ixgbe: Focus config of head, tail ntc, and ntu all into a single function
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62
63 #define MAJ 5
64 #define MIN 0
65 #define BUILD 5
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71 "Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73 "Copyright (c) 2007-2013 Intel Corporation.";
74
75 static const struct e1000_info *igb_info_tbl[] = {
76 [board_82575] = &e1000_82575_info,
77 };
78
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
115 /* required last entry */
116 {0, }
117 };
118
119 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
120
121 void igb_reset(struct igb_adapter *);
122 static int igb_setup_all_tx_resources(struct igb_adapter *);
123 static int igb_setup_all_rx_resources(struct igb_adapter *);
124 static void igb_free_all_tx_resources(struct igb_adapter *);
125 static void igb_free_all_rx_resources(struct igb_adapter *);
126 static void igb_setup_mrqc(struct igb_adapter *);
127 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
128 static void igb_remove(struct pci_dev *pdev);
129 static int igb_sw_init(struct igb_adapter *);
130 static int igb_open(struct net_device *);
131 static int igb_close(struct net_device *);
132 static void igb_configure(struct igb_adapter *);
133 static void igb_configure_tx(struct igb_adapter *);
134 static void igb_configure_rx(struct igb_adapter *);
135 static void igb_clean_all_tx_rings(struct igb_adapter *);
136 static void igb_clean_all_rx_rings(struct igb_adapter *);
137 static void igb_clean_tx_ring(struct igb_ring *);
138 static void igb_clean_rx_ring(struct igb_ring *);
139 static void igb_set_rx_mode(struct net_device *);
140 static void igb_update_phy_info(unsigned long);
141 static void igb_watchdog(unsigned long);
142 static void igb_watchdog_task(struct work_struct *);
143 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
144 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
145 struct rtnl_link_stats64 *stats);
146 static int igb_change_mtu(struct net_device *, int);
147 static int igb_set_mac(struct net_device *, void *);
148 static void igb_set_uta(struct igb_adapter *adapter);
149 static irqreturn_t igb_intr(int irq, void *);
150 static irqreturn_t igb_intr_msi(int irq, void *);
151 static irqreturn_t igb_msix_other(int irq, void *);
152 static irqreturn_t igb_msix_ring(int irq, void *);
153 #ifdef CONFIG_IGB_DCA
154 static void igb_update_dca(struct igb_q_vector *);
155 static void igb_setup_dca(struct igb_adapter *);
156 #endif /* CONFIG_IGB_DCA */
157 static int igb_poll(struct napi_struct *, int);
158 static bool igb_clean_tx_irq(struct igb_q_vector *);
159 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
160 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
161 static void igb_tx_timeout(struct net_device *);
162 static void igb_reset_task(struct work_struct *);
163 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
164 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
165 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
166 static void igb_restore_vlan(struct igb_adapter *);
167 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
168 static void igb_ping_all_vfs(struct igb_adapter *);
169 static void igb_msg_task(struct igb_adapter *);
170 static void igb_vmm_control(struct igb_adapter *);
171 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
172 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
173 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
174 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
175 int vf, u16 vlan, u8 qos);
176 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
177 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
178 bool setting);
179 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
180 struct ifla_vf_info *ivi);
181 static void igb_check_vf_rate_limit(struct igb_adapter *);
182
183 #ifdef CONFIG_PCI_IOV
184 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
185 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
186 #endif
187
188 #ifdef CONFIG_PM
189 #ifdef CONFIG_PM_SLEEP
190 static int igb_suspend(struct device *);
191 #endif
192 static int igb_resume(struct device *);
193 #ifdef CONFIG_PM_RUNTIME
194 static int igb_runtime_suspend(struct device *dev);
195 static int igb_runtime_resume(struct device *dev);
196 static int igb_runtime_idle(struct device *dev);
197 #endif
198 static const struct dev_pm_ops igb_pm_ops = {
199 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
200 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
201 igb_runtime_idle)
202 };
203 #endif
204 static void igb_shutdown(struct pci_dev *);
205 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
206 #ifdef CONFIG_IGB_DCA
207 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
208 static struct notifier_block dca_notifier = {
209 .notifier_call = igb_notify_dca,
210 .next = NULL,
211 .priority = 0
212 };
213 #endif
214 #ifdef CONFIG_NET_POLL_CONTROLLER
215 /* for netdump / net console */
216 static void igb_netpoll(struct net_device *);
217 #endif
218 #ifdef CONFIG_PCI_IOV
219 static unsigned int max_vfs = 0;
220 module_param(max_vfs, uint, 0);
221 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
222 "per physical function");
223 #endif /* CONFIG_PCI_IOV */
224
225 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
226 pci_channel_state_t);
227 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
228 static void igb_io_resume(struct pci_dev *);
229
230 static const struct pci_error_handlers igb_err_handler = {
231 .error_detected = igb_io_error_detected,
232 .slot_reset = igb_io_slot_reset,
233 .resume = igb_io_resume,
234 };
235
236 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
237
238 static struct pci_driver igb_driver = {
239 .name = igb_driver_name,
240 .id_table = igb_pci_tbl,
241 .probe = igb_probe,
242 .remove = igb_remove,
243 #ifdef CONFIG_PM
244 .driver.pm = &igb_pm_ops,
245 #endif
246 .shutdown = igb_shutdown,
247 .sriov_configure = igb_pci_sriov_configure,
248 .err_handler = &igb_err_handler
249 };
250
251 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
252 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
253 MODULE_LICENSE("GPL");
254 MODULE_VERSION(DRV_VERSION);
255
256 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
257 static int debug = -1;
258 module_param(debug, int, 0);
259 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
260
261 struct igb_reg_info {
262 u32 ofs;
263 char *name;
264 };
265
266 static const struct igb_reg_info igb_reg_info_tbl[] = {
267
268 /* General Registers */
269 {E1000_CTRL, "CTRL"},
270 {E1000_STATUS, "STATUS"},
271 {E1000_CTRL_EXT, "CTRL_EXT"},
272
273 /* Interrupt Registers */
274 {E1000_ICR, "ICR"},
275
276 /* RX Registers */
277 {E1000_RCTL, "RCTL"},
278 {E1000_RDLEN(0), "RDLEN"},
279 {E1000_RDH(0), "RDH"},
280 {E1000_RDT(0), "RDT"},
281 {E1000_RXDCTL(0), "RXDCTL"},
282 {E1000_RDBAL(0), "RDBAL"},
283 {E1000_RDBAH(0), "RDBAH"},
284
285 /* TX Registers */
286 {E1000_TCTL, "TCTL"},
287 {E1000_TDBAL(0), "TDBAL"},
288 {E1000_TDBAH(0), "TDBAH"},
289 {E1000_TDLEN(0), "TDLEN"},
290 {E1000_TDH(0), "TDH"},
291 {E1000_TDT(0), "TDT"},
292 {E1000_TXDCTL(0), "TXDCTL"},
293 {E1000_TDFH, "TDFH"},
294 {E1000_TDFT, "TDFT"},
295 {E1000_TDFHS, "TDFHS"},
296 {E1000_TDFPC, "TDFPC"},
297
298 /* List Terminator */
299 {}
300 };
301
302 /* igb_regdump - register printout routine */
303 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
304 {
305 int n = 0;
306 char rname[16];
307 u32 regs[8];
308
309 switch (reginfo->ofs) {
310 case E1000_RDLEN(0):
311 for (n = 0; n < 4; n++)
312 regs[n] = rd32(E1000_RDLEN(n));
313 break;
314 case E1000_RDH(0):
315 for (n = 0; n < 4; n++)
316 regs[n] = rd32(E1000_RDH(n));
317 break;
318 case E1000_RDT(0):
319 for (n = 0; n < 4; n++)
320 regs[n] = rd32(E1000_RDT(n));
321 break;
322 case E1000_RXDCTL(0):
323 for (n = 0; n < 4; n++)
324 regs[n] = rd32(E1000_RXDCTL(n));
325 break;
326 case E1000_RDBAL(0):
327 for (n = 0; n < 4; n++)
328 regs[n] = rd32(E1000_RDBAL(n));
329 break;
330 case E1000_RDBAH(0):
331 for (n = 0; n < 4; n++)
332 regs[n] = rd32(E1000_RDBAH(n));
333 break;
334 case E1000_TDBAL(0):
335 for (n = 0; n < 4; n++)
336 regs[n] = rd32(E1000_RDBAL(n));
337 break;
338 case E1000_TDBAH(0):
339 for (n = 0; n < 4; n++)
340 regs[n] = rd32(E1000_TDBAH(n));
341 break;
342 case E1000_TDLEN(0):
343 for (n = 0; n < 4; n++)
344 regs[n] = rd32(E1000_TDLEN(n));
345 break;
346 case E1000_TDH(0):
347 for (n = 0; n < 4; n++)
348 regs[n] = rd32(E1000_TDH(n));
349 break;
350 case E1000_TDT(0):
351 for (n = 0; n < 4; n++)
352 regs[n] = rd32(E1000_TDT(n));
353 break;
354 case E1000_TXDCTL(0):
355 for (n = 0; n < 4; n++)
356 regs[n] = rd32(E1000_TXDCTL(n));
357 break;
358 default:
359 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
360 return;
361 }
362
363 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
364 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
365 regs[2], regs[3]);
366 }
367
368 /* igb_dump - Print registers, Tx-rings and Rx-rings */
369 static void igb_dump(struct igb_adapter *adapter)
370 {
371 struct net_device *netdev = adapter->netdev;
372 struct e1000_hw *hw = &adapter->hw;
373 struct igb_reg_info *reginfo;
374 struct igb_ring *tx_ring;
375 union e1000_adv_tx_desc *tx_desc;
376 struct my_u0 { u64 a; u64 b; } *u0;
377 struct igb_ring *rx_ring;
378 union e1000_adv_rx_desc *rx_desc;
379 u32 staterr;
380 u16 i, n;
381
382 if (!netif_msg_hw(adapter))
383 return;
384
385 /* Print netdevice Info */
386 if (netdev) {
387 dev_info(&adapter->pdev->dev, "Net device Info\n");
388 pr_info("Device Name state trans_start "
389 "last_rx\n");
390 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
391 netdev->state, netdev->trans_start, netdev->last_rx);
392 }
393
394 /* Print Registers */
395 dev_info(&adapter->pdev->dev, "Register Dump\n");
396 pr_info(" Register Name Value\n");
397 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
398 reginfo->name; reginfo++) {
399 igb_regdump(hw, reginfo);
400 }
401
402 /* Print TX Ring Summary */
403 if (!netdev || !netif_running(netdev))
404 goto exit;
405
406 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
407 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
408 for (n = 0; n < adapter->num_tx_queues; n++) {
409 struct igb_tx_buffer *buffer_info;
410 tx_ring = adapter->tx_ring[n];
411 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
412 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
413 n, tx_ring->next_to_use, tx_ring->next_to_clean,
414 (u64)dma_unmap_addr(buffer_info, dma),
415 dma_unmap_len(buffer_info, len),
416 buffer_info->next_to_watch,
417 (u64)buffer_info->time_stamp);
418 }
419
420 /* Print TX Rings */
421 if (!netif_msg_tx_done(adapter))
422 goto rx_ring_summary;
423
424 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
425
426 /* Transmit Descriptor Formats
427 *
428 * Advanced Transmit Descriptor
429 * +--------------------------------------------------------------+
430 * 0 | Buffer Address [63:0] |
431 * +--------------------------------------------------------------+
432 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
433 * +--------------------------------------------------------------+
434 * 63 46 45 40 39 38 36 35 32 31 24 15 0
435 */
436
437 for (n = 0; n < adapter->num_tx_queues; n++) {
438 tx_ring = adapter->tx_ring[n];
439 pr_info("------------------------------------\n");
440 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
441 pr_info("------------------------------------\n");
442 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
443 "[bi->dma ] leng ntw timestamp "
444 "bi->skb\n");
445
446 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
447 const char *next_desc;
448 struct igb_tx_buffer *buffer_info;
449 tx_desc = IGB_TX_DESC(tx_ring, i);
450 buffer_info = &tx_ring->tx_buffer_info[i];
451 u0 = (struct my_u0 *)tx_desc;
452 if (i == tx_ring->next_to_use &&
453 i == tx_ring->next_to_clean)
454 next_desc = " NTC/U";
455 else if (i == tx_ring->next_to_use)
456 next_desc = " NTU";
457 else if (i == tx_ring->next_to_clean)
458 next_desc = " NTC";
459 else
460 next_desc = "";
461
462 pr_info("T [0x%03X] %016llX %016llX %016llX"
463 " %04X %p %016llX %p%s\n", i,
464 le64_to_cpu(u0->a),
465 le64_to_cpu(u0->b),
466 (u64)dma_unmap_addr(buffer_info, dma),
467 dma_unmap_len(buffer_info, len),
468 buffer_info->next_to_watch,
469 (u64)buffer_info->time_stamp,
470 buffer_info->skb, next_desc);
471
472 if (netif_msg_pktdata(adapter) && buffer_info->skb)
473 print_hex_dump(KERN_INFO, "",
474 DUMP_PREFIX_ADDRESS,
475 16, 1, buffer_info->skb->data,
476 dma_unmap_len(buffer_info, len),
477 true);
478 }
479 }
480
481 /* Print RX Rings Summary */
482 rx_ring_summary:
483 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
484 pr_info("Queue [NTU] [NTC]\n");
485 for (n = 0; n < adapter->num_rx_queues; n++) {
486 rx_ring = adapter->rx_ring[n];
487 pr_info(" %5d %5X %5X\n",
488 n, rx_ring->next_to_use, rx_ring->next_to_clean);
489 }
490
491 /* Print RX Rings */
492 if (!netif_msg_rx_status(adapter))
493 goto exit;
494
495 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
496
497 /* Advanced Receive Descriptor (Read) Format
498 * 63 1 0
499 * +-----------------------------------------------------+
500 * 0 | Packet Buffer Address [63:1] |A0/NSE|
501 * +----------------------------------------------+------+
502 * 8 | Header Buffer Address [63:1] | DD |
503 * +-----------------------------------------------------+
504 *
505 *
506 * Advanced Receive Descriptor (Write-Back) Format
507 *
508 * 63 48 47 32 31 30 21 20 17 16 4 3 0
509 * +------------------------------------------------------+
510 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
511 * | Checksum Ident | | | | Type | Type |
512 * +------------------------------------------------------+
513 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
514 * +------------------------------------------------------+
515 * 63 48 47 32 31 20 19 0
516 */
517
518 for (n = 0; n < adapter->num_rx_queues; n++) {
519 rx_ring = adapter->rx_ring[n];
520 pr_info("------------------------------------\n");
521 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
522 pr_info("------------------------------------\n");
523 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
524 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
525 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
526 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
527
528 for (i = 0; i < rx_ring->count; i++) {
529 const char *next_desc;
530 struct igb_rx_buffer *buffer_info;
531 buffer_info = &rx_ring->rx_buffer_info[i];
532 rx_desc = IGB_RX_DESC(rx_ring, i);
533 u0 = (struct my_u0 *)rx_desc;
534 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
535
536 if (i == rx_ring->next_to_use)
537 next_desc = " NTU";
538 else if (i == rx_ring->next_to_clean)
539 next_desc = " NTC";
540 else
541 next_desc = "";
542
543 if (staterr & E1000_RXD_STAT_DD) {
544 /* Descriptor Done */
545 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
546 "RWB", i,
547 le64_to_cpu(u0->a),
548 le64_to_cpu(u0->b),
549 next_desc);
550 } else {
551 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
552 "R ", i,
553 le64_to_cpu(u0->a),
554 le64_to_cpu(u0->b),
555 (u64)buffer_info->dma,
556 next_desc);
557
558 if (netif_msg_pktdata(adapter) &&
559 buffer_info->dma && buffer_info->page) {
560 print_hex_dump(KERN_INFO, "",
561 DUMP_PREFIX_ADDRESS,
562 16, 1,
563 page_address(buffer_info->page) +
564 buffer_info->page_offset,
565 IGB_RX_BUFSZ, true);
566 }
567 }
568 }
569 }
570
571 exit:
572 return;
573 }
574
575 /**
576 * igb_get_i2c_data - Reads the I2C SDA data bit
577 * @hw: pointer to hardware structure
578 * @i2cctl: Current value of I2CCTL register
579 *
580 * Returns the I2C data bit value
581 **/
582 static int igb_get_i2c_data(void *data)
583 {
584 struct igb_adapter *adapter = (struct igb_adapter *)data;
585 struct e1000_hw *hw = &adapter->hw;
586 s32 i2cctl = rd32(E1000_I2CPARAMS);
587
588 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
589 }
590
591 /**
592 * igb_set_i2c_data - Sets the I2C data bit
593 * @data: pointer to hardware structure
594 * @state: I2C data value (0 or 1) to set
595 *
596 * Sets the I2C data bit
597 **/
598 static void igb_set_i2c_data(void *data, int state)
599 {
600 struct igb_adapter *adapter = (struct igb_adapter *)data;
601 struct e1000_hw *hw = &adapter->hw;
602 s32 i2cctl = rd32(E1000_I2CPARAMS);
603
604 if (state)
605 i2cctl |= E1000_I2C_DATA_OUT;
606 else
607 i2cctl &= ~E1000_I2C_DATA_OUT;
608
609 i2cctl &= ~E1000_I2C_DATA_OE_N;
610 i2cctl |= E1000_I2C_CLK_OE_N;
611 wr32(E1000_I2CPARAMS, i2cctl);
612 wrfl();
613
614 }
615
616 /**
617 * igb_set_i2c_clk - Sets the I2C SCL clock
618 * @data: pointer to hardware structure
619 * @state: state to set clock
620 *
621 * Sets the I2C clock line to state
622 **/
623 static void igb_set_i2c_clk(void *data, int state)
624 {
625 struct igb_adapter *adapter = (struct igb_adapter *)data;
626 struct e1000_hw *hw = &adapter->hw;
627 s32 i2cctl = rd32(E1000_I2CPARAMS);
628
629 if (state) {
630 i2cctl |= E1000_I2C_CLK_OUT;
631 i2cctl &= ~E1000_I2C_CLK_OE_N;
632 } else {
633 i2cctl &= ~E1000_I2C_CLK_OUT;
634 i2cctl &= ~E1000_I2C_CLK_OE_N;
635 }
636 wr32(E1000_I2CPARAMS, i2cctl);
637 wrfl();
638 }
639
640 /**
641 * igb_get_i2c_clk - Gets the I2C SCL clock state
642 * @data: pointer to hardware structure
643 *
644 * Gets the I2C clock state
645 **/
646 static int igb_get_i2c_clk(void *data)
647 {
648 struct igb_adapter *adapter = (struct igb_adapter *)data;
649 struct e1000_hw *hw = &adapter->hw;
650 s32 i2cctl = rd32(E1000_I2CPARAMS);
651
652 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
653 }
654
655 static const struct i2c_algo_bit_data igb_i2c_algo = {
656 .setsda = igb_set_i2c_data,
657 .setscl = igb_set_i2c_clk,
658 .getsda = igb_get_i2c_data,
659 .getscl = igb_get_i2c_clk,
660 .udelay = 5,
661 .timeout = 20,
662 };
663
664 /**
665 * igb_get_hw_dev - return device
666 * @hw: pointer to hardware structure
667 *
668 * used by hardware layer to print debugging information
669 **/
670 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
671 {
672 struct igb_adapter *adapter = hw->back;
673 return adapter->netdev;
674 }
675
676 /**
677 * igb_init_module - Driver Registration Routine
678 *
679 * igb_init_module is the first routine called when the driver is
680 * loaded. All it does is register with the PCI subsystem.
681 **/
682 static int __init igb_init_module(void)
683 {
684 int ret;
685 pr_info("%s - version %s\n",
686 igb_driver_string, igb_driver_version);
687
688 pr_info("%s\n", igb_copyright);
689
690 #ifdef CONFIG_IGB_DCA
691 dca_register_notify(&dca_notifier);
692 #endif
693 ret = pci_register_driver(&igb_driver);
694 return ret;
695 }
696
697 module_init(igb_init_module);
698
699 /**
700 * igb_exit_module - Driver Exit Cleanup Routine
701 *
702 * igb_exit_module is called just before the driver is removed
703 * from memory.
704 **/
705 static void __exit igb_exit_module(void)
706 {
707 #ifdef CONFIG_IGB_DCA
708 dca_unregister_notify(&dca_notifier);
709 #endif
710 pci_unregister_driver(&igb_driver);
711 }
712
713 module_exit(igb_exit_module);
714
715 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
716 /**
717 * igb_cache_ring_register - Descriptor ring to register mapping
718 * @adapter: board private structure to initialize
719 *
720 * Once we know the feature-set enabled for the device, we'll cache
721 * the register offset the descriptor ring is assigned to.
722 **/
723 static void igb_cache_ring_register(struct igb_adapter *adapter)
724 {
725 int i = 0, j = 0;
726 u32 rbase_offset = adapter->vfs_allocated_count;
727
728 switch (adapter->hw.mac.type) {
729 case e1000_82576:
730 /* The queues are allocated for virtualization such that VF 0
731 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
732 * In order to avoid collision we start at the first free queue
733 * and continue consuming queues in the same sequence
734 */
735 if (adapter->vfs_allocated_count) {
736 for (; i < adapter->rss_queues; i++)
737 adapter->rx_ring[i]->reg_idx = rbase_offset +
738 Q_IDX_82576(i);
739 }
740 case e1000_82575:
741 case e1000_82580:
742 case e1000_i350:
743 case e1000_i354:
744 case e1000_i210:
745 case e1000_i211:
746 default:
747 for (; i < adapter->num_rx_queues; i++)
748 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
749 for (; j < adapter->num_tx_queues; j++)
750 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
751 break;
752 }
753 }
754
755 /**
756 * igb_write_ivar - configure ivar for given MSI-X vector
757 * @hw: pointer to the HW structure
758 * @msix_vector: vector number we are allocating to a given ring
759 * @index: row index of IVAR register to write within IVAR table
760 * @offset: column offset of in IVAR, should be multiple of 8
761 *
762 * This function is intended to handle the writing of the IVAR register
763 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
764 * each containing an cause allocation for an Rx and Tx ring, and a
765 * variable number of rows depending on the number of queues supported.
766 **/
767 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
768 int index, int offset)
769 {
770 u32 ivar = array_rd32(E1000_IVAR0, index);
771
772 /* clear any bits that are currently set */
773 ivar &= ~((u32)0xFF << offset);
774
775 /* write vector and valid bit */
776 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
777
778 array_wr32(E1000_IVAR0, index, ivar);
779 }
780
781 #define IGB_N0_QUEUE -1
782 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
783 {
784 struct igb_adapter *adapter = q_vector->adapter;
785 struct e1000_hw *hw = &adapter->hw;
786 int rx_queue = IGB_N0_QUEUE;
787 int tx_queue = IGB_N0_QUEUE;
788 u32 msixbm = 0;
789
790 if (q_vector->rx.ring)
791 rx_queue = q_vector->rx.ring->reg_idx;
792 if (q_vector->tx.ring)
793 tx_queue = q_vector->tx.ring->reg_idx;
794
795 switch (hw->mac.type) {
796 case e1000_82575:
797 /* The 82575 assigns vectors using a bitmask, which matches the
798 * bitmask for the EICR/EIMS/EIMC registers. To assign one
799 * or more queues to a vector, we write the appropriate bits
800 * into the MSIXBM register for that vector.
801 */
802 if (rx_queue > IGB_N0_QUEUE)
803 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
804 if (tx_queue > IGB_N0_QUEUE)
805 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
806 if (!adapter->msix_entries && msix_vector == 0)
807 msixbm |= E1000_EIMS_OTHER;
808 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
809 q_vector->eims_value = msixbm;
810 break;
811 case e1000_82576:
812 /* 82576 uses a table that essentially consists of 2 columns
813 * with 8 rows. The ordering is column-major so we use the
814 * lower 3 bits as the row index, and the 4th bit as the
815 * column offset.
816 */
817 if (rx_queue > IGB_N0_QUEUE)
818 igb_write_ivar(hw, msix_vector,
819 rx_queue & 0x7,
820 (rx_queue & 0x8) << 1);
821 if (tx_queue > IGB_N0_QUEUE)
822 igb_write_ivar(hw, msix_vector,
823 tx_queue & 0x7,
824 ((tx_queue & 0x8) << 1) + 8);
825 q_vector->eims_value = 1 << msix_vector;
826 break;
827 case e1000_82580:
828 case e1000_i350:
829 case e1000_i354:
830 case e1000_i210:
831 case e1000_i211:
832 /* On 82580 and newer adapters the scheme is similar to 82576
833 * however instead of ordering column-major we have things
834 * ordered row-major. So we traverse the table by using
835 * bit 0 as the column offset, and the remaining bits as the
836 * row index.
837 */
838 if (rx_queue > IGB_N0_QUEUE)
839 igb_write_ivar(hw, msix_vector,
840 rx_queue >> 1,
841 (rx_queue & 0x1) << 4);
842 if (tx_queue > IGB_N0_QUEUE)
843 igb_write_ivar(hw, msix_vector,
844 tx_queue >> 1,
845 ((tx_queue & 0x1) << 4) + 8);
846 q_vector->eims_value = 1 << msix_vector;
847 break;
848 default:
849 BUG();
850 break;
851 }
852
853 /* add q_vector eims value to global eims_enable_mask */
854 adapter->eims_enable_mask |= q_vector->eims_value;
855
856 /* configure q_vector to set itr on first interrupt */
857 q_vector->set_itr = 1;
858 }
859
860 /**
861 * igb_configure_msix - Configure MSI-X hardware
862 * @adapter: board private structure to initialize
863 *
864 * igb_configure_msix sets up the hardware to properly
865 * generate MSI-X interrupts.
866 **/
867 static void igb_configure_msix(struct igb_adapter *adapter)
868 {
869 u32 tmp;
870 int i, vector = 0;
871 struct e1000_hw *hw = &adapter->hw;
872
873 adapter->eims_enable_mask = 0;
874
875 /* set vector for other causes, i.e. link changes */
876 switch (hw->mac.type) {
877 case e1000_82575:
878 tmp = rd32(E1000_CTRL_EXT);
879 /* enable MSI-X PBA support*/
880 tmp |= E1000_CTRL_EXT_PBA_CLR;
881
882 /* Auto-Mask interrupts upon ICR read. */
883 tmp |= E1000_CTRL_EXT_EIAME;
884 tmp |= E1000_CTRL_EXT_IRCA;
885
886 wr32(E1000_CTRL_EXT, tmp);
887
888 /* enable msix_other interrupt */
889 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
890 adapter->eims_other = E1000_EIMS_OTHER;
891
892 break;
893
894 case e1000_82576:
895 case e1000_82580:
896 case e1000_i350:
897 case e1000_i354:
898 case e1000_i210:
899 case e1000_i211:
900 /* Turn on MSI-X capability first, or our settings
901 * won't stick. And it will take days to debug.
902 */
903 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
904 E1000_GPIE_PBA | E1000_GPIE_EIAME |
905 E1000_GPIE_NSICR);
906
907 /* enable msix_other interrupt */
908 adapter->eims_other = 1 << vector;
909 tmp = (vector++ | E1000_IVAR_VALID) << 8;
910
911 wr32(E1000_IVAR_MISC, tmp);
912 break;
913 default:
914 /* do nothing, since nothing else supports MSI-X */
915 break;
916 } /* switch (hw->mac.type) */
917
918 adapter->eims_enable_mask |= adapter->eims_other;
919
920 for (i = 0; i < adapter->num_q_vectors; i++)
921 igb_assign_vector(adapter->q_vector[i], vector++);
922
923 wrfl();
924 }
925
926 /**
927 * igb_request_msix - Initialize MSI-X interrupts
928 * @adapter: board private structure to initialize
929 *
930 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
931 * kernel.
932 **/
933 static int igb_request_msix(struct igb_adapter *adapter)
934 {
935 struct net_device *netdev = adapter->netdev;
936 struct e1000_hw *hw = &adapter->hw;
937 int i, err = 0, vector = 0, free_vector = 0;
938
939 err = request_irq(adapter->msix_entries[vector].vector,
940 igb_msix_other, 0, netdev->name, adapter);
941 if (err)
942 goto err_out;
943
944 for (i = 0; i < adapter->num_q_vectors; i++) {
945 struct igb_q_vector *q_vector = adapter->q_vector[i];
946
947 vector++;
948
949 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
950
951 if (q_vector->rx.ring && q_vector->tx.ring)
952 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
953 q_vector->rx.ring->queue_index);
954 else if (q_vector->tx.ring)
955 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
956 q_vector->tx.ring->queue_index);
957 else if (q_vector->rx.ring)
958 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
959 q_vector->rx.ring->queue_index);
960 else
961 sprintf(q_vector->name, "%s-unused", netdev->name);
962
963 err = request_irq(adapter->msix_entries[vector].vector,
964 igb_msix_ring, 0, q_vector->name,
965 q_vector);
966 if (err)
967 goto err_free;
968 }
969
970 igb_configure_msix(adapter);
971 return 0;
972
973 err_free:
974 /* free already assigned IRQs */
975 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
976
977 vector--;
978 for (i = 0; i < vector; i++) {
979 free_irq(adapter->msix_entries[free_vector++].vector,
980 adapter->q_vector[i]);
981 }
982 err_out:
983 return err;
984 }
985
986 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
987 {
988 if (adapter->msix_entries) {
989 pci_disable_msix(adapter->pdev);
990 kfree(adapter->msix_entries);
991 adapter->msix_entries = NULL;
992 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
993 pci_disable_msi(adapter->pdev);
994 }
995 }
996
997 /**
998 * igb_free_q_vector - Free memory allocated for specific interrupt vector
999 * @adapter: board private structure to initialize
1000 * @v_idx: Index of vector to be freed
1001 *
1002 * This function frees the memory allocated to the q_vector. In addition if
1003 * NAPI is enabled it will delete any references to the NAPI struct prior
1004 * to freeing the q_vector.
1005 **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010 if (q_vector->tx.ring)
1011 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1012
1013 if (q_vector->rx.ring)
1014 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1015
1016 adapter->q_vector[v_idx] = NULL;
1017 netif_napi_del(&q_vector->napi);
1018
1019 /* igb_get_stats64() might access the rings on this vector,
1020 * we must wait a grace period before freeing it.
1021 */
1022 kfree_rcu(q_vector, rcu);
1023 }
1024
1025 /**
1026 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1027 * @adapter: board private structure to initialize
1028 *
1029 * This function frees the memory allocated to the q_vectors. In addition if
1030 * NAPI is enabled it will delete any references to the NAPI struct prior
1031 * to freeing the q_vector.
