Merge tag 'pm-urgent-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59
60 #define MAJ 5
61 #define MIN 3
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68 "Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70 "Copyright (c) 2007-2014 Intel Corporation.";
71
72 static const struct e1000_info *igb_info_tbl[] = {
73 [board_82575] = &e1000_82575_info,
74 };
75
76 static const struct pci_device_id igb_pci_tbl[] = {
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112 /* required last entry */
113 {0, }
114 };
115
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141 struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160 netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
170 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172 int vf, u16 vlan, u8 qos);
173 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
174 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175 bool setting);
176 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177 struct ifla_vf_info *ivi);
178 static void igb_check_vf_rate_limit(struct igb_adapter *);
179
180 #ifdef CONFIG_PCI_IOV
181 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
182 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
183 static int igb_disable_sriov(struct pci_dev *dev);
184 static int igb_pci_disable_sriov(struct pci_dev *dev);
185 #endif
186
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 static int igb_runtime_suspend(struct device *dev);
193 static int igb_runtime_resume(struct device *dev);
194 static int igb_runtime_idle(struct device *dev);
195 static const struct dev_pm_ops igb_pm_ops = {
196 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198 igb_runtime_idle)
199 };
200 #endif
201 static void igb_shutdown(struct pci_dev *);
202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203 #ifdef CONFIG_IGB_DCA
204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205 static struct notifier_block dca_notifier = {
206 .notifier_call = igb_notify_dca,
207 .next = NULL,
208 .priority = 0
209 };
210 #endif
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void igb_netpoll(struct net_device *);
214 #endif
215 #ifdef CONFIG_PCI_IOV
216 static unsigned int max_vfs;
217 module_param(max_vfs, uint, 0);
218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
219 #endif /* CONFIG_PCI_IOV */
220
221 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
222 pci_channel_state_t);
223 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
224 static void igb_io_resume(struct pci_dev *);
225
226 static const struct pci_error_handlers igb_err_handler = {
227 .error_detected = igb_io_error_detected,
228 .slot_reset = igb_io_slot_reset,
229 .resume = igb_io_resume,
230 };
231
232 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
233
234 static struct pci_driver igb_driver = {
235 .name = igb_driver_name,
236 .id_table = igb_pci_tbl,
237 .probe = igb_probe,
238 .remove = igb_remove,
239 #ifdef CONFIG_PM
240 .driver.pm = &igb_pm_ops,
241 #endif
242 .shutdown = igb_shutdown,
243 .sriov_configure = igb_pci_sriov_configure,
244 .err_handler = &igb_err_handler
245 };
246
247 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
248 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION);
251
252 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
253 static int debug = -1;
254 module_param(debug, int, 0);
255 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
256
257 struct igb_reg_info {
258 u32 ofs;
259 char *name;
260 };
261
262 static const struct igb_reg_info igb_reg_info_tbl[] = {
263
264 /* General Registers */
265 {E1000_CTRL, "CTRL"},
266 {E1000_STATUS, "STATUS"},
267 {E1000_CTRL_EXT, "CTRL_EXT"},
268
269 /* Interrupt Registers */
270 {E1000_ICR, "ICR"},
271
272 /* RX Registers */
273 {E1000_RCTL, "RCTL"},
274 {E1000_RDLEN(0), "RDLEN"},
275 {E1000_RDH(0), "RDH"},
276 {E1000_RDT(0), "RDT"},
277 {E1000_RXDCTL(0), "RXDCTL"},
278 {E1000_RDBAL(0), "RDBAL"},
279 {E1000_RDBAH(0), "RDBAH"},
280
281 /* TX Registers */
282 {E1000_TCTL, "TCTL"},
283 {E1000_TDBAL(0), "TDBAL"},
284 {E1000_TDBAH(0), "TDBAH"},
285 {E1000_TDLEN(0), "TDLEN"},
286 {E1000_TDH(0), "TDH"},
287 {E1000_TDT(0), "TDT"},
288 {E1000_TXDCTL(0), "TXDCTL"},
289 {E1000_TDFH, "TDFH"},
290 {E1000_TDFT, "TDFT"},
291 {E1000_TDFHS, "TDFHS"},
292 {E1000_TDFPC, "TDFPC"},
293
294 /* List Terminator */
295 {}
296 };
297
298 /* igb_regdump - register printout routine */
299 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
300 {
301 int n = 0;
302 char rname[16];
303 u32 regs[8];
304
305 switch (reginfo->ofs) {
306 case E1000_RDLEN(0):
307 for (n = 0; n < 4; n++)
308 regs[n] = rd32(E1000_RDLEN(n));
309 break;
310 case E1000_RDH(0):
311 for (n = 0; n < 4; n++)
312 regs[n] = rd32(E1000_RDH(n));
313 break;
314 case E1000_RDT(0):
315 for (n = 0; n < 4; n++)
316 regs[n] = rd32(E1000_RDT(n));
317 break;
318 case E1000_RXDCTL(0):
319 for (n = 0; n < 4; n++)
320 regs[n] = rd32(E1000_RXDCTL(n));
321 break;
322 case E1000_RDBAL(0):
323 for (n = 0; n < 4; n++)
324 regs[n] = rd32(E1000_RDBAL(n));
325 break;
326 case E1000_RDBAH(0):
327 for (n = 0; n < 4; n++)
328 regs[n] = rd32(E1000_RDBAH(n));
329 break;
330 case E1000_TDBAL(0):
331 for (n = 0; n < 4; n++)
332 regs[n] = rd32(E1000_RDBAL(n));
333 break;
334 case E1000_TDBAH(0):
335 for (n = 0; n < 4; n++)
336 regs[n] = rd32(E1000_TDBAH(n));
337 break;
338 case E1000_TDLEN(0):
339 for (n = 0; n < 4; n++)
340 regs[n] = rd32(E1000_TDLEN(n));
341 break;
342 case E1000_TDH(0):
343 for (n = 0; n < 4; n++)
344 regs[n] = rd32(E1000_TDH(n));
345 break;
346 case E1000_TDT(0):
347 for (n = 0; n < 4; n++)
348 regs[n] = rd32(E1000_TDT(n));
349 break;
350 case E1000_TXDCTL(0):
351 for (n = 0; n < 4; n++)
352 regs[n] = rd32(E1000_TXDCTL(n));
353 break;
354 default:
355 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
356 return;
357 }
358
359 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
360 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
361 regs[2], regs[3]);
362 }
363
364 /* igb_dump - Print registers, Tx-rings and Rx-rings */
365 static void igb_dump(struct igb_adapter *adapter)
366 {
367 struct net_device *netdev = adapter->netdev;
368 struct e1000_hw *hw = &adapter->hw;
369 struct igb_reg_info *reginfo;
370 struct igb_ring *tx_ring;
371 union e1000_adv_tx_desc *tx_desc;
372 struct my_u0 { u64 a; u64 b; } *u0;
373 struct igb_ring *rx_ring;
374 union e1000_adv_rx_desc *rx_desc;
375 u32 staterr;
376 u16 i, n;
377
378 if (!netif_msg_hw(adapter))
379 return;
380
381 /* Print netdevice Info */
382 if (netdev) {
383 dev_info(&adapter->pdev->dev, "Net device Info\n");
384 pr_info("Device Name state trans_start last_rx\n");
385 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
386 netdev->state, dev_trans_start(netdev), netdev->last_rx);
387 }
388
389 /* Print Registers */
390 dev_info(&adapter->pdev->dev, "Register Dump\n");
391 pr_info(" Register Name Value\n");
392 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
393 reginfo->name; reginfo++) {
394 igb_regdump(hw, reginfo);
395 }
396
397 /* Print TX Ring Summary */
398 if (!netdev || !netif_running(netdev))
399 goto exit;
400
401 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
402 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
403 for (n = 0; n < adapter->num_tx_queues; n++) {
404 struct igb_tx_buffer *buffer_info;
405 tx_ring = adapter->tx_ring[n];
406 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
407 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
408 n, tx_ring->next_to_use, tx_ring->next_to_clean,
409 (u64)dma_unmap_addr(buffer_info, dma),
410 dma_unmap_len(buffer_info, len),
411 buffer_info->next_to_watch,
412 (u64)buffer_info->time_stamp);
413 }
414
415 /* Print TX Rings */
416 if (!netif_msg_tx_done(adapter))
417 goto rx_ring_summary;
418
419 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
420
421 /* Transmit Descriptor Formats
422 *
423 * Advanced Transmit Descriptor
424 * +--------------------------------------------------------------+
425 * 0 | Buffer Address [63:0] |
426 * +--------------------------------------------------------------+
427 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
428 * +--------------------------------------------------------------+
429 * 63 46 45 40 39 38 36 35 32 31 24 15 0
430 */
431
432 for (n = 0; n < adapter->num_tx_queues; n++) {
433 tx_ring = adapter->tx_ring[n];
434 pr_info("------------------------------------\n");
435 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
436 pr_info("------------------------------------\n");
437 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
438
439 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
440 const char *next_desc;
441 struct igb_tx_buffer *buffer_info;
442 tx_desc = IGB_TX_DESC(tx_ring, i);
443 buffer_info = &tx_ring->tx_buffer_info[i];
444 u0 = (struct my_u0 *)tx_desc;
445 if (i == tx_ring->next_to_use &&
446 i == tx_ring->next_to_clean)
447 next_desc = " NTC/U";
448 else if (i == tx_ring->next_to_use)
449 next_desc = " NTU";
450 else if (i == tx_ring->next_to_clean)
451 next_desc = " NTC";
452 else
453 next_desc = "";
454
455 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
456 i, le64_to_cpu(u0->a),
457 le64_to_cpu(u0->b),
458 (u64)dma_unmap_addr(buffer_info, dma),
459 dma_unmap_len(buffer_info, len),
460 buffer_info->next_to_watch,
461 (u64)buffer_info->time_stamp,
462 buffer_info->skb, next_desc);
463
464 if (netif_msg_pktdata(adapter) && buffer_info->skb)
465 print_hex_dump(KERN_INFO, "",
466 DUMP_PREFIX_ADDRESS,
467 16, 1, buffer_info->skb->data,
468 dma_unmap_len(buffer_info, len),
469 true);
470 }
471 }
472
473 /* Print RX Rings Summary */
474 rx_ring_summary:
475 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476 pr_info("Queue [NTU] [NTC]\n");
477 for (n = 0; n < adapter->num_rx_queues; n++) {
478 rx_ring = adapter->rx_ring[n];
479 pr_info(" %5d %5X %5X\n",
480 n, rx_ring->next_to_use, rx_ring->next_to_clean);
481 }
482
483 /* Print RX Rings */
484 if (!netif_msg_rx_status(adapter))
485 goto exit;
486
487 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488
489 /* Advanced Receive Descriptor (Read) Format
490 * 63 1 0
491 * +-----------------------------------------------------+
492 * 0 | Packet Buffer Address [63:1] |A0/NSE|
493 * +----------------------------------------------+------+
494 * 8 | Header Buffer Address [63:1] | DD |
495 * +-----------------------------------------------------+
496 *
497 *
498 * Advanced Receive Descriptor (Write-Back) Format
499 *
500 * 63 48 47 32 31 30 21 20 17 16 4 3 0
501 * +------------------------------------------------------+
502 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
503 * | Checksum Ident | | | | Type | Type |
504 * +------------------------------------------------------+
505 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506 * +------------------------------------------------------+
507 * 63 48 47 32 31 20 19 0
508 */
509
510 for (n = 0; n < adapter->num_rx_queues; n++) {
511 rx_ring = adapter->rx_ring[n];
512 pr_info("------------------------------------\n");
513 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514 pr_info("------------------------------------\n");
515 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
516 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
517
518 for (i = 0; i < rx_ring->count; i++) {
519 const char *next_desc;
520 struct igb_rx_buffer *buffer_info;
521 buffer_info = &rx_ring->rx_buffer_info[i];
522 rx_desc = IGB_RX_DESC(rx_ring, i);
523 u0 = (struct my_u0 *)rx_desc;
524 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
525
526 if (i == rx_ring->next_to_use)
527 next_desc = " NTU";
528 else if (i == rx_ring->next_to_clean)
529 next_desc = " NTC";
530 else
531 next_desc = "";
532
533 if (staterr & E1000_RXD_STAT_DD) {
534 /* Descriptor Done */
535 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
536 "RWB", i,
537 le64_to_cpu(u0->a),
538 le64_to_cpu(u0->b),
539 next_desc);
540 } else {
541 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
542 "R ", i,
543 le64_to_cpu(u0->a),
544 le64_to_cpu(u0->b),
545 (u64)buffer_info->dma,
546 next_desc);
547
548 if (netif_msg_pktdata(adapter) &&
549 buffer_info->dma && buffer_info->page) {
550 print_hex_dump(KERN_INFO, "",
551 DUMP_PREFIX_ADDRESS,
552 16, 1,
553 page_address(buffer_info->page) +
554 buffer_info->page_offset,
555 IGB_RX_BUFSZ, true);
556 }
557 }
558 }
559 }
560
561 exit:
562 return;
563 }
564
565 /**
566 * igb_get_i2c_data - Reads the I2C SDA data bit
567 * @hw: pointer to hardware structure
568 * @i2cctl: Current value of I2CCTL register
569 *
570 * Returns the I2C data bit value
571 **/
572 static int igb_get_i2c_data(void *data)
573 {
574 struct igb_adapter *adapter = (struct igb_adapter *)data;
575 struct e1000_hw *hw = &adapter->hw;
576 s32 i2cctl = rd32(E1000_I2CPARAMS);
577
578 return !!(i2cctl & E1000_I2C_DATA_IN);
579 }
580
581 /**
582 * igb_set_i2c_data - Sets the I2C data bit
583 * @data: pointer to hardware structure
584 * @state: I2C data value (0 or 1) to set
585 *
586 * Sets the I2C data bit
587 **/
588 static void igb_set_i2c_data(void *data, int state)
589 {
590 struct igb_adapter *adapter = (struct igb_adapter *)data;
591 struct e1000_hw *hw = &adapter->hw;
592 s32 i2cctl = rd32(E1000_I2CPARAMS);
593
594 if (state)
595 i2cctl |= E1000_I2C_DATA_OUT;
596 else
597 i2cctl &= ~E1000_I2C_DATA_OUT;
598
599 i2cctl &= ~E1000_I2C_DATA_OE_N;
600 i2cctl |= E1000_I2C_CLK_OE_N;
601 wr32(E1000_I2CPARAMS, i2cctl);
602 wrfl();
603
604 }
605
606 /**
607 * igb_set_i2c_clk - Sets the I2C SCL clock
608 * @data: pointer to hardware structure
609 * @state: state to set clock
610 *
611 * Sets the I2C clock line to state
612 **/
613 static void igb_set_i2c_clk(void *data, int state)
614 {
615 struct igb_adapter *adapter = (struct igb_adapter *)data;
616 struct e1000_hw *hw = &adapter->hw;
617 s32 i2cctl = rd32(E1000_I2CPARAMS);
618
619 if (state) {
620 i2cctl |= E1000_I2C_CLK_OUT;
621 i2cctl &= ~E1000_I2C_CLK_OE_N;
622 } else {
623 i2cctl &= ~E1000_I2C_CLK_OUT;
624 i2cctl &= ~E1000_I2C_CLK_OE_N;
625 }
626 wr32(E1000_I2CPARAMS, i2cctl);
627 wrfl();
628 }
629
630 /**
631 * igb_get_i2c_clk - Gets the I2C SCL clock state
632 * @data: pointer to hardware structure
633 *
634 * Gets the I2C clock state
635 **/
636 static int igb_get_i2c_clk(void *data)
637 {
638 struct igb_adapter *adapter = (struct igb_adapter *)data;
639 struct e1000_hw *hw = &adapter->hw;
640 s32 i2cctl = rd32(E1000_I2CPARAMS);
641
642 return !!(i2cctl & E1000_I2C_CLK_IN);
643 }
644
645 static const struct i2c_algo_bit_data igb_i2c_algo = {
646 .setsda = igb_set_i2c_data,
647 .setscl = igb_set_i2c_clk,
648 .getsda = igb_get_i2c_data,
649 .getscl = igb_get_i2c_clk,
650 .udelay = 5,
651 .timeout = 20,
652 };
653
654 /**
655 * igb_get_hw_dev - return device
656 * @hw: pointer to hardware structure
657 *
658 * used by hardware layer to print debugging information
659 **/
660 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
661 {
662 struct igb_adapter *adapter = hw->back;
663 return adapter->netdev;
664 }
665
666 /**
667 * igb_init_module - Driver Registration Routine
668 *
669 * igb_init_module is the first routine called when the driver is
670 * loaded. All it does is register with the PCI subsystem.
671 **/
672 static int __init igb_init_module(void)
673 {
674 int ret;
675
676 pr_info("%s - version %s\n",
677 igb_driver_string, igb_driver_version);
678 pr_info("%s\n", igb_copyright);
679
680 #ifdef CONFIG_IGB_DCA
681 dca_register_notify(&dca_notifier);
682 #endif
683 ret = pci_register_driver(&igb_driver);
684 return ret;
685 }
686
687 module_init(igb_init_module);
688
689 /**
690 * igb_exit_module - Driver Exit Cleanup Routine
691 *
692 * igb_exit_module is called just before the driver is removed
693 * from memory.
694 **/
695 static void __exit igb_exit_module(void)
696 {
697 #ifdef CONFIG_IGB_DCA
698 dca_unregister_notify(&dca_notifier);
699 #endif
700 pci_unregister_driver(&igb_driver);
701 }
702
703 module_exit(igb_exit_module);
704
705 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
706 /**
707 * igb_cache_ring_register - Descriptor ring to register mapping
708 * @adapter: board private structure to initialize
709 *
710 * Once we know the feature-set enabled for the device, we'll cache
711 * the register offset the descriptor ring is assigned to.
712 **/
713 static void igb_cache_ring_register(struct igb_adapter *adapter)
714 {
715 int i = 0, j = 0;
716 u32 rbase_offset = adapter->vfs_allocated_count;
717
718 switch (adapter->hw.mac.type) {
719 case e1000_82576:
720 /* The queues are allocated for virtualization such that VF 0
721 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
722 * In order to avoid collision we start at the first free queue
723 * and continue consuming queues in the same sequence
724 */
725 if (adapter->vfs_allocated_count) {
726 for (; i < adapter->rss_queues; i++)
727 adapter->rx_ring[i]->reg_idx = rbase_offset +
728 Q_IDX_82576(i);
729 }
730 /* Fall through */
731 case e1000_82575:
732 case e1000_82580:
733 case e1000_i350:
734 case e1000_i354:
735 case e1000_i210:
736 case e1000_i211:
737 /* Fall through */
738 default:
739 for (; i < adapter->num_rx_queues; i++)
740 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
741 for (; j < adapter->num_tx_queues; j++)
742 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
743 break;
744 }
745 }
746
747 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
748 {
749 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
750 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
751 u32 value = 0;
752
753 if (E1000_REMOVED(hw_addr))
754 return ~value;
755
756 value = readl(&hw_addr[reg]);
757
758 /* reads should not return all F's */
759 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
760 struct net_device *netdev = igb->netdev;
761 hw->hw_addr = NULL;
762 netif_device_detach(netdev);
763 netdev_err(netdev, "PCIe link lost, device now detached\n");
764 }
765
766 return value;
767 }
768
769 /**
770 * igb_write_ivar - configure ivar for given MSI-X vector
771 * @hw: pointer to the HW structure
772 * @msix_vector: vector number we are allocating to a given ring
773 * @index: row index of IVAR register to write within IVAR table
774 * @offset: column offset of in IVAR, should be multiple of 8
775 *
776 * This function is intended to handle the writing of the IVAR register
777 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
778 * each containing an cause allocation for an Rx and Tx ring, and a
779 * variable number of rows depending on the number of queues supported.
780 **/
781 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
782 int index, int offset)
783 {
784 u32 ivar = array_rd32(E1000_IVAR0, index);
785
786 /* clear any bits that are currently set */
787 ivar &= ~((u32)0xFF << offset);
788
789 /* write vector and valid bit */
790 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
791
792 array_wr32(E1000_IVAR0, index, ivar);
793 }
794
795 #define IGB_N0_QUEUE -1
796 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
797 {
798 struct igb_adapter *adapter = q_vector->adapter;
799 struct e1000_hw *hw = &adapter->hw;
800 int rx_queue = IGB_N0_QUEUE;
801 int tx_queue = IGB_N0_QUEUE;
802 u32 msixbm = 0;
803
804 if (q_vector->rx.ring)
805 rx_queue = q_vector->rx.ring->reg_idx;
806 if (q_vector->tx.ring)
807 tx_queue = q_vector->tx.ring->reg_idx;
808
809 switch (hw->mac.type) {
810 case e1000_82575:
811 /* The 82575 assigns vectors using a bitmask, which matches the
812 * bitmask for the EICR/EIMS/EIMC registers. To assign one
813 * or more queues to a vector, we write the appropriate bits
814 * into the MSIXBM register for that vector.
815 */
816 if (rx_queue > IGB_N0_QUEUE)
817 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
818 if (tx_queue > IGB_N0_QUEUE)
819 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
820 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
821 msixbm |= E1000_EIMS_OTHER;
822 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
823 q_vector->eims_value = msixbm;
824 break;
825 case e1000_82576:
826 /* 82576 uses a table that essentially consists of 2 columns
827 * with 8 rows. The ordering is column-major so we use the
828 * lower 3 bits as the row index, and the 4th bit as the
829 * column offset.
830 */
831 if (rx_queue > IGB_N0_QUEUE)
832 igb_write_ivar(hw, msix_vector,
833 rx_queue & 0x7,
834 (rx_queue & 0x8) << 1);
835 if (tx_queue > IGB_N0_QUEUE)
836 igb_write_ivar(hw, msix_vector,
837 tx_queue & 0x7,
838 ((tx_queue & 0x8) << 1) + 8);
839 q_vector->eims_value = BIT(msix_vector);
840 break;
841 case e1000_82580:
842 case e1000_i350:
843 case e1000_i354:
844 case e1000_i210:
845 case e1000_i211:
846 /* On 82580 and newer adapters the scheme is similar to 82576
847 * however instead of ordering column-major we have things
848 * ordered row-major. So we traverse the table by using
849 * bit 0 as the column offset, and the remaining bits as the
850 * row index.
851 */
852 if (rx_queue > IGB_N0_QUEUE)
853 igb_write_ivar(hw, msix_vector,
854 rx_queue >> 1,
855 (rx_queue & 0x1) << 4);
856 if (tx_queue > IGB_N0_QUEUE)
857 igb_write_ivar(hw, msix_vector,
858 tx_queue >> 1,
859 ((tx_queue & 0x1) << 4) + 8);
860 q_vector->eims_value = BIT(msix_vector);
861 break;
862 default:
863 BUG();
864 break;
865 }
866
867 /* add q_vector eims value to global eims_enable_mask */
868 adapter->eims_enable_mask |= q_vector->eims_value;
869
870 /* configure q_vector to set itr on first interrupt */
871 q_vector->set_itr = 1;
872 }
873
874 /**
875 * igb_configure_msix - Configure MSI-X hardware
876 * @adapter: board private structure to initialize
877 *
878 * igb_configure_msix sets up the hardware to properly
879 * generate MSI-X interrupts.
880 **/
881 static void igb_configure_msix(struct igb_adapter *adapter)
882 {
883 u32 tmp;
884 int i, vector = 0;
885 struct e1000_hw *hw = &adapter->hw;
886
887 adapter->eims_enable_mask = 0;
888
889 /* set vector for other causes, i.e. link changes */
890 switch (hw->mac.type) {
891 case e1000_82575:
892 tmp = rd32(E1000_CTRL_EXT);
893 /* enable MSI-X PBA support*/
894 tmp |= E1000_CTRL_EXT_PBA_CLR;
895
896 /* Auto-Mask interrupts upon ICR read. */
897 tmp |= E1000_CTRL_EXT_EIAME;
898 tmp |= E1000_CTRL_EXT_IRCA;
899
900 wr32(E1000_CTRL_EXT, tmp);
901
902 /* enable msix_other interrupt */
903 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
904 adapter->eims_other = E1000_EIMS_OTHER;
905
906 break;
907
908 case e1000_82576:
909 case e1000_82580:
910 case e1000_i350:
911 case e1000_i354:
912 case e1000_i210:
913 case e1000_i211:
914 /* Turn on MSI-X capability first, or our settings
915 * won't stick. And it will take days to debug.
916 */
917 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
918 E1000_GPIE_PBA | E1000_GPIE_EIAME |
919 E1000_GPIE_NSICR);
920
921 /* enable msix_other interrupt */
922 adapter->eims_other = BIT(vector);
923 tmp = (vector++ | E1000_IVAR_VALID) << 8;
924
925 wr32(E1000_IVAR_MISC, tmp);
926 break;
927 default:
928 /* do nothing, since nothing else supports MSI-X */
929 break;
930 } /* switch (hw->mac.type) */
931
932 adapter->eims_enable_mask |= adapter->eims_other;
933
934 for (i = 0; i < adapter->num_q_vectors; i++)
935 igb_assign_vector(adapter->q_vector[i], vector++);
936
937 wrfl();
938 }
939
940 /**
941 * igb_request_msix - Initialize MSI-X interrupts
942 * @adapter: board private structure to initialize
943 *
944 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
945 * kernel.
946 **/
947 static int igb_request_msix(struct igb_adapter *adapter)
948 {
949 struct net_device *netdev = adapter->netdev;
950 int i, err = 0, vector = 0, free_vector = 0;
951
952 err = request_irq(adapter->msix_entries[vector].vector,
953 igb_msix_other, 0, netdev->name, adapter);
954 if (err)
955 goto err_out;
956
957 for (i = 0; i < adapter->num_q_vectors; i++) {
958 struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960 vector++;
961
962 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
963
964 if (q_vector->rx.ring && q_vector->tx.ring)
965 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966 q_vector->rx.ring->queue_index);
967 else if (q_vector->tx.ring)
968 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969 q_vector->tx.ring->queue_index);
970 else if (q_vector->rx.ring)
971 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972 q_vector->rx.ring->queue_index);
973 else
974 sprintf(q_vector->name, "%s-unused", netdev->name);
975
976 err = request_irq(adapter->msix_entries[vector].vector,
977 igb_msix_ring, 0, q_vector->name,
978 q_vector);
979 if (err)
980 goto err_free;
981 }
982
983 igb_configure_msix(adapter);
984 return 0;
985
986 err_free:
987 /* free already assigned IRQs */
988 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990 vector--;
991 for (i = 0; i < vector; i++) {
992 free_irq(adapter->msix_entries[free_vector++].vector,
993 adapter->q_vector[i]);
994 }
995 err_out:
996 return err;
997 }
998
999 /**
1000 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1001 * @adapter: board private structure to initialize
1002 * @v_idx: Index of vector to be freed
1003 *
1004 * This function frees the memory allocated to the q_vector.
1005 **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010 adapter->q_vector[v_idx] = NULL;
1011
1012 /* igb_get_stats64() might access the rings on this vector,
1013 * we must wait a grace period before freeing it.
1014 */
1015 if (q_vector)
1016 kfree_rcu(q_vector, rcu);
1017 }
1018
1019 /**
1020 * igb_reset_q_vector - Reset config for interrupt vector
1021 * @adapter: board private structure to initialize
1022 * @v_idx: Index of vector to be reset
1023 *
1024 * If NAPI is enabled it will delete any references to the
1025 * NAPI struct. This is preparation for igb_free_q_vector.
1026 **/
1027 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028 {
1029 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1032 * allocated. So, q_vector is NULL so we should stop here.
1033 */
1034 if (!q_vector)
1035 return;
1036
1037 if (q_vector->tx.ring)
1038 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040 if (q_vector->rx.ring)
1041 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043 netif_napi_del(&q_vector->napi);
1044
1045 }
1046
1047 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048 {
1049 int v_idx = adapter->num_q_vectors;
1050
1051 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052 pci_disable_msix(adapter->pdev);
1053 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054 pci_disable_msi(adapter->pdev);
1055
1056 while (v_idx--)
1057 igb_reset_q_vector(adapter, v_idx);
1058 }
1059
1060 /**
1061 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1062 * @adapter: board private structure to initialize
1063 *
1064 * This function frees the memory allocated to the q_vectors. In addition if
1065 * NAPI is enabled it will delete any references to the NAPI struct prior
1066 * to freeing the q_vector.
1067 **/
1068 static void igb_free_q_vectors(struct igb_adapter *adapter)
1069 {
1070 int v_idx = adapter->num_q_vectors;
1071
1072 adapter->num_tx_queues = 0;
1073 adapter->num_rx_queues = 0;
1074 adapter->num_q_vectors = 0;
1075
1076 while (v_idx--) {
1077 igb_reset_q_vector(adapter, v_idx);
1078 igb_free_q_vector(adapter, v_idx);
1079 }
1080 }
1081
1082 /**
1083 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084 * @adapter: board private structure to initialize
1085 *
1086 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1087 * MSI-X interrupts allocated.
1088 */
1089 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090 {
1091 igb_free_q_vectors(adapter);
1092 igb_reset_interrupt_capability(adapter);
1093 }
1094
1095 /**
1096 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1097 * @adapter: board private structure to initialize
1098 * @msix: boolean value of MSIX capability
1099 *
1100 * Attempt to configure interrupts using the best available
1101 * capabilities of the hardware and kernel.
