igb: Reset the link when EEE setting changed
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62
63 #define MAJ 5
64 #define MIN 0
65 #define BUILD 3
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71 "Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73 "Copyright (c) 2007-2013 Intel Corporation.";
74
75 static const struct e1000_info *igb_info_tbl[] = {
76 [board_82575] = &e1000_82575_info,
77 };
78
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
113 /* required last entry */
114 {0, }
115 };
116
117 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
118
119 void igb_reset(struct igb_adapter *);
120 static int igb_setup_all_tx_resources(struct igb_adapter *);
121 static int igb_setup_all_rx_resources(struct igb_adapter *);
122 static void igb_free_all_tx_resources(struct igb_adapter *);
123 static void igb_free_all_rx_resources(struct igb_adapter *);
124 static void igb_setup_mrqc(struct igb_adapter *);
125 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
126 static void igb_remove(struct pci_dev *pdev);
127 static int igb_sw_init(struct igb_adapter *);
128 static int igb_open(struct net_device *);
129 static int igb_close(struct net_device *);
130 static void igb_configure(struct igb_adapter *);
131 static void igb_configure_tx(struct igb_adapter *);
132 static void igb_configure_rx(struct igb_adapter *);
133 static void igb_clean_all_tx_rings(struct igb_adapter *);
134 static void igb_clean_all_rx_rings(struct igb_adapter *);
135 static void igb_clean_tx_ring(struct igb_ring *);
136 static void igb_clean_rx_ring(struct igb_ring *);
137 static void igb_set_rx_mode(struct net_device *);
138 static void igb_update_phy_info(unsigned long);
139 static void igb_watchdog(unsigned long);
140 static void igb_watchdog_task(struct work_struct *);
141 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
142 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
143 struct rtnl_link_stats64 *stats);
144 static int igb_change_mtu(struct net_device *, int);
145 static int igb_set_mac(struct net_device *, void *);
146 static void igb_set_uta(struct igb_adapter *adapter);
147 static irqreturn_t igb_intr(int irq, void *);
148 static irqreturn_t igb_intr_msi(int irq, void *);
149 static irqreturn_t igb_msix_other(int irq, void *);
150 static irqreturn_t igb_msix_ring(int irq, void *);
151 #ifdef CONFIG_IGB_DCA
152 static void igb_update_dca(struct igb_q_vector *);
153 static void igb_setup_dca(struct igb_adapter *);
154 #endif /* CONFIG_IGB_DCA */
155 static int igb_poll(struct napi_struct *, int);
156 static bool igb_clean_tx_irq(struct igb_q_vector *);
157 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
158 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
159 static void igb_tx_timeout(struct net_device *);
160 static void igb_reset_task(struct work_struct *);
161 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
162 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
163 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
164 static void igb_restore_vlan(struct igb_adapter *);
165 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
166 static void igb_ping_all_vfs(struct igb_adapter *);
167 static void igb_msg_task(struct igb_adapter *);
168 static void igb_vmm_control(struct igb_adapter *);
169 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
170 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
171 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
172 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
173 int vf, u16 vlan, u8 qos);
174 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
175 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
176 bool setting);
177 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
178 struct ifla_vf_info *ivi);
179 static void igb_check_vf_rate_limit(struct igb_adapter *);
180
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 #endif
184
185 #ifdef CONFIG_PM
186 #ifdef CONFIG_PM_SLEEP
187 static int igb_suspend(struct device *);
188 #endif
189 static int igb_resume(struct device *);
190 #ifdef CONFIG_PM_RUNTIME
191 static int igb_runtime_suspend(struct device *dev);
192 static int igb_runtime_resume(struct device *dev);
193 static int igb_runtime_idle(struct device *dev);
194 #endif
195 static const struct dev_pm_ops igb_pm_ops = {
196 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198 igb_runtime_idle)
199 };
200 #endif
201 static void igb_shutdown(struct pci_dev *);
202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203 #ifdef CONFIG_IGB_DCA
204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205 static struct notifier_block dca_notifier = {
206 .notifier_call = igb_notify_dca,
207 .next = NULL,
208 .priority = 0
209 };
210 #endif
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void igb_netpoll(struct net_device *);
214 #endif
215 #ifdef CONFIG_PCI_IOV
216 static unsigned int max_vfs = 0;
217 module_param(max_vfs, uint, 0);
218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
219 "per physical function");
220 #endif /* CONFIG_PCI_IOV */
221
222 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
223 pci_channel_state_t);
224 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
225 static void igb_io_resume(struct pci_dev *);
226
227 static const struct pci_error_handlers igb_err_handler = {
228 .error_detected = igb_io_error_detected,
229 .slot_reset = igb_io_slot_reset,
230 .resume = igb_io_resume,
231 };
232