1032 **/
1033 static void igb_free_q_vectors(struct igb_adapter *adapter)
1034 {
1035 int v_idx = adapter->num_q_vectors;
1036
1037 adapter->num_tx_queues = 0;
1038 adapter->num_rx_queues = 0;
1039 adapter->num_q_vectors = 0;
1040
1041 while (v_idx--)
1042 igb_free_q_vector(adapter, v_idx);
1043 }
1044
1045 /**
1046 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1047 * @adapter: board private structure to initialize
1048 *
1049 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1050 * MSI-X interrupts allocated.
1051 */
1052 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1053 {
1054 igb_free_q_vectors(adapter);
1055 igb_reset_interrupt_capability(adapter);
1056 }
1057
1058 /**
1059 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1060 * @adapter: board private structure to initialize
1061 * @msix: boolean value of MSIX capability
1062 *
1063 * Attempt to configure interrupts using the best available
1064 * capabilities of the hardware and kernel.
1065 **/
1066 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1067 {
1068 int err;
1069 int numvecs, i;
1070
1071 if (!msix)
1072 goto msi_only;
1073
1074 /* Number of supported queues. */
1075 adapter->num_rx_queues = adapter->rss_queues;
1076 if (adapter->vfs_allocated_count)
1077 adapter->num_tx_queues = 1;
1078 else
1079 adapter->num_tx_queues = adapter->rss_queues;
1080
1081 /* start with one vector for every Rx queue */
1082 numvecs = adapter->num_rx_queues;
1083
1084 /* if Tx handler is separate add 1 for every Tx queue */
1085 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1086 numvecs += adapter->num_tx_queues;
1087
1088 /* store the number of vectors reserved for queues */
1089 adapter->num_q_vectors = numvecs;
1090
1091 /* add 1 vector for link status interrupts */
1092 numvecs++;
1093 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1094 GFP_KERNEL);
1095
1096 if (!adapter->msix_entries)
1097 goto msi_only;
1098
1099 for (i = 0; i < numvecs; i++)
1100 adapter->msix_entries[i].entry = i;
1101
1102 err = pci_enable_msix(adapter->pdev,
1103 adapter->msix_entries,
1104 numvecs);
1105 if (err == 0)
1106 return;
1107
1108 igb_reset_interrupt_capability(adapter);
1109
1110 /* If we can't do MSI-X, try MSI */
1111 msi_only:
1112 #ifdef CONFIG_PCI_IOV
1113 /* disable SR-IOV for non MSI-X configurations */
1114 if (adapter->vf_data) {
1115 struct e1000_hw *hw = &adapter->hw;
1116 /* disable iov and allow time for transactions to clear */
1117 pci_disable_sriov(adapter->pdev);
1118 msleep(500);
1119
1120 kfree(adapter->vf_data);
1121 adapter->vf_data = NULL;
1122 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1123 wrfl();
1124 msleep(100);
1125 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1126 }
1127 #endif
1128 adapter->vfs_allocated_count = 0;
1129 adapter->rss_queues = 1;
1130 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1131 adapter->num_rx_queues = 1;
1132 adapter->num_tx_queues = 1;
1133 adapter->num_q_vectors = 1;
1134 if (!pci_enable_msi(adapter->pdev))
1135 adapter->flags |= IGB_FLAG_HAS_MSI;
1136 }
1137
1138 static void igb_add_ring(struct igb_ring *ring,
1139 struct igb_ring_container *head)
1140 {
1141 head->ring = ring;
1142 head->count++;
1143 }
1144
1145 /**
1146 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1147 * @adapter: board private structure to initialize
1148 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1149 * @v_idx: index of vector in adapter struct
1150 * @txr_count: total number of Tx rings to allocate
1151 * @txr_idx: index of first Tx ring to allocate
1152 * @rxr_count: total number of Rx rings to allocate
1153 * @rxr_idx: index of first Rx ring to allocate
1154 *
1155 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1156 **/
1157 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1158 int v_count, int v_idx,
1159 int txr_count, int txr_idx,
1160 int rxr_count, int rxr_idx)
1161 {
1162 struct igb_q_vector *q_vector;
1163 struct igb_ring *ring;
1164 int ring_count, size;
1165
1166 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1167 if (txr_count > 1 || rxr_count > 1)
1168 return -ENOMEM;
1169
1170 ring_count = txr_count + rxr_count;
1171 size = sizeof(struct igb_q_vector) +
1172 (sizeof(struct igb_ring) * ring_count);
1173
1174 /* allocate q_vector and rings */
1175 q_vector = kzalloc(size, GFP_KERNEL);
1176 if (!q_vector)
1177 return -ENOMEM;
1178
1179 /* initialize NAPI */
1180 netif_napi_add(adapter->netdev, &q_vector->napi,
1181 igb_poll, 64);
1182
1183 /* tie q_vector and adapter together */
1184 adapter->q_vector[v_idx] = q_vector;
1185 q_vector->adapter = adapter;
1186
1187 /* initialize work limits */
1188 q_vector->tx.work_limit = adapter->tx_work_limit;
1189
1190 /* initialize ITR configuration */
1191 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1192 q_vector->itr_val = IGB_START_ITR;
1193
1194 /* initialize pointer to rings */
1195 ring = q_vector->ring;
1196
1197 /* intialize ITR */
1198 if (rxr_count) {
1199 /* rx or rx/tx vector */
1200 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1201 q_vector->itr_val = adapter->rx_itr_setting;
1202 } else {
1203 /* tx only vector */
1204 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1205 q_vector->itr_val = adapter->tx_itr_setting;
1206 }
1207
1208 if (txr_count) {
1209 /* assign generic ring traits */
1210 ring->dev = &adapter->pdev->dev;
1211 ring->netdev = adapter->netdev;
1212
1213 /* configure backlink on ring */
1214 ring->q_vector = q_vector;
1215
1216 /* update q_vector Tx values */
1217 igb_add_ring(ring, &q_vector->tx);
1218
1219 /* For 82575, context index must be unique per ring. */
1220 if (adapter->hw.mac.type == e1000_82575)
1221 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1222
1223 /* apply Tx specific ring traits */
1224 ring->count = adapter->tx_ring_count;
1225 ring->queue_index = txr_idx;
1226
1227 u64_stats_init(&ring->tx_syncp);
1228 u64_stats_init(&ring->tx_syncp2);
1229
1230 /* assign ring to adapter */
1231 adapter->tx_ring[txr_idx] = ring;
1232
1233 /* push pointer to next ring */
1234 ring++;
1235 }
1236
1237 if (rxr_count) {
1238 /* assign generic ring traits */
1239 ring->dev = &adapter->pdev->dev;
1240 ring->netdev = adapter->netdev;
1241
1242 /* configure backlink on ring */
1243 ring->q_vector = q_vector;
1244
1245 /* update q_vector Rx values */
1246 igb_add_ring(ring, &q_vector->rx);
1247
1248 /* set flag indicating ring supports SCTP checksum offload */
1249 if (adapter->hw.mac.type >= e1000_82576)
1250 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1251
1252 /*
1253 * On i350, i354, i210, and i211, loopback VLAN packets
1254 * have the tag byte-swapped.
1255 */
1256 if (adapter->hw.mac.type >= e1000_i350)
1257 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1258
1259 /* apply Rx specific ring traits */
1260 ring->count = adapter->rx_ring_count;
1261 ring->queue_index = rxr_idx;
1262
1263 u64_stats_init(&ring->rx_syncp);
1264
1265 /* assign ring to adapter */
1266 adapter->rx_ring[rxr_idx] = ring;
1267 }
1268
1269 return 0;
1270 }
1271
1272
1273 /**
1274 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1275 * @adapter: board private structure to initialize
1276 *
1277 * We allocate one q_vector per queue interrupt. If allocation fails we
1278 * return -ENOMEM.
1279 **/
1280 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1281 {
1282 int q_vectors = adapter->num_q_vectors;
1283 int rxr_remaining = adapter->num_rx_queues;
1284 int txr_remaining = adapter->num_tx_queues;
1285 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1286 int err;
1287
1288 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1289 for (; rxr_remaining; v_idx++) {
1290 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1291 0, 0, 1, rxr_idx);
1292
1293 if (err)
1294 goto err_out;
1295
1296 /* update counts and index */
1297 rxr_remaining--;
1298 rxr_idx++;
1299 }
1300 }
1301
1302 for (; v_idx < q_vectors; v_idx++) {
1303 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1304 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1305 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1306 tqpv, txr_idx, rqpv, rxr_idx);
1307
1308 if (err)
1309 goto err_out;
1310
1311 /* update counts and index */
1312 rxr_remaining -= rqpv;
1313 txr_remaining -= tqpv;
1314 rxr_idx++;
1315 txr_idx++;
1316 }
1317
1318 return 0;
1319
1320 err_out:
1321 adapter->num_tx_queues = 0;
1322 adapter->num_rx_queues = 0;
1323 adapter->num_q_vectors = 0;
1324
1325 while (v_idx--)
1326 igb_free_q_vector(adapter, v_idx);
1327
1328 return -ENOMEM;
1329 }
1330
1331 /**
1332 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1333 * @adapter: board private structure to initialize
1334 * @msix: boolean value of MSIX capability
1335 *
1336 * This function initializes the interrupts and allocates all of the queues.
1337 **/
1338 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1339 {
1340 struct pci_dev *pdev = adapter->pdev;
1341 int err;
1342
1343 igb_set_interrupt_capability(adapter, msix);
1344
1345 err = igb_alloc_q_vectors(adapter);
1346 if (err) {
1347 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1348 goto err_alloc_q_vectors;
1349 }
1350
1351 igb_cache_ring_register(adapter);
1352
1353 return 0;
1354
1355 err_alloc_q_vectors:
1356 igb_reset_interrupt_capability(adapter);
1357 return err;
1358 }
1359
1360 /**
1361 * igb_request_irq - initialize interrupts
1362 * @adapter: board private structure to initialize
1363 *
1364 * Attempts to configure interrupts using the best available
1365 * capabilities of the hardware and kernel.
1366 **/
1367 static int igb_request_irq(struct igb_adapter *adapter)
1368 {
1369 struct net_device *netdev = adapter->netdev;
1370 struct pci_dev *pdev = adapter->pdev;
1371 int err = 0;
1372
1373 if (adapter->msix_entries) {
1374 err = igb_request_msix(adapter);
1375 if (!err)
1376 goto request_done;
1377 /* fall back to MSI */
1378 igb_free_all_tx_resources(adapter);
1379 igb_free_all_rx_resources(adapter);
1380
1381 igb_clear_interrupt_scheme(adapter);
1382 err = igb_init_interrupt_scheme(adapter, false);
1383 if (err)
1384 goto request_done;
1385
1386 igb_setup_all_tx_resources(adapter);
1387 igb_setup_all_rx_resources(adapter);
1388 igb_configure(adapter);
1389 }
1390
1391 igb_assign_vector(adapter->q_vector[0], 0);
1392
1393 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1394 err = request_irq(pdev->irq, igb_intr_msi, 0,
1395 netdev->name, adapter);
1396 if (!err)
1397 goto request_done;
1398
1399 /* fall back to legacy interrupts */
1400 igb_reset_interrupt_capability(adapter);
1401 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1402 }
1403
1404 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1405 netdev->name, adapter);
1406
1407 if (err)
1408 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1409 err);
1410
1411 request_done:
1412 return err;
1413 }
1414
1415 static void igb_free_irq(struct igb_adapter *adapter)
1416 {
1417 if (adapter->msix_entries) {
1418 int vector = 0, i;
1419
1420 free_irq(adapter->msix_entries[vector++].vector, adapter);
1421
1422 for (i = 0; i < adapter->num_q_vectors; i++)
1423 free_irq(adapter->msix_entries[vector++].vector,
1424 adapter->q_vector[i]);
1425 } else {
1426 free_irq(adapter->pdev->irq, adapter);
1427 }
1428 }
1429
1430 /**
1431 * igb_irq_disable - Mask off interrupt generation on the NIC
1432 * @adapter: board private structure
1433 **/
1434 static void igb_irq_disable(struct igb_adapter *adapter)
1435 {
1436 struct e1000_hw *hw = &adapter->hw;
1437
1438 /* we need to be careful when disabling interrupts. The VFs are also
1439 * mapped into these registers and so clearing the bits can cause
1440 * issues on the VF drivers so we only need to clear what we set
1441 */
1442 if (adapter->msix_entries) {
1443 u32 regval = rd32(E1000_EIAM);
1444 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1445 wr32(E1000_EIMC, adapter->eims_enable_mask);
1446 regval = rd32(E1000_EIAC);
1447 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1448 }
1449
1450 wr32(E1000_IAM, 0);
1451 wr32(E1000_IMC, ~0);
1452 wrfl();
1453 if (adapter->msix_entries) {
1454 int i;
1455 for (i = 0; i < adapter->num_q_vectors; i++)
1456 synchronize_irq(adapter->msix_entries[i].vector);
1457 } else {
1458 synchronize_irq(adapter->pdev->irq);
1459 }
1460 }
1461
1462 /**
1463 * igb_irq_enable - Enable default interrupt generation settings
1464 * @adapter: board private structure
1465 **/
1466 static void igb_irq_enable(struct igb_adapter *adapter)
1467 {
1468 struct e1000_hw *hw = &adapter->hw;
1469
1470 if (adapter->msix_entries) {
1471 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1472 u32 regval = rd32(E1000_EIAC);
1473 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1474 regval = rd32(E1000_EIAM);
1475 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1476 wr32(E1000_EIMS, adapter->eims_enable_mask);
1477 if (adapter->vfs_allocated_count) {
1478 wr32(E1000_MBVFIMR, 0xFF);
1479 ims |= E1000_IMS_VMMB;
1480 }
1481 wr32(E1000_IMS, ims);
1482 } else {
1483 wr32(E1000_IMS, IMS_ENABLE_MASK |
1484 E1000_IMS_DRSTA);
1485 wr32(E1000_IAM, IMS_ENABLE_MASK |
1486 E1000_IMS_DRSTA);
1487 }
1488 }
1489
1490 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1491 {
1492 struct e1000_hw *hw = &adapter->hw;
1493 u16 vid = adapter->hw.mng_cookie.vlan_id;
1494 u16 old_vid = adapter->mng_vlan_id;
1495
1496 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1497 /* add VID to filter table */
1498 igb_vfta_set(hw, vid, true);
1499 adapter->mng_vlan_id = vid;
1500 } else {
1501 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1502 }
1503
1504 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1505 (vid != old_vid) &&
1506 !test_bit(old_vid, adapter->active_vlans)) {
1507 /* remove VID from filter table */
1508 igb_vfta_set(hw, old_vid, false);
1509 }
1510 }
1511
1512 /**
1513 * igb_release_hw_control - release control of the h/w to f/w
1514 * @adapter: address of board private structure
1515 *
1516 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1517 * For ASF and Pass Through versions of f/w this means that the
1518 * driver is no longer loaded.
1519 **/
1520 static void igb_release_hw_control(struct igb_adapter *adapter)
1521 {
1522 struct e1000_hw *hw = &adapter->hw;
1523 u32 ctrl_ext;
1524
1525 /* Let firmware take over control of h/w */
1526 ctrl_ext = rd32(E1000_CTRL_EXT);
1527 wr32(E1000_CTRL_EXT,
1528 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1529 }
1530
1531 /**
1532 * igb_get_hw_control - get control of the h/w from f/w
1533 * @adapter: address of board private structure
1534 *
1535 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1536 * For ASF and Pass Through versions of f/w this means that
1537 * the driver is loaded.
1538 **/
1539 static void igb_get_hw_control(struct igb_adapter *adapter)
1540 {
1541 struct e1000_hw *hw = &adapter->hw;
1542 u32 ctrl_ext;
1543
1544 /* Let firmware know the driver has taken over */
1545 ctrl_ext = rd32(E1000_CTRL_EXT);
1546 wr32(E1000_CTRL_EXT,
1547 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1548 }
1549
1550 /**
1551 * igb_configure - configure the hardware for RX and TX
1552 * @adapter: private board structure
1553 **/
1554 static void igb_configure(struct igb_adapter *adapter)
1555 {
1556 struct net_device *netdev = adapter->netdev;
1557 int i;
1558
1559 igb_get_hw_control(adapter);
1560 igb_set_rx_mode(netdev);
1561
1562 igb_restore_vlan(adapter);
1563
1564 igb_setup_tctl(adapter);
1565 igb_setup_mrqc(adapter);
1566 igb_setup_rctl(adapter);
1567
1568 igb_configure_tx(adapter);
1569 igb_configure_rx(adapter);
1570
1571 igb_rx_fifo_flush_82575(&adapter->hw);
1572
1573 /* call igb_desc_unused which always leaves
1574 * at least 1 descriptor unused to make sure
1575 * next_to_use != next_to_clean
1576 */
1577 for (i = 0; i < adapter->num_rx_queues; i++) {
1578 struct igb_ring *ring = adapter->rx_ring[i];
1579 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1580 }
1581 }
1582
1583 /**
1584 * igb_power_up_link - Power up the phy/serdes link
1585 * @adapter: address of board private structure
1586 **/
1587 void igb_power_up_link(struct igb_adapter *adapter)
1588 {
1589 igb_reset_phy(&adapter->hw);
1590
1591 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1592 igb_power_up_phy_copper(&adapter->hw);
1593 else
1594 igb_power_up_serdes_link_82575(&adapter->hw);
1595 }
1596
1597 /**
1598 * igb_power_down_link - Power down the phy/serdes link
1599 * @adapter: address of board private structure
1600 */
1601 static void igb_power_down_link(struct igb_adapter *adapter)
1602 {
1603 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1604 igb_power_down_phy_copper_82575(&adapter->hw);
1605 else
1606 igb_shutdown_serdes_link_82575(&adapter->hw);
1607 }
1608
1609 /**
1610 * igb_up - Open the interface and prepare it to handle traffic
1611 * @adapter: board private structure
1612 **/
1613 int igb_up(struct igb_adapter *adapter)
1614 {
1615 struct e1000_hw *hw = &adapter->hw;
1616 int i;
1617
1618 /* hardware has been reset, we need to reload some things */
1619 igb_configure(adapter);
1620
1621 clear_bit(__IGB_DOWN, &adapter->state);
1622
1623 for (i = 0; i < adapter->num_q_vectors; i++)
1624 napi_enable(&(adapter->q_vector[i]->napi));
1625
1626 if (adapter->msix_entries)
1627 igb_configure_msix(adapter);
1628 else
1629 igb_assign_vector(adapter->q_vector[0], 0);
1630
1631 /* Clear any pending interrupts. */
1632 rd32(E1000_ICR);
1633 igb_irq_enable(adapter);
1634
1635 /* notify VFs that reset has been completed */
1636 if (adapter->vfs_allocated_count) {
1637 u32 reg_data = rd32(E1000_CTRL_EXT);
1638 reg_data |= E1000_CTRL_EXT_PFRSTD;
1639 wr32(E1000_CTRL_EXT, reg_data);
1640 }
1641
1642 netif_tx_start_all_queues(adapter->netdev);
1643
1644 /* start the watchdog. */
1645 hw->mac.get_link_status = 1;
1646 schedule_work(&adapter->watchdog_task);
1647
1648 return 0;
1649 }
1650
1651 void igb_down(struct igb_adapter *adapter)
1652 {
1653 struct net_device *netdev = adapter->netdev;
1654 struct e1000_hw *hw = &adapter->hw;
1655 u32 tctl, rctl;
1656 int i;
1657
1658 /* signal that we're down so the interrupt handler does not
1659 * reschedule our watchdog timer
1660 */
1661 set_bit(__IGB_DOWN, &adapter->state);
1662
1663 /* disable receives in the hardware */
1664 rctl = rd32(E1000_RCTL);
1665 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1666 /* flush and sleep below */
1667
1668 netif_tx_stop_all_queues(netdev);
1669
1670 /* disable transmits in the hardware */
1671 tctl = rd32(E1000_TCTL);
1672 tctl &= ~E1000_TCTL_EN;
1673 wr32(E1000_TCTL, tctl);
1674 /* flush both disables and wait for them to finish */
1675 wrfl();
1676 msleep(10);
1677
1678 igb_irq_disable(adapter);
1679
1680 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1681
1682 for (i = 0; i < adapter->num_q_vectors; i++) {
1683 napi_synchronize(&(adapter->q_vector[i]->napi));
1684 napi_disable(&(adapter->q_vector[i]->napi));
1685 }
1686
1687
1688 del_timer_sync(&adapter->watchdog_timer);
1689 del_timer_sync(&adapter->phy_info_timer);
1690
1691 netif_carrier_off(netdev);
1692
1693 /* record the stats before reset*/
1694 spin_lock(&adapter->stats64_lock);
1695 igb_update_stats(adapter, &adapter->stats64);
1696 spin_unlock(&adapter->stats64_lock);
1697
1698 adapter->link_speed = 0;
1699 adapter->link_duplex = 0;
1700
1701 if (!pci_channel_offline(adapter->pdev))
1702 igb_reset(adapter);
1703 igb_clean_all_tx_rings(adapter);
1704 igb_clean_all_rx_rings(adapter);
1705 #ifdef CONFIG_IGB_DCA
1706
1707 /* since we reset the hardware DCA settings were cleared */
1708 igb_setup_dca(adapter);
1709 #endif
1710 }
1711
1712 void igb_reinit_locked(struct igb_adapter *adapter)
1713 {
1714 WARN_ON(in_interrupt());
1715 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1716 msleep(1);
1717 igb_down(adapter);
1718 igb_up(adapter);
1719 clear_bit(__IGB_RESETTING, &adapter->state);
1720 }
1721
1722 void igb_reset(struct igb_adapter *adapter)
1723 {
1724 struct pci_dev *pdev = adapter->pdev;
1725 struct e1000_hw *hw = &adapter->hw;
1726 struct e1000_mac_info *mac = &hw->mac;
1727 struct e1000_fc_info *fc = &hw->fc;
1728 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1729
1730 /* Repartition Pba for greater than 9k mtu
1731 * To take effect CTRL.RST is required.
1732 */
1733 switch (mac->type) {
1734 case e1000_i350:
1735 case e1000_i354:
1736 case e1000_82580:
1737 pba = rd32(E1000_RXPBS);
1738 pba = igb_rxpbs_adjust_82580(pba);
1739 break;
1740 case e1000_82576:
1741 pba = rd32(E1000_RXPBS);
1742 pba &= E1000_RXPBS_SIZE_MASK_82576;
1743 break;
1744 case e1000_82575:
1745 case e1000_i210:
1746 case e1000_i211:
1747 default:
1748 pba = E1000_PBA_34K;
1749 break;
1750 }
1751
1752 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1753 (mac->type < e1000_82576)) {
1754 /* adjust PBA for jumbo frames */
1755 wr32(E1000_PBA, pba);
1756
1757 /* To maintain wire speed transmits, the Tx FIFO should be
1758 * large enough to accommodate two full transmit packets,
1759 * rounded up to the next 1KB and expressed in KB. Likewise,
1760 * the Rx FIFO should be large enough to accommodate at least
1761 * one full receive packet and is similarly rounded up and
1762 * expressed in KB.
1763 */
1764 pba = rd32(E1000_PBA);
1765 /* upper 16 bits has Tx packet buffer allocation size in KB */
1766 tx_space = pba >> 16;
1767 /* lower 16 bits has Rx packet buffer allocation size in KB */
1768 pba &= 0xffff;
1769 /* the Tx fifo also stores 16 bytes of information about the Tx
1770 * but don't include ethernet FCS because hardware appends it
1771 */
1772 min_tx_space = (adapter->max_frame_size +
1773 sizeof(union e1000_adv_tx_desc) -
1774 ETH_FCS_LEN) * 2;
1775 min_tx_space = ALIGN(min_tx_space, 1024);
1776 min_tx_space >>= 10;
1777 /* software strips receive CRC, so leave room for it */
1778 min_rx_space = adapter->max_frame_size;
1779 min_rx_space = ALIGN(min_rx_space, 1024);
1780 min_rx_space >>= 10;
1781
1782 /* If current Tx allocation is less than the min Tx FIFO size,
1783 * and the min Tx FIFO size is less than the current Rx FIFO
1784 * allocation, take space away from current Rx allocation
1785 */
1786 if (tx_space < min_tx_space &&
1787 ((min_tx_space - tx_space) < pba)) {
1788 pba = pba - (min_tx_space - tx_space);
1789
1790 /* if short on Rx space, Rx wins and must trump Tx
1791 * adjustment
1792 */
1793 if (pba < min_rx_space)
1794 pba = min_rx_space;
1795 }
1796 wr32(E1000_PBA, pba);
1797 }
1798
1799 /* flow control settings */
1800 /* The high water mark must be low enough to fit one full frame
1801 * (or the size used for early receive) above it in the Rx FIFO.
1802 * Set it to the lower of:
1803 * - 90% of the Rx FIFO size, or
1804 * - the full Rx FIFO size minus one full frame
1805 */
1806 hwm = min(((pba << 10) * 9 / 10),
1807 ((pba << 10) - 2 * adapter->max_frame_size));
1808
1809 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1810 fc->low_water = fc->high_water - 16;
1811 fc->pause_time = 0xFFFF;
1812 fc->send_xon = 1;
1813 fc->current_mode = fc->requested_mode;
1814
1815 /* disable receive for all VFs and wait one second */
1816 if (adapter->vfs_allocated_count) {
1817 int i;
1818 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1819 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1820
1821 /* ping all the active vfs to let them know we are going down */
1822 igb_ping_all_vfs(adapter);
1823
1824 /* disable transmits and receives */
1825 wr32(E1000_VFRE, 0);
1826 wr32(E1000_VFTE, 0);
1827 }
1828
1829 /* Allow time for pending master requests to run */
1830 hw->mac.ops.reset_hw(hw);
1831 wr32(E1000_WUC, 0);
1832
1833 if (hw->mac.ops.init_hw(hw))
1834 dev_err(&pdev->dev, "Hardware Error\n");
1835
1836 /* Flow control settings reset on hardware reset, so guarantee flow
1837 * control is off when forcing speed.
1838 */
1839 if (!hw->mac.autoneg)
1840 igb_force_mac_fc(hw);
1841
1842 igb_init_dmac(adapter, pba);
1843 #ifdef CONFIG_IGB_HWMON
1844 /* Re-initialize the thermal sensor on i350 devices. */
1845 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1846 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1847 /* If present, re-initialize the external thermal sensor
1848 * interface.
1849 */
1850 if (adapter->ets)
1851 mac->ops.init_thermal_sensor_thresh(hw);
1852 }
1853 }
1854 #endif
1855 if (!netif_running(adapter->netdev))
1856 igb_power_down_link(adapter);
1857
1858 igb_update_mng_vlan(adapter);
1859
1860 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1861 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1862
1863 /* Re-enable PTP, where applicable. */
1864 igb_ptp_reset(adapter);
1865
1866 igb_get_phy_info(hw);
1867 }
1868
1869 static netdev_features_t igb_fix_features(struct net_device *netdev,
1870 netdev_features_t features)
1871 {
1872 /* Since there is no support for separate Rx/Tx vlan accel
1873 * enable/disable make sure Tx flag is always in same state as Rx.
1874 */
1875 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1876 features |= NETIF_F_HW_VLAN_CTAG_TX;
1877 else
1878 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1879
1880 return features;
1881 }
1882
1883 static int igb_set_features(struct net_device *netdev,
1884 netdev_features_t features)
1885 {
1886 netdev_features_t changed = netdev->features ^ features;
1887 struct igb_adapter *adapter = netdev_priv(netdev);
1888
1889 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1890 igb_vlan_mode(netdev, features);
1891
1892 if (!(changed & NETIF_F_RXALL))
1893 return 0;
1894
1895 netdev->features = features;
1896
1897 if (netif_running(netdev))
1898 igb_reinit_locked(adapter);
1899 else
1900 igb_reset(adapter);
1901
1902 return 0;
1903 }
1904
1905 static const struct net_device_ops igb_netdev_ops = {
1906 .ndo_open = igb_open,
1907 .ndo_stop = igb_close,
1908 .ndo_start_xmit = igb_xmit_frame,
1909 .ndo_get_stats64 = igb_get_stats64,
1910 .ndo_set_rx_mode = igb_set_rx_mode,
1911 .ndo_set_mac_address = igb_set_mac,
1912 .ndo_change_mtu = igb_change_mtu,
1913 .ndo_do_ioctl = igb_ioctl,
1914 .ndo_tx_timeout = igb_tx_timeout,
1915 .ndo_validate_addr = eth_validate_addr,
1916 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1917 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1918 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1919 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1920 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1921 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
1922 .ndo_get_vf_config = igb_ndo_get_vf_config,
1923 #ifdef CONFIG_NET_POLL_CONTROLLER
1924 .ndo_poll_controller = igb_netpoll,
1925 #endif
1926 .ndo_fix_features = igb_fix_features,
1927 .ndo_set_features = igb_set_features,
1928 };
1929
1930 /**
1931 * igb_set_fw_version - Configure version string for ethtool
1932 * @adapter: adapter struct
1933 **/
1934 void igb_set_fw_version(struct igb_adapter *adapter)
1935 {
1936 struct e1000_hw *hw = &adapter->hw;
1937 struct e1000_fw_version fw;
1938
1939 igb_get_fw_version(hw, &fw);
1940
1941 switch (hw->mac.type) {
1942 case e1000_i210:
1943 case e1000_i211:
1944 if (!(igb_get_flash_presence_i210(hw))) {
1945 snprintf(adapter->fw_version,
1946 sizeof(adapter->fw_version),
1947 "%2d.%2d-%d",
1948 fw.invm_major, fw.invm_minor,
1949 fw.invm_img_type);
1950 break;
1951 }
1952 /* fall through */
1953 default:
1954 /* if option is rom valid, display its version too */
1955 if (fw.or_valid) {
1956 snprintf(adapter->fw_version,
1957 sizeof(adapter->fw_version),
1958 "%d.%d, 0x%08x, %d.%d.%d",
1959 fw.eep_major, fw.eep_minor, fw.etrack_id,
1960 fw.or_major, fw.or_build, fw.or_patch);
1961 /* no option rom */
1962 } else if (fw.etrack_id != 0X0000) {
1963 snprintf(adapter->fw_version,
1964 sizeof(adapter->fw_version),
1965 "%d.%d, 0x%08x",
1966 fw.eep_major, fw.eep_minor, fw.etrack_id);
1967 } else {
1968 snprintf(adapter->fw_version,
1969 sizeof(adapter->fw_version),
1970 "%d.%d.%d",
1971 fw.eep_major, fw.eep_minor, fw.eep_build);
1972 }
1973 break;
1974 }
1975 return;
1976 }
1977
1978 /**
1979 * igb_init_i2c - Init I2C interface
1980 * @adapter: pointer to adapter structure
1981 **/
1982 static s32 igb_init_i2c(struct igb_adapter *adapter)
1983 {
1984 s32 status = E1000_SUCCESS;
1985
1986 /* I2C interface supported on i350 devices */
1987 if (adapter->hw.mac.type != e1000_i350)
1988 return E1000_SUCCESS;
1989
1990 /* Initialize the i2c bus which is controlled by the registers.
