,
3971 rar_entries--,
3972 vfn);
3973 count++;
3974 }
3975 }
3976 /* write the addresses in reverse order to avoid write combining */
3977 for (; rar_entries > 0 ; rar_entries--) {
3978 wr32(E1000_RAH(rar_entries), 0);
3979 wr32(E1000_RAL(rar_entries), 0);
3980 }
3981 wrfl();
3982
3983 return count;
3984 }
3985
3986 /**
3987 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3988 * @netdev: network interface device structure
3989 *
3990 * The set_rx_mode entry point is called whenever the unicast or multicast
3991 * address lists or the network interface flags are updated. This routine is
3992 * responsible for configuring the hardware for proper unicast, multicast,
3993 * promiscuous mode, and all-multi behavior.
3994 **/
3995 static void igb_set_rx_mode(struct net_device *netdev)
3996 {
3997 struct igb_adapter *adapter = netdev_priv(netdev);
3998 struct e1000_hw *hw = &adapter->hw;
3999 unsigned int vfn = adapter->vfs_allocated_count;
4000 u32 rctl, vmolr = 0;
4001 int count;
4002
4003 /* Check for Promiscuous and All Multicast modes */
4004 rctl = rd32(E1000_RCTL);
4005
4006 /* clear the effected bits */
4007 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4008
4009 if (netdev->flags & IFF_PROMISC) {
4010 /* retain VLAN HW filtering if in VT mode */
4011 if (adapter->vfs_allocated_count)
4012 rctl |= E1000_RCTL_VFE;
4013 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4014 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4015 } else {
4016 if (netdev->flags & IFF_ALLMULTI) {
4017 rctl |= E1000_RCTL_MPE;
4018 vmolr |= E1000_VMOLR_MPME;
4019 } else {
4020 /* Write addresses to the MTA, if the attempt fails
4021 * then we should just turn on promiscuous mode so
4022 * that we can at least receive multicast traffic
4023 */
4024 count = igb_write_mc_addr_list(netdev);
4025 if (count < 0) {
4026 rctl |= E1000_RCTL_MPE;
4027 vmolr |= E1000_VMOLR_MPME;
4028 } else if (count) {
4029 vmolr |= E1000_VMOLR_ROMPE;
4030 }
4031 }
4032 /* Write addresses to available RAR registers, if there is not
4033 * sufficient space to store all the addresses then enable
4034 * unicast promiscuous mode
4035 */
4036 count = igb_write_uc_addr_list(netdev);
4037 if (count < 0) {
4038 rctl |= E1000_RCTL_UPE;
4039 vmolr |= E1000_VMOLR_ROPE;
4040 }
4041 rctl |= E1000_RCTL_VFE;
4042 }
4043 wr32(E1000_RCTL, rctl);
4044
4045 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4046 * the VMOLR to enable the appropriate modes. Without this workaround
4047 * we will have issues with VLAN tag stripping not being done for frames
4048 * that are only arriving because we are the default pool
4049 */
4050 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4051 return;
4052
4053 vmolr |= rd32(E1000_VMOLR(vfn)) &
4054 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4055 wr32(E1000_VMOLR(vfn), vmolr);
4056 igb_restore_vf_multicasts(adapter);
4057 }
4058
4059 static void igb_check_wvbr(struct igb_adapter *adapter)
4060 {
4061 struct e1000_hw *hw = &adapter->hw;
4062 u32 wvbr = 0;
4063
4064 switch (hw->mac.type) {
4065 case e1000_82576:
4066 case e1000_i350:
4067 wvbr = rd32(E1000_WVBR);
4068 if (!wvbr)
4069 return;
4070 break;
4071 default:
4072 break;
4073 }
4074
4075 adapter->wvbr |= wvbr;
4076 }
4077
4078 #define IGB_STAGGERED_QUEUE_OFFSET 8
4079
4080 static void igb_spoof_check(struct igb_adapter *adapter)
4081 {
4082 int j;
4083
4084 if (!adapter->wvbr)
4085 return;
4086
4087 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4088 if (adapter->wvbr & (1 << j) ||
4089 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4090 dev_warn(&adapter->pdev->dev,
4091 "Spoof event(s) detected on VF %d\n", j);
4092 adapter->wvbr &=
4093 ~((1 << j) |
4094 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4095 }
4096 }
4097 }
4098
4099 /* Need to wait a few seconds after link up to get diagnostic information from
4100 * the phy
4101 */
4102 static void igb_update_phy_info(unsigned long data)
4103 {
4104 struct igb_adapter *adapter = (struct igb_adapter *) data;
4105 igb_get_phy_info(&adapter->hw);
4106 }
4107
4108 /**
4109 * igb_has_link - check shared code for link and determine up/down
4110 * @adapter: pointer to driver private info
4111 **/
4112 bool igb_has_link(struct igb_adapter *adapter)
4113 {
4114 struct e1000_hw *hw = &adapter->hw;
4115 bool link_active = false;
4116
4117 /* get_link_status is set on LSC (link status) interrupt or
4118 * rx sequence error interrupt. get_link_status will stay
4119 * false until the e1000_check_for_link establishes link
4120 * for copper adapters ONLY
4121 */
4122 switch (hw->phy.media_type) {
4123 case e1000_media_type_copper:
4124 if (!hw->mac.get_link_status)
4125 return true;
4126 case e1000_media_type_internal_serdes:
4127 hw->mac.ops.check_for_link(hw);
4128 link_active = !hw->mac.get_link_status;
4129 break;
4130 default:
4131 case e1000_media_type_unknown:
4132 break;
4133 }
4134
4135 if (((hw->mac.type == e1000_i210) ||
4136 (hw->mac.type == e1000_i211)) &&
4137 (hw->phy.id == I210_I_PHY_ID)) {
4138 if (!netif_carrier_ok(adapter->netdev)) {
4139 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4140 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4141 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4142 adapter->link_check_timeout = jiffies;
4143 }
4144 }
4145
4146 return link_active;
4147 }
4148
4149 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4150 {
4151 bool ret = false;
4152 u32 ctrl_ext, thstat;
4153
4154 /* check for thermal sensor event on i350 copper only */
4155 if (hw->mac.type == e1000_i350) {
4156 thstat = rd32(E1000_THSTAT);
4157 ctrl_ext = rd32(E1000_CTRL_EXT);
4158
4159 if ((hw->phy.media_type == e1000_media_type_copper) &&
4160 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4161 ret = !!(thstat & event);
4162 }
4163
4164 return ret;
4165 }
4166
4167 /**
4168 * igb_watchdog - Timer Call-back
4169 * @data: pointer to adapter cast into an unsigned long
4170 **/
4171 static void igb_watchdog(unsigned long data)
4172 {
4173 struct igb_adapter *adapter = (struct igb_adapter *)data;
4174 /* Do the rest outside of interrupt context */
4175 schedule_work(&adapter->watchdog_task);
4176 }
4177
4178 static void igb_watchdog_task(struct work_struct *work)
4179 {
4180 struct igb_adapter *adapter = container_of(work,
4181 struct igb_adapter,
4182 watchdog_task);
4183 struct e1000_hw *hw = &adapter->hw;
4184 struct e1000_phy_info *phy = &hw->phy;
4185 struct net_device *netdev = adapter->netdev;
4186 u32 link;
4187 int i;
4188 u32 connsw;
4189
4190 link = igb_has_link(adapter);
4191
4192 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4193 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4194 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4195 else
4196 link = false;
4197 }
4198
4199 /* Force link down if we have fiber to swap to */
4200 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4201 if (hw->phy.media_type == e1000_media_type_copper) {
4202 connsw = rd32(E1000_CONNSW);
4203 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4204 link = 0;
4205 }
4206 }
4207 if (link) {
4208 /* Perform a reset if the media type changed. */
4209 if (hw->dev_spec._82575.media_changed) {
4210 hw->dev_spec._82575.media_changed = false;
4211 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4212 igb_reset(adapter);
4213 }
4214 /* Cancel scheduled suspend requests. */
4215 pm_runtime_resume(netdev->dev.parent);
4216
4217 if (!netif_carrier_ok(netdev)) {
4218 u32 ctrl;
4219
4220 hw->mac.ops.get_speed_and_duplex(hw,
4221 &adapter->link_speed,
4222 &adapter->link_duplex);
4223
4224 ctrl = rd32(E1000_CTRL);
4225 /* Links status message must follow this format */
4226 netdev_info(netdev,
4227 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4228 netdev->name,
4229 adapter->link_speed,
4230 adapter->link_duplex == FULL_DUPLEX ?
4231 "Full" : "Half",
4232 (ctrl & E1000_CTRL_TFCE) &&
4233 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4234 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4235 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4236
4237 /* disable EEE if enabled */
4238 if ((adapter->flags & IGB_FLAG_EEE) &&
4239 (adapter->link_duplex == HALF_DUPLEX)) {
4240 dev_info(&adapter->pdev->dev,
4241 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4242 adapter->hw.dev_spec._82575.eee_disable = true;
4243 adapter->flags &= ~IGB_FLAG_EEE;
4244 }
4245
4246 /* check if SmartSpeed worked */
4247 igb_check_downshift(hw);
4248 if (phy->speed_downgraded)
4249 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4250
4251 /* check for thermal sensor event */
4252 if (igb_thermal_sensor_event(hw,
4253 E1000_THSTAT_LINK_THROTTLE))
4254 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4255
4256 /* adjust timeout factor according to speed/duplex */
4257 adapter->tx_timeout_factor = 1;
4258 switch (adapter->link_speed) {
4259 case SPEED_10:
4260 adapter->tx_timeout_factor = 14;
4261 break;
4262 case SPEED_100:
4263 /* maybe add some timeout factor ? */
4264 break;
4265 }
4266
4267 netif_carrier_on(netdev);
4268
4269 igb_ping_all_vfs(adapter);
4270 igb_check_vf_rate_limit(adapter);
4271
4272 /* link state has changed, schedule phy info update */
4273 if (!test_bit(__IGB_DOWN, &adapter->state))
4274 mod_timer(&adapter->phy_info_timer,
4275 round_jiffies(jiffies + 2 * HZ));
4276 }
4277 } else {
4278 if (netif_carrier_ok(netdev)) {
4279 adapter->link_speed = 0;
4280 adapter->link_duplex = 0;
4281
4282 /* check for thermal sensor event */
4283 if (igb_thermal_sensor_event(hw,
4284 E1000_THSTAT_PWR_DOWN)) {
4285 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4286 }
4287
4288 /* Links status message must follow this format */
4289 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4290 netdev->name);
4291 netif_carrier_off(netdev);
4292
4293 igb_ping_all_vfs(adapter);
4294
4295 /* link state has changed, schedule phy info update */
4296 if (!test_bit(__IGB_DOWN, &adapter->state))
4297 mod_timer(&adapter->phy_info_timer,
4298 round_jiffies(jiffies + 2 * HZ));
4299
4300 /* link is down, time to check for alternate media */
4301 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4302 igb_check_swap_media(adapter);
4303 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4304 schedule_work(&adapter->reset_task);
4305 /* return immediately */
4306 return;
4307 }
4308 }
4309 pm_schedule_suspend(netdev->dev.parent,
4310 MSEC_PER_SEC * 5);
4311
4312 /* also check for alternate media here */
4313 } else if (!netif_carrier_ok(netdev) &&
4314 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4315 igb_check_swap_media(adapter);
4316 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4317 schedule_work(&adapter->reset_task);
4318 /* return immediately */
4319 return;
4320 }
4321 }
4322 }
4323
4324 spin_lock(&adapter->stats64_lock);
4325 igb_update_stats(adapter, &adapter->stats64);
4326 spin_unlock(&adapter->stats64_lock);
4327
4328 for (i = 0; i < adapter->num_tx_queues; i++) {
4329 struct igb_ring *tx_ring = adapter->tx_ring[i];
4330 if (!netif_carrier_ok(netdev)) {
4331 /* We've lost link, so the controller stops DMA,
4332 * but we've got queued Tx work that's never going
4333 * to get done, so reset controller to flush Tx.
4334 * (Do the reset outside of interrupt context).
4335 */
4336 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4337 adapter->tx_timeout_count++;
4338 schedule_work(&adapter->reset_task);
4339 /* return immediately since reset is imminent */
4340 return;
4341 }
4342 }
4343
4344 /* Force detection of hung controller every watchdog period */
4345 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4346 }
4347
4348 /* Cause software interrupt to ensure Rx ring is cleaned */
4349 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4350 u32 eics = 0;
4351
4352 for (i = 0; i < adapter->num_q_vectors; i++)
4353 eics |= adapter->q_vector[i]->eims_value;
4354 wr32(E1000_EICS, eics);
4355 } else {
4356 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4357 }
4358
4359 igb_spoof_check(adapter);
4360 igb_ptp_rx_hang(adapter);
4361
4362 /* Reset the timer */
4363 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4364 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4365 mod_timer(&adapter->watchdog_timer,
4366 round_jiffies(jiffies + HZ));
4367 else
4368 mod_timer(&adapter->watchdog_timer,
4369 round_jiffies(jiffies + 2 * HZ));
4370 }
4371 }
4372
4373 enum latency_range {
4374 lowest_latency = 0,
4375 low_latency = 1,
4376 bulk_latency = 2,
4377 latency_invalid = 255
4378 };
4379
4380 /**
4381 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4382 * @q_vector: pointer to q_vector
4383 *
4384 * Stores a new ITR value based on strictly on packet size. This
4385 * algorithm is less sophisticated than that used in igb_update_itr,
4386 * due to the difficulty of synchronizing statistics across multiple
4387 * receive rings. The divisors and thresholds used by this function
4388 * were determined based on theoretical maximum wire speed and testing
4389 * data, in order to minimize response time while increasing bulk
4390 * throughput.
4391 * This functionality is controlled by ethtool's coalescing settings.
4392 * NOTE: This function is called only when operating in a multiqueue
4393 * receive environment.
4394 **/
4395 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4396 {
4397 int new_val = q_vector->itr_val;
4398 int avg_wire_size = 0;
4399 struct igb_adapter *adapter = q_vector->adapter;
4400 unsigned int packets;
4401
4402 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4403 * ints/sec - ITR timer value of 120 ticks.
4404 */
4405 if (adapter->link_speed != SPEED_1000) {
4406 new_val = IGB_4K_ITR;
4407 goto set_itr_val;
4408 }
4409
4410 packets = q_vector->rx.total_packets;
4411 if (packets)
4412 avg_wire_size = q_vector->rx.total_bytes / packets;
4413
4414 packets = q_vector->tx.total_packets;
4415 if (packets)
4416 avg_wire_size = max_t(u32, avg_wire_size,
4417 q_vector->tx.total_bytes / packets);
4418
4419 /* if avg_wire_size isn't set no work was done */
4420 if (!avg_wire_size)
4421 goto clear_counts;
4422
4423 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4424 avg_wire_size += 24;
4425
4426 /* Don't starve jumbo frames */
4427 avg_wire_size = min(avg_wire_size, 3000);
4428
4429 /* Give a little boost to mid-size frames */
4430 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4431 new_val = avg_wire_size / 3;
4432 else
4433 new_val = avg_wire_size / 2;
4434
4435 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4436 if (new_val < IGB_20K_ITR &&
4437 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4438 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4439 new_val = IGB_20K_ITR;
4440
4441 set_itr_val:
4442 if (new_val != q_vector->itr_val) {
4443 q_vector->itr_val = new_val;
4444 q_vector->set_itr = 1;
4445 }
4446 clear_counts:
4447 q_vector->rx.total_bytes = 0;
4448 q_vector->rx.total_packets = 0;
4449 q_vector->tx.total_bytes = 0;
4450 q_vector->tx.total_packets = 0;
4451 }
4452
4453 /**
4454 * igb_update_itr - update the dynamic ITR value based on statistics
4455 * @q_vector: pointer to q_vector
4456 * @ring_container: ring info to update the itr for
4457 *
4458 * Stores a new ITR value based on packets and byte
4459 * counts during the last interrupt. The advantage of per interrupt
4460 * computation is faster updates and more accurate ITR for the current
4461 * traffic pattern. Constants in this function were computed
4462 * based on theoretical maximum wire speed and thresholds were set based
4463 * on testing data as well as attempting to minimize response time
4464 * while increasing bulk throughput.
4465 * This functionality is controlled by ethtool's coalescing settings.
4466 * NOTE: These calculations are only valid when operating in a single-
4467 * queue environment.