1102 **/
1103 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104 {
1105 int err;
1106 int numvecs, i;
1107
1108 if (!msix)
1109 goto msi_only;
1110 adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112 /* Number of supported queues. */
1113 adapter->num_rx_queues = adapter->rss_queues;
1114 if (adapter->vfs_allocated_count)
1115 adapter->num_tx_queues = 1;
1116 else
1117 adapter->num_tx_queues = adapter->rss_queues;
1118
1119 /* start with one vector for every Rx queue */
1120 numvecs = adapter->num_rx_queues;
1121
1122 /* if Tx handler is separate add 1 for every Tx queue */
1123 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124 numvecs += adapter->num_tx_queues;
1125
1126 /* store the number of vectors reserved for queues */
1127 adapter->num_q_vectors = numvecs;
1128
1129 /* add 1 vector for link status interrupts */
1130 numvecs++;
1131 for (i = 0; i < numvecs; i++)
1132 adapter->msix_entries[i].entry = i;
1133
1134 err = pci_enable_msix_range(adapter->pdev,
1135 adapter->msix_entries,
1136 numvecs,
1137 numvecs);
1138 if (err > 0)
1139 return;
1140
1141 igb_reset_interrupt_capability(adapter);
1142
1143 /* If we can't do MSI-X, try MSI */
1144 msi_only:
1145 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146 #ifdef CONFIG_PCI_IOV
1147 /* disable SR-IOV for non MSI-X configurations */
1148 if (adapter->vf_data) {
1149 struct e1000_hw *hw = &adapter->hw;
1150 /* disable iov and allow time for transactions to clear */
1151 pci_disable_sriov(adapter->pdev);
1152 msleep(500);
1153
1154 kfree(adapter->vf_data);
1155 adapter->vf_data = NULL;
1156 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157 wrfl();
1158 msleep(100);
1159 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160 }
1161 #endif
1162 adapter->vfs_allocated_count = 0;
1163 adapter->rss_queues = 1;
1164 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165 adapter->num_rx_queues = 1;
1166 adapter->num_tx_queues = 1;
1167 adapter->num_q_vectors = 1;
1168 if (!pci_enable_msi(adapter->pdev))
1169 adapter->flags |= IGB_FLAG_HAS_MSI;
1170 }
1171
1172 static void igb_add_ring(struct igb_ring *ring,
1173 struct igb_ring_container *head)
1174 {
1175 head->ring = ring;
1176 head->count++;
1177 }
1178
1179 /**
1180 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181 * @adapter: board private structure to initialize
1182 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1183 * @v_idx: index of vector in adapter struct
1184 * @txr_count: total number of Tx rings to allocate
1185 * @txr_idx: index of first Tx ring to allocate
1186 * @rxr_count: total number of Rx rings to allocate
1187 * @rxr_idx: index of first Rx ring to allocate
1188 *
1189 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1190 **/
1191 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192 int v_count, int v_idx,
1193 int txr_count, int txr_idx,
1194 int rxr_count, int rxr_idx)
1195 {
1196 struct igb_q_vector *q_vector;
1197 struct igb_ring *ring;
1198 int ring_count, size;
1199
1200 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201 if (txr_count > 1 || rxr_count > 1)
1202 return -ENOMEM;
1203
1204 ring_count = txr_count + rxr_count;
1205 size = sizeof(struct igb_q_vector) +
1206 (sizeof(struct igb_ring) * ring_count);
1207
1208 /* allocate q_vector and rings */
1209 q_vector = adapter->q_vector[v_idx];
1210 if (!q_vector) {
1211 q_vector = kzalloc(size, GFP_KERNEL);
1212 } else if (size > ksize(q_vector)) {
1213 kfree_rcu(q_vector, rcu);
1214 q_vector = kzalloc(size, GFP_KERNEL);
1215 } else {
1216 memset(q_vector, 0, size);
1217 }
1218 if (!q_vector)
1219 return -ENOMEM;
1220
1221 /* initialize NAPI */
1222 netif_napi_add(adapter->netdev, &q_vector->napi,
1223 igb_poll, 64);
1224
1225 /* tie q_vector and adapter together */
1226 adapter->q_vector[v_idx] = q_vector;
1227 q_vector->adapter = adapter;
1228
1229 /* initialize work limits */
1230 q_vector->tx.work_limit = adapter->tx_work_limit;
1231
1232 /* initialize ITR configuration */
1233 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1234 q_vector->itr_val = IGB_START_ITR;
1235
1236 /* initialize pointer to rings */
1237 ring = q_vector->ring;
1238
1239 /* intialize ITR */
1240 if (rxr_count) {
1241 /* rx or rx/tx vector */
1242 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1243 q_vector->itr_val = adapter->rx_itr_setting;
1244 } else {
1245 /* tx only vector */
1246 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1247 q_vector->itr_val = adapter->tx_itr_setting;
1248 }
1249
1250 if (txr_count) {
1251 /* assign generic ring traits */
1252 ring->dev = &adapter->pdev->dev;
1253 ring->netdev = adapter->netdev;
1254
1255 /* configure backlink on ring */
1256 ring->q_vector = q_vector;
1257
1258 /* update q_vector Tx values */
1259 igb_add_ring(ring, &q_vector->tx);
1260
1261 /* For 82575, context index must be unique per ring. */
1262 if (adapter->hw.mac.type == e1000_82575)
1263 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1264
1265 /* apply Tx specific ring traits */
1266 ring->count = adapter->tx_ring_count;
1267 ring->queue_index = txr_idx;
1268
1269 u64_stats_init(&ring->tx_syncp);
1270 u64_stats_init(&ring->tx_syncp2);
1271
1272 /* assign ring to adapter */
1273 adapter->tx_ring[txr_idx] = ring;
1274
1275 /* push pointer to next ring */
1276 ring++;
1277 }
1278
1279 if (rxr_count) {
1280 /* assign generic ring traits */
1281 ring->dev = &adapter->pdev->dev;
1282 ring->netdev = adapter->netdev;
1283
1284 /* configure backlink on ring */
1285 ring->q_vector = q_vector;
1286
1287 /* update q_vector Rx values */
1288 igb_add_ring(ring, &q_vector->rx);
1289
1290 /* set flag indicating ring supports SCTP checksum offload */
1291 if (adapter->hw.mac.type >= e1000_82576)
1292 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294 /* On i350, i354, i210, and i211, loopback VLAN packets
1295 * have the tag byte-swapped.
1296 */
1297 if (adapter->hw.mac.type >= e1000_i350)
1298 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300 /* apply Rx specific ring traits */
1301 ring->count = adapter->rx_ring_count;
1302 ring->queue_index = rxr_idx;
1303
1304 u64_stats_init(&ring->rx_syncp);
1305
1306 /* assign ring to adapter */
1307 adapter->rx_ring[rxr_idx] = ring;
1308 }
1309
1310 return 0;
1311 }
1312
1313
1314 /**
1315 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316 * @adapter: board private structure to initialize
1317 *
1318 * We allocate one q_vector per queue interrupt. If allocation fails we
1319 * return -ENOMEM.
1320 **/
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323 int q_vectors = adapter->num_q_vectors;
1324 int rxr_remaining = adapter->num_rx_queues;
1325 int txr_remaining = adapter->num_tx_queues;
1326 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327 int err;
1328
1329 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 for (; rxr_remaining; v_idx++) {
1331 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 0, 0, 1, rxr_idx);
1333
1334 if (err)
1335 goto err_out;
1336
1337 /* update counts and index */
1338 rxr_remaining--;
1339 rxr_idx++;
1340 }
1341 }
1342
1343 for (; v_idx < q_vectors; v_idx++) {
1344 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 tqpv, txr_idx, rqpv, rxr_idx);
1349
1350 if (err)
1351 goto err_out;
1352
1353 /* update counts and index */
1354 rxr_remaining -= rqpv;
1355 txr_remaining -= tqpv;
1356 rxr_idx++;
1357 txr_idx++;
1358 }
1359
1360 return 0;
1361
1362 err_out:
1363 adapter->num_tx_queues = 0;
1364 adapter->num_rx_queues = 0;
1365 adapter->num_q_vectors = 0;
1366
1367 while (v_idx--)
1368 igb_free_q_vector(adapter, v_idx);
1369
1370 return -ENOMEM;
1371 }
1372
1373 /**
1374 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375 * @adapter: board private structure to initialize
1376 * @msix: boolean value of MSIX capability
1377 *
1378 * This function initializes the interrupts and allocates all of the queues.
1379 **/
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382 struct pci_dev *pdev = adapter->pdev;
1383 int err;
1384
1385 igb_set_interrupt_capability(adapter, msix);
1386
1387 err = igb_alloc_q_vectors(adapter);
1388 if (err) {
1389 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 goto err_alloc_q_vectors;
1391 }
1392
1393 igb_cache_ring_register(adapter);
1394
1395 return 0;
1396
1397 err_alloc_q_vectors:
1398 igb_reset_interrupt_capability(adapter);
1399 return err;
1400 }
1401
1402 /**
1403 * igb_request_irq - initialize interrupts
1404 * @adapter: board private structure to initialize
1405 *
1406 * Attempts to configure interrupts using the best available
1407 * capabilities of the hardware and kernel.
1408 **/
1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411 struct net_device *netdev = adapter->netdev;
1412 struct pci_dev *pdev = adapter->pdev;
1413 int err = 0;
1414
1415 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 err = igb_request_msix(adapter);
1417 if (!err)
1418 goto request_done;
1419 /* fall back to MSI */
1420 igb_free_all_tx_resources(adapter);
1421 igb_free_all_rx_resources(adapter);
1422
1423 igb_clear_interrupt_scheme(adapter);
1424 err = igb_init_interrupt_scheme(adapter, false);
1425 if (err)
1426 goto request_done;
1427
1428 igb_setup_all_tx_resources(adapter);
1429 igb_setup_all_rx_resources(adapter);
1430 igb_configure(adapter);
1431 }
1432
1433 igb_assign_vector(adapter->q_vector[0], 0);
1434
1435 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 netdev->name, adapter);
1438 if (!err)
1439 goto request_done;
1440
1441 /* fall back to legacy interrupts */
1442 igb_reset_interrupt_capability(adapter);
1443 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444 }
1445
1446 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 netdev->name, adapter);
1448
1449 if (err)
1450 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451 err);
1452
1453 request_done:
1454 return err;
1455 }
1456
1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460 int vector = 0, i;
1461
1462 free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464 for (i = 0; i < adapter->num_q_vectors; i++)
1465 free_irq(adapter->msix_entries[vector++].vector,
1466 adapter->q_vector[i]);
1467 } else {
1468 free_irq(adapter->pdev->irq, adapter);
1469 }
1470 }
1471
1472 /**
1473 * igb_irq_disable - Mask off interrupt generation on the NIC
1474 * @adapter: board private structure
1475 **/
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478 struct e1000_hw *hw = &adapter->hw;
1479
1480 /* we need to be careful when disabling interrupts. The VFs are also
1481 * mapped into these registers and so clearing the bits can cause
1482 * issues on the VF drivers so we only need to clear what we set
1483 */
1484 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 u32 regval = rd32(E1000_EIAM);
1486
1487 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 regval = rd32(E1000_EIAC);
1490 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 }
1492
1493 wr32(E1000_IAM, 0);
1494 wr32(E1000_IMC, ~0);
1495 wrfl();
1496 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 int i;
1498
1499 for (i = 0; i < adapter->num_q_vectors; i++)
1500 synchronize_irq(adapter->msix_entries[i].vector);
1501 } else {
1502 synchronize_irq(adapter->pdev->irq);
1503 }
1504 }
1505
1506 /**
1507 * igb_irq_enable - Enable default interrupt generation settings
1508 * @adapter: board private structure
1509 **/
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512 struct e1000_hw *hw = &adapter->hw;
1513
1514 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 u32 regval = rd32(E1000_EIAC);
1517
1518 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 regval = rd32(E1000_EIAM);
1520 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 if (adapter->vfs_allocated_count) {
1523 wr32(E1000_MBVFIMR, 0xFF);
1524 ims |= E1000_IMS_VMMB;
1525 }
1526 wr32(E1000_IMS, ims);
1527 } else {
1528 wr32(E1000_IMS, IMS_ENABLE_MASK |
1529 E1000_IMS_DRSTA);
1530 wr32(E1000_IAM, IMS_ENABLE_MASK |
1531 E1000_IMS_DRSTA);
1532 }
1533 }
1534
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537 struct e1000_hw *hw = &adapter->hw;
1538 u16 pf_id = adapter->vfs_allocated_count;
1539 u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 u16 old_vid = adapter->mng_vlan_id;
1541
1542 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 /* add VID to filter table */
1544 igb_vfta_set(hw, vid, pf_id, true, true);
1545 adapter->mng_vlan_id = vid;
1546 } else {
1547 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548 }
1549
1550 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551 (vid != old_vid) &&
1552 !test_bit(old_vid, adapter->active_vlans)) {
1553 /* remove VID from filter table */
1554 igb_vfta_set(hw, vid, pf_id, false, true);
1555 }
1556 }
1557
1558 /**
1559 * igb_release_hw_control - release control of the h/w to f/w
1560 * @adapter: address of board private structure
1561 *
1562 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563 * For ASF and Pass Through versions of f/w this means that the
1564 * driver is no longer loaded.
1565 **/
1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568 struct e1000_hw *hw = &adapter->hw;
1569 u32 ctrl_ext;
1570
1571 /* Let firmware take over control of h/w */
1572 ctrl_ext = rd32(E1000_CTRL_EXT);
1573 wr32(E1000_CTRL_EXT,
1574 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576
1577 /**
1578 * igb_get_hw_control - get control of the h/w from f/w
1579 * @adapter: address of board private structure
1580 *
1581 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582 * For ASF and Pass Through versions of f/w this means that
1583 * the driver is loaded.
1584 **/
1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587 struct e1000_hw *hw = &adapter->hw;
1588 u32 ctrl_ext;
1589
1590 /* Let firmware know the driver has taken over */
1591 ctrl_ext = rd32(E1000_CTRL_EXT);
1592 wr32(E1000_CTRL_EXT,
1593 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595
1596 /**
1597 * igb_configure - configure the hardware for RX and TX
1598 * @adapter: private board structure
1599 **/
1600 static void igb_configure(struct igb_adapter *adapter)
1601 {
1602 struct net_device *netdev = adapter->netdev;
1603 int i;
1604
1605 igb_get_hw_control(adapter);
1606 igb_set_rx_mode(netdev);
1607
1608 igb_restore_vlan(adapter);
1609
1610 igb_setup_tctl(adapter);
1611 igb_setup_mrqc(adapter);
1612 igb_setup_rctl(adapter);
1613
1614 igb_configure_tx(adapter);
1615 igb_configure_rx(adapter);
1616
1617 igb_rx_fifo_flush_82575(&adapter->hw);
1618
1619 /* call igb_desc_unused which always leaves
1620 * at least 1 descriptor unused to make sure
1621 * next_to_use != next_to_clean
1622 */
1623 for (i = 0; i < adapter->num_rx_queues; i++) {
1624 struct igb_ring *ring = adapter->rx_ring[i];
1625 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1626 }
1627 }
1628
1629 /**
1630 * igb_power_up_link - Power up the phy/serdes link
1631 * @adapter: address of board private structure
1632 **/
1633 void igb_power_up_link(struct igb_adapter *adapter)
1634 {
1635 igb_reset_phy(&adapter->hw);
1636
1637 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1638 igb_power_up_phy_copper(&adapter->hw);
1639 else
1640 igb_power_up_serdes_link_82575(&adapter->hw);
1641
1642 igb_setup_link(&adapter->hw);
1643 }
1644
1645 /**
1646 * igb_power_down_link - Power down the phy/serdes link
1647 * @adapter: address of board private structure
1648 */
1649 static void igb_power_down_link(struct igb_adapter *adapter)
1650 {
1651 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1652 igb_power_down_phy_copper_82575(&adapter->hw);
1653 else
1654 igb_shutdown_serdes_link_82575(&adapter->hw);
1655 }
1656
1657 /**
1658 * Detect and switch function for Media Auto Sense
1659 * @adapter: address of the board private structure
1660 **/
1661 static void igb_check_swap_media(struct igb_adapter *adapter)
1662 {
1663 struct e1000_hw *hw = &adapter->hw;
1664 u32 ctrl_ext, connsw;
1665 bool swap_now = false;
1666
1667 ctrl_ext = rd32(E1000_CTRL_EXT);
1668 connsw = rd32(E1000_CONNSW);
1669
1670 /* need to live swap if current media is copper and we have fiber/serdes
1671 * to go to.
1672 */
1673
1674 if ((hw->phy.media_type == e1000_media_type_copper) &&
1675 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1676 swap_now = true;
1677 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1678 /* copper signal takes time to appear */
1679 if (adapter->copper_tries < 4) {
1680 adapter->copper_tries++;
1681 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1682 wr32(E1000_CONNSW, connsw);
1683 return;
1684 } else {
1685 adapter->copper_tries = 0;
1686 if ((connsw & E1000_CONNSW_PHYSD) &&
1687 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1688 swap_now = true;
1689 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1690 wr32(E1000_CONNSW, connsw);
1691 }
1692 }
1693 }
1694
1695 if (!swap_now)
1696 return;
1697
1698 switch (hw->phy.media_type) {
1699 case e1000_media_type_copper:
1700 netdev_info(adapter->netdev,
1701 "MAS: changing media to fiber/serdes\n");
1702 ctrl_ext |=
1703 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1704 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1705 adapter->copper_tries = 0;
1706 break;
1707 case e1000_media_type_internal_serdes:
1708 case e1000_media_type_fiber:
1709 netdev_info(adapter->netdev,
1710 "MAS: changing media to copper\n");
1711 ctrl_ext &=
1712 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1713 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1714 break;
1715 default:
1716 /* shouldn't get here during regular operation */
1717 netdev_err(adapter->netdev,
1718 "AMS: Invalid media type found, returning\n");
1719 break;
1720 }
1721 wr32(E1000_CTRL_EXT, ctrl_ext);
1722 }
1723
1724 /**
1725 * igb_up - Open the interface and prepare it to handle traffic
1726 * @adapter: board private structure
1727 **/
1728 int igb_up(struct igb_adapter *adapter)
1729 {
1730 struct e1000_hw *hw = &adapter->hw;
1731 int i;
1732
1733 /* hardware has been reset, we need to reload some things */
1734 igb_configure(adapter);
1735
1736 clear_bit(__IGB_DOWN, &adapter->state);
1737
1738 for (i = 0; i < adapter->num_q_vectors; i++)
1739 napi_enable(&(adapter->q_vector[i]->napi));
1740
1741 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1742 igb_configure_msix(adapter);
1743 else
1744 igb_assign_vector(adapter->q_vector[0], 0);
1745
1746 /* Clear any pending interrupts. */
1747 rd32(E1000_ICR);
1748 igb_irq_enable(adapter);
1749
1750 /* notify VFs that reset has been completed */
1751 if (adapter->vfs_allocated_count) {
1752 u32 reg_data = rd32(E1000_CTRL_EXT);
1753
1754 reg_data |= E1000_CTRL_EXT_PFRSTD;
1755 wr32(E1000_CTRL_EXT, reg_data);
1756 }
1757
1758 netif_tx_start_all_queues(adapter->netdev);
1759
1760 /* start the watchdog. */
1761 hw->mac.get_link_status = 1;
1762 schedule_work(&adapter->watchdog_task);
1763
1764 if ((adapter->flags & IGB_FLAG_EEE) &&
1765 (!hw->dev_spec._82575.eee_disable))
1766 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1767
1768 return 0;
1769 }
1770
1771 void igb_down(struct igb_adapter *adapter)
1772 {
1773 struct net_device *netdev = adapter->netdev;
1774 struct e1000_hw *hw = &adapter->hw;
1775 u32 tctl, rctl;
1776 int i;
1777
1778 /* signal that we're down so the interrupt handler does not
1779 * reschedule our watchdog timer
1780 */
1781 set_bit(__IGB_DOWN, &adapter->state);
1782
1783 /* disable receives in the hardware */
1784 rctl = rd32(E1000_RCTL);
1785 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1786 /* flush and sleep below */
1787
1788 netif_carrier_off(netdev);
1789 netif_tx_stop_all_queues(netdev);
1790
1791 /* disable transmits in the hardware */
1792 tctl = rd32(E1000_TCTL);
1793 tctl &= ~E1000_TCTL_EN;
1794 wr32(E1000_TCTL, tctl);
1795 /* flush both disables and wait for them to finish */
1796 wrfl();
1797 usleep_range(10000, 11000);
1798
1799 igb_irq_disable(adapter);
1800
1801 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1802
1803 for (i = 0; i < adapter->num_q_vectors; i++) {
1804 if (adapter->q_vector[i]) {
1805 napi_synchronize(&adapter->q_vector[i]->napi);
1806 napi_disable(&adapter->q_vector[i]->napi);
1807 }
1808 }
1809
1810 del_timer_sync(&adapter->watchdog_timer);
1811 del_timer_sync(&adapter->phy_info_timer);
1812
1813 /* record the stats before reset*/
1814 spin_lock(&adapter->stats64_lock);
1815 igb_update_stats(adapter, &adapter->stats64);
1816 spin_unlock(&adapter->stats64_lock);
1817
1818 adapter->link_speed = 0;
1819 adapter->link_duplex = 0;
1820
1821 if (!pci_channel_offline(adapter->pdev))
1822 igb_reset(adapter);
1823
1824 /* clear VLAN promisc flag so VFTA will be updated if necessary */
1825 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1826
1827 igb_clean_all_tx_rings(adapter);
1828 igb_clean_all_rx_rings(adapter);
1829 #ifdef CONFIG_IGB_DCA
1830
1831 /* since we reset the hardware DCA settings were cleared */
1832 igb_setup_dca(adapter);
1833 #endif
1834 }
1835
1836 void igb_reinit_locked(struct igb_adapter *adapter)
1837 {
1838 WARN_ON(in_interrupt());
1839 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1840 usleep_range(1000, 2000);
1841 igb_down(adapter);
1842 igb_up(adapter);
1843 clear_bit(__IGB_RESETTING, &adapter->state);
1844 }
1845
1846 /** igb_enable_mas - Media Autosense re-enable after swap
1847 *
1848 * @adapter: adapter struct
1849 **/
1850 static void igb_enable_mas(struct igb_adapter *adapter)
1851 {
1852 struct e1000_hw *hw = &adapter->hw;
1853 u32 connsw = rd32(E1000_CONNSW);
1854
1855 /* configure for SerDes media detect */
1856 if ((hw->phy.media_type == e1000_media_type_copper) &&
1857 (!(connsw & E1000_CONNSW_SERDESD))) {
1858 connsw |= E1000_CONNSW_ENRGSRC;
1859 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1860 wr32(E1000_CONNSW, connsw);
1861 wrfl();
1862 }
1863 }
1864
1865 void igb_reset(struct igb_adapter *adapter)
1866 {
1867 struct pci_dev *pdev = adapter->pdev;
1868 struct e1000_hw *hw = &adapter->hw;
1869 struct e1000_mac_info *mac = &hw->mac;
1870 struct e1000_fc_info *fc = &hw->fc;
1871 u32 pba, hwm;
1872
1873 /* Repartition Pba for greater than 9k mtu
1874 * To take effect CTRL.RST is required.
1875 */
1876 switch (mac->type) {
1877 case e1000_i350:
1878 case e1000_i354:
1879 case e1000_82580:
1880 pba = rd32(E1000_RXPBS);
1881 pba = igb_rxpbs_adjust_82580(pba);
1882 break;
1883 case e1000_82576:
1884 pba = rd32(E1000_RXPBS);
1885 pba &= E1000_RXPBS_SIZE_MASK_82576;
1886 break;
1887 case e1000_82575:
1888 case e1000_i210:
1889 case e1000_i211:
1890 default:
1891 pba = E1000_PBA_34K;
1892 break;
1893 }
1894
1895 if (mac->type == e1000_82575) {
1896 u32 min_rx_space, min_tx_space, needed_tx_space;
1897
1898 /* write Rx PBA so that hardware can report correct Tx PBA */
1899 wr32(E1000_PBA, pba);
1900
1901 /* To maintain wire speed transmits, the Tx FIFO should be
1902 * large enough to accommodate two full transmit packets,
1903 * rounded up to the next 1KB and expressed in KB. Likewise,
1904 * the Rx FIFO should be large enough to accommodate at least
1905 * one full receive packet and is similarly rounded up and
1906 * expressed in KB.
1907 */
1908 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1909
1910 /* The Tx FIFO also stores 16 bytes of information about the Tx
1911 * but don't include Ethernet FCS because hardware appends it.
1912 * We only need to round down to the nearest 512 byte block
1913 * count since the value we care about is 2 frames, not 1.
1914 */
1915 min_tx_space = adapter->max_frame_size;
1916 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1917 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1918
1919 /* upper 16 bits has Tx packet buffer allocation size in KB */
1920 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1921
1922 /* If current Tx allocation is less than the min Tx FIFO size,
1923 * and the min Tx FIFO size is less than the current Rx FIFO
1924 * allocation, take space away from current Rx allocation.
1925 */
1926 if (needed_tx_space < pba) {
1927 pba -= needed_tx_space;
1928
1929 /* if short on Rx space, Rx wins and must trump Tx
1930 * adjustment
1931 */
1932 if (pba < min_rx_space)
1933 pba = min_rx_space;
1934 }
1935
1936 /* adjust PBA for jumbo frames */
1937 wr32(E1000_PBA, pba);
1938 }
1939
1940 /* flow control settings
1941 * The high water mark must be low enough to fit one full frame
1942 * after transmitting the pause frame. As such we must have enough
1943 * space to allow for us to complete our current transmit and then
1944 * receive the frame that is in progress from the link partner.
1945 * Set it to:
1946 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1947 */
1948 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1949
1950 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1951 fc->low_water = fc->high_water - 16;
1952 fc->pause_time = 0xFFFF;
1953 fc->send_xon = 1;
1954 fc->current_mode = fc->requested_mode;
1955
1956 /* disable receive for all VFs and wait one second */
1957 if (adapter->vfs_allocated_count) {
1958 int i;
1959
1960 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1961 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1962
1963 /* ping all the active vfs to let them know we are going down */
1964 igb_ping_all_vfs(adapter);
1965
1966 /* disable transmits and receives */
1967 wr32(E1000_VFRE, 0);
1968 wr32(E1000_VFTE, 0);
1969 }
1970
1971 /* Allow time for pending master requests to run */
1972 hw->mac.ops.reset_hw(hw);
1973 wr32(E1000_WUC, 0);
1974
1975 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1976 /* need to resetup here after media swap */
1977 adapter->ei.get_invariants(hw);
1978 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1979 }
1980 if ((mac->type == e1000_82575) &&
1981 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1982 igb_enable_mas(adapter);
1983 }
1984 if (hw->mac.ops.init_hw(hw))
1985 dev_err(&pdev->dev, "Hardware Error\n");
1986
1987 /* Flow control settings reset on hardware reset, so guarantee flow
1988 * control is off when forcing speed.
1989 */
1990 if (!hw->mac.autoneg)
1991 igb_force_mac_fc(hw);
1992
1993 igb_init_dmac(adapter, pba);
1994 #ifdef CONFIG_IGB_HWMON
1995 /* Re-initialize the thermal sensor on i350 devices. */
1996 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1997 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1998 /* If present, re-initialize the external thermal sensor
1999 * interface.
2000 */
2001 if (adapter->ets)
2002 mac->ops.init_thermal_sensor_thresh(hw);
2003 }
2004 }
2005 #endif
2006 /* Re-establish EEE setting */
2007 if (hw->phy.media_type == e1000_media_type_copper) {
2008 switch (mac->type) {
2009 case e1000_i350:
2010 case e1000_i210:
2011 case e1000_i211:
2012 igb_set_eee_i350(hw, true, true);
2013 break;
2014 case e1000_i354:
2015 igb_set_eee_i354(hw, true, true);
2016 break;
2017 default:
2018 break;
2019 }
2020 }
2021 if (!netif_running(adapter->netdev))
2022 igb_power_down_link(adapter);
2023
2024 igb_update_mng_vlan(adapter);
2025
2026 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2027 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2028
2029 /* Re-enable PTP, where applicable. */
2030 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2031 igb_ptp_reset(adapter);
2032
2033 igb_get_phy_info(hw);
2034 }
2035
2036 static netdev_features_t igb_fix_features(struct net_device *netdev,
2037 netdev_features_t features)
2038 {
2039 /* Since there is no support for separate Rx/Tx vlan accel
2040 * enable/disable make sure Tx flag is always in same state as Rx.
2041 */
2042 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2043 features |= NETIF_F_HW_VLAN_CTAG_TX;
2044 else
2045 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2046
2047 return features;
2048 }
2049
2050 static int igb_set_features(struct net_device *netdev,
2051 netdev_features_t features)
2052 {
2053 netdev_features_t changed = netdev->features ^ features;
2054 struct igb_adapter *adapter = netdev_priv(netdev);
2055
2056 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2057 igb_vlan_mode(netdev, features);
2058
2059 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2060 return 0;
2061
2062 netdev->features = features;
2063
2064 if (netif_running(netdev))
2065 igb_reinit_locked(adapter);
2066 else
2067 igb_reset(adapter);
2068
2069 return 0;
2070 }
2071
2072 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2073 struct net_device *dev,
2074 const unsigned char *addr, u16 vid,
2075 u16 flags)
2076 {
2077 /* guarantee we can provide a unique filter for the unicast address */
2078 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2079 struct igb_adapter *adapter = netdev_priv(dev);
2080 struct e1000_hw *hw = &adapter->hw;
2081 int vfn = adapter->vfs_allocated_count;
2082 int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2083
2084 if (netdev_uc_count(dev) >= rar_entries)
2085 return -ENOMEM;
2086 }
2087
2088 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2089 }
2090
2091 #define IGB_MAX_MAC_HDR_LEN 127
2092 #define IGB_MAX_NETWORK_HDR_LEN 511
2093
2094 static netdev_features_t
2095 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2096 netdev_features_t features)
2097 {
2098 unsigned int network_hdr_len, mac_hdr_len;
2099
2100 /* Make certain the headers can be described by a context descriptor */
2101 mac_hdr_len = skb_network_header(skb) - skb->data;
2102 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2103 return features & ~(NETIF_F_HW_CSUM |
2104 NETIF_F_SCTP_CRC |
2105 NETIF_F_HW_VLAN_CTAG_TX |
2106 NETIF_F_TSO |
2107 NETIF_F_TSO6);
2108
2109 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2110 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2111 return features & ~(NETIF_F_HW_CSUM |
2112 NETIF_F_SCTP_CRC |
2113 NETIF_F_TSO |
2114 NETIF_F_TSO6);
2115
2116 /* We can only support IPV4 TSO in tunnels if we can mangle the
2117 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2118 */
2119 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2120 features &= ~NETIF_F_TSO;
2121
2122 return features;
2123 }
2124
2125 static const struct net_device_ops igb_netdev_ops = {
2126 .ndo_open = igb_open,
2127 .ndo_stop = igb_close,
2128 .ndo_start_xmit = igb_xmit_frame,
2129 .ndo_get_stats64 = igb_get_stats64,
2130 .ndo_set_rx_mode = igb_set_rx_mode,
2131 .ndo_set_mac_address = igb_set_mac,
2132 .ndo_change_mtu = igb_change_mtu,
2133 .ndo_do_ioctl = igb_ioctl,
2134 .ndo_tx_timeout = igb_tx_timeout,
2135 .ndo_validate_addr = eth_validate_addr,
2136 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2137 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2138 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2139 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2140 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2141 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2142 .ndo_get_vf_config = igb_ndo_get_vf_config,
2143 #ifdef CONFIG_NET_POLL_CONTROLLER
2144 .ndo_poll_controller = igb_netpoll,
2145 #endif
2146 .ndo_fix_features = igb_fix_features,
2147 .ndo_set_features = igb_set_features,
2148 .ndo_fdb_add = igb_ndo_fdb_add,
2149 .ndo_features_check = igb_features_check,
2150 };
2151
2152 /**
2153 * igb_set_fw_version - Configure version string for ethtool
2154 * @adapter: adapter struct
2155 **/
2156 void igb_set_fw_version(struct igb_adapter *adapter)
2157 {
2158 struct e1000_hw *hw = &adapter->hw;
2159 struct e1000_fw_version fw;
2160
2161 igb_get_fw_version(hw, &fw);
2162
2163 switch (hw->mac.type) {
2164 case e1000_i210:
2165 case e1000_i211:
2166 if (!(igb_get_flash_presence_i210(hw))) {
2167 snprintf(adapter->fw_version,
2168 sizeof(adapter->fw_version),
2169 "%2d.%2d-%d",
2170 fw.invm_major, fw.invm_minor,
2171 fw.invm_img_type);
2172 break;
2173 }
2174 /* fall through */
2175 default:
2176 /* if option is rom valid, display its version too */
2177 if (fw.or_valid) {
2178 snprintf(adapter->fw_version,
2179 sizeof(adapter->fw_version),
2180 "%d.%d, 0x%08x, %d.%d.%d",
2181 fw.eep_major, fw.eep_minor, fw.etrack_id,
2182 fw.or_major, fw.or_build, fw.or_patch);
2183 /* no option rom */
2184 } else if (fw.etrack_id != 0X0000) {
2185 snprintf(adapter->fw_version,
2186 sizeof(adapter->fw_version),
2187 "%d.%d, 0x%08x",
2188 fw.eep_major, fw.eep_minor, fw.etrack_id);
2189 } else {
2190 snprintf(adapter->fw_version,
2191 sizeof(adapter->fw_version),
2192 "%d.%d.%d",
2193 fw.eep_major, fw.eep_minor, fw.eep_build);
2194 }
2195 break;
2196 }
2197 }
2198
2199 /**
2200 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2201 *
2202 * @adapter: adapter struct
2203 **/
2204 static void igb_init_mas(struct igb_adapter *adapter)
2205 {
2206 struct e1000_hw *hw = &adapter->hw;
2207 u16 eeprom_data;
2208
2209 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2210 switch (hw->bus.func) {
2211 case E1000_FUNC_0:
2212 if (eeprom_data & IGB_MAS_ENABLE_0) {
2213 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2214 netdev_info(adapter->netdev,
2215 "MAS: Enabling Media Autosense for port %d\n",
2216 hw->bus.func);
2217 }
2218 break;
2219 case E1000_FUNC_1:
2220 if (eeprom_data & IGB_MAS_ENABLE_1) {
2221 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2222 netdev_info(adapter->netdev,
2223 "MAS: Enabling Media Autosense for port %d\n",
2224 hw->bus.func);
2225 }
2226 break;
2227 case E1000_FUNC_2:
2228 if (eeprom_data & IGB_MAS_ENABLE_2) {
2229 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2230 netdev_info(adapter->netdev,
2231 "MAS: Enabling Media Autosense for port %d\n",
2232 hw->bus.func);
2233 }
2234 break;
2235 case E1000_FUNC_3:
2236 if (eeprom_data & IGB_MAS_ENABLE_3) {
2237 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2238 netdev_info(adapter->netdev,
2239 "MAS: Enabling Media Autosense for port %d\n",
2240 hw->bus.func);
2241 }
2242 break;
2243 default:
2244 /* Shouldn't get here */
2245 netdev_err(adapter->netdev,
2246 "MAS: Invalid port configuration, returning\n");
2247 break;
2248 }
2249 }
2250
2251 /**
2252 * igb_init_i2c - Init I2C interface
2253 * @adapter: pointer to adapter structure
2254 **/
2255 static s32 igb_init_i2c(struct igb_adapter *adapter)
2256 {
2257 s32 status = 0;
2258
2259 /* I2C interface supported on i350 devices */
2260 if (adapter->hw.mac.type != e1000_i350)
2261 return 0;
2262
2263 /* Initialize the i2c bus which is controlled by the registers.