1991 * This bus will use the i2c_algo_bit structue that implements
1992 * the protocol through toggling of the 4 bits in the register.
1993 */
1994 adapter->i2c_adap.owner = THIS_MODULE;
1995 adapter->i2c_algo = igb_i2c_algo;
1996 adapter->i2c_algo.data = adapter;
1997 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1998 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1999 strlcpy(adapter->i2c_adap.name, "igb BB",
2000 sizeof(adapter->i2c_adap.name));
2001 status = i2c_bit_add_bus(&adapter->i2c_adap);
2002 return status;
2003 }
2004
2005 /**
2006 * igb_probe - Device Initialization Routine
2007 * @pdev: PCI device information struct
2008 * @ent: entry in igb_pci_tbl
2009 *
2010 * Returns 0 on success, negative on failure
2011 *
2012 * igb_probe initializes an adapter identified by a pci_dev structure.
2013 * The OS initialization, configuring of the adapter private structure,
2014 * and a hardware reset occur.
2015 **/
2016 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2017 {
2018 struct net_device *netdev;
2019 struct igb_adapter *adapter;
2020 struct e1000_hw *hw;
2021 u16 eeprom_data = 0;
2022 s32 ret_val;
2023 static int global_quad_port_a; /* global quad port a indication */
2024 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2025 unsigned long mmio_start, mmio_len;
2026 int err, pci_using_dac;
2027 u8 part_str[E1000_PBANUM_LENGTH];
2028
2029 /* Catch broken hardware that put the wrong VF device ID in
2030 * the PCIe SR-IOV capability.
2031 */
2032 if (pdev->is_virtfn) {
2033 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2034 pci_name(pdev), pdev->vendor, pdev->device);
2035 return -EINVAL;
2036 }
2037
2038 err = pci_enable_device_mem(pdev);
2039 if (err)
2040 return err;
2041
2042 pci_using_dac = 0;
2043 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2044 if (!err) {
2045 pci_using_dac = 1;
2046 } else {
2047 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2048 if (err) {
2049 dev_err(&pdev->dev,
2050 "No usable DMA configuration, aborting\n");
2051 goto err_dma;
2052 }
2053 }
2054
2055 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2056 IORESOURCE_MEM),
2057 igb_driver_name);
2058 if (err)
2059 goto err_pci_reg;
2060
2061 pci_enable_pcie_error_reporting(pdev);
2062
2063 pci_set_master(pdev);
2064 pci_save_state(pdev);
2065
2066 err = -ENOMEM;
2067 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2068 IGB_MAX_TX_QUEUES);
2069 if (!netdev)
2070 goto err_alloc_etherdev;
2071
2072 SET_NETDEV_DEV(netdev, &pdev->dev);
2073
2074 pci_set_drvdata(pdev, netdev);
2075 adapter = netdev_priv(netdev);
2076 adapter->netdev = netdev;
2077 adapter->pdev = pdev;
2078 hw = &adapter->hw;
2079 hw->back = adapter;
2080 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2081
2082 mmio_start = pci_resource_start(pdev, 0);
2083 mmio_len = pci_resource_len(pdev, 0);
2084
2085 err = -EIO;
2086 hw->hw_addr = ioremap(mmio_start, mmio_len);
2087 if (!hw->hw_addr)
2088 goto err_ioremap;
2089
2090 netdev->netdev_ops = &igb_netdev_ops;
2091 igb_set_ethtool_ops(netdev);
2092 netdev->watchdog_timeo = 5 * HZ;
2093
2094 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2095
2096 netdev->mem_start = mmio_start;
2097 netdev->mem_end = mmio_start + mmio_len;
2098
2099 /* PCI config space info */
2100 hw->vendor_id = pdev->vendor;
2101 hw->device_id = pdev->device;
2102 hw->revision_id = pdev->revision;
2103 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2104 hw->subsystem_device_id = pdev->subsystem_device;
2105
2106 /* Copy the default MAC, PHY and NVM function pointers */
2107 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2108 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2109 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2110 /* Initialize skew-specific constants */
2111 err = ei->get_invariants(hw);
2112 if (err)
2113 goto err_sw_init;
2114
2115 /* setup the private structure */
2116 err = igb_sw_init(adapter);
2117 if (err)
2118 goto err_sw_init;
2119
2120 igb_get_bus_info_pcie(hw);
2121
2122 hw->phy.autoneg_wait_to_complete = false;
2123
2124 /* Copper options */
2125 if (hw->phy.media_type == e1000_media_type_copper) {
2126 hw->phy.mdix = AUTO_ALL_MODES;
2127 hw->phy.disable_polarity_correction = false;
2128 hw->phy.ms_type = e1000_ms_hw_default;
2129 }
2130
2131 if (igb_check_reset_block(hw))
2132 dev_info(&pdev->dev,
2133 "PHY reset is blocked due to SOL/IDER session.\n");
2134
2135 /* features is initialized to 0 in allocation, it might have bits
2136 * set by igb_sw_init so we should use an or instead of an
2137 * assignment.
2138 */
2139 netdev->features |= NETIF_F_SG |
2140 NETIF_F_IP_CSUM |
2141 NETIF_F_IPV6_CSUM |
2142 NETIF_F_TSO |
2143 NETIF_F_TSO6 |
2144 NETIF_F_RXHASH |
2145 NETIF_F_RXCSUM |
2146 NETIF_F_HW_VLAN_CTAG_RX |
2147 NETIF_F_HW_VLAN_CTAG_TX;
2148
2149 /* copy netdev features into list of user selectable features */
2150 netdev->hw_features |= netdev->features;
2151 netdev->hw_features |= NETIF_F_RXALL;
2152
2153 /* set this bit last since it cannot be part of hw_features */
2154 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2155
2156 netdev->vlan_features |= NETIF_F_TSO |
2157 NETIF_F_TSO6 |
2158 NETIF_F_IP_CSUM |
2159 NETIF_F_IPV6_CSUM |
2160 NETIF_F_SG;
2161
2162 netdev->priv_flags |= IFF_SUPP_NOFCS;
2163
2164 if (pci_using_dac) {
2165 netdev->features |= NETIF_F_HIGHDMA;
2166 netdev->vlan_features |= NETIF_F_HIGHDMA;
2167 }
2168
2169 if (hw->mac.type >= e1000_82576) {
2170 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2171 netdev->features |= NETIF_F_SCTP_CSUM;
2172 }
2173
2174 netdev->priv_flags |= IFF_UNICAST_FLT;
2175
2176 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2177
2178 /* before reading the NVM, reset the controller to put the device in a
2179 * known good starting state
2180 */
2181 hw->mac.ops.reset_hw(hw);
2182
2183 /* make sure the NVM is good , i211/i210 parts can have special NVM
2184 * that doesn't contain a checksum
2185 */
2186 switch (hw->mac.type) {
2187 case e1000_i210:
2188 case e1000_i211:
2189 if (igb_get_flash_presence_i210(hw)) {
2190 if (hw->nvm.ops.validate(hw) < 0) {
2191 dev_err(&pdev->dev,
2192 "The NVM Checksum Is Not Valid\n");
2193 err = -EIO;
2194 goto err_eeprom;
2195 }
2196 }
2197 break;
2198 default:
2199 if (hw->nvm.ops.validate(hw) < 0) {
2200 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2201 err = -EIO;
2202 goto err_eeprom;
2203 }
2204 break;
2205 }
2206
2207 /* copy the MAC address out of the NVM */
2208 if (hw->mac.ops.read_mac_addr(hw))
2209 dev_err(&pdev->dev, "NVM Read Error\n");
2210
2211 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2212
2213 if (!is_valid_ether_addr(netdev->dev_addr)) {
2214 dev_err(&pdev->dev, "Invalid MAC Address\n");
2215 err = -EIO;
2216 goto err_eeprom;
2217 }
2218
2219 /* get firmware version for ethtool -i */
2220 igb_set_fw_version(adapter);
2221
2222 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2223 (unsigned long) adapter);
2224 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2225 (unsigned long) adapter);
2226
2227 INIT_WORK(&adapter->reset_task, igb_reset_task);
2228 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2229
2230 /* Initialize link properties that are user-changeable */
2231 adapter->fc_autoneg = true;
2232 hw->mac.autoneg = true;
2233 hw->phy.autoneg_advertised = 0x2f;
2234
2235 hw->fc.requested_mode = e1000_fc_default;
2236 hw->fc.current_mode = e1000_fc_default;
2237
2238 igb_validate_mdi_setting(hw);
2239
2240 /* By default, support wake on port A */
2241 if (hw->bus.func == 0)
2242 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2243
2244 /* Check the NVM for wake support on non-port A ports */
2245 if (hw->mac.type >= e1000_82580)
2246 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2247 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2248 &eeprom_data);
2249 else if (hw->bus.func == 1)
2250 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2251
2252 if (eeprom_data & IGB_EEPROM_APME)
2253 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2254
2255 /* now that we have the eeprom settings, apply the special cases where
2256 * the eeprom may be wrong or the board simply won't support wake on
2257 * lan on a particular port
2258 */
2259 switch (pdev->device) {
2260 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2261 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2262 break;
2263 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2264 case E1000_DEV_ID_82576_FIBER:
2265 case E1000_DEV_ID_82576_SERDES:
2266 /* Wake events only supported on port A for dual fiber
2267 * regardless of eeprom setting
2268 */
2269 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2270 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2271 break;
2272 case E1000_DEV_ID_82576_QUAD_COPPER:
2273 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2274 /* if quad port adapter, disable WoL on all but port A */
2275 if (global_quad_port_a != 0)
2276 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2277 else
2278 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2279 /* Reset for multiple quad port adapters */
2280 if (++global_quad_port_a == 4)
2281 global_quad_port_a = 0;
2282 break;
2283 default:
2284 /* If the device can't wake, don't set software support */
2285 if (!device_can_wakeup(&adapter->pdev->dev))
2286 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2287 }
2288
2289 /* initialize the wol settings based on the eeprom settings */
2290 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2291 adapter->wol |= E1000_WUFC_MAG;
2292
2293 /* Some vendors want WoL disabled by default, but still supported */
2294 if ((hw->mac.type == e1000_i350) &&
2295 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2296 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2297 adapter->wol = 0;
2298 }
2299
2300 device_set_wakeup_enable(&adapter->pdev->dev,
2301 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2302
2303 /* reset the hardware with the new settings */
2304 igb_reset(adapter);
2305
2306 /* Init the I2C interface */
2307 err = igb_init_i2c(adapter);
2308 if (err) {
2309 dev_err(&pdev->dev, "failed to init i2c interface\n");
2310 goto err_eeprom;
2311 }
2312
2313 /* let the f/w know that the h/w is now under the control of the
2314 * driver. */
2315 igb_get_hw_control(adapter);
2316
2317 strcpy(netdev->name, "eth%d");
2318 err = register_netdev(netdev);
2319 if (err)
2320 goto err_register;
2321
2322 /* carrier off reporting is important to ethtool even BEFORE open */
2323 netif_carrier_off(netdev);
2324
2325 #ifdef CONFIG_IGB_DCA
2326 if (dca_add_requester(&pdev->dev) == 0) {
2327 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2328 dev_info(&pdev->dev, "DCA enabled\n");
2329 igb_setup_dca(adapter);
2330 }
2331
2332 #endif
2333 #ifdef CONFIG_IGB_HWMON
2334 /* Initialize the thermal sensor on i350 devices. */
2335 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2336 u16 ets_word;
2337
2338 /* Read the NVM to determine if this i350 device supports an
2339 * external thermal sensor.
2340 */
2341 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2342 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2343 adapter->ets = true;
2344 else
2345 adapter->ets = false;
2346 if (igb_sysfs_init(adapter))
2347 dev_err(&pdev->dev,
2348 "failed to allocate sysfs resources\n");
2349 } else {
2350 adapter->ets = false;
2351 }
2352 #endif
2353 /* do hw tstamp init after resetting */
2354 igb_ptp_init(adapter);
2355
2356 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2357 /* print bus type/speed/width info, not applicable to i354 */
2358 if (hw->mac.type != e1000_i354) {
2359 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2360 netdev->name,
2361 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2362 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2363 "unknown"),
2364 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2365 "Width x4" :
2366 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2367 "Width x2" :
2368 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2369 "Width x1" : "unknown"), netdev->dev_addr);
2370 }
2371
2372 if ((hw->mac.type >= e1000_i210 ||
2373 igb_get_flash_presence_i210(hw))) {
2374 ret_val = igb_read_part_string(hw, part_str,
2375 E1000_PBANUM_LENGTH);
2376 } else {
2377 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2378 }
2379
2380 if (ret_val)
2381 strcpy(part_str, "Unknown");
2382 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2383 dev_info(&pdev->dev,
2384 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2385 adapter->msix_entries ? "MSI-X" :
2386 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2387 adapter->num_rx_queues, adapter->num_tx_queues);
2388 switch (hw->mac.type) {
2389 case e1000_i350:
2390 case e1000_i210:
2391 case e1000_i211:
2392 igb_set_eee_i350(hw);
2393 break;
2394 case e1000_i354:
2395 if (hw->phy.media_type == e1000_media_type_copper) {
2396 if ((rd32(E1000_CTRL_EXT) &
2397 E1000_CTRL_EXT_LINK_MODE_SGMII))
2398 igb_set_eee_i354(hw);
2399 }
2400 break;
2401 default:
2402 break;
2403 }
2404
2405 pm_runtime_put_noidle(&pdev->dev);
2406 return 0;
2407
2408 err_register:
2409 igb_release_hw_control(adapter);
2410 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2411 err_eeprom:
2412 if (!igb_check_reset_block(hw))
2413 igb_reset_phy(hw);
2414
2415 if (hw->flash_address)
2416 iounmap(hw->flash_address);
2417 err_sw_init:
2418 igb_clear_interrupt_scheme(adapter);
2419 iounmap(hw->hw_addr);
2420 err_ioremap:
2421 free_netdev(netdev);
2422 err_alloc_etherdev:
2423 pci_release_selected_regions(pdev,
2424 pci_select_bars(pdev, IORESOURCE_MEM));
2425 err_pci_reg:
2426 err_dma:
2427 pci_disable_device(pdev);
2428 return err;
2429 }
2430
2431 #ifdef CONFIG_PCI_IOV
2432 static int igb_disable_sriov(struct pci_dev *pdev)
2433 {
2434 struct net_device *netdev = pci_get_drvdata(pdev);
2435 struct igb_adapter *adapter = netdev_priv(netdev);
2436 struct e1000_hw *hw = &adapter->hw;
2437
2438 /* reclaim resources allocated to VFs */
2439 if (adapter->vf_data) {
2440 /* disable iov and allow time for transactions to clear */
2441 if (pci_vfs_assigned(pdev)) {
2442 dev_warn(&pdev->dev,
2443 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2444 return -EPERM;
2445 } else {
2446 pci_disable_sriov(pdev);
2447 msleep(500);
2448 }
2449
2450 kfree(adapter->vf_data);
2451 adapter->vf_data = NULL;
2452 adapter->vfs_allocated_count = 0;
2453 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2454 wrfl();
2455 msleep(100);
2456 dev_info(&pdev->dev, "IOV Disabled\n");
2457
2458 /* Re-enable DMA Coalescing flag since IOV is turned off */
2459 adapter->flags |= IGB_FLAG_DMAC;
2460 }
2461
2462 return 0;
2463 }
2464
2465 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2466 {
2467 struct net_device *netdev = pci_get_drvdata(pdev);
2468 struct igb_adapter *adapter = netdev_priv(netdev);
2469 int old_vfs = pci_num_vf(pdev);
2470 int err = 0;
2471 int i;
2472
2473 if (!adapter->msix_entries || num_vfs > 7) {
2474 err = -EPERM;
2475 goto out;
2476 }
2477 if (!num_vfs)
2478 goto out;
2479
2480 if (old_vfs) {
2481 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2482 old_vfs, max_vfs);
2483 adapter->vfs_allocated_count = old_vfs;
2484 } else
2485 adapter->vfs_allocated_count = num_vfs;
2486
2487 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2488 sizeof(struct vf_data_storage), GFP_KERNEL);
2489
2490 /* if allocation failed then we do not support SR-IOV */
2491 if (!adapter->vf_data) {
2492 adapter->vfs_allocated_count = 0;
2493 dev_err(&pdev->dev,
2494 "Unable to allocate memory for VF Data Storage\n");
2495 err = -ENOMEM;
2496 goto out;
2497 }
2498
2499 /* only call pci_enable_sriov() if no VFs are allocated already */
2500 if (!old_vfs) {
2501 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2502 if (err)
2503 goto err_out;
2504 }
2505 dev_info(&pdev->dev, "%d VFs allocated\n",
2506 adapter->vfs_allocated_count);
2507 for (i = 0; i < adapter->vfs_allocated_count; i++)
2508 igb_vf_configure(adapter, i);
2509
2510 /* DMA Coalescing is not supported in IOV mode. */
2511 adapter->flags &= ~IGB_FLAG_DMAC;
2512 goto out;
2513
2514 err_out:
2515 kfree(adapter->vf_data);
2516 adapter->vf_data = NULL;
2517 adapter->vfs_allocated_count = 0;
2518 out:
2519 return err;
2520 }
2521
2522 #endif
2523 /**
2524 * igb_remove_i2c - Cleanup I2C interface
2525 * @adapter: pointer to adapter structure
2526 **/
2527 static void igb_remove_i2c(struct igb_adapter *adapter)
2528 {
2529 /* free the adapter bus structure */
2530 i2c_del_adapter(&adapter->i2c_adap);
2531 }
2532
2533 /**
2534 * igb_remove - Device Removal Routine
2535 * @pdev: PCI device information struct
2536 *
2537 * igb_remove is called by the PCI subsystem to alert the driver
2538 * that it should release a PCI device. The could be caused by a
2539 * Hot-Plug event, or because the driver is going to be removed from
2540 * memory.
2541 **/
2542 static void igb_remove(struct pci_dev *pdev)
2543 {
2544 struct net_device *netdev = pci_get_drvdata(pdev);
2545 struct igb_adapter *adapter = netdev_priv(netdev);
2546 struct e1000_hw *hw = &adapter->hw;
2547
2548 pm_runtime_get_noresume(&pdev->dev);
2549 #ifdef CONFIG_IGB_HWMON
2550 igb_sysfs_exit(adapter);
2551 #endif
2552 igb_remove_i2c(adapter);
2553 igb_ptp_stop(adapter);
2554 /* The watchdog timer may be rescheduled, so explicitly
2555 * disable watchdog from being rescheduled.
2556 */
2557 set_bit(__IGB_DOWN, &adapter->state);
2558 del_timer_sync(&adapter->watchdog_timer);
2559 del_timer_sync(&adapter->phy_info_timer);
2560
2561 cancel_work_sync(&adapter->reset_task);
2562 cancel_work_sync(&adapter->watchdog_task);
2563
2564 #ifdef CONFIG_IGB_DCA
2565 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2566 dev_info(&pdev->dev, "DCA disabled\n");
2567 dca_remove_requester(&pdev->dev);
2568 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2569 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2570 }
2571 #endif
2572
2573 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2574 * would have already happened in close and is redundant.
2575 */
2576 igb_release_hw_control(adapter);
2577
2578 unregister_netdev(netdev);
2579
2580 igb_clear_interrupt_scheme(adapter);
2581
2582 #ifdef CONFIG_PCI_IOV
2583 igb_disable_sriov(pdev);
2584 #endif
2585
2586 iounmap(hw->hw_addr);
2587 if (hw->flash_address)
2588 iounmap(hw->flash_address);
2589 pci_release_selected_regions(pdev,
2590 pci_select_bars(pdev, IORESOURCE_MEM));
2591
2592 kfree(adapter->shadow_vfta);
2593 free_netdev(netdev);
2594
2595 pci_disable_pcie_error_reporting(pdev);
2596
2597 pci_disable_device(pdev);
2598 }
2599
2600 /**
2601 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2602 * @adapter: board private structure to initialize
2603 *
2604 * This function initializes the vf specific data storage and then attempts to
2605 * allocate the VFs. The reason for ordering it this way is because it is much
2606 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2607 * the memory for the VFs.
2608 **/
2609 static void igb_probe_vfs(struct igb_adapter *adapter)
2610 {
2611 #ifdef CONFIG_PCI_IOV
2612 struct pci_dev *pdev = adapter->pdev;
2613 struct e1000_hw *hw = &adapter->hw;
2614
2615 /* Virtualization features not supported on i210 family. */
2616 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2617 return;
2618
2619 pci_sriov_set_totalvfs(pdev, 7);
2620 igb_pci_enable_sriov(pdev, max_vfs);
2621
2622 #endif /* CONFIG_PCI_IOV */
2623 }
2624
2625 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2626 {
2627 struct e1000_hw *hw = &adapter->hw;
2628 u32 max_rss_queues;
2629
2630 /* Determine the maximum number of RSS queues supported. */
2631 switch (hw->mac.type) {
2632 case e1000_i211:
2633 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2634 break;
2635 case e1000_82575:
2636 case e1000_i210:
2637 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2638 break;
2639 case e1000_i350:
2640 /* I350 cannot do RSS and SR-IOV at the same time */
2641 if (!!adapter->vfs_allocated_count) {
2642 max_rss_queues = 1;
2643 break;
2644 }
2645 /* fall through */
2646 case e1000_82576:
2647 if (!!adapter->vfs_allocated_count) {
2648 max_rss_queues = 2;
2649 break;
2650 }
2651 /* fall through */
2652 case e1000_82580:
2653 case e1000_i354:
2654 default:
2655 max_rss_queues = IGB_MAX_RX_QUEUES;
2656 break;
2657 }
2658
2659 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2660
2661 /* Determine if we need to pair queues. */
2662 switch (hw->mac.type) {
2663 case e1000_82575:
2664 case e1000_i211:
2665 /* Device supports enough interrupts without queue pairing. */
2666 break;
2667 case e1000_82576:
2668 /* If VFs are going to be allocated with RSS queues then we
2669 * should pair the queues in order to conserve interrupts due
2670 * to limited supply.
2671 */
2672 if ((adapter->rss_queues > 1) &&
2673 (adapter->vfs_allocated_count > 6))
2674 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2675 /* fall through */
2676 case e1000_82580:
2677 case e1000_i350:
2678 case e1000_i354:
2679 case e1000_i210:
2680 default:
2681 /* If rss_queues > half of max_rss_queues, pair the queues in
2682 * order to conserve interrupts due to limited supply.
2683 */
2684 if (adapter->rss_queues > (max_rss_queues / 2))
2685 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2686 break;
2687 }
2688 }
2689
2690 /**
2691 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2692 * @adapter: board private structure to initialize
2693 *
2694 * igb_sw_init initializes the Adapter private data structure.
2695 * Fields are initialized based on PCI device information and
2696 * OS network device settings (MTU size).
2697 **/
2698 static int igb_sw_init(struct igb_adapter *adapter)
2699 {
2700 struct e1000_hw *hw = &adapter->hw;
2701 struct net_device *netdev = adapter->netdev;
2702 struct pci_dev *pdev = adapter->pdev;
2703
2704 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2705
2706 /* set default ring sizes */
2707 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2708 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2709
2710 /* set default ITR values */
2711 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2712 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2713
2714 /* set default work limits */
2715 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2716
2717 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2718 VLAN_HLEN;
2719 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2720
2721 spin_lock_init(&adapter->stats64_lock);
2722 #ifdef CONFIG_PCI_IOV
2723 switch (hw->mac.type) {
2724 case e1000_82576:
2725 case e1000_i350:
2726 if (max_vfs > 7) {
2727 dev_warn(&pdev->dev,
2728 "Maximum of 7 VFs per PF, using max\n");
2729 max_vfs = adapter->vfs_allocated_count = 7;
2730 } else
2731 adapter->vfs_allocated_count = max_vfs;
2732 if (adapter->vfs_allocated_count)
2733 dev_warn(&pdev->dev,
2734 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2735 break;
2736 default:
2737 break;
2738 }
2739 #endif /* CONFIG_PCI_IOV */
2740
2741 igb_init_queue_configuration(adapter);
2742
2743 /* Setup and initialize a copy of the hw vlan table array */
2744 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2745 GFP_ATOMIC);
2746
2747 /* This call may decrease the number of queues */
2748 if (igb_init_interrupt_scheme(adapter, true)) {
2749 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2750 return -ENOMEM;
2751 }
2752
2753 igb_probe_vfs(adapter);
2754
2755 /* Explicitly disable IRQ since the NIC can be in any state. */
2756 igb_irq_disable(adapter);
2757
2758 if (hw->mac.type >= e1000_i350)
2759 adapter->flags &= ~IGB_FLAG_DMAC;
2760
2761 set_bit(__IGB_DOWN, &adapter->state);
2762 return 0;
2763 }
2764
2765 /**
2766 * igb_open - Called when a network interface is made active
2767 * @netdev: network interface device structure
2768 *
2769 * Returns 0 on success, negative value on failure
2770 *
2771 * The open entry point is called when a network interface is made
2772 * active by the system (IFF_UP). At this point all resources needed
2773 * for transmit and receive operations are allocated, the interrupt
2774 * handler is registered with the OS, the watchdog timer is started,
2775 * and the stack is notified that the interface is ready.
2776 **/
2777 static int __igb_open(struct net_device *netdev, bool resuming)
2778 {
2779 struct igb_adapter *adapter = netdev_priv(netdev);
2780 struct e1000_hw *hw = &adapter->hw;
2781 struct pci_dev *pdev = adapter->pdev;
2782 int err;
2783 int i;
2784
2785 /* disallow open during test */
2786 if (test_bit(__IGB_TESTING, &adapter->state)) {
2787 WARN_ON(resuming);
2788 return -EBUSY;
2789 }
2790
2791 if (!resuming)
2792 pm_runtime_get_sync(&pdev->dev);
2793
2794 netif_carrier_off(netdev);
2795
2796 /* allocate transmit descriptors */
2797 err = igb_setup_all_tx_resources(adapter);
2798 if (err)
2799 goto err_setup_tx;
2800
2801 /* allocate receive descriptors */
2802 err = igb_setup_all_rx_resources(adapter);
2803 if (err)
2804 goto err_setup_rx;
2805
2806 igb_power_up_link(adapter);
2807
2808 /* before we allocate an interrupt, we must be ready to handle it.
2809 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2810 * as soon as we call pci_request_irq, so we have to setup our
2811 * clean_rx handler before we do so.
2812 */
2813 igb_configure(adapter);
2814
2815 err = igb_request_irq(adapter);
2816 if (err)
2817 goto err_req_irq;
2818
2819 /* Notify the stack of the actual queue counts. */
2820 err = netif_set_real_num_tx_queues(adapter->netdev,
2821 adapter->num_tx_queues);
2822 if (err)
2823 goto err_set_queues;
2824
2825 err = netif_set_real_num_rx_queues(adapter->netdev,
2826 adapter->num_rx_queues);
2827 if (err)
2828 goto err_set_queues;
2829
2830 /* From here on the code is the same as igb_up() */
2831 clear_bit(__IGB_DOWN, &adapter->state);
2832
2833 for (i = 0; i < adapter->num_q_vectors; i++)
2834 napi_enable(&(adapter->q_vector[i]->napi));
2835
2836 /* Clear any pending interrupts. */
2837 rd32(E1000_ICR);
2838
2839 igb_irq_enable(adapter);
2840
2841 /* notify VFs that reset has been completed */
2842 if (adapter->vfs_allocated_count) {
2843 u32 reg_data = rd32(E1000_CTRL_EXT);
2844 reg_data |= E1000_CTRL_EXT_PFRSTD;
2845 wr32(E1000_CTRL_EXT, reg_data);
2846 }
2847
2848 netif_tx_start_all_queues(netdev);
2849
2850 if (!resuming)
2851 pm_runtime_put(&pdev->dev);
2852
2853 /* start the watchdog. */
2854 hw->mac.get_link_status = 1;
2855 schedule_work(&adapter->watchdog_task);
2856
2857 return 0;
2858
2859 err_set_queues:
2860 igb_free_irq(adapter);
2861 err_req_irq:
2862 igb_release_hw_control(adapter);
2863 igb_power_down_link(adapter);
2864 igb_free_all_rx_resources(adapter);
2865 err_setup_rx:
2866 igb_free_all_tx_resources(adapter);
2867 err_setup_tx:
2868 igb_reset(adapter);
2869 if (!resuming)
2870 pm_runtime_put(&pdev->dev);
2871
2872 return err;
2873 }
2874
2875 static int igb_open(struct net_device *netdev)
2876 {
2877 return __igb_open(netdev, false);
2878 }
2879
2880 /**
2881 * igb_close - Disables a network interface
2882 * @netdev: network interface device structure
2883 *
2884 * Returns 0, this is not allowed to fail
2885 *
2886 * The close entry point is called when an interface is de-activated
2887 * by the OS. The hardware is still under the driver's control, but
2888 * needs to be disabled. A global MAC reset is issued to stop the
2889 * hardware, and all transmit and receive resources are freed.