4468 **/
4469 static void igb_update_itr(struct igb_q_vector *q_vector,
4470 struct igb_ring_container *ring_container)
4471 {
4472 unsigned int packets = ring_container->total_packets;
4473 unsigned int bytes = ring_container->total_bytes;
4474 u8 itrval = ring_container->itr;
4475
4476 /* no packets, exit with status unchanged */
4477 if (packets == 0)
4478 return;
4479
4480 switch (itrval) {
4481 case lowest_latency:
4482 /* handle TSO and jumbo frames */
4483 if (bytes/packets > 8000)
4484 itrval = bulk_latency;
4485 else if ((packets < 5) && (bytes > 512))
4486 itrval = low_latency;
4487 break;
4488 case low_latency: /* 50 usec aka 20000 ints/s */
4489 if (bytes > 10000) {
4490 /* this if handles the TSO accounting */
4491 if (bytes/packets > 8000)
4492 itrval = bulk_latency;
4493 else if ((packets < 10) || ((bytes/packets) > 1200))
4494 itrval = bulk_latency;
4495 else if ((packets > 35))
4496 itrval = lowest_latency;
4497 } else if (bytes/packets > 2000) {
4498 itrval = bulk_latency;
4499 } else if (packets <= 2 && bytes < 512) {
4500 itrval = lowest_latency;
4501 }
4502 break;
4503 case bulk_latency: /* 250 usec aka 4000 ints/s */
4504 if (bytes > 25000) {
4505 if (packets > 35)
4506 itrval = low_latency;
4507 } else if (bytes < 1500) {
4508 itrval = low_latency;
4509 }
4510 break;
4511 }
4512
4513 /* clear work counters since we have the values we need */
4514 ring_container->total_bytes = 0;
4515 ring_container->total_packets = 0;
4516
4517 /* write updated itr to ring container */
4518 ring_container->itr = itrval;
4519 }
4520
4521 static void igb_set_itr(struct igb_q_vector *q_vector)
4522 {
4523 struct igb_adapter *adapter = q_vector->adapter;
4524 u32 new_itr = q_vector->itr_val;
4525 u8 current_itr = 0;
4526
4527 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4528 if (adapter->link_speed != SPEED_1000) {
4529 current_itr = 0;
4530 new_itr = IGB_4K_ITR;
4531 goto set_itr_now;
4532 }
4533
4534 igb_update_itr(q_vector, &q_vector->tx);
4535 igb_update_itr(q_vector, &q_vector->rx);
4536
4537 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4538
4539 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4540 if (current_itr == lowest_latency &&
4541 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4542 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4543 current_itr = low_latency;
4544
4545 switch (current_itr) {
4546 /* counts and packets in update_itr are dependent on these numbers */
4547 case lowest_latency:
4548 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4549 break;
4550 case low_latency:
4551 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4552 break;
4553 case bulk_latency:
4554 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4555 break;
4556 default:
4557 break;
4558 }
4559
4560 set_itr_now:
4561 if (new_itr != q_vector->itr_val) {
4562 /* this attempts to bias the interrupt rate towards Bulk
4563 * by adding intermediate steps when interrupt rate is
4564 * increasing
4565 */
4566 new_itr = new_itr > q_vector->itr_val ?
4567 max((new_itr * q_vector->itr_val) /
4568 (new_itr + (q_vector->itr_val >> 2)),
4569 new_itr) : new_itr;
4570 /* Don't write the value here; it resets the adapter's
4571 * internal timer, and causes us to delay far longer than
4572 * we should between interrupts. Instead, we write the ITR
4573 * value at the beginning of the next interrupt so the timing
4574 * ends up being correct.
4575 */
4576 q_vector->itr_val = new_itr;
4577 q_vector->set_itr = 1;
4578 }
4579 }
4580
4581 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4582 u32 type_tucmd, u32 mss_l4len_idx)
4583 {
4584 struct e1000_adv_tx_context_desc *context_desc;
4585 u16 i = tx_ring->next_to_use;
4586
4587 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4588
4589 i++;
4590 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4591
4592 /* set bits to identify this as an advanced context descriptor */
4593 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4594
4595 /* For 82575, context index must be unique per ring. */
4596 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4597 mss_l4len_idx |= tx_ring->reg_idx << 4;
4598
4599 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4600 context_desc->seqnum_seed = 0;
4601 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4602 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4603 }
4604
4605 static int igb_tso(struct igb_ring *tx_ring,
4606 struct igb_tx_buffer *first,
4607 u8 *hdr_len)
4608 {
4609 struct sk_buff *skb = first->skb;
4610 u32 vlan_macip_lens, type_tucmd;
4611 u32 mss_l4len_idx, l4len;
4612 int err;
4613
4614 if (skb->ip_summed != CHECKSUM_PARTIAL)
4615 return 0;
4616
4617 if (!skb_is_gso(skb))
4618 return 0;
4619
4620 err = skb_cow_head(skb, 0);
4621 if (err < 0)
4622 return err;
4623
4624 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4625 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4626
4627 if (first->protocol == htons(ETH_P_IP)) {
4628 struct iphdr *iph = ip_hdr(skb);
4629 iph->tot_len = 0;
4630 iph->check = 0;
4631 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4632 iph->daddr, 0,
4633 IPPROTO_TCP,
4634 0);
4635 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4636 first->tx_flags |= IGB_TX_FLAGS_TSO |
4637 IGB_TX_FLAGS_CSUM |
4638 IGB_TX_FLAGS_IPV4;
4639 } else if (skb_is_gso_v6(skb)) {
4640 ipv6_hdr(skb)->payload_len = 0;
4641 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4642 &ipv6_hdr(skb)->daddr,
4643 0, IPPROTO_TCP, 0);
4644 first->tx_flags |= IGB_TX_FLAGS_TSO |
4645 IGB_TX_FLAGS_CSUM;
4646 }
4647
4648 /* compute header lengths */
4649 l4len = tcp_hdrlen(skb);
4650 *hdr_len = skb_transport_offset(skb) + l4len;
4651
4652 /* update gso size and bytecount with header size */
4653 first->gso_segs = skb_shinfo(skb)->gso_segs;
4654 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4655
4656 /* MSS L4LEN IDX */
4657 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4658 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4659
4660 /* VLAN MACLEN IPLEN */
4661 vlan_macip_lens = skb_network_header_len(skb);
4662 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4663 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4664
4665 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4666
4667 return 1;
4668 }
4669
4670 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4671 {
4672 struct sk_buff *skb = first->skb;
4673 u32 vlan_macip_lens = 0;
4674 u32 mss_l4len_idx = 0;
4675 u32 type_tucmd = 0;
4676
4677 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4678 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4679 return;
4680 } else {
4681 u8 l4_hdr = 0;
4682
4683 switch (first->protocol) {
4684 case htons(ETH_P_IP):
4685 vlan_macip_lens |= skb_network_header_len(skb);
4686 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4687 l4_hdr = ip_hdr(skb)->protocol;
4688 break;
4689 case htons(ETH_P_IPV6):
4690 vlan_macip_lens |= skb_network_header_len(skb);
4691 l4_hdr = ipv6_hdr(skb)->nexthdr;
4692 break;
4693 default:
4694 if (unlikely(net_ratelimit())) {
4695 dev_warn(tx_ring->dev,
4696 "partial checksum but proto=%x!\n",
4697 first->protocol);
4698 }
4699 break;
4700 }
4701
4702 switch (l4_hdr) {
4703 case IPPROTO_TCP:
4704 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4705 mss_l4len_idx = tcp_hdrlen(skb) <<
4706 E1000_ADVTXD_L4LEN_SHIFT;
4707 break;
4708 case IPPROTO_SCTP:
4709 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4710 mss_l4len_idx = sizeof(struct sctphdr) <<
4711 E1000_ADVTXD_L4LEN_SHIFT;
4712 break;
4713 case IPPROTO_UDP:
4714 mss_l4len_idx = sizeof(struct udphdr) <<
4715 E1000_ADVTXD_L4LEN_SHIFT;
4716 break;
4717 default:
4718 if (unlikely(net_ratelimit())) {
4719 dev_warn(tx_ring->dev,
4720 "partial checksum but l4 proto=%x!\n",
4721 l4_hdr);
4722 }
4723 break;
4724 }
4725
4726 /* update TX checksum flag */
4727 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4728 }
4729
4730 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4731 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4732
4733 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4734 }
4735
4736 #define IGB_SET_FLAG(_input, _flag, _result) \
4737 ((_flag <= _result) ? \
4738 ((u32)(_input & _flag) * (_result / _flag)) : \
4739 ((u32)(_input & _flag) / (_flag / _result)))
4740
4741 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4742 {
4743 /* set type for advanced descriptor with frame checksum insertion */
4744 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4745 E1000_ADVTXD_DCMD_DEXT |
4746 E1000_ADVTXD_DCMD_IFCS;
4747
4748 /* set HW vlan bit if vlan is present */
4749 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4750 (E1000_ADVTXD_DCMD_VLE));
4751
4752 /* set segmentation bits for TSO */
4753 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4754 (E1000_ADVTXD_DCMD_TSE));
4755
4756 /* set timestamp bit if present */
4757 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4758 (E1000_ADVTXD_MAC_TSTAMP));
4759
4760 /* insert frame checksum */
4761 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4762
4763 return cmd_type;
4764 }
4765
4766 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4767 union e1000_adv_tx_desc *tx_desc,
4768 u32 tx_flags, unsigned int paylen)
4769 {
4770 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4771
4772 /* 82575 requires a unique index per ring */
4773 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4774 olinfo_status |= tx_ring->reg_idx << 4;
4775
4776 /* insert L4 checksum */
4777 olinfo_status |= IGB_SET_FLAG(tx_flags,
4778 IGB_TX_FLAGS_CSUM,
4779 (E1000_TXD_POPTS_TXSM << 8));
4780
4781 /* insert IPv4 checksum */
4782 olinfo_status |= IGB_SET_FLAG(tx_flags,
4783 IGB_TX_FLAGS_IPV4,
4784 (E1000_TXD_POPTS_IXSM << 8));
4785
4786 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4787 }
4788
4789 static void igb_tx_map(struct igb_ring *tx_ring,
4790 struct igb_tx_buffer *first,
4791 const u8 hdr_len)
4792 {
4793 struct sk_buff *skb = first->skb;
4794 struct igb_tx_buffer *tx_buffer;
4795 union e1000_adv_tx_desc *tx_desc;
4796 struct skb_frag_struct *frag;
4797 dma_addr_t dma;
4798 unsigned int data_len, size;
4799 u32 tx_flags = first->tx_flags;
4800 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4801 u16 i = tx_ring->next_to_use;
4802
4803 tx_desc = IGB_TX_DESC(tx_ring, i);
4804
4805 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4806
4807 size = skb_headlen(skb);
4808 data_len = skb->data_len;
4809
4810 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4811
4812 tx_buffer = first;
4813
4814 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4815 if (dma_mapping_error(tx_ring->dev, dma))
4816 goto dma_error;
4817
4818 /* record length, and DMA address */
4819 dma_unmap_len_set(tx_buffer, len, size);
4820 dma_unmap_addr_set(tx_buffer, dma, dma);
4821
4822 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4823
4824 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4825 tx_desc->read.cmd_type_len =
4826 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4827
4828 i++;
4829 tx_desc++;
4830 if (i == tx_ring->count) {
4831 tx_desc = IGB_TX_DESC(tx_ring, 0);
4832 i = 0;
4833 }
4834 tx_desc->read.olinfo_status = 0;
4835
4836 dma += IGB_MAX_DATA_PER_TXD;
4837 size -= IGB_MAX_DATA_PER_TXD;
4838
4839 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4840 }
4841
4842 if (likely(!data_len))
4843 break;
4844
4845 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4846
4847 i++;
4848 tx_desc++;
4849 if (i == tx_ring->count) {
4850 tx_desc = IGB_TX_DESC(tx_ring, 0);
4851 i = 0;
4852 }
4853 tx_desc->read.olinfo_status = 0;
4854
4855 size = skb_frag_size(frag);
4856 data_len -= size;
4857
4858 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4859 size, DMA_TO_DEVICE);
4860
4861 tx_buffer = &tx_ring->tx_buffer_info[i];
4862 }
4863
4864 /* write last descriptor with RS and EOP bits */
4865 cmd_type |= size | IGB_TXD_DCMD;
4866 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4867
4868 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4869
4870 /* set the timestamp */
4871 first->time_stamp = jiffies;
4872
4873 /* Force memory writes to complete before letting h/w know there
4874 * are new descriptors to fetch. (Only applicable for weak-ordered
4875 * memory model archs, such as IA-64).
4876 *
4877 * We also need this memory barrier to make certain all of the
4878 * status bits have been updated before next_to_watch is written.
4879 */
4880 wmb();
4881
4882 /* set next_to_watch value indicating a packet is present */
4883 first->next_to_watch = tx_desc;
4884
4885 i++;
4886 if (i == tx_ring->count)
4887 i = 0;
4888
4889 tx_ring->next_to_use = i;
4890
4891 writel(i, tx_ring->tail);
4892
4893 /* we need this if more than one processor can write to our tail
4894 * at a time, it synchronizes IO on IA64/Altix systems
4895 */
4896 mmiowb();
4897
4898 return;
4899
4900 dma_error:
4901 dev_err(tx_ring->dev, "TX DMA map failed\n");
4902
4903 /* clear dma mappings for failed tx_buffer_info map */
4904 for (;;) {
4905 tx_buffer = &tx_ring->tx_buffer_info[i];
4906 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4907 if (tx_buffer == first)
4908 break;
4909 if (i == 0)
4910 i = tx_ring->count;
4911 i--;
4912 }
4913
4914 tx_ring->next_to_use = i;
4915 }
4916
4917 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4918 {
4919 struct net_device *netdev = tx_ring->netdev;
4920
4921 netif_stop_subqueue(netdev, tx_ring->queue_index);
4922
4923 /* Herbert's original patch had:
4924 * smp_mb__after_netif_stop_queue();
4925 * but since that doesn't exist yet, just open code it.
4926 */
4927 smp_mb();
4928
4929 /* We need to check again in a case another CPU has just
4930 * made room available.
4931 */
4932 if (igb_desc_unused(tx_ring) < size)
4933 return -EBUSY;
4934
4935 /* A reprieve! */
4936 netif_wake_subqueue(netdev, tx_ring->queue_index);
4937
4938 u64_stats_update_begin(&tx_ring->tx_syncp2);
4939 tx_ring->tx_stats.restart_queue2++;
4940 u64_stats_update_end(&tx_ring->tx_syncp2);
4941
4942 return 0;
4943 }
4944
4945 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4946 {
4947 if (igb_desc_unused(tx_ring) >= size)
4948 return 0;
4949 return __igb_maybe_stop_tx(tx_ring, size);
4950 }
4951
4952 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4953 struct igb_ring *tx_ring)
4954 {
4955 struct igb_tx_buffer *first;
4956 int tso;
4957 u32 tx_flags = 0;
4958 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4959 __be16 protocol = vlan_get_protocol(skb);
4960 u8 hdr_len = 0;
4961
4962 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4963 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4964 * + 2 desc gap to keep tail from touching head,
4965 * + 1 desc for context descriptor,
4966 * otherwise try next time
4967 */
4968 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4969 unsigned short f;
4970
4971 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4972 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4973 } else {
4974 count += skb_shinfo(skb)->nr_frags;
4975 }
4976
4977 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4978 /* this is a hard error */
4979 return NETDEV_TX_BUSY;
4980 }
4981
4982 /* record the location of the first descriptor for this packet */
4983 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4984 first->skb = skb;
4985 first->bytecount = skb->len;
4986 first->gso_segs = 1;
4987
4988 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4989 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4990
4991 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4992 &adapter->state)) {
4993 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4994 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4995
4996 adapter->ptp_tx_skb = skb_get(skb);
4997 adapter->ptp_tx_start = jiffies;
4998 if (adapter->hw.mac.type == e1000_82576)
4999 schedule_work(&adapter->ptp_tx_work);
5000 }
5001 }
5002
5003 skb_tx_timestamp(skb);
5004
5005 if (vlan_tx_tag_present(skb)) {
5006 tx_flags |= IGB_TX_FLAGS_VLAN;
5007 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5008 }
5009
5010 /* record initial flags and protocol */
5011 first->tx_flags = tx_flags;
5012 first->protocol = protocol;
5013
5014 tso = igb_tso(tx_ring, first, &hdr_len);
5015 if (tso < 0)
5016 goto out_drop;
5017 else if (!tso)
5018 igb_tx_csum(tx_ring, first);
5019
5020 igb_tx_map(tx_ring, first, hdr_len);
5021
5022 /* Make sure there is space in the ring for the next send. */
5023 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5024
5025 return NETDEV_TX_OK;
5026
5027 out_drop:
5028 igb_unmap_and_free_tx_resource(tx_ring, first);
5029
5030 return NETDEV_TX_OK;
5031 }
5032
5033 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5034 struct sk_buff *skb)
5035 {
5036 unsigned int r_idx = skb->queue_mapping;
5037
5038 if (r_idx >= adapter->num_tx_queues)
5039 r_idx = r_idx % adapter->num_tx_queues;
5040
5041 return adapter->tx_ring[r_idx];
5042 }
5043
5044 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5045 struct net_device *netdev)
5046 {
5047 struct igb_adapter *adapter = netdev_priv(netdev);
5048
5049 if (test_bit(__IGB_DOWN, &adapter->state)) {
5050 dev_kfree_skb_any(skb);
5051 return NETDEV_TX_OK;
5052 }
5053
5054 if (skb->len <= 0) {
5055 dev_kfree_skb_any(skb);
5056 return NETDEV_TX_OK;
5057 }
5058
5059 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5060 * in order to meet this minimum size requirement.