2264 * This bus will use the i2c_algo_bit structue that implements
2265 * the protocol through toggling of the 4 bits in the register.
2266 */
2267 adapter->i2c_adap.owner = THIS_MODULE;
2268 adapter->i2c_algo = igb_i2c_algo;
2269 adapter->i2c_algo.data = adapter;
2270 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2271 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2272 strlcpy(adapter->i2c_adap.name, "igb BB",
2273 sizeof(adapter->i2c_adap.name));
2274 status = i2c_bit_add_bus(&adapter->i2c_adap);
2275 return status;
2276 }
2277
2278 /**
2279 * igb_probe - Device Initialization Routine
2280 * @pdev: PCI device information struct
2281 * @ent: entry in igb_pci_tbl
2282 *
2283 * Returns 0 on success, negative on failure
2284 *
2285 * igb_probe initializes an adapter identified by a pci_dev structure.
2286 * The OS initialization, configuring of the adapter private structure,
2287 * and a hardware reset occur.
2288 **/
2289 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2290 {
2291 struct net_device *netdev;
2292 struct igb_adapter *adapter;
2293 struct e1000_hw *hw;
2294 u16 eeprom_data = 0;
2295 s32 ret_val;
2296 static int global_quad_port_a; /* global quad port a indication */
2297 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2298 int err, pci_using_dac;
2299 u8 part_str[E1000_PBANUM_LENGTH];
2300
2301 /* Catch broken hardware that put the wrong VF device ID in
2302 * the PCIe SR-IOV capability.
2303 */
2304 if (pdev->is_virtfn) {
2305 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2306 pci_name(pdev), pdev->vendor, pdev->device);
2307 return -EINVAL;
2308 }
2309
2310 err = pci_enable_device_mem(pdev);
2311 if (err)
2312 return err;
2313
2314 pci_using_dac = 0;
2315 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2316 if (!err) {
2317 pci_using_dac = 1;
2318 } else {
2319 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2320 if (err) {
2321 dev_err(&pdev->dev,
2322 "No usable DMA configuration, aborting\n");
2323 goto err_dma;
2324 }
2325 }
2326
2327 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2328 IORESOURCE_MEM),
2329 igb_driver_name);
2330 if (err)
2331 goto err_pci_reg;
2332
2333 pci_enable_pcie_error_reporting(pdev);
2334
2335 pci_set_master(pdev);
2336 pci_save_state(pdev);
2337
2338 err = -ENOMEM;
2339 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2340 IGB_MAX_TX_QUEUES);
2341 if (!netdev)
2342 goto err_alloc_etherdev;
2343
2344 SET_NETDEV_DEV(netdev, &pdev->dev);
2345
2346 pci_set_drvdata(pdev, netdev);
2347 adapter = netdev_priv(netdev);
2348 adapter->netdev = netdev;
2349 adapter->pdev = pdev;
2350 hw = &adapter->hw;
2351 hw->back = adapter;
2352 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2353
2354 err = -EIO;
2355 adapter->io_addr = pci_iomap(pdev, 0, 0);
2356 if (!adapter->io_addr)
2357 goto err_ioremap;
2358 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2359 hw->hw_addr = adapter->io_addr;
2360
2361 netdev->netdev_ops = &igb_netdev_ops;
2362 igb_set_ethtool_ops(netdev);
2363 netdev->watchdog_timeo = 5 * HZ;
2364
2365 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2366
2367 netdev->mem_start = pci_resource_start(pdev, 0);
2368 netdev->mem_end = pci_resource_end(pdev, 0);
2369
2370 /* PCI config space info */
2371 hw->vendor_id = pdev->vendor;
2372 hw->device_id = pdev->device;
2373 hw->revision_id = pdev->revision;
2374 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2375 hw->subsystem_device_id = pdev->subsystem_device;
2376
2377 /* Copy the default MAC, PHY and NVM function pointers */
2378 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2379 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2380 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2381 /* Initialize skew-specific constants */
2382 err = ei->get_invariants(hw);
2383 if (err)
2384 goto err_sw_init;
2385
2386 /* setup the private structure */
2387 err = igb_sw_init(adapter);
2388 if (err)
2389 goto err_sw_init;
2390
2391 igb_get_bus_info_pcie(hw);
2392
2393 hw->phy.autoneg_wait_to_complete = false;
2394
2395 /* Copper options */
2396 if (hw->phy.media_type == e1000_media_type_copper) {
2397 hw->phy.mdix = AUTO_ALL_MODES;
2398 hw->phy.disable_polarity_correction = false;
2399 hw->phy.ms_type = e1000_ms_hw_default;
2400 }
2401
2402 if (igb_check_reset_block(hw))
2403 dev_info(&pdev->dev,
2404 "PHY reset is blocked due to SOL/IDER session.\n");
2405
2406 /* features is initialized to 0 in allocation, it might have bits
2407 * set by igb_sw_init so we should use an or instead of an
2408 * assignment.
2409 */
2410 netdev->features |= NETIF_F_SG |
2411 NETIF_F_TSO |
2412 NETIF_F_TSO6 |
2413 NETIF_F_RXHASH |
2414 NETIF_F_RXCSUM |
2415 NETIF_F_HW_CSUM;
2416
2417 if (hw->mac.type >= e1000_82576)
2418 netdev->features |= NETIF_F_SCTP_CRC;
2419
2420 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2421 NETIF_F_GSO_GRE_CSUM | \
2422 NETIF_F_GSO_IPXIP4 | \
2423 NETIF_F_GSO_IPXIP6 | \
2424 NETIF_F_GSO_UDP_TUNNEL | \
2425 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2426
2427 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2428 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2429
2430 /* copy netdev features into list of user selectable features */
2431 netdev->hw_features |= netdev->features |
2432 NETIF_F_HW_VLAN_CTAG_RX |
2433 NETIF_F_HW_VLAN_CTAG_TX |
2434 NETIF_F_RXALL;
2435
2436 if (hw->mac.type >= e1000_i350)
2437 netdev->hw_features |= NETIF_F_NTUPLE;
2438
2439 if (pci_using_dac)
2440 netdev->features |= NETIF_F_HIGHDMA;
2441
2442 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2443 netdev->mpls_features |= NETIF_F_HW_CSUM;
2444 netdev->hw_enc_features |= netdev->vlan_features;
2445
2446 /* set this bit last since it cannot be part of vlan_features */
2447 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2448 NETIF_F_HW_VLAN_CTAG_RX |
2449 NETIF_F_HW_VLAN_CTAG_TX;
2450
2451 netdev->priv_flags |= IFF_SUPP_NOFCS;
2452
2453 netdev->priv_flags |= IFF_UNICAST_FLT;
2454
2455 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2456
2457 /* before reading the NVM, reset the controller to put the device in a
2458 * known good starting state
2459 */
2460 hw->mac.ops.reset_hw(hw);
2461
2462 /* make sure the NVM is good , i211/i210 parts can have special NVM
2463 * that doesn't contain a checksum
2464 */
2465 switch (hw->mac.type) {
2466 case e1000_i210:
2467 case e1000_i211:
2468 if (igb_get_flash_presence_i210(hw)) {
2469 if (hw->nvm.ops.validate(hw) < 0) {
2470 dev_err(&pdev->dev,
2471 "The NVM Checksum Is Not Valid\n");
2472 err = -EIO;
2473 goto err_eeprom;
2474 }
2475 }
2476 break;
2477 default:
2478 if (hw->nvm.ops.validate(hw) < 0) {
2479 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2480 err = -EIO;
2481 goto err_eeprom;
2482 }
2483 break;
2484 }
2485
2486 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2487 /* copy the MAC address out of the NVM */
2488 if (hw->mac.ops.read_mac_addr(hw))
2489 dev_err(&pdev->dev, "NVM Read Error\n");
2490 }
2491
2492 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2493
2494 if (!is_valid_ether_addr(netdev->dev_addr)) {
2495 dev_err(&pdev->dev, "Invalid MAC Address\n");
2496 err = -EIO;
2497 goto err_eeprom;
2498 }
2499
2500 /* get firmware version for ethtool -i */
2501 igb_set_fw_version(adapter);
2502
2503 /* configure RXPBSIZE and TXPBSIZE */
2504 if (hw->mac.type == e1000_i210) {
2505 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2506 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2507 }
2508
2509 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2510 (unsigned long) adapter);
2511 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2512 (unsigned long) adapter);
2513
2514 INIT_WORK(&adapter->reset_task, igb_reset_task);
2515 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2516
2517 /* Initialize link properties that are user-changeable */
2518 adapter->fc_autoneg = true;
2519 hw->mac.autoneg = true;
2520 hw->phy.autoneg_advertised = 0x2f;
2521
2522 hw->fc.requested_mode = e1000_fc_default;
2523 hw->fc.current_mode = e1000_fc_default;
2524
2525 igb_validate_mdi_setting(hw);
2526
2527 /* By default, support wake on port A */
2528 if (hw->bus.func == 0)
2529 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2530
2531 /* Check the NVM for wake support on non-port A ports */
2532 if (hw->mac.type >= e1000_82580)
2533 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2534 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2535 &eeprom_data);
2536 else if (hw->bus.func == 1)
2537 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2538
2539 if (eeprom_data & IGB_EEPROM_APME)
2540 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2541
2542 /* now that we have the eeprom settings, apply the special cases where
2543 * the eeprom may be wrong or the board simply won't support wake on
2544 * lan on a particular port
2545 */
2546 switch (pdev->device) {
2547 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2548 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2549 break;
2550 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2551 case E1000_DEV_ID_82576_FIBER:
2552 case E1000_DEV_ID_82576_SERDES:
2553 /* Wake events only supported on port A for dual fiber
2554 * regardless of eeprom setting
2555 */
2556 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2557 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2558 break;
2559 case E1000_DEV_ID_82576_QUAD_COPPER:
2560 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2561 /* if quad port adapter, disable WoL on all but port A */
2562 if (global_quad_port_a != 0)
2563 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2564 else
2565 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2566 /* Reset for multiple quad port adapters */
2567 if (++global_quad_port_a == 4)
2568 global_quad_port_a = 0;
2569 break;
2570 default:
2571 /* If the device can't wake, don't set software support */
2572 if (!device_can_wakeup(&adapter->pdev->dev))
2573 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2574 }
2575
2576 /* initialize the wol settings based on the eeprom settings */
2577 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2578 adapter->wol |= E1000_WUFC_MAG;
2579
2580 /* Some vendors want WoL disabled by default, but still supported */
2581 if ((hw->mac.type == e1000_i350) &&
2582 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2583 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2584 adapter->wol = 0;
2585 }
2586
2587 /* Some vendors want the ability to Use the EEPROM setting as
2588 * enable/disable only, and not for capability
2589 */
2590 if (((hw->mac.type == e1000_i350) ||
2591 (hw->mac.type == e1000_i354)) &&
2592 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2593 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2594 adapter->wol = 0;
2595 }
2596 if (hw->mac.type == e1000_i350) {
2597 if (((pdev->subsystem_device == 0x5001) ||
2598 (pdev->subsystem_device == 0x5002)) &&
2599 (hw->bus.func == 0)) {
2600 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2601 adapter->wol = 0;
2602 }
2603 if (pdev->subsystem_device == 0x1F52)
2604 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2605 }
2606
2607 device_set_wakeup_enable(&adapter->pdev->dev,
2608 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2609
2610 /* reset the hardware with the new settings */
2611 igb_reset(adapter);
2612
2613 /* Init the I2C interface */
2614 err = igb_init_i2c(adapter);
2615 if (err) {
2616 dev_err(&pdev->dev, "failed to init i2c interface\n");
2617 goto err_eeprom;
2618 }
2619
2620 /* let the f/w know that the h/w is now under the control of the
2621 * driver.
2622 */
2623 igb_get_hw_control(adapter);
2624
2625 strcpy(netdev->name, "eth%d");
2626 err = register_netdev(netdev);
2627 if (err)
2628 goto err_register;
2629
2630 /* carrier off reporting is important to ethtool even BEFORE open */
2631 netif_carrier_off(netdev);
2632
2633 #ifdef CONFIG_IGB_DCA
2634 if (dca_add_requester(&pdev->dev) == 0) {
2635 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2636 dev_info(&pdev->dev, "DCA enabled\n");
2637 igb_setup_dca(adapter);
2638 }
2639
2640 #endif
2641 #ifdef CONFIG_IGB_HWMON
2642 /* Initialize the thermal sensor on i350 devices. */
2643 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2644 u16 ets_word;
2645
2646 /* Read the NVM to determine if this i350 device supports an
2647 * external thermal sensor.
2648 */
2649 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2650 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2651 adapter->ets = true;
2652 else
2653 adapter->ets = false;
2654 if (igb_sysfs_init(adapter))
2655 dev_err(&pdev->dev,
2656 "failed to allocate sysfs resources\n");
2657 } else {
2658 adapter->ets = false;
2659 }
2660 #endif
2661 /* Check if Media Autosense is enabled */
2662 adapter->ei = *ei;
2663 if (hw->dev_spec._82575.mas_capable)
2664 igb_init_mas(adapter);
2665
2666 /* do hw tstamp init after resetting */
2667 igb_ptp_init(adapter);
2668
2669 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2670 /* print bus type/speed/width info, not applicable to i354 */
2671 if (hw->mac.type != e1000_i354) {
2672 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2673 netdev->name,
2674 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2675 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2676 "unknown"),
2677 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2678 "Width x4" :
2679 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2680 "Width x2" :
2681 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2682 "Width x1" : "unknown"), netdev->dev_addr);
2683 }
2684
2685 if ((hw->mac.type >= e1000_i210 ||
2686 igb_get_flash_presence_i210(hw))) {
2687 ret_val = igb_read_part_string(hw, part_str,
2688 E1000_PBANUM_LENGTH);
2689 } else {
2690 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2691 }
2692
2693 if (ret_val)
2694 strcpy(part_str, "Unknown");
2695 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2696 dev_info(&pdev->dev,
2697 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2698 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2699 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2700 adapter->num_rx_queues, adapter->num_tx_queues);
2701 if (hw->phy.media_type == e1000_media_type_copper) {
2702 switch (hw->mac.type) {
2703 case e1000_i350:
2704 case e1000_i210:
2705 case e1000_i211:
2706 /* Enable EEE for internal copper PHY devices */
2707 err = igb_set_eee_i350(hw, true, true);
2708 if ((!err) &&
2709 (!hw->dev_spec._82575.eee_disable)) {
2710 adapter->eee_advert =
2711 MDIO_EEE_100TX | MDIO_EEE_1000T;
2712 adapter->flags |= IGB_FLAG_EEE;
2713 }
2714 break;
2715 case e1000_i354:
2716 if ((rd32(E1000_CTRL_EXT) &
2717 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2718 err = igb_set_eee_i354(hw, true, true);
2719 if ((!err) &&
2720 (!hw->dev_spec._82575.eee_disable)) {
2721 adapter->eee_advert =
2722 MDIO_EEE_100TX | MDIO_EEE_1000T;
2723 adapter->flags |= IGB_FLAG_EEE;
2724 }
2725 }
2726 break;
2727 default:
2728 break;
2729 }
2730 }
2731 pm_runtime_put_noidle(&pdev->dev);
2732 return 0;
2733
2734 err_register:
2735 igb_release_hw_control(adapter);
2736 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2737 err_eeprom:
2738 if (!igb_check_reset_block(hw))
2739 igb_reset_phy(hw);
2740
2741 if (hw->flash_address)
2742 iounmap(hw->flash_address);
2743 err_sw_init:
2744 kfree(adapter->shadow_vfta);
2745 igb_clear_interrupt_scheme(adapter);
2746 #ifdef CONFIG_PCI_IOV
2747 igb_disable_sriov(pdev);
2748 #endif
2749 pci_iounmap(pdev, adapter->io_addr);
2750 err_ioremap:
2751 free_netdev(netdev);
2752 err_alloc_etherdev:
2753 pci_release_selected_regions(pdev,
2754 pci_select_bars(pdev, IORESOURCE_MEM));
2755 err_pci_reg:
2756 err_dma:
2757 pci_disable_device(pdev);
2758 return err;
2759 }
2760
2761 #ifdef CONFIG_PCI_IOV
2762 static int igb_disable_sriov(struct pci_dev *pdev)
2763 {
2764 struct net_device *netdev = pci_get_drvdata(pdev);
2765 struct igb_adapter *adapter = netdev_priv(netdev);
2766 struct e1000_hw *hw = &adapter->hw;
2767
2768 /* reclaim resources allocated to VFs */
2769 if (adapter->vf_data) {
2770 /* disable iov and allow time for transactions to clear */
2771 if (pci_vfs_assigned(pdev)) {
2772 dev_warn(&pdev->dev,
2773 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2774 return -EPERM;
2775 } else {
2776 pci_disable_sriov(pdev);
2777 msleep(500);
2778 }
2779
2780 kfree(adapter->vf_data);
2781 adapter->vf_data = NULL;
2782 adapter->vfs_allocated_count = 0;
2783 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2784 wrfl();
2785 msleep(100);
2786 dev_info(&pdev->dev, "IOV Disabled\n");
2787
2788 /* Re-enable DMA Coalescing flag since IOV is turned off */
2789 adapter->flags |= IGB_FLAG_DMAC;
2790 }
2791
2792 return 0;
2793 }
2794
2795 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2796 {
2797 struct net_device *netdev = pci_get_drvdata(pdev);
2798 struct igb_adapter *adapter = netdev_priv(netdev);
2799 int old_vfs = pci_num_vf(pdev);
2800 int err = 0;
2801 int i;
2802
2803 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2804 err = -EPERM;
2805 goto out;
2806 }
2807 if (!num_vfs)
2808 goto out;
2809
2810 if (old_vfs) {
2811 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2812 old_vfs, max_vfs);
2813 adapter->vfs_allocated_count = old_vfs;
2814 } else
2815 adapter->vfs_allocated_count = num_vfs;
2816
2817 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2818 sizeof(struct vf_data_storage), GFP_KERNEL);
2819
2820 /* if allocation failed then we do not support SR-IOV */
2821 if (!adapter->vf_data) {
2822 adapter->vfs_allocated_count = 0;
2823 dev_err(&pdev->dev,
2824 "Unable to allocate memory for VF Data Storage\n");
2825 err = -ENOMEM;
2826 goto out;
2827 }
2828
2829 /* only call pci_enable_sriov() if no VFs are allocated already */
2830 if (!old_vfs) {
2831 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2832 if (err)
2833 goto err_out;
2834 }
2835 dev_info(&pdev->dev, "%d VFs allocated\n",
2836 adapter->vfs_allocated_count);
2837 for (i = 0; i < adapter->vfs_allocated_count; i++)
2838 igb_vf_configure(adapter, i);
2839
2840 /* DMA Coalescing is not supported in IOV mode. */
2841 adapter->flags &= ~IGB_FLAG_DMAC;
2842 goto out;
2843
2844 err_out:
2845 kfree(adapter->vf_data);
2846 adapter->vf_data = NULL;
2847 adapter->vfs_allocated_count = 0;
2848 out:
2849 return err;
2850 }
2851
2852 #endif
2853 /**
2854 * igb_remove_i2c - Cleanup I2C interface
2855 * @adapter: pointer to adapter structure
2856 **/
2857 static void igb_remove_i2c(struct igb_adapter *adapter)
2858 {
2859 /* free the adapter bus structure */
2860 i2c_del_adapter(&adapter->i2c_adap);
2861 }
2862
2863 /**
2864 * igb_remove - Device Removal Routine
2865 * @pdev: PCI device information struct
2866 *
2867 * igb_remove is called by the PCI subsystem to alert the driver
2868 * that it should release a PCI device. The could be caused by a
2869 * Hot-Plug event, or because the driver is going to be removed from
2870 * memory.
2871 **/
2872 static void igb_remove(struct pci_dev *pdev)
2873 {
2874 struct net_device *netdev = pci_get_drvdata(pdev);
2875 struct igb_adapter *adapter = netdev_priv(netdev);
2876 struct e1000_hw *hw = &adapter->hw;
2877
2878 pm_runtime_get_noresume(&pdev->dev);
2879 #ifdef CONFIG_IGB_HWMON
2880 igb_sysfs_exit(adapter);
2881 #endif
2882 igb_remove_i2c(adapter);
2883 igb_ptp_stop(adapter);
2884 /* The watchdog timer may be rescheduled, so explicitly
2885 * disable watchdog from being rescheduled.
2886 */
2887 set_bit(__IGB_DOWN, &adapter->state);
2888 del_timer_sync(&adapter->watchdog_timer);
2889 del_timer_sync(&adapter->phy_info_timer);
2890
2891 cancel_work_sync(&adapter->reset_task);
2892 cancel_work_sync(&adapter->watchdog_task);
2893
2894 #ifdef CONFIG_IGB_DCA
2895 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2896 dev_info(&pdev->dev, "DCA disabled\n");
2897 dca_remove_requester(&pdev->dev);
2898 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2899 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2900 }
2901 #endif
2902
2903 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2904 * would have already happened in close and is redundant.
2905 */
2906 igb_release_hw_control(adapter);
2907
2908 #ifdef CONFIG_PCI_IOV
2909 igb_disable_sriov(pdev);
2910 #endif
2911
2912 unregister_netdev(netdev);
2913
2914 igb_clear_interrupt_scheme(adapter);
2915
2916 pci_iounmap(pdev, adapter->io_addr);
2917 if (hw->flash_address)
2918 iounmap(hw->flash_address);
2919 pci_release_selected_regions(pdev,
2920 pci_select_bars(pdev, IORESOURCE_MEM));
2921
2922 kfree(adapter->shadow_vfta);
2923 free_netdev(netdev);
2924
2925 pci_disable_pcie_error_reporting(pdev);
2926
2927 pci_disable_device(pdev);
2928 }
2929
2930 /**
2931 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2932 * @adapter: board private structure to initialize
2933 *
2934 * This function initializes the vf specific data storage and then attempts to
2935 * allocate the VFs. The reason for ordering it this way is because it is much
2936 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2937 * the memory for the VFs.
2938 **/
2939 static void igb_probe_vfs(struct igb_adapter *adapter)
2940 {
2941 #ifdef CONFIG_PCI_IOV
2942 struct pci_dev *pdev = adapter->pdev;
2943 struct e1000_hw *hw = &adapter->hw;
2944
2945 /* Virtualization features not supported on i210 family. */
2946 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2947 return;
2948
2949 /* Of the below we really only want the effect of getting
2950 * IGB_FLAG_HAS_MSIX set (if available), without which
2951 * igb_enable_sriov() has no effect.
2952 */
2953 igb_set_interrupt_capability(adapter, true);
2954 igb_reset_interrupt_capability(adapter);
2955
2956 pci_sriov_set_totalvfs(pdev, 7);
2957 igb_enable_sriov(pdev, max_vfs);
2958
2959 #endif /* CONFIG_PCI_IOV */
2960 }
2961
2962 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2963 {
2964 struct e1000_hw *hw = &adapter->hw;
2965 u32 max_rss_queues;
2966
2967 /* Determine the maximum number of RSS queues supported. */
2968 switch (hw->mac.type) {
2969 case e1000_i211:
2970 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2971 break;
2972 case e1000_82575:
2973 case e1000_i210:
2974 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2975 break;
2976 case e1000_i350:
2977 /* I350 cannot do RSS and SR-IOV at the same time */
2978 if (!!adapter->vfs_allocated_count) {
2979 max_rss_queues = 1;
2980 break;
2981 }
2982 /* fall through */
2983 case e1000_82576:
2984 if (!!adapter->vfs_allocated_count) {
2985 max_rss_queues = 2;
2986 break;
2987 }
2988 /* fall through */
2989 case e1000_82580:
2990 case e1000_i354:
2991 default:
2992 max_rss_queues = IGB_MAX_RX_QUEUES;
2993 break;
2994 }
2995
2996 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2997
2998 igb_set_flag_queue_pairs(adapter, max_rss_queues);
2999 }
3000
3001 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3002 const u32 max_rss_queues)
3003 {
3004 struct e1000_hw *hw = &adapter->hw;
3005
3006 /* Determine if we need to pair queues. */
3007 switch (hw->mac.type) {
3008 case e1000_82575:
3009 case e1000_i211:
3010 /* Device supports enough interrupts without queue pairing. */
3011 break;
3012 case e1000_82576:
3013 case e1000_82580:
3014 case e1000_i350:
3015 case e1000_i354:
3016 case e1000_i210:
3017 default:
3018 /* If rss_queues > half of max_rss_queues, pair the queues in
3019 * order to conserve interrupts due to limited supply.
3020 */
3021 if (adapter->rss_queues > (max_rss_queues / 2))
3022 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3023 else
3024 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3025 break;
3026 }
3027 }
3028
3029 /**
3030 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3031 * @adapter: board private structure to initialize
3032 *
3033 * igb_sw_init initializes the Adapter private data structure.
3034 * Fields are initialized based on PCI device information and
3035 * OS network device settings (MTU size).
3036 **/
3037 static int igb_sw_init(struct igb_adapter *adapter)
3038 {
3039 struct e1000_hw *hw = &adapter->hw;
3040 struct net_device *netdev = adapter->netdev;
3041 struct pci_dev *pdev = adapter->pdev;
3042
3043 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3044
3045 /* set default ring sizes */
3046 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3047 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3048
3049 /* set default ITR values */
3050 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3051 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3052
3053 /* set default work limits */
3054 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3055
3056 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3057 VLAN_HLEN;
3058 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3059
3060 spin_lock_init(&adapter->stats64_lock);
3061 #ifdef CONFIG_PCI_IOV
3062 switch (hw->mac.type) {
3063 case e1000_82576:
3064 case e1000_i350:
3065 if (max_vfs > 7) {
3066 dev_warn(&pdev->dev,
3067 "Maximum of 7 VFs per PF, using max\n");
3068 max_vfs = adapter->vfs_allocated_count = 7;
3069 } else
3070 adapter->vfs_allocated_count = max_vfs;
3071 if (adapter->vfs_allocated_count)
3072 dev_warn(&pdev->dev,
3073 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3074 break;
3075 default:
3076 break;
3077 }
3078 #endif /* CONFIG_PCI_IOV */
3079
3080 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3081 adapter->flags |= IGB_FLAG_HAS_MSIX;
3082
3083 igb_probe_vfs(adapter);
3084
3085 igb_init_queue_configuration(adapter);
3086
3087 /* Setup and initialize a copy of the hw vlan table array */
3088 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3089 GFP_ATOMIC);
3090
3091 /* This call may decrease the number of queues */
3092 if (igb_init_interrupt_scheme(adapter, true)) {
3093 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3094 return -ENOMEM;
3095 }
3096
3097 /* Explicitly disable IRQ since the NIC can be in any state. */
3098 igb_irq_disable(adapter);
3099
3100 if (hw->mac.type >= e1000_i350)
3101 adapter->flags &= ~IGB_FLAG_DMAC;
3102
3103 set_bit(__IGB_DOWN, &adapter->state);
3104 return 0;
3105 }
3106
3107 /**
3108 * igb_open - Called when a network interface is made active
3109 * @netdev: network interface device structure
3110 *
3111 * Returns 0 on success, negative value on failure
3112 *
3113 * The open entry point is called when a network interface is made
3114 * active by the system (IFF_UP). At this point all resources needed
3115 * for transmit and receive operations are allocated, the interrupt
3116 * handler is registered with the OS, the watchdog timer is started,
3117 * and the stack is notified that the interface is ready.
3118 **/
3119 static int __igb_open(struct net_device *netdev, bool resuming)
3120 {
3121 struct igb_adapter *adapter = netdev_priv(netdev);
3122 struct e1000_hw *hw = &adapter->hw;
3123 struct pci_dev *pdev = adapter->pdev;
3124 int err;
3125 int i;
3126
3127 /* disallow open during test */
3128 if (test_bit(__IGB_TESTING, &adapter->state)) {
3129 WARN_ON(resuming);
3130 return -EBUSY;
3131 }
3132
3133 if (!resuming)
3134 pm_runtime_get_sync(&pdev->dev);
3135
3136 netif_carrier_off(netdev);
3137
3138 /* allocate transmit descriptors */
3139 err = igb_setup_all_tx_resources(adapter);
3140 if (err)
3141 goto err_setup_tx;
3142
3143 /* allocate receive descriptors */
3144 err = igb_setup_all_rx_resources(adapter);
3145 if (err)
3146 goto err_setup_rx;
3147
3148 igb_power_up_link(adapter);
3149
3150 /* before we allocate an interrupt, we must be ready to handle it.
3151 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3152 * as soon as we call pci_request_irq, so we have to setup our
3153 * clean_rx handler before we do so.