233 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
234
235 static struct pci_driver igb_driver = {
236 .name = igb_driver_name,
237 .id_table = igb_pci_tbl,
238 .probe = igb_probe,
239 .remove = igb_remove,
240 #ifdef CONFIG_PM
241 .driver.pm = &igb_pm_ops,
242 #endif
243 .shutdown = igb_shutdown,
244 .sriov_configure = igb_pci_sriov_configure,
245 .err_handler = &igb_err_handler
246 };
247
248 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
249 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
250 MODULE_LICENSE("GPL");
251 MODULE_VERSION(DRV_VERSION);
252
253 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
254 static int debug = -1;
255 module_param(debug, int, 0);
256 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
257
258 struct igb_reg_info {
259 u32 ofs;
260 char *name;
261 };
262
263 static const struct igb_reg_info igb_reg_info_tbl[] = {
264
265 /* General Registers */
266 {E1000_CTRL, "CTRL"},
267 {E1000_STATUS, "STATUS"},
268 {E1000_CTRL_EXT, "CTRL_EXT"},
269
270 /* Interrupt Registers */
271 {E1000_ICR, "ICR"},
272
273 /* RX Registers */
274 {E1000_RCTL, "RCTL"},
275 {E1000_RDLEN(0), "RDLEN"},
276 {E1000_RDH(0), "RDH"},
277 {E1000_RDT(0), "RDT"},
278 {E1000_RXDCTL(0), "RXDCTL"},
279 {E1000_RDBAL(0), "RDBAL"},
280 {E1000_RDBAH(0), "RDBAH"},
281
282 /* TX Registers */
283 {E1000_TCTL, "TCTL"},
284 {E1000_TDBAL(0), "TDBAL"},
285 {E1000_TDBAH(0), "TDBAH"},
286 {E1000_TDLEN(0), "TDLEN"},
287 {E1000_TDH(0), "TDH"},
288 {E1000_TDT(0), "TDT"},
289 {E1000_TXDCTL(0), "TXDCTL"},
290 {E1000_TDFH, "TDFH"},
291 {E1000_TDFT, "TDFT"},
292 {E1000_TDFHS, "TDFHS"},
293 {E1000_TDFPC, "TDFPC"},
294
295 /* List Terminator */
296 {}
297 };
298
299 /* igb_regdump - register printout routine */
300 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
301 {
302 int n = 0;
303 char rname[16];
304 u32 regs[8];
305
306 switch (reginfo->ofs) {
307 case E1000_RDLEN(0):
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_RDLEN(n));
310 break;
311 case E1000_RDH(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_RDH(n));
314 break;
315 case E1000_RDT(0):
316 for (n = 0; n < 4; n++)
317 regs[n] = rd32(E1000_RDT(n));
318 break;
319 case E1000_RXDCTL(0):
320 for (n = 0; n < 4; n++)
321 regs[n] = rd32(E1000_RXDCTL(n));
322 break;
323 case E1000_RDBAL(0):
324 for (n = 0; n < 4; n++)
325 regs[n] = rd32(E1000_RDBAL(n));
326 break;
327 case E1000_RDBAH(0):
328 for (n = 0; n < 4; n++)
329 regs[n] = rd32(E1000_RDBAH(n));
330 break;
331 case E1000_TDBAL(0):
332 for (n = 0; n < 4; n++)
333 regs[n] = rd32(E1000_RDBAL(n));
334 break;
335 case E1000_TDBAH(0):
336 for (n = 0; n < 4; n++)
337 regs[n] = rd32(E1000_TDBAH(n));
338 break;
339 case E1000_TDLEN(0):
340 for (n = 0; n < 4; n++)
341 regs[n] = rd32(E1000_TDLEN(n));
342 break;
343 case E1000_TDH(0):
344 for (n = 0; n < 4; n++)
345 regs[n] = rd32(E1000_TDH(n));
346 break;
347 case E1000_TDT(0):
348 for (n = 0; n < 4; n++)
349 regs[n] = rd32(E1000_TDT(n));
350 break;
351 case E1000_TXDCTL(0):
352 for (n = 0; n < 4; n++)
353 regs[n] = rd32(E1000_TXDCTL(n));
354 break;
355 default:
356 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
357 return;
358 }
359
360 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
361 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
362 regs[2], regs[3]);
363 }
364
365 /* igb_dump - Print registers, Tx-rings and Rx-rings */
366 static void igb_dump(struct igb_adapter *adapter)
367 {
368 struct net_device *netdev = adapter->netdev;
369 struct e1000_hw *hw = &adapter->hw;
370 struct igb_reg_info *reginfo;
371 struct igb_ring *tx_ring;
372 union e1000_adv_tx_desc *tx_desc;
373 struct my_u0 { u64 a; u64 b; } *u0;
374 struct igb_ring *rx_ring;
375 union e1000_adv_rx_desc *rx_desc;
376 u32 staterr;
377 u16 i, n;
378
379 if (!netif_msg_hw(adapter))
380 return;
381
382 /* Print netdevice Info */
383 if (netdev) {
384 dev_info(&adapter->pdev->dev, "Net device Info\n");
385 pr_info("Device Name state trans_start "
386 "last_rx\n");
387 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388 netdev->state, netdev->trans_start, netdev->last_rx);
389 }
390
391 /* Print Registers */
392 dev_info(&adapter->pdev->dev, "Register Dump\n");
393 pr_info(" Register Name Value\n");
394 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 reginfo->name; reginfo++) {
396 igb_regdump(hw, reginfo);
397 }
398
399 /* Print TX Ring Summary */
400 if (!netdev || !netif_running(netdev))
401 goto exit;
402
403 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
405 for (n = 0; n < adapter->num_tx_queues; n++) {
406 struct igb_tx_buffer *buffer_info;
407 tx_ring = adapter->tx_ring[n];
408 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 (u64)dma_unmap_addr(buffer_info, dma),
412 dma_unmap_len(buffer_info, len),
413 buffer_info->next_to_watch,
414 (u64)buffer_info->time_stamp);
415 }
416
417 /* Print TX Rings */
418 if (!netif_msg_tx_done(adapter))
419 goto rx_ring_summary;
420
421 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423 /* Transmit Descriptor Formats
424 *
425 * Advanced Transmit Descriptor
426 * +--------------------------------------------------------------+
427 * 0 | Buffer Address [63:0] |
428 * +--------------------------------------------------------------+
429 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
430 * +--------------------------------------------------------------+
431 * 63 46 45 40 39 38 36 35 32 31 24 15 0
432 */
433
434 for (n = 0; n < adapter->num_tx_queues; n++) {