2890 **/
2891 static int __igb_close(struct net_device *netdev, bool suspending)
2892 {
2893 struct igb_adapter *adapter = netdev_priv(netdev);
2894 struct pci_dev *pdev = adapter->pdev;
2895
2896 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2897
2898 if (!suspending)
2899 pm_runtime_get_sync(&pdev->dev);
2900
2901 igb_down(adapter);
2902 igb_free_irq(adapter);
2903
2904 igb_free_all_tx_resources(adapter);
2905 igb_free_all_rx_resources(adapter);
2906
2907 if (!suspending)
2908 pm_runtime_put_sync(&pdev->dev);
2909 return 0;
2910 }
2911
2912 static int igb_close(struct net_device *netdev)
2913 {
2914 return __igb_close(netdev, false);
2915 }
2916
2917 /**
2918 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2919 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2920 *
2921 * Return 0 on success, negative on failure
2922 **/
2923 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2924 {
2925 struct device *dev = tx_ring->dev;
2926 int size;
2927
2928 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2929
2930 tx_ring->tx_buffer_info = vzalloc(size);
2931 if (!tx_ring->tx_buffer_info)
2932 goto err;
2933
2934 /* round up to nearest 4K */
2935 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2936 tx_ring->size = ALIGN(tx_ring->size, 4096);
2937
2938 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2939 &tx_ring->dma, GFP_KERNEL);
2940 if (!tx_ring->desc)
2941 goto err;
2942
2943 tx_ring->next_to_use = 0;
2944 tx_ring->next_to_clean = 0;
2945
2946 return 0;
2947
2948 err:
2949 vfree(tx_ring->tx_buffer_info);
2950 tx_ring->tx_buffer_info = NULL;
2951 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2952 return -ENOMEM;
2953 }
2954
2955 /**
2956 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2957 * (Descriptors) for all queues
2958 * @adapter: board private structure
2959 *
2960 * Return 0 on success, negative on failure
2961 **/
2962 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2963 {
2964 struct pci_dev *pdev = adapter->pdev;
2965 int i, err = 0;
2966
2967 for (i = 0; i < adapter->num_tx_queues; i++) {
2968 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2969 if (err) {
2970 dev_err(&pdev->dev,
2971 "Allocation for Tx Queue %u failed\n", i);
2972 for (i--; i >= 0; i--)
2973 igb_free_tx_resources(adapter->tx_ring[i]);
2974 break;
2975 }
2976 }
2977
2978 return err;
2979 }
2980
2981 /**
2982 * igb_setup_tctl - configure the transmit control registers
2983 * @adapter: Board private structure
2984 **/
2985 void igb_setup_tctl(struct igb_adapter *adapter)
2986 {
2987 struct e1000_hw *hw = &adapter->hw;
2988 u32 tctl;
2989
2990 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2991 wr32(E1000_TXDCTL(0), 0);
2992
2993 /* Program the Transmit Control Register */
2994 tctl = rd32(E1000_TCTL);
2995 tctl &= ~E1000_TCTL_CT;
2996 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2997 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2998
2999 igb_config_collision_dist(hw);
3000
3001 /* Enable transmits */
3002 tctl |= E1000_TCTL_EN;
3003
3004 wr32(E1000_TCTL, tctl);
3005 }
3006
3007 /**
3008 * igb_configure_tx_ring - Configure transmit ring after Reset
3009 * @adapter: board private structure
3010 * @ring: tx ring to configure
3011 *
3012 * Configure a transmit ring after a reset.
3013 **/
3014 void igb_configure_tx_ring(struct igb_adapter *adapter,
3015 struct igb_ring *ring)
3016 {
3017 struct e1000_hw *hw = &adapter->hw;
3018 u32 txdctl = 0;
3019 u64 tdba = ring->dma;
3020 int reg_idx = ring->reg_idx;
3021
3022 /* disable the queue */
3023 wr32(E1000_TXDCTL(reg_idx), 0);
3024 wrfl();
3025 mdelay(10);
3026
3027 wr32(E1000_TDLEN(reg_idx),
3028 ring->count * sizeof(union e1000_adv_tx_desc));
3029 wr32(E1000_TDBAL(reg_idx),
3030 tdba & 0x00000000ffffffffULL);
3031 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3032
3033 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3034 wr32(E1000_TDH(reg_idx), 0);
3035 writel(0, ring->tail);
3036
3037 txdctl |= IGB_TX_PTHRESH;
3038 txdctl |= IGB_TX_HTHRESH << 8;
3039 txdctl |= IGB_TX_WTHRESH << 16;
3040
3041 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3042 wr32(E1000_TXDCTL(reg_idx), txdctl);
3043 }
3044
3045 /**
3046 * igb_configure_tx - Configure transmit Unit after Reset
3047 * @adapter: board private structure
3048 *
3049 * Configure the Tx unit of the MAC after a reset.
3050 **/
3051 static void igb_configure_tx(struct igb_adapter *adapter)
3052 {
3053 int i;
3054
3055 for (i = 0; i < adapter->num_tx_queues; i++)
3056 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3057 }
3058
3059 /**
3060 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3061 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3062 *
3063 * Returns 0 on success, negative on failure
3064 **/
3065 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3066 {
3067 struct device *dev = rx_ring->dev;
3068 int size;
3069
3070 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3071
3072 rx_ring->rx_buffer_info = vzalloc(size);
3073 if (!rx_ring->rx_buffer_info)
3074 goto err;
3075
3076 /* Round up to nearest 4K */
3077 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3078 rx_ring->size = ALIGN(rx_ring->size, 4096);
3079
3080 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3081 &rx_ring->dma, GFP_KERNEL);
3082 if (!rx_ring->desc)
3083 goto err;
3084
3085 rx_ring->next_to_alloc = 0;
3086 rx_ring->next_to_clean = 0;
3087 rx_ring->next_to_use = 0;
3088
3089 return 0;
3090
3091 err:
3092 vfree(rx_ring->rx_buffer_info);
3093 rx_ring->rx_buffer_info = NULL;
3094 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3095 return -ENOMEM;
3096 }
3097
3098 /**
3099 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3100 * (Descriptors) for all queues
3101 * @adapter: board private structure
3102 *
3103 * Return 0 on success, negative on failure
3104 **/
3105 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3106 {
3107 struct pci_dev *pdev = adapter->pdev;
3108 int i, err = 0;
3109
3110 for (i = 0; i < adapter->num_rx_queues; i++) {
3111 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3112 if (err) {
3113 dev_err(&pdev->dev,
3114 "Allocation for Rx Queue %u failed\n", i);
3115 for (i--; i >= 0; i--)
3116 igb_free_rx_resources(adapter->rx_ring[i]);
3117 break;
3118 }
3119 }
3120
3121 return err;
3122 }
3123
3124 /**
3125 * igb_setup_mrqc - configure the multiple receive queue control registers
3126 * @adapter: Board private structure
3127 **/
3128 static void igb_setup_mrqc(struct igb_adapter *adapter)
3129 {
3130 struct e1000_hw *hw = &adapter->hw;
3131 u32 mrqc, rxcsum;
3132 u32 j, num_rx_queues;
3133 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3134 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3135 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3136 0xFA01ACBE };
3137
3138 /* Fill out hash function seeds */
3139 for (j = 0; j < 10; j++)
3140 wr32(E1000_RSSRK(j), rsskey[j]);
3141
3142 num_rx_queues = adapter->rss_queues;
3143
3144 switch (hw->mac.type) {
3145 case e1000_82576:
3146 /* 82576 supports 2 RSS queues for SR-IOV */
3147 if (adapter->vfs_allocated_count)
3148 num_rx_queues = 2;
3149 break;
3150 default:
3151 break;
3152 }
3153
3154 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3155 for (j = 0; j < IGB_RETA_SIZE; j++)
3156 adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3157 adapter->rss_indir_tbl_init = num_rx_queues;
3158 }
3159 igb_write_rss_indir_tbl(adapter);
3160
3161 /* Disable raw packet checksumming so that RSS hash is placed in
3162 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3163 * offloads as they are enabled by default
3164 */
3165 rxcsum = rd32(E1000_RXCSUM);
3166 rxcsum |= E1000_RXCSUM_PCSD;
3167
3168 if (adapter->hw.mac.type >= e1000_82576)
3169 /* Enable Receive Checksum Offload for SCTP */
3170 rxcsum |= E1000_RXCSUM_CRCOFL;
3171
3172 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3173 wr32(E1000_RXCSUM, rxcsum);
3174
3175 /* Generate RSS hash based on packet types, TCP/UDP
3176 * port numbers and/or IPv4/v6 src and dst addresses
3177 */
3178 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3179 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3180 E1000_MRQC_RSS_FIELD_IPV6 |
3181 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3182 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3183
3184 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3185 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3186 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3187 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3188
3189 /* If VMDq is enabled then we set the appropriate mode for that, else
3190 * we default to RSS so that an RSS hash is calculated per packet even
3191 * if we are only using one queue
3192 */
3193 if (adapter->vfs_allocated_count) {
3194 if (hw->mac.type > e1000_82575) {
3195 /* Set the default pool for the PF's first queue */
3196 u32 vtctl = rd32(E1000_VT_CTL);
3197 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3198 E1000_VT_CTL_DISABLE_DEF_POOL);
3199 vtctl |= adapter->vfs_allocated_count <<
3200 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3201 wr32(E1000_VT_CTL, vtctl);
3202 }
3203 if (adapter->rss_queues > 1)
3204 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3205 else
3206 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3207 } else {
3208 if (hw->mac.type != e1000_i211)
3209 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3210 }
3211 igb_vmm_control(adapter);
3212
3213 wr32(E1000_MRQC, mrqc);
3214 }
3215
3216 /**
3217 * igb_setup_rctl - configure the receive control registers
3218 * @adapter: Board private structure
3219 **/
3220 void igb_setup_rctl(struct igb_adapter *adapter)
3221 {
3222 struct e1000_hw *hw = &adapter->hw;
3223 u32 rctl;
3224
3225 rctl = rd32(E1000_RCTL);
3226
3227 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3228 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3229
3230 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3231 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3232
3233 /* enable stripping of CRC. It's unlikely this will break BMC
3234 * redirection as it did with e1000. Newer features require
3235 * that the HW strips the CRC.
3236 */
3237 rctl |= E1000_RCTL_SECRC;
3238
3239 /* disable store bad packets and clear size bits. */
3240 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3241
3242 /* enable LPE to prevent packets larger than max_frame_size */
3243 rctl |= E1000_RCTL_LPE;
3244
3245 /* disable queue 0 to prevent tail write w/o re-config */
3246 wr32(E1000_RXDCTL(0), 0);
3247
3248 /* Attention!!! For SR-IOV PF driver operations you must enable
3249 * queue drop for all VF and PF queues to prevent head of line blocking
3250 * if an un-trusted VF does not provide descriptors to hardware.
3251 */
3252 if (adapter->vfs_allocated_count) {
3253 /* set all queue drop enable bits */
3254 wr32(E1000_QDE, ALL_QUEUES);
3255 }
3256
3257 /* This is useful for sniffing bad packets. */
3258 if (adapter->netdev->features & NETIF_F_RXALL) {
3259 /* UPE and MPE will be handled by normal PROMISC logic
3260 * in e1000e_set_rx_mode
3261 */
3262 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3263 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3264 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3265
3266 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3267 E1000_RCTL_DPF | /* Allow filtered pause */
3268 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3269 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3270 * and that breaks VLANs.
3271 */
3272 }
3273
3274 wr32(E1000_RCTL, rctl);
3275 }
3276
3277 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3278 int vfn)
3279 {
3280 struct e1000_hw *hw = &adapter->hw;
3281 u32 vmolr;
3282
3283 /* if it isn't the PF check to see if VFs are enabled and
3284 * increase the size to support vlan tags
3285 */
3286 if (vfn < adapter->vfs_allocated_count &&
3287 adapter->vf_data[vfn].vlans_enabled)
3288 size += VLAN_TAG_SIZE;
3289
3290 vmolr = rd32(E1000_VMOLR(vfn));
3291 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3292 vmolr |= size | E1000_VMOLR_LPE;
3293 wr32(E1000_VMOLR(vfn), vmolr);
3294
3295 return 0;
3296 }
3297
3298 /**
3299 * igb_rlpml_set - set maximum receive packet size
3300 * @adapter: board private structure
3301 *
3302 * Configure maximum receivable packet size.
3303 **/
3304 static void igb_rlpml_set(struct igb_adapter *adapter)
3305 {
3306 u32 max_frame_size = adapter->max_frame_size;
3307 struct e1000_hw *hw = &adapter->hw;
3308 u16 pf_id = adapter->vfs_allocated_count;
3309
3310 if (pf_id) {
3311 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3312 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3313 * to our max jumbo frame size, in case we need to enable
3314 * jumbo frames on one of the rings later.
3315 * This will not pass over-length frames into the default
3316 * queue because it's gated by the VMOLR.RLPML.
3317 */
3318 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3319 }
3320
3321 wr32(E1000_RLPML, max_frame_size);
3322 }
3323
3324 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3325 int vfn, bool aupe)
3326 {
3327 struct e1000_hw *hw = &adapter->hw;
3328 u32 vmolr;
3329
3330 /* This register exists only on 82576 and newer so if we are older then
3331 * we should exit and do nothing
3332 */
3333 if (hw->mac.type < e1000_82576)
3334 return;
3335
3336 vmolr = rd32(E1000_VMOLR(vfn));
3337 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3338 if (aupe)
3339 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3340 else
3341 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3342
3343 /* clear all bits that might not be set */
3344 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3345
3346 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3347 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3348 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3349 * multicast packets
3350 */
3351 if (vfn <= adapter->vfs_allocated_count)
3352 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3353
3354 wr32(E1000_VMOLR(vfn), vmolr);
3355 }
3356
3357 /**
3358 * igb_configure_rx_ring - Configure a receive ring after Reset
3359 * @adapter: board private structure
3360 * @ring: receive ring to be configured
3361 *
3362 * Configure the Rx unit of the MAC after a reset.
3363 **/
3364 void igb_configure_rx_ring(struct igb_adapter *adapter,
3365 struct igb_ring *ring)
3366 {
3367 struct e1000_hw *hw = &adapter->hw;
3368 u64 rdba = ring->dma;
3369 int reg_idx = ring->reg_idx;
3370 u32 srrctl = 0, rxdctl = 0;
3371
3372 /* disable the queue */
3373 wr32(E1000_RXDCTL(reg_idx), 0);
3374
3375 /* Set DMA base address registers */
3376 wr32(E1000_RDBAL(reg_idx),
3377 rdba & 0x00000000ffffffffULL);
3378 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3379 wr32(E1000_RDLEN(reg_idx),
3380 ring->count * sizeof(union e1000_adv_rx_desc));
3381
3382 /* initialize head and tail */
3383 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3384 wr32(E1000_RDH(reg_idx), 0);
3385 writel(0, ring->tail);
3386
3387 /* set descriptor configuration */
3388 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3389 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3390 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3391 if (hw->mac.type >= e1000_82580)
3392 srrctl |= E1000_SRRCTL_TIMESTAMP;
3393 /* Only set Drop Enable if we are supporting multiple queues */
3394 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3395 srrctl |= E1000_SRRCTL_DROP_EN;
3396
3397 wr32(E1000_SRRCTL(reg_idx), srrctl);
3398
3399 /* set filtering for VMDQ pools */
3400 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3401
3402 rxdctl |= IGB_RX_PTHRESH;
3403 rxdctl |= IGB_RX_HTHRESH << 8;
3404 rxdctl |= IGB_RX_WTHRESH << 16;
3405
3406 /* enable receive descriptor fetching */
3407 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3408 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3409 }
3410
3411 /**
3412 * igb_configure_rx - Configure receive Unit after Reset
3413 * @adapter: board private structure
3414 *
3415 * Configure the Rx unit of the MAC after a reset.
3416 **/
3417 static void igb_configure_rx(struct igb_adapter *adapter)
3418 {
3419 int i;
3420
3421 /* set UTA to appropriate mode */
3422 igb_set_uta(adapter);
3423
3424 /* set the correct pool for the PF default MAC address in entry 0 */
3425 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3426 adapter->vfs_allocated_count);
3427
3428 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3429 * the Base and Length of the Rx Descriptor Ring
3430 */
3431 for (i = 0; i < adapter->num_rx_queues; i++)
3432 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3433 }
3434
3435 /**
3436 * igb_free_tx_resources - Free Tx Resources per Queue
3437 * @tx_ring: Tx descriptor ring for a specific queue
3438 *
3439 * Free all transmit software resources
3440 **/
3441 void igb_free_tx_resources(struct igb_ring *tx_ring)
3442 {
3443 igb_clean_tx_ring(tx_ring);
3444
3445 vfree(tx_ring->tx_buffer_info);
3446 tx_ring->tx_buffer_info = NULL;
3447
3448 /* if not set, then don't free */
3449 if (!tx_ring->desc)
3450 return;
3451
3452 dma_free_coherent(tx_ring->dev, tx_ring->size,
3453 tx_ring->desc, tx_ring->dma);
3454
3455 tx_ring->desc = NULL;
3456 }
3457
3458 /**
3459 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3460 * @adapter: board private structure
3461 *
3462 * Free all transmit software resources
3463 **/
3464 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3465 {
3466 int i;
3467
3468 for (i = 0; i < adapter->num_tx_queues; i++)
3469 igb_free_tx_resources(adapter->tx_ring[i]);
3470 }
3471
3472 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3473 struct igb_tx_buffer *tx_buffer)
3474 {
3475 if (tx_buffer->skb) {
3476 dev_kfree_skb_any(tx_buffer->skb);
3477 if (dma_unmap_len(tx_buffer, len))
3478 dma_unmap_single(ring->dev,
3479 dma_unmap_addr(tx_buffer, dma),
3480 dma_unmap_len(tx_buffer, len),
3481 DMA_TO_DEVICE);
3482 } else if (dma_unmap_len(tx_buffer, len)) {
3483 dma_unmap_page(ring->dev,
3484 dma_unmap_addr(tx_buffer, dma),
3485 dma_unmap_len(tx_buffer, len),
3486 DMA_TO_DEVICE);
3487 }
3488 tx_buffer->next_to_watch = NULL;
3489 tx_buffer->skb = NULL;
3490 dma_unmap_len_set(tx_buffer, len, 0);
3491 /* buffer_info must be completely set up in the transmit path */
3492 }
3493
3494 /**
3495 * igb_clean_tx_ring - Free Tx Buffers
3496 * @tx_ring: ring to be cleaned
3497 **/
3498 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3499 {
3500 struct igb_tx_buffer *buffer_info;
3501 unsigned long size;
3502 u16 i;
3503
3504 if (!tx_ring->tx_buffer_info)
3505 return;
3506 /* Free all the Tx ring sk_buffs */
3507
3508 for (i = 0; i < tx_ring->count; i++) {
3509 buffer_info = &tx_ring->tx_buffer_info[i];
3510 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3511 }
3512
3513 netdev_tx_reset_queue(txring_txq(tx_ring));
3514
3515 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3516 memset(tx_ring->tx_buffer_info, 0, size);
3517
3518 /* Zero out the descriptor ring */
3519 memset(tx_ring->desc, 0, tx_ring->size);
3520
3521 tx_ring->next_to_use = 0;
3522 tx_ring->next_to_clean = 0;
3523 }
3524
3525 /**
3526 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3527 * @adapter: board private structure
3528 **/
3529 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3530 {
3531 int i;
3532
3533 for (i = 0; i < adapter->num_tx_queues; i++)
3534 igb_clean_tx_ring(adapter->tx_ring[i]);
3535 }
3536
3537 /**
3538 * igb_free_rx_resources - Free Rx Resources
3539 * @rx_ring: ring to clean the resources from
3540 *
3541 * Free all receive software resources
3542 **/
3543 void igb_free_rx_resources(struct igb_ring *rx_ring)
3544 {
3545 igb_clean_rx_ring(rx_ring);
3546
3547 vfree(rx_ring->rx_buffer_info);
3548 rx_ring->rx_buffer_info = NULL;
3549
3550 /* if not set, then don't free */
3551 if (!rx_ring->desc)
3552 return;
3553
3554 dma_free_coherent(rx_ring->dev, rx_ring->size,
3555 rx_ring->desc, rx_ring->dma);
3556
3557 rx_ring->desc = NULL;
3558 }
3559
3560 /**
3561 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3562 * @adapter: board private structure
3563 *
3564 * Free all receive software resources
3565 **/
3566 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3567 {
3568 int i;
3569
3570 for (i = 0; i < adapter->num_rx_queues; i++)
3571 igb_free_rx_resources(adapter->rx_ring[i]);
3572 }
3573
3574 /**
3575 * igb_clean_rx_ring - Free Rx Buffers per Queue
3576 * @rx_ring: ring to free buffers from
3577 **/
3578 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3579 {
3580 unsigned long size;
3581 u16 i;
3582
3583 if (rx_ring->skb)
3584 dev_kfree_skb(rx_ring->skb);
3585 rx_ring->skb = NULL;
3586
3587 if (!rx_ring->rx_buffer_info)
3588 return;
3589
3590 /* Free all the Rx ring sk_buffs */
3591 for (i = 0; i < rx_ring->count; i++) {
3592 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3593
3594 if (!buffer_info->page)
3595 continue;
3596
3597 dma_unmap_page(rx_ring->dev,
3598 buffer_info->dma,
3599 PAGE_SIZE,
3600 DMA_FROM_DEVICE);
3601 __free_page(buffer_info->page);
3602
3603 buffer_info->page = NULL;
3604 }
3605
3606 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3607 memset(rx_ring->rx_buffer_info, 0, size);
3608
3609 /* Zero out the descriptor ring */
3610 memset(rx_ring->desc, 0, rx_ring->size);
3611
3612 rx_ring->next_to_alloc = 0;
3613 rx_ring->next_to_clean = 0;
3614 rx_ring->next_to_use = 0;
3615 }
3616
3617 /**
3618 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3619 * @adapter: board private structure
3620 **/
3621 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3622 {
3623 int i;
3624
3625 for (i = 0; i < adapter->num_rx_queues; i++)
3626 igb_clean_rx_ring(adapter->rx_ring[i]);
3627 }
3628
3629 /**
3630 * igb_set_mac - Change the Ethernet Address of the NIC
3631 * @netdev: network interface device structure
3632 * @p: pointer to an address structure
3633 *
3634 * Returns 0 on success, negative on failure
3635 **/
3636 static int igb_set_mac(struct net_device *netdev, void *p)
3637 {
3638 struct igb_adapter *adapter = netdev_priv(netdev);
3639 struct e1000_hw *hw = &adapter->hw;
3640 struct sockaddr *addr = p;
3641
3642 if (!is_valid_ether_addr(addr->sa_data))
3643 return -EADDRNOTAVAIL;
3644
3645 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3646 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3647
3648 /* set the correct pool for the new PF MAC address in entry 0 */
3649 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3650 adapter->vfs_allocated_count);
3651
3652 return 0;
3653 }
3654
3655 /**
3656 * igb_write_mc_addr_list - write multicast addresses to MTA
3657 * @netdev: network interface device structure
3658 *
3659 * Writes multicast address list to the MTA hash table.
3660 * Returns: -ENOMEM on failure
3661 * 0 on no addresses written
3662 * X on writing X addresses to MTA
3663 **/
3664 static int igb_write_mc_addr_list(struct net_device *netdev)
3665 {
3666 struct igb_adapter *adapter = netdev_priv(netdev);
3667 struct e1000_hw *hw = &adapter->hw;
3668 struct netdev_hw_addr *ha;
3669 u8 *mta_list;
3670 int i;
3671
3672 if (netdev_mc_empty(netdev)) {
3673 /* nothing to program, so clear mc list */
3674 igb_update_mc_addr_list(hw, NULL, 0);
3675 igb_restore_vf_multicasts(adapter);
3676 return 0;
3677 }
3678
3679 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3680 if (!mta_list)
3681 return -ENOMEM;
3682
3683 /* The shared function expects a packed array of only addresses. */
3684 i = 0;
3685 netdev_for_each_mc_addr(ha, netdev)
3686 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3687
3688 igb_update_mc_addr_list(hw, mta_list, i);
3689 kfree(mta_list);
3690
3691 return netdev_mc_count(netdev);
3692 }
3693
3694 /**
3695 * igb_write_uc_addr_list - write unicast addresses to RAR table
3696 * @netdev: network interface device structure
3697 *
3698 * Writes unicast address list to the RAR table.
3699 * Returns: -ENOMEM on failure/insufficient address space
3700 * 0 on no addresses written
3701 * X on writing X addresses to the RAR table
3702 **/
3703 static int igb_write_uc_addr_list(struct net_device *netdev)
3704 {
3705 struct igb_adapter *adapter = netdev_priv(netdev);
3706 struct e1000_hw *hw = &adapter->hw;
3707 unsigned int vfn = adapter->vfs_allocated_count;
3708 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3709 int count = 0;
3710
3711 /* return ENOMEM indicating insufficient memory for addresses */
3712 if (netdev_uc_count(netdev) > rar_entries)
3713 return -ENOMEM;
3714
3715 if (!netdev_uc_empty(netdev) && rar_entries) {
3716 struct netdev_hw_addr *ha;
3717
3718 netdev_for_each_uc_addr(ha, netdev) {
3719 if (!rar_entries)
3720 break;
3721 igb_rar_set_qsel(adapter, ha->addr,
3722 rar_entries--,
3723 vfn);
3724 count++;
3725 }
3726 }
3727 /* write the addresses in reverse order to avoid write combining */
3728 for (; rar_entries > 0 ; rar_entries--) {
3729 wr32(E1000_RAH(rar_entries), 0);
3730 wr32(E1000_RAL(rar_entries), 0);
3731 }
3732 wrfl();
3733
3734 return count;
3735 }
3736
3737 /**
3738 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3739 * @netdev: network interface device structure
3740 *
3741 * The set_rx_mode entry point is called whenever the unicast or multicast
3742 * address lists or the network interface flags are updated. This routine is
3743 * responsible for configuring the hardware for proper unicast, multicast,
3744 * promiscuous mode, and all-multi behavior.
3745 **/
3746 static void igb_set_rx_mode(struct net_device *netdev)
3747 {
3748 struct igb_adapter *adapter = netdev_priv(netdev);
3749 struct e1000_hw *hw = &adapter->hw;
3750 unsigned int vfn = adapter->vfs_allocated_count;
3751 u32 rctl, vmolr = 0;
3752 int count;
3753
3754 /* Check for Promiscuous and All Multicast modes */
3755 rctl = rd32(E1000_RCTL);
3756
3757 /* clear the effected bits */
3758 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3759
3760 if (netdev->flags & IFF_PROMISC) {
3761 /* retain VLAN HW filtering if in VT mode */
3762 if (adapter->vfs_allocated_count)
3763 rctl |= E1000_RCTL_VFE;
3764 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3765 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3766 } else {
3767 if (netdev->flags & IFF_ALLMULTI) {
3768 rctl |= E1000_RCTL_MPE;
3769 vmolr |= E1000_VMOLR_MPME;
3770 } else {
3771 /* Write addresses to the MTA, if the attempt fails
3772 * then we should just turn on promiscuous mode so
3773 * that we can at least receive multicast traffic
3774 */
3775 count = igb_write_mc_addr_list(netdev);
3776 if (count < 0) {
3777 rctl |= E1000_RCTL_MPE;
3778 vmolr |= E1000_VMOLR_MPME;
3779 } else if (count) {
3780 vmolr |= E1000_VMOLR_ROMPE;
3781 }
3782 }
3783 /* Write addresses to available RAR registers, if there is not
3784 * sufficient space to store all the addresses then enable
3785 * unicast promiscuous mode
3786 */
3787 count = igb_write_uc_addr_list(netdev);
3788 if (count < 0) {
3789 rctl |= E1000_RCTL_UPE;
3790 vmolr |= E1000_VMOLR_ROPE;
3791 }
3792 rctl |= E1000_RCTL_VFE;
3793 }
3794 wr32(E1000_RCTL, rctl);
3795
3796 /* In order to support SR-IOV and eventually VMDq it is necessary to set
3797 * the VMOLR to enable the appropriate modes. Without this workaround
3798 * we will have issues with VLAN tag stripping not being done for frames
3799 * that are only arriving because we are the default pool
3800 */
3801 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3802 return;
3803
3804 vmolr |= rd32(E1000_VMOLR(vfn)) &
3805 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3806 wr32(E1000_VMOLR(vfn), vmolr);
3807 igb_restore_vf_multicasts(adapter);
3808 }
3809
3810 static void igb_check_wvbr(struct igb_adapter *adapter)
3811 {
3812 struct e1000_hw *hw = &adapter->hw;
3813 u32 wvbr = 0;
3814
3815 switch (hw->mac.type) {
3816 case e1000_82576:
3817 case e1000_i350:
3818 if (!(wvbr = rd32(E1000_WVBR)))
3819 return;
3820 break;
3821 default:
3822 break;
3823 }
3824
3825 adapter->wvbr |= wvbr;
3826 }
3827
3828 #define IGB_STAGGERED_QUEUE_OFFSET 8
3829
3830 static void igb_spoof_check(struct igb_adapter *adapter)
3831 {
3832 int j;
3833
3834 if (!adapter->wvbr)
3835 return;
3836
3837 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3838 if (adapter->wvbr & (1 << j) ||
3839 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3840 dev_warn(&adapter->pdev->dev,
3841 "Spoof event(s) detected on VF %d\n", j);
3842 adapter->wvbr &=
3843 ~((1 << j) |
3844 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3845 }
3846 }
3847 }
3848
3849 /* Need to wait a few seconds after link up to get diagnostic information from
3850 * the phy
3851 */
3852 static void igb_update_phy_info(unsigned long data)
3853 {
3854 struct igb_adapter *adapter = (struct igb_adapter *) data;
3855 igb_get_phy_info(&adapter->hw);
3856 }
3857
3858 /**
3859 * igb_has_link - check shared code for link and determine up/down
3860 * @adapter: pointer to driver private info
3861 **/
3862 bool igb_has_link(struct igb_adapter *adapter)
3863 {
3864 struct e1000_hw *hw = &adapter->hw;
3865 bool link_active = false;
3866
3867 /* get_link_status is set on LSC (link status) interrupt or
3868 * rx sequence error interrupt. get_link_status will stay
3869 * false until the e1000_check_for_link establishes link
3870 * for copper adapters ONLY
3871 */
3872 switch (hw->phy.media_type) {
3873 case e1000_media_type_copper:
3874 if (!hw->mac.get_link_status)
3875 return true;
3876 case e1000_media_type_internal_serdes:
3877 hw->mac.ops.check_for_link(hw);
3878 link_active = !hw->mac.get_link_status;
3879 break;
3880 default:
3881 case e1000_media_type_unknown:
3882 break;
3883 }
3884
3885 if (((hw->mac.type == e1000_i210) ||
3886 (hw->mac.type == e1000_i211)) &&
3887 (hw->phy.id == I210_I_PHY_ID)) {
3888 if (!netif_carrier_ok(adapter->netdev)) {
3889 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
3890 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
3891 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
3892 adapter->link_check_timeout = jiffies;
3893 }
3894 }
3895
3896 return link_active;
3897 }
3898
3899 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3900 {
3901 bool ret = false;
3902 u32 ctrl_ext, thstat;
3903
3904 /* check for thermal sensor event on i350 copper only */
3905 if (hw->mac.type == e1000_i350) {
3906 thstat = rd32(E1000_THSTAT);
3907 ctrl_ext = rd32(E1000_CTRL_EXT);
3908
3909 if ((hw->phy.media_type == e1000_media_type_copper) &&
3910 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3911 ret = !!(thstat & event);
3912 }
3913
3914 return ret;
3915 }
3916
3917 /**
3918 * igb_watchdog - Timer Call-back
3919 * @data: pointer to adapter cast into an unsigned long
3920 **/
3921 static void igb_watchdog(unsigned long data)
3922 {
3923 struct igb_adapter *adapter = (struct igb_adapter *)data;
3924 /* Do the rest outside of interrupt context */
3925 schedule_work(&adapter->watchdog_task);
3926 }
3927
3928 static void igb_watchdog_task(struct work_struct *work)
3929 {
3930 struct igb_adapter *adapter = container_of(work,
3931 struct igb_adapter,
3932 watchdog_task);
3933 struct e1000_hw *hw = &adapter->hw;
3934 struct e1000_phy_info *phy = &hw->phy;
3935 struct net_device *netdev = adapter->netdev;
3936 u32 link;
3937 int i;
3938
3939 link = igb_has_link(adapter);
3940
3941 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
3942 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
3943 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
3944 else
3945 link = false;
3946 }
3947
3948 if (link) {
3949 /* Cancel scheduled suspend requests. */
3950 pm_runtime_resume(netdev->dev.parent);
3951
3952 if (!netif_carrier_ok(netdev)) {
3953 u32 ctrl;
3954 hw->mac.ops.get_speed_and_duplex(hw,
3955 &adapter->link_speed,
3956 &adapter->link_duplex);
3957
3958 ctrl = rd32(E1000_CTRL);
3959 /* Links status message must follow this format */
3960 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3961 "Duplex, Flow Control: %s\n",
3962 netdev->name,
3963 adapter->link_speed,
3964 adapter->link_duplex == FULL_DUPLEX ?