3154 */
3155 igb_configure(adapter);
3156
3157 err = igb_request_irq(adapter);
3158 if (err)
3159 goto err_req_irq;
3160
3161 /* Notify the stack of the actual queue counts. */
3162 err = netif_set_real_num_tx_queues(adapter->netdev,
3163 adapter->num_tx_queues);
3164 if (err)
3165 goto err_set_queues;
3166
3167 err = netif_set_real_num_rx_queues(adapter->netdev,
3168 adapter->num_rx_queues);
3169 if (err)
3170 goto err_set_queues;
3171
3172 /* From here on the code is the same as igb_up() */
3173 clear_bit(__IGB_DOWN, &adapter->state);
3174
3175 for (i = 0; i < adapter->num_q_vectors; i++)
3176 napi_enable(&(adapter->q_vector[i]->napi));
3177
3178 /* Clear any pending interrupts. */
3179 rd32(E1000_ICR);
3180
3181 igb_irq_enable(adapter);
3182
3183 /* notify VFs that reset has been completed */
3184 if (adapter->vfs_allocated_count) {
3185 u32 reg_data = rd32(E1000_CTRL_EXT);
3186
3187 reg_data |= E1000_CTRL_EXT_PFRSTD;
3188 wr32(E1000_CTRL_EXT, reg_data);
3189 }
3190
3191 netif_tx_start_all_queues(netdev);
3192
3193 if (!resuming)
3194 pm_runtime_put(&pdev->dev);
3195
3196 /* start the watchdog. */
3197 hw->mac.get_link_status = 1;
3198 schedule_work(&adapter->watchdog_task);
3199
3200 return 0;
3201
3202 err_set_queues:
3203 igb_free_irq(adapter);
3204 err_req_irq:
3205 igb_release_hw_control(adapter);
3206 igb_power_down_link(adapter);
3207 igb_free_all_rx_resources(adapter);
3208 err_setup_rx:
3209 igb_free_all_tx_resources(adapter);
3210 err_setup_tx:
3211 igb_reset(adapter);
3212 if (!resuming)
3213 pm_runtime_put(&pdev->dev);
3214
3215 return err;
3216 }
3217
3218 int igb_open(struct net_device *netdev)
3219 {
3220 return __igb_open(netdev, false);
3221 }
3222
3223 /**
3224 * igb_close - Disables a network interface
3225 * @netdev: network interface device structure
3226 *
3227 * Returns 0, this is not allowed to fail
3228 *
3229 * The close entry point is called when an interface is de-activated
3230 * by the OS. The hardware is still under the driver's control, but
3231 * needs to be disabled. A global MAC reset is issued to stop the
3232 * hardware, and all transmit and receive resources are freed.
3233 **/
3234 static int __igb_close(struct net_device *netdev, bool suspending)
3235 {
3236 struct igb_adapter *adapter = netdev_priv(netdev);
3237 struct pci_dev *pdev = adapter->pdev;
3238
3239 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3240
3241 if (!suspending)
3242 pm_runtime_get_sync(&pdev->dev);
3243
3244 igb_down(adapter);
3245 igb_free_irq(adapter);
3246
3247 igb_free_all_tx_resources(adapter);
3248 igb_free_all_rx_resources(adapter);
3249
3250 if (!suspending)
3251 pm_runtime_put_sync(&pdev->dev);
3252 return 0;
3253 }
3254
3255 int igb_close(struct net_device *netdev)
3256 {
3257 return __igb_close(netdev, false);
3258 }
3259
3260 /**
3261 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3262 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3263 *
3264 * Return 0 on success, negative on failure
3265 **/
3266 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3267 {
3268 struct device *dev = tx_ring->dev;
3269 int size;
3270
3271 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3272
3273 tx_ring->tx_buffer_info = vzalloc(size);
3274 if (!tx_ring->tx_buffer_info)
3275 goto err;
3276
3277 /* round up to nearest 4K */
3278 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3279 tx_ring->size = ALIGN(tx_ring->size, 4096);
3280
3281 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3282 &tx_ring->dma, GFP_KERNEL);
3283 if (!tx_ring->desc)
3284 goto err;
3285
3286 tx_ring->next_to_use = 0;
3287 tx_ring->next_to_clean = 0;
3288
3289 return 0;
3290
3291 err:
3292 vfree(tx_ring->tx_buffer_info);
3293 tx_ring->tx_buffer_info = NULL;
3294 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3295 return -ENOMEM;
3296 }
3297
3298 /**
3299 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3300 * (Descriptors) for all queues
3301 * @adapter: board private structure
3302 *
3303 * Return 0 on success, negative on failure
3304 **/
3305 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3306 {
3307 struct pci_dev *pdev = adapter->pdev;
3308 int i, err = 0;
3309
3310 for (i = 0; i < adapter->num_tx_queues; i++) {
3311 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3312 if (err) {
3313 dev_err(&pdev->dev,
3314 "Allocation for Tx Queue %u failed\n", i);
3315 for (i--; i >= 0; i--)
3316 igb_free_tx_resources(adapter->tx_ring[i]);
3317 break;
3318 }
3319 }
3320
3321 return err;
3322 }
3323
3324 /**
3325 * igb_setup_tctl - configure the transmit control registers
3326 * @adapter: Board private structure
3327 **/
3328 void igb_setup_tctl(struct igb_adapter *adapter)
3329 {
3330 struct e1000_hw *hw = &adapter->hw;
3331 u32 tctl;
3332
3333 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3334 wr32(E1000_TXDCTL(0), 0);
3335
3336 /* Program the Transmit Control Register */
3337 tctl = rd32(E1000_TCTL);
3338 tctl &= ~E1000_TCTL_CT;
3339 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3340 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3341
3342 igb_config_collision_dist(hw);
3343
3344 /* Enable transmits */
3345 tctl |= E1000_TCTL_EN;
3346
3347 wr32(E1000_TCTL, tctl);
3348 }
3349
3350 /**
3351 * igb_configure_tx_ring - Configure transmit ring after Reset
3352 * @adapter: board private structure
3353 * @ring: tx ring to configure
3354 *
3355 * Configure a transmit ring after a reset.
3356 **/
3357 void igb_configure_tx_ring(struct igb_adapter *adapter,
3358 struct igb_ring *ring)
3359 {
3360 struct e1000_hw *hw = &adapter->hw;
3361 u32 txdctl = 0;
3362 u64 tdba = ring->dma;
3363 int reg_idx = ring->reg_idx;
3364
3365 /* disable the queue */
3366 wr32(E1000_TXDCTL(reg_idx), 0);
3367 wrfl();
3368 mdelay(10);
3369
3370 wr32(E1000_TDLEN(reg_idx),
3371 ring->count * sizeof(union e1000_adv_tx_desc));
3372 wr32(E1000_TDBAL(reg_idx),
3373 tdba & 0x00000000ffffffffULL);
3374 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3375
3376 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3377 wr32(E1000_TDH(reg_idx), 0);
3378 writel(0, ring->tail);
3379
3380 txdctl |= IGB_TX_PTHRESH;
3381 txdctl |= IGB_TX_HTHRESH << 8;
3382 txdctl |= IGB_TX_WTHRESH << 16;
3383
3384 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3385 wr32(E1000_TXDCTL(reg_idx), txdctl);
3386 }
3387
3388 /**
3389 * igb_configure_tx - Configure transmit Unit after Reset
3390 * @adapter: board private structure
3391 *
3392 * Configure the Tx unit of the MAC after a reset.
3393 **/
3394 static void igb_configure_tx(struct igb_adapter *adapter)
3395 {
3396 int i;
3397
3398 for (i = 0; i < adapter->num_tx_queues; i++)
3399 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3400 }
3401
3402 /**
3403 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3404 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3405 *
3406 * Returns 0 on success, negative on failure
3407 **/
3408 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3409 {
3410 struct device *dev = rx_ring->dev;
3411 int size;
3412
3413 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3414
3415 rx_ring->rx_buffer_info = vzalloc(size);
3416 if (!rx_ring->rx_buffer_info)
3417 goto err;
3418
3419 /* Round up to nearest 4K */
3420 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3421 rx_ring->size = ALIGN(rx_ring->size, 4096);
3422
3423 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3424 &rx_ring->dma, GFP_KERNEL);
3425 if (!rx_ring->desc)
3426 goto err;
3427
3428 rx_ring->next_to_alloc = 0;
3429 rx_ring->next_to_clean = 0;
3430 rx_ring->next_to_use = 0;
3431
3432 return 0;
3433
3434 err:
3435 vfree(rx_ring->rx_buffer_info);
3436 rx_ring->rx_buffer_info = NULL;
3437 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3438 return -ENOMEM;
3439 }
3440
3441 /**
3442 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3443 * (Descriptors) for all queues
3444 * @adapter: board private structure
3445 *
3446 * Return 0 on success, negative on failure
3447 **/
3448 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3449 {
3450 struct pci_dev *pdev = adapter->pdev;
3451 int i, err = 0;
3452
3453 for (i = 0; i < adapter->num_rx_queues; i++) {
3454 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3455 if (err) {
3456 dev_err(&pdev->dev,
3457 "Allocation for Rx Queue %u failed\n", i);
3458 for (i--; i >= 0; i--)
3459 igb_free_rx_resources(adapter->rx_ring[i]);
3460 break;
3461 }
3462 }
3463
3464 return err;
3465 }
3466
3467 /**
3468 * igb_setup_mrqc - configure the multiple receive queue control registers
3469 * @adapter: Board private structure
3470 **/
3471 static void igb_setup_mrqc(struct igb_adapter *adapter)
3472 {
3473 struct e1000_hw *hw = &adapter->hw;
3474 u32 mrqc, rxcsum;
3475 u32 j, num_rx_queues;
3476 u32 rss_key[10];
3477
3478 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3479 for (j = 0; j < 10; j++)
3480 wr32(E1000_RSSRK(j), rss_key[j]);
3481
3482 num_rx_queues = adapter->rss_queues;
3483
3484 switch (hw->mac.type) {
3485 case e1000_82576:
3486 /* 82576 supports 2 RSS queues for SR-IOV */
3487 if (adapter->vfs_allocated_count)
3488 num_rx_queues = 2;
3489 break;
3490 default:
3491 break;
3492 }
3493
3494 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3495 for (j = 0; j < IGB_RETA_SIZE; j++)
3496 adapter->rss_indir_tbl[j] =
3497 (j * num_rx_queues) / IGB_RETA_SIZE;
3498 adapter->rss_indir_tbl_init = num_rx_queues;
3499 }
3500 igb_write_rss_indir_tbl(adapter);
3501
3502 /* Disable raw packet checksumming so that RSS hash is placed in
3503 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3504 * offloads as they are enabled by default
3505 */
3506 rxcsum = rd32(E1000_RXCSUM);
3507 rxcsum |= E1000_RXCSUM_PCSD;
3508
3509 if (adapter->hw.mac.type >= e1000_82576)
3510 /* Enable Receive Checksum Offload for SCTP */
3511 rxcsum |= E1000_RXCSUM_CRCOFL;
3512
3513 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3514 wr32(E1000_RXCSUM, rxcsum);
3515
3516 /* Generate RSS hash based on packet types, TCP/UDP
3517 * port numbers and/or IPv4/v6 src and dst addresses
3518 */
3519 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3520 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3521 E1000_MRQC_RSS_FIELD_IPV6 |
3522 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3523 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3524
3525 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3526 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3527 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3528 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3529
3530 /* If VMDq is enabled then we set the appropriate mode for that, else
3531 * we default to RSS so that an RSS hash is calculated per packet even
3532 * if we are only using one queue
3533 */
3534 if (adapter->vfs_allocated_count) {
3535 if (hw->mac.type > e1000_82575) {
3536 /* Set the default pool for the PF's first queue */
3537 u32 vtctl = rd32(E1000_VT_CTL);
3538
3539 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3540 E1000_VT_CTL_DISABLE_DEF_POOL);
3541 vtctl |= adapter->vfs_allocated_count <<
3542 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3543 wr32(E1000_VT_CTL, vtctl);
3544 }
3545 if (adapter->rss_queues > 1)
3546 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3547 else
3548 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3549 } else {
3550 if (hw->mac.type != e1000_i211)
3551 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3552 }
3553 igb_vmm_control(adapter);
3554
3555 wr32(E1000_MRQC, mrqc);
3556 }
3557
3558 /**
3559 * igb_setup_rctl - configure the receive control registers
3560 * @adapter: Board private structure
3561 **/
3562 void igb_setup_rctl(struct igb_adapter *adapter)
3563 {
3564 struct e1000_hw *hw = &adapter->hw;
3565 u32 rctl;
3566
3567 rctl = rd32(E1000_RCTL);
3568
3569 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3570 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3571
3572 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3573 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3574
3575 /* enable stripping of CRC. It's unlikely this will break BMC
3576 * redirection as it did with e1000. Newer features require
3577 * that the HW strips the CRC.
3578 */
3579 rctl |= E1000_RCTL_SECRC;
3580
3581 /* disable store bad packets and clear size bits. */
3582 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3583
3584 /* enable LPE to allow for reception of jumbo frames */
3585 rctl |= E1000_RCTL_LPE;
3586
3587 /* disable queue 0 to prevent tail write w/o re-config */
3588 wr32(E1000_RXDCTL(0), 0);
3589
3590 /* Attention!!! For SR-IOV PF driver operations you must enable
3591 * queue drop for all VF and PF queues to prevent head of line blocking
3592 * if an un-trusted VF does not provide descriptors to hardware.
3593 */
3594 if (adapter->vfs_allocated_count) {
3595 /* set all queue drop enable bits */
3596 wr32(E1000_QDE, ALL_QUEUES);
3597 }
3598
3599 /* This is useful for sniffing bad packets. */
3600 if (adapter->netdev->features & NETIF_F_RXALL) {
3601 /* UPE and MPE will be handled by normal PROMISC logic
3602 * in e1000e_set_rx_mode
3603 */
3604 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3605 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3606 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3607
3608 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3609 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3610 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3611 * and that breaks VLANs.
3612 */
3613 }
3614
3615 wr32(E1000_RCTL, rctl);
3616 }
3617
3618 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3619 int vfn)
3620 {
3621 struct e1000_hw *hw = &adapter->hw;
3622 u32 vmolr;
3623
3624 if (size > MAX_JUMBO_FRAME_SIZE)
3625 size = MAX_JUMBO_FRAME_SIZE;
3626
3627 vmolr = rd32(E1000_VMOLR(vfn));
3628 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3629 vmolr |= size | E1000_VMOLR_LPE;
3630 wr32(E1000_VMOLR(vfn), vmolr);
3631
3632 return 0;
3633 }
3634
3635 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3636 int vfn, bool enable)
3637 {
3638 struct e1000_hw *hw = &adapter->hw;
3639 u32 val, reg;
3640
3641 if (hw->mac.type < e1000_82576)
3642 return;
3643
3644 if (hw->mac.type == e1000_i350)
3645 reg = E1000_DVMOLR(vfn);
3646 else
3647 reg = E1000_VMOLR(vfn);
3648
3649 val = rd32(reg);
3650 if (enable)
3651 val |= E1000_VMOLR_STRVLAN;
3652 else
3653 val &= ~(E1000_VMOLR_STRVLAN);
3654 wr32(reg, val);
3655 }
3656
3657 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3658 int vfn, bool aupe)
3659 {
3660 struct e1000_hw *hw = &adapter->hw;
3661 u32 vmolr;
3662
3663 /* This register exists only on 82576 and newer so if we are older then
3664 * we should exit and do nothing
3665 */
3666 if (hw->mac.type < e1000_82576)
3667 return;
3668
3669 vmolr = rd32(E1000_VMOLR(vfn));
3670 if (aupe)
3671 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3672 else
3673 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3674
3675 /* clear all bits that might not be set */
3676 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3677
3678 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3679 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3680 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3681 * multicast packets
3682 */
3683 if (vfn <= adapter->vfs_allocated_count)
3684 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3685
3686 wr32(E1000_VMOLR(vfn), vmolr);
3687 }
3688
3689 /**
3690 * igb_configure_rx_ring - Configure a receive ring after Reset
3691 * @adapter: board private structure
3692 * @ring: receive ring to be configured
3693 *
3694 * Configure the Rx unit of the MAC after a reset.
3695 **/
3696 void igb_configure_rx_ring(struct igb_adapter *adapter,
3697 struct igb_ring *ring)
3698 {
3699 struct e1000_hw *hw = &adapter->hw;
3700 u64 rdba = ring->dma;
3701 int reg_idx = ring->reg_idx;
3702 u32 srrctl = 0, rxdctl = 0;
3703
3704 /* disable the queue */
3705 wr32(E1000_RXDCTL(reg_idx), 0);
3706
3707 /* Set DMA base address registers */
3708 wr32(E1000_RDBAL(reg_idx),
3709 rdba & 0x00000000ffffffffULL);
3710 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3711 wr32(E1000_RDLEN(reg_idx),
3712 ring->count * sizeof(union e1000_adv_rx_desc));
3713
3714 /* initialize head and tail */
3715 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3716 wr32(E1000_RDH(reg_idx), 0);
3717 writel(0, ring->tail);
3718
3719 /* set descriptor configuration */
3720 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3721 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3722 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3723 if (hw->mac.type >= e1000_82580)
3724 srrctl |= E1000_SRRCTL_TIMESTAMP;
3725 /* Only set Drop Enable if we are supporting multiple queues */
3726 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3727 srrctl |= E1000_SRRCTL_DROP_EN;
3728
3729 wr32(E1000_SRRCTL(reg_idx), srrctl);
3730
3731 /* set filtering for VMDQ pools */
3732 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3733
3734 rxdctl |= IGB_RX_PTHRESH;
3735 rxdctl |= IGB_RX_HTHRESH << 8;
3736 rxdctl |= IGB_RX_WTHRESH << 16;
3737
3738 /* enable receive descriptor fetching */
3739 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3740 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3741 }
3742
3743 /**
3744 * igb_configure_rx - Configure receive Unit after Reset
3745 * @adapter: board private structure
3746 *
3747 * Configure the Rx unit of the MAC after a reset.
3748 **/
3749 static void igb_configure_rx(struct igb_adapter *adapter)
3750 {
3751 int i;
3752
3753 /* set the correct pool for the PF default MAC address in entry 0 */
3754 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3755 adapter->vfs_allocated_count);
3756
3757 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3758 * the Base and Length of the Rx Descriptor Ring
3759 */
3760 for (i = 0; i < adapter->num_rx_queues; i++)
3761 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3762 }
3763
3764 /**
3765 * igb_free_tx_resources - Free Tx Resources per Queue
3766 * @tx_ring: Tx descriptor ring for a specific queue
3767 *
3768 * Free all transmit software resources
3769 **/
3770 void igb_free_tx_resources(struct igb_ring *tx_ring)
3771 {
3772 igb_clean_tx_ring(tx_ring);
3773
3774 vfree(tx_ring->tx_buffer_info);
3775 tx_ring->tx_buffer_info = NULL;
3776
3777 /* if not set, then don't free */
3778 if (!tx_ring->desc)
3779 return;
3780
3781 dma_free_coherent(tx_ring->dev, tx_ring->size,
3782 tx_ring->desc, tx_ring->dma);
3783
3784 tx_ring->desc = NULL;
3785 }
3786
3787 /**
3788 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3789 * @adapter: board private structure
3790 *
3791 * Free all transmit software resources
3792 **/
3793 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3794 {
3795 int i;
3796
3797 for (i = 0; i < adapter->num_tx_queues; i++)
3798 if (adapter->tx_ring[i])
3799 igb_free_tx_resources(adapter->tx_ring[i]);
3800 }
3801
3802 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3803 struct igb_tx_buffer *tx_buffer)
3804 {
3805 if (tx_buffer->skb) {
3806 dev_kfree_skb_any(tx_buffer->skb);
3807 if (dma_unmap_len(tx_buffer, len))
3808 dma_unmap_single(ring->dev,
3809 dma_unmap_addr(tx_buffer, dma),
3810 dma_unmap_len(tx_buffer, len),
3811 DMA_TO_DEVICE);
3812 } else if (dma_unmap_len(tx_buffer, len)) {
3813 dma_unmap_page(ring->dev,
3814 dma_unmap_addr(tx_buffer, dma),
3815 dma_unmap_len(tx_buffer, len),
3816 DMA_TO_DEVICE);
3817 }
3818 tx_buffer->next_to_watch = NULL;
3819 tx_buffer->skb = NULL;
3820 dma_unmap_len_set(tx_buffer, len, 0);
3821 /* buffer_info must be completely set up in the transmit path */
3822 }
3823
3824 /**
3825 * igb_clean_tx_ring - Free Tx Buffers
3826 * @tx_ring: ring to be cleaned
3827 **/
3828 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3829 {
3830 struct igb_tx_buffer *buffer_info;
3831 unsigned long size;
3832 u16 i;
3833
3834 if (!tx_ring->tx_buffer_info)
3835 return;
3836 /* Free all the Tx ring sk_buffs */
3837
3838 for (i = 0; i < tx_ring->count; i++) {
3839 buffer_info = &tx_ring->tx_buffer_info[i];
3840 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3841 }
3842
3843 netdev_tx_reset_queue(txring_txq(tx_ring));
3844
3845 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3846 memset(tx_ring->tx_buffer_info, 0, size);
3847
3848 /* Zero out the descriptor ring */
3849 memset(tx_ring->desc, 0, tx_ring->size);
3850
3851 tx_ring->next_to_use = 0;
3852 tx_ring->next_to_clean = 0;
3853 }
3854
3855 /**
3856 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3857 * @adapter: board private structure
3858 **/
3859 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3860 {
3861 int i;
3862
3863 for (i = 0; i < adapter->num_tx_queues; i++)
3864 if (adapter->tx_ring[i])
3865 igb_clean_tx_ring(adapter->tx_ring[i]);
3866 }
3867
3868 /**
3869 * igb_free_rx_resources - Free Rx Resources
3870 * @rx_ring: ring to clean the resources from
3871 *
3872 * Free all receive software resources
3873 **/
3874 void igb_free_rx_resources(struct igb_ring *rx_ring)
3875 {
3876 igb_clean_rx_ring(rx_ring);
3877
3878 vfree(rx_ring->rx_buffer_info);
3879 rx_ring->rx_buffer_info = NULL;
3880
3881 /* if not set, then don't free */
3882 if (!rx_ring->desc)
3883 return;
3884
3885 dma_free_coherent(rx_ring->dev, rx_ring->size,
3886 rx_ring->desc, rx_ring->dma);
3887
3888 rx_ring->desc = NULL;
3889 }
3890
3891 /**
3892 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3893 * @adapter: board private structure
3894 *
3895 * Free all receive software resources
3896 **/
3897 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3898 {
3899 int i;
3900
3901 for (i = 0; i < adapter->num_rx_queues; i++)
3902 if (adapter->rx_ring[i])
3903 igb_free_rx_resources(adapter->rx_ring[i]);
3904 }
3905
3906 /**
3907 * igb_clean_rx_ring - Free Rx Buffers per Queue
3908 * @rx_ring: ring to free buffers from
3909 **/
3910 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3911 {
3912 unsigned long size;
3913 u16 i;
3914
3915 if (rx_ring->skb)
3916 dev_kfree_skb(rx_ring->skb);
3917 rx_ring->skb = NULL;
3918
3919 if (!rx_ring->rx_buffer_info)
3920 return;
3921
3922 /* Free all the Rx ring sk_buffs */
3923 for (i = 0; i < rx_ring->count; i++) {
3924 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3925
3926 if (!buffer_info->page)
3927 continue;
3928
3929 dma_unmap_page(rx_ring->dev,
3930 buffer_info->dma,
3931 PAGE_SIZE,
3932 DMA_FROM_DEVICE);
3933 __free_page(buffer_info->page);
3934
3935 buffer_info->page = NULL;
3936 }
3937
3938 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3939 memset(rx_ring->rx_buffer_info, 0, size);
3940
3941 /* Zero out the descriptor ring */
3942 memset(rx_ring->desc, 0, rx_ring->size);
3943
3944 rx_ring->next_to_alloc = 0;
3945 rx_ring->next_to_clean = 0;
3946 rx_ring->next_to_use = 0;
3947 }
3948
3949 /**
3950 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3951 * @adapter: board private structure
3952 **/
3953 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3954 {
3955 int i;
3956
3957 for (i = 0; i < adapter->num_rx_queues; i++)
3958 if (adapter->rx_ring[i])
3959 igb_clean_rx_ring(adapter->rx_ring[i]);
3960 }
3961
3962 /**
3963 * igb_set_mac - Change the Ethernet Address of the NIC
3964 * @netdev: network interface device structure
3965 * @p: pointer to an address structure
3966 *
3967 * Returns 0 on success, negative on failure
3968 **/
3969 static int igb_set_mac(struct net_device *netdev, void *p)
3970 {
3971 struct igb_adapter *adapter = netdev_priv(netdev);
3972 struct e1000_hw *hw = &adapter->hw;
3973 struct sockaddr *addr = p;
3974
3975 if (!is_valid_ether_addr(addr->sa_data))
3976 return -EADDRNOTAVAIL;
3977
3978 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3979 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3980
3981 /* set the correct pool for the new PF MAC address in entry 0 */
3982 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3983 adapter->vfs_allocated_count);
3984
3985 return 0;
3986 }
3987
3988 /**
3989 * igb_write_mc_addr_list - write multicast addresses to MTA
3990 * @netdev: network interface device structure
3991 *
3992 * Writes multicast address list to the MTA hash table.
3993 * Returns: -ENOMEM on failure
3994 * 0 on no addresses written
3995 * X on writing X addresses to MTA
3996 **/
3997 static int igb_write_mc_addr_list(struct net_device *netdev)
3998 {
3999 struct igb_adapter *adapter = netdev_priv(netdev);
4000 struct e1000_hw *hw = &adapter->hw;
4001 struct netdev_hw_addr *ha;
4002 u8 *mta_list;
4003 int i;
4004
4005 if (netdev_mc_empty(netdev)) {
4006 /* nothing to program, so clear mc list */
4007 igb_update_mc_addr_list(hw, NULL, 0);
4008 igb_restore_vf_multicasts(adapter);
4009 return 0;
4010 }
4011
4012 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4013 if (!mta_list)
4014 return -ENOMEM;
4015
4016 /* The shared function expects a packed array of only addresses. */
4017 i = 0;
4018 netdev_for_each_mc_addr(ha, netdev)
4019 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4020
4021 igb_update_mc_addr_list(hw, mta_list, i);
4022 kfree(mta_list);
4023
4024 return netdev_mc_count(netdev);
4025 }
4026
4027 /**
4028 * igb_write_uc_addr_list - write unicast addresses to RAR table
4029 * @netdev: network interface device structure
4030 *
4031 * Writes unicast address list to the RAR table.
4032 * Returns: -ENOMEM on failure/insufficient address space
4033 * 0 on no addresses written
4034 * X on writing X addresses to the RAR table
4035 **/
4036 static int igb_write_uc_addr_list(struct net_device *netdev)
4037 {
4038 struct igb_adapter *adapter = netdev_priv(netdev);
4039 struct e1000_hw *hw = &adapter->hw;
4040 unsigned int vfn = adapter->vfs_allocated_count;
4041 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4042 int count = 0;
4043
4044 /* return ENOMEM indicating insufficient memory for addresses */
4045 if (netdev_uc_count(netdev) > rar_entries)
4046 return -ENOMEM;
4047
4048 if (!netdev_uc_empty(netdev) && rar_entries) {
4049 struct netdev_hw_addr *ha;
4050
4051 netdev_for_each_uc_addr(ha, netdev) {
4052 if (!rar_entries)
4053 break;
4054 igb_rar_set_qsel(adapter, ha->addr,
4055 rar_entries--,
4056 vfn);
4057 count++;
4058 }
4059 }
4060 /* write the addresses in reverse order to avoid write combining */
4061 for (; rar_entries > 0 ; rar_entries--) {
4062 wr32(E1000_RAH(rar_entries), 0);
4063 wr32(E1000_RAL(rar_entries), 0);
4064 }
4065 wrfl();
4066
4067 return count;
4068 }
4069
4070 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4071 {
4072 struct e1000_hw *hw = &adapter->hw;
4073 u32 i, pf_id;
4074
4075 switch (hw->mac.type) {
4076 case e1000_i210:
4077 case e1000_i211:
4078 case e1000_i350:
4079 /* VLAN filtering needed for VLAN prio filter */
4080 if (adapter->netdev->features & NETIF_F_NTUPLE)
4081 break;
4082 /* fall through */
4083 case e1000_82576:
4084 case e1000_82580:
4085 case e1000_i354:
4086 /* VLAN filtering needed for pool filtering */
4087 if (adapter->vfs_allocated_count)
4088 break;
4089 /* fall through */
4090 default:
4091 return 1;
4092 }
4093
4094 /* We are already in VLAN promisc, nothing to do */
4095 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4096 return 0;
4097
4098 if (!adapter->vfs_allocated_count)
4099 goto set_vfta;
4100
4101 /* Add PF to all active pools */
4102 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4103
4104 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4105 u32 vlvf = rd32(E1000_VLVF(i));
4106
4107 vlvf |= BIT(pf_id);
4108 wr32(E1000_VLVF(i), vlvf);
4109 }
4110
4111 set_vfta:
4112 /* Set all bits in the VLAN filter table array */
4113 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4114 hw->mac.ops.write_vfta(hw, i, ~0U);
4115
4116 /* Set flag so we don't redo unnecessary work */
4117 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4118
4119 return 0;
4120 }
4121
4122 #define VFTA_BLOCK_SIZE 8
4123 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4124 {
4125 struct e1000_hw *hw = &adapter->hw;
4126 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4127 u32 vid_start = vfta_offset * 32;
4128 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4129 u32 i, vid, word, bits, pf_id;
4130
4131 /* guarantee that we don't scrub out management VLAN */
4132 vid = adapter->mng_vlan_id;
4133 if (vid >= vid_start && vid < vid_end)
4134 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4135
4136 if (!adapter->vfs_allocated_count)
4137 goto set_vfta;
4138
4139 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4140
4141 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4142 u32 vlvf = rd32(E1000_VLVF(i));
4143
4144 /* pull VLAN ID from VLVF */
4145 vid = vlvf & VLAN_VID_MASK;
4146
4147 /* only concern ourselves with a certain range */
4148 if (vid < vid_start || vid >= vid_end)
4149 continue;
4150
4151 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4152 /* record VLAN ID in VFTA */
4153 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4154
4155 /* if PF is part of this then continue */
4156 if (test_bit(vid, adapter->active_vlans))
4157 continue;
4158 }
4159
4160 /* remove PF from the pool */
4161 bits = ~BIT(pf_id);
4162 bits &= rd32(E1000_VLVF(i));
4163 wr32(E1000_VLVF(i), bits);
4164 }
4165
4166 set_vfta:
4167 /* extract values from active_vlans and write back to VFTA */
4168 for (i = VFTA_BLOCK_SIZE; i--;) {
4169 vid = (vfta_offset + i) * 32;
4170 word = vid / BITS_PER_LONG;
4171 bits = vid % BITS_PER_LONG;
4172
4173 vfta[i] |= adapter->active_vlans[word] >> bits;
4174
4175 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4176 }
4177 }
4178
4179 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4180 {
4181 u32 i;
4182
4183 /* We are not in VLAN promisc, nothing to do */
4184 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4185 return;
4186
4187 /* Set flag so we don't redo unnecessary work */
4188 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4189
4190 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4191 igb_scrub_vfta(adapter, i);
4192 }
4193
4194 /**
4195 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4196 * @netdev: network interface device structure
4197 *
4198 * The set_rx_mode entry point is called whenever the unicast or multicast
4199 * address lists or the network interface flags are updated. This routine is
4200 * responsible for configuring the hardware for proper unicast, multicast,
4201 * promiscuous mode, and all-multi behavior.