5061 */
5062 if (unlikely(skb->len < 17)) {
5063 if (skb_pad(skb, 17 - skb->len))
5064 return NETDEV_TX_OK;
5065 skb->len = 17;
5066 skb_set_tail_pointer(skb, 17);
5067 }
5068
5069 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5070 }
5071
5072 /**
5073 * igb_tx_timeout - Respond to a Tx Hang
5074 * @netdev: network interface device structure
5075 **/
5076 static void igb_tx_timeout(struct net_device *netdev)
5077 {
5078 struct igb_adapter *adapter = netdev_priv(netdev);
5079 struct e1000_hw *hw = &adapter->hw;
5080
5081 /* Do the reset outside of interrupt context */
5082 adapter->tx_timeout_count++;
5083
5084 if (hw->mac.type >= e1000_82580)
5085 hw->dev_spec._82575.global_device_reset = true;
5086
5087 schedule_work(&adapter->reset_task);
5088 wr32(E1000_EICS,
5089 (adapter->eims_enable_mask & ~adapter->eims_other));
5090 }
5091
5092 static void igb_reset_task(struct work_struct *work)
5093 {
5094 struct igb_adapter *adapter;
5095 adapter = container_of(work, struct igb_adapter, reset_task);
5096
5097 igb_dump(adapter);
5098 netdev_err(adapter->netdev, "Reset adapter\n");
5099 igb_reinit_locked(adapter);
5100 }
5101
5102 /**
5103 * igb_get_stats64 - Get System Network Statistics
5104 * @netdev: network interface device structure
5105 * @stats: rtnl_link_stats64 pointer
5106 **/
5107 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5108 struct rtnl_link_stats64 *stats)
5109 {
5110 struct igb_adapter *adapter = netdev_priv(netdev);
5111
5112 spin_lock(&adapter->stats64_lock);
5113 igb_update_stats(adapter, &adapter->stats64);
5114 memcpy(stats, &adapter->stats64, sizeof(*stats));
5115 spin_unlock(&adapter->stats64_lock);
5116
5117 return stats;
5118 }
5119
5120 /**
5121 * igb_change_mtu - Change the Maximum Transfer Unit
5122 * @netdev: network interface device structure
5123 * @new_mtu: new value for maximum frame size
5124 *
5125 * Returns 0 on success, negative on failure
5126 **/
5127 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5128 {
5129 struct igb_adapter *adapter = netdev_priv(netdev);
5130 struct pci_dev *pdev = adapter->pdev;
5131 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5132
5133 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5134 dev_err(&pdev->dev, "Invalid MTU setting\n");
5135 return -EINVAL;
5136 }
5137
5138 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5139 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5140 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5141 return -EINVAL;
5142 }
5143
5144 /* adjust max frame to be at least the size of a standard frame */
5145 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5146 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5147
5148 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5149 usleep_range(1000, 2000);
5150
5151 /* igb_down has a dependency on max_frame_size */
5152 adapter->max_frame_size = max_frame;
5153
5154 if (netif_running(netdev))
5155 igb_down(adapter);
5156
5157 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5158 netdev->mtu, new_mtu);
5159 netdev->mtu = new_mtu;
5160
5161 if (netif_running(netdev))
5162 igb_up(adapter);
5163 else
5164 igb_reset(adapter);
5165
5166 clear_bit(__IGB_RESETTING, &adapter->state);
5167
5168 return 0;
5169 }
5170
5171 /**
5172 * igb_update_stats - Update the board statistics counters
5173 * @adapter: board private structure
5174 **/
5175 void igb_update_stats(struct igb_adapter *adapter,
5176 struct rtnl_link_stats64 *net_stats)
5177 {
5178 struct e1000_hw *hw = &adapter->hw;
5179 struct pci_dev *pdev = adapter->pdev;
5180 u32 reg, mpc;
5181 u16 phy_tmp;
5182 int i;
5183 u64 bytes, packets;
5184 unsigned int start;
5185 u64 _bytes, _packets;
5186
5187 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5188
5189 /* Prevent stats update while adapter is being reset, or if the pci
5190 * connection is down.
5191 */
5192 if (adapter->link_speed == 0)
5193 return;
5194 if (pci_channel_offline(pdev))
5195 return;
5196
5197 bytes = 0;
5198 packets = 0;
5199
5200 rcu_read_lock();
5201 for (i = 0; i < adapter->num_rx_queues; i++) {
5202 struct igb_ring *ring = adapter->rx_ring[i];
5203 u32 rqdpc = rd32(E1000_RQDPC(i));
5204 if (hw->mac.type >= e1000_i210)
5205 wr32(E1000_RQDPC(i), 0);
5206
5207 if (rqdpc) {
5208 ring->rx_stats.drops += rqdpc;
5209 net_stats->rx_fifo_errors += rqdpc;
5210 }
5211
5212 do {
5213 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5214 _bytes = ring->rx_stats.bytes;
5215 _packets = ring->rx_stats.packets;
5216 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5217 bytes += _bytes;
5218 packets += _packets;
5219 }
5220
5221 net_stats->rx_bytes = bytes;
5222 net_stats->rx_packets = packets;
5223
5224 bytes = 0;
5225 packets = 0;
5226 for (i = 0; i < adapter->num_tx_queues; i++) {
5227 struct igb_ring *ring = adapter->tx_ring[i];
5228 do {
5229 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5230 _bytes = ring->tx_stats.bytes;
5231 _packets = ring->tx_stats.packets;
5232 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5233 bytes += _bytes;
5234 packets += _packets;
5235 }
5236 net_stats->tx_bytes = bytes;
5237 net_stats->tx_packets = packets;
5238 rcu_read_unlock();
5239
5240 /* read stats registers */
5241 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5242 adapter->stats.gprc += rd32(E1000_GPRC);
5243 adapter->stats.gorc += rd32(E1000_GORCL);
5244 rd32(E1000_GORCH); /* clear GORCL */
5245 adapter->stats.bprc += rd32(E1000_BPRC);
5246 adapter->stats.mprc += rd32(E1000_MPRC);
5247 adapter->stats.roc += rd32(E1000_ROC);
5248
5249 adapter->stats.prc64 += rd32(E1000_PRC64);
5250 adapter->stats.prc127 += rd32(E1000_PRC127);
5251 adapter->stats.prc255 += rd32(E1000_PRC255);
5252 adapter->stats.prc511 += rd32(E1000_PRC511);
5253 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5254 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5255 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5256 adapter->stats.sec += rd32(E1000_SEC);
5257
5258 mpc = rd32(E1000_MPC);
5259 adapter->stats.mpc += mpc;
5260 net_stats->rx_fifo_errors += mpc;
5261 adapter->stats.scc += rd32(E1000_SCC);
5262 adapter->stats.ecol += rd32(E1000_ECOL);
5263 adapter->stats.mcc += rd32(E1000_MCC);
5264 adapter->stats.latecol += rd32(E1000_LATECOL);
5265 adapter->stats.dc += rd32(E1000_DC);
5266 adapter->stats.rlec += rd32(E1000_RLEC);
5267 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5268 adapter->stats.xontxc += rd32(E1000_XONTXC);
5269 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5270 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5271 adapter->stats.fcruc += rd32(E1000_FCRUC);
5272 adapter->stats.gptc += rd32(E1000_GPTC);
5273 adapter->stats.gotc += rd32(E1000_GOTCL);
5274 rd32(E1000_GOTCH); /* clear GOTCL */
5275 adapter->stats.rnbc += rd32(E1000_RNBC);
5276 adapter->stats.ruc += rd32(E1000_RUC);
5277 adapter->stats.rfc += rd32(E1000_RFC);
5278 adapter->stats.rjc += rd32(E1000_RJC);
5279 adapter->stats.tor += rd32(E1000_TORH);
5280 adapter->stats.tot += rd32(E1000_TOTH);
5281 adapter->stats.tpr += rd32(E1000_TPR);
5282
5283 adapter->stats.ptc64 += rd32(E1000_PTC64);
5284 adapter->stats.ptc127 += rd32(E1000_PTC127);
5285 adapter->stats.ptc255 += rd32(E1000_PTC255);
5286 adapter->stats.ptc511 += rd32(E1000_PTC511);
5287 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5288 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5289
5290 adapter->stats.mptc += rd32(E1000_MPTC);
5291 adapter->stats.bptc += rd32(E1000_BPTC);
5292
5293 adapter->stats.tpt += rd32(E1000_TPT);
5294 adapter->stats.colc += rd32(E1000_COLC);
5295
5296 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5297 /* read internal phy specific stats */
5298 reg = rd32(E1000_CTRL_EXT);
5299 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5300 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5301
5302 /* this stat has invalid values on i210/i211 */
5303 if ((hw->mac.type != e1000_i210) &&
5304 (hw->mac.type != e1000_i211))
5305 adapter->stats.tncrs += rd32(E1000_TNCRS);
5306 }
5307
5308 adapter->stats.tsctc += rd32(E1000_TSCTC);
5309 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5310
5311 adapter->stats.iac += rd32(E1000_IAC);
5312 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5313 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5314 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5315 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5316 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5317 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5318 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5319 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5320
5321 /* Fill out the OS statistics structure */
5322 net_stats->multicast = adapter->stats.mprc;
5323 net_stats->collisions = adapter->stats.colc;
5324
5325 /* Rx Errors */
5326
5327 /* RLEC on some newer hardware can be incorrect so build
5328 * our own version based on RUC and ROC
5329 */
5330 net_stats->rx_errors = adapter->stats.rxerrc +
5331 adapter->stats.crcerrs + adapter->stats.algnerrc +
5332 adapter->stats.ruc + adapter->stats.roc +
5333 adapter->stats.cexterr;
5334 net_stats->rx_length_errors = adapter->stats.ruc +
5335 adapter->stats.roc;
5336 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5337 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5338 net_stats->rx_missed_errors = adapter->stats.mpc;
5339
5340 /* Tx Errors */
5341 net_stats->tx_errors = adapter->stats.ecol +
5342 adapter->stats.latecol;
5343 net_stats->tx_aborted_errors = adapter->stats.ecol;
5344 net_stats->tx_window_errors = adapter->stats.latecol;
5345 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5346
5347 /* Tx Dropped needs to be maintained elsewhere */
5348
5349 /* Phy Stats */
5350 if (hw->phy.media_type == e1000_media_type_copper) {
5351 if ((adapter->link_speed == SPEED_1000) &&
5352 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5353 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5354 adapter->phy_stats.idle_errors += phy_tmp;
5355 }
5356 }
5357
5358 /* Management Stats */
5359 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5360 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5361 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5362
5363 /* OS2BMC Stats */
5364 reg = rd32(E1000_MANC);
5365 if (reg & E1000_MANC_EN_BMC2OS) {
5366 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5367 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5368 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5369 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5370 }
5371 }
5372
5373 static irqreturn_t igb_msix_other(int irq, void *data)
5374 {
5375 struct igb_adapter *adapter = data;
5376 struct e1000_hw *hw = &adapter->hw;
5377 u32 icr = rd32(E1000_ICR);
5378 /* reading ICR causes bit 31 of EICR to be cleared */
5379
5380 if (icr & E1000_ICR_DRSTA)
5381 schedule_work(&adapter->reset_task);
5382
5383 if (icr & E1000_ICR_DOUTSYNC) {
5384 /* HW is reporting DMA is out of sync */
5385 adapter->stats.doosync++;
5386 /* The DMA Out of Sync is also indication of a spoof event
5387 * in IOV mode. Check the Wrong VM Behavior register to
5388 * see if it is really a spoof event.
5389 */
5390 igb_check_wvbr(adapter);
5391 }
5392
5393 /* Check for a mailbox event */
5394 if (icr & E1000_ICR_VMMB)
5395 igb_msg_task(adapter);
5396
5397 if (icr & E1000_ICR_LSC) {
5398 hw->mac.get_link_status = 1;
5399 /* guard against interrupt when we're going down */
5400 if (!test_bit(__IGB_DOWN, &adapter->state))
5401 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5402 }
5403
5404 if (icr & E1000_ICR_TS) {
5405 u32 tsicr = rd32(E1000_TSICR);
5406
5407 if (tsicr & E1000_TSICR_TXTS) {
5408 /* acknowledge the interrupt */
5409 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5410 /* retrieve hardware timestamp */
5411 schedule_work(&adapter->ptp_tx_work);
5412 }
5413 }
5414
5415 wr32(E1000_EIMS, adapter->eims_other);
5416
5417 return IRQ_HANDLED;
5418 }
5419
5420 static void igb_write_itr(struct igb_q_vector *q_vector)
5421 {
5422 struct igb_adapter *adapter = q_vector->adapter;
5423 u32 itr_val = q_vector->itr_val & 0x7FFC;
5424
5425 if (!q_vector->set_itr)
5426 return;
5427
5428 if (!itr_val)
5429 itr_val = 0x4;
5430
5431 if (adapter->hw.mac.type == e1000_82575)
5432 itr_val |= itr_val << 16;
5433 else
5434 itr_val |= E1000_EITR_CNT_IGNR;
5435
5436 writel(itr_val, q_vector->itr_register);
5437 q_vector->set_itr = 0;
5438 }
5439
5440 static irqreturn_t igb_msix_ring(int irq, void *data)
5441 {
5442 struct igb_q_vector *q_vector = data;
5443
5444 /* Write the ITR value calculated from the previous interrupt. */
5445 igb_write_itr(q_vector);
5446
5447 napi_schedule(&q_vector->napi);
5448
5449 return IRQ_HANDLED;
5450 }
5451
5452 #ifdef CONFIG_IGB_DCA
5453 static void igb_update_tx_dca(struct igb_adapter *adapter,
5454 struct igb_ring *tx_ring,
5455 int cpu)
5456 {
5457 struct e1000_hw *hw = &adapter->hw;
5458 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5459
5460 if (hw->mac.type != e1000_82575)
5461 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5462
5463 /* We can enable relaxed ordering for reads, but not writes when
5464 * DCA is enabled. This is due to a known issue in some chipsets
5465 * which will cause the DCA tag to be cleared.
5466 */
5467 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5468 E1000_DCA_TXCTRL_DATA_RRO_EN |
5469 E1000_DCA_TXCTRL_DESC_DCA_EN;
5470
5471 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5472 }
5473
5474 static void igb_update_rx_dca(struct igb_adapter *adapter,
5475 struct igb_ring *rx_ring,
5476 int cpu)
5477 {
5478 struct e1000_hw *hw = &adapter->hw;
5479 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5480
5481 if (hw->mac.type != e1000_82575)
5482 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5483
5484 /* We can enable relaxed ordering for reads, but not writes when
5485 * DCA is enabled. This is due to a known issue in some chipsets
5486 * which will cause the DCA tag to be cleared.