3965 "Full" : "Half",
3966 (ctrl & E1000_CTRL_TFCE) &&
3967 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3968 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3969 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
3970
3971 /* check if SmartSpeed worked */
3972 igb_check_downshift(hw);
3973 if (phy->speed_downgraded)
3974 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3975
3976 /* check for thermal sensor event */
3977 if (igb_thermal_sensor_event(hw,
3978 E1000_THSTAT_LINK_THROTTLE)) {
3979 netdev_info(netdev, "The network adapter link "
3980 "speed was downshifted because it "
3981 "overheated\n");
3982 }
3983
3984 /* adjust timeout factor according to speed/duplex */
3985 adapter->tx_timeout_factor = 1;
3986 switch (adapter->link_speed) {
3987 case SPEED_10:
3988 adapter->tx_timeout_factor = 14;
3989 break;
3990 case SPEED_100:
3991 /* maybe add some timeout factor ? */
3992 break;
3993 }
3994
3995 netif_carrier_on(netdev);
3996
3997 igb_ping_all_vfs(adapter);
3998 igb_check_vf_rate_limit(adapter);
3999
4000 /* link state has changed, schedule phy info update */
4001 if (!test_bit(__IGB_DOWN, &adapter->state))
4002 mod_timer(&adapter->phy_info_timer,
4003 round_jiffies(jiffies + 2 * HZ));
4004 }
4005 } else {
4006 if (netif_carrier_ok(netdev)) {
4007 adapter->link_speed = 0;
4008 adapter->link_duplex = 0;
4009
4010 /* check for thermal sensor event */
4011 if (igb_thermal_sensor_event(hw,
4012 E1000_THSTAT_PWR_DOWN)) {
4013 netdev_err(netdev, "The network adapter was "
4014 "stopped because it overheated\n");
4015 }
4016
4017 /* Links status message must follow this format */
4018 printk(KERN_INFO "igb: %s NIC Link is Down\n",
4019 netdev->name);
4020 netif_carrier_off(netdev);
4021
4022 igb_ping_all_vfs(adapter);
4023
4024 /* link state has changed, schedule phy info update */
4025 if (!test_bit(__IGB_DOWN, &adapter->state))
4026 mod_timer(&adapter->phy_info_timer,
4027 round_jiffies(jiffies + 2 * HZ));
4028
4029 pm_schedule_suspend(netdev->dev.parent,
4030 MSEC_PER_SEC * 5);
4031 }
4032 }
4033
4034 spin_lock(&adapter->stats64_lock);
4035 igb_update_stats(adapter, &adapter->stats64);
4036 spin_unlock(&adapter->stats64_lock);
4037
4038 for (i = 0; i < adapter->num_tx_queues; i++) {
4039 struct igb_ring *tx_ring = adapter->tx_ring[i];
4040 if (!netif_carrier_ok(netdev)) {
4041 /* We've lost link, so the controller stops DMA,
4042 * but we've got queued Tx work that's never going
4043 * to get done, so reset controller to flush Tx.
4044 * (Do the reset outside of interrupt context).
4045 */
4046 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4047 adapter->tx_timeout_count++;
4048 schedule_work(&adapter->reset_task);
4049 /* return immediately since reset is imminent */
4050 return;
4051 }
4052 }
4053
4054 /* Force detection of hung controller every watchdog period */
4055 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4056 }
4057
4058 /* Cause software interrupt to ensure Rx ring is cleaned */
4059 if (adapter->msix_entries) {
4060 u32 eics = 0;
4061 for (i = 0; i < adapter->num_q_vectors; i++)
4062 eics |= adapter->q_vector[i]->eims_value;
4063 wr32(E1000_EICS, eics);
4064 } else {
4065 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4066 }
4067
4068 igb_spoof_check(adapter);
4069 igb_ptp_rx_hang(adapter);
4070
4071 /* Reset the timer */
4072 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4073 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4074 mod_timer(&adapter->watchdog_timer,
4075 round_jiffies(jiffies + HZ));
4076 else
4077 mod_timer(&adapter->watchdog_timer,
4078 round_jiffies(jiffies + 2 * HZ));
4079 }
4080 }
4081
4082 enum latency_range {
4083 lowest_latency = 0,
4084 low_latency = 1,
4085 bulk_latency = 2,
4086 latency_invalid = 255
4087 };
4088
4089 /**
4090 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4091 * @q_vector: pointer to q_vector
4092 *
4093 * Stores a new ITR value based on strictly on packet size. This
4094 * algorithm is less sophisticated than that used in igb_update_itr,
4095 * due to the difficulty of synchronizing statistics across multiple
4096 * receive rings. The divisors and thresholds used by this function
4097 * were determined based on theoretical maximum wire speed and testing
4098 * data, in order to minimize response time while increasing bulk
4099 * throughput.
4100 * This functionality is controlled by the InterruptThrottleRate module
4101 * parameter (see igb_param.c)
4102 * NOTE: This function is called only when operating in a multiqueue
4103 * receive environment.
4104 **/
4105 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4106 {
4107 int new_val = q_vector->itr_val;
4108 int avg_wire_size = 0;
4109 struct igb_adapter *adapter = q_vector->adapter;
4110 unsigned int packets;
4111
4112 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4113 * ints/sec - ITR timer value of 120 ticks.
4114 */
4115 if (adapter->link_speed != SPEED_1000) {
4116 new_val = IGB_4K_ITR;
4117 goto set_itr_val;
4118 }
4119
4120 packets = q_vector->rx.total_packets;
4121 if (packets)
4122 avg_wire_size = q_vector->rx.total_bytes / packets;
4123
4124 packets = q_vector->tx.total_packets;
4125 if (packets)
4126 avg_wire_size = max_t(u32, avg_wire_size,
4127 q_vector->tx.total_bytes / packets);
4128
4129 /* if avg_wire_size isn't set no work was done */
4130 if (!avg_wire_size)
4131 goto clear_counts;
4132
4133 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4134 avg_wire_size += 24;
4135
4136 /* Don't starve jumbo frames */
4137 avg_wire_size = min(avg_wire_size, 3000);
4138
4139 /* Give a little boost to mid-size frames */
4140 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4141 new_val = avg_wire_size / 3;
4142 else
4143 new_val = avg_wire_size / 2;
4144
4145 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4146 if (new_val < IGB_20K_ITR &&
4147 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4148 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4149 new_val = IGB_20K_ITR;
4150
4151 set_itr_val:
4152 if (new_val != q_vector->itr_val) {
4153 q_vector->itr_val = new_val;
4154 q_vector->set_itr = 1;
4155 }
4156 clear_counts:
4157 q_vector->rx.total_bytes = 0;
4158 q_vector->rx.total_packets = 0;
4159 q_vector->tx.total_bytes = 0;
4160 q_vector->tx.total_packets = 0;
4161 }
4162
4163 /**
4164 * igb_update_itr - update the dynamic ITR value based on statistics
4165 * @q_vector: pointer to q_vector
4166 * @ring_container: ring info to update the itr for
4167 *
4168 * Stores a new ITR value based on packets and byte
4169 * counts during the last interrupt. The advantage of per interrupt
4170 * computation is faster updates and more accurate ITR for the current
4171 * traffic pattern. Constants in this function were computed
4172 * based on theoretical maximum wire speed and thresholds were set based
4173 * on testing data as well as attempting to minimize response time
4174 * while increasing bulk throughput.
4175 * this functionality is controlled by the InterruptThrottleRate module
4176 * parameter (see igb_param.c)
4177 * NOTE: These calculations are only valid when operating in a single-
4178 * queue environment.
4179 **/
4180 static void igb_update_itr(struct igb_q_vector *q_vector,
4181 struct igb_ring_container *ring_container)
4182 {
4183 unsigned int packets = ring_container->total_packets;
4184 unsigned int bytes = ring_container->total_bytes;
4185 u8 itrval = ring_container->itr;
4186
4187 /* no packets, exit with status unchanged */
4188 if (packets == 0)
4189 return;
4190
4191 switch (itrval) {
4192 case lowest_latency:
4193 /* handle TSO and jumbo frames */
4194 if (bytes/packets > 8000)
4195 itrval = bulk_latency;
4196 else if ((packets < 5) && (bytes > 512))
4197 itrval = low_latency;
4198 break;
4199 case low_latency: /* 50 usec aka 20000 ints/s */
4200 if (bytes > 10000) {
4201 /* this if handles the TSO accounting */
4202 if (bytes/packets > 8000) {
4203 itrval = bulk_latency;
4204 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4205 itrval = bulk_latency;
4206 } else if ((packets > 35)) {
4207 itrval = lowest_latency;
4208 }
4209 } else if (bytes/packets > 2000) {
4210 itrval = bulk_latency;
4211 } else if (packets <= 2 && bytes < 512) {
4212 itrval = lowest_latency;
4213 }
4214 break;
4215 case bulk_latency: /* 250 usec aka 4000 ints/s */
4216 if (bytes > 25000) {
4217 if (packets > 35)
4218 itrval = low_latency;
4219 } else if (bytes < 1500) {
4220 itrval = low_latency;
4221 }
4222 break;
4223 }
4224
4225 /* clear work counters since we have the values we need */
4226 ring_container->total_bytes = 0;
4227 ring_container->total_packets = 0;
4228
4229 /* write updated itr to ring container */
4230 ring_container->itr = itrval;
4231 }
4232
4233 static void igb_set_itr(struct igb_q_vector *q_vector)
4234 {
4235 struct igb_adapter *adapter = q_vector->adapter;
4236 u32 new_itr = q_vector->itr_val;
4237 u8 current_itr = 0;
4238
4239 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4240 if (adapter->link_speed != SPEED_1000) {
4241 current_itr = 0;
4242 new_itr = IGB_4K_ITR;
4243 goto set_itr_now;
4244 }
4245
4246 igb_update_itr(q_vector, &q_vector->tx);
4247 igb_update_itr(q_vector, &q_vector->rx);
4248
4249 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4250
4251 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4252 if (current_itr == lowest_latency &&
4253 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4254 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4255 current_itr = low_latency;
4256
4257 switch (current_itr) {
4258 /* counts and packets in update_itr are dependent on these numbers */
4259 case lowest_latency:
4260 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4261 break;
4262 case low_latency:
4263 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4264 break;
4265 case bulk_latency:
4266 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4267 break;
4268 default:
4269 break;
4270 }
4271
4272 set_itr_now:
4273 if (new_itr != q_vector->itr_val) {
4274 /* this attempts to bias the interrupt rate towards Bulk
4275 * by adding intermediate steps when interrupt rate is
4276 * increasing
4277 */
4278 new_itr = new_itr > q_vector->itr_val ?
4279 max((new_itr * q_vector->itr_val) /
4280 (new_itr + (q_vector->itr_val >> 2)),
4281 new_itr) : new_itr;
4282 /* Don't write the value here; it resets the adapter's
4283 * internal timer, and causes us to delay far longer than
4284 * we should between interrupts. Instead, we write the ITR
4285 * value at the beginning of the next interrupt so the timing
4286 * ends up being correct.
4287 */
4288 q_vector->itr_val = new_itr;
4289 q_vector->set_itr = 1;
4290 }
4291 }
4292
4293 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4294 u32 type_tucmd, u32 mss_l4len_idx)
4295 {
4296 struct e1000_adv_tx_context_desc *context_desc;
4297 u16 i = tx_ring->next_to_use;
4298
4299 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4300
4301 i++;
4302 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4303
4304 /* set bits to identify this as an advanced context descriptor */
4305 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4306
4307 /* For 82575, context index must be unique per ring. */
4308 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4309 mss_l4len_idx |= tx_ring->reg_idx << 4;
4310
4311 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4312 context_desc->seqnum_seed = 0;
4313 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4314 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4315 }
4316
4317 static int igb_tso(struct igb_ring *tx_ring,
4318 struct igb_tx_buffer *first,
4319 u8 *hdr_len)
4320 {
4321 struct sk_buff *skb = first->skb;
4322 u32 vlan_macip_lens, type_tucmd;
4323 u32 mss_l4len_idx, l4len;
4324
4325 if (skb->ip_summed != CHECKSUM_PARTIAL)
4326 return 0;
4327
4328 if (!skb_is_gso(skb))
4329 return 0;
4330
4331 if (skb_header_cloned(skb)) {
4332 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4333 if (err)
4334 return err;
4335 }
4336
4337 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4338 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4339
4340 if (first->protocol == __constant_htons(ETH_P_IP)) {
4341 struct iphdr *iph = ip_hdr(skb);
4342 iph->tot_len = 0;
4343 iph->check = 0;
4344 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4345 iph->daddr, 0,
4346 IPPROTO_TCP,
4347 0);
4348 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4349 first->tx_flags |= IGB_TX_FLAGS_TSO |
4350 IGB_TX_FLAGS_CSUM |
4351 IGB_TX_FLAGS_IPV4;
4352 } else if (skb_is_gso_v6(skb)) {
4353 ipv6_hdr(skb)->payload_len = 0;
4354 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4355 &ipv6_hdr(skb)->daddr,
4356 0, IPPROTO_TCP, 0);
4357 first->tx_flags |= IGB_TX_FLAGS_TSO |
4358 IGB_TX_FLAGS_CSUM;
4359 }
4360
4361 /* compute header lengths */
4362 l4len = tcp_hdrlen(skb);
4363 *hdr_len = skb_transport_offset(skb) + l4len;
4364
4365 /* update gso size and bytecount with header size */
4366 first->gso_segs = skb_shinfo(skb)->gso_segs;
4367 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4368
4369 /* MSS L4LEN IDX */
4370 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4371 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4372
4373 /* VLAN MACLEN IPLEN */
4374 vlan_macip_lens = skb_network_header_len(skb);
4375 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4376 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4377
4378 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4379
4380 return 1;
4381 }
4382
4383 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4384 {
4385 struct sk_buff *skb = first->skb;
4386 u32 vlan_macip_lens = 0;
4387 u32 mss_l4len_idx = 0;
4388 u32 type_tucmd = 0;
4389
4390 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4391 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4392 return;
4393 } else {
4394 u8 l4_hdr = 0;
4395 switch (first->protocol) {
4396 case __constant_htons(ETH_P_IP):
4397 vlan_macip_lens |= skb_network_header_len(skb);
4398 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4399 l4_hdr = ip_hdr(skb)->protocol;
4400 break;
4401 case __constant_htons(ETH_P_IPV6):
4402 vlan_macip_lens |= skb_network_header_len(skb);
4403 l4_hdr = ipv6_hdr(skb)->nexthdr;
4404 break;
4405 default:
4406 if (unlikely(net_ratelimit())) {
4407 dev_warn(tx_ring->dev,
4408 "partial checksum but proto=%x!\n",
4409 first->protocol);
4410 }
4411 break;
4412 }
4413
4414 switch (l4_hdr) {
4415 case IPPROTO_TCP:
4416 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4417 mss_l4len_idx = tcp_hdrlen(skb) <<
4418 E1000_ADVTXD_L4LEN_SHIFT;
4419 break;
4420 case IPPROTO_SCTP:
4421 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4422 mss_l4len_idx = sizeof(struct sctphdr) <<
4423 E1000_ADVTXD_L4LEN_SHIFT;
4424 break;
4425 case IPPROTO_UDP:
4426 mss_l4len_idx = sizeof(struct udphdr) <<
4427 E1000_ADVTXD_L4LEN_SHIFT;
4428 break;
4429 default:
4430 if (unlikely(net_ratelimit())) {
4431 dev_warn(tx_ring->dev,
4432 "partial checksum but l4 proto=%x!\n",
4433 l4_hdr);
4434 }
4435 break;
4436 }
4437
4438 /* update TX checksum flag */
4439 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4440 }
4441
4442 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4443 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4444
4445 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4446 }
4447
4448 #define IGB_SET_FLAG(_input, _flag, _result) \
4449 ((_flag <= _result) ? \
4450 ((u32)(_input & _flag) * (_result / _flag)) : \
4451 ((u32)(_input & _flag) / (_flag / _result)))
4452
4453 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4454 {
4455 /* set type for advanced descriptor with frame checksum insertion */
4456 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4457 E1000_ADVTXD_DCMD_DEXT |
4458 E1000_ADVTXD_DCMD_IFCS;
4459
4460 /* set HW vlan bit if vlan is present */
4461 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4462 (E1000_ADVTXD_DCMD_VLE));
4463
4464 /* set segmentation bits for TSO */
4465 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4466 (E1000_ADVTXD_DCMD_TSE));
4467
4468 /* set timestamp bit if present */
4469 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4470 (E1000_ADVTXD_MAC_TSTAMP));
4471
4472 /* insert frame checksum */
4473 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4474
4475 return cmd_type;
4476 }
4477
4478 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4479 union e1000_adv_tx_desc *tx_desc,
4480 u32 tx_flags, unsigned int paylen)
4481 {
4482 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4483
4484 /* 82575 requires a unique index per ring */
4485 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4486 olinfo_status |= tx_ring->reg_idx << 4;
4487
4488 /* insert L4 checksum */
4489 olinfo_status |= IGB_SET_FLAG(tx_flags,
4490 IGB_TX_FLAGS_CSUM,
4491 (E1000_TXD_POPTS_TXSM << 8));
4492
4493 /* insert IPv4 checksum */
4494 olinfo_status |= IGB_SET_FLAG(tx_flags,
4495 IGB_TX_FLAGS_IPV4,
4496 (E1000_TXD_POPTS_IXSM << 8));
4497
4498 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4499 }
4500
4501 static void igb_tx_map(struct igb_ring *tx_ring,
4502 struct igb_tx_buffer *first,
4503 const u8 hdr_len)
4504 {
4505 struct sk_buff *skb = first->skb;
4506 struct igb_tx_buffer *tx_buffer;
4507 union e1000_adv_tx_desc *tx_desc;
4508 struct skb_frag_struct *frag;
4509 dma_addr_t dma;
4510 unsigned int data_len, size;
4511 u32 tx_flags = first->tx_flags;
4512 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4513 u16 i = tx_ring->next_to_use;
4514
4515 tx_desc = IGB_TX_DESC(tx_ring, i);
4516
4517 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4518
4519 size = skb_headlen(skb);
4520 data_len = skb->data_len;
4521
4522 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4523
4524 tx_buffer = first;
4525
4526 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4527 if (dma_mapping_error(tx_ring->dev, dma))
4528 goto dma_error;
4529
4530 /* record length, and DMA address */
4531 dma_unmap_len_set(tx_buffer, len, size);
4532 dma_unmap_addr_set(tx_buffer, dma, dma);
4533
4534 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4535
4536 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4537 tx_desc->read.cmd_type_len =
4538 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4539
4540 i++;
4541 tx_desc++;
4542 if (i == tx_ring->count) {
4543 tx_desc = IGB_TX_DESC(tx_ring, 0);
4544 i = 0;
4545 }
4546 tx_desc->read.olinfo_status = 0;
4547
4548 dma += IGB_MAX_DATA_PER_TXD;
4549 size -= IGB_MAX_DATA_PER_TXD;
4550
4551 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4552 }
4553
4554 if (likely(!data_len))
4555 break;
4556
4557 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4558
4559 i++;
4560 tx_desc++;
4561 if (i == tx_ring->count) {
4562 tx_desc = IGB_TX_DESC(tx_ring, 0);
4563 i = 0;
4564 }
4565 tx_desc->read.olinfo_status = 0;
4566
4567 size = skb_frag_size(frag);
4568 data_len -= size;
4569
4570 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4571 size, DMA_TO_DEVICE);
4572
4573 tx_buffer = &tx_ring->tx_buffer_info[i];
4574 }
4575
4576 /* write last descriptor with RS and EOP bits */
4577 cmd_type |= size | IGB_TXD_DCMD;
4578 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4579
4580 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4581
4582 /* set the timestamp */
4583 first->time_stamp = jiffies;
4584
4585 /* Force memory writes to complete before letting h/w know there
4586 * are new descriptors to fetch. (Only applicable for weak-ordered
4587 * memory model archs, such as IA-64).
4588 *
4589 * We also need this memory barrier to make certain all of the
4590 * status bits have been updated before next_to_watch is written.
4591 */
4592 wmb();
4593
4594 /* set next_to_watch value indicating a packet is present */
4595 first->next_to_watch = tx_desc;
4596
4597 i++;
4598 if (i == tx_ring->count)
4599 i = 0;
4600
4601 tx_ring->next_to_use = i;
4602
4603 writel(i, tx_ring->tail);
4604
4605 /* we need this if more than one processor can write to our tail
4606 * at a time, it synchronizes IO on IA64/Altix systems
4607 */
4608 mmiowb();
4609
4610 return;
4611
4612 dma_error:
4613 dev_err(tx_ring->dev, "TX DMA map failed\n");
4614
4615 /* clear dma mappings for failed tx_buffer_info map */
4616 for (;;) {
4617 tx_buffer = &tx_ring->tx_buffer_info[i];
4618 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4619 if (tx_buffer == first)
4620 break;
4621 if (i == 0)
4622 i = tx_ring->count;
4623 i--;
4624 }
4625
4626 tx_ring->next_to_use = i;
4627 }
4628
4629 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4630 {
4631 struct net_device *netdev = tx_ring->netdev;
4632
4633 netif_stop_subqueue(netdev, tx_ring->queue_index);
4634
4635 /* Herbert's original patch had:
4636 * smp_mb__after_netif_stop_queue();
4637 * but since that doesn't exist yet, just open code it.
4638 */
4639 smp_mb();
4640
4641 /* We need to check again in a case another CPU has just
4642 * made room available.
4643 */
4644 if (igb_desc_unused(tx_ring) < size)
4645 return -EBUSY;
4646
4647 /* A reprieve! */
4648 netif_wake_subqueue(netdev, tx_ring->queue_index);
4649
4650 u64_stats_update_begin(&tx_ring->tx_syncp2);
4651 tx_ring->tx_stats.restart_queue2++;
4652 u64_stats_update_end(&tx_ring->tx_syncp2);
4653
4654 return 0;
4655 }
4656
4657 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4658 {
4659 if (igb_desc_unused(tx_ring) >= size)
4660 return 0;
4661 return __igb_maybe_stop_tx(tx_ring, size);
4662 }
4663
4664 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4665 struct igb_ring *tx_ring)
4666 {
4667 struct igb_tx_buffer *first;
4668 int tso;
4669 u32 tx_flags = 0;
4670 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4671 __be16 protocol = vlan_get_protocol(skb);
4672 u8 hdr_len = 0;
4673
4674 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4675 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4676 * + 2 desc gap to keep tail from touching head,
4677 * + 1 desc for context descriptor,
4678 * otherwise try next time
4679 */
4680 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4681 unsigned short f;
4682 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4683 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4684 } else {
4685 count += skb_shinfo(skb)->nr_frags;
4686 }
4687
4688 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4689 /* this is a hard error */
4690 return NETDEV_TX_BUSY;
4691 }
4692
4693 /* record the location of the first descriptor for this packet */
4694 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4695 first->skb = skb;
4696 first->bytecount = skb->len;
4697 first->gso_segs = 1;
4698
4699 skb_tx_timestamp(skb);
4700
4701 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4702 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4703
4704 if (!(adapter->ptp_tx_skb)) {
4705 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4706 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4707
4708 adapter->ptp_tx_skb = skb_get(skb);
4709 adapter->ptp_tx_start = jiffies;
4710 if (adapter->hw.mac.type == e1000_82576)
4711 schedule_work(&adapter->ptp_tx_work);
4712 }
4713 }
4714
4715 if (vlan_tx_tag_present(skb)) {
4716 tx_flags |= IGB_TX_FLAGS_VLAN;
4717 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4718 }
4719
4720 /* record initial flags and protocol */
4721 first->tx_flags = tx_flags;
4722 first->protocol = protocol;
4723
4724 tso = igb_tso(tx_ring, first, &hdr_len);
4725 if (tso < 0)
4726 goto out_drop;
4727 else if (!tso)
4728 igb_tx_csum(tx_ring, first);
4729
4730 igb_tx_map(tx_ring, first, hdr_len);
4731
4732 /* Make sure there is space in the ring for the next send. */
4733 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4734
4735 return NETDEV_TX_OK;
4736
4737 out_drop:
4738 igb_unmap_and_free_tx_resource(tx_ring, first);
4739
4740 return NETDEV_TX_OK;
4741 }
4742
4743 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4744 struct sk_buff *skb)
4745 {
4746 unsigned int r_idx = skb->queue_mapping;
4747
4748 if (r_idx >= adapter->num_tx_queues)
4749 r_idx = r_idx % adapter->num_tx_queues;
4750
4751 return adapter->tx_ring[r_idx];
4752 }
4753
4754 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4755 struct net_device *netdev)
4756 {
4757 struct igb_adapter *adapter = netdev_priv(netdev);
4758
4759 if (test_bit(__IGB_DOWN, &adapter->state)) {
4760 dev_kfree_skb_any(skb);
4761 return NETDEV_TX_OK;
4762 }
4763
4764 if (skb->len <= 0) {
4765 dev_kfree_skb_any(skb);
4766 return NETDEV_TX_OK;
4767 }
4768
4769 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4770 * in order to meet this minimum size requirement.
4771 */
4772 if (unlikely(skb->len < 17)) {
4773 if (skb_pad(skb, 17 - skb->len))
4774 return NETDEV_TX_OK;
4775 skb->len = 17;
4776 skb_set_tail_pointer(skb, 17);
4777 }
4778
4779 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4780 }
4781
4782 /**
4783 * igb_tx_timeout - Respond to a Tx Hang
4784 * @netdev: network interface device structure
4785 **/
4786 static void igb_tx_timeout(struct net_device *netdev)
4787 {
4788 struct igb_adapter *adapter = netdev_priv(netdev);
4789 struct e1000_hw *hw = &adapter->hw;
4790
4791 /* Do the reset outside of interrupt context */
4792 adapter->tx_timeout_count++;
4793
4794 if (hw->mac.type >= e1000_82580)
4795 hw->dev_spec._82575.global_device_reset = true;
4796
4797 schedule_work(&adapter->reset_task);
4798 wr32(E1000_EICS,
4799 (adapter->eims_enable_mask & ~adapter->eims_other));
4800 }
4801
4802 static void igb_reset_task(struct work_struct *work)
4803 {
4804 struct igb_adapter *adapter;
4805 adapter = container_of(work, struct igb_adapter, reset_task);
4806
4807 igb_dump(adapter);
4808 netdev_err(adapter->netdev, "Reset adapter\n");
4809 igb_reinit_locked(adapter);
4810 }
4811
4812 /**
4813 * igb_get_stats64 - Get System Network Statistics
4814 * @netdev: network interface device structure
4815 * @stats: rtnl_link_stats64 pointer
4816 **/
4817 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4818 struct rtnl_link_stats64 *stats)
4819 {
4820 struct igb_adapter *adapter = netdev_priv(netdev);
4821
4822 spin_lock(&adapter->stats64_lock);
4823 igb_update_stats(adapter, &adapter->stats64);
4824 memcpy(stats, &adapter->stats64, sizeof(*stats));
4825 spin_unlock(&adapter->stats64_lock);
4826
4827 return stats;
4828 }
4829
4830 /**
4831 * igb_change_mtu - Change the Maximum Transfer Unit
4832 * @netdev: network interface device structure
4833 * @new_mtu: new value for maximum frame size
4834 *
4835 * Returns 0 on success, negative on failure
4836 **/
4837 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4838 {
4839 struct igb_adapter *adapter = netdev_priv(netdev);
4840 struct pci_dev *pdev = adapter->pdev;
4841 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4842
4843 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4844 dev_err(&pdev->dev, "Invalid MTU setting\n");
4845 return -EINVAL;
4846 }
4847
4848 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4849 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4850 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4851 return -EINVAL;
4852 }
4853
4854 /* adjust max frame to be at least the size of a standard frame */
4855 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4856 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4857
4858 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4859 msleep(1);
4860
4861 /* igb_down has a dependency on max_frame_size */
4862 adapter->max_frame_size = max_frame;
4863
4864 if (netif_running(netdev))
4865 igb_down(adapter);
4866
4867 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4868 netdev->mtu, new_mtu);
4869 netdev->mtu = new_mtu;
4870
4871 if (netif_running(netdev))
4872 igb_up(adapter);
4873 else
4874 igb_reset(adapter);
4875
4876 clear_bit(__IGB_RESETTING, &adapter->state);
4877
4878 return 0;
4879 }
4880
4881 /**
4882 * igb_update_stats - Update the board statistics counters
4883 * @adapter: board private structure
4884 **/
4885 void igb_update_stats(struct igb_adapter *adapter,
4886 struct rtnl_link_stats64 *net_stats)
4887 {
4888 struct e1000_hw *hw = &adapter->hw;
4889 struct pci_dev *pdev = adapter->pdev;
4890 u32 reg, mpc;
4891 u16 phy_tmp;
4892 int i;
4893 u64 bytes, packets;
4894 unsigned int start;
4895 u64 _bytes, _packets;
4896
4897 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4898
4899 /* Prevent stats update while adapter is being reset, or if the pci
4900 * connection is down.