4202 **/
4203 static void igb_set_rx_mode(struct net_device *netdev)
4204 {
4205 struct igb_adapter *adapter = netdev_priv(netdev);
4206 struct e1000_hw *hw = &adapter->hw;
4207 unsigned int vfn = adapter->vfs_allocated_count;
4208 u32 rctl = 0, vmolr = 0;
4209 int count;
4210
4211 /* Check for Promiscuous and All Multicast modes */
4212 if (netdev->flags & IFF_PROMISC) {
4213 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4214 vmolr |= E1000_VMOLR_MPME;
4215
4216 /* enable use of UTA filter to force packets to default pool */
4217 if (hw->mac.type == e1000_82576)
4218 vmolr |= E1000_VMOLR_ROPE;
4219 } else {
4220 if (netdev->flags & IFF_ALLMULTI) {
4221 rctl |= E1000_RCTL_MPE;
4222 vmolr |= E1000_VMOLR_MPME;
4223 } else {
4224 /* Write addresses to the MTA, if the attempt fails
4225 * then we should just turn on promiscuous mode so
4226 * that we can at least receive multicast traffic
4227 */
4228 count = igb_write_mc_addr_list(netdev);
4229 if (count < 0) {
4230 rctl |= E1000_RCTL_MPE;
4231 vmolr |= E1000_VMOLR_MPME;
4232 } else if (count) {
4233 vmolr |= E1000_VMOLR_ROMPE;
4234 }
4235 }
4236 }
4237
4238 /* Write addresses to available RAR registers, if there is not
4239 * sufficient space to store all the addresses then enable
4240 * unicast promiscuous mode
4241 */
4242 count = igb_write_uc_addr_list(netdev);
4243 if (count < 0) {
4244 rctl |= E1000_RCTL_UPE;
4245 vmolr |= E1000_VMOLR_ROPE;
4246 }
4247
4248 /* enable VLAN filtering by default */
4249 rctl |= E1000_RCTL_VFE;
4250
4251 /* disable VLAN filtering for modes that require it */
4252 if ((netdev->flags & IFF_PROMISC) ||
4253 (netdev->features & NETIF_F_RXALL)) {
4254 /* if we fail to set all rules then just clear VFE */
4255 if (igb_vlan_promisc_enable(adapter))
4256 rctl &= ~E1000_RCTL_VFE;
4257 } else {
4258 igb_vlan_promisc_disable(adapter);
4259 }
4260
4261 /* update state of unicast, multicast, and VLAN filtering modes */
4262 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4263 E1000_RCTL_VFE);
4264 wr32(E1000_RCTL, rctl);
4265
4266 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4267 * the VMOLR to enable the appropriate modes. Without this workaround
4268 * we will have issues with VLAN tag stripping not being done for frames
4269 * that are only arriving because we are the default pool
4270 */
4271 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4272 return;
4273
4274 /* set UTA to appropriate mode */
4275 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4276
4277 vmolr |= rd32(E1000_VMOLR(vfn)) &
4278 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4279
4280 /* enable Rx jumbo frames, no need for restriction */
4281 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4282 vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4283
4284 wr32(E1000_VMOLR(vfn), vmolr);
4285 wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4286
4287 igb_restore_vf_multicasts(adapter);
4288 }
4289
4290 static void igb_check_wvbr(struct igb_adapter *adapter)
4291 {
4292 struct e1000_hw *hw = &adapter->hw;
4293 u32 wvbr = 0;
4294
4295 switch (hw->mac.type) {
4296 case e1000_82576:
4297 case e1000_i350:
4298 wvbr = rd32(E1000_WVBR);
4299 if (!wvbr)
4300 return;
4301 break;
4302 default:
4303 break;
4304 }
4305
4306 adapter->wvbr |= wvbr;
4307 }
4308
4309 #define IGB_STAGGERED_QUEUE_OFFSET 8
4310
4311 static void igb_spoof_check(struct igb_adapter *adapter)
4312 {
4313 int j;
4314
4315 if (!adapter->wvbr)
4316 return;
4317
4318 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4319 if (adapter->wvbr & BIT(j) ||
4320 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4321 dev_warn(&adapter->pdev->dev,
4322 "Spoof event(s) detected on VF %d\n", j);
4323 adapter->wvbr &=
4324 ~(BIT(j) |
4325 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4326 }
4327 }
4328 }
4329
4330 /* Need to wait a few seconds after link up to get diagnostic information from
4331 * the phy
4332 */
4333 static void igb_update_phy_info(unsigned long data)
4334 {
4335 struct igb_adapter *adapter = (struct igb_adapter *) data;
4336 igb_get_phy_info(&adapter->hw);
4337 }
4338
4339 /**
4340 * igb_has_link - check shared code for link and determine up/down
4341 * @adapter: pointer to driver private info
4342 **/
4343 bool igb_has_link(struct igb_adapter *adapter)
4344 {
4345 struct e1000_hw *hw = &adapter->hw;
4346 bool link_active = false;
4347
4348 /* get_link_status is set on LSC (link status) interrupt or
4349 * rx sequence error interrupt. get_link_status will stay
4350 * false until the e1000_check_for_link establishes link
4351 * for copper adapters ONLY
4352 */
4353 switch (hw->phy.media_type) {
4354 case e1000_media_type_copper:
4355 if (!hw->mac.get_link_status)
4356 return true;
4357 case e1000_media_type_internal_serdes:
4358 hw->mac.ops.check_for_link(hw);
4359 link_active = !hw->mac.get_link_status;
4360 break;
4361 default:
4362 case e1000_media_type_unknown:
4363 break;
4364 }
4365
4366 if (((hw->mac.type == e1000_i210) ||
4367 (hw->mac.type == e1000_i211)) &&
4368 (hw->phy.id == I210_I_PHY_ID)) {
4369 if (!netif_carrier_ok(adapter->netdev)) {
4370 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4371 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4372 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4373 adapter->link_check_timeout = jiffies;
4374 }
4375 }
4376
4377 return link_active;
4378 }
4379
4380 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4381 {
4382 bool ret = false;
4383 u32 ctrl_ext, thstat;
4384
4385 /* check for thermal sensor event on i350 copper only */
4386 if (hw->mac.type == e1000_i350) {
4387 thstat = rd32(E1000_THSTAT);
4388 ctrl_ext = rd32(E1000_CTRL_EXT);
4389
4390 if ((hw->phy.media_type == e1000_media_type_copper) &&
4391 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4392 ret = !!(thstat & event);
4393 }
4394
4395 return ret;
4396 }
4397
4398 /**
4399 * igb_check_lvmmc - check for malformed packets received
4400 * and indicated in LVMMC register
4401 * @adapter: pointer to adapter
4402 **/
4403 static void igb_check_lvmmc(struct igb_adapter *adapter)
4404 {
4405 struct e1000_hw *hw = &adapter->hw;
4406 u32 lvmmc;
4407
4408 lvmmc = rd32(E1000_LVMMC);
4409 if (lvmmc) {
4410 if (unlikely(net_ratelimit())) {
4411 netdev_warn(adapter->netdev,
4412 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4413 lvmmc);
4414 }
4415 }
4416 }
4417
4418 /**
4419 * igb_watchdog - Timer Call-back
4420 * @data: pointer to adapter cast into an unsigned long
4421 **/
4422 static void igb_watchdog(unsigned long data)
4423 {
4424 struct igb_adapter *adapter = (struct igb_adapter *)data;
4425 /* Do the rest outside of interrupt context */
4426 schedule_work(&adapter->watchdog_task);
4427 }
4428
4429 static void igb_watchdog_task(struct work_struct *work)
4430 {
4431 struct igb_adapter *adapter = container_of(work,
4432 struct igb_adapter,
4433 watchdog_task);
4434 struct e1000_hw *hw = &adapter->hw;
4435 struct e1000_phy_info *phy = &hw->phy;
4436 struct net_device *netdev = adapter->netdev;
4437 u32 link;
4438 int i;
4439 u32 connsw;
4440 u16 phy_data, retry_count = 20;
4441
4442 link = igb_has_link(adapter);
4443
4444 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4445 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4446 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4447 else
4448 link = false;
4449 }
4450
4451 /* Force link down if we have fiber to swap to */
4452 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4453 if (hw->phy.media_type == e1000_media_type_copper) {
4454 connsw = rd32(E1000_CONNSW);
4455 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4456 link = 0;
4457 }
4458 }
4459 if (link) {
4460 /* Perform a reset if the media type changed. */
4461 if (hw->dev_spec._82575.media_changed) {
4462 hw->dev_spec._82575.media_changed = false;
4463 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4464 igb_reset(adapter);
4465 }
4466 /* Cancel scheduled suspend requests. */
4467 pm_runtime_resume(netdev->dev.parent);
4468
4469 if (!netif_carrier_ok(netdev)) {
4470 u32 ctrl;
4471
4472 hw->mac.ops.get_speed_and_duplex(hw,
4473 &adapter->link_speed,
4474 &adapter->link_duplex);
4475
4476 ctrl = rd32(E1000_CTRL);
4477 /* Links status message must follow this format */
4478 netdev_info(netdev,
4479 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4480 netdev->name,
4481 adapter->link_speed,
4482 adapter->link_duplex == FULL_DUPLEX ?
4483 "Full" : "Half",
4484 (ctrl & E1000_CTRL_TFCE) &&
4485 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4486 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4487 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4488
4489 /* disable EEE if enabled */
4490 if ((adapter->flags & IGB_FLAG_EEE) &&
4491 (adapter->link_duplex == HALF_DUPLEX)) {
4492 dev_info(&adapter->pdev->dev,
4493 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4494 adapter->hw.dev_spec._82575.eee_disable = true;
4495 adapter->flags &= ~IGB_FLAG_EEE;
4496 }
4497
4498 /* check if SmartSpeed worked */
4499 igb_check_downshift(hw);
4500 if (phy->speed_downgraded)
4501 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4502
4503 /* check for thermal sensor event */
4504 if (igb_thermal_sensor_event(hw,
4505 E1000_THSTAT_LINK_THROTTLE))
4506 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4507
4508 /* adjust timeout factor according to speed/duplex */
4509 adapter->tx_timeout_factor = 1;
4510 switch (adapter->link_speed) {
4511 case SPEED_10:
4512 adapter->tx_timeout_factor = 14;
4513 break;
4514 case SPEED_100:
4515 /* maybe add some timeout factor ? */
4516 break;
4517 }
4518
4519 if (adapter->link_speed != SPEED_1000)
4520 goto no_wait;
4521
4522 /* wait for Remote receiver status OK */
4523 retry_read_status:
4524 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4525 &phy_data)) {
4526 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4527 retry_count) {
4528 msleep(100);
4529 retry_count--;
4530 goto retry_read_status;
4531 } else if (!retry_count) {
4532 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4533 }
4534 } else {
4535 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4536 }
4537 no_wait:
4538 netif_carrier_on(netdev);
4539
4540 igb_ping_all_vfs(adapter);
4541 igb_check_vf_rate_limit(adapter);
4542
4543 /* link state has changed, schedule phy info update */
4544 if (!test_bit(__IGB_DOWN, &adapter->state))
4545 mod_timer(&adapter->phy_info_timer,
4546 round_jiffies(jiffies + 2 * HZ));
4547 }
4548 } else {
4549 if (netif_carrier_ok(netdev)) {
4550 adapter->link_speed = 0;
4551 adapter->link_duplex = 0;
4552
4553 /* check for thermal sensor event */
4554 if (igb_thermal_sensor_event(hw,
4555 E1000_THSTAT_PWR_DOWN)) {
4556 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4557 }
4558
4559 /* Links status message must follow this format */
4560 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4561 netdev->name);
4562 netif_carrier_off(netdev);
4563
4564 igb_ping_all_vfs(adapter);
4565
4566 /* link state has changed, schedule phy info update */
4567 if (!test_bit(__IGB_DOWN, &adapter->state))
4568 mod_timer(&adapter->phy_info_timer,
4569 round_jiffies(jiffies + 2 * HZ));
4570
4571 /* link is down, time to check for alternate media */
4572 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4573 igb_check_swap_media(adapter);
4574 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4575 schedule_work(&adapter->reset_task);
4576 /* return immediately */
4577 return;
4578 }
4579 }
4580 pm_schedule_suspend(netdev->dev.parent,
4581 MSEC_PER_SEC * 5);
4582
4583 /* also check for alternate media here */
4584 } else if (!netif_carrier_ok(netdev) &&
4585 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4586 igb_check_swap_media(adapter);
4587 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4588 schedule_work(&adapter->reset_task);
4589 /* return immediately */
4590 return;
4591 }
4592 }
4593 }
4594
4595 spin_lock(&adapter->stats64_lock);
4596 igb_update_stats(adapter, &adapter->stats64);
4597 spin_unlock(&adapter->stats64_lock);
4598
4599 for (i = 0; i < adapter->num_tx_queues; i++) {
4600 struct igb_ring *tx_ring = adapter->tx_ring[i];
4601 if (!netif_carrier_ok(netdev)) {
4602 /* We've lost link, so the controller stops DMA,
4603 * but we've got queued Tx work that's never going
4604 * to get done, so reset controller to flush Tx.
4605 * (Do the reset outside of interrupt context).
4606 */
4607 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4608 adapter->tx_timeout_count++;
4609 schedule_work(&adapter->reset_task);
4610 /* return immediately since reset is imminent */
4611 return;
4612 }
4613 }
4614
4615 /* Force detection of hung controller every watchdog period */
4616 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4617 }
4618
4619 /* Cause software interrupt to ensure Rx ring is cleaned */
4620 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4621 u32 eics = 0;
4622
4623 for (i = 0; i < adapter->num_q_vectors; i++)
4624 eics |= adapter->q_vector[i]->eims_value;
4625 wr32(E1000_EICS, eics);
4626 } else {
4627 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4628 }
4629
4630 igb_spoof_check(adapter);
4631 igb_ptp_rx_hang(adapter);
4632
4633 /* Check LVMMC register on i350/i354 only */
4634 if ((adapter->hw.mac.type == e1000_i350) ||
4635 (adapter->hw.mac.type == e1000_i354))
4636 igb_check_lvmmc(adapter);
4637
4638 /* Reset the timer */
4639 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4640 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4641 mod_timer(&adapter->watchdog_timer,
4642 round_jiffies(jiffies + HZ));
4643 else
4644 mod_timer(&adapter->watchdog_timer,
4645 round_jiffies(jiffies + 2 * HZ));
4646 }
4647 }
4648
4649 enum latency_range {
4650 lowest_latency = 0,
4651 low_latency = 1,
4652 bulk_latency = 2,
4653 latency_invalid = 255
4654 };
4655
4656 /**
4657 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4658 * @q_vector: pointer to q_vector
4659 *
4660 * Stores a new ITR value based on strictly on packet size. This
4661 * algorithm is less sophisticated than that used in igb_update_itr,
4662 * due to the difficulty of synchronizing statistics across multiple
4663 * receive rings. The divisors and thresholds used by this function
4664 * were determined based on theoretical maximum wire speed and testing
4665 * data, in order to minimize response time while increasing bulk
4666 * throughput.
4667 * This functionality is controlled by ethtool's coalescing settings.
4668 * NOTE: This function is called only when operating in a multiqueue
4669 * receive environment.
4670 **/
4671 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4672 {
4673 int new_val = q_vector->itr_val;
4674 int avg_wire_size = 0;
4675 struct igb_adapter *adapter = q_vector->adapter;
4676 unsigned int packets;
4677
4678 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4679 * ints/sec - ITR timer value of 120 ticks.
4680 */
4681 if (adapter->link_speed != SPEED_1000) {
4682 new_val = IGB_4K_ITR;
4683 goto set_itr_val;
4684 }
4685
4686 packets = q_vector->rx.total_packets;
4687 if (packets)
4688 avg_wire_size = q_vector->rx.total_bytes / packets;
4689
4690 packets = q_vector->tx.total_packets;
4691 if (packets)
4692 avg_wire_size = max_t(u32, avg_wire_size,
4693 q_vector->tx.total_bytes / packets);
4694
4695 /* if avg_wire_size isn't set no work was done */
4696 if (!avg_wire_size)
4697 goto clear_counts;
4698
4699 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4700 avg_wire_size += 24;
4701
4702 /* Don't starve jumbo frames */
4703 avg_wire_size = min(avg_wire_size, 3000);
4704
4705 /* Give a little boost to mid-size frames */
4706 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4707 new_val = avg_wire_size / 3;
4708 else
4709 new_val = avg_wire_size / 2;
4710
4711 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4712 if (new_val < IGB_20K_ITR &&
4713 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4714 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4715 new_val = IGB_20K_ITR;
4716
4717 set_itr_val:
4718 if (new_val != q_vector->itr_val) {
4719 q_vector->itr_val = new_val;
4720 q_vector->set_itr = 1;
4721 }
4722 clear_counts:
4723 q_vector->rx.total_bytes = 0;
4724 q_vector->rx.total_packets = 0;
4725 q_vector->tx.total_bytes = 0;
4726 q_vector->tx.total_packets = 0;
4727 }
4728
4729 /**
4730 * igb_update_itr - update the dynamic ITR value based on statistics
4731 * @q_vector: pointer to q_vector
4732 * @ring_container: ring info to update the itr for
4733 *
4734 * Stores a new ITR value based on packets and byte
4735 * counts during the last interrupt. The advantage of per interrupt
4736 * computation is faster updates and more accurate ITR for the current
4737 * traffic pattern. Constants in this function were computed
4738 * based on theoretical maximum wire speed and thresholds were set based
4739 * on testing data as well as attempting to minimize response time
4740 * while increasing bulk throughput.
4741 * This functionality is controlled by ethtool's coalescing settings.
4742 * NOTE: These calculations are only valid when operating in a single-
4743 * queue environment.
4744 **/
4745 static void igb_update_itr(struct igb_q_vector *q_vector,
4746 struct igb_ring_container *ring_container)
4747 {
4748 unsigned int packets = ring_container->total_packets;
4749 unsigned int bytes = ring_container->total_bytes;
4750 u8 itrval = ring_container->itr;
4751
4752 /* no packets, exit with status unchanged */
4753 if (packets == 0)
4754 return;
4755
4756 switch (itrval) {
4757 case lowest_latency:
4758 /* handle TSO and jumbo frames */
4759 if (bytes/packets > 8000)
4760 itrval = bulk_latency;
4761 else if ((packets < 5) && (bytes > 512))
4762 itrval = low_latency;
4763 break;
4764 case low_latency: /* 50 usec aka 20000 ints/s */
4765 if (bytes > 10000) {
4766 /* this if handles the TSO accounting */
4767 if (bytes/packets > 8000)
4768 itrval = bulk_latency;
4769 else if ((packets < 10) || ((bytes/packets) > 1200))
4770 itrval = bulk_latency;
4771 else if ((packets > 35))
4772 itrval = lowest_latency;
4773 } else if (bytes/packets > 2000) {
4774 itrval = bulk_latency;
4775 } else if (packets <= 2 && bytes < 512) {
4776 itrval = lowest_latency;
4777 }
4778 break;
4779 case bulk_latency: /* 250 usec aka 4000 ints/s */
4780 if (bytes > 25000) {
4781 if (packets > 35)
4782 itrval = low_latency;
4783 } else if (bytes < 1500) {
4784 itrval = low_latency;
4785 }
4786 break;
4787 }
4788
4789 /* clear work counters since we have the values we need */
4790 ring_container->total_bytes = 0;
4791 ring_container->total_packets = 0;
4792
4793 /* write updated itr to ring container */
4794 ring_container->itr = itrval;
4795 }
4796
4797 static void igb_set_itr(struct igb_q_vector *q_vector)
4798 {
4799 struct igb_adapter *adapter = q_vector->adapter;
4800 u32 new_itr = q_vector->itr_val;
4801 u8 current_itr = 0;
4802
4803 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4804 if (adapter->link_speed != SPEED_1000) {
4805 current_itr = 0;
4806 new_itr = IGB_4K_ITR;
4807 goto set_itr_now;
4808 }
4809
4810 igb_update_itr(q_vector, &q_vector->tx);
4811 igb_update_itr(q_vector, &q_vector->rx);
4812
4813 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4814
4815 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4816 if (current_itr == lowest_latency &&
4817 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4818 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4819 current_itr = low_latency;
4820
4821 switch (current_itr) {
4822 /* counts and packets in update_itr are dependent on these numbers */
4823 case lowest_latency:
4824 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4825 break;
4826 case low_latency:
4827 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4828 break;
4829 case bulk_latency:
4830 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4831 break;
4832 default:
4833 break;
4834 }
4835
4836 set_itr_now:
4837 if (new_itr != q_vector->itr_val) {
4838 /* this attempts to bias the interrupt rate towards Bulk
4839 * by adding intermediate steps when interrupt rate is
4840 * increasing
4841 */
4842 new_itr = new_itr > q_vector->itr_val ?
4843 max((new_itr * q_vector->itr_val) /
4844 (new_itr + (q_vector->itr_val >> 2)),
4845 new_itr) : new_itr;
4846 /* Don't write the value here; it resets the adapter's
4847 * internal timer, and causes us to delay far longer than
4848 * we should between interrupts. Instead, we write the ITR
4849 * value at the beginning of the next interrupt so the timing
4850 * ends up being correct.
4851 */
4852 q_vector->itr_val = new_itr;
4853 q_vector->set_itr = 1;
4854 }
4855 }
4856
4857 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4858 u32 type_tucmd, u32 mss_l4len_idx)
4859 {
4860 struct e1000_adv_tx_context_desc *context_desc;
4861 u16 i = tx_ring->next_to_use;
4862
4863 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4864
4865 i++;
4866 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4867
4868 /* set bits to identify this as an advanced context descriptor */
4869 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4870
4871 /* For 82575, context index must be unique per ring. */
4872 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4873 mss_l4len_idx |= tx_ring->reg_idx << 4;
4874
4875 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4876 context_desc->seqnum_seed = 0;
4877 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4878 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4879 }
4880
4881 static int igb_tso(struct igb_ring *tx_ring,
4882 struct igb_tx_buffer *first,
4883 u8 *hdr_len)
4884 {
4885 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4886 struct sk_buff *skb = first->skb;
4887 union {
4888 struct iphdr *v4;
4889 struct ipv6hdr *v6;
4890 unsigned char *hdr;
4891 } ip;
4892 union {
4893 struct tcphdr *tcp;
4894 unsigned char *hdr;
4895 } l4;
4896 u32 paylen, l4_offset;
4897 int err;
4898
4899 if (skb->ip_summed != CHECKSUM_PARTIAL)
4900 return 0;
4901
4902 if (!skb_is_gso(skb))
4903 return 0;
4904
4905 err = skb_cow_head(skb, 0);
4906 if (err < 0)
4907 return err;
4908
4909 ip.hdr = skb_network_header(skb);
4910 l4.hdr = skb_checksum_start(skb);
4911
4912 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4913 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4914
4915 /* initialize outer IP header fields */
4916 if (ip.v4->version == 4) {
4917 /* IP header will have to cancel out any data that
4918 * is not a part of the outer IP header
4919 */
4920 ip.v4->check = csum_fold(csum_add(lco_csum(skb),
4921 csum_unfold(l4.tcp->check)));
4922 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4923
4924 ip.v4->tot_len = 0;
4925 first->tx_flags |= IGB_TX_FLAGS_TSO |
4926 IGB_TX_FLAGS_CSUM |
4927 IGB_TX_FLAGS_IPV4;
4928 } else {
4929 ip.v6->payload_len = 0;
4930 first->tx_flags |= IGB_TX_FLAGS_TSO |
4931 IGB_TX_FLAGS_CSUM;
4932 }
4933
4934 /* determine offset of inner transport header */
4935 l4_offset = l4.hdr - skb->data;
4936
4937 /* compute length of segmentation header */
4938 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
4939
4940 /* remove payload length from inner checksum */
4941 paylen = skb->len - l4_offset;
4942 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
4943
4944 /* update gso size and bytecount with header size */
4945 first->gso_segs = skb_shinfo(skb)->gso_segs;
4946 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4947
4948 /* MSS L4LEN IDX */
4949 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
4950 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4951
4952 /* VLAN MACLEN IPLEN */
4953 vlan_macip_lens = l4.hdr - ip.hdr;
4954 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
4955 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4956
4957 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4958
4959 return 1;
4960 }
4961
4962 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4963 {
4964 unsigned int offset = 0;
4965
4966 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4967
4968 return offset == skb_checksum_start_offset(skb);
4969 }
4970
4971 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4972 {
4973 struct sk_buff *skb = first->skb;
4974 u32 vlan_macip_lens = 0;
4975 u32 type_tucmd = 0;
4976
4977 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4978 csum_failed:
4979 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4980 return;
4981 goto no_csum;
4982 }
4983
4984 switch (skb->csum_offset) {
4985 case offsetof(struct tcphdr, check):
4986 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4987 /* fall through */
4988 case offsetof(struct udphdr, check):
4989 break;
4990 case offsetof(struct sctphdr, checksum):
4991 /* validate that this is actually an SCTP request */
4992 if (((first->protocol == htons(ETH_P_IP)) &&
4993 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
4994 ((first->protocol == htons(ETH_P_IPV6)) &&
4995 igb_ipv6_csum_is_sctp(skb))) {
4996 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
4997 break;
4998 }
4999 default:
5000 skb_checksum_help(skb);
5001 goto csum_failed;
5002 }
5003
5004 /* update TX checksum flag */
5005 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5006 vlan_macip_lens = skb_checksum_start_offset(skb) -
5007 skb_network_offset(skb);
5008 no_csum:
5009 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5010 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5011
5012 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5013 }
5014
5015 #define IGB_SET_FLAG(_input, _flag, _result) \
5016 ((_flag <= _result) ? \
5017 ((u32)(_input & _flag) * (_result / _flag)) : \
5018 ((u32)(_input & _flag) / (_flag / _result)))
5019
5020 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5021 {
5022 /* set type for advanced descriptor with frame checksum insertion */
5023 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5024 E1000_ADVTXD_DCMD_DEXT |
5025 E1000_ADVTXD_DCMD_IFCS;
5026
5027 /* set HW vlan bit if vlan is present */
5028 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5029 (E1000_ADVTXD_DCMD_VLE));
5030
5031 /* set segmentation bits for TSO */
5032 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5033 (E1000_ADVTXD_DCMD_TSE));
5034
5035 /* set timestamp bit if present */
5036 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5037 (E1000_ADVTXD_MAC_TSTAMP));
5038
5039 /* insert frame checksum */
5040 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5041
5042 return cmd_type;
5043 }
5044
5045 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5046 union e1000_adv_tx_desc *tx_desc,
5047 u32 tx_flags, unsigned int paylen)
5048 {
5049 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5050
5051 /* 82575 requires a unique index per ring */
5052 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5053 olinfo_status |= tx_ring->reg_idx << 4;
5054
5055 /* insert L4 checksum */
5056 olinfo_status |= IGB_SET_FLAG(tx_flags,
5057 IGB_TX_FLAGS_CSUM,
5058 (E1000_TXD_POPTS_TXSM << 8));
5059
5060 /* insert IPv4 checksum */
5061 olinfo_status |= IGB_SET_FLAG(tx_flags,
5062 IGB_TX_FLAGS_IPV4,
5063 (E1000_TXD_POPTS_IXSM << 8));
5064
5065 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5066 }
5067
5068 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5069 {
5070 struct net_device *netdev = tx_ring->netdev;
5071
5072 netif_stop_subqueue(netdev, tx_ring->queue_index);
5073
5074 /* Herbert's original patch had:
5075 * smp_mb__after_netif_stop_queue();
5076 * but since that doesn't exist yet, just open code it.
5077 */
5078 smp_mb();
5079
5080 /* We need to check again in a case another CPU has just
5081 * made room available.
5082 */
5083 if (igb_desc_unused(tx_ring) < size)
5084 return -EBUSY;
5085
5086 /* A reprieve! */
5087 netif_wake_subqueue(netdev, tx_ring->queue_index);
5088
5089 u64_stats_update_begin(&tx_ring->tx_syncp2);
5090 tx_ring->tx_stats.restart_queue2++;
5091 u64_stats_update_end(&tx_ring->tx_syncp2);
5092
5093 return 0;
5094 }
5095
5096 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5097 {
5098 if (igb_desc_unused(tx_ring) >= size)
5099 return 0;
5100 return __igb_maybe_stop_tx(tx_ring, size);
5101 }
5102
5103 static void igb_tx_map(struct igb_ring *tx_ring,
5104 struct igb_tx_buffer *first,
5105 const u8 hdr_len)
5106 {
5107 struct sk_buff *skb = first->skb;
5108 struct igb_tx_buffer *tx_buffer;
5109 union e1000_adv_tx_desc *tx_desc;
5110 struct skb_frag_struct *frag;
5111 dma_addr_t dma;
5112 unsigned int data_len, size;
5113 u32 tx_flags = first->tx_flags;
5114 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5115 u16 i = tx_ring->next_to_use;
5116
5117 tx_desc = IGB_TX_DESC(tx_ring, i);
5118
5119 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5120
5121 size = skb_headlen(skb);
5122 data_len = skb->data_len;
5123
5124 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5125
5126 tx_buffer = first;
5127
5128 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5129 if (dma_mapping_error(tx_ring->dev, dma))
5130 goto dma_error;
5131
5132 /* record length, and DMA address */
5133 dma_unmap_len_set(tx_buffer, len, size);
5134 dma_unmap_addr_set(tx_buffer, dma, dma);
5135
5136 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5137
5138 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5139 tx_desc->read.cmd_type_len =
5140 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5141
5142 i++;
5143 tx_desc++;
5144 if (i == tx_ring->count) {
5145 tx_desc = IGB_TX_DESC(tx_ring, 0);
5146 i = 0;
5147 }
5148 tx_desc->read.olinfo_status = 0;
5149
5150 dma += IGB_MAX_DATA_PER_TXD;
5151 size -= IGB_MAX_DATA_PER_TXD;
5152
5153 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5154 }
5155
5156 if (likely(!data_len))
5157 break;
5158
5159 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5160
5161 i++;
5162 tx_desc++;
5163 if (i == tx_ring->count) {
5164 tx_desc = IGB_TX_DESC(tx_ring, 0);
5165 i = 0;
5166 }
5167 tx_desc->read.olinfo_status = 0;
5168
5169 size = skb_frag_size(frag);
5170 data_len -= size;
5171
5172 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5173 size, DMA_TO_DEVICE);
5174
5175 tx_buffer = &tx_ring->tx_buffer_info[i];
5176 }
5177
5178 /* write last descriptor with RS and EOP bits */
5179 cmd_type |= size | IGB_TXD_DCMD;
5180 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5181
5182 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5183
5184 /* set the timestamp */
5185 first->time_stamp = jiffies;
5186
5187 /* Force memory writes to complete before letting h/w know there
5188 * are new descriptors to fetch. (Only applicable for weak-ordered
5189 * memory model archs, such as IA-64).
5190 *
5191 * We also need this memory barrier to make certain all of the
5192 * status bits have been updated before next_to_watch is written.