435 tx_ring = adapter->tx_ring[n];
436 pr_info("------------------------------------\n");
437 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 pr_info("------------------------------------\n");
439 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
440 "[bi->dma ] leng ntw timestamp "
441 "bi->skb\n");
442
443 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
444 const char *next_desc;
445 struct igb_tx_buffer *buffer_info;
446 tx_desc = IGB_TX_DESC(tx_ring, i);
447 buffer_info = &tx_ring->tx_buffer_info[i];
448 u0 = (struct my_u0 *)tx_desc;
449 if (i == tx_ring->next_to_use &&
450 i == tx_ring->next_to_clean)
451 next_desc = " NTC/U";
452 else if (i == tx_ring->next_to_use)
453 next_desc = " NTU";
454 else if (i == tx_ring->next_to_clean)
455 next_desc = " NTC";
456 else
457 next_desc = "";
458
459 pr_info("T [0x%03X] %016llX %016llX %016llX"
460 " %04X %p %016llX %p%s\n", i,
461 le64_to_cpu(u0->a),
462 le64_to_cpu(u0->b),
463 (u64)dma_unmap_addr(buffer_info, dma),
464 dma_unmap_len(buffer_info, len),
465 buffer_info->next_to_watch,
466 (u64)buffer_info->time_stamp,
467 buffer_info->skb, next_desc);
468
469 if (netif_msg_pktdata(adapter) && buffer_info->skb)
470 print_hex_dump(KERN_INFO, "",
471 DUMP_PREFIX_ADDRESS,
472 16, 1, buffer_info->skb->data,
473 dma_unmap_len(buffer_info, len),
474 true);
475 }
476 }
477
478 /* Print RX Rings Summary */
479 rx_ring_summary:
480 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
481 pr_info("Queue [NTU] [NTC]\n");
482 for (n = 0; n < adapter->num_rx_queues; n++) {
483 rx_ring = adapter->rx_ring[n];
484 pr_info(" %5d %5X %5X\n",
485 n, rx_ring->next_to_use, rx_ring->next_to_clean);
486 }
487
488 /* Print RX Rings */
489 if (!netif_msg_rx_status(adapter))
490 goto exit;
491
492 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
493
494 /* Advanced Receive Descriptor (Read) Format
495 * 63 1 0
496 * +-----------------------------------------------------+
497 * 0 | Packet Buffer Address [63:1] |A0/NSE|
498 * +----------------------------------------------+------+
499 * 8 | Header Buffer Address [63:1] | DD |
500 * +-----------------------------------------------------+
501 *
502 *
503 * Advanced Receive Descriptor (Write-Back) Format
504 *
505 * 63 48 47 32 31 30 21 20 17 16 4 3 0
506 * +------------------------------------------------------+
507 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
508 * | Checksum Ident | | | | Type | Type |
509 * +------------------------------------------------------+
510 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
511 * +------------------------------------------------------+
512 * 63 48 47 32 31 20 19 0
513 */
514
515 for (n = 0; n < adapter->num_rx_queues; n++) {
516 rx_ring = adapter->rx_ring[n];
517 pr_info("------------------------------------\n");
518 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
519 pr_info("------------------------------------\n");
520 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
521 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
522 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
523 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524
525 for (i = 0; i < rx_ring->count; i++) {
526 const char *next_desc;
527 struct igb_rx_buffer *buffer_info;
528 buffer_info = &rx_ring->rx_buffer_info[i];
529 rx_desc = IGB_RX_DESC(rx_ring, i);
530 u0 = (struct my_u0 *)rx_desc;
531 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
532
533 if (i == rx_ring->next_to_use)
534 next_desc = " NTU";
535 else if (i == rx_ring->next_to_clean)
536 next_desc = " NTC";
537 else
538 next_desc = "";
539
540 if (staterr & E1000_RXD_STAT_DD) {
541 /* Descriptor Done */
542 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
543 "RWB", i,
544 le64_to_cpu(u0->a),
545 le64_to_cpu(u0->b),
546 next_desc);
547 } else {
548 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
549 "R ", i,
550 le64_to_cpu(u0->a),
551 le64_to_cpu(u0->b),
552 (u64)buffer_info->dma,
553 next_desc);
554
555 if (netif_msg_pktdata(adapter) &&
556 buffer_info->dma && buffer_info->page) {
557 print_hex_dump(KERN_INFO, "",
558 DUMP_PREFIX_ADDRESS,
559 16, 1,
560 page_address(buffer_info->page) +
561 buffer_info->page_offset,
562 IGB_RX_BUFSZ, true);
563 }
564 }
565 }
566 }
567
568 exit:
569 return;
570 }
571
572 /**
573 * igb_get_i2c_data - Reads the I2C SDA data bit
574 * @hw: pointer to hardware structure
575 * @i2cctl: Current value of I2CCTL register
576 *
577 * Returns the I2C data bit value
578 **/
579 static int igb_get_i2c_data(void *data)
580 {
581 struct igb_adapter *adapter = (struct igb_adapter *)data;
582 struct e1000_hw *hw = &adapter->hw;
583 s32 i2cctl = rd32(E1000_I2CPARAMS);
584
585 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
586 }
587
588 /**
589 * igb_set_i2c_data - Sets the I2C data bit
590 * @data: pointer to hardware structure
591 * @state: I2C data value (0 or 1) to set
592 *
593 * Sets the I2C data bit
594 **/
595 static void igb_set_i2c_data(void *data, int state)
596 {
597 struct igb_adapter *adapter = (struct igb_adapter *)data;
598 struct e1000_hw *hw = &adapter->hw;
599 s32 i2cctl = rd32(E1000_I2CPARAMS);
600
601 if (state)
602 i2cctl |= E1000_I2C_DATA_OUT;
603 else
604 i2cctl &= ~E1000_I2C_DATA_OUT;
605
606 i2cctl &= ~E1000_I2C_DATA_OE_N;
607 i2cctl |= E1000_I2C_CLK_OE_N;
608 wr32(E1000_I2CPARAMS, i2cctl);
609 wrfl();
610
611 }
612
613 /**
614 * igb_set_i2c_clk - Sets the I2C SCL clock
615 * @data: pointer to hardware structure