4901 */
4902 if (adapter->link_speed == 0)
4903 return;
4904 if (pci_channel_offline(pdev))
4905 return;
4906
4907 bytes = 0;
4908 packets = 0;
4909
4910 rcu_read_lock();
4911 for (i = 0; i < adapter->num_rx_queues; i++) {
4912 u32 rqdpc = rd32(E1000_RQDPC(i));
4913 struct igb_ring *ring = adapter->rx_ring[i];
4914
4915 if (rqdpc) {
4916 ring->rx_stats.drops += rqdpc;
4917 net_stats->rx_fifo_errors += rqdpc;
4918 }
4919
4920 do {
4921 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4922 _bytes = ring->rx_stats.bytes;
4923 _packets = ring->rx_stats.packets;
4924 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4925 bytes += _bytes;
4926 packets += _packets;
4927 }
4928
4929 net_stats->rx_bytes = bytes;
4930 net_stats->rx_packets = packets;
4931
4932 bytes = 0;
4933 packets = 0;
4934 for (i = 0; i < adapter->num_tx_queues; i++) {
4935 struct igb_ring *ring = adapter->tx_ring[i];
4936 do {
4937 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4938 _bytes = ring->tx_stats.bytes;
4939 _packets = ring->tx_stats.packets;
4940 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4941 bytes += _bytes;
4942 packets += _packets;
4943 }
4944 net_stats->tx_bytes = bytes;
4945 net_stats->tx_packets = packets;
4946 rcu_read_unlock();
4947
4948 /* read stats registers */
4949 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4950 adapter->stats.gprc += rd32(E1000_GPRC);
4951 adapter->stats.gorc += rd32(E1000_GORCL);
4952 rd32(E1000_GORCH); /* clear GORCL */
4953 adapter->stats.bprc += rd32(E1000_BPRC);
4954 adapter->stats.mprc += rd32(E1000_MPRC);
4955 adapter->stats.roc += rd32(E1000_ROC);
4956
4957 adapter->stats.prc64 += rd32(E1000_PRC64);
4958 adapter->stats.prc127 += rd32(E1000_PRC127);
4959 adapter->stats.prc255 += rd32(E1000_PRC255);
4960 adapter->stats.prc511 += rd32(E1000_PRC511);
4961 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4962 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4963 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4964 adapter->stats.sec += rd32(E1000_SEC);
4965
4966 mpc = rd32(E1000_MPC);
4967 adapter->stats.mpc += mpc;
4968 net_stats->rx_fifo_errors += mpc;
4969 adapter->stats.scc += rd32(E1000_SCC);
4970 adapter->stats.ecol += rd32(E1000_ECOL);
4971 adapter->stats.mcc += rd32(E1000_MCC);
4972 adapter->stats.latecol += rd32(E1000_LATECOL);
4973 adapter->stats.dc += rd32(E1000_DC);
4974 adapter->stats.rlec += rd32(E1000_RLEC);
4975 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4976 adapter->stats.xontxc += rd32(E1000_XONTXC);
4977 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4978 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4979 adapter->stats.fcruc += rd32(E1000_FCRUC);
4980 adapter->stats.gptc += rd32(E1000_GPTC);
4981 adapter->stats.gotc += rd32(E1000_GOTCL);
4982 rd32(E1000_GOTCH); /* clear GOTCL */
4983 adapter->stats.rnbc += rd32(E1000_RNBC);
4984 adapter->stats.ruc += rd32(E1000_RUC);
4985 adapter->stats.rfc += rd32(E1000_RFC);
4986 adapter->stats.rjc += rd32(E1000_RJC);
4987 adapter->stats.tor += rd32(E1000_TORH);
4988 adapter->stats.tot += rd32(E1000_TOTH);
4989 adapter->stats.tpr += rd32(E1000_TPR);
4990
4991 adapter->stats.ptc64 += rd32(E1000_PTC64);
4992 adapter->stats.ptc127 += rd32(E1000_PTC127);
4993 adapter->stats.ptc255 += rd32(E1000_PTC255);
4994 adapter->stats.ptc511 += rd32(E1000_PTC511);
4995 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4996 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4997
4998 adapter->stats.mptc += rd32(E1000_MPTC);
4999 adapter->stats.bptc += rd32(E1000_BPTC);
5000
5001 adapter->stats.tpt += rd32(E1000_TPT);
5002 adapter->stats.colc += rd32(E1000_COLC);
5003
5004 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5005 /* read internal phy specific stats */
5006 reg = rd32(E1000_CTRL_EXT);
5007 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5008 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5009
5010 /* this stat has invalid values on i210/i211 */
5011 if ((hw->mac.type != e1000_i210) &&
5012 (hw->mac.type != e1000_i211))
5013 adapter->stats.tncrs += rd32(E1000_TNCRS);
5014 }
5015
5016 adapter->stats.tsctc += rd32(E1000_TSCTC);
5017 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5018
5019 adapter->stats.iac += rd32(E1000_IAC);
5020 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5021 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5022 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5023 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5024 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5025 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5026 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5027 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5028
5029 /* Fill out the OS statistics structure */
5030 net_stats->multicast = adapter->stats.mprc;
5031 net_stats->collisions = adapter->stats.colc;
5032
5033 /* Rx Errors */
5034
5035 /* RLEC on some newer hardware can be incorrect so build
5036 * our own version based on RUC and ROC
5037 */
5038 net_stats->rx_errors = adapter->stats.rxerrc +
5039 adapter->stats.crcerrs + adapter->stats.algnerrc +
5040 adapter->stats.ruc + adapter->stats.roc +
5041 adapter->stats.cexterr;
5042 net_stats->rx_length_errors = adapter->stats.ruc +
5043 adapter->stats.roc;
5044 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5045 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5046 net_stats->rx_missed_errors = adapter->stats.mpc;
5047
5048 /* Tx Errors */
5049 net_stats->tx_errors = adapter->stats.ecol +
5050 adapter->stats.latecol;
5051 net_stats->tx_aborted_errors = adapter->stats.ecol;
5052 net_stats->tx_window_errors = adapter->stats.latecol;
5053 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5054
5055 /* Tx Dropped needs to be maintained elsewhere */
5056
5057 /* Phy Stats */
5058 if (hw->phy.media_type == e1000_media_type_copper) {
5059 if ((adapter->link_speed == SPEED_1000) &&
5060 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5061 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5062 adapter->phy_stats.idle_errors += phy_tmp;
5063 }
5064 }
5065
5066 /* Management Stats */
5067 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5068 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5069 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5070
5071 /* OS2BMC Stats */
5072 reg = rd32(E1000_MANC);
5073 if (reg & E1000_MANC_EN_BMC2OS) {
5074 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5075 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5076 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5077 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5078 }
5079 }
5080
5081 static irqreturn_t igb_msix_other(int irq, void *data)
5082 {
5083 struct igb_adapter *adapter = data;
5084 struct e1000_hw *hw = &adapter->hw;
5085 u32 icr = rd32(E1000_ICR);
5086 /* reading ICR causes bit 31 of EICR to be cleared */
5087
5088 if (icr & E1000_ICR_DRSTA)
5089 schedule_work(&adapter->reset_task);
5090
5091 if (icr & E1000_ICR_DOUTSYNC) {
5092 /* HW is reporting DMA is out of sync */
5093 adapter->stats.doosync++;
5094 /* The DMA Out of Sync is also indication of a spoof event
5095 * in IOV mode. Check the Wrong VM Behavior register to
5096 * see if it is really a spoof event.
5097 */
5098 igb_check_wvbr(adapter);
5099 }
5100
5101 /* Check for a mailbox event */
5102 if (icr & E1000_ICR_VMMB)
5103 igb_msg_task(adapter);
5104
5105 if (icr & E1000_ICR_LSC) {
5106 hw->mac.get_link_status = 1;
5107 /* guard against interrupt when we're going down */
5108 if (!test_bit(__IGB_DOWN, &adapter->state))
5109 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5110 }
5111
5112 if (icr & E1000_ICR_TS) {
5113 u32 tsicr = rd32(E1000_TSICR);
5114
5115 if (tsicr & E1000_TSICR_TXTS) {
5116 /* acknowledge the interrupt */
5117 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5118 /* retrieve hardware timestamp */
5119 schedule_work(&adapter->ptp_tx_work);
5120 }
5121 }
5122
5123 wr32(E1000_EIMS, adapter->eims_other);
5124
5125 return IRQ_HANDLED;
5126 }
5127
5128 static void igb_write_itr(struct igb_q_vector *q_vector)
5129 {
5130 struct igb_adapter *adapter = q_vector->adapter;
5131 u32 itr_val = q_vector->itr_val & 0x7FFC;
5132
5133 if (!q_vector->set_itr)
5134 return;
5135
5136 if (!itr_val)
5137 itr_val = 0x4;
5138
5139 if (adapter->hw.mac.type == e1000_82575)
5140 itr_val |= itr_val << 16;
5141 else
5142 itr_val |= E1000_EITR_CNT_IGNR;
5143
5144 writel(itr_val, q_vector->itr_register);
5145 q_vector->set_itr = 0;
5146 }
5147
5148 static irqreturn_t igb_msix_ring(int irq, void *data)
5149 {
5150 struct igb_q_vector *q_vector = data;
5151
5152 /* Write the ITR value calculated from the previous interrupt. */
5153 igb_write_itr(q_vector);
5154
5155 napi_schedule(&q_vector->napi);
5156
5157 return IRQ_HANDLED;
5158 }
5159
5160 #ifdef CONFIG_IGB_DCA
5161 static void igb_update_tx_dca(struct igb_adapter *adapter,
5162 struct igb_ring *tx_ring,
5163 int cpu)
5164 {
5165 struct e1000_hw *hw = &adapter->hw;
5166 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5167
5168 if (hw->mac.type != e1000_82575)
5169 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5170
5171 /* We can enable relaxed ordering for reads, but not writes when
5172 * DCA is enabled. This is due to a known issue in some chipsets
5173 * which will cause the DCA tag to be cleared.
5174 */
5175 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5176 E1000_DCA_TXCTRL_DATA_RRO_EN |
5177 E1000_DCA_TXCTRL_DESC_DCA_EN;
5178
5179 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5180 }
5181
5182 static void igb_update_rx_dca(struct igb_adapter *adapter,
5183 struct igb_ring *rx_ring,
5184 int cpu)
5185 {
5186 struct e1000_hw *hw = &adapter->hw;
5187 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5188
5189 if (hw->mac.type != e1000_82575)
5190 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5191
5192 /* We can enable relaxed ordering for reads, but not writes when
5193 * DCA is enabled. This is due to a known issue in some chipsets
5194 * which will cause the DCA tag to be cleared.
5195 */
5196 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5197 E1000_DCA_RXCTRL_DESC_DCA_EN;
5198
5199 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5200 }
5201
5202 static void igb_update_dca(struct igb_q_vector *q_vector)
5203 {
5204 struct igb_adapter *adapter = q_vector->adapter;
5205 int cpu = get_cpu();
5206
5207 if (q_vector->cpu == cpu)
5208 goto out_no_update;
5209
5210 if (q_vector->tx.ring)
5211 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5212
5213 if (q_vector->rx.ring)
5214 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5215
5216 q_vector->cpu = cpu;
5217 out_no_update:
5218 put_cpu();
5219 }
5220
5221 static void igb_setup_dca(struct igb_adapter *adapter)
5222 {
5223 struct e1000_hw *hw = &adapter->hw;
5224 int i;
5225
5226 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5227 return;
5228
5229 /* Always use CB2 mode, difference is masked in the CB driver. */
5230 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5231
5232 for (i = 0; i < adapter->num_q_vectors; i++) {
5233 adapter->q_vector[i]->cpu = -1;
5234 igb_update_dca(adapter->q_vector[i]);
5235 }
5236 }
5237
5238 static int __igb_notify_dca(struct device *dev, void *data)
5239 {
5240 struct net_device *netdev = dev_get_drvdata(dev);
5241 struct igb_adapter *adapter = netdev_priv(netdev);
5242 struct pci_dev *pdev = adapter->pdev;
5243 struct e1000_hw *hw = &adapter->hw;
5244 unsigned long event = *(unsigned long *)data;
5245
5246 switch (event) {
5247 case DCA_PROVIDER_ADD:
5248 /* if already enabled, don't do it again */
5249 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5250 break;
5251 if (dca_add_requester(dev) == 0) {
5252 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5253 dev_info(&pdev->dev, "DCA enabled\n");
5254 igb_setup_dca(adapter);
5255 break;
5256 }
5257 /* Fall Through since DCA is disabled. */
5258 case DCA_PROVIDER_REMOVE:
5259 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5260 /* without this a class_device is left
5261 * hanging around in the sysfs model
5262 */
5263 dca_remove_requester(dev);
5264 dev_info(&pdev->dev, "DCA disabled\n");
5265 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5266 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5267 }
5268 break;
5269 }
5270
5271 return 0;
5272 }
5273
5274 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5275 void *p)
5276 {
5277 int ret_val;
5278
5279 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5280 __igb_notify_dca);
5281
5282 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5283 }
5284 #endif /* CONFIG_IGB_DCA */
5285
5286 #ifdef CONFIG_PCI_IOV
5287 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5288 {
5289 unsigned char mac_addr[ETH_ALEN];
5290
5291 eth_zero_addr(mac_addr);
5292 igb_set_vf_mac(adapter, vf, mac_addr);
5293
5294 /* By default spoof check is enabled for all VFs */
5295 adapter->vf_data[vf].spoofchk_enabled = true;
5296
5297 return 0;
5298 }
5299
5300 #endif
5301 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5302 {
5303 struct e1000_hw *hw = &adapter->hw;
5304 u32 ping;
5305 int i;
5306
5307 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5308 ping = E1000_PF_CONTROL_MSG;
5309 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5310 ping |= E1000_VT_MSGTYPE_CTS;
5311 igb_write_mbx(hw, &ping, 1, i);
5312 }
5313 }
5314
5315 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5316 {
5317 struct e1000_hw *hw = &adapter->hw;
5318 u32 vmolr = rd32(E1000_VMOLR(vf));
5319 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5320
5321 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5322 IGB_VF_FLAG_MULTI_PROMISC);
5323 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5324
5325 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5326 vmolr |= E1000_VMOLR_MPME;
5327 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5328 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5329 } else {
5330 /* if we have hashes and we are clearing a multicast promisc
5331 * flag we need to write the hashes to the MTA as this step
5332 * was previously skipped
5333 */
5334 if (vf_data->num_vf_mc_hashes > 30) {
5335 vmolr |= E1000_VMOLR_MPME;
5336 } else if (vf_data->num_vf_mc_hashes) {
5337 int j;
5338 vmolr |= E1000_VMOLR_ROMPE;
5339 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5340 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5341 }
5342 }
5343
5344 wr32(E1000_VMOLR(vf), vmolr);
5345
5346 /* there are flags left unprocessed, likely not supported */
5347 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5348 return -EINVAL;
5349
5350 return 0;
5351 }
5352
5353 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5354 u32 *msgbuf, u32 vf)
5355 {
5356 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5357 u16 *hash_list = (u16 *)&msgbuf[1];
5358 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5359 int i;
5360
5361 /* salt away the number of multicast addresses assigned
5362 * to this VF for later use to restore when the PF multi cast
5363 * list changes
5364 */
5365 vf_data->num_vf_mc_hashes = n;
5366
5367 /* only up to 30 hash values supported */
5368 if (n > 30)
5369 n = 30;
5370
5371 /* store the hashes for later use */
5372 for (i = 0; i < n; i++)
5373 vf_data->vf_mc_hashes[i] = hash_list[i];
5374
5375 /* Flush and reset the mta with the new values */
5376 igb_set_rx_mode(adapter->netdev);
5377
5378 return 0;
5379 }
5380
5381 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5382 {
5383 struct e1000_hw *hw = &adapter->hw;
5384 struct vf_data_storage *vf_data;
5385 int i, j;
5386
5387 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5388 u32 vmolr = rd32(E1000_VMOLR(i));
5389 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5390
5391 vf_data = &adapter->vf_data[i];
5392
5393 if ((vf_data->num_vf_mc_hashes > 30) ||
5394 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5395 vmolr |= E1000_VMOLR_MPME;
5396 } else if (vf_data->num_vf_mc_hashes) {
5397 vmolr |= E1000_VMOLR_ROMPE;
5398 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5399 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5400 }
5401 wr32(E1000_VMOLR(i), vmolr);
5402 }
5403 }
5404
5405 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5406 {
5407 struct e1000_hw *hw = &adapter->hw;
5408 u32 pool_mask, reg, vid;
5409 int i;
5410
5411 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5412
5413 /* Find the vlan filter for this id */
5414 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5415 reg = rd32(E1000_VLVF(i));
5416
5417 /* remove the vf from the pool */
5418 reg &= ~pool_mask;
5419
5420 /* if pool is empty then remove entry from vfta */
5421 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5422 (reg & E1000_VLVF_VLANID_ENABLE)) {
5423 reg = 0;
5424 vid = reg & E1000_VLVF_VLANID_MASK;
5425 igb_vfta_set(hw, vid, false);
5426 }
5427
5428 wr32(E1000_VLVF(i), reg);
5429 }
5430
5431 adapter->vf_data[vf].vlans_enabled = 0;
5432 }
5433
5434 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5435 {
5436 struct e1000_hw *hw = &adapter->hw;
5437 u32 reg, i;
5438
5439 /* The vlvf table only exists on 82576 hardware and newer */
5440 if (hw->mac.type < e1000_82576)
5441 return -1;
5442
5443 /* we only need to do this if VMDq is enabled */
5444 if (!adapter->vfs_allocated_count)
5445 return -1;
5446
5447 /* Find the vlan filter for this id */
5448 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5449 reg = rd32(E1000_VLVF(i));
5450 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5451 vid == (reg & E1000_VLVF_VLANID_MASK))
5452 break;
5453 }
5454
5455 if (add) {
5456 if (i == E1000_VLVF_ARRAY_SIZE) {
5457 /* Did not find a matching VLAN ID entry that was
5458 * enabled. Search for a free filter entry, i.e.
5459 * one without the enable bit set
5460 */
5461 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5462 reg = rd32(E1000_VLVF(i));
5463 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5464 break;
5465 }
5466 }
5467 if (i < E1000_VLVF_ARRAY_SIZE) {
5468 /* Found an enabled/available entry */
5469 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5470
5471 /* if !enabled we need to set this up in vfta */
5472 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5473 /* add VID to filter table */
5474 igb_vfta_set(hw, vid, true);
5475 reg |= E1000_VLVF_VLANID_ENABLE;
5476 }
5477 reg &= ~E1000_VLVF_VLANID_MASK;
5478 reg |= vid;
5479 wr32(E1000_VLVF(i), reg);
5480
5481 /* do not modify RLPML for PF devices */
5482 if (vf >= adapter->vfs_allocated_count)
5483 return 0;
5484
5485 if (!adapter->vf_data[vf].vlans_enabled) {
5486 u32 size;
5487 reg = rd32(E1000_VMOLR(vf));
5488 size = reg & E1000_VMOLR_RLPML_MASK;
5489 size += 4;
5490 reg &= ~E1000_VMOLR_RLPML_MASK;
5491 reg |= size;
5492 wr32(E1000_VMOLR(vf), reg);
5493 }
5494
5495 adapter->vf_data[vf].vlans_enabled++;
5496 }
5497 } else {
5498 if (i < E1000_VLVF_ARRAY_SIZE) {
5499 /* remove vf from the pool */
5500 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5501 /* if pool is empty then remove entry from vfta */
5502 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5503 reg = 0;
5504 igb_vfta_set(hw, vid, false);
5505 }
5506 wr32(E1000_VLVF(i), reg);
5507
5508 /* do not modify RLPML for PF devices */
5509 if (vf >= adapter->vfs_allocated_count)
5510 return 0;
5511
5512 adapter->vf_data[vf].vlans_enabled--;
5513 if (!adapter->vf_data[vf].vlans_enabled) {
5514 u32 size;
5515 reg = rd32(E1000_VMOLR(vf));
5516 size = reg & E1000_VMOLR_RLPML_MASK;
5517 size -= 4;
5518 reg &= ~E1000_VMOLR_RLPML_MASK;
5519 reg |= size;
5520 wr32(E1000_VMOLR(vf), reg);
5521 }
5522 }
5523 }
5524 return 0;
5525 }
5526
5527 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5528 {
5529 struct e1000_hw *hw = &adapter->hw;
5530
5531 if (vid)
5532 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5533 else
5534 wr32(E1000_VMVIR(vf), 0);
5535 }
5536
5537 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5538 int vf, u16 vlan, u8 qos)
5539 {
5540 int err = 0;
5541 struct igb_adapter *adapter = netdev_priv(netdev);
5542
5543 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5544 return -EINVAL;
5545 if (vlan || qos) {
5546 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5547 if (err)
5548 goto out;
5549 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5550 igb_set_vmolr(adapter, vf, !vlan);
5551 adapter->vf_data[vf].pf_vlan = vlan;
5552 adapter->vf_data[vf].pf_qos = qos;
5553 dev_info(&adapter->pdev->dev,
5554 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5555 if (test_bit(__IGB_DOWN, &adapter->state)) {
5556 dev_warn(&adapter->pdev->dev,
5557 "The VF VLAN has been set, but the PF device is not up.\n");
5558 dev_warn(&adapter->pdev->dev,
5559 "Bring the PF device up before attempting to use the VF device.\n");
5560 }
5561 } else {
5562 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5563 false, vf);
5564 igb_set_vmvir(adapter, vlan, vf);
5565 igb_set_vmolr(adapter, vf, true);
5566 adapter->vf_data[vf].pf_vlan = 0;
5567 adapter->vf_data[vf].pf_qos = 0;
5568 }
5569 out:
5570 return err;
5571 }
5572
5573 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5574 {
5575 struct e1000_hw *hw = &adapter->hw;
5576 int i;
5577 u32 reg;
5578
5579 /* Find the vlan filter for this id */
5580 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5581 reg = rd32(E1000_VLVF(i));
5582 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5583 vid == (reg & E1000_VLVF_VLANID_MASK))
5584 break;
5585 }
5586
5587 if (i >= E1000_VLVF_ARRAY_SIZE)
5588 i = -1;
5589
5590 return i;
5591 }
5592
5593 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5594 {
5595 struct e1000_hw *hw = &adapter->hw;
5596 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5597 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5598 int err = 0;
5599
5600 /* If in promiscuous mode we need to make sure the PF also has
5601 * the VLAN filter set.
5602 */
5603 if (add && (adapter->netdev->flags & IFF_PROMISC))
5604 err = igb_vlvf_set(adapter, vid, add,
5605 adapter->vfs_allocated_count);
5606 if (err)
5607 goto out;
5608
5609 err = igb_vlvf_set(adapter, vid, add, vf);
5610
5611 if (err)
5612 goto out;
5613
5614 /* Go through all the checks to see if the VLAN filter should
5615 * be wiped completely.
5616 */
5617 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5618 u32 vlvf, bits;
5619
5620 int regndx = igb_find_vlvf_entry(adapter, vid);
5621 if (regndx < 0)
5622 goto out;
5623 /* See if any other pools are set for this VLAN filter
5624 * entry other than the PF.
5625 */
5626 vlvf = bits = rd32(E1000_VLVF(regndx));
5627 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5628 adapter->vfs_allocated_count);
5629 /* If the filter was removed then ensure PF pool bit
5630 * is cleared if the PF only added itself to the pool
5631 * because the PF is in promiscuous mode.
5632 */
5633 if ((vlvf & VLAN_VID_MASK) == vid &&
5634 !test_bit(vid, adapter->active_vlans) &&
5635 !bits)
5636 igb_vlvf_set(adapter, vid, add,
5637 adapter->vfs_allocated_count);
5638 }
5639
5640 out:
5641 return err;
5642 }
5643
5644 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5645 {
5646 /* clear flags - except flag that indicates PF has set the MAC */
5647 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5648 adapter->vf_data[vf].last_nack = jiffies;
5649
5650 /* reset offloads to defaults */
5651 igb_set_vmolr(adapter, vf, true);
5652
5653 /* reset vlans for device */
5654 igb_clear_vf_vfta(adapter, vf);
5655 if (adapter->vf_data[vf].pf_vlan)
5656 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5657 adapter->vf_data[vf].pf_vlan,
5658 adapter->vf_data[vf].pf_qos);
5659 else
5660 igb_clear_vf_vfta(adapter, vf);
5661
5662 /* reset multicast table array for vf */
5663 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5664
5665 /* Flush and reset the mta with the new values */
5666 igb_set_rx_mode(adapter->netdev);
5667 }
5668
5669 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5670 {
5671 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5672
5673 /* clear mac address as we were hotplug removed/added */
5674 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5675 eth_zero_addr(vf_mac);
5676
5677 /* process remaining reset events */
5678 igb_vf_reset(adapter, vf);
5679 }
5680
5681 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5682 {
5683 struct e1000_hw *hw = &adapter->hw;
5684 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5685 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5686 u32 reg, msgbuf[3];
5687 u8 *addr = (u8 *)(&msgbuf[1]);
5688
5689 /* process all the same items cleared in a function level reset */
5690 igb_vf_reset(adapter, vf);
5691
5692 /* set vf mac address */
5693 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5694
5695 /* enable transmit and receive for vf */
5696 reg = rd32(E1000_VFTE);
5697 wr32(E1000_VFTE, reg | (1 << vf));
5698 reg = rd32(E1000_VFRE);
5699 wr32(E1000_VFRE, reg | (1 << vf));
5700
5701 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5702
5703 /* reply to reset with ack and vf mac address */
5704 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5705 memcpy(addr, vf_mac, ETH_ALEN);
5706 igb_write_mbx(hw, msgbuf, 3, vf);
5707 }
5708
5709 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5710 {
5711 /* The VF MAC Address is stored in a packed array of bytes
5712 * starting at the second 32 bit word of the msg array
5713 */
5714 unsigned char *addr = (char *)&msg[1];
5715 int err = -1;
5716
5717 if (is_valid_ether_addr(addr))
5718 err = igb_set_vf_mac(adapter, vf, addr);
5719
5720 return err;
5721 }
5722
5723 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5724 {
5725 struct e1000_hw *hw = &adapter->hw;
5726 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5727 u32 msg = E1000_VT_MSGTYPE_NACK;
5728
5729 /* if device isn't clear to send it shouldn't be reading either */
5730 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5731 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5732 igb_write_mbx(hw, &msg, 1, vf);
5733 vf_data->last_nack = jiffies;
5734 }
5735 }
5736
5737 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5738 {
5739 struct pci_dev *pdev = adapter->pdev;
5740 u32 msgbuf[E1000_VFMAILBOX_SIZE];
5741 struct e1000_hw *hw = &adapter->hw;
5742 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5743 s32 retval;
5744
5745 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5746
5747 if (retval) {
5748 /* if receive failed revoke VF CTS stats and restart init */
5749 dev_err(&pdev->dev, "Error receiving message from VF\n");
5750 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5751 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5752 return;
5753 goto out;
5754 }
5755
5756 /* this is a message we already processed, do nothing */
5757 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5758 return;
5759
5760 /* until the vf completes a reset it should not be
5761 * allowed to start any configuration.
5762 */
5763 if (msgbuf[0] == E1000_VF_RESET) {
5764 igb_vf_reset_msg(adapter, vf);
5765 return;
5766 }
5767
5768 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5769 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5770 return;
5771 retval = -1;
5772 goto out;
5773 }
5774
5775 switch ((msgbuf[0] & 0xFFFF)) {
5776 case E1000_VF_SET_MAC_ADDR:
5777 retval = -EINVAL;
5778 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5779 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5780 else
5781 dev_warn(&pdev->dev,
5782 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5783 vf);
5784 break;
5785 case E1000_VF_SET_PROMISC:
5786 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5787 break;
5788 case E1000_VF_SET_MULTICAST:
5789 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5790 break;
5791 case E1000_VF_SET_LPE:
5792 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5793 break;
5794 case E1000_VF_SET_VLAN:
5795 retval = -1;
5796 if (vf_data->pf_vlan)
5797 dev_warn(&pdev->dev,
5798 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5799 vf);
5800 else
5801 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5802 break;
5803 default:
5804 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5805 retval = -1;
5806 break;
5807 }
5808
5809 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5810 out:
5811 /* notify the VF of the results of what it sent us */
5812 if (retval)
5813 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5814 else
5815 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5816
5817 igb_write_mbx(hw, msgbuf, 1, vf);
5818 }
5819
5820 static void igb_msg_task(struct igb_adapter *adapter)
5821 {
5822 struct e1000_hw *hw = &adapter->hw;
5823 u32 vf;
5824
5825 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5826 /* process any reset requests */
5827 if (!igb_check_for_rst(hw, vf))
5828 igb_vf_reset_event(adapter, vf);
5829
5830 /* process any messages pending */
5831 if (!igb_check_for_msg(hw, vf))
5832 igb_rcv_msg_from_vf(adapter, vf);
5833
5834 /* process any acks */
5835 if (!igb_check_for_ack(hw, vf))
5836 igb_rcv_ack_from_vf(adapter, vf);
5837 }
5838 }
5839
5840 /**
5841 * igb_set_uta - Set unicast filter table address
5842 * @adapter: board private structure
5843 *
5844 * The unicast table address is a register array of 32-bit registers.