5193 */
5194 wmb();
5195
5196 /* set next_to_watch value indicating a packet is present */
5197 first->next_to_watch = tx_desc;
5198
5199 i++;
5200 if (i == tx_ring->count)
5201 i = 0;
5202
5203 tx_ring->next_to_use = i;
5204
5205 /* Make sure there is space in the ring for the next send. */
5206 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5207
5208 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5209 writel(i, tx_ring->tail);
5210
5211 /* we need this if more than one processor can write to our tail
5212 * at a time, it synchronizes IO on IA64/Altix systems
5213 */
5214 mmiowb();
5215 }
5216 return;
5217
5218 dma_error:
5219 dev_err(tx_ring->dev, "TX DMA map failed\n");
5220
5221 /* clear dma mappings for failed tx_buffer_info map */
5222 for (;;) {
5223 tx_buffer = &tx_ring->tx_buffer_info[i];
5224 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5225 if (tx_buffer == first)
5226 break;
5227 if (i == 0)
5228 i = tx_ring->count;
5229 i--;
5230 }
5231
5232 tx_ring->next_to_use = i;
5233 }
5234
5235 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5236 struct igb_ring *tx_ring)
5237 {
5238 struct igb_tx_buffer *first;
5239 int tso;
5240 u32 tx_flags = 0;
5241 unsigned short f;
5242 u16 count = TXD_USE_COUNT(skb_headlen(skb));
5243 __be16 protocol = vlan_get_protocol(skb);
5244 u8 hdr_len = 0;
5245
5246 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5247 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5248 * + 2 desc gap to keep tail from touching head,
5249 * + 1 desc for context descriptor,
5250 * otherwise try next time
5251 */
5252 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5253 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5254
5255 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5256 /* this is a hard error */
5257 return NETDEV_TX_BUSY;
5258 }
5259
5260 /* record the location of the first descriptor for this packet */
5261 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5262 first->skb = skb;
5263 first->bytecount = skb->len;
5264 first->gso_segs = 1;
5265
5266 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5267 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5268
5269 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5270 &adapter->state)) {
5271 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5272 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5273
5274 adapter->ptp_tx_skb = skb_get(skb);
5275 adapter->ptp_tx_start = jiffies;
5276 if (adapter->hw.mac.type == e1000_82576)
5277 schedule_work(&adapter->ptp_tx_work);
5278 }
5279 }
5280
5281 skb_tx_timestamp(skb);
5282
5283 if (skb_vlan_tag_present(skb)) {
5284 tx_flags |= IGB_TX_FLAGS_VLAN;
5285 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5286 }
5287
5288 /* record initial flags and protocol */
5289 first->tx_flags = tx_flags;
5290 first->protocol = protocol;
5291
5292 tso = igb_tso(tx_ring, first, &hdr_len);
5293 if (tso < 0)
5294 goto out_drop;
5295 else if (!tso)
5296 igb_tx_csum(tx_ring, first);
5297
5298 igb_tx_map(tx_ring, first, hdr_len);
5299
5300 return NETDEV_TX_OK;
5301
5302 out_drop:
5303 igb_unmap_and_free_tx_resource(tx_ring, first);
5304
5305 return NETDEV_TX_OK;
5306 }
5307
5308 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5309 struct sk_buff *skb)
5310 {
5311 unsigned int r_idx = skb->queue_mapping;
5312
5313 if (r_idx >= adapter->num_tx_queues)
5314 r_idx = r_idx % adapter->num_tx_queues;
5315
5316 return adapter->tx_ring[r_idx];
5317 }
5318
5319 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5320 struct net_device *netdev)
5321 {
5322 struct igb_adapter *adapter = netdev_priv(netdev);
5323
5324 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5325 * in order to meet this minimum size requirement.
5326 */
5327 if (skb_put_padto(skb, 17))
5328 return NETDEV_TX_OK;
5329
5330 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5331 }
5332
5333 /**
5334 * igb_tx_timeout - Respond to a Tx Hang
5335 * @netdev: network interface device structure
5336 **/
5337 static void igb_tx_timeout(struct net_device *netdev)
5338 {
5339 struct igb_adapter *adapter = netdev_priv(netdev);
5340 struct e1000_hw *hw = &adapter->hw;
5341
5342 /* Do the reset outside of interrupt context */
5343 adapter->tx_timeout_count++;
5344
5345 if (hw->mac.type >= e1000_82580)
5346 hw->dev_spec._82575.global_device_reset = true;
5347
5348 schedule_work(&adapter->reset_task);
5349 wr32(E1000_EICS,
5350 (adapter->eims_enable_mask & ~adapter->eims_other));
5351 }
5352
5353 static void igb_reset_task(struct work_struct *work)
5354 {
5355 struct igb_adapter *adapter;
5356 adapter = container_of(work, struct igb_adapter, reset_task);
5357
5358 igb_dump(adapter);
5359 netdev_err(adapter->netdev, "Reset adapter\n");
5360 igb_reinit_locked(adapter);
5361 }
5362
5363 /**
5364 * igb_get_stats64 - Get System Network Statistics
5365 * @netdev: network interface device structure
5366 * @stats: rtnl_link_stats64 pointer
5367 **/
5368 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5369 struct rtnl_link_stats64 *stats)
5370 {
5371 struct igb_adapter *adapter = netdev_priv(netdev);
5372
5373 spin_lock(&adapter->stats64_lock);
5374 igb_update_stats(adapter, &adapter->stats64);
5375 memcpy(stats, &adapter->stats64, sizeof(*stats));
5376 spin_unlock(&adapter->stats64_lock);
5377
5378 return stats;
5379 }
5380
5381 /**
5382 * igb_change_mtu - Change the Maximum Transfer Unit
5383 * @netdev: network interface device structure
5384 * @new_mtu: new value for maximum frame size
5385 *
5386 * Returns 0 on success, negative on failure
5387 **/
5388 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5389 {
5390 struct igb_adapter *adapter = netdev_priv(netdev);
5391 struct pci_dev *pdev = adapter->pdev;
5392 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5393
5394 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5395 dev_err(&pdev->dev, "Invalid MTU setting\n");
5396 return -EINVAL;
5397 }
5398
5399 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5400 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5401 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5402 return -EINVAL;
5403 }
5404
5405 /* adjust max frame to be at least the size of a standard frame */
5406 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5407 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5408
5409 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5410 usleep_range(1000, 2000);
5411
5412 /* igb_down has a dependency on max_frame_size */
5413 adapter->max_frame_size = max_frame;
5414
5415 if (netif_running(netdev))
5416 igb_down(adapter);
5417
5418 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5419 netdev->mtu, new_mtu);
5420 netdev->mtu = new_mtu;
5421
5422 if (netif_running(netdev))
5423 igb_up(adapter);
5424 else
5425 igb_reset(adapter);
5426
5427 clear_bit(__IGB_RESETTING, &adapter->state);
5428
5429 return 0;
5430 }
5431
5432 /**
5433 * igb_update_stats - Update the board statistics counters
5434 * @adapter: board private structure
5435 **/
5436 void igb_update_stats(struct igb_adapter *adapter,
5437 struct rtnl_link_stats64 *net_stats)
5438 {
5439 struct e1000_hw *hw = &adapter->hw;
5440 struct pci_dev *pdev = adapter->pdev;
5441 u32 reg, mpc;
5442 int i;
5443 u64 bytes, packets;
5444 unsigned int start;
5445 u64 _bytes, _packets;
5446
5447 /* Prevent stats update while adapter is being reset, or if the pci
5448 * connection is down.
5449 */
5450 if (adapter->link_speed == 0)
5451 return;
5452 if (pci_channel_offline(pdev))
5453 return;
5454
5455 bytes = 0;
5456 packets = 0;
5457
5458 rcu_read_lock();
5459 for (i = 0; i < adapter->num_rx_queues; i++) {
5460 struct igb_ring *ring = adapter->rx_ring[i];
5461 u32 rqdpc = rd32(E1000_RQDPC(i));
5462 if (hw->mac.type >= e1000_i210)
5463 wr32(E1000_RQDPC(i), 0);
5464
5465 if (rqdpc) {
5466 ring->rx_stats.drops += rqdpc;
5467 net_stats->rx_fifo_errors += rqdpc;
5468 }
5469
5470 do {
5471 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5472 _bytes = ring->rx_stats.bytes;
5473 _packets = ring->rx_stats.packets;
5474 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5475 bytes += _bytes;
5476 packets += _packets;
5477 }
5478
5479 net_stats->rx_bytes = bytes;
5480 net_stats->rx_packets = packets;
5481
5482 bytes = 0;
5483 packets = 0;
5484 for (i = 0; i < adapter->num_tx_queues; i++) {
5485 struct igb_ring *ring = adapter->tx_ring[i];
5486 do {
5487 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5488 _bytes = ring->tx_stats.bytes;
5489 _packets = ring->tx_stats.packets;
5490 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5491 bytes += _bytes;
5492 packets += _packets;
5493 }
5494 net_stats->tx_bytes = bytes;
5495 net_stats->tx_packets = packets;
5496 rcu_read_unlock();
5497
5498 /* read stats registers */
5499 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5500 adapter->stats.gprc += rd32(E1000_GPRC);
5501 adapter->stats.gorc += rd32(E1000_GORCL);
5502 rd32(E1000_GORCH); /* clear GORCL */
5503 adapter->stats.bprc += rd32(E1000_BPRC);
5504 adapter->stats.mprc += rd32(E1000_MPRC);
5505 adapter->stats.roc += rd32(E1000_ROC);
5506
5507 adapter->stats.prc64 += rd32(E1000_PRC64);
5508 adapter->stats.prc127 += rd32(E1000_PRC127);
5509 adapter->stats.prc255 += rd32(E1000_PRC255);
5510 adapter->stats.prc511 += rd32(E1000_PRC511);
5511 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5512 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5513 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5514 adapter->stats.sec += rd32(E1000_SEC);
5515
5516 mpc = rd32(E1000_MPC);
5517 adapter->stats.mpc += mpc;
5518 net_stats->rx_fifo_errors += mpc;
5519 adapter->stats.scc += rd32(E1000_SCC);
5520 adapter->stats.ecol += rd32(E1000_ECOL);
5521 adapter->stats.mcc += rd32(E1000_MCC);
5522 adapter->stats.latecol += rd32(E1000_LATECOL);
5523 adapter->stats.dc += rd32(E1000_DC);
5524 adapter->stats.rlec += rd32(E1000_RLEC);
5525 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5526 adapter->stats.xontxc += rd32(E1000_XONTXC);
5527 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5528 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5529 adapter->stats.fcruc += rd32(E1000_FCRUC);
5530 adapter->stats.gptc += rd32(E1000_GPTC);
5531 adapter->stats.gotc += rd32(E1000_GOTCL);
5532 rd32(E1000_GOTCH); /* clear GOTCL */
5533 adapter->stats.rnbc += rd32(E1000_RNBC);
5534 adapter->stats.ruc += rd32(E1000_RUC);
5535 adapter->stats.rfc += rd32(E1000_RFC);
5536 adapter->stats.rjc += rd32(E1000_RJC);
5537 adapter->stats.tor += rd32(E1000_TORH);
5538 adapter->stats.tot += rd32(E1000_TOTH);
5539 adapter->stats.tpr += rd32(E1000_TPR);
5540
5541 adapter->stats.ptc64 += rd32(E1000_PTC64);
5542 adapter->stats.ptc127 += rd32(E1000_PTC127);
5543 adapter->stats.ptc255 += rd32(E1000_PTC255);
5544 adapter->stats.ptc511 += rd32(E1000_PTC511);
5545 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5546 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5547
5548 adapter->stats.mptc += rd32(E1000_MPTC);
5549 adapter->stats.bptc += rd32(E1000_BPTC);
5550
5551 adapter->stats.tpt += rd32(E1000_TPT);
5552 adapter->stats.colc += rd32(E1000_COLC);
5553
5554 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5555 /* read internal phy specific stats */
5556 reg = rd32(E1000_CTRL_EXT);
5557 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5558 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5559
5560 /* this stat has invalid values on i210/i211 */
5561 if ((hw->mac.type != e1000_i210) &&
5562 (hw->mac.type != e1000_i211))
5563 adapter->stats.tncrs += rd32(E1000_TNCRS);
5564 }
5565
5566 adapter->stats.tsctc += rd32(E1000_TSCTC);
5567 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5568
5569 adapter->stats.iac += rd32(E1000_IAC);
5570 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5571 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5572 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5573 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5574 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5575 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5576 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5577 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5578
5579 /* Fill out the OS statistics structure */
5580 net_stats->multicast = adapter->stats.mprc;
5581 net_stats->collisions = adapter->stats.colc;
5582
5583 /* Rx Errors */
5584
5585 /* RLEC on some newer hardware can be incorrect so build
5586 * our own version based on RUC and ROC
5587 */
5588 net_stats->rx_errors = adapter->stats.rxerrc +
5589 adapter->stats.crcerrs + adapter->stats.algnerrc +
5590 adapter->stats.ruc + adapter->stats.roc +
5591 adapter->stats.cexterr;
5592 net_stats->rx_length_errors = adapter->stats.ruc +
5593 adapter->stats.roc;
5594 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5595 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5596 net_stats->rx_missed_errors = adapter->stats.mpc;
5597
5598 /* Tx Errors */
5599 net_stats->tx_errors = adapter->stats.ecol +
5600 adapter->stats.latecol;
5601 net_stats->tx_aborted_errors = adapter->stats.ecol;
5602 net_stats->tx_window_errors = adapter->stats.latecol;
5603 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5604
5605 /* Tx Dropped needs to be maintained elsewhere */
5606
5607 /* Management Stats */
5608 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5609 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5610 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5611
5612 /* OS2BMC Stats */
5613 reg = rd32(E1000_MANC);
5614 if (reg & E1000_MANC_EN_BMC2OS) {
5615 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5616 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5617 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5618 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5619 }
5620 }
5621
5622 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5623 {
5624 struct e1000_hw *hw = &adapter->hw;
5625 struct ptp_clock_event event;
5626 struct timespec64 ts;
5627 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5628
5629 if (tsicr & TSINTR_SYS_WRAP) {
5630 event.type = PTP_CLOCK_PPS;
5631 if (adapter->ptp_caps.pps)
5632 ptp_clock_event(adapter->ptp_clock, &event);
5633 else
5634 dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5635 ack |= TSINTR_SYS_WRAP;
5636 }
5637
5638 if (tsicr & E1000_TSICR_TXTS) {
5639 /* retrieve hardware timestamp */
5640 schedule_work(&adapter->ptp_tx_work);
5641 ack |= E1000_TSICR_TXTS;
5642 }
5643
5644 if (tsicr & TSINTR_TT0) {
5645 spin_lock(&adapter->tmreg_lock);
5646 ts = timespec64_add(adapter->perout[0].start,
5647 adapter->perout[0].period);
5648 /* u32 conversion of tv_sec is safe until y2106 */
5649 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5650 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5651 tsauxc = rd32(E1000_TSAUXC);
5652 tsauxc |= TSAUXC_EN_TT0;
5653 wr32(E1000_TSAUXC, tsauxc);
5654 adapter->perout[0].start = ts;
5655 spin_unlock(&adapter->tmreg_lock);
5656 ack |= TSINTR_TT0;
5657 }
5658
5659 if (tsicr & TSINTR_TT1) {
5660 spin_lock(&adapter->tmreg_lock);
5661 ts = timespec64_add(adapter->perout[1].start,
5662 adapter->perout[1].period);
5663 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5664 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5665 tsauxc = rd32(E1000_TSAUXC);
5666 tsauxc |= TSAUXC_EN_TT1;
5667 wr32(E1000_TSAUXC, tsauxc);
5668 adapter->perout[1].start = ts;
5669 spin_unlock(&adapter->tmreg_lock);
5670 ack |= TSINTR_TT1;
5671 }
5672
5673 if (tsicr & TSINTR_AUTT0) {
5674 nsec = rd32(E1000_AUXSTMPL0);
5675 sec = rd32(E1000_AUXSTMPH0);
5676 event.type = PTP_CLOCK_EXTTS;
5677 event.index = 0;
5678 event.timestamp = sec * 1000000000ULL + nsec;
5679 ptp_clock_event(adapter->ptp_clock, &event);
5680 ack |= TSINTR_AUTT0;
5681 }
5682
5683 if (tsicr & TSINTR_AUTT1) {
5684 nsec = rd32(E1000_AUXSTMPL1);
5685 sec = rd32(E1000_AUXSTMPH1);
5686 event.type = PTP_CLOCK_EXTTS;
5687 event.index = 1;
5688 event.timestamp = sec * 1000000000ULL + nsec;
5689 ptp_clock_event(adapter->ptp_clock, &event);
5690 ack |= TSINTR_AUTT1;
5691 }
5692
5693 /* acknowledge the interrupts */
5694 wr32(E1000_TSICR, ack);
5695 }
5696
5697 static irqreturn_t igb_msix_other(int irq, void *data)
5698 {
5699 struct igb_adapter *adapter = data;
5700 struct e1000_hw *hw = &adapter->hw;
5701 u32 icr = rd32(E1000_ICR);
5702 /* reading ICR causes bit 31 of EICR to be cleared */
5703
5704 if (icr & E1000_ICR_DRSTA)
5705 schedule_work(&adapter->reset_task);
5706
5707 if (icr & E1000_ICR_DOUTSYNC) {
5708 /* HW is reporting DMA is out of sync */
5709 adapter->stats.doosync++;
5710 /* The DMA Out of Sync is also indication of a spoof event
5711 * in IOV mode. Check the Wrong VM Behavior register to
5712 * see if it is really a spoof event.
5713 */
5714 igb_check_wvbr(adapter);
5715 }
5716
5717 /* Check for a mailbox event */
5718 if (icr & E1000_ICR_VMMB)
5719 igb_msg_task(adapter);
5720
5721 if (icr & E1000_ICR_LSC) {
5722 hw->mac.get_link_status = 1;
5723 /* guard against interrupt when we're going down */
5724 if (!test_bit(__IGB_DOWN, &adapter->state))
5725 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5726 }
5727
5728 if (icr & E1000_ICR_TS)
5729 igb_tsync_interrupt(adapter);
5730
5731 wr32(E1000_EIMS, adapter->eims_other);
5732
5733 return IRQ_HANDLED;
5734 }
5735
5736 static void igb_write_itr(struct igb_q_vector *q_vector)
5737 {
5738 struct igb_adapter *adapter = q_vector->adapter;
5739 u32 itr_val = q_vector->itr_val & 0x7FFC;
5740
5741 if (!q_vector->set_itr)
5742 return;
5743
5744 if (!itr_val)
5745 itr_val = 0x4;
5746
5747 if (adapter->hw.mac.type == e1000_82575)
5748 itr_val |= itr_val << 16;
5749 else
5750 itr_val |= E1000_EITR_CNT_IGNR;
5751
5752 writel(itr_val, q_vector->itr_register);
5753 q_vector->set_itr = 0;
5754 }
5755
5756 static irqreturn_t igb_msix_ring(int irq, void *data)
5757 {
5758 struct igb_q_vector *q_vector = data;
5759
5760 /* Write the ITR value calculated from the previous interrupt. */
5761 igb_write_itr(q_vector);
5762
5763 napi_schedule(&q_vector->napi);
5764
5765 return IRQ_HANDLED;
5766 }
5767
5768 #ifdef CONFIG_IGB_DCA
5769 static void igb_update_tx_dca(struct igb_adapter *adapter,
5770 struct igb_ring *tx_ring,
5771 int cpu)
5772 {
5773 struct e1000_hw *hw = &adapter->hw;
5774 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5775
5776 if (hw->mac.type != e1000_82575)
5777 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5778
5779 /* We can enable relaxed ordering for reads, but not writes when
5780 * DCA is enabled. This is due to a known issue in some chipsets
5781 * which will cause the DCA tag to be cleared.
5782 */
5783 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5784 E1000_DCA_TXCTRL_DATA_RRO_EN |
5785 E1000_DCA_TXCTRL_DESC_DCA_EN;
5786
5787 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5788 }
5789
5790 static void igb_update_rx_dca(struct igb_adapter *adapter,
5791 struct igb_ring *rx_ring,
5792 int cpu)
5793 {
5794 struct e1000_hw *hw = &adapter->hw;
5795 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5796
5797 if (hw->mac.type != e1000_82575)
5798 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5799
5800 /* We can enable relaxed ordering for reads, but not writes when
5801 * DCA is enabled. This is due to a known issue in some chipsets
5802 * which will cause the DCA tag to be cleared.
5803 */
5804 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5805 E1000_DCA_RXCTRL_DESC_DCA_EN;
5806
5807 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5808 }
5809
5810 static void igb_update_dca(struct igb_q_vector *q_vector)
5811 {
5812 struct igb_adapter *adapter = q_vector->adapter;
5813 int cpu = get_cpu();
5814
5815 if (q_vector->cpu == cpu)
5816 goto out_no_update;
5817
5818 if (q_vector->tx.ring)
5819 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5820
5821 if (q_vector->rx.ring)
5822 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5823
5824 q_vector->cpu = cpu;
5825 out_no_update:
5826 put_cpu();
5827 }
5828
5829 static void igb_setup_dca(struct igb_adapter *adapter)
5830 {
5831 struct e1000_hw *hw = &adapter->hw;
5832 int i;
5833
5834 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5835 return;
5836
5837 /* Always use CB2 mode, difference is masked in the CB driver. */
5838 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5839
5840 for (i = 0; i < adapter->num_q_vectors; i++) {
5841 adapter->q_vector[i]->cpu = -1;
5842 igb_update_dca(adapter->q_vector[i]);
5843 }
5844 }
5845
5846 static int __igb_notify_dca(struct device *dev, void *data)
5847 {
5848 struct net_device *netdev = dev_get_drvdata(dev);
5849 struct igb_adapter *adapter = netdev_priv(netdev);
5850 struct pci_dev *pdev = adapter->pdev;
5851 struct e1000_hw *hw = &adapter->hw;
5852 unsigned long event = *(unsigned long *)data;
5853
5854 switch (event) {
5855 case DCA_PROVIDER_ADD:
5856 /* if already enabled, don't do it again */
5857 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5858 break;
5859 if (dca_add_requester(dev) == 0) {
5860 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5861 dev_info(&pdev->dev, "DCA enabled\n");
5862 igb_setup_dca(adapter);
5863 break;
5864 }
5865 /* Fall Through since DCA is disabled. */
5866 case DCA_PROVIDER_REMOVE:
5867 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5868 /* without this a class_device is left
5869 * hanging around in the sysfs model
5870 */
5871 dca_remove_requester(dev);
5872 dev_info(&pdev->dev, "DCA disabled\n");
5873 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5874 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5875 }
5876 break;
5877 }
5878
5879 return 0;
5880 }
5881
5882 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5883 void *p)
5884 {
5885 int ret_val;
5886
5887 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5888 __igb_notify_dca);
5889
5890 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5891 }
5892 #endif /* CONFIG_IGB_DCA */
5893
5894 #ifdef CONFIG_PCI_IOV
5895 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5896 {
5897 unsigned char mac_addr[ETH_ALEN];
5898
5899 eth_zero_addr(mac_addr);
5900 igb_set_vf_mac(adapter, vf, mac_addr);
5901
5902 /* By default spoof check is enabled for all VFs */
5903 adapter->vf_data[vf].spoofchk_enabled = true;
5904
5905 return 0;
5906 }
5907
5908 #endif
5909 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5910 {
5911 struct e1000_hw *hw = &adapter->hw;
5912 u32 ping;
5913 int i;
5914
5915 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5916 ping = E1000_PF_CONTROL_MSG;
5917 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5918 ping |= E1000_VT_MSGTYPE_CTS;
5919 igb_write_mbx(hw, &ping, 1, i);
5920 }
5921 }
5922
5923 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5924 {
5925 struct e1000_hw *hw = &adapter->hw;
5926 u32 vmolr = rd32(E1000_VMOLR(vf));
5927 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5928
5929 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5930 IGB_VF_FLAG_MULTI_PROMISC);
5931 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5932
5933 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5934 vmolr |= E1000_VMOLR_MPME;
5935 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5936 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5937 } else {
5938 /* if we have hashes and we are clearing a multicast promisc
5939 * flag we need to write the hashes to the MTA as this step
5940 * was previously skipped
5941 */
5942 if (vf_data->num_vf_mc_hashes > 30) {
5943 vmolr |= E1000_VMOLR_MPME;
5944 } else if (vf_data->num_vf_mc_hashes) {
5945 int j;
5946
5947 vmolr |= E1000_VMOLR_ROMPE;
5948 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5949 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5950 }
5951 }
5952
5953 wr32(E1000_VMOLR(vf), vmolr);
5954
5955 /* there are flags left unprocessed, likely not supported */
5956 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5957 return -EINVAL;
5958
5959 return 0;
5960 }
5961
5962 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5963 u32 *msgbuf, u32 vf)
5964 {
5965 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5966 u16 *hash_list = (u16 *)&msgbuf[1];
5967 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5968 int i;
5969
5970 /* salt away the number of multicast addresses assigned
5971 * to this VF for later use to restore when the PF multi cast
5972 * list changes
5973 */
5974 vf_data->num_vf_mc_hashes = n;
5975
5976 /* only up to 30 hash values supported */
5977 if (n > 30)
5978 n = 30;
5979
5980 /* store the hashes for later use */
5981 for (i = 0; i < n; i++)
5982 vf_data->vf_mc_hashes[i] = hash_list[i];
5983
5984 /* Flush and reset the mta with the new values */
5985 igb_set_rx_mode(adapter->netdev);
5986
5987 return 0;
5988 }
5989
5990 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5991 {
5992 struct e1000_hw *hw = &adapter->hw;
5993 struct vf_data_storage *vf_data;
5994 int i, j;
5995
5996 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5997 u32 vmolr = rd32(E1000_VMOLR(i));
5998
5999 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6000
6001 vf_data = &adapter->vf_data[i];
6002
6003 if ((vf_data->num_vf_mc_hashes > 30) ||
6004 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6005 vmolr |= E1000_VMOLR_MPME;
6006 } else if (vf_data->num_vf_mc_hashes) {
6007 vmolr |= E1000_VMOLR_ROMPE;
6008 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6009 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6010 }
6011 wr32(E1000_VMOLR(i), vmolr);
6012 }
6013 }
6014
6015 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6016 {
6017 struct e1000_hw *hw = &adapter->hw;
6018 u32 pool_mask, vlvf_mask, i;
6019
6020 /* create mask for VF and other pools */
6021 pool_mask = E1000_VLVF_POOLSEL_MASK;
6022 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6023
6024 /* drop PF from pool bits */
6025 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6026 adapter->vfs_allocated_count);
6027
6028 /* Find the vlan filter for this id */
6029 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6030 u32 vlvf = rd32(E1000_VLVF(i));
6031 u32 vfta_mask, vid, vfta;
6032
6033 /* remove the vf from the pool */
6034 if (!(vlvf & vlvf_mask))
6035 continue;
6036
6037 /* clear out bit from VLVF */
6038 vlvf ^= vlvf_mask;
6039
6040 /* if other pools are present, just remove ourselves */
6041 if (vlvf & pool_mask)
6042 goto update_vlvfb;
6043
6044 /* if PF is present, leave VFTA */
6045 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6046 goto update_vlvf;
6047
6048 vid = vlvf & E1000_VLVF_VLANID_MASK;
6049 vfta_mask = BIT(vid % 32);
6050
6051 /* clear bit from VFTA */
6052 vfta = adapter->shadow_vfta[vid / 32];
6053 if (vfta & vfta_mask)
6054 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6055 update_vlvf:
6056 /* clear pool selection enable */
6057 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6058 vlvf &= E1000_VLVF_POOLSEL_MASK;
6059 else
6060 vlvf = 0;
6061 update_vlvfb:
6062 /* clear pool bits */
6063 wr32(E1000_VLVF(i), vlvf);
6064 }
6065 }
6066
6067 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6068 {
6069 u32 vlvf;
6070 int idx;
6071
6072 /* short cut the special case */
6073 if (vlan == 0)
6074 return 0;
6075
6076 /* Search for the VLAN id in the VLVF entries */
6077 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6078 vlvf = rd32(E1000_VLVF(idx));
6079 if ((vlvf & VLAN_VID_MASK) == vlan)
6080 break;
6081 }
6082
6083 return idx;
6084 }
6085
6086 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6087 {
6088 struct e1000_hw *hw = &adapter->hw;
6089 u32 bits, pf_id;
6090 int idx;
6091
6092 idx = igb_find_vlvf_entry(hw, vid);
6093 if (!idx)
6094 return;
6095
6096 /* See if any other pools are set for this VLAN filter
6097 * entry other than the PF.
6098 */
6099 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6100 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6101 bits &= rd32(E1000_VLVF(idx));
6102
6103 /* Disable the filter so this falls into the default pool. */
6104 if (!bits) {
6105 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6106 wr32(E1000_VLVF(idx), BIT(pf_id));
6107 else
6108 wr32(E1000_VLVF(idx), 0);
6109 }
6110 }
6111
6112 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6113 bool add, u32 vf)
6114 {
6115 int pf_id = adapter->vfs_allocated_count;
6116 struct e1000_hw *hw = &adapter->hw;
6117 int err;
6118
6119 /* If VLAN overlaps with one the PF is currently monitoring make
6120 * sure that we are able to allocate a VLVF entry. This may be
6121 * redundant but it guarantees PF will maintain visibility to
6122 * the VLAN.
6123 */
6124 if (add && test_bit(vid, adapter->active_vlans)) {
6125 err = igb_vfta_set(hw, vid, pf_id, true, false);
6126 if (err)
6127 return err;
6128 }
6129
6130 err = igb_vfta_set(hw, vid, vf, add, false);
6131
6132 if (add && !err)
6133 return err;
6134
6135 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6136 * we may need to drop the PF pool bit in order to allow us to free
6137 * up the VLVF resources.