616 * @state: state to set clock
617 *
618 * Sets the I2C clock line to state
619 **/
620 static void igb_set_i2c_clk(void *data, int state)
621 {
622 struct igb_adapter *adapter = (struct igb_adapter *)data;
623 struct e1000_hw *hw = &adapter->hw;
624 s32 i2cctl = rd32(E1000_I2CPARAMS);
625
626 if (state) {
627 i2cctl |= E1000_I2C_CLK_OUT;
628 i2cctl &= ~E1000_I2C_CLK_OE_N;
629 } else {
630 i2cctl &= ~E1000_I2C_CLK_OUT;
631 i2cctl &= ~E1000_I2C_CLK_OE_N;
632 }
633 wr32(E1000_I2CPARAMS, i2cctl);
634 wrfl();
635 }
636
637 /**
638 * igb_get_i2c_clk - Gets the I2C SCL clock state
639 * @data: pointer to hardware structure
640 *
641 * Gets the I2C clock state
642 **/
643 static int igb_get_i2c_clk(void *data)
644 {
645 struct igb_adapter *adapter = (struct igb_adapter *)data;
646 struct e1000_hw *hw = &adapter->hw;
647 s32 i2cctl = rd32(E1000_I2CPARAMS);
648
649 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
650 }
651
652 static const struct i2c_algo_bit_data igb_i2c_algo = {
653 .setsda = igb_set_i2c_data,
654 .setscl = igb_set_i2c_clk,
655 .getsda = igb_get_i2c_data,
656 .getscl = igb_get_i2c_clk,
657 .udelay = 5,
658 .timeout = 20,
659 };
660
661 /**
662 * igb_get_hw_dev - return device
663 * @hw: pointer to hardware structure
664 *
665 * used by hardware layer to print debugging information
666 **/
667 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
668 {
669 struct igb_adapter *adapter = hw->back;
670 return adapter->netdev;
671 }
672
673 /**
674 * igb_init_module - Driver Registration Routine
675 *
676 * igb_init_module is the first routine called when the driver is
677 * loaded. All it does is register with the PCI subsystem.
678 **/
679 static int __init igb_init_module(void)
680 {
681 int ret;
682 pr_info("%s - version %s\n",
683 igb_driver_string, igb_driver_version);
684
685 pr_info("%s\n", igb_copyright);
686
687 #ifdef CONFIG_IGB_DCA
688 dca_register_notify(&dca_notifier);
689 #endif
690 ret = pci_register_driver(&igb_driver);
691 return ret;
692 }
693
694 module_init(igb_init_module);
695
696 /**
697 * igb_exit_module - Driver Exit Cleanup Routine
698 *
699 * igb_exit_module is called just before the driver is removed
700 * from memory.
701 **/
702 static void __exit igb_exit_module(void)
703 {
704 #ifdef CONFIG_IGB_DCA
705 dca_unregister_notify(&dca_notifier);
706 #endif
707 pci_unregister_driver(&igb_driver);
708 }
709
710 module_exit(igb_exit_module);
711
712 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
713 /**
714 * igb_cache_ring_register - Descriptor ring to register mapping
715 * @adapter: board private structure to initialize
716 *
717 * Once we know the feature-set enabled for the device, we'll cache
718 * the register offset the descriptor ring is assigned to.
719 **/
720 static void igb_cache_ring_register(struct igb_adapter *adapter)
721 {
722 int i = 0, j = 0;
723 u32 rbase_offset = adapter->vfs_allocated_count;
724
725 switch (adapter->hw.mac.type) {
726 case e1000_82576:
727 /* The queues are allocated for virtualization such that VF 0
728 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
729 * In order to avoid collision we start at the first free queue
730 * and continue consuming queues in the same sequence
731 */
732 if (adapter->vfs_allocated_count) {
733 for (; i < adapter->rss_queues; i++)
734 adapter->rx_ring[i]->reg_idx = rbase_offset +
735 Q_IDX_82576(i);
736 }
737 case e1000_82575:
738 case e1000_82580:
739 case e1000_i350:
740 case e1000_i354:
741 case e1000_i210:
742 case e1000_i211:
743 default:
744 for (; i < adapter->num_rx_queues; i++)
745 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
746 for (; j < adapter->num_tx_queues; j++)
747 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
748 break;
749 }
750 }
751
752 /**
753 * igb_write_ivar - configure ivar for given MSI-X vector
754 * @hw: pointer to the HW structure
755 * @msix_vector: vector number we are allocating to a given ring
756 * @index: row index of IVAR register to write within IVAR table
757 * @offset: column offset of in IVAR, should be multiple of 8
758 *
759 * This function is intended to handle the writing of the IVAR register
760 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
761 * each containing an cause allocation for an Rx and Tx ring, and a
762 * variable number of rows depending on the number of queues supported.
763 **/
764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 int index, int offset)
766 {
767 u32 ivar = array_rd32(E1000_IVAR0, index);
768
769 /* clear any bits that are currently set */
770 ivar &= ~((u32)0xFF << offset);
771
772 /* write vector and valid bit */
773 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774
775 array_wr32(E1000_IVAR0, index, ivar);
776 }
777
778 #define IGB_N0_QUEUE -1
779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780 {
781 struct igb_adapter *adapter = q_vector->adapter;
782 struct e1000_hw *hw = &adapter->hw;
783 int rx_queue = IGB_N0_QUEUE;
784 int tx_queue = IGB_N0_QUEUE;
785 u32 msixbm = 0;
786
787 if (q_vector->rx.ring)
788 rx_queue = q_vector->rx.ring->reg_idx;
789 if (q_vector->tx.ring)
790 tx_queue = q_vector->tx.ring->reg_idx;
791
792 switch (hw->mac.type) {
793 case e1000_82575:
794 /* The 82575 assigns vectors using a bitmask, which matches the
795 * bitmask for the EICR/EIMS/EIMC registers. To assign one
796 * or more queues to a vector, we write the appropriate bits
797 * into the MSIXBM register for that vector.