5487 */
5488 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5489 E1000_DCA_RXCTRL_DESC_DCA_EN;
5490
5491 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5492 }
5493
5494 static void igb_update_dca(struct igb_q_vector *q_vector)
5495 {
5496 struct igb_adapter *adapter = q_vector->adapter;
5497 int cpu = get_cpu();
5498
5499 if (q_vector->cpu == cpu)
5500 goto out_no_update;
5501
5502 if (q_vector->tx.ring)
5503 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5504
5505 if (q_vector->rx.ring)
5506 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5507
5508 q_vector->cpu = cpu;
5509 out_no_update:
5510 put_cpu();
5511 }
5512
5513 static void igb_setup_dca(struct igb_adapter *adapter)
5514 {
5515 struct e1000_hw *hw = &adapter->hw;
5516 int i;
5517
5518 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5519 return;
5520
5521 /* Always use CB2 mode, difference is masked in the CB driver. */
5522 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5523
5524 for (i = 0; i < adapter->num_q_vectors; i++) {
5525 adapter->q_vector[i]->cpu = -1;
5526 igb_update_dca(adapter->q_vector[i]);
5527 }
5528 }
5529
5530 static int __igb_notify_dca(struct device *dev, void *data)
5531 {
5532 struct net_device *netdev = dev_get_drvdata(dev);
5533 struct igb_adapter *adapter = netdev_priv(netdev);
5534 struct pci_dev *pdev = adapter->pdev;
5535 struct e1000_hw *hw = &adapter->hw;
5536 unsigned long event = *(unsigned long *)data;
5537
5538 switch (event) {
5539 case DCA_PROVIDER_ADD:
5540 /* if already enabled, don't do it again */
5541 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5542 break;
5543 if (dca_add_requester(dev) == 0) {
5544 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5545 dev_info(&pdev->dev, "DCA enabled\n");
5546 igb_setup_dca(adapter);
5547 break;
5548 }
5549 /* Fall Through since DCA is disabled. */
5550 case DCA_PROVIDER_REMOVE:
5551 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5552 /* without this a class_device is left
5553 * hanging around in the sysfs model
5554 */
5555 dca_remove_requester(dev);
5556 dev_info(&pdev->dev, "DCA disabled\n");
5557 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5558 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5559 }
5560 break;
5561 }
5562
5563 return 0;
5564 }
5565
5566 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5567 void *p)
5568 {
5569 int ret_val;
5570
5571 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5572 __igb_notify_dca);
5573
5574 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5575 }
5576 #endif /* CONFIG_IGB_DCA */
5577
5578 #ifdef CONFIG_PCI_IOV
5579 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5580 {
5581 unsigned char mac_addr[ETH_ALEN];
5582
5583 eth_zero_addr(mac_addr);
5584 igb_set_vf_mac(adapter, vf, mac_addr);
5585
5586 /* By default spoof check is enabled for all VFs */
5587 adapter->vf_data[vf].spoofchk_enabled = true;
5588
5589 return 0;
5590 }
5591
5592 #endif
5593 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5594 {
5595 struct e1000_hw *hw = &adapter->hw;
5596 u32 ping;
5597 int i;
5598
5599 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5600 ping = E1000_PF_CONTROL_MSG;
5601 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5602 ping |= E1000_VT_MSGTYPE_CTS;
5603 igb_write_mbx(hw, &ping, 1, i);
5604 }
5605 }
5606
5607 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5608 {
5609 struct e1000_hw *hw = &adapter->hw;
5610 u32 vmolr = rd32(E1000_VMOLR(vf));
5611 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5612
5613 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5614 IGB_VF_FLAG_MULTI_PROMISC);
5615 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5616
5617 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5618 vmolr |= E1000_VMOLR_MPME;
5619 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5620 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5621 } else {
5622 /* if we have hashes and we are clearing a multicast promisc
5623 * flag we need to write the hashes to the MTA as this step
5624 * was previously skipped
5625 */
5626 if (vf_data->num_vf_mc_hashes > 30) {
5627 vmolr |= E1000_VMOLR_MPME;
5628 } else if (vf_data->num_vf_mc_hashes) {
5629 int j;
5630
5631 vmolr |= E1000_VMOLR_ROMPE;
5632 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5633 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5634 }
5635 }
5636
5637 wr32(E1000_VMOLR(vf), vmolr);
5638
5639 /* there are flags left unprocessed, likely not supported */
5640 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5641 return -EINVAL;
5642
5643 return 0;
5644 }
5645
5646 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5647 u32 *msgbuf, u32 vf)
5648 {
5649 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5650 u16 *hash_list = (u16 *)&msgbuf[1];
5651 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5652 int i;
5653
5654 /* salt away the number of multicast addresses assigned
5655 * to this VF for later use to restore when the PF multi cast
5656 * list changes
5657 */
5658 vf_data->num_vf_mc_hashes = n;
5659
5660 /* only up to 30 hash values supported */
5661 if (n > 30)
5662 n = 30;
5663
5664 /* store the hashes for later use */
5665 for (i = 0; i < n; i++)
5666 vf_data->vf_mc_hashes[i] = hash_list[i];
5667
5668 /* Flush and reset the mta with the new values */
5669 igb_set_rx_mode(adapter->netdev);
5670
5671 return 0;
5672 }
5673
5674 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5675 {
5676 struct e1000_hw *hw = &adapter->hw;
5677 struct vf_data_storage *vf_data;
5678 int i, j;
5679
5680 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5681 u32 vmolr = rd32(E1000_VMOLR(i));
5682
5683 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5684
5685 vf_data = &adapter->vf_data[i];
5686
5687 if ((vf_data->num_vf_mc_hashes > 30) ||
5688 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5689 vmolr |= E1000_VMOLR_MPME;
5690 } else if (vf_data->num_vf_mc_hashes) {
5691 vmolr |= E1000_VMOLR_ROMPE;
5692 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5693 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5694 }
5695 wr32(E1000_VMOLR(i), vmolr);
5696 }
5697 }
5698
5699 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5700 {
5701 struct e1000_hw *hw = &adapter->hw;
5702 u32 pool_mask, reg, vid;
5703 int i;
5704
5705 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5706
5707 /* Find the vlan filter for this id */
5708 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5709 reg = rd32(E1000_VLVF(i));
5710
5711 /* remove the vf from the pool */
5712 reg &= ~pool_mask;
5713
5714 /* if pool is empty then remove entry from vfta */
5715 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5716 (reg & E1000_VLVF_VLANID_ENABLE)) {
5717 reg = 0;
5718 vid = reg & E1000_VLVF_VLANID_MASK;
5719 igb_vfta_set(hw, vid, false);
5720 }
5721
5722 wr32(E1000_VLVF(i), reg);
5723 }
5724
5725 adapter->vf_data[vf].vlans_enabled = 0;
5726 }
5727
5728 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5729 {
5730 struct e1000_hw *hw = &adapter->hw;
5731 u32 reg, i;
5732
5733 /* The vlvf table only exists on 82576 hardware and newer */
5734 if (hw->mac.type < e1000_82576)
5735 return -1;
5736
5737 /* we only need to do this if VMDq is enabled */
5738 if (!adapter->vfs_allocated_count)
5739 return -1;
5740
5741 /* Find the vlan filter for this id */
5742 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5743 reg = rd32(E1000_VLVF(i));
5744 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5745 vid == (reg & E1000_VLVF_VLANID_MASK))
5746 break;
5747 }
5748
5749 if (add) {
5750 if (i == E1000_VLVF_ARRAY_SIZE) {
5751 /* Did not find a matching VLAN ID entry that was
5752 * enabled. Search for a free filter entry, i.e.
5753 * one without the enable bit set
5754 */
5755 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5756 reg = rd32(E1000_VLVF(i));
5757 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5758 break;
5759 }
5760 }
5761 if (i < E1000_VLVF_ARRAY_SIZE) {
5762 /* Found an enabled/available entry */
5763 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5764
5765 /* if !enabled we need to set this up in vfta */
5766 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5767 /* add VID to filter table */
5768 igb_vfta_set(hw, vid, true);
5769 reg |= E1000_VLVF_VLANID_ENABLE;
5770 }
5771 reg &= ~E1000_VLVF_VLANID_MASK;
5772 reg |= vid;
5773 wr32(E1000_VLVF(i), reg);
5774
5775 /* do not modify RLPML for PF devices */
5776 if (vf >= adapter->vfs_allocated_count)
5777 return 0;
5778
5779 if (!adapter->vf_data[vf].vlans_enabled) {
5780 u32 size;
5781
5782 reg = rd32(E1000_VMOLR(vf));
5783 size = reg & E1000_VMOLR_RLPML_MASK;
5784 size += 4;
5785 reg &= ~E1000_VMOLR_RLPML_MASK;
5786 reg |= size;
5787 wr32(E1000_VMOLR(vf), reg);
5788 }
5789
5790 adapter->vf_data[vf].vlans_enabled++;
5791 }
5792 } else {
5793 if (i < E1000_VLVF_ARRAY_SIZE) {
5794 /* remove vf from the pool */
5795 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5796 /* if pool is empty then remove entry from vfta */
5797 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5798 reg = 0;
5799 igb_vfta_set(hw, vid, false);
5800 }
5801 wr32(E1000_VLVF(i), reg);
5802
5803 /* do not modify RLPML for PF devices */
5804 if (vf >= adapter->vfs_allocated_count)
5805 return 0;
5806
5807 adapter->vf_data[vf].vlans_enabled--;
5808 if (!adapter->vf_data[vf].vlans_enabled) {
5809 u32 size;
5810
5811 reg = rd32(E1000_VMOLR(vf));
5812 size = reg & E1000_VMOLR_RLPML_MASK;
5813 size -= 4;
5814 reg &= ~E1000_VMOLR_RLPML_MASK;
5815 reg |= size;
5816 wr32(E1000_VMOLR(vf), reg);
5817 }
5818 }
5819 }
5820 return 0;
5821 }
5822
5823 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5824 {
5825 struct e1000_hw *hw = &adapter->hw;
5826
5827 if (vid)
5828 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5829 else
5830 wr32(E1000_VMVIR(vf), 0);
5831 }
5832
5833 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5834 int vf, u16 vlan, u8 qos)
5835 {
5836 int err = 0;
5837 struct igb_adapter *adapter = netdev_priv(netdev);
5838
5839 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5840 return -EINVAL;
5841 if (vlan || qos) {
5842 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5843 if (err)
5844 goto out;
5845 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5846 igb_set_vmolr(adapter, vf, !vlan);
5847 adapter->vf_data[vf].pf_vlan = vlan;
5848 adapter->vf_data[vf].pf_qos = qos;
5849 dev_info(&adapter->pdev->dev,
5850 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5851 if (test_bit(__IGB_DOWN, &adapter->state)) {
5852 dev_warn(&adapter->pdev->dev,
5853 "The VF VLAN has been set, but the PF device is not up.\n");
5854 dev_warn(&adapter->pdev->dev,
5855 "Bring the PF device up before attempting to use the VF device.\n");
5856 }
5857 } else {
5858 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5859 false, vf);
5860 igb_set_vmvir(adapter, vlan, vf);
5861 igb_set_vmolr(adapter, vf, true);
5862 adapter->vf_data[vf].pf_vlan = 0;
5863 adapter->vf_data[vf].pf_qos = 0;
5864 }
5865 out:
5866 return err;
5867 }
5868
5869 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5870 {
5871 struct e1000_hw *hw = &adapter->hw;
5872 int i;
5873 u32 reg;
5874
5875 /* Find the vlan filter for this id */
5876 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5877 reg = rd32(E1000_VLVF(i));
5878 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5879 vid == (reg & E1000_VLVF_VLANID_MASK))
5880 break;
5881 }
5882
5883 if (i >= E1000_VLVF_ARRAY_SIZE)
5884 i = -1;
5885
5886 return i;
5887 }
5888
5889 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5890 {
5891 struct e1000_hw *hw = &adapter->hw;
5892 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5893 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5894 int err = 0;
5895
5896 /* If in promiscuous mode we need to make sure the PF also has
5897 * the VLAN filter set.
5898 */
5899 if (add && (adapter->netdev->flags & IFF_PROMISC))
5900 err = igb_vlvf_set(adapter, vid, add,
5901 adapter->vfs_allocated_count);
5902 if (err)
5903 goto out;
5904
5905 err = igb_vlvf_set(adapter, vid, add, vf);
5906
5907 if (err)
5908 goto out;
5909
5910 /* Go through all the checks to see if the VLAN filter should
5911 * be wiped completely.
5912 */
5913 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5914 u32 vlvf, bits;
5915 int regndx = igb_find_vlvf_entry(adapter, vid);
5916
5917 if (regndx < 0)
5918 goto out;
5919 /* See if any other pools are set for this VLAN filter
5920 * entry other than the PF.
5921 */
5922 vlvf = bits = rd32(E1000_VLVF(regndx));
5923 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5924 adapter->vfs_allocated_count);
5925 /* If the filter was removed then ensure PF pool bit
5926 * is cleared if the PF only added itself to the pool
5927 * because the PF is in promiscuous mode.
5928 */
5929 if ((vlvf & VLAN_VID_MASK) == vid &&
5930 !test_bit(vid, adapter->active_vlans) &&
5931 !bits)
5932 igb_vlvf_set(adapter, vid, add,
5933 adapter->vfs_allocated_count);
5934 }
5935
5936 out:
5937 return err;
5938 }
5939
5940 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5941 {
5942 /* clear flags - except flag that indicates PF has set the MAC */
5943 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5944 adapter->vf_data[vf].last_nack = jiffies;
5945
5946 /* reset offloads to defaults */
5947 igb_set_vmolr(adapter, vf, true);
5948
5949 /* reset vlans for device */
5950 igb_clear_vf_vfta(adapter, vf);
5951 if (adapter->vf_data[vf].pf_vlan)
5952 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5953 adapter->vf_data[vf].pf_vlan,
5954 adapter->vf_data[vf].pf_qos);
5955 else
5956 igb_clear_vf_vfta(adapter, vf);
5957
5958 /* reset multicast table array for vf */
5959 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5960
5961 /* Flush and reset the mta with the new values */
5962 igb_set_rx_mode(adapter->netdev);
5963 }
5964
5965 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5966 {
5967 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5968
5969 /* clear mac address as we were hotplug removed/added */
5970 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5971 eth_zero_addr(vf_mac);
5972
5973 /* process remaining reset events */
5974 igb_vf_reset(adapter, vf);
5975 }
5976
5977 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5978 {
5979 struct e1000_hw *hw = &adapter->hw;
5980 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5981 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5982 u32 reg, msgbuf[3];
5983 u8 *addr = (u8 *)(&msgbuf[1]);
5984
5985 /* process all the same items cleared in a function level reset */
5986 igb_vf_reset(adapter, vf);
5987
5988 /* set vf mac address */
5989 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5990
5991 /* enable transmit and receive for vf */
5992 reg = rd32(E1000_VFTE);
5993 wr32(E1000_VFTE, reg | (1 << vf));
5994 reg = rd32(E1000_VFRE);
5995 wr32(E1000_VFRE, reg | (1 << vf));
5996
5997 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5998
5999 /* reply to reset with ack and vf mac address */
6000 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6001 memcpy(addr, vf_mac, ETH_ALEN);
6002 igb_write_mbx(hw, msgbuf, 3, vf);
6003 }
6004
6005 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6006 {
6007 /* The VF MAC Address is stored in a packed array of bytes
6008 * starting at the second 32 bit word of the msg array
6009 */
6010 unsigned char *addr = (char *)&msg[1];
6011 int err = -1;
6012
6013 if (is_valid_ether_addr(addr))
6014 err = igb_set_vf_mac(adapter, vf, addr);
6015
6016 return err;
6017 }
6018
6019 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6020 {
6021 struct e1000_hw *hw = &adapter->hw;
6022 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6023 u32 msg = E1000_VT_MSGTYPE_NACK;
6024
6025 /* if device isn't clear to send it shouldn't be reading either */
6026 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6027 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6028 igb_write_mbx(hw, &msg, 1, vf);
6029 vf_data->last_nack = jiffies;
6030 }
6031 }
6032
6033 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6034 {
6035 struct pci_dev *pdev = adapter->pdev;
6036 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6037 struct e1000_hw *hw = &adapter->hw;
6038 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6039 s32 retval;
6040
6041 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6042
6043 if (retval) {
6044 /* if receive failed revoke VF CTS stats and restart init */
6045 dev_err(&pdev->dev, "Error receiving message from VF\n");
6046 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6047 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6048 return;
6049 goto out;
6050 }
6051
6052 /* this is a message we already processed, do nothing */
6053 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6054 return;
6055
6056 /* until the vf completes a reset it should not be
6057 * allowed to start any configuration.