6138 */
6139 if (test_bit(vid, adapter->active_vlans) ||
6140 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6141 igb_update_pf_vlvf(adapter, vid);
6142
6143 return err;
6144 }
6145
6146 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6147 {
6148 struct e1000_hw *hw = &adapter->hw;
6149
6150 if (vid)
6151 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6152 else
6153 wr32(E1000_VMVIR(vf), 0);
6154 }
6155
6156 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6157 u16 vlan, u8 qos)
6158 {
6159 int err;
6160
6161 err = igb_set_vf_vlan(adapter, vlan, true, vf);
6162 if (err)
6163 return err;
6164
6165 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6166 igb_set_vmolr(adapter, vf, !vlan);
6167
6168 /* revoke access to previous VLAN */
6169 if (vlan != adapter->vf_data[vf].pf_vlan)
6170 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6171 false, vf);
6172
6173 adapter->vf_data[vf].pf_vlan = vlan;
6174 adapter->vf_data[vf].pf_qos = qos;
6175 igb_set_vf_vlan_strip(adapter, vf, true);
6176 dev_info(&adapter->pdev->dev,
6177 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6178 if (test_bit(__IGB_DOWN, &adapter->state)) {
6179 dev_warn(&adapter->pdev->dev,
6180 "The VF VLAN has been set, but the PF device is not up.\n");
6181 dev_warn(&adapter->pdev->dev,
6182 "Bring the PF device up before attempting to use the VF device.\n");
6183 }
6184
6185 return err;
6186 }
6187
6188 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6189 {
6190 /* Restore tagless access via VLAN 0 */
6191 igb_set_vf_vlan(adapter, 0, true, vf);
6192
6193 igb_set_vmvir(adapter, 0, vf);
6194 igb_set_vmolr(adapter, vf, true);
6195
6196 /* Remove any PF assigned VLAN */
6197 if (adapter->vf_data[vf].pf_vlan)
6198 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6199 false, vf);
6200
6201 adapter->vf_data[vf].pf_vlan = 0;
6202 adapter->vf_data[vf].pf_qos = 0;
6203 igb_set_vf_vlan_strip(adapter, vf, false);
6204
6205 return 0;
6206 }
6207
6208 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6209 int vf, u16 vlan, u8 qos)
6210 {
6211 struct igb_adapter *adapter = netdev_priv(netdev);
6212
6213 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6214 return -EINVAL;
6215
6216 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6217 igb_disable_port_vlan(adapter, vf);
6218 }
6219
6220 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6221 {
6222 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6223 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6224 int ret;
6225
6226 if (adapter->vf_data[vf].pf_vlan)
6227 return -1;
6228
6229 /* VLAN 0 is a special case, don't allow it to be removed */
6230 if (!vid && !add)
6231 return 0;
6232
6233 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6234 if (!ret)
6235 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6236 return ret;
6237 }
6238
6239 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6240 {
6241 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6242
6243 /* clear flags - except flag that indicates PF has set the MAC */
6244 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6245 vf_data->last_nack = jiffies;
6246
6247 /* reset vlans for device */
6248 igb_clear_vf_vfta(adapter, vf);
6249 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6250 igb_set_vmvir(adapter, vf_data->pf_vlan |
6251 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6252 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6253 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6254
6255 /* reset multicast table array for vf */
6256 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6257
6258 /* Flush and reset the mta with the new values */
6259 igb_set_rx_mode(adapter->netdev);
6260 }
6261
6262 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6263 {
6264 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6265
6266 /* clear mac address as we were hotplug removed/added */
6267 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6268 eth_zero_addr(vf_mac);
6269
6270 /* process remaining reset events */
6271 igb_vf_reset(adapter, vf);
6272 }
6273
6274 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6275 {
6276 struct e1000_hw *hw = &adapter->hw;
6277 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6278 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6279 u32 reg, msgbuf[3];
6280 u8 *addr = (u8 *)(&msgbuf[1]);
6281
6282 /* process all the same items cleared in a function level reset */
6283 igb_vf_reset(adapter, vf);
6284
6285 /* set vf mac address */
6286 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6287
6288 /* enable transmit and receive for vf */
6289 reg = rd32(E1000_VFTE);
6290 wr32(E1000_VFTE, reg | BIT(vf));
6291 reg = rd32(E1000_VFRE);
6292 wr32(E1000_VFRE, reg | BIT(vf));
6293
6294 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6295
6296 /* reply to reset with ack and vf mac address */
6297 if (!is_zero_ether_addr(vf_mac)) {
6298 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6299 memcpy(addr, vf_mac, ETH_ALEN);
6300 } else {
6301 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6302 }
6303 igb_write_mbx(hw, msgbuf, 3, vf);
6304 }
6305
6306 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6307 {
6308 /* The VF MAC Address is stored in a packed array of bytes
6309 * starting at the second 32 bit word of the msg array
6310 */
6311 unsigned char *addr = (char *)&msg[1];
6312 int err = -1;
6313
6314 if (is_valid_ether_addr(addr))
6315 err = igb_set_vf_mac(adapter, vf, addr);
6316
6317 return err;
6318 }
6319
6320 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6321 {
6322 struct e1000_hw *hw = &adapter->hw;
6323 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6324 u32 msg = E1000_VT_MSGTYPE_NACK;
6325
6326 /* if device isn't clear to send it shouldn't be reading either */
6327 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6328 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6329 igb_write_mbx(hw, &msg, 1, vf);
6330 vf_data->last_nack = jiffies;
6331 }
6332 }
6333
6334 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6335 {
6336 struct pci_dev *pdev = adapter->pdev;
6337 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6338 struct e1000_hw *hw = &adapter->hw;
6339 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6340 s32 retval;
6341
6342 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6343
6344 if (retval) {
6345 /* if receive failed revoke VF CTS stats and restart init */
6346 dev_err(&pdev->dev, "Error receiving message from VF\n");
6347 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6348 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6349 return;
6350 goto out;
6351 }
6352
6353 /* this is a message we already processed, do nothing */
6354 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6355 return;
6356
6357 /* until the vf completes a reset it should not be
6358 * allowed to start any configuration.
6359 */
6360 if (msgbuf[0] == E1000_VF_RESET) {
6361 igb_vf_reset_msg(adapter, vf);
6362 return;
6363 }
6364
6365 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6366 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6367 return;
6368 retval = -1;
6369 goto out;
6370 }
6371
6372 switch ((msgbuf[0] & 0xFFFF)) {
6373 case E1000_VF_SET_MAC_ADDR:
6374 retval = -EINVAL;
6375 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6376 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6377 else
6378 dev_warn(&pdev->dev,
6379 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6380 vf);
6381 break;
6382 case E1000_VF_SET_PROMISC:
6383 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6384 break;
6385 case E1000_VF_SET_MULTICAST:
6386 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6387 break;
6388 case E1000_VF_SET_LPE:
6389 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6390 break;
6391 case E1000_VF_SET_VLAN:
6392 retval = -1;
6393 if (vf_data->pf_vlan)
6394 dev_warn(&pdev->dev,
6395 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6396 vf);
6397 else
6398 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6399 break;
6400 default:
6401 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6402 retval = -1;
6403 break;
6404 }
6405
6406 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6407 out:
6408 /* notify the VF of the results of what it sent us */
6409 if (retval)
6410 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6411 else
6412 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6413
6414 igb_write_mbx(hw, msgbuf, 1, vf);
6415 }
6416
6417 static void igb_msg_task(struct igb_adapter *adapter)
6418 {
6419 struct e1000_hw *hw = &adapter->hw;
6420 u32 vf;
6421
6422 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6423 /* process any reset requests */
6424 if (!igb_check_for_rst(hw, vf))
6425 igb_vf_reset_event(adapter, vf);
6426
6427 /* process any messages pending */
6428 if (!igb_check_for_msg(hw, vf))
6429 igb_rcv_msg_from_vf(adapter, vf);
6430
6431 /* process any acks */
6432 if (!igb_check_for_ack(hw, vf))
6433 igb_rcv_ack_from_vf(adapter, vf);
6434 }
6435 }
6436
6437 /**
6438 * igb_set_uta - Set unicast filter table address
6439 * @adapter: board private structure
6440 * @set: boolean indicating if we are setting or clearing bits
6441 *
6442 * The unicast table address is a register array of 32-bit registers.
6443 * The table is meant to be used in a way similar to how the MTA is used
6444 * however due to certain limitations in the hardware it is necessary to
6445 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6446 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6447 **/
6448 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6449 {
6450 struct e1000_hw *hw = &adapter->hw;
6451 u32 uta = set ? ~0 : 0;
6452 int i;
6453
6454 /* we only need to do this if VMDq is enabled */
6455 if (!adapter->vfs_allocated_count)
6456 return;
6457
6458 for (i = hw->mac.uta_reg_count; i--;)
6459 array_wr32(E1000_UTA, i, uta);
6460 }
6461
6462 /**
6463 * igb_intr_msi - Interrupt Handler
6464 * @irq: interrupt number
6465 * @data: pointer to a network interface device structure
6466 **/
6467 static irqreturn_t igb_intr_msi(int irq, void *data)
6468 {
6469 struct igb_adapter *adapter = data;
6470 struct igb_q_vector *q_vector = adapter->q_vector[0];
6471 struct e1000_hw *hw = &adapter->hw;
6472 /* read ICR disables interrupts using IAM */
6473 u32 icr = rd32(E1000_ICR);
6474
6475 igb_write_itr(q_vector);
6476
6477 if (icr & E1000_ICR_DRSTA)
6478 schedule_work(&adapter->reset_task);
6479
6480 if (icr & E1000_ICR_DOUTSYNC) {
6481 /* HW is reporting DMA is out of sync */
6482 adapter->stats.doosync++;
6483 }
6484
6485 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6486 hw->mac.get_link_status = 1;
6487 if (!test_bit(__IGB_DOWN, &adapter->state))
6488 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6489 }
6490
6491 if (icr & E1000_ICR_TS)
6492 igb_tsync_interrupt(adapter);
6493
6494 napi_schedule(&q_vector->napi);
6495
6496 return IRQ_HANDLED;
6497 }
6498
6499 /**
6500 * igb_intr - Legacy Interrupt Handler
6501 * @irq: interrupt number
6502 * @data: pointer to a network interface device structure
6503 **/
6504 static irqreturn_t igb_intr(int irq, void *data)
6505 {
6506 struct igb_adapter *adapter = data;
6507 struct igb_q_vector *q_vector = adapter->q_vector[0];
6508 struct e1000_hw *hw = &adapter->hw;
6509 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6510 * need for the IMC write
6511 */
6512 u32 icr = rd32(E1000_ICR);
6513
6514 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6515 * not set, then the adapter didn't send an interrupt
6516 */
6517 if (!(icr & E1000_ICR_INT_ASSERTED))
6518 return IRQ_NONE;
6519
6520 igb_write_itr(q_vector);
6521
6522 if (icr & E1000_ICR_DRSTA)
6523 schedule_work(&adapter->reset_task);
6524
6525 if (icr & E1000_ICR_DOUTSYNC) {
6526 /* HW is reporting DMA is out of sync */
6527 adapter->stats.doosync++;
6528 }
6529
6530 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6531 hw->mac.get_link_status = 1;
6532 /* guard against interrupt when we're going down */
6533 if (!test_bit(__IGB_DOWN, &adapter->state))
6534 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6535 }
6536
6537 if (icr & E1000_ICR_TS)
6538 igb_tsync_interrupt(adapter);
6539
6540 napi_schedule(&q_vector->napi);
6541
6542 return IRQ_HANDLED;
6543 }
6544
6545 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6546 {
6547 struct igb_adapter *adapter = q_vector->adapter;
6548 struct e1000_hw *hw = &adapter->hw;
6549
6550 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6551 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6552 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6553 igb_set_itr(q_vector);
6554 else
6555 igb_update_ring_itr(q_vector);
6556 }
6557
6558 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6559 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6560 wr32(E1000_EIMS, q_vector->eims_value);
6561 else
6562 igb_irq_enable(adapter);
6563 }
6564 }
6565
6566 /**
6567 * igb_poll - NAPI Rx polling callback
6568 * @napi: napi polling structure
6569 * @budget: count of how many packets we should handle
6570 **/
6571 static int igb_poll(struct napi_struct *napi, int budget)
6572 {
6573 struct igb_q_vector *q_vector = container_of(napi,
6574 struct igb_q_vector,
6575 napi);
6576 bool clean_complete = true;
6577 int work_done = 0;
6578
6579 #ifdef CONFIG_IGB_DCA
6580 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6581 igb_update_dca(q_vector);
6582 #endif
6583 if (q_vector->tx.ring)
6584 clean_complete = igb_clean_tx_irq(q_vector, budget);
6585
6586 if (q_vector->rx.ring) {
6587 int cleaned = igb_clean_rx_irq(q_vector, budget);
6588
6589 work_done += cleaned;
6590 if (cleaned >= budget)
6591 clean_complete = false;
6592 }
6593
6594 /* If all work not completed, return budget and keep polling */
6595 if (!clean_complete)
6596 return budget;
6597
6598 /* If not enough Rx work done, exit the polling mode */
6599 napi_complete_done(napi, work_done);
6600 igb_ring_irq_enable(q_vector);
6601
6602 return 0;
6603 }
6604
6605 /**
6606 * igb_clean_tx_irq - Reclaim resources after transmit completes
6607 * @q_vector: pointer to q_vector containing needed info
6608 * @napi_budget: Used to determine if we are in netpoll
6609 *
6610 * returns true if ring is completely cleaned
6611 **/
6612 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6613 {
6614 struct igb_adapter *adapter = q_vector->adapter;
6615 struct igb_ring *tx_ring = q_vector->tx.ring;
6616 struct igb_tx_buffer *tx_buffer;
6617 union e1000_adv_tx_desc *tx_desc;
6618 unsigned int total_bytes = 0, total_packets = 0;
6619 unsigned int budget = q_vector->tx.work_limit;
6620 unsigned int i = tx_ring->next_to_clean;
6621
6622 if (test_bit(__IGB_DOWN, &adapter->state))
6623 return true;
6624
6625 tx_buffer = &tx_ring->tx_buffer_info[i];
6626 tx_desc = IGB_TX_DESC(tx_ring, i);
6627 i -= tx_ring->count;
6628
6629 do {
6630 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6631
6632 /* if next_to_watch is not set then there is no work pending */
6633 if (!eop_desc)
6634 break;
6635
6636 /* prevent any other reads prior to eop_desc */
6637 read_barrier_depends();
6638
6639 /* if DD is not set pending work has not been completed */
6640 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6641 break;
6642
6643 /* clear next_to_watch to prevent false hangs */
6644 tx_buffer->next_to_watch = NULL;
6645
6646 /* update the statistics for this packet */
6647 total_bytes += tx_buffer->bytecount;
6648 total_packets += tx_buffer->gso_segs;
6649
6650 /* free the skb */
6651 napi_consume_skb(tx_buffer->skb, napi_budget);
6652
6653 /* unmap skb header data */
6654 dma_unmap_single(tx_ring->dev,
6655 dma_unmap_addr(tx_buffer, dma),
6656 dma_unmap_len(tx_buffer, len),
6657 DMA_TO_DEVICE);
6658
6659 /* clear tx_buffer data */
6660 tx_buffer->skb = NULL;
6661 dma_unmap_len_set(tx_buffer, len, 0);
6662
6663 /* clear last DMA location and unmap remaining buffers */
6664 while (tx_desc != eop_desc) {
6665 tx_buffer++;
6666 tx_desc++;
6667 i++;
6668 if (unlikely(!i)) {
6669 i -= tx_ring->count;
6670 tx_buffer = tx_ring->tx_buffer_info;
6671 tx_desc = IGB_TX_DESC(tx_ring, 0);
6672 }
6673
6674 /* unmap any remaining paged data */
6675 if (dma_unmap_len(tx_buffer, len)) {
6676 dma_unmap_page(tx_ring->dev,
6677 dma_unmap_addr(tx_buffer, dma),
6678 dma_unmap_len(tx_buffer, len),
6679 DMA_TO_DEVICE);
6680 dma_unmap_len_set(tx_buffer, len, 0);
6681 }
6682 }
6683
6684 /* move us one more past the eop_desc for start of next pkt */
6685 tx_buffer++;
6686 tx_desc++;
6687 i++;
6688 if (unlikely(!i)) {
6689 i -= tx_ring->count;
6690 tx_buffer = tx_ring->tx_buffer_info;
6691 tx_desc = IGB_TX_DESC(tx_ring, 0);
6692 }
6693
6694 /* issue prefetch for next Tx descriptor */
6695 prefetch(tx_desc);
6696
6697 /* update budget accounting */
6698 budget--;
6699 } while (likely(budget));
6700
6701 netdev_tx_completed_queue(txring_txq(tx_ring),
6702 total_packets, total_bytes);
6703 i += tx_ring->count;
6704 tx_ring->next_to_clean = i;
6705 u64_stats_update_begin(&tx_ring->tx_syncp);
6706 tx_ring->tx_stats.bytes += total_bytes;
6707 tx_ring->tx_stats.packets += total_packets;
6708 u64_stats_update_end(&tx_ring->tx_syncp);
6709 q_vector->tx.total_bytes += total_bytes;
6710 q_vector->tx.total_packets += total_packets;
6711
6712 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6713 struct e1000_hw *hw = &adapter->hw;
6714
6715 /* Detect a transmit hang in hardware, this serializes the
6716 * check with the clearing of time_stamp and movement of i
6717 */
6718 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6719 if (tx_buffer->next_to_watch &&
6720 time_after(jiffies, tx_buffer->time_stamp +
6721 (adapter->tx_timeout_factor * HZ)) &&
6722 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6723
6724 /* detected Tx unit hang */
6725 dev_err(tx_ring->dev,
6726 "Detected Tx Unit Hang\n"
6727 " Tx Queue <%d>\n"
6728 " TDH <%x>\n"
6729 " TDT <%x>\n"
6730 " next_to_use <%x>\n"
6731 " next_to_clean <%x>\n"
6732 "buffer_info[next_to_clean]\n"
6733 " time_stamp <%lx>\n"
6734 " next_to_watch <%p>\n"
6735 " jiffies <%lx>\n"
6736 " desc.status <%x>\n",
6737 tx_ring->queue_index,
6738 rd32(E1000_TDH(tx_ring->reg_idx)),
6739 readl(tx_ring->tail),
6740 tx_ring->next_to_use,
6741 tx_ring->next_to_clean,
6742 tx_buffer->time_stamp,
6743 tx_buffer->next_to_watch,
6744 jiffies,
6745 tx_buffer->next_to_watch->wb.status);
6746 netif_stop_subqueue(tx_ring->netdev,
6747 tx_ring->queue_index);
6748
6749 /* we are about to reset, no point in enabling stuff */
6750 return true;
6751 }
6752 }
6753
6754 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6755 if (unlikely(total_packets &&
6756 netif_carrier_ok(tx_ring->netdev) &&
6757 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6758 /* Make sure that anybody stopping the queue after this
6759 * sees the new next_to_clean.
6760 */
6761 smp_mb();
6762 if (__netif_subqueue_stopped(tx_ring->netdev,
6763 tx_ring->queue_index) &&
6764 !(test_bit(__IGB_DOWN, &adapter->state))) {
6765 netif_wake_subqueue(tx_ring->netdev,
6766 tx_ring->queue_index);
6767
6768 u64_stats_update_begin(&tx_ring->tx_syncp);
6769 tx_ring->tx_stats.restart_queue++;
6770 u64_stats_update_end(&tx_ring->tx_syncp);
6771 }
6772 }
6773
6774 return !!budget;
6775 }
6776
6777 /**
6778 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6779 * @rx_ring: rx descriptor ring to store buffers on
6780 * @old_buff: donor buffer to have page reused
6781 *
6782 * Synchronizes page for reuse by the adapter
6783 **/
6784 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6785 struct igb_rx_buffer *old_buff)
6786 {
6787 struct igb_rx_buffer *new_buff;
6788 u16 nta = rx_ring->next_to_alloc;
6789
6790 new_buff = &rx_ring->rx_buffer_info[nta];
6791
6792 /* update, and store next to alloc */
6793 nta++;
6794 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6795
6796 /* transfer page from old buffer to new buffer */
6797 *new_buff = *old_buff;
6798
6799 /* sync the buffer for use by the device */
6800 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6801 old_buff->page_offset,
6802 IGB_RX_BUFSZ,
6803 DMA_FROM_DEVICE);
6804 }
6805
6806 static inline bool igb_page_is_reserved(struct page *page)
6807 {
6808 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6809 }
6810
6811 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6812 struct page *page,
6813 unsigned int truesize)
6814 {
6815 /* avoid re-using remote pages */
6816 if (unlikely(igb_page_is_reserved(page)))
6817 return false;
6818
6819 #if (PAGE_SIZE < 8192)
6820 /* if we are only owner of page we can reuse it */
6821 if (unlikely(page_count(page) != 1))
6822 return false;
6823
6824 /* flip page offset to other buffer */
6825 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6826 #else
6827 /* move offset up to the next cache line */
6828 rx_buffer->page_offset += truesize;
6829
6830 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6831 return false;
6832 #endif
6833
6834 /* Even if we own the page, we are not allowed to use atomic_set()
6835 * This would break get_page_unless_zero() users.
6836 */
6837 page_ref_inc(page);
6838
6839 return true;
6840 }
6841
6842 /**
6843 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6844 * @rx_ring: rx descriptor ring to transact packets on
6845 * @rx_buffer: buffer containing page to add
6846 * @rx_desc: descriptor containing length of buffer written by hardware
6847 * @skb: sk_buff to place the data into
6848 *
6849 * This function will add the data contained in rx_buffer->page to the skb.
6850 * This is done either through a direct copy if the data in the buffer is
6851 * less than the skb header size, otherwise it will just attach the page as
6852 * a frag to the skb.
6853 *
6854 * The function will then update the page offset if necessary and return
6855 * true if the buffer can be reused by the adapter.
6856 **/
6857 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6858 struct igb_rx_buffer *rx_buffer,
6859 unsigned int size,
6860 union e1000_adv_rx_desc *rx_desc,
6861 struct sk_buff *skb)
6862 {
6863 struct page *page = rx_buffer->page;
6864 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6865 #if (PAGE_SIZE < 8192)
6866 unsigned int truesize = IGB_RX_BUFSZ;
6867 #else
6868 unsigned int truesize = SKB_DATA_ALIGN(size);
6869 #endif
6870 unsigned int pull_len;
6871
6872 if (unlikely(skb_is_nonlinear(skb)))
6873 goto add_tail_frag;
6874
6875 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6876 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6877 va += IGB_TS_HDR_LEN;
6878 size -= IGB_TS_HDR_LEN;
6879 }
6880
6881 if (likely(size <= IGB_RX_HDR_LEN)) {
6882 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6883
6884 /* page is not reserved, we can reuse buffer as-is */
6885 if (likely(!igb_page_is_reserved(page)))
6886 return true;
6887
6888 /* this page cannot be reused so discard it */
6889 __free_page(page);
6890 return false;
6891 }
6892
6893 /* we need the header to contain the greater of either ETH_HLEN or
6894 * 60 bytes if the skb->len is less than 60 for skb_pad.
6895 */
6896 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6897
6898 /* align pull length to size of long to optimize memcpy performance */
6899 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6900
6901 /* update all of the pointers */
6902 va += pull_len;
6903 size -= pull_len;
6904
6905 add_tail_frag:
6906 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6907 (unsigned long)va & ~PAGE_MASK, size, truesize);
6908
6909 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6910 }
6911
6912 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6913 union e1000_adv_rx_desc *rx_desc,
6914 struct sk_buff *skb)
6915 {
6916 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6917 struct igb_rx_buffer *rx_buffer;
6918 struct page *page;
6919
6920 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6921 page = rx_buffer->page;
6922 prefetchw(page);
6923
6924 if (likely(!skb)) {
6925 void *page_addr = page_address(page) +
6926 rx_buffer->page_offset;
6927
6928 /* prefetch first cache line of first page */
6929 prefetch(page_addr);
6930 #if L1_CACHE_BYTES < 128
6931 prefetch(page_addr + L1_CACHE_BYTES);
6932 #endif
6933
6934 /* allocate a skb to store the frags */
6935 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6936 if (unlikely(!skb)) {
6937 rx_ring->rx_stats.alloc_failed++;
6938 return NULL;
6939 }
6940
6941 /* we will be copying header into skb->data in
6942 * pskb_may_pull so it is in our interest to prefetch
6943 * it now to avoid a possible cache miss
6944 */
6945 prefetchw(skb->data);
6946 }
6947
6948 /* we are reusing so sync this buffer for CPU use */
6949 dma_sync_single_range_for_cpu(rx_ring->dev,
6950 rx_buffer->dma,
6951 rx_buffer->page_offset,
6952 size,
6953 DMA_FROM_DEVICE);
6954
6955 /* pull page into skb */
6956 if (igb_add_rx_frag(rx_ring, rx_buffer, size, rx_desc, skb)) {
6957 /* hand second half of page back to the ring */
6958 igb_reuse_rx_page(rx_ring, rx_buffer);
6959 } else {
6960 /* we are not reusing the buffer so unmap it */
6961 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6962 PAGE_SIZE, DMA_FROM_DEVICE);
6963 }
6964
6965 /* clear contents of rx_buffer */
6966 rx_buffer->page = NULL;
6967
6968 return skb;
6969 }
6970
6971 static inline void igb_rx_checksum(struct igb_ring *ring,
6972 union e1000_adv_rx_desc *rx_desc,
6973 struct sk_buff *skb)
6974 {
6975 skb_checksum_none_assert(skb);
6976
6977 /* Ignore Checksum bit is set */
6978 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6979 return;
6980
6981 /* Rx checksum disabled via ethtool */
6982 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6983 return;
6984
6985 /* TCP/UDP checksum error bit is set */
6986 if (igb_test_staterr(rx_desc,
6987 E1000_RXDEXT_STATERR_TCPE |
6988 E1000_RXDEXT_STATERR_IPE)) {
6989 /* work around errata with sctp packets where the TCPE aka
6990 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6991 * packets, (aka let the stack check the crc32c)
6992 */
6993 if (!((skb->len == 60) &&
6994 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6995 u64_stats_update_begin(&ring->rx_syncp);
6996 ring->rx_stats.csum_err++;
6997 u64_stats_update_end(&ring->rx_syncp);
6998 }
6999 /* let the stack verify checksum errors */
7000 return;
7001 }
7002 /* It must be a TCP or UDP packet with a valid checksum */
7003 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7004 E1000_RXD_STAT_UDPCS))
7005 skb->ip_summed = CHECKSUM_UNNECESSARY;
7006
7007 dev_dbg(ring->dev, "cksum success: bits %08X\n",
7008 le32_to_cpu(rx_desc->wb.upper.status_error));
7009 }
7010
7011 static inline void igb_rx_hash(struct igb_ring *ring,
7012 union e1000_adv_rx_desc *rx_desc,
7013 struct sk_buff *skb)
7014 {
7015 if (ring->netdev->features & NETIF_F_RXHASH)
7016 skb_set_hash(skb,
7017 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7018 PKT_HASH_TYPE_L3);
7019 }
7020
7021 /**
7022 * igb_is_non_eop - process handling of non-EOP buffers
7023 * @rx_ring: Rx ring being processed
7024 * @rx_desc: Rx descriptor for current buffer
7025 * @skb: current socket buffer containing buffer in progress
7026 *
7027 * This function updates next to clean. If the buffer is an EOP buffer
7028 * this function exits returning false, otherwise it will place the
7029 * sk_buff in the next buffer to be chained and return true indicating
7030 * that this is in fact a non-EOP buffer.
7031 **/
7032 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7033 union e1000_adv_rx_desc *rx_desc)
7034 {
7035 u32 ntc = rx_ring->next_to_clean + 1;
7036
7037 /* fetch, update, and store next to clean */
7038 ntc = (ntc < rx_ring->count) ? ntc : 0;
7039 rx_ring->next_to_clean = ntc;
7040
7041 prefetch(IGB_RX_DESC(rx_ring, ntc));
7042
7043 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7044 return false;
7045
7046 return true;
7047 }
7048
7049 /**
7050 * igb_cleanup_headers - Correct corrupted or empty headers
7051 * @rx_ring: rx descriptor ring packet is being transacted on
7052 * @rx_desc: pointer to the EOP Rx descriptor
7053 * @skb: pointer to current skb being fixed
7054 *
7055 * Address the case where we are pulling data in on pages only
7056 * and as such no data is present in the skb header.
7057 *
7058 * In addition if skb is not at least 60 bytes we need to pad it so that
7059 * it is large enough to qualify as a valid Ethernet frame.
7060 *
7061 * Returns true if an error was encountered and skb was freed.
7062 **/
7063 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7064 union e1000_adv_rx_desc *rx_desc,
7065 struct sk_buff *skb)
7066 {
7067 if (unlikely((igb_test_staterr(rx_desc,
7068 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7069 struct net_device *netdev = rx_ring->netdev;
7070 if (!(netdev->features & NETIF_F_RXALL)) {
7071 dev_kfree_skb_any(skb);
7072 return true;
7073 }
7074 }
7075
7076 /* if eth_skb_pad returns an error the skb was freed */
7077 if (eth_skb_pad(skb))
7078 return true;
7079
7080 return false;
7081 }
7082
7083 /**
7084 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
7085 * @rx_ring: rx descriptor ring packet is being transacted on
7086 * @rx_desc: pointer to the EOP Rx descriptor
7087 * @skb: pointer to current skb being populated
7088 *
7089 * This function checks the ring, descriptor, and packet information in
7090 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
7091 * other fields within the skb.
7092 **/
7093 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7094 union e1000_adv_rx_desc *rx_desc,
7095 struct sk_buff *skb)
7096 {
7097 struct net_device *dev = rx_ring->netdev;
7098
7099 igb_rx_hash(rx_ring, rx_desc, skb);
7100
7101 igb_rx_checksum(rx_ring, rx_desc, skb);
7102
7103 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7104 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7105 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7106
7107 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7108 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7109 u16 vid;
7110
7111 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7112 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7113 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7114 else
7115 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7116
7117 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7118 }
7119
7120 skb_record_rx_queue(skb, rx_ring->queue_index);
7121
7122 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7123 }
7124
7125 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7126 {
7127 struct igb_ring *rx_ring = q_vector->rx.ring;
7128 struct sk_buff *skb = rx_ring->skb;
7129 unsigned int total_bytes = 0, total_packets = 0;
7130 u16 cleaned_count = igb_desc_unused(rx_ring);
7131
7132 while (likely(total_packets < budget)) {
7133 union e1000_adv_rx_desc *rx_desc;
7134
7135 /* return some buffers to hardware, one at a time is too slow */
7136 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7137 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7138 cleaned_count = 0;
7139 }
7140
7141 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7142
7143 if (!rx_desc->wb.upper.status_error)
7144 break;
7145
7146 /* This memory barrier is needed to keep us from reading
7147 * any other fields out of the rx_desc until we know the
7148 * descriptor has been written back
7149 */
7150 dma_rmb();
7151
7152 /* retrieve a buffer from the ring */
7153 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7154
7155 /* exit if we failed to retrieve a buffer */
7156 if (!skb)
7157 break;
7158
7159 cleaned_count++;
7160
7161 /* fetch next buffer in frame if non-eop */
7162 if (igb_is_non_eop(rx_ring, rx_desc))
7163 continue;
7164
7165 /* verify the packet layout is correct */
7166 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7167 skb = NULL;
7168 continue;
7169 }
7170
7171 /* probably a little skewed due to removing CRC */
7172 total_bytes += skb->len;
7173
7174 /* populate checksum, timestamp, VLAN, and protocol */
7175 igb_process_skb_fields(rx_ring, rx_desc, skb);
7176
7177 napi_gro_receive(&q_vector->napi, skb);
7178
7179 /* reset skb pointer */
7180 skb = NULL;
7181
7182 /* update budget accounting */
7183 total_packets++;
7184 }
7185
7186 /* place incomplete frames back on ring for completion */
7187 rx_ring->skb = skb;
7188
7189 u64_stats_update_begin(&rx_ring->rx_syncp);
7190 rx_ring->rx_stats.packets += total_packets;
7191 rx_ring->rx_stats.bytes += total_bytes;
7192 u64_stats_update_end(&rx_ring->rx_syncp);
7193 q_vector->rx.total_packets += total_packets;
7194 q_vector->rx.total_bytes += total_bytes;
7195
7196 if (cleaned_count)
7197 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7198
7199 return total_packets;
7200 }
7201
7202 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7203 struct igb_rx_buffer *bi)
7204 {
7205 struct page *page = bi->page;
7206 dma_addr_t dma;
7207
7208 /* since we are recycling buffers we should seldom need to alloc */
7209 if (likely(page))
7210 return true;
7211
7212 /* alloc new page for storage */
7213 page = dev_alloc_page();
7214 if (unlikely(!page)) {
7215 rx_ring->rx_stats.alloc_failed++;
7216 return false;
7217 }
7218
7219 /* map page for use */
7220 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7221
7222 /* if mapping failed free memory back to system since
7223 * there isn't much point in holding memory we can't use
7224 */
7225 if (dma_mapping_error(rx_ring->dev, dma)) {
7226 __free_page(page);
7227
7228 rx_ring->rx_stats.alloc_failed++;
7229 return false;
7230 }
7231
7232 bi->dma = dma;
7233 bi->page = page;
7234 bi->page_offset = 0;
7235
7236 return true;
7237 }
7238
7239 /**
7240 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7241 * @adapter: address of board private structure
7242 **/
7243 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7244 {
7245 union e1000_adv_rx_desc *rx_desc;
7246 struct igb_rx_buffer *bi;
7247 u16 i = rx_ring->next_to_use;
7248
7249 /* nothing to do */
7250 if (!cleaned_count)
7251 return;
7252
7253 rx_desc = IGB_RX_DESC(rx_ring, i);
7254 bi = &rx_ring->rx_buffer_info[i];
7255 i -= rx_ring->count;
7256
7257 do {
7258 if (!igb_alloc_mapped_page(rx_ring, bi))
7259 break;
7260
7261 /* Refresh the desc even if buffer_addrs didn't change
7262 * because each write-back erases this info.