5845 * The table is meant to be used in a way similar to how the MTA is used
5846 * however due to certain limitations in the hardware it is necessary to
5847 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5848 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
5849 **/
5850 static void igb_set_uta(struct igb_adapter *adapter)
5851 {
5852 struct e1000_hw *hw = &adapter->hw;
5853 int i;
5854
5855 /* The UTA table only exists on 82576 hardware and newer */
5856 if (hw->mac.type < e1000_82576)
5857 return;
5858
5859 /* we only need to do this if VMDq is enabled */
5860 if (!adapter->vfs_allocated_count)
5861 return;
5862
5863 for (i = 0; i < hw->mac.uta_reg_count; i++)
5864 array_wr32(E1000_UTA, i, ~0);
5865 }
5866
5867 /**
5868 * igb_intr_msi - Interrupt Handler
5869 * @irq: interrupt number
5870 * @data: pointer to a network interface device structure
5871 **/
5872 static irqreturn_t igb_intr_msi(int irq, void *data)
5873 {
5874 struct igb_adapter *adapter = data;
5875 struct igb_q_vector *q_vector = adapter->q_vector[0];
5876 struct e1000_hw *hw = &adapter->hw;
5877 /* read ICR disables interrupts using IAM */
5878 u32 icr = rd32(E1000_ICR);
5879
5880 igb_write_itr(q_vector);
5881
5882 if (icr & E1000_ICR_DRSTA)
5883 schedule_work(&adapter->reset_task);
5884
5885 if (icr & E1000_ICR_DOUTSYNC) {
5886 /* HW is reporting DMA is out of sync */
5887 adapter->stats.doosync++;
5888 }
5889
5890 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5891 hw->mac.get_link_status = 1;
5892 if (!test_bit(__IGB_DOWN, &adapter->state))
5893 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5894 }
5895
5896 if (icr & E1000_ICR_TS) {
5897 u32 tsicr = rd32(E1000_TSICR);
5898
5899 if (tsicr & E1000_TSICR_TXTS) {
5900 /* acknowledge the interrupt */
5901 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5902 /* retrieve hardware timestamp */
5903 schedule_work(&adapter->ptp_tx_work);
5904 }
5905 }
5906
5907 napi_schedule(&q_vector->napi);
5908
5909 return IRQ_HANDLED;
5910 }
5911
5912 /**
5913 * igb_intr - Legacy Interrupt Handler
5914 * @irq: interrupt number
5915 * @data: pointer to a network interface device structure
5916 **/
5917 static irqreturn_t igb_intr(int irq, void *data)
5918 {
5919 struct igb_adapter *adapter = data;
5920 struct igb_q_vector *q_vector = adapter->q_vector[0];
5921 struct e1000_hw *hw = &adapter->hw;
5922 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5923 * need for the IMC write
5924 */
5925 u32 icr = rd32(E1000_ICR);
5926
5927 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5928 * not set, then the adapter didn't send an interrupt
5929 */
5930 if (!(icr & E1000_ICR_INT_ASSERTED))
5931 return IRQ_NONE;
5932
5933 igb_write_itr(q_vector);
5934
5935 if (icr & E1000_ICR_DRSTA)
5936 schedule_work(&adapter->reset_task);
5937
5938 if (icr & E1000_ICR_DOUTSYNC) {
5939 /* HW is reporting DMA is out of sync */
5940 adapter->stats.doosync++;
5941 }
5942
5943 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5944 hw->mac.get_link_status = 1;
5945 /* guard against interrupt when we're going down */
5946 if (!test_bit(__IGB_DOWN, &adapter->state))
5947 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5948 }
5949
5950 if (icr & E1000_ICR_TS) {
5951 u32 tsicr = rd32(E1000_TSICR);
5952
5953 if (tsicr & E1000_TSICR_TXTS) {
5954 /* acknowledge the interrupt */
5955 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5956 /* retrieve hardware timestamp */
5957 schedule_work(&adapter->ptp_tx_work);
5958 }
5959 }
5960
5961 napi_schedule(&q_vector->napi);
5962
5963 return IRQ_HANDLED;
5964 }
5965
5966 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5967 {
5968 struct igb_adapter *adapter = q_vector->adapter;
5969 struct e1000_hw *hw = &adapter->hw;
5970
5971 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5972 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5973 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5974 igb_set_itr(q_vector);
5975 else
5976 igb_update_ring_itr(q_vector);
5977 }
5978
5979 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5980 if (adapter->msix_entries)
5981 wr32(E1000_EIMS, q_vector->eims_value);
5982 else
5983 igb_irq_enable(adapter);
5984 }
5985 }
5986
5987 /**
5988 * igb_poll - NAPI Rx polling callback
5989 * @napi: napi polling structure
5990 * @budget: count of how many packets we should handle
5991 **/
5992 static int igb_poll(struct napi_struct *napi, int budget)
5993 {
5994 struct igb_q_vector *q_vector = container_of(napi,
5995 struct igb_q_vector,
5996 napi);
5997 bool clean_complete = true;
5998
5999 #ifdef CONFIG_IGB_DCA
6000 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6001 igb_update_dca(q_vector);
6002 #endif
6003 if (q_vector->tx.ring)
6004 clean_complete = igb_clean_tx_irq(q_vector);
6005
6006 if (q_vector->rx.ring)
6007 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6008
6009 /* If all work not completed, return budget and keep polling */
6010 if (!clean_complete)
6011 return budget;
6012
6013 /* If not enough Rx work done, exit the polling mode */
6014 napi_complete(napi);
6015 igb_ring_irq_enable(q_vector);
6016
6017 return 0;
6018 }
6019
6020 /**
6021 * igb_clean_tx_irq - Reclaim resources after transmit completes
6022 * @q_vector: pointer to q_vector containing needed info
6023 *
6024 * returns true if ring is completely cleaned
6025 **/
6026 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6027 {
6028 struct igb_adapter *adapter = q_vector->adapter;
6029 struct igb_ring *tx_ring = q_vector->tx.ring;
6030 struct igb_tx_buffer *tx_buffer;
6031 union e1000_adv_tx_desc *tx_desc;
6032 unsigned int total_bytes = 0, total_packets = 0;
6033 unsigned int budget = q_vector->tx.work_limit;
6034 unsigned int i = tx_ring->next_to_clean;
6035
6036 if (test_bit(__IGB_DOWN, &adapter->state))
6037 return true;
6038
6039 tx_buffer = &tx_ring->tx_buffer_info[i];
6040 tx_desc = IGB_TX_DESC(tx_ring, i);
6041 i -= tx_ring->count;
6042
6043 do {
6044 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6045
6046 /* if next_to_watch is not set then there is no work pending */
6047 if (!eop_desc)
6048 break;
6049
6050 /* prevent any other reads prior to eop_desc */
6051 read_barrier_depends();
6052
6053 /* if DD is not set pending work has not been completed */
6054 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6055 break;
6056
6057 /* clear next_to_watch to prevent false hangs */
6058 tx_buffer->next_to_watch = NULL;
6059
6060 /* update the statistics for this packet */
6061 total_bytes += tx_buffer->bytecount;
6062 total_packets += tx_buffer->gso_segs;
6063
6064 /* free the skb */
6065 dev_kfree_skb_any(tx_buffer->skb);
6066
6067 /* unmap skb header data */
6068 dma_unmap_single(tx_ring->dev,
6069 dma_unmap_addr(tx_buffer, dma),
6070 dma_unmap_len(tx_buffer, len),
6071 DMA_TO_DEVICE);
6072
6073 /* clear tx_buffer data */
6074 tx_buffer->skb = NULL;
6075 dma_unmap_len_set(tx_buffer, len, 0);
6076
6077 /* clear last DMA location and unmap remaining buffers */
6078 while (tx_desc != eop_desc) {
6079 tx_buffer++;
6080 tx_desc++;
6081 i++;
6082 if (unlikely(!i)) {
6083 i -= tx_ring->count;
6084 tx_buffer = tx_ring->tx_buffer_info;
6085 tx_desc = IGB_TX_DESC(tx_ring, 0);
6086 }
6087
6088 /* unmap any remaining paged data */
6089 if (dma_unmap_len(tx_buffer, len)) {
6090 dma_unmap_page(tx_ring->dev,
6091 dma_unmap_addr(tx_buffer, dma),
6092 dma_unmap_len(tx_buffer, len),
6093 DMA_TO_DEVICE);
6094 dma_unmap_len_set(tx_buffer, len, 0);
6095 }
6096 }
6097
6098 /* move us one more past the eop_desc for start of next pkt */
6099 tx_buffer++;
6100 tx_desc++;
6101 i++;
6102 if (unlikely(!i)) {
6103 i -= tx_ring->count;
6104 tx_buffer = tx_ring->tx_buffer_info;
6105 tx_desc = IGB_TX_DESC(tx_ring, 0);
6106 }
6107
6108 /* issue prefetch for next Tx descriptor */
6109 prefetch(tx_desc);
6110
6111 /* update budget accounting */
6112 budget--;
6113 } while (likely(budget));
6114
6115 netdev_tx_completed_queue(txring_txq(tx_ring),
6116 total_packets, total_bytes);
6117 i += tx_ring->count;
6118 tx_ring->next_to_clean = i;
6119 u64_stats_update_begin(&tx_ring->tx_syncp);
6120 tx_ring->tx_stats.bytes += total_bytes;
6121 tx_ring->tx_stats.packets += total_packets;
6122 u64_stats_update_end(&tx_ring->tx_syncp);
6123 q_vector->tx.total_bytes += total_bytes;
6124 q_vector->tx.total_packets += total_packets;
6125
6126 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6127 struct e1000_hw *hw = &adapter->hw;
6128
6129 /* Detect a transmit hang in hardware, this serializes the
6130 * check with the clearing of time_stamp and movement of i
6131 */
6132 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6133 if (tx_buffer->next_to_watch &&
6134 time_after(jiffies, tx_buffer->time_stamp +
6135 (adapter->tx_timeout_factor * HZ)) &&
6136 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6137
6138 /* detected Tx unit hang */
6139 dev_err(tx_ring->dev,
6140 "Detected Tx Unit Hang\n"
6141 " Tx Queue <%d>\n"
6142 " TDH <%x>\n"
6143 " TDT <%x>\n"
6144 " next_to_use <%x>\n"
6145 " next_to_clean <%x>\n"
6146 "buffer_info[next_to_clean]\n"
6147 " time_stamp <%lx>\n"
6148 " next_to_watch <%p>\n"
6149 " jiffies <%lx>\n"
6150 " desc.status <%x>\n",
6151 tx_ring->queue_index,
6152 rd32(E1000_TDH(tx_ring->reg_idx)),
6153 readl(tx_ring->tail),
6154 tx_ring->next_to_use,
6155 tx_ring->next_to_clean,
6156 tx_buffer->time_stamp,
6157 tx_buffer->next_to_watch,
6158 jiffies,
6159 tx_buffer->next_to_watch->wb.status);
6160 netif_stop_subqueue(tx_ring->netdev,
6161 tx_ring->queue_index);
6162
6163 /* we are about to reset, no point in enabling stuff */
6164 return true;
6165 }
6166 }
6167
6168 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6169 if (unlikely(total_packets &&
6170 netif_carrier_ok(tx_ring->netdev) &&
6171 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6172 /* Make sure that anybody stopping the queue after this
6173 * sees the new next_to_clean.
6174 */
6175 smp_mb();
6176 if (__netif_subqueue_stopped(tx_ring->netdev,
6177 tx_ring->queue_index) &&
6178 !(test_bit(__IGB_DOWN, &adapter->state))) {
6179 netif_wake_subqueue(tx_ring->netdev,
6180 tx_ring->queue_index);
6181
6182 u64_stats_update_begin(&tx_ring->tx_syncp);
6183 tx_ring->tx_stats.restart_queue++;
6184 u64_stats_update_end(&tx_ring->tx_syncp);
6185 }
6186 }
6187
6188 return !!budget;
6189 }
6190
6191 /**
6192 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6193 * @rx_ring: rx descriptor ring to store buffers on
6194 * @old_buff: donor buffer to have page reused
6195 *
6196 * Synchronizes page for reuse by the adapter
6197 **/
6198 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6199 struct igb_rx_buffer *old_buff)
6200 {
6201 struct igb_rx_buffer *new_buff;
6202 u16 nta = rx_ring->next_to_alloc;
6203
6204 new_buff = &rx_ring->rx_buffer_info[nta];
6205
6206 /* update, and store next to alloc */
6207 nta++;
6208 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6209
6210 /* transfer page from old buffer to new buffer */
6211 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6212
6213 /* sync the buffer for use by the device */
6214 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6215 old_buff->page_offset,
6216 IGB_RX_BUFSZ,
6217 DMA_FROM_DEVICE);
6218 }
6219
6220 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6221 struct page *page,
6222 unsigned int truesize)
6223 {
6224 /* avoid re-using remote pages */
6225 if (unlikely(page_to_nid(page) != numa_node_id()))
6226 return false;
6227
6228 #if (PAGE_SIZE < 8192)
6229 /* if we are only owner of page we can reuse it */
6230 if (unlikely(page_count(page) != 1))
6231 return false;
6232
6233 /* flip page offset to other buffer */
6234 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6235
6236 /* since we are the only owner of the page and we need to
6237 * increment it, just set the value to 2 in order to avoid
6238 * an unnecessary locked operation
6239 */
6240 atomic_set(&page->_count, 2);
6241 #else
6242 /* move offset up to the next cache line */
6243 rx_buffer->page_offset += truesize;
6244
6245 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6246 return false;
6247
6248 /* bump ref count on page before it is given to the stack */
6249 get_page(page);
6250 #endif
6251
6252 return true;
6253 }
6254
6255 /**
6256 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6257 * @rx_ring: rx descriptor ring to transact packets on
6258 * @rx_buffer: buffer containing page to add
6259 * @rx_desc: descriptor containing length of buffer written by hardware
6260 * @skb: sk_buff to place the data into
6261 *
6262 * This function will add the data contained in rx_buffer->page to the skb.
6263 * This is done either through a direct copy if the data in the buffer is
6264 * less than the skb header size, otherwise it will just attach the page as
6265 * a frag to the skb.
6266 *
6267 * The function will then update the page offset if necessary and return
6268 * true if the buffer can be reused by the adapter.
6269 **/
6270 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6271 struct igb_rx_buffer *rx_buffer,
6272 union e1000_adv_rx_desc *rx_desc,
6273 struct sk_buff *skb)
6274 {
6275 struct page *page = rx_buffer->page;
6276 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6277 #if (PAGE_SIZE < 8192)
6278 unsigned int truesize = IGB_RX_BUFSZ;
6279 #else
6280 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6281 #endif
6282
6283 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6284 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6285
6286 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6287 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6288 va += IGB_TS_HDR_LEN;
6289 size -= IGB_TS_HDR_LEN;
6290 }
6291
6292 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6293
6294 /* we can reuse buffer as-is, just make sure it is local */
6295 if (likely(page_to_nid(page) == numa_node_id()))
6296 return true;
6297
6298 /* this page cannot be reused so discard it */
6299 put_page(page);
6300 return false;
6301 }
6302
6303 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6304 rx_buffer->page_offset, size, truesize);
6305
6306 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6307 }
6308
6309 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6310 union e1000_adv_rx_desc *rx_desc,
6311 struct sk_buff *skb)
6312 {
6313 struct igb_rx_buffer *rx_buffer;
6314 struct page *page;
6315
6316 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6317
6318 page = rx_buffer->page;
6319 prefetchw(page);
6320
6321 if (likely(!skb)) {
6322 void *page_addr = page_address(page) +
6323 rx_buffer->page_offset;
6324
6325 /* prefetch first cache line of first page */
6326 prefetch(page_addr);
6327 #if L1_CACHE_BYTES < 128
6328 prefetch(page_addr + L1_CACHE_BYTES);
6329 #endif
6330
6331 /* allocate a skb to store the frags */
6332 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6333 IGB_RX_HDR_LEN);
6334 if (unlikely(!skb)) {
6335 rx_ring->rx_stats.alloc_failed++;
6336 return NULL;
6337 }
6338
6339 /* we will be copying header into skb->data in
6340 * pskb_may_pull so it is in our interest to prefetch
6341 * it now to avoid a possible cache miss
6342 */
6343 prefetchw(skb->data);
6344 }
6345
6346 /* we are reusing so sync this buffer for CPU use */
6347 dma_sync_single_range_for_cpu(rx_ring->dev,
6348 rx_buffer->dma,
6349 rx_buffer->page_offset,
6350 IGB_RX_BUFSZ,
6351 DMA_FROM_DEVICE);
6352
6353 /* pull page into skb */
6354 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6355 /* hand second half of page back to the ring */
6356 igb_reuse_rx_page(rx_ring, rx_buffer);
6357 } else {
6358 /* we are not reusing the buffer so unmap it */
6359 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6360 PAGE_SIZE, DMA_FROM_DEVICE);
6361 }
6362
6363 /* clear contents of rx_buffer */
6364 rx_buffer->page = NULL;
6365
6366 return skb;
6367 }
6368
6369 static inline void igb_rx_checksum(struct igb_ring *ring,
6370 union e1000_adv_rx_desc *rx_desc,
6371 struct sk_buff *skb)
6372 {
6373 skb_checksum_none_assert(skb);
6374
6375 /* Ignore Checksum bit is set */
6376 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6377 return;
6378
6379 /* Rx checksum disabled via ethtool */
6380 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6381 return;
6382
6383 /* TCP/UDP checksum error bit is set */
6384 if (igb_test_staterr(rx_desc,
6385 E1000_RXDEXT_STATERR_TCPE |
6386 E1000_RXDEXT_STATERR_IPE)) {
6387 /* work around errata with sctp packets where the TCPE aka
6388 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6389 * packets, (aka let the stack check the crc32c)
6390 */
6391 if (!((skb->len == 60) &&
6392 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6393 u64_stats_update_begin(&ring->rx_syncp);
6394 ring->rx_stats.csum_err++;
6395 u64_stats_update_end(&ring->rx_syncp);
6396 }
6397 /* let the stack verify checksum errors */
6398 return;
6399 }
6400 /* It must be a TCP or UDP packet with a valid checksum */
6401 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6402 E1000_RXD_STAT_UDPCS))
6403 skb->ip_summed = CHECKSUM_UNNECESSARY;
6404
6405 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6406 le32_to_cpu(rx_desc->wb.upper.status_error));
6407 }
6408
6409 static inline void igb_rx_hash(struct igb_ring *ring,
6410 union e1000_adv_rx_desc *rx_desc,
6411 struct sk_buff *skb)
6412 {
6413 if (ring->netdev->features & NETIF_F_RXHASH)
6414 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6415 }
6416
6417 /**
6418 * igb_is_non_eop - process handling of non-EOP buffers
6419 * @rx_ring: Rx ring being processed
6420 * @rx_desc: Rx descriptor for current buffer
6421 * @skb: current socket buffer containing buffer in progress
6422 *
6423 * This function updates next to clean. If the buffer is an EOP buffer
6424 * this function exits returning false, otherwise it will place the
6425 * sk_buff in the next buffer to be chained and return true indicating
6426 * that this is in fact a non-EOP buffer.
6427 **/
6428 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6429 union e1000_adv_rx_desc *rx_desc)
6430 {
6431 u32 ntc = rx_ring->next_to_clean + 1;
6432
6433 /* fetch, update, and store next to clean */
6434 ntc = (ntc < rx_ring->count) ? ntc : 0;
6435 rx_ring->next_to_clean = ntc;
6436
6437 prefetch(IGB_RX_DESC(rx_ring, ntc));
6438
6439 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6440 return false;
6441
6442 return true;
6443 }
6444
6445 /**
6446 * igb_get_headlen - determine size of header for LRO/GRO
6447 * @data: pointer to the start of the headers
6448 * @max_len: total length of section to find headers in
6449 *
6450 * This function is meant to determine the length of headers that will
6451 * be recognized by hardware for LRO, and GRO offloads. The main
6452 * motivation of doing this is to only perform one pull for IPv4 TCP
6453 * packets so that we can do basic things like calculating the gso_size
6454 * based on the average data per packet.
6455 **/
6456 static unsigned int igb_get_headlen(unsigned char *data,
6457 unsigned int max_len)
6458 {
6459 union {
6460 unsigned char *network;
6461 /* l2 headers */
6462 struct ethhdr *eth;
6463 struct vlan_hdr *vlan;
6464 /* l3 headers */
6465 struct iphdr *ipv4;
6466 struct ipv6hdr *ipv6;
6467 } hdr;
6468 __be16 protocol;
6469 u8 nexthdr = 0; /* default to not TCP */
6470 u8 hlen;
6471
6472 /* this should never happen, but better safe than sorry */
6473 if (max_len < ETH_HLEN)
6474 return max_len;
6475
6476 /* initialize network frame pointer */
6477 hdr.network = data;
6478
6479 /* set first protocol and move network header forward */
6480 protocol = hdr.eth->h_proto;
6481 hdr.network += ETH_HLEN;
6482
6483 /* handle any vlan tag if present */
6484 if (protocol == __constant_htons(ETH_P_8021Q)) {
6485 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6486 return max_len;
6487
6488 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6489 hdr.network += VLAN_HLEN;
6490 }
6491
6492 /* handle L3 protocols */
6493 if (protocol == __constant_htons(ETH_P_IP)) {
6494 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6495 return max_len;
6496
6497 /* access ihl as a u8 to avoid unaligned access on ia64 */
6498 hlen = (hdr.network[0] & 0x0F) << 2;
6499
6500 /* verify hlen meets minimum size requirements */
6501 if (hlen < sizeof(struct iphdr))
6502 return hdr.network - data;
6503
6504 /* record next protocol if header is present */
6505 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6506 nexthdr = hdr.ipv4->protocol;
6507 } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6508 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6509 return max_len;
6510
6511 /* record next protocol */
6512 nexthdr = hdr.ipv6->nexthdr;
6513 hlen = sizeof(struct ipv6hdr);
6514 } else {
6515 return hdr.network - data;
6516 }
6517
6518 /* relocate pointer to start of L4 header */
6519 hdr.network += hlen;
6520
6521 /* finally sort out TCP */
6522 if (nexthdr == IPPROTO_TCP) {
6523 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6524 return max_len;
6525
6526 /* access doff as a u8 to avoid unaligned access on ia64 */
6527 hlen = (hdr.network[12] & 0xF0) >> 2;
6528
6529 /* verify hlen meets minimum size requirements */
6530 if (hlen < sizeof(struct tcphdr))
6531 return hdr.network - data;
6532
6533 hdr.network += hlen;
6534 } else if (nexthdr == IPPROTO_UDP) {
6535 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6536 return max_len;
6537
6538 hdr.network += sizeof(struct udphdr);
6539 }
6540
6541 /* If everything has gone correctly hdr.network should be the
6542 * data section of the packet and will be the end of the header.
6543 * If not then it probably represents the end of the last recognized
6544 * header.
6545 */
6546 if ((hdr.network - data) < max_len)
6547 return hdr.network - data;
6548 else
6549 return max_len;
6550 }
6551
6552 /**
6553 * igb_pull_tail - igb specific version of skb_pull_tail
6554 * @rx_ring: rx descriptor ring packet is being transacted on
6555 * @rx_desc: pointer to the EOP Rx descriptor
6556 * @skb: pointer to current skb being adjusted
6557 *
6558 * This function is an igb specific version of __pskb_pull_tail. The
6559 * main difference between this version and the original function is that
6560 * this function can make several assumptions about the state of things
6561 * that allow for significant optimizations versus the standard function.
6562 * As a result we can do things like drop a frag and maintain an accurate
6563 * truesize for the skb.
6564 */
6565 static void igb_pull_tail(struct igb_ring *rx_ring,
6566 union e1000_adv_rx_desc *rx_desc,
6567 struct sk_buff *skb)
6568 {
6569 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6570 unsigned char *va;
6571 unsigned int pull_len;
6572
6573 /* it is valid to use page_address instead of kmap since we are
6574 * working with pages allocated out of the lomem pool per
6575 * alloc_page(GFP_ATOMIC)
6576 */
6577 va = skb_frag_address(frag);
6578
6579 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6580 /* retrieve timestamp from buffer */
6581 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6582
6583 /* update pointers to remove timestamp header */
6584 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6585 frag->page_offset += IGB_TS_HDR_LEN;
6586 skb->data_len -= IGB_TS_HDR_LEN;
6587 skb->len -= IGB_TS_HDR_LEN;
6588
6589 /* move va to start of packet data */
6590 va += IGB_TS_HDR_LEN;
6591 }
6592
6593 /* we need the header to contain the greater of either ETH_HLEN or
6594 * 60 bytes if the skb->len is less than 60 for skb_pad.
6595 */
6596 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6597
6598 /* align pull length to size of long to optimize memcpy performance */
6599 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6600
6601 /* update all of the pointers */
6602 skb_frag_size_sub(frag, pull_len);
6603 frag->page_offset += pull_len;
6604 skb->data_len -= pull_len;
6605 skb->tail += pull_len;
6606 }
6607
6608 /**
6609 * igb_cleanup_headers - Correct corrupted or empty headers
6610 * @rx_ring: rx descriptor ring packet is being transacted on
6611 * @rx_desc: pointer to the EOP Rx descriptor
6612 * @skb: pointer to current skb being fixed
6613 *
6614 * Address the case where we are pulling data in on pages only
6615 * and as such no data is present in the skb header.
6616 *
6617 * In addition if skb is not at least 60 bytes we need to pad it so that
6618 * it is large enough to qualify as a valid Ethernet frame.
6619 *
6620 * Returns true if an error was encountered and skb was freed.
6621 **/
6622 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6623 union e1000_adv_rx_desc *rx_desc,
6624 struct sk_buff *skb)
6625 {
6626 if (unlikely((igb_test_staterr(rx_desc,
6627 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6628 struct net_device *netdev = rx_ring->netdev;
6629 if (!(netdev->features & NETIF_F_RXALL)) {
6630 dev_kfree_skb_any(skb);
6631 return true;
6632 }
6633 }
6634
6635 /* place header in linear portion of buffer */
6636 if (skb_is_nonlinear(skb))
6637 igb_pull_tail(rx_ring, rx_desc, skb);
6638
6639 /* if skb_pad returns an error the skb was freed */
6640 if (unlikely(skb->len < 60)) {
6641 int pad_len = 60 - skb->len;
6642
6643 if (skb_pad(skb, pad_len))
6644 return true;
6645 __skb_put(skb, pad_len);
6646 }
6647
6648 return false;
6649 }
6650
6651 /**
6652 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6653 * @rx_ring: rx descriptor ring packet is being transacted on
6654 * @rx_desc: pointer to the EOP Rx descriptor
6655 * @skb: pointer to current skb being populated
6656 *
6657 * This function checks the ring, descriptor, and packet information in
6658 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6659 * other fields within the skb.
6660 **/
6661 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6662 union e1000_adv_rx_desc *rx_desc,
6663 struct sk_buff *skb)
6664 {
6665 struct net_device *dev = rx_ring->netdev;
6666
6667 igb_rx_hash(rx_ring, rx_desc, skb);
6668
6669 igb_rx_checksum(rx_ring, rx_desc, skb);
6670
6671 igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6672
6673 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6674 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6675 u16 vid;
6676 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6677 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6678 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6679 else
6680 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6681
6682 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6683 }
6684
6685 skb_record_rx_queue(skb, rx_ring->queue_index);
6686
6687 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6688 }
6689
6690 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6691 {
6692 struct igb_ring *rx_ring = q_vector->rx.ring;
6693 struct sk_buff *skb = rx_ring->skb;
6694 unsigned int total_bytes = 0, total_packets = 0;
6695 u16 cleaned_count = igb_desc_unused(rx_ring);
6696
6697 do {
6698 union e1000_adv_rx_desc *rx_desc;
6699
6700 /* return some buffers to hardware, one at a time is too slow */
6701 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6702 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6703 cleaned_count = 0;
6704 }
6705
6706 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6707
6708 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6709 break;
6710
6711 /* This memory barrier is needed to keep us from reading
6712 * any other fields out of the rx_desc until we know the
6713 * RXD_STAT_DD bit is set
6714 */
6715 rmb();
6716
6717 /* retrieve a buffer from the ring */
6718 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6719
6720 /* exit if we failed to retrieve a buffer */
6721 if (!skb)
6722 break;
6723
6724 cleaned_count++;
6725
6726 /* fetch next buffer in frame if non-eop */
6727 if (igb_is_non_eop(rx_ring, rx_desc))
6728 continue;
6729
6730 /* verify the packet layout is correct */
6731 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6732 skb = NULL;
6733 continue;
6734 }
6735
6736 /* probably a little skewed due to removing CRC */
6737 total_bytes += skb->len;
6738
6739 /* populate checksum, timestamp, VLAN, and protocol */
6740 igb_process_skb_fields(rx_ring, rx_desc, skb);
6741
6742 napi_gro_receive(&q_vector->napi, skb);
6743
6744 /* reset skb pointer */
6745 skb = NULL;
6746
6747 /* update budget accounting */
6748 total_packets++;
6749 } while (likely(total_packets < budget));
6750
6751 /* place incomplete frames back on ring for completion */
6752 rx_ring->skb = skb;
6753
6754 u64_stats_update_begin(&rx_ring->rx_syncp);
6755 rx_ring->rx_stats.packets += total_packets;
6756 rx_ring->rx_stats.bytes += total_bytes;
6757 u64_stats_update_end(&rx_ring->rx_syncp);
6758 q_vector->rx.total_packets += total_packets;
6759 q_vector->rx.total_bytes += total_bytes;
6760
6761 if (cleaned_count)
6762 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6763
6764 return (total_packets < budget);
6765 }
6766
6767 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6768 struct igb_rx_buffer *bi)
6769 {
6770 struct page *page = bi->page;
6771 dma_addr_t dma;
6772
6773 /* since we are recycling buffers we should seldom need to alloc */
6774 if (likely(page))
6775 return true;
6776
6777 /* alloc new page for storage */
6778 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6779 if (unlikely(!page)) {
6780 rx_ring->rx_stats.alloc_failed++;
6781 return false;
6782 }
6783
6784 /* map page for use */
6785 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6786
6787 /* if mapping failed free memory back to system since
6788 * there isn't much point in holding memory we can't use
6789 */
6790 if (dma_mapping_error(rx_ring->dev, dma)) {
6791 __free_page(page);
6792
6793 rx_ring->rx_stats.alloc_failed++;
6794 return false;
6795 }
6796
6797 bi->dma = dma;
6798 bi->page = page;
6799 bi->page_offset = 0;
6800
6801 return true;
6802 }
6803
6804 /**
6805 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6806 * @adapter: address of board private structure
6807 **/
6808 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6809 {
6810 union e1000_adv_rx_desc *rx_desc;
6811 struct igb_rx_buffer *bi;
6812 u16 i = rx_ring->next_to_use;
6813
6814 /* nothing to do */
6815 if (!cleaned_count)
6816 return;
6817
6818 rx_desc = IGB_RX_DESC(rx_ring, i);
6819 bi = &rx_ring->rx_buffer_info[i];
6820 i -= rx_ring->count;
6821
6822 do {
6823 if (!igb_alloc_mapped_page(rx_ring, bi))
6824 break;
6825
6826 /* Refresh the desc even if buffer_addrs didn't change
6827 * because each write-back erases this info.
6828 */
6829 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6830
6831 rx_desc++;
6832 bi++;
6833 i++;
6834 if (unlikely(!i)) {
6835 rx_desc = IGB_RX_DESC(rx_ring, 0);
6836 bi = rx_ring->rx_buffer_info;
6837 i -= rx_ring->count;
6838 }
6839
6840 /* clear the hdr_addr for the next_to_use descriptor */
6841 rx_desc->read.hdr_addr = 0;
6842
6843 cleaned_count--;
6844 } while (cleaned_count);
6845
6846 i += rx_ring->count;
6847
6848 if (rx_ring->next_to_use != i) {
6849 /* record the next descriptor to use */
6850 rx_ring->next_to_use = i;
6851
6852 /* update next to alloc since we have filled the ring */
6853 rx_ring->next_to_alloc = i;
6854
6855 /* Force memory writes to complete before letting h/w
6856 * know there are new descriptors to fetch. (Only
6857 * applicable for weak-ordered memory model archs,
6858 * such as IA-64).