6058 */
6059 if (msgbuf[0] == E1000_VF_RESET) {
6060 igb_vf_reset_msg(adapter, vf);
6061 return;
6062 }
6063
6064 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6065 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6066 return;
6067 retval = -1;
6068 goto out;
6069 }
6070
6071 switch ((msgbuf[0] & 0xFFFF)) {
6072 case E1000_VF_SET_MAC_ADDR:
6073 retval = -EINVAL;
6074 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6075 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6076 else
6077 dev_warn(&pdev->dev,
6078 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6079 vf);
6080 break;
6081 case E1000_VF_SET_PROMISC:
6082 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6083 break;
6084 case E1000_VF_SET_MULTICAST:
6085 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6086 break;
6087 case E1000_VF_SET_LPE:
6088 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6089 break;
6090 case E1000_VF_SET_VLAN:
6091 retval = -1;
6092 if (vf_data->pf_vlan)
6093 dev_warn(&pdev->dev,
6094 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6095 vf);
6096 else
6097 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6098 break;
6099 default:
6100 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6101 retval = -1;
6102 break;
6103 }
6104
6105 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6106 out:
6107 /* notify the VF of the results of what it sent us */
6108 if (retval)
6109 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6110 else
6111 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6112
6113 igb_write_mbx(hw, msgbuf, 1, vf);
6114 }
6115
6116 static void igb_msg_task(struct igb_adapter *adapter)
6117 {
6118 struct e1000_hw *hw = &adapter->hw;
6119 u32 vf;
6120
6121 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6122 /* process any reset requests */
6123 if (!igb_check_for_rst(hw, vf))
6124 igb_vf_reset_event(adapter, vf);
6125
6126 /* process any messages pending */
6127 if (!igb_check_for_msg(hw, vf))
6128 igb_rcv_msg_from_vf(adapter, vf);
6129
6130 /* process any acks */
6131 if (!igb_check_for_ack(hw, vf))
6132 igb_rcv_ack_from_vf(adapter, vf);
6133 }
6134 }
6135
6136 /**
6137 * igb_set_uta - Set unicast filter table address
6138 * @adapter: board private structure
6139 *
6140 * The unicast table address is a register array of 32-bit registers.
6141 * The table is meant to be used in a way similar to how the MTA is used
6142 * however due to certain limitations in the hardware it is necessary to
6143 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6144 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6145 **/
6146 static void igb_set_uta(struct igb_adapter *adapter)
6147 {
6148 struct e1000_hw *hw = &adapter->hw;
6149 int i;
6150
6151 /* The UTA table only exists on 82576 hardware and newer */
6152 if (hw->mac.type < e1000_82576)
6153 return;
6154
6155 /* we only need to do this if VMDq is enabled */
6156 if (!adapter->vfs_allocated_count)
6157 return;
6158
6159 for (i = 0; i < hw->mac.uta_reg_count; i++)
6160 array_wr32(E1000_UTA, i, ~0);
6161 }
6162
6163 /**
6164 * igb_intr_msi - Interrupt Handler
6165 * @irq: interrupt number
6166 * @data: pointer to a network interface device structure
6167 **/
6168 static irqreturn_t igb_intr_msi(int irq, void *data)
6169 {
6170 struct igb_adapter *adapter = data;
6171 struct igb_q_vector *q_vector = adapter->q_vector[0];
6172 struct e1000_hw *hw = &adapter->hw;
6173 /* read ICR disables interrupts using IAM */
6174 u32 icr = rd32(E1000_ICR);
6175
6176 igb_write_itr(q_vector);
6177
6178 if (icr & E1000_ICR_DRSTA)
6179 schedule_work(&adapter->reset_task);
6180
6181 if (icr & E1000_ICR_DOUTSYNC) {
6182 /* HW is reporting DMA is out of sync */
6183 adapter->stats.doosync++;
6184 }
6185
6186 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6187 hw->mac.get_link_status = 1;
6188 if (!test_bit(__IGB_DOWN, &adapter->state))
6189 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6190 }
6191
6192 if (icr & E1000_ICR_TS) {
6193 u32 tsicr = rd32(E1000_TSICR);
6194
6195 if (tsicr & E1000_TSICR_TXTS) {
6196 /* acknowledge the interrupt */
6197 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6198 /* retrieve hardware timestamp */
6199 schedule_work(&adapter->ptp_tx_work);
6200 }
6201 }
6202
6203 napi_schedule(&q_vector->napi);
6204
6205 return IRQ_HANDLED;
6206 }
6207
6208 /**
6209 * igb_intr - Legacy Interrupt Handler
6210 * @irq: interrupt number
6211 * @data: pointer to a network interface device structure
6212 **/
6213 static irqreturn_t igb_intr(int irq, void *data)
6214 {
6215 struct igb_adapter *adapter = data;
6216 struct igb_q_vector *q_vector = adapter->q_vector[0];
6217 struct e1000_hw *hw = &adapter->hw;
6218 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6219 * need for the IMC write
6220 */
6221 u32 icr = rd32(E1000_ICR);
6222
6223 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6224 * not set, then the adapter didn't send an interrupt
6225 */
6226 if (!(icr & E1000_ICR_INT_ASSERTED))
6227 return IRQ_NONE;
6228
6229 igb_write_itr(q_vector);
6230
6231 if (icr & E1000_ICR_DRSTA)
6232 schedule_work(&adapter->reset_task);
6233
6234 if (icr & E1000_ICR_DOUTSYNC) {
6235 /* HW is reporting DMA is out of sync */
6236 adapter->stats.doosync++;
6237 }
6238
6239 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6240 hw->mac.get_link_status = 1;
6241 /* guard against interrupt when we're going down */
6242 if (!test_bit(__IGB_DOWN, &adapter->state))
6243 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6244 }
6245
6246 if (icr & E1000_ICR_TS) {
6247 u32 tsicr = rd32(E1000_TSICR);
6248
6249 if (tsicr & E1000_TSICR_TXTS) {
6250 /* acknowledge the interrupt */
6251 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6252 /* retrieve hardware timestamp */
6253 schedule_work(&adapter->ptp_tx_work);
6254 }
6255 }
6256
6257 napi_schedule(&q_vector->napi);
6258
6259 return IRQ_HANDLED;
6260 }
6261
6262 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6263 {
6264 struct igb_adapter *adapter = q_vector->adapter;
6265 struct e1000_hw *hw = &adapter->hw;
6266
6267 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6268 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6269 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6270 igb_set_itr(q_vector);
6271 else
6272 igb_update_ring_itr(q_vector);
6273 }
6274
6275 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6276 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6277 wr32(E1000_EIMS, q_vector->eims_value);
6278 else
6279 igb_irq_enable(adapter);
6280 }
6281 }
6282
6283 /**
6284 * igb_poll - NAPI Rx polling callback
6285 * @napi: napi polling structure
6286 * @budget: count of how many packets we should handle
6287 **/
6288 static int igb_poll(struct napi_struct *napi, int budget)
6289 {
6290 struct igb_q_vector *q_vector = container_of(napi,
6291 struct igb_q_vector,
6292 napi);
6293 bool clean_complete = true;
6294
6295 #ifdef CONFIG_IGB_DCA
6296 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6297 igb_update_dca(q_vector);
6298 #endif
6299 if (q_vector->tx.ring)
6300 clean_complete = igb_clean_tx_irq(q_vector);
6301
6302 if (q_vector->rx.ring)
6303 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6304
6305 /* If all work not completed, return budget and keep polling */
6306 if (!clean_complete)
6307 return budget;
6308
6309 /* If not enough Rx work done, exit the polling mode */
6310 napi_complete(napi);
6311 igb_ring_irq_enable(q_vector);
6312
6313 return 0;
6314 }
6315
6316 /**
6317 * igb_clean_tx_irq - Reclaim resources after transmit completes
6318 * @q_vector: pointer to q_vector containing needed info
6319 *
6320 * returns true if ring is completely cleaned
6321 **/
6322 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6323 {
6324 struct igb_adapter *adapter = q_vector->adapter;
6325 struct igb_ring *tx_ring = q_vector->tx.ring;
6326 struct igb_tx_buffer *tx_buffer;
6327 union e1000_adv_tx_desc *tx_desc;
6328 unsigned int total_bytes = 0, total_packets = 0;
6329 unsigned int budget = q_vector->tx.work_limit;
6330 unsigned int i = tx_ring->next_to_clean;
6331
6332 if (test_bit(__IGB_DOWN, &adapter->state))
6333 return true;
6334
6335 tx_buffer = &tx_ring->tx_buffer_info[i];
6336 tx_desc = IGB_TX_DESC(tx_ring, i);
6337 i -= tx_ring->count;
6338
6339 do {
6340 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6341
6342 /* if next_to_watch is not set then there is no work pending */
6343 if (!eop_desc)
6344 break;
6345
6346 /* prevent any other reads prior to eop_desc */
6347 read_barrier_depends();
6348
6349 /* if DD is not set pending work has not been completed */
6350 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6351 break;
6352
6353 /* clear next_to_watch to prevent false hangs */
6354 tx_buffer->next_to_watch = NULL;
6355
6356 /* update the statistics for this packet */
6357 total_bytes += tx_buffer->bytecount;
6358 total_packets += tx_buffer->gso_segs;
6359
6360 /* free the skb */
6361 dev_kfree_skb_any(tx_buffer->skb);
6362
6363 /* unmap skb header data */
6364 dma_unmap_single(tx_ring->dev,
6365 dma_unmap_addr(tx_buffer, dma),
6366 dma_unmap_len(tx_buffer, len),
6367 DMA_TO_DEVICE);
6368
6369 /* clear tx_buffer data */
6370 tx_buffer->skb = NULL;
6371 dma_unmap_len_set(tx_buffer, len, 0);
6372
6373 /* clear last DMA location and unmap remaining buffers */
6374 while (tx_desc != eop_desc) {
6375 tx_buffer++;
6376 tx_desc++;
6377 i++;
6378 if (unlikely(!i)) {
6379 i -= tx_ring->count;
6380 tx_buffer = tx_ring->tx_buffer_info;
6381 tx_desc = IGB_TX_DESC(tx_ring, 0);
6382 }
6383
6384 /* unmap any remaining paged data */
6385 if (dma_unmap_len(tx_buffer, len)) {
6386 dma_unmap_page(tx_ring->dev,
6387 dma_unmap_addr(tx_buffer, dma),
6388 dma_unmap_len(tx_buffer, len),
6389 DMA_TO_DEVICE);
6390 dma_unmap_len_set(tx_buffer, len, 0);
6391 }
6392 }
6393
6394 /* move us one more past the eop_desc for start of next pkt */
6395 tx_buffer++;
6396 tx_desc++;
6397 i++;
6398 if (unlikely(!i)) {
6399 i -= tx_ring->count;
6400 tx_buffer = tx_ring->tx_buffer_info;
6401 tx_desc = IGB_TX_DESC(tx_ring, 0);
6402 }
6403
6404 /* issue prefetch for next Tx descriptor */
6405 prefetch(tx_desc);
6406
6407 /* update budget accounting */
6408 budget--;
6409 } while (likely(budget));
6410
6411 netdev_tx_completed_queue(txring_txq(tx_ring),
6412 total_packets, total_bytes);
6413 i += tx_ring->count;
6414 tx_ring->next_to_clean = i;
6415 u64_stats_update_begin(&tx_ring->tx_syncp);
6416 tx_ring->tx_stats.bytes += total_bytes;
6417 tx_ring->tx_stats.packets += total_packets;
6418 u64_stats_update_end(&tx_ring->tx_syncp);
6419 q_vector->tx.total_bytes += total_bytes;
6420 q_vector->tx.total_packets += total_packets;
6421
6422 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6423 struct e1000_hw *hw = &adapter->hw;
6424
6425 /* Detect a transmit hang in hardware, this serializes the
6426 * check with the clearing of time_stamp and movement of i
6427 */
6428 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6429 if (tx_buffer->next_to_watch &&
6430 time_after(jiffies, tx_buffer->time_stamp +
6431 (adapter->tx_timeout_factor * HZ)) &&
6432 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6433
6434 /* detected Tx unit hang */
6435 dev_err(tx_ring->dev,
6436 "Detected Tx Unit Hang\n"
6437 " Tx Queue <%d>\n"
6438 " TDH <%x>\n"
6439 " TDT <%x>\n"
6440 " next_to_use <%x>\n"
6441 " next_to_clean <%x>\n"
6442 "buffer_info[next_to_clean]\n"
6443 " time_stamp <%lx>\n"
6444 " next_to_watch <%p>\n"
6445 " jiffies <%lx>\n"
6446 " desc.status <%x>\n",
6447 tx_ring->queue_index,
6448 rd32(E1000_TDH(tx_ring->reg_idx)),
6449 readl(tx_ring->tail),
6450 tx_ring->next_to_use,
6451 tx_ring->next_to_clean,
6452 tx_buffer->time_stamp,
6453 tx_buffer->next_to_watch,
6454 jiffies,
6455 tx_buffer->next_to_watch->wb.status);
6456 netif_stop_subqueue(tx_ring->netdev,
6457 tx_ring->queue_index);
6458
6459 /* we are about to reset, no point in enabling stuff */
6460 return true;
6461 }
6462 }
6463
6464 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6465 if (unlikely(total_packets &&
6466 netif_carrier_ok(tx_ring->netdev) &&
6467 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6468 /* Make sure that anybody stopping the queue after this
6469 * sees the new next_to_clean.
6470 */
6471 smp_mb();
6472 if (__netif_subqueue_stopped(tx_ring->netdev,
6473 tx_ring->queue_index) &&
6474 !(test_bit(__IGB_DOWN, &adapter->state))) {
6475 netif_wake_subqueue(tx_ring->netdev,
6476 tx_ring->queue_index);
6477
6478 u64_stats_update_begin(&tx_ring->tx_syncp);
6479 tx_ring->tx_stats.restart_queue++;
6480 u64_stats_update_end(&tx_ring->tx_syncp);
6481 }
6482 }
6483
6484 return !!budget;
6485 }
6486
6487 /**
6488 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6489 * @rx_ring: rx descriptor ring to store buffers on
6490 * @old_buff: donor buffer to have page reused
6491 *
6492 * Synchronizes page for reuse by the adapter
6493 **/
6494 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6495 struct igb_rx_buffer *old_buff)
6496 {
6497 struct igb_rx_buffer *new_buff;
6498 u16 nta = rx_ring->next_to_alloc;
6499
6500 new_buff = &rx_ring->rx_buffer_info[nta];
6501
6502 /* update, and store next to alloc */
6503 nta++;
6504 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6505
6506 /* transfer page from old buffer to new buffer */
6507 *new_buff = *old_buff;
6508
6509 /* sync the buffer for use by the device */
6510 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6511 old_buff->page_offset,
6512 IGB_RX_BUFSZ,
6513 DMA_FROM_DEVICE);
6514 }
6515
6516 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6517 struct page *page,
6518 unsigned int truesize)
6519 {
6520 /* avoid re-using remote pages */
6521 if (unlikely(page_to_nid(page) != numa_node_id()))
6522 return false;
6523
6524 #if (PAGE_SIZE < 8192)
6525 /* if we are only owner of page we can reuse it */
6526 if (unlikely(page_count(page) != 1))
6527 return false;
6528
6529 /* flip page offset to other buffer */
6530 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6531
6532 /* since we are the only owner of the page and we need to
6533 * increment it, just set the value to 2 in order to avoid
6534 * an unnecessary locked operation
6535 */
6536 atomic_set(&page->_count, 2);
6537 #else
6538 /* move offset up to the next cache line */
6539 rx_buffer->page_offset += truesize;
6540
6541 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6542 return false;
6543
6544 /* bump ref count on page before it is given to the stack */
6545 get_page(page);
6546 #endif
6547
6548 return true;
6549 }
6550
6551 /**
6552 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6553 * @rx_ring: rx descriptor ring to transact packets on
6554 * @rx_buffer: buffer containing page to add
6555 * @rx_desc: descriptor containing length of buffer written by hardware
6556 * @skb: sk_buff to place the data into
6557 *
6558 * This function will add the data contained in rx_buffer->page to the skb.
6559 * This is done either through a direct copy if the data in the buffer is
6560 * less than the skb header size, otherwise it will just attach the page as
6561 * a frag to the skb.
6562 *
6563 * The function will then update the page offset if necessary and return
6564 * true if the buffer can be reused by the adapter.