7263 */
7264 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7265
7266 rx_desc++;
7267 bi++;
7268 i++;
7269 if (unlikely(!i)) {
7270 rx_desc = IGB_RX_DESC(rx_ring, 0);
7271 bi = rx_ring->rx_buffer_info;
7272 i -= rx_ring->count;
7273 }
7274
7275 /* clear the status bits for the next_to_use descriptor */
7276 rx_desc->wb.upper.status_error = 0;
7277
7278 cleaned_count--;
7279 } while (cleaned_count);
7280
7281 i += rx_ring->count;
7282
7283 if (rx_ring->next_to_use != i) {
7284 /* record the next descriptor to use */
7285 rx_ring->next_to_use = i;
7286
7287 /* update next to alloc since we have filled the ring */
7288 rx_ring->next_to_alloc = i;
7289
7290 /* Force memory writes to complete before letting h/w
7291 * know there are new descriptors to fetch. (Only
7292 * applicable for weak-ordered memory model archs,
7293 * such as IA-64).
7294 */
7295 wmb();
7296 writel(i, rx_ring->tail);
7297 }
7298 }
7299
7300 /**
7301 * igb_mii_ioctl -
7302 * @netdev:
7303 * @ifreq:
7304 * @cmd:
7305 **/
7306 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7307 {
7308 struct igb_adapter *adapter = netdev_priv(netdev);
7309 struct mii_ioctl_data *data = if_mii(ifr);
7310
7311 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7312 return -EOPNOTSUPP;
7313
7314 switch (cmd) {
7315 case SIOCGMIIPHY:
7316 data->phy_id = adapter->hw.phy.addr;
7317 break;
7318 case SIOCGMIIREG:
7319 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7320 &data->val_out))
7321 return -EIO;
7322 break;
7323 case SIOCSMIIREG:
7324 default:
7325 return -EOPNOTSUPP;
7326 }
7327 return 0;
7328 }
7329
7330 /**
7331 * igb_ioctl -
7332 * @netdev:
7333 * @ifreq:
7334 * @cmd:
7335 **/
7336 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7337 {
7338 switch (cmd) {
7339 case SIOCGMIIPHY:
7340 case SIOCGMIIREG:
7341 case SIOCSMIIREG:
7342 return igb_mii_ioctl(netdev, ifr, cmd);
7343 case SIOCGHWTSTAMP:
7344 return igb_ptp_get_ts_config(netdev, ifr);
7345 case SIOCSHWTSTAMP:
7346 return igb_ptp_set_ts_config(netdev, ifr);
7347 default:
7348 return -EOPNOTSUPP;
7349 }
7350 }
7351
7352 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7353 {
7354 struct igb_adapter *adapter = hw->back;
7355
7356 pci_read_config_word(adapter->pdev, reg, value);
7357 }
7358
7359 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7360 {
7361 struct igb_adapter *adapter = hw->back;
7362
7363 pci_write_config_word(adapter->pdev, reg, *value);
7364 }
7365
7366 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7367 {
7368 struct igb_adapter *adapter = hw->back;
7369
7370 if (pcie_capability_read_word(adapter->pdev, reg, value))
7371 return -E1000_ERR_CONFIG;
7372
7373 return 0;
7374 }
7375
7376 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7377 {
7378 struct igb_adapter *adapter = hw->back;
7379
7380 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7381 return -E1000_ERR_CONFIG;
7382
7383 return 0;
7384 }
7385
7386 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7387 {
7388 struct igb_adapter *adapter = netdev_priv(netdev);
7389 struct e1000_hw *hw = &adapter->hw;
7390 u32 ctrl, rctl;
7391 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7392
7393 if (enable) {
7394 /* enable VLAN tag insert/strip */
7395 ctrl = rd32(E1000_CTRL);
7396 ctrl |= E1000_CTRL_VME;
7397 wr32(E1000_CTRL, ctrl);
7398
7399 /* Disable CFI check */
7400 rctl = rd32(E1000_RCTL);
7401 rctl &= ~E1000_RCTL_CFIEN;
7402 wr32(E1000_RCTL, rctl);
7403 } else {
7404 /* disable VLAN tag insert/strip */
7405 ctrl = rd32(E1000_CTRL);
7406 ctrl &= ~E1000_CTRL_VME;
7407 wr32(E1000_CTRL, ctrl);
7408 }
7409
7410 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7411 }
7412
7413 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7414 __be16 proto, u16 vid)
7415 {
7416 struct igb_adapter *adapter = netdev_priv(netdev);
7417 struct e1000_hw *hw = &adapter->hw;
7418 int pf_id = adapter->vfs_allocated_count;
7419
7420 /* add the filter since PF can receive vlans w/o entry in vlvf */
7421 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7422 igb_vfta_set(hw, vid, pf_id, true, !!vid);
7423
7424 set_bit(vid, adapter->active_vlans);
7425
7426 return 0;
7427 }
7428
7429 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7430 __be16 proto, u16 vid)
7431 {
7432 struct igb_adapter *adapter = netdev_priv(netdev);
7433 int pf_id = adapter->vfs_allocated_count;
7434 struct e1000_hw *hw = &adapter->hw;
7435
7436 /* remove VID from filter table */
7437 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7438 igb_vfta_set(hw, vid, pf_id, false, true);
7439
7440 clear_bit(vid, adapter->active_vlans);
7441
7442 return 0;
7443 }
7444
7445 static void igb_restore_vlan(struct igb_adapter *adapter)
7446 {
7447 u16 vid = 1;
7448
7449 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7450 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7451
7452 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7453 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7454 }
7455
7456 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7457 {
7458 struct pci_dev *pdev = adapter->pdev;
7459 struct e1000_mac_info *mac = &adapter->hw.mac;
7460
7461 mac->autoneg = 0;
7462
7463 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7464 * for the switch() below to work
7465 */
7466 if ((spd & 1) || (dplx & ~1))
7467 goto err_inval;
7468
7469 /* Fiber NIC's only allow 1000 gbps Full duplex
7470 * and 100Mbps Full duplex for 100baseFx sfp
7471 */
7472 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7473 switch (spd + dplx) {
7474 case SPEED_10 + DUPLEX_HALF:
7475 case SPEED_10 + DUPLEX_FULL:
7476 case SPEED_100 + DUPLEX_HALF:
7477 goto err_inval;
7478 default:
7479 break;
7480 }
7481 }
7482
7483 switch (spd + dplx) {
7484 case SPEED_10 + DUPLEX_HALF:
7485 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7486 break;
7487 case SPEED_10 + DUPLEX_FULL:
7488 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7489 break;
7490 case SPEED_100 + DUPLEX_HALF:
7491 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7492 break;
7493 case SPEED_100 + DUPLEX_FULL:
7494 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7495 break;
7496 case SPEED_1000 + DUPLEX_FULL:
7497 mac->autoneg = 1;
7498 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7499 break;
7500 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7501 default:
7502 goto err_inval;
7503 }
7504
7505 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7506 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7507
7508 return 0;
7509
7510 err_inval:
7511 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7512 return -EINVAL;
7513 }
7514
7515 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7516 bool runtime)
7517 {
7518 struct net_device *netdev = pci_get_drvdata(pdev);
7519 struct igb_adapter *adapter = netdev_priv(netdev);
7520 struct e1000_hw *hw = &adapter->hw;
7521 u32 ctrl, rctl, status;
7522 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7523 #ifdef CONFIG_PM
7524 int retval = 0;
7525 #endif
7526
7527 netif_device_detach(netdev);
7528
7529 if (netif_running(netdev))
7530 __igb_close(netdev, true);
7531
7532 igb_ptp_suspend(adapter);
7533
7534 igb_clear_interrupt_scheme(adapter);
7535
7536 #ifdef CONFIG_PM
7537 retval = pci_save_state(pdev);
7538 if (retval)
7539 return retval;
7540 #endif
7541
7542 status = rd32(E1000_STATUS);
7543 if (status & E1000_STATUS_LU)
7544 wufc &= ~E1000_WUFC_LNKC;
7545
7546 if (wufc) {
7547 igb_setup_rctl(adapter);
7548 igb_set_rx_mode(netdev);
7549
7550 /* turn on all-multi mode if wake on multicast is enabled */
7551 if (wufc & E1000_WUFC_MC) {
7552 rctl = rd32(E1000_RCTL);
7553 rctl |= E1000_RCTL_MPE;
7554 wr32(E1000_RCTL, rctl);
7555 }
7556
7557 ctrl = rd32(E1000_CTRL);
7558 /* advertise wake from D3Cold */
7559 #define E1000_CTRL_ADVD3WUC 0x00100000
7560 /* phy power management enable */
7561 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7562 ctrl |= E1000_CTRL_ADVD3WUC;
7563 wr32(E1000_CTRL, ctrl);
7564
7565 /* Allow time for pending master requests to run */
7566 igb_disable_pcie_master(hw);
7567
7568 wr32(E1000_WUC, E1000_WUC_PME_EN);
7569 wr32(E1000_WUFC, wufc);
7570 } else {
7571 wr32(E1000_WUC, 0);
7572 wr32(E1000_WUFC, 0);
7573 }
7574
7575 *enable_wake = wufc || adapter->en_mng_pt;
7576 if (!*enable_wake)
7577 igb_power_down_link(adapter);
7578 else
7579 igb_power_up_link(adapter);
7580
7581 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7582 * would have already happened in close and is redundant.
7583 */
7584 igb_release_hw_control(adapter);
7585
7586 pci_disable_device(pdev);
7587
7588 return 0;
7589 }
7590
7591 #ifdef CONFIG_PM
7592 #ifdef CONFIG_PM_SLEEP
7593 static int igb_suspend(struct device *dev)
7594 {
7595 int retval;
7596 bool wake;
7597 struct pci_dev *pdev = to_pci_dev(dev);
7598
7599 retval = __igb_shutdown(pdev, &wake, 0);
7600 if (retval)
7601 return retval;
7602
7603 if (wake) {
7604 pci_prepare_to_sleep(pdev);
7605 } else {
7606 pci_wake_from_d3(pdev, false);
7607 pci_set_power_state(pdev, PCI_D3hot);
7608 }
7609
7610 return 0;
7611 }
7612 #endif /* CONFIG_PM_SLEEP */
7613
7614 static int igb_resume(struct device *dev)
7615 {
7616 struct pci_dev *pdev = to_pci_dev(dev);
7617 struct net_device *netdev = pci_get_drvdata(pdev);
7618 struct igb_adapter *adapter = netdev_priv(netdev);
7619 struct e1000_hw *hw = &adapter->hw;
7620 u32 err;
7621
7622 pci_set_power_state(pdev, PCI_D0);
7623 pci_restore_state(pdev);
7624 pci_save_state(pdev);
7625
7626 if (!pci_device_is_present(pdev))
7627 return -ENODEV;
7628 err = pci_enable_device_mem(pdev);
7629 if (err) {
7630 dev_err(&pdev->dev,
7631 "igb: Cannot enable PCI device from suspend\n");
7632 return err;
7633 }
7634 pci_set_master(pdev);
7635
7636 pci_enable_wake(pdev, PCI_D3hot, 0);
7637 pci_enable_wake(pdev, PCI_D3cold, 0);
7638
7639 if (igb_init_interrupt_scheme(adapter, true)) {
7640 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7641 return -ENOMEM;
7642 }
7643
7644 igb_reset(adapter);
7645
7646 /* let the f/w know that the h/w is now under the control of the
7647 * driver.
7648 */
7649 igb_get_hw_control(adapter);
7650
7651 wr32(E1000_WUS, ~0);
7652
7653 if (netdev->flags & IFF_UP) {
7654 rtnl_lock();
7655 err = __igb_open(netdev, true);
7656 rtnl_unlock();
7657 if (err)
7658 return err;
7659 }
7660
7661 netif_device_attach(netdev);
7662 return 0;
7663 }
7664
7665 static int igb_runtime_idle(struct device *dev)
7666 {
7667 struct pci_dev *pdev = to_pci_dev(dev);
7668 struct net_device *netdev = pci_get_drvdata(pdev);
7669 struct igb_adapter *adapter = netdev_priv(netdev);
7670
7671 if (!igb_has_link(adapter))
7672 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7673
7674 return -EBUSY;
7675 }
7676
7677 static int igb_runtime_suspend(struct device *dev)
7678 {
7679 struct pci_dev *pdev = to_pci_dev(dev);
7680 int retval;
7681 bool wake;
7682
7683 retval = __igb_shutdown(pdev, &wake, 1);
7684 if (retval)
7685 return retval;
7686
7687 if (wake) {
7688 pci_prepare_to_sleep(pdev);
7689 } else {
7690 pci_wake_from_d3(pdev, false);
7691 pci_set_power_state(pdev, PCI_D3hot);
7692 }
7693
7694 return 0;
7695 }
7696
7697 static int igb_runtime_resume(struct device *dev)
7698 {
7699 return igb_resume(dev);
7700 }
7701 #endif /* CONFIG_PM */
7702
7703 static void igb_shutdown(struct pci_dev *pdev)
7704 {
7705 bool wake;
7706
7707 __igb_shutdown(pdev, &wake, 0);
7708
7709 if (system_state == SYSTEM_POWER_OFF) {
7710 pci_wake_from_d3(pdev, wake);
7711 pci_set_power_state(pdev, PCI_D3hot);
7712 }
7713 }
7714
7715 #ifdef CONFIG_PCI_IOV
7716 static int igb_sriov_reinit(struct pci_dev *dev)
7717 {
7718 struct net_device *netdev = pci_get_drvdata(dev);
7719 struct igb_adapter *adapter = netdev_priv(netdev);
7720 struct pci_dev *pdev = adapter->pdev;
7721
7722 rtnl_lock();
7723
7724 if (netif_running(netdev))
7725 igb_close(netdev);
7726 else
7727 igb_reset(adapter);
7728
7729 igb_clear_interrupt_scheme(adapter);
7730
7731 igb_init_queue_configuration(adapter);
7732
7733 if (igb_init_interrupt_scheme(adapter, true)) {
7734 rtnl_unlock();
7735 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7736 return -ENOMEM;
7737 }
7738
7739 if (netif_running(netdev))
7740 igb_open(netdev);
7741
7742 rtnl_unlock();
7743
7744 return 0;
7745 }
7746
7747 static int igb_pci_disable_sriov(struct pci_dev *dev)
7748 {
7749 int err = igb_disable_sriov(dev);
7750
7751 if (!err)
7752 err = igb_sriov_reinit(dev);
7753
7754 return err;
7755 }
7756
7757 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7758 {
7759 int err = igb_enable_sriov(dev, num_vfs);
7760
7761 if (err)
7762 goto out;
7763
7764 err = igb_sriov_reinit(dev);
7765 if (!err)
7766 return num_vfs;
7767
7768 out:
7769 return err;
7770 }
7771
7772 #endif
7773 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7774 {
7775 #ifdef CONFIG_PCI_IOV
7776 if (num_vfs == 0)
7777 return igb_pci_disable_sriov(dev);
7778 else
7779 return igb_pci_enable_sriov(dev, num_vfs);
7780 #endif
7781 return 0;
7782 }
7783
7784 #ifdef CONFIG_NET_POLL_CONTROLLER
7785 /* Polling 'interrupt' - used by things like netconsole to send skbs
7786 * without having to re-enable interrupts. It's not called while
7787 * the interrupt routine is executing.
7788 */
7789 static void igb_netpoll(struct net_device *netdev)
7790 {
7791 struct igb_adapter *adapter = netdev_priv(netdev);
7792 struct e1000_hw *hw = &adapter->hw;
7793 struct igb_q_vector *q_vector;
7794 int i;
7795
7796 for (i = 0; i < adapter->num_q_vectors; i++) {
7797 q_vector = adapter->q_vector[i];
7798 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7799 wr32(E1000_EIMC, q_vector->eims_value);
7800 else
7801 igb_irq_disable(adapter);
7802 napi_schedule(&q_vector->napi);
7803 }
7804 }
7805 #endif /* CONFIG_NET_POLL_CONTROLLER */
7806
7807 /**
7808 * igb_io_error_detected - called when PCI error is detected
7809 * @pdev: Pointer to PCI device
7810 * @state: The current pci connection state
7811 *
7812 * This function is called after a PCI bus error affecting
7813 * this device has been detected.
7814 **/
7815 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7816 pci_channel_state_t state)
7817 {
7818 struct net_device *netdev = pci_get_drvdata(pdev);
7819 struct igb_adapter *adapter = netdev_priv(netdev);
7820
7821 netif_device_detach(netdev);
7822
7823 if (state == pci_channel_io_perm_failure)
7824 return PCI_ERS_RESULT_DISCONNECT;
7825
7826 if (netif_running(netdev))
7827 igb_down(adapter);
7828 pci_disable_device(pdev);
7829
7830 /* Request a slot slot reset. */
7831 return PCI_ERS_RESULT_NEED_RESET;
7832 }
7833
7834 /**
7835 * igb_io_slot_reset - called after the pci bus has been reset.
7836 * @pdev: Pointer to PCI device
7837 *
7838 * Restart the card from scratch, as if from a cold-boot. Implementation
7839 * resembles the first-half of the igb_resume routine.
7840 **/
7841 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7842 {
7843 struct net_device *netdev = pci_get_drvdata(pdev);
7844 struct igb_adapter *adapter = netdev_priv(netdev);
7845 struct e1000_hw *hw = &adapter->hw;
7846 pci_ers_result_t result;
7847 int err;
7848
7849 if (pci_enable_device_mem(pdev)) {
7850 dev_err(&pdev->dev,
7851 "Cannot re-enable PCI device after reset.\n");
7852 result = PCI_ERS_RESULT_DISCONNECT;
7853 } else {
7854 pci_set_master(pdev);
7855 pci_restore_state(pdev);
7856 pci_save_state(pdev);
7857
7858 pci_enable_wake(pdev, PCI_D3hot, 0);
7859 pci_enable_wake(pdev, PCI_D3cold, 0);
7860
7861 igb_reset(adapter);
7862 wr32(E1000_WUS, ~0);
7863 result = PCI_ERS_RESULT_RECOVERED;
7864 }
7865
7866 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7867 if (err) {
7868 dev_err(&pdev->dev,
7869 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7870 err);
7871 /* non-fatal, continue */
7872 }
7873
7874 return result;
7875 }
7876
7877 /**
7878 * igb_io_resume - called when traffic can start flowing again.
7879 * @pdev: Pointer to PCI device
7880 *
7881 * This callback is called when the error recovery driver tells us that
7882 * its OK to resume normal operation. Implementation resembles the
7883 * second-half of the igb_resume routine.
7884 */
7885 static void igb_io_resume(struct pci_dev *pdev)
7886 {
7887 struct net_device *netdev = pci_get_drvdata(pdev);
7888 struct igb_adapter *adapter = netdev_priv(netdev);
7889
7890 if (netif_running(netdev)) {
7891 if (igb_up(adapter)) {
7892 dev_err(&pdev->dev, "igb_up failed after reset\n");
7893 return;
7894 }
7895 }
7896
7897 netif_device_attach(netdev);
7898
7899 /* let the f/w know that the h/w is now under the control of the
7900 * driver.
7901 */
7902 igb_get_hw_control(adapter);
7903 }
7904
7905 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7906 u8 qsel)
7907 {
7908 struct e1000_hw *hw = &adapter->hw;
7909 u32 rar_low, rar_high;
7910
7911 /* HW expects these to be in network order when they are plugged
7912 * into the registers which are little endian. In order to guarantee
7913 * that ordering we need to do an leXX_to_cpup here in order to be
7914 * ready for the byteswap that occurs with writel
7915 */
7916 rar_low = le32_to_cpup((__le32 *)(addr));
7917 rar_high = le16_to_cpup((__le16 *)(addr + 4));
7918
7919 /* Indicate to hardware the Address is Valid. */
7920 rar_high |= E1000_RAH_AV;
7921
7922 if (hw->mac.type == e1000_82575)
7923 rar_high |= E1000_RAH_POOL_1 * qsel;
7924 else
7925 rar_high |= E1000_RAH_POOL_1 << qsel;
7926
7927 wr32(E1000_RAL(index), rar_low);
7928 wrfl();
7929 wr32(E1000_RAH(index), rar_high);
7930 wrfl();
7931 }
7932
7933 static int igb_set_vf_mac(struct igb_adapter *adapter,
7934 int vf, unsigned char *mac_addr)
7935 {
7936 struct e1000_hw *hw = &adapter->hw;
7937 /* VF MAC addresses start at end of receive addresses and moves
7938 * towards the first, as a result a collision should not be possible
7939 */
7940 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7941
7942 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7943
7944 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7945
7946 return 0;
7947 }
7948
7949 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7950 {
7951 struct igb_adapter *adapter = netdev_priv(netdev);
7952 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7953 return -EINVAL;
7954 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7955 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7956 dev_info(&adapter->pdev->dev,
7957 "Reload the VF driver to make this change effective.");
7958 if (test_bit(__IGB_DOWN, &adapter->state)) {
7959 dev_warn(&adapter->pdev->dev,
7960 "The VF MAC address has been set, but the PF device is not up.\n");
7961 dev_warn(&adapter->pdev->dev,
7962 "Bring the PF device up before attempting to use the VF device.\n");
7963 }
7964 return igb_set_vf_mac(adapter, vf, mac);
7965 }
7966
7967 static int igb_link_mbps(int internal_link_speed)
7968 {
7969 switch (internal_link_speed) {
7970 case SPEED_100:
7971 return 100;
7972 case SPEED_1000:
7973 return 1000;
7974 default:
7975 return 0;
7976 }
7977 }
7978
7979 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7980 int link_speed)
7981 {
7982 int rf_dec, rf_int;
7983 u32 bcnrc_val;
7984
7985 if (tx_rate != 0) {
7986 /* Calculate the rate factor values to set */
7987 rf_int = link_speed / tx_rate;
7988 rf_dec = (link_speed - (rf_int * tx_rate));
7989 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
7990 tx_rate;
7991
7992 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7993 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7994 E1000_RTTBCNRC_RF_INT_MASK);
7995 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7996 } else {
7997 bcnrc_val = 0;
7998 }
7999
8000 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8001 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8002 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8003 */
8004 wr32(E1000_RTTBCNRM, 0x14);
8005 wr32(E1000_RTTBCNRC, bcnrc_val);
8006 }
8007
8008 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8009 {
8010 int actual_link_speed, i;
8011 bool reset_rate = false;
8012
8013 /* VF TX rate limit was not set or not supported */
8014 if ((adapter->vf_rate_link_speed == 0) ||
8015 (adapter->hw.mac.type != e1000_82576))
8016 return;
8017
8018 actual_link_speed = igb_link_mbps(adapter->link_speed);
8019 if (actual_link_speed != adapter->vf_rate_link_speed) {
8020 reset_rate = true;
8021 adapter->vf_rate_link_speed = 0;
8022 dev_info(&adapter->pdev->dev,
8023 "Link speed has been changed. VF Transmit rate is disabled\n");
8024 }
8025
8026 for (i = 0; i < adapter->vfs_allocated_count; i++) {
8027 if (reset_rate)
8028 adapter->vf_data[i].tx_rate = 0;
8029
8030 igb_set_vf_rate_limit(&adapter->hw, i,
8031 adapter->vf_data[i].tx_rate,
8032 actual_link_speed);
8033 }
8034 }
8035
8036 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8037 int min_tx_rate, int max_tx_rate)
8038 {
8039 struct igb_adapter *adapter = netdev_priv(netdev);
8040 struct e1000_hw *hw = &adapter->hw;
8041 int actual_link_speed;
8042
8043 if (hw->mac.type != e1000_82576)
8044 return -EOPNOTSUPP;
8045
8046 if (min_tx_rate)
8047 return -EINVAL;
8048
8049 actual_link_speed = igb_link_mbps(adapter->link_speed);
8050 if ((vf >= adapter->vfs_allocated_count) ||
8051 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8052 (max_tx_rate < 0) ||
8053 (max_tx_rate > actual_link_speed))
8054 return -EINVAL;
8055
8056 adapter->vf_rate_link_speed = actual_link_speed;
8057 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8058 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8059
8060 return 0;
8061 }
8062
8063 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8064 bool setting)
8065 {
8066 struct igb_adapter *adapter = netdev_priv(netdev);
8067 struct e1000_hw *hw = &adapter->hw;
8068 u32 reg_val, reg_offset;
8069
8070 if (!adapter->vfs_allocated_count)
8071 return -EOPNOTSUPP;
8072
8073 if (vf >= adapter->vfs_allocated_count)
8074 return -EINVAL;
8075
8076 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8077 reg_val = rd32(reg_offset);
8078 if (setting)
8079 reg_val |= (BIT(vf) |
8080 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8081 else
8082 reg_val &= ~(BIT(vf) |
8083 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8084 wr32(reg_offset, reg_val);
8085
8086 adapter->vf_data[vf].spoofchk_enabled = setting;
8087 return 0;
8088 }
8089
8090 static int igb_ndo_get_vf_config(struct net_device *netdev,
8091 int vf, struct ifla_vf_info *ivi)
8092 {
8093 struct igb_adapter *adapter = netdev_priv(netdev);
8094 if (vf >= adapter->vfs_allocated_count)
8095 return -EINVAL;
8096 ivi->vf = vf;
8097 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8098 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8099 ivi->min_tx_rate = 0;
8100 ivi->vlan = adapter->vf_data[vf].pf_vlan;
8101 ivi->qos = adapter->vf_data[vf].pf_qos;
8102 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8103 return 0;
8104 }
8105
8106 static void igb_vmm_control(struct igb_adapter *adapter)
8107 {
8108 struct e1000_hw *hw = &adapter->hw;
8109 u32 reg;
8110
8111 switch (hw->mac.type) {
8112 case e1000_82575:
8113 case e1000_i210:
8114 case e1000_i211:
8115 case e1000_i354:
8116 default:
8117 /* replication is not supported for 82575 */
8118 return;
8119 case e1000_82576:
8120 /* notify HW that the MAC is adding vlan tags */
8121 reg = rd32(E1000_DTXCTL);
8122 reg |= E1000_DTXCTL_VLAN_ADDED;
8123 wr32(E1000_DTXCTL, reg);
8124 /* Fall through */
8125 case e1000_82580:
8126 /* enable replication vlan tag stripping */
8127 reg = rd32(E1000_RPLOLR);
8128 reg |= E1000_RPLOLR_STRVLAN;
8129 wr32(E1000_RPLOLR, reg);
8130 /* Fall through */
8131 case e1000_i350:
8132 /* none of the above registers are supported by i350 */
8133 break;
8134 }
8135
8136 if (adapter->vfs_allocated_count) {
8137 igb_vmdq_set_loopback_pf(hw, true);
8138 igb_vmdq_set_replication_pf(hw, true);
8139 igb_vmdq_set_anti_spoofing_pf(hw, true,
8140 adapter->vfs_allocated_count);
8141 } else {
8142 igb_vmdq_set_loopback_pf(hw, false);
8143 igb_vmdq_set_replication_pf(hw, false);
8144 }
8145 }
8146
8147 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8148 {
8149 struct e1000_hw *hw = &adapter->hw;
8150 u32 dmac_thr;
8151 u16 hwm;
8152
8153 if (hw->mac.type > e1000_82580) {
8154 if (adapter->flags & IGB_FLAG_DMAC) {
8155 u32 reg;
8156
8157 /* force threshold to 0. */
8158 wr32(E1000_DMCTXTH, 0);
8159
8160 /* DMA Coalescing high water mark needs to be greater
8161 * than the Rx threshold. Set hwm to PBA - max frame
8162 * size in 16B units, capping it at PBA - 6KB.
8163 */
8164 hwm = 64 * (pba - 6);
8165 reg = rd32(E1000_FCRTC);
8166 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8167 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8168 & E1000_FCRTC_RTH_COAL_MASK);
8169 wr32(E1000_FCRTC, reg);
8170
8171 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8172 * frame size, capping it at PBA - 10KB.
8173 */
8174 dmac_thr = pba - 10;
8175 reg = rd32(E1000_DMACR);
8176 reg &= ~E1000_DMACR_DMACTHR_MASK;
8177 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8178 & E1000_DMACR_DMACTHR_MASK);
8179
8180 /* transition to L0x or L1 if available..*/
8181 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8182
8183 /* watchdog timer= +-1000 usec in 32usec intervals */
8184 reg |= (1000 >> 5);
8185
8186 /* Disable BMC-to-OS Watchdog Enable */
8187 if (hw->mac.type != e1000_i354)
8188 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8189
8190 wr32(E1000_DMACR, reg);
8191
8192 /* no lower threshold to disable
8193 * coalescing(smart fifb)-UTRESH=0
8194 */
8195 wr32(E1000_DMCRTRH, 0);
8196
8197 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8198
8199 wr32(E1000_DMCTLX, reg);
8200
8201 /* free space in tx packet buffer to wake from
8202 * DMA coal
8203 */
8204 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8205 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8206
8207 /* make low power state decision controlled
8208 * by DMA coal
8209 */
8210 reg = rd32(E1000_PCIEMISC);
8211 reg &= ~E1000_PCIEMISC_LX_DECISION;
8212 wr32(E1000_PCIEMISC, reg);
8213 } /* endif adapter->dmac is not disabled */
8214 } else if (hw->mac.type == e1000_82580) {
8215 u32 reg = rd32(E1000_PCIEMISC);
8216
8217 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8218 wr32(E1000_DMACR, 0);
8219 }
8220 }
8221
8222 /**
8223 * igb_read_i2c_byte - Reads 8 bit word over I2C
8224 * @hw: pointer to hardware structure
8225 * @byte_offset: byte offset to read
8226 * @dev_addr: device address
8227 * @data: value read
8228 *
8229 * Performs byte read operation over I2C interface at
8230 * a specified device address.
8231 **/
8232 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8233 u8 dev_addr, u8 *data)
8234 {
8235 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8236 struct i2c_client *this_client = adapter->i2c_client;
8237 s32 status;
8238 u16 swfw_mask = 0;
8239
8240 if (!this_client)
8241 return E1000_ERR_I2C;
8242
8243 swfw_mask = E1000_SWFW_PHY0_SM;
8244
8245 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8246 return E1000_ERR_SWFW_SYNC;
8247
8248 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8249 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8250
8251 if (status < 0)
8252 return E1000_ERR_I2C;
8253 else {
8254 *data = status;
8255 return 0;
8256 }
8257 }
8258
8259 /**
8260 * igb_write_i2c_byte - Writes 8 bit word over I2C
8261 * @hw: pointer to hardware structure
8262 * @byte_offset: byte offset to write
8263 * @dev_addr: device address
8264 * @data: value to write
8265 *
8266 * Performs byte write operation over I2C interface at
8267 * a specified device address.
8268 **/
8269 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8270 u8 dev_addr, u8 data)
8271 {
8272 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8273 struct i2c_client *this_client = adapter->i2c_client;
8274 s32 status;
8275 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8276
8277 if (!this_client)
8278 return E1000_ERR_I2C;
8279
8280 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8281 return E1000_ERR_SWFW_SYNC;
8282 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8283 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8284
8285 if (status)
8286 return E1000_ERR_I2C;
8287 else
8288 return 0;
8289
8290 }
8291
8292 int igb_reinit_queues(struct igb_adapter *adapter)
8293 {
8294 struct net_device *netdev = adapter->netdev;
8295 struct pci_dev *pdev = adapter->pdev;
8296 int err = 0;
8297
8298 if (netif_running(netdev))
8299 igb_close(netdev);
8300
8301 igb_reset_interrupt_capability(adapter);
8302
8303 if (igb_init_interrupt_scheme(adapter, true)) {
8304 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8305 return -ENOMEM;
8306 }
8307
8308 if (netif_running(netdev))
8309 err = igb_open(netdev);
8310
8311 return err;
8312 }
8313 /* igb_main.c */
This page took 0.203069 seconds and 6 git commands to generate.