798 */
799 if (rx_queue > IGB_N0_QUEUE)
800 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801 if (tx_queue > IGB_N0_QUEUE)
802 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 if (!adapter->msix_entries && msix_vector == 0)
804 msixbm |= E1000_EIMS_OTHER;
805 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806 q_vector->eims_value = msixbm;
807 break;
808 case e1000_82576:
809 /* 82576 uses a table that essentially consists of 2 columns
810 * with 8 rows. The ordering is column-major so we use the
811 * lower 3 bits as the row index, and the 4th bit as the
812 * column offset.
813 */
814 if (rx_queue > IGB_N0_QUEUE)
815 igb_write_ivar(hw, msix_vector,
816 rx_queue & 0x7,
817 (rx_queue & 0x8) << 1);
818 if (tx_queue > IGB_N0_QUEUE)
819 igb_write_ivar(hw, msix_vector,
820 tx_queue & 0x7,
821 ((tx_queue & 0x8) << 1) + 8);
822 q_vector->eims_value = 1 << msix_vector;
823 break;
824 case e1000_82580:
825 case e1000_i350:
826 case e1000_i354:
827 case e1000_i210:
828 case e1000_i211:
829 /* On 82580 and newer adapters the scheme is similar to 82576
830 * however instead of ordering column-major we have things
831 * ordered row-major. So we traverse the table by using
832 * bit 0 as the column offset, and the remaining bits as the
833 * row index.
834 */
835 if (rx_queue > IGB_N0_QUEUE)
836 igb_write_ivar(hw, msix_vector,
837 rx_queue >> 1,
838 (rx_queue & 0x1) << 4);
839 if (tx_queue > IGB_N0_QUEUE)
840 igb_write_ivar(hw, msix_vector,
841 tx_queue >> 1,
842 ((tx_queue & 0x1) << 4) + 8);
843 q_vector->eims_value = 1 << msix_vector;
844 break;
845 default:
846 BUG();
847 break;
848 }
849
850 /* add q_vector eims value to global eims_enable_mask */
851 adapter->eims_enable_mask |= q_vector->eims_value;
852
853 /* configure q_vector to set itr on first interrupt */
854 q_vector->set_itr = 1;
855 }
856
857 /**
858 * igb_configure_msix - Configure MSI-X hardware
859 * @adapter: board private structure to initialize
860 *
861 * igb_configure_msix sets up the hardware to properly
862 * generate MSI-X interrupts.
863 **/
864 static void igb_configure_msix(struct igb_adapter *adapter)
865 {
866 u32 tmp;
867 int i, vector = 0;
868 struct e1000_hw *hw = &adapter->hw;
869
870 adapter->eims_enable_mask = 0;
871
872 /* set vector for other causes, i.e. link changes */
873 switch (hw->mac.type) {
874 case e1000_82575:
875 tmp = rd32(E1000_CTRL_EXT);
876 /* enable MSI-X PBA support*/
877 tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879 /* Auto-Mask interrupts upon ICR read. */
880 tmp |= E1000_CTRL_EXT_EIAME;
881 tmp |= E1000_CTRL_EXT_IRCA;
882
883 wr32(E1000_CTRL_EXT, tmp);
884
885 /* enable msix_other interrupt */
886 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887 adapter->eims_other = E1000_EIMS_OTHER;
888
889 break;
890
891 case e1000_82576:
892 case e1000_82580:
893 case e1000_i350:
894 case e1000_i354:
895 case e1000_i210:
896 case e1000_i211:
897 /* Turn on MSI-X capability first, or our settings
898 * won't stick. And it will take days to debug.
899 */
900 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 E1000_GPIE_PBA | E1000_GPIE_EIAME |
902 E1000_GPIE_NSICR);
903
904 /* enable msix_other interrupt */
905 adapter->eims_other = 1 << vector;
906 tmp = (vector++ | E1000_IVAR_VALID) << 8;
907
908 wr32(E1000_IVAR_MISC, tmp);
909 break;
910 default:
911 /* do nothing, since nothing else supports MSI-X */
912 break;
913 } /* switch (hw->mac.type) */
914
915 adapter->eims_enable_mask |= adapter->eims_other;
916
917 for (i = 0; i < adapter->num_q_vectors; i++)
918 igb_assign_vector(adapter->q_vector[i], vector++);
919
920 wrfl();
921 }
922
923 /**
924 * igb_request_msix - Initialize MSI-X interrupts
925 * @adapter: board private structure to initialize
926 *
927 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
928 * kernel.