6565 **/
6566 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6567 struct igb_rx_buffer *rx_buffer,
6568 union e1000_adv_rx_desc *rx_desc,
6569 struct sk_buff *skb)
6570 {
6571 struct page *page = rx_buffer->page;
6572 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6573 #if (PAGE_SIZE < 8192)
6574 unsigned int truesize = IGB_RX_BUFSZ;
6575 #else
6576 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6577 #endif
6578
6579 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6580 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6581
6582 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6583 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6584 va += IGB_TS_HDR_LEN;
6585 size -= IGB_TS_HDR_LEN;
6586 }
6587
6588 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6589
6590 /* we can reuse buffer as-is, just make sure it is local */
6591 if (likely(page_to_nid(page) == numa_node_id()))
6592 return true;
6593
6594 /* this page cannot be reused so discard it */
6595 put_page(page);
6596 return false;
6597 }
6598
6599 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6600 rx_buffer->page_offset, size, truesize);
6601
6602 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6603 }
6604
6605 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6606 union e1000_adv_rx_desc *rx_desc,
6607 struct sk_buff *skb)
6608 {
6609 struct igb_rx_buffer *rx_buffer;
6610 struct page *page;
6611
6612 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6613
6614 page = rx_buffer->page;
6615 prefetchw(page);
6616
6617 if (likely(!skb)) {
6618 void *page_addr = page_address(page) +
6619 rx_buffer->page_offset;
6620
6621 /* prefetch first cache line of first page */
6622 prefetch(page_addr);
6623 #if L1_CACHE_BYTES < 128
6624 prefetch(page_addr + L1_CACHE_BYTES);
6625 #endif
6626
6627 /* allocate a skb to store the frags */
6628 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6629 IGB_RX_HDR_LEN);
6630 if (unlikely(!skb)) {
6631 rx_ring->rx_stats.alloc_failed++;
6632 return NULL;
6633 }
6634
6635 /* we will be copying header into skb->data in
6636 * pskb_may_pull so it is in our interest to prefetch
6637 * it now to avoid a possible cache miss
6638 */
6639 prefetchw(skb->data);
6640 }
6641
6642 /* we are reusing so sync this buffer for CPU use */
6643 dma_sync_single_range_for_cpu(rx_ring->dev,
6644 rx_buffer->dma,
6645 rx_buffer->page_offset,
6646 IGB_RX_BUFSZ,
6647 DMA_FROM_DEVICE);
6648
6649 /* pull page into skb */
6650 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6651 /* hand second half of page back to the ring */
6652 igb_reuse_rx_page(rx_ring, rx_buffer);
6653 } else {
6654 /* we are not reusing the buffer so unmap it */
6655 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6656 PAGE_SIZE, DMA_FROM_DEVICE);
6657 }
6658
6659 /* clear contents of rx_buffer */
6660 rx_buffer->page = NULL;
6661
6662 return skb;
6663 }
6664
6665 static inline void igb_rx_checksum(struct igb_ring *ring,
6666 union e1000_adv_rx_desc *rx_desc,
6667 struct sk_buff *skb)
6668 {
6669 skb_checksum_none_assert(skb);
6670
6671 /* Ignore Checksum bit is set */
6672 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6673 return;
6674
6675 /* Rx checksum disabled via ethtool */
6676 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6677 return;
6678
6679 /* TCP/UDP checksum error bit is set */
6680 if (igb_test_staterr(rx_desc,
6681 E1000_RXDEXT_STATERR_TCPE |
6682 E1000_RXDEXT_STATERR_IPE)) {
6683 /* work around errata with sctp packets where the TCPE aka
6684 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6685 * packets, (aka let the stack check the crc32c)
6686 */
6687 if (!((skb->len == 60) &&
6688 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6689 u64_stats_update_begin(&ring->rx_syncp);
6690 ring->rx_stats.csum_err++;
6691 u64_stats_update_end(&ring->rx_syncp);
6692 }
6693 /* let the stack verify checksum errors */
6694 return;
6695 }
6696 /* It must be a TCP or UDP packet with a valid checksum */
6697 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6698 E1000_RXD_STAT_UDPCS))
6699 skb->ip_summed = CHECKSUM_UNNECESSARY;
6700
6701 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6702 le32_to_cpu(rx_desc->wb.upper.status_error));
6703 }
6704
6705 static inline void igb_rx_hash(struct igb_ring *ring,
6706 union e1000_adv_rx_desc *rx_desc,
6707 struct sk_buff *skb)
6708 {
6709 if (ring->netdev->features & NETIF_F_RXHASH)
6710 skb_set_hash(skb,
6711 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6712 PKT_HASH_TYPE_L3);
6713 }
6714
6715 /**
6716 * igb_is_non_eop - process handling of non-EOP buffers
6717 * @rx_ring: Rx ring being processed
6718 * @rx_desc: Rx descriptor for current buffer
6719 * @skb: current socket buffer containing buffer in progress
6720 *
6721 * This function updates next to clean. If the buffer is an EOP buffer
6722 * this function exits returning false, otherwise it will place the
6723 * sk_buff in the next buffer to be chained and return true indicating
6724 * that this is in fact a non-EOP buffer.
6725 **/
6726 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6727 union e1000_adv_rx_desc *rx_desc)
6728 {
6729 u32 ntc = rx_ring->next_to_clean + 1;
6730
6731 /* fetch, update, and store next to clean */
6732 ntc = (ntc < rx_ring->count) ? ntc : 0;
6733 rx_ring->next_to_clean = ntc;
6734
6735 prefetch(IGB_RX_DESC(rx_ring, ntc));
6736
6737 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6738 return false;
6739
6740 return true;
6741 }
6742
6743 /**
6744 * igb_get_headlen - determine size of header for LRO/GRO
6745 * @data: pointer to the start of the headers
6746 * @max_len: total length of section to find headers in
6747 *
6748 * This function is meant to determine the length of headers that will
6749 * be recognized by hardware for LRO, and GRO offloads. The main
6750 * motivation of doing this is to only perform one pull for IPv4 TCP
6751 * packets so that we can do basic things like calculating the gso_size
6752 * based on the average data per packet.
6753 **/
6754 static unsigned int igb_get_headlen(unsigned char *data,
6755 unsigned int max_len)
6756 {
6757 union {
6758 unsigned char *network;
6759 /* l2 headers */
6760 struct ethhdr *eth;
6761 struct vlan_hdr *vlan;
6762 /* l3 headers */
6763 struct iphdr *ipv4;
6764 struct ipv6hdr *ipv6;
6765 } hdr;
6766 __be16 protocol;
6767 u8 nexthdr = 0; /* default to not TCP */
6768 u8 hlen;
6769
6770 /* this should never happen, but better safe than sorry */
6771 if (max_len < ETH_HLEN)
6772 return max_len;
6773
6774 /* initialize network frame pointer */
6775 hdr.network = data;
6776
6777 /* set first protocol and move network header forward */
6778 protocol = hdr.eth->h_proto;
6779 hdr.network += ETH_HLEN;
6780
6781 /* handle any vlan tag if present */
6782 if (protocol == htons(ETH_P_8021Q)) {
6783 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6784 return max_len;
6785
6786 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6787 hdr.network += VLAN_HLEN;
6788 }
6789
6790 /* handle L3 protocols */
6791 if (protocol == htons(ETH_P_IP)) {
6792 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6793 return max_len;
6794
6795 /* access ihl as a u8 to avoid unaligned access on ia64 */
6796 hlen = (hdr.network[0] & 0x0F) << 2;
6797
6798 /* verify hlen meets minimum size requirements */
6799 if (hlen < sizeof(struct iphdr))
6800 return hdr.network - data;
6801
6802 /* record next protocol if header is present */
6803 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6804 nexthdr = hdr.ipv4->protocol;
6805 } else if (protocol == htons(ETH_P_IPV6)) {
6806 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6807 return max_len;
6808
6809 /* record next protocol */
6810 nexthdr = hdr.ipv6->nexthdr;
6811 hlen = sizeof(struct ipv6hdr);
6812 } else {
6813 return hdr.network - data;
6814 }
6815
6816 /* relocate pointer to start of L4 header */
6817 hdr.network += hlen;
6818
6819 /* finally sort out TCP */
6820 if (nexthdr == IPPROTO_TCP) {
6821 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6822 return max_len;
6823
6824 /* access doff as a u8 to avoid unaligned access on ia64 */
6825 hlen = (hdr.network[12] & 0xF0) >> 2;
6826
6827 /* verify hlen meets minimum size requirements */
6828 if (hlen < sizeof(struct tcphdr))
6829 return hdr.network - data;
6830
6831 hdr.network += hlen;
6832 } else if (nexthdr == IPPROTO_UDP) {
6833 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6834 return max_len;
6835
6836 hdr.network += sizeof(struct udphdr);
6837 }
6838
6839 /* If everything has gone correctly hdr.network should be the
6840 * data section of the packet and will be the end of the header.
6841 * If not then it probably represents the end of the last recognized
6842 * header.
6843 */
6844 if ((hdr.network - data) < max_len)
6845 return hdr.network - data;
6846 else
6847 return max_len;
6848 }
6849
6850 /**
6851 * igb_pull_tail - igb specific version of skb_pull_tail
6852 * @rx_ring: rx descriptor ring packet is being transacted on
6853 * @rx_desc: pointer to the EOP Rx descriptor
6854 * @skb: pointer to current skb being adjusted
6855 *
6856 * This function is an igb specific version of __pskb_pull_tail. The
6857 * main difference between this version and the original function is that
6858 * this function can make several assumptions about the state of things
6859 * that allow for significant optimizations versus the standard function.
6860 * As a result we can do things like drop a frag and maintain an accurate
6861 * truesize for the skb.
6862 */
6863 static void igb_pull_tail(struct igb_ring *rx_ring,
6864 union e1000_adv_rx_desc *rx_desc,
6865 struct sk_buff *skb)
6866 {
6867 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6868 unsigned char *va;
6869 unsigned int pull_len;
6870
6871 /* it is valid to use page_address instead of kmap since we are
6872 * working with pages allocated out of the lomem pool per
6873 * alloc_page(GFP_ATOMIC)
6874 */
6875 va = skb_frag_address(frag);
6876
6877 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6878 /* retrieve timestamp from buffer */
6879 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6880
6881 /* update pointers to remove timestamp header */
6882 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6883 frag->page_offset += IGB_TS_HDR_LEN;
6884 skb->data_len -= IGB_TS_HDR_LEN;
6885 skb->len -= IGB_TS_HDR_LEN;
6886
6887 /* move va to start of packet data */
6888 va += IGB_TS_HDR_LEN;
6889 }
6890
6891 /* we need the header to contain the greater of either ETH_HLEN or
6892 * 60 bytes if the skb->len is less than 60 for skb_pad.
6893 */
6894 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6895
6896 /* align pull length to size of long to optimize memcpy performance */
6897 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6898
6899 /* update all of the pointers */
6900 skb_frag_size_sub(frag, pull_len);
6901 frag->page_offset += pull_len;
6902 skb->data_len -= pull_len;
6903 skb->tail += pull_len;
6904 }
6905
6906 /**
6907 * igb_cleanup_headers - Correct corrupted or empty headers
6908 * @rx_ring: rx descriptor ring packet is being transacted on
6909 * @rx_desc: pointer to the EOP Rx descriptor
6910 * @skb: pointer to current skb being fixed
6911 *
6912 * Address the case where we are pulling data in on pages only
6913 * and as such no data is present in the skb header.
6914 *
6915 * In addition if skb is not at least 60 bytes we need to pad it so that
6916 * it is large enough to qualify as a valid Ethernet frame.
6917 *
6918 * Returns true if an error was encountered and skb was freed.
6919 **/
6920 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6921 union e1000_adv_rx_desc *rx_desc,
6922 struct sk_buff *skb)
6923 {
6924 if (unlikely((igb_test_staterr(rx_desc,
6925 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6926 struct net_device *netdev = rx_ring->netdev;
6927 if (!(netdev->features & NETIF_F_RXALL)) {
6928 dev_kfree_skb_any(skb);
6929 return true;
6930 }
6931 }
6932
6933 /* place header in linear portion of buffer */
6934 if (skb_is_nonlinear(skb))
6935 igb_pull_tail(rx_ring, rx_desc, skb);
6936
6937 /* if skb_pad returns an error the skb was freed */
6938 if (unlikely(skb->len < 60)) {
6939 int pad_len = 60 - skb->len;
6940
6941 if (skb_pad(skb, pad_len))
6942 return true;
6943 __skb_put(skb, pad_len);
6944 }
6945
6946 return false;
6947 }
6948
6949 /**
6950 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6951 * @rx_ring: rx descriptor ring packet is being transacted on
6952 * @rx_desc: pointer to the EOP Rx descriptor
6953 * @skb: pointer to current skb being populated
6954 *
6955 * This function checks the ring, descriptor, and packet information in
6956 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6957 * other fields within the skb.
6958 **/
6959 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6960 union e1000_adv_rx_desc *rx_desc,
6961 struct sk_buff *skb)
6962 {
6963 struct net_device *dev = rx_ring->netdev;
6964
6965 igb_rx_hash(rx_ring, rx_desc, skb);
6966
6967 igb_rx_checksum(rx_ring, rx_desc, skb);
6968
6969 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6970 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6971 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6972
6973 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6974 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6975 u16 vid;
6976
6977 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6978 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6979 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6980 else
6981 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6982
6983 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6984 }
6985
6986 skb_record_rx_queue(skb, rx_ring->queue_index);
6987
6988 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6989 }
6990
6991 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6992 {
6993 struct igb_ring *rx_ring = q_vector->rx.ring;
6994 struct sk_buff *skb = rx_ring->skb;
6995 unsigned int total_bytes = 0, total_packets = 0;
6996 u16 cleaned_count = igb_desc_unused(rx_ring);
6997
6998 while (likely(total_packets < budget)) {
6999 union e1000_adv_rx_desc *rx_desc;
7000
7001 /* return some buffers to hardware, one at a time is too slow */
7002 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7003 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7004 cleaned_count = 0;
7005 }
7006
7007 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7008
7009 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
7010 break;
7011
7012 /* This memory barrier is needed to keep us from reading
7013 * any other fields out of the rx_desc until we know the
7014 * RXD_STAT_DD bit is set
7015 */
7016 rmb();
7017
7018 /* retrieve a buffer from the ring */
7019 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7020
7021 /* exit if we failed to retrieve a buffer */
7022 if (!skb)
7023 break;
7024
7025 cleaned_count++;
7026
7027 /* fetch next buffer in frame if non-eop */
7028 if (igb_is_non_eop(rx_ring, rx_desc))
7029 continue;
7030
7031 /* verify the packet layout is correct */
7032 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7033 skb = NULL;
7034 continue;
7035 }
7036
7037 /* probably a little skewed due to removing CRC */
7038 total_bytes += skb->len;
7039
7040 /* populate checksum, timestamp, VLAN, and protocol */
7041 igb_process_skb_fields(rx_ring, rx_desc, skb);
7042
7043 napi_gro_receive(&q_vector->napi, skb);
7044
7045 /* reset skb pointer */
7046 skb = NULL;
7047
7048 /* update budget accounting */
7049 total_packets++;
7050 }
7051
7052 /* place incomplete frames back on ring for completion */
7053 rx_ring->skb = skb;
7054
7055 u64_stats_update_begin(&rx_ring->rx_syncp);
7056 rx_ring->rx_stats.packets += total_packets;
7057 rx_ring->rx_stats.bytes += total_bytes;
7058 u64_stats_update_end(&rx_ring->rx_syncp);
7059 q_vector->rx.total_packets += total_packets;
7060 q_vector->rx.total_bytes += total_bytes;
7061
7062 if (cleaned_count)
7063 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7064
7065 return total_packets < budget;
7066 }
7067
7068 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7069 struct igb_rx_buffer *bi)
7070 {
7071 struct page *page = bi->page;
7072 dma_addr_t dma;
7073
7074 /* since we are recycling buffers we should seldom need to alloc */
7075 if (likely(page))
7076 return true;
7077
7078 /* alloc new page for storage */
7079 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7080 if (unlikely(!page)) {
7081 rx_ring->rx_stats.alloc_failed++;
7082 return false;
7083 }
7084
7085 /* map page for use */
7086 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7087
7088 /* if mapping failed free memory back to system since
7089 * there isn't much point in holding memory we can't use
7090 */
7091 if (dma_mapping_error(rx_ring->dev, dma)) {
7092 __free_page(page);
7093
7094 rx_ring->rx_stats.alloc_failed++;
7095 return false;
7096 }
7097
7098 bi->dma = dma;
7099 bi->page = page;
7100 bi->page_offset = 0;
7101
7102 return true;
7103 }
7104
7105 /**
7106 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7107 * @adapter: address of board private structure
7108 **/
7109 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7110 {
7111 union e1000_adv_rx_desc *rx_desc;
7112 struct igb_rx_buffer *bi;
7113 u16 i = rx_ring->next_to_use;
7114
7115 /* nothing to do */
7116 if (!cleaned_count)
7117 return;
7118
7119 rx_desc = IGB_RX_DESC(rx_ring, i);
7120 bi = &rx_ring->rx_buffer_info[i];
7121 i -= rx_ring->count;
7122
7123 do {
7124 if (!igb_alloc_mapped_page(rx_ring, bi))
7125 break;
7126
7127 /* Refresh the desc even if buffer_addrs didn't change
7128 * because each write-back erases this info.