6859 */
6860 wmb();
6861 writel(i, rx_ring->tail);
6862 }
6863 }
6864
6865 /**
6866 * igb_mii_ioctl -
6867 * @netdev:
6868 * @ifreq:
6869 * @cmd:
6870 **/
6871 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6872 {
6873 struct igb_adapter *adapter = netdev_priv(netdev);
6874 struct mii_ioctl_data *data = if_mii(ifr);
6875
6876 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6877 return -EOPNOTSUPP;
6878
6879 switch (cmd) {
6880 case SIOCGMIIPHY:
6881 data->phy_id = adapter->hw.phy.addr;
6882 break;
6883 case SIOCGMIIREG:
6884 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6885 &data->val_out))
6886 return -EIO;
6887 break;
6888 case SIOCSMIIREG:
6889 default:
6890 return -EOPNOTSUPP;
6891 }
6892 return 0;
6893 }
6894
6895 /**
6896 * igb_ioctl -
6897 * @netdev:
6898 * @ifreq:
6899 * @cmd:
6900 **/
6901 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6902 {
6903 switch (cmd) {
6904 case SIOCGMIIPHY:
6905 case SIOCGMIIREG:
6906 case SIOCSMIIREG:
6907 return igb_mii_ioctl(netdev, ifr, cmd);
6908 case SIOCSHWTSTAMP:
6909 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6910 default:
6911 return -EOPNOTSUPP;
6912 }
6913 }
6914
6915 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6916 {
6917 struct igb_adapter *adapter = hw->back;
6918
6919 if (pcie_capability_read_word(adapter->pdev, reg, value))
6920 return -E1000_ERR_CONFIG;
6921
6922 return 0;
6923 }
6924
6925 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6926 {
6927 struct igb_adapter *adapter = hw->back;
6928
6929 if (pcie_capability_write_word(adapter->pdev, reg, *value))
6930 return -E1000_ERR_CONFIG;
6931
6932 return 0;
6933 }
6934
6935 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6936 {
6937 struct igb_adapter *adapter = netdev_priv(netdev);
6938 struct e1000_hw *hw = &adapter->hw;
6939 u32 ctrl, rctl;
6940 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6941
6942 if (enable) {
6943 /* enable VLAN tag insert/strip */
6944 ctrl = rd32(E1000_CTRL);
6945 ctrl |= E1000_CTRL_VME;
6946 wr32(E1000_CTRL, ctrl);
6947
6948 /* Disable CFI check */
6949 rctl = rd32(E1000_RCTL);
6950 rctl &= ~E1000_RCTL_CFIEN;
6951 wr32(E1000_RCTL, rctl);
6952 } else {
6953 /* disable VLAN tag insert/strip */
6954 ctrl = rd32(E1000_CTRL);
6955 ctrl &= ~E1000_CTRL_VME;
6956 wr32(E1000_CTRL, ctrl);
6957 }
6958
6959 igb_rlpml_set(adapter);
6960 }
6961
6962 static int igb_vlan_rx_add_vid(struct net_device *netdev,
6963 __be16 proto, u16 vid)
6964 {
6965 struct igb_adapter *adapter = netdev_priv(netdev);
6966 struct e1000_hw *hw = &adapter->hw;
6967 int pf_id = adapter->vfs_allocated_count;
6968
6969 /* attempt to add filter to vlvf array */
6970 igb_vlvf_set(adapter, vid, true, pf_id);
6971
6972 /* add the filter since PF can receive vlans w/o entry in vlvf */
6973 igb_vfta_set(hw, vid, true);
6974
6975 set_bit(vid, adapter->active_vlans);
6976
6977 return 0;
6978 }
6979
6980 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6981 __be16 proto, u16 vid)
6982 {
6983 struct igb_adapter *adapter = netdev_priv(netdev);
6984 struct e1000_hw *hw = &adapter->hw;
6985 int pf_id = adapter->vfs_allocated_count;
6986 s32 err;
6987
6988 /* remove vlan from VLVF table array */
6989 err = igb_vlvf_set(adapter, vid, false, pf_id);
6990
6991 /* if vid was not present in VLVF just remove it from table */
6992 if (err)
6993 igb_vfta_set(hw, vid, false);
6994
6995 clear_bit(vid, adapter->active_vlans);
6996
6997 return 0;
6998 }
6999
7000 static void igb_restore_vlan(struct igb_adapter *adapter)
7001 {
7002 u16 vid;
7003
7004 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7005
7006 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7007 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7008 }
7009
7010 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7011 {
7012 struct pci_dev *pdev = adapter->pdev;
7013 struct e1000_mac_info *mac = &adapter->hw.mac;
7014
7015 mac->autoneg = 0;
7016
7017 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7018 * for the switch() below to work
7019 */
7020 if ((spd & 1) || (dplx & ~1))
7021 goto err_inval;
7022
7023 /* Fiber NIC's only allow 1000 gbps Full duplex
7024 * and 100Mbps Full duplex for 100baseFx sfp
7025 */
7026 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7027 switch (spd + dplx) {
7028 case SPEED_10 + DUPLEX_HALF:
7029 case SPEED_10 + DUPLEX_FULL:
7030 case SPEED_100 + DUPLEX_HALF:
7031 goto err_inval;
7032 default:
7033 break;
7034 }
7035 }
7036
7037 switch (spd + dplx) {
7038 case SPEED_10 + DUPLEX_HALF:
7039 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7040 break;
7041 case SPEED_10 + DUPLEX_FULL:
7042 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7043 break;
7044 case SPEED_100 + DUPLEX_HALF:
7045 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7046 break;
7047 case SPEED_100 + DUPLEX_FULL:
7048 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7049 break;
7050 case SPEED_1000 + DUPLEX_FULL:
7051 mac->autoneg = 1;
7052 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7053 break;
7054 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7055 default:
7056 goto err_inval;
7057 }
7058
7059 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7060 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7061
7062 return 0;
7063
7064 err_inval:
7065 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7066 return -EINVAL;
7067 }
7068
7069 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7070 bool runtime)
7071 {
7072 struct net_device *netdev = pci_get_drvdata(pdev);
7073 struct igb_adapter *adapter = netdev_priv(netdev);
7074 struct e1000_hw *hw = &adapter->hw;
7075 u32 ctrl, rctl, status;
7076 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7077 #ifdef CONFIG_PM
7078 int retval = 0;
7079 #endif
7080
7081 netif_device_detach(netdev);
7082
7083 if (netif_running(netdev))
7084 __igb_close(netdev, true);
7085
7086 igb_clear_interrupt_scheme(adapter);
7087
7088 #ifdef CONFIG_PM
7089 retval = pci_save_state(pdev);
7090 if (retval)
7091 return retval;
7092 #endif
7093
7094 status = rd32(E1000_STATUS);
7095 if (status & E1000_STATUS_LU)
7096 wufc &= ~E1000_WUFC_LNKC;
7097
7098 if (wufc) {
7099 igb_setup_rctl(adapter);
7100 igb_set_rx_mode(netdev);
7101
7102 /* turn on all-multi mode if wake on multicast is enabled */
7103 if (wufc & E1000_WUFC_MC) {
7104 rctl = rd32(E1000_RCTL);
7105 rctl |= E1000_RCTL_MPE;
7106 wr32(E1000_RCTL, rctl);
7107 }
7108
7109 ctrl = rd32(E1000_CTRL);
7110 /* advertise wake from D3Cold */
7111 #define E1000_CTRL_ADVD3WUC 0x00100000
7112 /* phy power management enable */
7113 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7114 ctrl |= E1000_CTRL_ADVD3WUC;
7115 wr32(E1000_CTRL, ctrl);
7116
7117 /* Allow time for pending master requests to run */
7118 igb_disable_pcie_master(hw);
7119
7120 wr32(E1000_WUC, E1000_WUC_PME_EN);
7121 wr32(E1000_WUFC, wufc);
7122 } else {
7123 wr32(E1000_WUC, 0);
7124 wr32(E1000_WUFC, 0);
7125 }
7126
7127 *enable_wake = wufc || adapter->en_mng_pt;
7128 if (!*enable_wake)
7129 igb_power_down_link(adapter);
7130 else
7131 igb_power_up_link(adapter);
7132
7133 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7134 * would have already happened in close and is redundant.
7135 */
7136 igb_release_hw_control(adapter);
7137
7138 pci_disable_device(pdev);
7139
7140 return 0;
7141 }
7142
7143 #ifdef CONFIG_PM
7144 #ifdef CONFIG_PM_SLEEP
7145 static int igb_suspend(struct device *dev)
7146 {
7147 int retval;
7148 bool wake;
7149 struct pci_dev *pdev = to_pci_dev(dev);
7150
7151 retval = __igb_shutdown(pdev, &wake, 0);
7152 if (retval)
7153 return retval;
7154
7155 if (wake) {
7156 pci_prepare_to_sleep(pdev);
7157 } else {
7158 pci_wake_from_d3(pdev, false);
7159 pci_set_power_state(pdev, PCI_D3hot);
7160 }
7161
7162 return 0;
7163 }
7164 #endif /* CONFIG_PM_SLEEP */
7165
7166 static int igb_resume(struct device *dev)
7167 {
7168 struct pci_dev *pdev = to_pci_dev(dev);
7169 struct net_device *netdev = pci_get_drvdata(pdev);
7170 struct igb_adapter *adapter = netdev_priv(netdev);
7171 struct e1000_hw *hw = &adapter->hw;
7172 u32 err;
7173
7174 pci_set_power_state(pdev, PCI_D0);
7175 pci_restore_state(pdev);
7176 pci_save_state(pdev);
7177
7178 err = pci_enable_device_mem(pdev);
7179 if (err) {
7180 dev_err(&pdev->dev,
7181 "igb: Cannot enable PCI device from suspend\n");
7182 return err;
7183 }
7184 pci_set_master(pdev);
7185
7186 pci_enable_wake(pdev, PCI_D3hot, 0);
7187 pci_enable_wake(pdev, PCI_D3cold, 0);
7188
7189 if (igb_init_interrupt_scheme(adapter, true)) {
7190 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7191 return -ENOMEM;
7192 }
7193
7194 igb_reset(adapter);
7195
7196 /* let the f/w know that the h/w is now under the control of the
7197 * driver.
7198 */
7199 igb_get_hw_control(adapter);
7200
7201 wr32(E1000_WUS, ~0);
7202
7203 if (netdev->flags & IFF_UP) {
7204 rtnl_lock();
7205 err = __igb_open(netdev, true);
7206 rtnl_unlock();
7207 if (err)
7208 return err;
7209 }
7210
7211 netif_device_attach(netdev);
7212 return 0;
7213 }
7214
7215 #ifdef CONFIG_PM_RUNTIME
7216 static int igb_runtime_idle(struct device *dev)
7217 {
7218 struct pci_dev *pdev = to_pci_dev(dev);
7219 struct net_device *netdev = pci_get_drvdata(pdev);
7220 struct igb_adapter *adapter = netdev_priv(netdev);
7221
7222 if (!igb_has_link(adapter))
7223 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7224
7225 return -EBUSY;
7226 }
7227
7228 static int igb_runtime_suspend(struct device *dev)
7229 {
7230 struct pci_dev *pdev = to_pci_dev(dev);
7231 int retval;
7232 bool wake;
7233
7234 retval = __igb_shutdown(pdev, &wake, 1);
7235 if (retval)
7236 return retval;
7237
7238 if (wake) {
7239 pci_prepare_to_sleep(pdev);
7240 } else {
7241 pci_wake_from_d3(pdev, false);
7242 pci_set_power_state(pdev, PCI_D3hot);
7243 }
7244
7245 return 0;
7246 }
7247
7248 static int igb_runtime_resume(struct device *dev)
7249 {
7250 return igb_resume(dev);
7251 }
7252 #endif /* CONFIG_PM_RUNTIME */
7253 #endif
7254
7255 static void igb_shutdown(struct pci_dev *pdev)
7256 {
7257 bool wake;
7258
7259 __igb_shutdown(pdev, &wake, 0);
7260
7261 if (system_state == SYSTEM_POWER_OFF) {
7262 pci_wake_from_d3(pdev, wake);
7263 pci_set_power_state(pdev, PCI_D3hot);
7264 }
7265 }
7266
7267 #ifdef CONFIG_PCI_IOV
7268 static int igb_sriov_reinit(struct pci_dev *dev)
7269 {
7270 struct net_device *netdev = pci_get_drvdata(dev);
7271 struct igb_adapter *adapter = netdev_priv(netdev);
7272 struct pci_dev *pdev = adapter->pdev;
7273
7274 rtnl_lock();
7275
7276 if (netif_running(netdev))
7277 igb_close(netdev);
7278
7279 igb_clear_interrupt_scheme(adapter);
7280
7281 igb_init_queue_configuration(adapter);
7282
7283 if (igb_init_interrupt_scheme(adapter, true)) {
7284 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7285 return -ENOMEM;
7286 }
7287
7288 if (netif_running(netdev))
7289 igb_open(netdev);
7290
7291 rtnl_unlock();
7292
7293 return 0;
7294 }
7295
7296 static int igb_pci_disable_sriov(struct pci_dev *dev)
7297 {
7298 int err = igb_disable_sriov(dev);
7299
7300 if (!err)
7301 err = igb_sriov_reinit(dev);
7302
7303 return err;
7304 }
7305
7306 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7307 {
7308 int err = igb_enable_sriov(dev, num_vfs);
7309
7310 if (err)
7311 goto out;
7312
7313 err = igb_sriov_reinit(dev);
7314 if (!err)
7315 return num_vfs;
7316
7317 out:
7318 return err;
7319 }
7320
7321 #endif
7322 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7323 {
7324 #ifdef CONFIG_PCI_IOV
7325 if (num_vfs == 0)
7326 return igb_pci_disable_sriov(dev);
7327 else
7328 return igb_pci_enable_sriov(dev, num_vfs);
7329 #endif
7330 return 0;
7331 }
7332
7333 #ifdef CONFIG_NET_POLL_CONTROLLER
7334 /* Polling 'interrupt' - used by things like netconsole to send skbs
7335 * without having to re-enable interrupts. It's not called while
7336 * the interrupt routine is executing.
7337 */
7338 static void igb_netpoll(struct net_device *netdev)
7339 {
7340 struct igb_adapter *adapter = netdev_priv(netdev);
7341 struct e1000_hw *hw = &adapter->hw;
7342 struct igb_q_vector *q_vector;
7343 int i;
7344
7345 for (i = 0; i < adapter->num_q_vectors; i++) {
7346 q_vector = adapter->q_vector[i];
7347 if (adapter->msix_entries)
7348 wr32(E1000_EIMC, q_vector->eims_value);
7349 else
7350 igb_irq_disable(adapter);
7351 napi_schedule(&q_vector->napi);
7352 }
7353 }
7354 #endif /* CONFIG_NET_POLL_CONTROLLER */
7355
7356 /**
7357 * igb_io_error_detected - called when PCI error is detected
7358 * @pdev: Pointer to PCI device
7359 * @state: The current pci connection state
7360 *
7361 * This function is called after a PCI bus error affecting
7362 * this device has been detected.
7363 **/
7364 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7365 pci_channel_state_t state)
7366 {
7367 struct net_device *netdev = pci_get_drvdata(pdev);
7368 struct igb_adapter *adapter = netdev_priv(netdev);
7369
7370 netif_device_detach(netdev);
7371
7372 if (state == pci_channel_io_perm_failure)
7373 return PCI_ERS_RESULT_DISCONNECT;
7374
7375 if (netif_running(netdev))
7376 igb_down(adapter);
7377 pci_disable_device(pdev);
7378
7379 /* Request a slot slot reset. */
7380 return PCI_ERS_RESULT_NEED_RESET;
7381 }
7382
7383 /**
7384 * igb_io_slot_reset - called after the pci bus has been reset.
7385 * @pdev: Pointer to PCI device
7386 *
7387 * Restart the card from scratch, as if from a cold-boot. Implementation
7388 * resembles the first-half of the igb_resume routine.
7389 **/
7390 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7391 {
7392 struct net_device *netdev = pci_get_drvdata(pdev);
7393 struct igb_adapter *adapter = netdev_priv(netdev);
7394 struct e1000_hw *hw = &adapter->hw;
7395 pci_ers_result_t result;
7396 int err;
7397
7398 if (pci_enable_device_mem(pdev)) {
7399 dev_err(&pdev->dev,
7400 "Cannot re-enable PCI device after reset.\n");
7401 result = PCI_ERS_RESULT_DISCONNECT;
7402 } else {
7403 pci_set_master(pdev);
7404 pci_restore_state(pdev);
7405 pci_save_state(pdev);
7406
7407 pci_enable_wake(pdev, PCI_D3hot, 0);
7408 pci_enable_wake(pdev, PCI_D3cold, 0);
7409
7410 igb_reset(adapter);
7411 wr32(E1000_WUS, ~0);
7412 result = PCI_ERS_RESULT_RECOVERED;
7413 }
7414
7415 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7416 if (err) {
7417 dev_err(&pdev->dev,
7418 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7419 err);
7420 /* non-fatal, continue */
7421 }
7422
7423 return result;
7424 }
7425
7426 /**
7427 * igb_io_resume - called when traffic can start flowing again.
7428 * @pdev: Pointer to PCI device
7429 *
7430 * This callback is called when the error recovery driver tells us that
7431 * its OK to resume normal operation. Implementation resembles the
7432 * second-half of the igb_resume routine.
7433 */
7434 static void igb_io_resume(struct pci_dev *pdev)
7435 {
7436 struct net_device *netdev = pci_get_drvdata(pdev);
7437 struct igb_adapter *adapter = netdev_priv(netdev);
7438
7439 if (netif_running(netdev)) {
7440 if (igb_up(adapter)) {
7441 dev_err(&pdev->dev, "igb_up failed after reset\n");
7442 return;
7443 }
7444 }
7445
7446 netif_device_attach(netdev);
7447
7448 /* let the f/w know that the h/w is now under the control of the
7449 * driver.
7450 */
7451 igb_get_hw_control(adapter);
7452 }
7453
7454 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7455 u8 qsel)
7456 {
7457 u32 rar_low, rar_high;
7458 struct e1000_hw *hw = &adapter->hw;
7459
7460 /* HW expects these in little endian so we reverse the byte order
7461 * from network order (big endian) to little endian
7462 */
7463 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7464 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7465 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7466
7467 /* Indicate to hardware the Address is Valid. */
7468 rar_high |= E1000_RAH_AV;
7469
7470 if (hw->mac.type == e1000_82575)
7471 rar_high |= E1000_RAH_POOL_1 * qsel;
7472 else
7473 rar_high |= E1000_RAH_POOL_1 << qsel;
7474
7475 wr32(E1000_RAL(index), rar_low);
7476 wrfl();
7477 wr32(E1000_RAH(index), rar_high);
7478 wrfl();
7479 }
7480
7481 static int igb_set_vf_mac(struct igb_adapter *adapter,
7482 int vf, unsigned char *mac_addr)
7483 {
7484 struct e1000_hw *hw = &adapter->hw;
7485 /* VF MAC addresses start at end of receive addresses and moves
7486 * towards the first, as a result a collision should not be possible
7487 */
7488 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7489
7490 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7491
7492 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7493
7494 return 0;
7495 }
7496
7497 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7498 {
7499 struct igb_adapter *adapter = netdev_priv(netdev);
7500 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7501 return -EINVAL;
7502 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7503 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7504 dev_info(&adapter->pdev->dev,
7505 "Reload the VF driver to make this change effective.");
7506 if (test_bit(__IGB_DOWN, &adapter->state)) {
7507 dev_warn(&adapter->pdev->dev,
7508 "The VF MAC address has been set, but the PF device is not up.\n");
7509 dev_warn(&adapter->pdev->dev,
7510 "Bring the PF device up before attempting to use the VF device.\n");
7511 }
7512 return igb_set_vf_mac(adapter, vf, mac);
7513 }
7514
7515 static int igb_link_mbps(int internal_link_speed)
7516 {
7517 switch (internal_link_speed) {
7518 case SPEED_100:
7519 return 100;
7520 case SPEED_1000:
7521 return 1000;
7522 default:
7523 return 0;
7524 }
7525 }
7526
7527 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7528 int link_speed)
7529 {
7530 int rf_dec, rf_int;
7531 u32 bcnrc_val;
7532
7533 if (tx_rate != 0) {
7534 /* Calculate the rate factor values to set */
7535 rf_int = link_speed / tx_rate;
7536 rf_dec = (link_speed - (rf_int * tx_rate));
7537 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7538 tx_rate;
7539
7540 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7541 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7542 E1000_RTTBCNRC_RF_INT_MASK);
7543 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7544 } else {
7545 bcnrc_val = 0;
7546 }
7547
7548 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7549 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7550 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7551 */
7552 wr32(E1000_RTTBCNRM, 0x14);
7553 wr32(E1000_RTTBCNRC, bcnrc_val);
7554 }
7555
7556 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7557 {
7558 int actual_link_speed, i;
7559 bool reset_rate = false;
7560
7561 /* VF TX rate limit was not set or not supported */
7562 if ((adapter->vf_rate_link_speed == 0) ||
7563 (adapter->hw.mac.type != e1000_82576))
7564 return;
7565
7566 actual_link_speed = igb_link_mbps(adapter->link_speed);
7567 if (actual_link_speed != adapter->vf_rate_link_speed) {
7568 reset_rate = true;
7569 adapter->vf_rate_link_speed = 0;
7570 dev_info(&adapter->pdev->dev,
7571 "Link speed has been changed. VF Transmit rate is disabled\n");
7572 }
7573
7574 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7575 if (reset_rate)
7576 adapter->vf_data[i].tx_rate = 0;
7577
7578 igb_set_vf_rate_limit(&adapter->hw, i,
7579 adapter->vf_data[i].tx_rate,
7580 actual_link_speed);
7581 }
7582 }
7583
7584 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7585 {
7586 struct igb_adapter *adapter = netdev_priv(netdev);
7587 struct e1000_hw *hw = &adapter->hw;
7588 int actual_link_speed;
7589
7590 if (hw->mac.type != e1000_82576)
7591 return -EOPNOTSUPP;
7592
7593 actual_link_speed = igb_link_mbps(adapter->link_speed);
7594 if ((vf >= adapter->vfs_allocated_count) ||
7595 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7596 (tx_rate < 0) || (tx_rate > actual_link_speed))
7597 return -EINVAL;
7598
7599 adapter->vf_rate_link_speed = actual_link_speed;
7600 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7601 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7602
7603 return 0;
7604 }
7605
7606 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7607 bool setting)
7608 {
7609 struct igb_adapter *adapter = netdev_priv(netdev);
7610 struct e1000_hw *hw = &adapter->hw;
7611 u32 reg_val, reg_offset;
7612
7613 if (!adapter->vfs_allocated_count)
7614 return -EOPNOTSUPP;
7615
7616 if (vf >= adapter->vfs_allocated_count)
7617 return -EINVAL;
7618
7619 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7620 reg_val = rd32(reg_offset);
7621 if (setting)
7622 reg_val |= ((1 << vf) |
7623 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7624 else
7625 reg_val &= ~((1 << vf) |
7626 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7627 wr32(reg_offset, reg_val);
7628
7629 adapter->vf_data[vf].spoofchk_enabled = setting;
7630 return E1000_SUCCESS;
7631 }
7632
7633 static int igb_ndo_get_vf_config(struct net_device *netdev,
7634 int vf, struct ifla_vf_info *ivi)
7635 {
7636 struct igb_adapter *adapter = netdev_priv(netdev);
7637 if (vf >= adapter->vfs_allocated_count)
7638 return -EINVAL;
7639 ivi->vf = vf;
7640 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7641 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7642 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7643 ivi->qos = adapter->vf_data[vf].pf_qos;
7644 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7645 return 0;
7646 }
7647
7648 static void igb_vmm_control(struct igb_adapter *adapter)
7649 {
7650 struct e1000_hw *hw = &adapter->hw;
7651 u32 reg;
7652
7653 switch (hw->mac.type) {
7654 case e1000_82575:
7655 case e1000_i210:
7656 case e1000_i211:
7657 case e1000_i354:
7658 default:
7659 /* replication is not supported for 82575 */
7660 return;
7661 case e1000_82576:
7662 /* notify HW that the MAC is adding vlan tags */
7663 reg = rd32(E1000_DTXCTL);
7664 reg |= E1000_DTXCTL_VLAN_ADDED;
7665 wr32(E1000_DTXCTL, reg);
7666 case e1000_82580:
7667 /* enable replication vlan tag stripping */
7668 reg = rd32(E1000_RPLOLR);
7669 reg |= E1000_RPLOLR_STRVLAN;
7670 wr32(E1000_RPLOLR, reg);
7671 case e1000_i350:
7672 /* none of the above registers are supported by i350 */
7673 break;
7674 }
7675
7676 if (adapter->vfs_allocated_count) {
7677 igb_vmdq_set_loopback_pf(hw, true);
7678 igb_vmdq_set_replication_pf(hw, true);
7679 igb_vmdq_set_anti_spoofing_pf(hw, true,
7680 adapter->vfs_allocated_count);
7681 } else {
7682 igb_vmdq_set_loopback_pf(hw, false);
7683 igb_vmdq_set_replication_pf(hw, false);
7684 }
7685 }
7686
7687 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7688 {
7689 struct e1000_hw *hw = &adapter->hw;
7690 u32 dmac_thr;
7691 u16 hwm;
7692
7693 if (hw->mac.type > e1000_82580) {
7694 if (adapter->flags & IGB_FLAG_DMAC) {
7695 u32 reg;
7696
7697 /* force threshold to 0. */
7698 wr32(E1000_DMCTXTH, 0);
7699
7700 /* DMA Coalescing high water mark needs to be greater
7701 * than the Rx threshold. Set hwm to PBA - max frame
7702 * size in 16B units, capping it at PBA - 6KB.
7703 */
7704 hwm = 64 * pba - adapter->max_frame_size / 16;
7705 if (hwm < 64 * (pba - 6))
7706 hwm = 64 * (pba - 6);
7707 reg = rd32(E1000_FCRTC);
7708 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7709 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7710 & E1000_FCRTC_RTH_COAL_MASK);
7711 wr32(E1000_FCRTC, reg);
7712
7713 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7714 * frame size, capping it at PBA - 10KB.
7715 */
7716 dmac_thr = pba - adapter->max_frame_size / 512;
7717 if (dmac_thr < pba - 10)
7718 dmac_thr = pba - 10;
7719 reg = rd32(E1000_DMACR);
7720 reg &= ~E1000_DMACR_DMACTHR_MASK;
7721 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7722 & E1000_DMACR_DMACTHR_MASK);
7723
7724 /* transition to L0x or L1 if available..*/
7725 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7726
7727 /* watchdog timer= +-1000 usec in 32usec intervals */
7728 reg |= (1000 >> 5);
7729
7730 /* Disable BMC-to-OS Watchdog Enable */
7731 if (hw->mac.type != e1000_i354)
7732 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7733
7734 wr32(E1000_DMACR, reg);
7735
7736 /* no lower threshold to disable
7737 * coalescing(smart fifb)-UTRESH=0
7738 */
7739 wr32(E1000_DMCRTRH, 0);
7740
7741 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7742
7743 wr32(E1000_DMCTLX, reg);
7744
7745 /* free space in tx packet buffer to wake from
7746 * DMA coal
7747 */
7748 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7749 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7750
7751 /* make low power state decision controlled
7752 * by DMA coal
7753 */
7754 reg = rd32(E1000_PCIEMISC);
7755 reg &= ~E1000_PCIEMISC_LX_DECISION;
7756 wr32(E1000_PCIEMISC, reg);
7757 } /* endif adapter->dmac is not disabled */
7758 } else if (hw->mac.type == e1000_82580) {
7759 u32 reg = rd32(E1000_PCIEMISC);
7760 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7761 wr32(E1000_DMACR, 0);
7762 }
7763 }
7764
7765 /**
7766 * igb_read_i2c_byte - Reads 8 bit word over I2C
7767 * @hw: pointer to hardware structure
7768 * @byte_offset: byte offset to read
7769 * @dev_addr: device address
7770 * @data: value read
7771 *
7772 * Performs byte read operation over I2C interface at
7773 * a specified device address.
7774 **/
7775 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7776 u8 dev_addr, u8 *data)
7777 {
7778 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7779 struct i2c_client *this_client = adapter->i2c_client;
7780 s32 status;
7781 u16 swfw_mask = 0;
7782
7783 if (!this_client)
7784 return E1000_ERR_I2C;
7785
7786 swfw_mask = E1000_SWFW_PHY0_SM;
7787
7788 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7789 != E1000_SUCCESS)
7790 return E1000_ERR_SWFW_SYNC;
7791
7792 status = i2c_smbus_read_byte_data(this_client, byte_offset);
7793 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7794
7795 if (status < 0)
7796 return E1000_ERR_I2C;
7797 else {
7798 *data = status;
7799 return E1000_SUCCESS;
7800 }
7801 }
7802
7803 /**
7804 * igb_write_i2c_byte - Writes 8 bit word over I2C
7805 * @hw: pointer to hardware structure
7806 * @byte_offset: byte offset to write
7807 * @dev_addr: device address
7808 * @data: value to write
7809 *
7810 * Performs byte write operation over I2C interface at
7811 * a specified device address.
7812 **/
7813 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7814 u8 dev_addr, u8 data)
7815 {
7816 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7817 struct i2c_client *this_client = adapter->i2c_client;
7818 s32 status;
7819 u16 swfw_mask = E1000_SWFW_PHY0_SM;
7820
7821 if (!this_client)
7822 return E1000_ERR_I2C;
7823
7824 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7825 return E1000_ERR_SWFW_SYNC;
7826 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7827 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7828
7829 if (status)
7830 return E1000_ERR_I2C;
7831 else
7832 return E1000_SUCCESS;
7833
7834 }
7835
7836 int igb_reinit_queues(struct igb_adapter *adapter)
7837 {
7838 struct net_device *netdev = adapter->netdev;
7839 struct pci_dev *pdev = adapter->pdev;
7840 int err = 0;
7841
7842 if (netif_running(netdev))
7843 igb_close(netdev);
7844
7845 igb_clear_interrupt_scheme(adapter);
7846
7847 if (igb_init_interrupt_scheme(adapter, true)) {
7848 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7849 return -ENOMEM;
7850 }
7851
7852 if (netif_running(netdev))
7853 err = igb_open(netdev);
7854
7855 return err;
7856 }
7857 /* igb_main.c */
This page took 0.194652 seconds and 6 git commands to generate.