929 **/
930 static int igb_request_msix(struct igb_adapter *adapter)
931 {
932 struct net_device *netdev = adapter->netdev;
933 struct e1000_hw *hw = &adapter->hw;
934 int i, err = 0, vector = 0, free_vector = 0;
935
936 err = request_irq(adapter->msix_entries[vector].vector,
937 igb_msix_other, 0, netdev->name, adapter);
938 if (err)
939 goto err_out;
940
941 for (i = 0; i < adapter->num_q_vectors; i++) {
942 struct igb_q_vector *q_vector = adapter->q_vector[i];
943
944 vector++;
945
946 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
947
948 if (q_vector->rx.ring && q_vector->tx.ring)
949 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
950 q_vector->rx.ring->queue_index);
951 else if (q_vector->tx.ring)
952 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
953 q_vector->tx.ring->queue_index);
954 else if (q_vector->rx.ring)
955 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
956 q_vector->rx.ring->queue_index);
957 else
958 sprintf(q_vector->name, "%s-unused", netdev->name);
959
960 err = request_irq(adapter->msix_entries[vector].vector,
961 igb_msix_ring, 0, q_vector->name,
962 q_vector);
963 if (err)
964 goto err_free;
965 }
966
967 igb_configure_msix(adapter);
968 return 0;
969
970 err_free:
971 /* free already assigned IRQs */
972 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
973
974 vector--;
975 for (i = 0; i < vector; i++) {
976 free_irq(adapter->msix_entries[free_vector++].vector,
977 adapter->q_vector[i]);
978 }
979 err_out:
980 return err;
981 }
982
983 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
984 {
985 if (adapter->msix_entries) {
986 pci_disable_msix(adapter->pdev);
987 kfree(adapter->msix_entries);
988 adapter->msix_entries = NULL;
989 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
990 pci_disable_msi(adapter->pdev);
991 }
992 }
993
994 /**
995 * igb_free_q_vector - Free memory allocated for specific interrupt vector
996 * @adapter: board private structure to initialize
997 * @v_idx: Index of vector to be freed
998 *
999 * This function frees the memory allocated to the q_vector. In addition if
1000 * NAPI is enabled it will delete any references to the NAPI struct prior
1001 * to freeing the q_vector.
1002 **/
1003 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1004 {
1005 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1006
1007 if (q_vector->tx.ring)
1008 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1009
1010 if (q_vector->rx.ring)
1011 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1012
1013 adapter->q_vector[v_idx] = NULL;
1014 netif_napi_del(&q_vector->napi);
1015
1016 /* ixgbe_get_stats64() might access the rings on this vector,
1017 * we must wait a grace period before freeing it.
1018 */
1019 kfree_rcu(q_vector, rcu);
1020 }
1021
1022 /**
1023 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1024 * @adapter: board private structure to initialize
1025 *
1026 * This function frees the memory allocated to the q_vectors. In addition if
1027 * NAPI is enabled it will delete any references to the NAPI struct prior
1028 * to freeing the q_vector.
1029 **/
1030 static void igb_free_q_vectors(struct igb_adapter *adapter)
1031 {
1032 int v_idx = adapter->num_q_vectors;
1033
1034 adapter->num_tx_queues = 0;
1035 adapter->num_rx_queues = 0;
1036 adapter->num_q_vectors = 0;
1037
1038 while (v_idx--)
1039 igb_free_q_vector(adapter, v_idx);
1040 }
1041
1042 /**
1043 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1044 * @adapter: board private structure to initialize
1045 *
1046 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1047 * MSI-X interrupts allocated.
1048 */
1049 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1050 {
1051 igb_free_q_vectors(adapter);
1052 igb_reset_interrupt_capability(adapter);
1053 }
1054
1055 /**
1056 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1057 * @adapter: board private structure to initialize
1058 * @msix: boolean value of MSIX capability
1059 *
1060 * Attempt to configure interrupts using the best available
1061 * capabilities of the hardware and kernel.
1062 **/
1063 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1064 {
1065 int err;
1066 int numvecs, i;
1067
1068 if (!msix)
1069 goto msi_only;
1070
1071 /* Number of supported queues. */
1072 adapter->num_rx_queues = adapter->rss_queues;
1073 if (adapter->vfs_allocated_count)
1074 adapter->num_tx_queues = 1;
1075 else
1076 adapter->num_tx_queues = adapter->rss_queues;
1077
1078 /* start with one vector for every Rx queue */
1079 numvecs = adapter->num_rx_queues;
1080
1081 /* if Tx handler is separate add 1 for every Tx queue */
1082 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1083 numvecs += adapter->num_tx_queues;
1084
1085 /* store the number of vectors reserved for queues */
1086 adapter->num_q_vectors = numvecs;
1087
1088 /* add 1 vector for link status interrupts */
1089 numvecs++;
1090 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1091 GFP_KERNEL);
1092
1093 if (!adapter->msix_entries)
1094 goto msi_only;
1095
1096 for (i = 0; i < numvecs; i++)
1097 adapter->msix_entries[i].entry = i;
1098
1099 err = pci_enable_msix(adapter->pdev,
1100 adapter->msix_entries,
1101 numvecs);
1102 if (err == 0)
1103 return;
1104
1105 igb_reset_interrupt_capability(adapter);
1106
1107 /* If we can't do MSI-X, try MSI */
1108 msi_only:
1109 #ifdef CONFIG_PCI_IOV
1110 /* disable SR-IOV for non MSI-X configurations */
1111 if (adapter->vf_data) {
1112 struct e1000_hw *hw = &adapter->hw;
1113 /* disable iov and allow time for transactions to clear */
1114 pci_disable_sriov(adapter->pdev);
1115 msleep(500);
1116
1117 kfree(adapter->vf_data);
1118 adapter->vf_data = NULL;
1119 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1120 wrfl();
1121 msleep(100);
1122 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1123 }
1124 #endif
1125 adapter->vfs_allocated_count = 0;