7129 */
7130 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7131
7132 rx_desc++;
7133 bi++;
7134 i++;
7135 if (unlikely(!i)) {
7136 rx_desc = IGB_RX_DESC(rx_ring, 0);
7137 bi = rx_ring->rx_buffer_info;
7138 i -= rx_ring->count;
7139 }
7140
7141 /* clear the hdr_addr for the next_to_use descriptor */
7142 rx_desc->read.hdr_addr = 0;
7143
7144 cleaned_count--;
7145 } while (cleaned_count);
7146
7147 i += rx_ring->count;
7148
7149 if (rx_ring->next_to_use != i) {
7150 /* record the next descriptor to use */
7151 rx_ring->next_to_use = i;
7152
7153 /* update next to alloc since we have filled the ring */
7154 rx_ring->next_to_alloc = i;
7155
7156 /* Force memory writes to complete before letting h/w
7157 * know there are new descriptors to fetch. (Only
7158 * applicable for weak-ordered memory model archs,
7159 * such as IA-64).
7160 */
7161 wmb();
7162 writel(i, rx_ring->tail);
7163 }
7164 }
7165
7166 /**
7167 * igb_mii_ioctl -
7168 * @netdev:
7169 * @ifreq:
7170 * @cmd:
7171 **/
7172 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7173 {
7174 struct igb_adapter *adapter = netdev_priv(netdev);
7175 struct mii_ioctl_data *data = if_mii(ifr);
7176
7177 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7178 return -EOPNOTSUPP;
7179
7180 switch (cmd) {
7181 case SIOCGMIIPHY:
7182 data->phy_id = adapter->hw.phy.addr;
7183 break;
7184 case SIOCGMIIREG:
7185 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7186 &data->val_out))
7187 return -EIO;
7188 break;
7189 case SIOCSMIIREG:
7190 default:
7191 return -EOPNOTSUPP;
7192 }
7193 return 0;
7194 }
7195
7196 /**
7197 * igb_ioctl -
7198 * @netdev:
7199 * @ifreq:
7200 * @cmd:
7201 **/
7202 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7203 {
7204 switch (cmd) {
7205 case SIOCGMIIPHY:
7206 case SIOCGMIIREG:
7207 case SIOCSMIIREG:
7208 return igb_mii_ioctl(netdev, ifr, cmd);
7209 case SIOCGHWTSTAMP:
7210 return igb_ptp_get_ts_config(netdev, ifr);
7211 case SIOCSHWTSTAMP:
7212 return igb_ptp_set_ts_config(netdev, ifr);
7213 default:
7214 return -EOPNOTSUPP;
7215 }
7216 }
7217
7218 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7219 {
7220 struct igb_adapter *adapter = hw->back;
7221
7222 if (pcie_capability_read_word(adapter->pdev, reg, value))
7223 return -E1000_ERR_CONFIG;
7224
7225 return 0;
7226 }
7227
7228 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7229 {
7230 struct igb_adapter *adapter = hw->back;
7231
7232 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7233 return -E1000_ERR_CONFIG;
7234
7235 return 0;
7236 }
7237
7238 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7239 {
7240 struct igb_adapter *adapter = netdev_priv(netdev);
7241 struct e1000_hw *hw = &adapter->hw;
7242 u32 ctrl, rctl;
7243 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7244
7245 if (enable) {
7246 /* enable VLAN tag insert/strip */
7247 ctrl = rd32(E1000_CTRL);
7248 ctrl |= E1000_CTRL_VME;
7249 wr32(E1000_CTRL, ctrl);
7250
7251 /* Disable CFI check */
7252 rctl = rd32(E1000_RCTL);
7253 rctl &= ~E1000_RCTL_CFIEN;
7254 wr32(E1000_RCTL, rctl);
7255 } else {
7256 /* disable VLAN tag insert/strip */
7257 ctrl = rd32(E1000_CTRL);
7258 ctrl &= ~E1000_CTRL_VME;
7259 wr32(E1000_CTRL, ctrl);
7260 }
7261
7262 igb_rlpml_set(adapter);
7263 }
7264
7265 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7266 __be16 proto, u16 vid)
7267 {
7268 struct igb_adapter *adapter = netdev_priv(netdev);
7269 struct e1000_hw *hw = &adapter->hw;
7270 int pf_id = adapter->vfs_allocated_count;
7271
7272 /* attempt to add filter to vlvf array */
7273 igb_vlvf_set(adapter, vid, true, pf_id);
7274
7275 /* add the filter since PF can receive vlans w/o entry in vlvf */
7276 igb_vfta_set(hw, vid, true);
7277
7278 set_bit(vid, adapter->active_vlans);
7279
7280 return 0;
7281 }
7282
7283 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7284 __be16 proto, u16 vid)
7285 {
7286 struct igb_adapter *adapter = netdev_priv(netdev);
7287 struct e1000_hw *hw = &adapter->hw;
7288 int pf_id = adapter->vfs_allocated_count;
7289 s32 err;
7290
7291 /* remove vlan from VLVF table array */
7292 err = igb_vlvf_set(adapter, vid, false, pf_id);
7293
7294 /* if vid was not present in VLVF just remove it from table */
7295 if (err)
7296 igb_vfta_set(hw, vid, false);
7297
7298 clear_bit(vid, adapter->active_vlans);
7299
7300 return 0;
7301 }
7302
7303 static void igb_restore_vlan(struct igb_adapter *adapter)
7304 {
7305 u16 vid;
7306
7307 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7308
7309 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7310 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7311 }
7312
7313 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7314 {
7315 struct pci_dev *pdev = adapter->pdev;
7316 struct e1000_mac_info *mac = &adapter->hw.mac;
7317
7318 mac->autoneg = 0;
7319
7320 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7321 * for the switch() below to work
7322 */
7323 if ((spd & 1) || (dplx & ~1))
7324 goto err_inval;
7325
7326 /* Fiber NIC's only allow 1000 gbps Full duplex
7327 * and 100Mbps Full duplex for 100baseFx sfp
7328 */
7329 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7330 switch (spd + dplx) {
7331 case SPEED_10 + DUPLEX_HALF:
7332 case SPEED_10 + DUPLEX_FULL:
7333 case SPEED_100 + DUPLEX_HALF:
7334 goto err_inval;
7335 default:
7336 break;
7337 }
7338 }
7339
7340 switch (spd + dplx) {
7341 case SPEED_10 + DUPLEX_HALF:
7342 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7343 break;
7344 case SPEED_10 + DUPLEX_FULL:
7345 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7346 break;
7347 case SPEED_100 + DUPLEX_HALF:
7348 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7349 break;
7350 case SPEED_100 + DUPLEX_FULL:
7351 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7352 break;
7353 case SPEED_1000 + DUPLEX_FULL:
7354 mac->autoneg = 1;
7355 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7356 break;
7357 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7358 default:
7359 goto err_inval;
7360 }
7361
7362 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7363 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7364
7365 return 0;
7366
7367 err_inval:
7368 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7369 return -EINVAL;
7370 }
7371
7372 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7373 bool runtime)
7374 {
7375 struct net_device *netdev = pci_get_drvdata(pdev);
7376 struct igb_adapter *adapter = netdev_priv(netdev);
7377 struct e1000_hw *hw = &adapter->hw;
7378 u32 ctrl, rctl, status;
7379 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7380 #ifdef CONFIG_PM
7381 int retval = 0;
7382 #endif
7383
7384 netif_device_detach(netdev);
7385
7386 if (netif_running(netdev))
7387 __igb_close(netdev, true);
7388
7389 igb_clear_interrupt_scheme(adapter);
7390
7391 #ifdef CONFIG_PM
7392 retval = pci_save_state(pdev);
7393 if (retval)
7394 return retval;
7395 #endif
7396
7397 status = rd32(E1000_STATUS);
7398 if (status & E1000_STATUS_LU)
7399 wufc &= ~E1000_WUFC_LNKC;
7400
7401 if (wufc) {
7402 igb_setup_rctl(adapter);
7403 igb_set_rx_mode(netdev);
7404
7405 /* turn on all-multi mode if wake on multicast is enabled */
7406 if (wufc & E1000_WUFC_MC) {
7407 rctl = rd32(E1000_RCTL);
7408 rctl |= E1000_RCTL_MPE;
7409 wr32(E1000_RCTL, rctl);
7410 }
7411
7412 ctrl = rd32(E1000_CTRL);
7413 /* advertise wake from D3Cold */
7414 #define E1000_CTRL_ADVD3WUC 0x00100000
7415 /* phy power management enable */
7416 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7417 ctrl |= E1000_CTRL_ADVD3WUC;
7418 wr32(E1000_CTRL, ctrl);
7419
7420 /* Allow time for pending master requests to run */
7421 igb_disable_pcie_master(hw);
7422
7423 wr32(E1000_WUC, E1000_WUC_PME_EN);
7424 wr32(E1000_WUFC, wufc);
7425 } else {
7426 wr32(E1000_WUC, 0);
7427 wr32(E1000_WUFC, 0);
7428 }
7429
7430 *enable_wake = wufc || adapter->en_mng_pt;
7431 if (!*enable_wake)
7432 igb_power_down_link(adapter);
7433 else
7434 igb_power_up_link(adapter);
7435
7436 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7437 * would have already happened in close and is redundant.
7438 */
7439 igb_release_hw_control(adapter);
7440
7441 pci_disable_device(pdev);
7442
7443 return 0;
7444 }
7445
7446 #ifdef CONFIG_PM
7447 #ifdef CONFIG_PM_SLEEP
7448 static int igb_suspend(struct device *dev)
7449 {
7450 int retval;
7451 bool wake;
7452 struct pci_dev *pdev = to_pci_dev(dev);
7453
7454 retval = __igb_shutdown(pdev, &wake, 0);
7455 if (retval)
7456 return retval;
7457
7458 if (wake) {
7459 pci_prepare_to_sleep(pdev);
7460 } else {
7461 pci_wake_from_d3(pdev, false);
7462 pci_set_power_state(pdev, PCI_D3hot);
7463 }
7464
7465 return 0;
7466 }
7467 #endif /* CONFIG_PM_SLEEP */
7468
7469 static int igb_resume(struct device *dev)
7470 {
7471 struct pci_dev *pdev = to_pci_dev(dev);
7472 struct net_device *netdev = pci_get_drvdata(pdev);
7473 struct igb_adapter *adapter = netdev_priv(netdev);
7474 struct e1000_hw *hw = &adapter->hw;
7475 u32 err;
7476
7477 pci_set_power_state(pdev, PCI_D0);
7478 pci_restore_state(pdev);
7479 pci_save_state(pdev);
7480
7481 err = pci_enable_device_mem(pdev);
7482 if (err) {
7483 dev_err(&pdev->dev,
7484 "igb: Cannot enable PCI device from suspend\n");
7485 return err;
7486 }
7487 pci_set_master(pdev);
7488
7489 pci_enable_wake(pdev, PCI_D3hot, 0);
7490 pci_enable_wake(pdev, PCI_D3cold, 0);
7491
7492 if (igb_init_interrupt_scheme(adapter, true)) {
7493 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7494 return -ENOMEM;
7495 }
7496
7497 igb_reset(adapter);
7498
7499 /* let the f/w know that the h/w is now under the control of the
7500 * driver.
7501 */
7502 igb_get_hw_control(adapter);
7503
7504 wr32(E1000_WUS, ~0);
7505
7506 if (netdev->flags & IFF_UP) {
7507 rtnl_lock();
7508 err = __igb_open(netdev, true);
7509 rtnl_unlock();
7510 if (err)
7511 return err;
7512 }
7513
7514 netif_device_attach(netdev);
7515 return 0;
7516 }
7517
7518 #ifdef CONFIG_PM_RUNTIME
7519 static int igb_runtime_idle(struct device *dev)
7520 {
7521 struct pci_dev *pdev = to_pci_dev(dev);
7522 struct net_device *netdev = pci_get_drvdata(pdev);
7523 struct igb_adapter *adapter = netdev_priv(netdev);
7524
7525 if (!igb_has_link(adapter))
7526 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7527
7528 return -EBUSY;
7529 }
7530
7531 static int igb_runtime_suspend(struct device *dev)
7532 {
7533 struct pci_dev *pdev = to_pci_dev(dev);
7534 int retval;
7535 bool wake;
7536
7537 retval = __igb_shutdown(pdev, &wake, 1);
7538 if (retval)
7539 return retval;
7540
7541 if (wake) {
7542 pci_prepare_to_sleep(pdev);
7543 } else {
7544 pci_wake_from_d3(pdev, false);
7545 pci_set_power_state(pdev, PCI_D3hot);
7546 }
7547
7548 return 0;
7549 }
7550
7551 static int igb_runtime_resume(struct device *dev)
7552 {
7553 return igb_resume(dev);
7554 }
7555 #endif /* CONFIG_PM_RUNTIME */
7556 #endif
7557
7558 static void igb_shutdown(struct pci_dev *pdev)
7559 {
7560 bool wake;
7561
7562 __igb_shutdown(pdev, &wake, 0);
7563
7564 if (system_state == SYSTEM_POWER_OFF) {
7565 pci_wake_from_d3(pdev, wake);
7566 pci_set_power_state(pdev, PCI_D3hot);
7567 }
7568 }
7569
7570 #ifdef CONFIG_PCI_IOV
7571 static int igb_sriov_reinit(struct pci_dev *dev)
7572 {
7573 struct net_device *netdev = pci_get_drvdata(dev);
7574 struct igb_adapter *adapter = netdev_priv(netdev);
7575 struct pci_dev *pdev = adapter->pdev;
7576
7577 rtnl_lock();
7578
7579 if (netif_running(netdev))
7580 igb_close(netdev);
7581
7582 igb_clear_interrupt_scheme(adapter);
7583
7584 igb_init_queue_configuration(adapter);
7585
7586 if (igb_init_interrupt_scheme(adapter, true)) {
7587 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7588 return -ENOMEM;
7589 }
7590
7591 if (netif_running(netdev))
7592 igb_open(netdev);
7593
7594 rtnl_unlock();
7595
7596 return 0;
7597 }
7598
7599 static int igb_pci_disable_sriov(struct pci_dev *dev)
7600 {
7601 int err = igb_disable_sriov(dev);
7602
7603 if (!err)
7604 err = igb_sriov_reinit(dev);
7605
7606 return err;
7607 }
7608
7609 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7610 {
7611 int err = igb_enable_sriov(dev, num_vfs);
7612
7613 if (err)
7614 goto out;
7615
7616 err = igb_sriov_reinit(dev);
7617 if (!err)
7618 return num_vfs;
7619
7620 out:
7621 return err;
7622 }
7623
7624 #endif
7625 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7626 {
7627 #ifdef CONFIG_PCI_IOV
7628 if (num_vfs == 0)
7629 return igb_pci_disable_sriov(dev);
7630 else
7631 return igb_pci_enable_sriov(dev, num_vfs);
7632 #endif
7633 return 0;
7634 }
7635
7636 #ifdef CONFIG_NET_POLL_CONTROLLER
7637 /* Polling 'interrupt' - used by things like netconsole to send skbs
7638 * without having to re-enable interrupts. It's not called while
7639 * the interrupt routine is executing.