1126 adapter->rss_queues = 1;
1127 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1128 adapter->num_rx_queues = 1;
1129 adapter->num_tx_queues = 1;
1130 adapter->num_q_vectors = 1;
1131 if (!pci_enable_msi(adapter->pdev))
1132 adapter->flags |= IGB_FLAG_HAS_MSI;
1133 }
1134
1135 static void igb_add_ring(struct igb_ring *ring,
1136 struct igb_ring_container *head)
1137 {
1138 head->ring = ring;
1139 head->count++;
1140 }
1141
1142 /**
1143 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1144 * @adapter: board private structure to initialize
1145 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1146 * @v_idx: index of vector in adapter struct
1147 * @txr_count: total number of Tx rings to allocate
1148 * @txr_idx: index of first Tx ring to allocate
1149 * @rxr_count: total number of Rx rings to allocate
1150 * @rxr_idx: index of first Rx ring to allocate
1151 *
1152 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1153 **/
1154 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1155 int v_count, int v_idx,
1156 int txr_count, int txr_idx,
1157 int rxr_count, int rxr_idx)
1158 {
1159 struct igb_q_vector *q_vector;
1160 struct igb_ring *ring;
1161 int ring_count, size;
1162
1163 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1164 if (txr_count > 1 || rxr_count > 1)
1165 return -ENOMEM;
1166
1167 ring_count = txr_count + rxr_count;
1168 size = sizeof(struct igb_q_vector) +
1169 (sizeof(struct igb_ring) * ring_count);
1170
1171 /* allocate q_vector and rings */
1172 q_vector = kzalloc(size, GFP_KERNEL);
1173 if (!q_vector)
1174 return -ENOMEM;
1175
1176 /* initialize NAPI */
1177 netif_napi_add(adapter->netdev, &q_vector->napi,
1178 igb_poll, 64);
1179
1180 /* tie q_vector and adapter together */
1181 adapter->q_vector[v_idx] = q_vector;
1182 q_vector->adapter = adapter;
1183
1184 /* initialize work limits */
1185 q_vector->tx.work_limit = adapter->tx_work_limit;
1186
1187 /* initialize ITR configuration */
1188 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1189 q_vector->itr_val = IGB_START_ITR;
1190
1191 /* initialize pointer to rings */
1192 ring = q_vector->ring;
1193
1194 /* intialize ITR */
1195 if (rxr_count) {
1196 /* rx or rx/tx vector */
1197 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1198 q_vector->itr_val = adapter->rx_itr_setting;
1199 } else {
1200 /* tx only vector */
1201 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1202 q_vector->itr_val = adapter->tx_itr_setting;
1203 }
1204
1205 if (txr_count) {
1206 /* assign generic ring traits */
1207 ring->dev = &adapter->pdev->dev;
1208 ring->netdev = adapter->netdev;
1209
1210 /* configure backlink on ring */
1211 ring->q_vector = q_vector;
1212
1213 /* update q_vector Tx values */
1214 igb_add_ring(ring, &q_vector->tx);
1215
1216 /* For 82575, context index must be unique per ring. */
1217 if (adapter->hw.mac.type == e1000_82575)
1218 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1219
1220 /* apply Tx specific ring traits */
1221 ring->count = adapter->tx_ring_count;
1222 ring->queue_index = txr_idx;
1223
1224 /* assign ring to adapter */
1225 adapter->tx_ring[txr_idx] = ring;
1226
1227 /* push pointer to next ring */
1228 ring++;
1229 }
1230
1231 if (rxr_count) {
1232 /* assign generic ring traits */
1233 ring->dev = &adapter->pdev->dev;
1234 ring->netdev = adapter->netdev;
1235
1236 /* configure backlink on ring */
1237 ring->q_vector = q_vector;
1238
1239 /* update q_vector Rx values */
1240 igb_add_ring(ring, &q_vector->rx);
1241
1242 /* set flag indicating ring supports SCTP checksum offload */
1243 if (adapter->hw.mac.type >= e1000_82576)
1244 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1245
1246 /*
1247 * On i350, i354, i210, and i211, loopback VLAN packets
1248 * have the tag byte-swapped.
1249 */
1250 if (adapter->hw.mac.type >= e1000_i350)
1251 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1252
1253 /* apply Rx specific ring traits */
1254 ring->count = adapter->rx_ring_count;
1255 ring->queue_index = rxr_idx;
1256
1257 /* assign ring to adapter */
1258 adapter->rx_ring[rxr_idx] = ring;
1259 }
1260
1261 return 0;
1262 }
1263
1264
1265 /**
1266 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1267 * @adapter: board private structure to initialize
1268 *
1269 * We allocate one q_vector per queue interrupt. If allocation fails we
1270 * return -ENOMEM.
1271 **/
1272 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1273 {
1274 int q_vectors = adapter->num_q_vectors;
1275 int rxr_remaining = adapter->num_rx_queues;
1276 int txr_remaining = adapter->num_tx_queues;
1277 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1278 int err;
1279
1280 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1281 for (; rxr_remaining; v_idx++) {
1282 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1283 0, 0, 1, rxr_idx);
1284
1285 if (err)
1286 goto err_out;
1287
1288 /* update counts and index */
1289 rxr_remaining--;
1290 rxr_idx++;
1291 }
1292 }
1293
1294 for (; v_idx < q_vectors; v_idx++) {
1295 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1296 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1297 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1298 tqpv, txr_idx, rqpv, rxr_idx);
1299
1300 if (err)
1301 goto err_out;
1302
1303 /* update counts and index */
1304 rxr_remaining -= rqpv;
1305 txr_remaining -= tqpv;
1306 rxr_idx++;
1307 txr_idx++;
1308 }
1309
1310 return 0;
1311
1312 err_out:
1313 adapter->num_tx_queues = 0;
1314 adapter->num_rx_queues = 0;
1315 adapter->num_q_vectors = 0;
1316
1317 while (v_idx--)
1318 igb_free_q_vector(adapter, v_idx);
1319
1320 return -ENOMEM;
1321 }
1322
1323 /**
1324 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1325 * @adapter: board private structure to initialize
1326 * @msix: boolean value of MSIX capability
1327 *
1328 * This function initializes the interrupts and allocates all of the queues.