7640 */
7641 static void igb_netpoll(struct net_device *netdev)
7642 {
7643 struct igb_adapter *adapter = netdev_priv(netdev);
7644 struct e1000_hw *hw = &adapter->hw;
7645 struct igb_q_vector *q_vector;
7646 int i;
7647
7648 for (i = 0; i < adapter->num_q_vectors; i++) {
7649 q_vector = adapter->q_vector[i];
7650 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7651 wr32(E1000_EIMC, q_vector->eims_value);
7652 else
7653 igb_irq_disable(adapter);
7654 napi_schedule(&q_vector->napi);
7655 }
7656 }
7657 #endif /* CONFIG_NET_POLL_CONTROLLER */
7658
7659 /**
7660 * igb_io_error_detected - called when PCI error is detected
7661 * @pdev: Pointer to PCI device
7662 * @state: The current pci connection state
7663 *
7664 * This function is called after a PCI bus error affecting
7665 * this device has been detected.
7666 **/
7667 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7668 pci_channel_state_t state)
7669 {
7670 struct net_device *netdev = pci_get_drvdata(pdev);
7671 struct igb_adapter *adapter = netdev_priv(netdev);
7672
7673 netif_device_detach(netdev);
7674
7675 if (state == pci_channel_io_perm_failure)
7676 return PCI_ERS_RESULT_DISCONNECT;
7677
7678 if (netif_running(netdev))
7679 igb_down(adapter);
7680 pci_disable_device(pdev);
7681
7682 /* Request a slot slot reset. */
7683 return PCI_ERS_RESULT_NEED_RESET;
7684 }
7685
7686 /**
7687 * igb_io_slot_reset - called after the pci bus has been reset.
7688 * @pdev: Pointer to PCI device
7689 *
7690 * Restart the card from scratch, as if from a cold-boot. Implementation
7691 * resembles the first-half of the igb_resume routine.
7692 **/
7693 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7694 {
7695 struct net_device *netdev = pci_get_drvdata(pdev);
7696 struct igb_adapter *adapter = netdev_priv(netdev);
7697 struct e1000_hw *hw = &adapter->hw;
7698 pci_ers_result_t result;
7699 int err;
7700
7701 if (pci_enable_device_mem(pdev)) {
7702 dev_err(&pdev->dev,
7703 "Cannot re-enable PCI device after reset.\n");
7704 result = PCI_ERS_RESULT_DISCONNECT;
7705 } else {
7706 pci_set_master(pdev);
7707 pci_restore_state(pdev);
7708 pci_save_state(pdev);
7709
7710 pci_enable_wake(pdev, PCI_D3hot, 0);
7711 pci_enable_wake(pdev, PCI_D3cold, 0);
7712
7713 igb_reset(adapter);
7714 wr32(E1000_WUS, ~0);
7715 result = PCI_ERS_RESULT_RECOVERED;
7716 }
7717
7718 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7719 if (err) {
7720 dev_err(&pdev->dev,
7721 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7722 err);
7723 /* non-fatal, continue */
7724 }
7725
7726 return result;
7727 }
7728
7729 /**
7730 * igb_io_resume - called when traffic can start flowing again.
7731 * @pdev: Pointer to PCI device
7732 *
7733 * This callback is called when the error recovery driver tells us that
7734 * its OK to resume normal operation. Implementation resembles the
7735 * second-half of the igb_resume routine.
7736 */
7737 static void igb_io_resume(struct pci_dev *pdev)
7738 {
7739 struct net_device *netdev = pci_get_drvdata(pdev);
7740 struct igb_adapter *adapter = netdev_priv(netdev);
7741
7742 if (netif_running(netdev)) {
7743 if (igb_up(adapter)) {
7744 dev_err(&pdev->dev, "igb_up failed after reset\n");
7745 return;
7746 }
7747 }
7748
7749 netif_device_attach(netdev);
7750
7751 /* let the f/w know that the h/w is now under the control of the
7752 * driver.
7753 */
7754 igb_get_hw_control(adapter);
7755 }
7756
7757 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7758 u8 qsel)
7759 {
7760 u32 rar_low, rar_high;
7761 struct e1000_hw *hw = &adapter->hw;
7762
7763 /* HW expects these in little endian so we reverse the byte order
7764 * from network order (big endian) to little endian
7765 */
7766 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7767 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7768 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7769
7770 /* Indicate to hardware the Address is Valid. */
7771 rar_high |= E1000_RAH_AV;
7772
7773 if (hw->mac.type == e1000_82575)
7774 rar_high |= E1000_RAH_POOL_1 * qsel;
7775 else
7776 rar_high |= E1000_RAH_POOL_1 << qsel;
7777
7778 wr32(E1000_RAL(index), rar_low);
7779 wrfl();
7780 wr32(E1000_RAH(index), rar_high);
7781 wrfl();
7782 }
7783
7784 static int igb_set_vf_mac(struct igb_adapter *adapter,
7785 int vf, unsigned char *mac_addr)
7786 {
7787 struct e1000_hw *hw = &adapter->hw;
7788 /* VF MAC addresses start at end of receive addresses and moves
7789 * towards the first, as a result a collision should not be possible
7790 */
7791 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7792
7793 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7794
7795 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7796
7797 return 0;
7798 }
7799
7800 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7801 {
7802 struct igb_adapter *adapter = netdev_priv(netdev);
7803 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7804 return -EINVAL;
7805 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7806 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7807 dev_info(&adapter->pdev->dev,
7808 "Reload the VF driver to make this change effective.");
7809 if (test_bit(__IGB_DOWN, &adapter->state)) {
7810 dev_warn(&adapter->pdev->dev,
7811 "The VF MAC address has been set, but the PF device is not up.\n");
7812 dev_warn(&adapter->pdev->dev,
7813 "Bring the PF device up before attempting to use the VF device.\n");
7814 }
7815 return igb_set_vf_mac(adapter, vf, mac);
7816 }
7817
7818 static int igb_link_mbps(int internal_link_speed)
7819 {
7820 switch (internal_link_speed) {
7821 case SPEED_100:
7822 return 100;
7823 case SPEED_1000:
7824 return 1000;
7825 default:
7826 return 0;
7827 }
7828 }
7829
7830 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7831 int link_speed)
7832 {
7833 int rf_dec, rf_int;
7834 u32 bcnrc_val;
7835
7836 if (tx_rate != 0) {
7837 /* Calculate the rate factor values to set */
7838 rf_int = link_speed / tx_rate;
7839 rf_dec = (link_speed - (rf_int * tx_rate));
7840 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7841 tx_rate;
7842
7843 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7844 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7845 E1000_RTTBCNRC_RF_INT_MASK);
7846 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7847 } else {
7848 bcnrc_val = 0;
7849 }
7850
7851 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7852 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7853 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7854 */
7855 wr32(E1000_RTTBCNRM, 0x14);
7856 wr32(E1000_RTTBCNRC, bcnrc_val);
7857 }
7858
7859 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7860 {
7861 int actual_link_speed, i;
7862 bool reset_rate = false;
7863
7864 /* VF TX rate limit was not set or not supported */
7865 if ((adapter->vf_rate_link_speed == 0) ||
7866 (adapter->hw.mac.type != e1000_82576))
7867 return;
7868
7869 actual_link_speed = igb_link_mbps(adapter->link_speed);
7870 if (actual_link_speed != adapter->vf_rate_link_speed) {
7871 reset_rate = true;
7872 adapter->vf_rate_link_speed = 0;
7873 dev_info(&adapter->pdev->dev,
7874 "Link speed has been changed. VF Transmit rate is disabled\n");
7875 }
7876
7877 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7878 if (reset_rate)
7879 adapter->vf_data[i].tx_rate = 0;
7880
7881 igb_set_vf_rate_limit(&adapter->hw, i,
7882 adapter->vf_data[i].tx_rate,
7883 actual_link_speed);
7884 }
7885 }
7886
7887 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7888 int min_tx_rate, int max_tx_rate)
7889 {
7890 struct igb_adapter *adapter = netdev_priv(netdev);
7891 struct e1000_hw *hw = &adapter->hw;
7892 int actual_link_speed;
7893
7894 if (hw->mac.type != e1000_82576)
7895 return -EOPNOTSUPP;
7896
7897 if (min_tx_rate)
7898 return -EINVAL;
7899
7900 actual_link_speed = igb_link_mbps(adapter->link_speed);
7901 if ((vf >= adapter->vfs_allocated_count) ||
7902 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7903 (max_tx_rate < 0) ||
7904 (max_tx_rate > actual_link_speed))
7905 return -EINVAL;
7906
7907 adapter->vf_rate_link_speed = actual_link_speed;
7908 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7909 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7910
7911 return 0;
7912 }
7913
7914 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7915 bool setting)
7916 {
7917 struct igb_adapter *adapter = netdev_priv(netdev);
7918 struct e1000_hw *hw = &adapter->hw;
7919 u32 reg_val, reg_offset;
7920
7921 if (!adapter->vfs_allocated_count)
7922 return -EOPNOTSUPP;
7923
7924 if (vf >= adapter->vfs_allocated_count)
7925 return -EINVAL;
7926
7927 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7928 reg_val = rd32(reg_offset);
7929 if (setting)
7930 reg_val |= ((1 << vf) |
7931 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7932 else
7933 reg_val &= ~((1 << vf) |
7934 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7935 wr32(reg_offset, reg_val);
7936
7937 adapter->vf_data[vf].spoofchk_enabled = setting;
7938 return E1000_SUCCESS;
7939 }
7940
7941 static int igb_ndo_get_vf_config(struct net_device *netdev,
7942 int vf, struct ifla_vf_info *ivi)
7943 {
7944 struct igb_adapter *adapter = netdev_priv(netdev);
7945 if (vf >= adapter->vfs_allocated_count)
7946 return -EINVAL;
7947 ivi->vf = vf;
7948 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7949 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7950 ivi->min_tx_rate = 0;
7951 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7952 ivi->qos = adapter->vf_data[vf].pf_qos;
7953 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7954 return 0;
7955 }
7956
7957 static void igb_vmm_control(struct igb_adapter *adapter)
7958 {
7959 struct e1000_hw *hw = &adapter->hw;
7960 u32 reg;
7961
7962 switch (hw->mac.type) {
7963 case e1000_82575:
7964 case e1000_i210:
7965 case e1000_i211:
7966 case e1000_i354:
7967 default:
7968 /* replication is not supported for 82575 */
7969 return;
7970 case e1000_82576:
7971 /* notify HW that the MAC is adding vlan tags */
7972 reg = rd32(E1000_DTXCTL);
7973 reg |= E1000_DTXCTL_VLAN_ADDED;
7974 wr32(E1000_DTXCTL, reg);
7975 /* Fall through */
7976 case e1000_82580:
7977 /* enable replication vlan tag stripping */
7978 reg = rd32(E1000_RPLOLR);
7979 reg |= E1000_RPLOLR_STRVLAN;
7980 wr32(E1000_RPLOLR, reg);
7981 /* Fall through */
7982 case e1000_i350:
7983 /* none of the above registers are supported by i350 */
7984 break;
7985 }
7986
7987 if (adapter->vfs_allocated_count) {
7988 igb_vmdq_set_loopback_pf(hw, true);
7989 igb_vmdq_set_replication_pf(hw, true);
7990 igb_vmdq_set_anti_spoofing_pf(hw, true,
7991 adapter->vfs_allocated_count);
7992 } else {
7993 igb_vmdq_set_loopback_pf(hw, false);
7994 igb_vmdq_set_replication_pf(hw, false);
7995 }
7996 }
7997
7998 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7999 {
8000 struct e1000_hw *hw = &adapter->hw;
8001 u32 dmac_thr;
8002 u16 hwm;
8003
8004 if (hw->mac.type > e1000_82580) {
8005 if (adapter->flags & IGB_FLAG_DMAC) {
8006 u32 reg;
8007
8008 /* force threshold to 0. */
8009 wr32(E1000_DMCTXTH, 0);
8010
8011 /* DMA Coalescing high water mark needs to be greater
8012 * than the Rx threshold. Set hwm to PBA - max frame
8013 * size in 16B units, capping it at PBA - 6KB.
8014 */
8015 hwm = 64 * pba - adapter->max_frame_size / 16;
8016 if (hwm < 64 * (pba - 6))
8017 hwm = 64 * (pba - 6);
8018 reg = rd32(E1000_FCRTC);
8019 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8020 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8021 & E1000_FCRTC_RTH_COAL_MASK);
8022 wr32(E1000_FCRTC, reg);
8023
8024 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8025 * frame size, capping it at PBA - 10KB.
8026 */
8027 dmac_thr = pba - adapter->max_frame_size / 512;
8028 if (dmac_thr < pba - 10)
8029 dmac_thr = pba - 10;
8030 reg = rd32(E1000_DMACR);
8031 reg &= ~E1000_DMACR_DMACTHR_MASK;
8032 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8033 & E1000_DMACR_DMACTHR_MASK);
8034
8035 /* transition to L0x or L1 if available..*/
8036 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8037
8038 /* watchdog timer= +-1000 usec in 32usec intervals */
8039 reg |= (1000 >> 5);
8040
8041 /* Disable BMC-to-OS Watchdog Enable */
8042 if (hw->mac.type != e1000_i354)
8043 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8044
8045 wr32(E1000_DMACR, reg);
8046
8047 /* no lower threshold to disable
8048 * coalescing(smart fifb)-UTRESH=0
8049 */
8050 wr32(E1000_DMCRTRH, 0);
8051
8052 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8053
8054 wr32(E1000_DMCTLX, reg);
8055
8056 /* free space in tx packet buffer to wake from
8057 * DMA coal
8058 */
8059 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8060 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8061
8062 /* make low power state decision controlled
8063 * by DMA coal
8064 */
8065 reg = rd32(E1000_PCIEMISC);
8066 reg &= ~E1000_PCIEMISC_LX_DECISION;
8067 wr32(E1000_PCIEMISC, reg);
8068 } /* endif adapter->dmac is not disabled */
8069 } else if (hw->mac.type == e1000_82580) {
8070 u32 reg = rd32(E1000_PCIEMISC);
8071
8072 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8073 wr32(E1000_DMACR, 0);
8074 }
8075 }
8076
8077 /**
8078 * igb_read_i2c_byte - Reads 8 bit word over I2C
8079 * @hw: pointer to hardware structure
8080 * @byte_offset: byte offset to read
8081 * @dev_addr: device address
8082 * @data: value read
8083 *
8084 * Performs byte read operation over I2C interface at
8085 * a specified device address.
8086 **/
8087 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8088 u8 dev_addr, u8 *data)
8089 {
8090 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8091 struct i2c_client *this_client = adapter->i2c_client;
8092 s32 status;
8093 u16 swfw_mask = 0;
8094
8095 if (!this_client)
8096 return E1000_ERR_I2C;
8097
8098 swfw_mask = E1000_SWFW_PHY0_SM;
8099
8100 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8101 != E1000_SUCCESS)
8102 return E1000_ERR_SWFW_SYNC;
8103
8104 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8105 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8106
8107 if (status < 0)
8108 return E1000_ERR_I2C;
8109 else {
8110 *data = status;
8111 return E1000_SUCCESS;
8112 }
8113 }
8114
8115 /**
8116 * igb_write_i2c_byte - Writes 8 bit word over I2C
8117 * @hw: pointer to hardware structure
8118 * @byte_offset: byte offset to write
8119 * @dev_addr: device address
8120 * @data: value to write
8121 *
8122 * Performs byte write operation over I2C interface at
8123 * a specified device address.
8124 **/
8125 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8126 u8 dev_addr, u8 data)
8127 {
8128 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8129 struct i2c_client *this_client = adapter->i2c_client;
8130 s32 status;
8131 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8132
8133 if (!this_client)
8134 return E1000_ERR_I2C;
8135
8136 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8137 return E1000_ERR_SWFW_SYNC;
8138 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8139 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8140
8141 if (status)
8142 return E1000_ERR_I2C;
8143 else
8144 return E1000_SUCCESS;
8145
8146 }
8147
8148 int igb_reinit_queues(struct igb_adapter *adapter)
8149 {
8150 struct net_device *netdev = adapter->netdev;
8151 struct pci_dev *pdev = adapter->pdev;
8152 int err = 0;
8153
8154 if (netif_running(netdev))
8155 igb_close(netdev);
8156
8157 igb_reset_interrupt_capability(adapter);
8158
8159 if (igb_init_interrupt_scheme(adapter, true)) {
8160 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8161 return -ENOMEM;
8162 }
8163
8164 if (netif_running(netdev))
8165 err = igb_open(netdev);
8166
8167 return err;
8168 }
8169 /* igb_main.c */
This page took 0.19234 seconds and 6 git commands to generate.