1329 **/
1330 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1331 {
1332 struct pci_dev *pdev = adapter->pdev;
1333 int err;
1334
1335 igb_set_interrupt_capability(adapter, msix);
1336
1337 err = igb_alloc_q_vectors(adapter);
1338 if (err) {
1339 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1340 goto err_alloc_q_vectors;
1341 }
1342
1343 igb_cache_ring_register(adapter);
1344
1345 return 0;
1346
1347 err_alloc_q_vectors:
1348 igb_reset_interrupt_capability(adapter);
1349 return err;
1350 }
1351
1352 /**
1353 * igb_request_irq - initialize interrupts
1354 * @adapter: board private structure to initialize
1355 *
1356 * Attempts to configure interrupts using the best available
1357 * capabilities of the hardware and kernel.
1358 **/
1359 static int igb_request_irq(struct igb_adapter *adapter)
1360 {
1361 struct net_device *netdev = adapter->netdev;
1362 struct pci_dev *pdev = adapter->pdev;
1363 int err = 0;
1364
1365 if (adapter->msix_entries) {
1366 err = igb_request_msix(adapter);
1367 if (!err)
1368 goto request_done;
1369 /* fall back to MSI */
1370 igb_free_all_tx_resources(adapter);
1371 igb_free_all_rx_resources(adapter);
1372
1373 igb_clear_interrupt_scheme(adapter);
1374 err = igb_init_interrupt_scheme(adapter, false);
1375 if (err)
1376 goto request_done;
1377
1378 igb_setup_all_tx_resources(adapter);
1379 igb_setup_all_rx_resources(adapter);
1380 igb_configure(adapter);
1381 }
1382
1383 igb_assign_vector(adapter->q_vector[0], 0);
1384
1385 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1386 err = request_irq(pdev->irq, igb_intr_msi, 0,
1387 netdev->name, adapter);
1388 if (!err)
1389 goto request_done;
1390
1391 /* fall back to legacy interrupts */
1392 igb_reset_interrupt_capability(adapter);
1393 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1394 }
1395
1396 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1397 netdev->name, adapter);
1398
1399 if (err)
1400 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1401 err);
1402
1403 request_done:
1404 return err;
1405 }
1406
1407 static void igb_free_irq(struct igb_adapter *adapter)
1408 {
1409 if (adapter->msix_entries) {
1410 int vector = 0, i;
1411
1412 free_irq(adapter->msix_entries[vector++].vector, adapter);
1413
1414 for (i = 0; i < adapter->num_q_vectors; i++)
1415 free_irq(adapter->msix_entries[vector++].vector,
1416 adapter->q_vector[i]);
1417 } else {
1418 free_irq(adapter->pdev->irq, adapter);
1419 }
1420 }
1421
1422 /**
1423 * igb_irq_disable - Mask off interrupt generation on the NIC
1424 * @adapter: board private structure
1425 **/
1426 static void igb_irq_disable(struct igb_adapter *adapter)
1427 {
1428 struct e1000_hw *hw = &adapter->hw;
1429
1430 /* we need to be careful when disabling interrupts. The VFs are also
1431 * mapped into these registers and so clearing the bits can cause
1432 * issues on the VF drivers so we only need to clear what we set
1433 */
1434 if (adapter->msix_entries) {
1435 u32 regval = rd32(E1000_EIAM);
1436 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1437 wr32(E1000_EIMC, adapter->eims_enable_mask);
1438 regval = rd32(E1000_EIAC);
1439 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1440 }
1441
1442 wr32(E1000_IAM, 0);
1443 wr32(E1000_IMC, ~0);
1444 wrfl();
1445 if (adapter->msix_entries) {
1446 int i;
1447 for (i = 0; i < adapter->num_q_vectors; i++)
1448 synchronize_irq(adapter->msix_entries[i].vector);
1449 } else {
1450 synchronize_irq(adapter->pdev->irq);
1451 }
1452 }
1453
1454 /**
1455 * igb_irq_enable - Enable default interrupt generation settings
1456 * @adapter: board private structure
1457 **/
1458 static void igb_irq_enable(struct igb_adapter *adapter)
1459 {
1460 struct e1000_hw *hw = &adapter->hw;
1461
1462 if (adapter->msix_entries) {
1463 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1464 u32 regval = rd32(E1000_EIAC);
1465 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1466 regval = rd32(E1000_EIAM);
1467 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1468 wr32(E1000_EIMS, adapter->eims_enable_mask);
1469 if (adapter->vfs_allocated_count) {
1470 wr32(E1000_MBVFIMR, 0xFF);
1471 ims |= E1000_IMS_VMMB;
1472 }
1473 wr32(E1000_IMS, ims);
1474 } else {
1475 wr32(E1000_IMS, IMS_ENABLE_MASK |
1476 E1000_IMS_DRSTA);
1477 wr32(E1000_IAM, IMS_ENABLE_MASK |
1478 E1000_IMS_DRSTA);
1479 }
1480 }
1481
1482 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1483 {
1484 struct e1000_hw *hw = &adapter->hw;
1485 u16 vid = adapter->hw.mng_cookie.vlan_id;
1486 u16 old_vid = adapter->mng_vlan_id;
1487
1488 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1489 /* add VID to filter table */
1490 igb_vfta_set(hw, vid, true);
1491 adapter->mng_vlan_id = vid;
1492 } else {
1493 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1494 }
1495
1496 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1497 (vid != old_vid) &&
1498 !test_bit(old_vid, adapter->active_vlans)) {
1499 /* remove VID from filter table */
1500 igb_vfta_set(hw, old_vid, false);
1501 }
1502 }
1503
1504 /**
1505 * igb_release_hw_control - release control of the h/w to f/w
1506 * @adapter: address of board private structure
1507 *
1508 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1509 * For ASF and Pass Through versions of f/w this means that the
1510 * driver is no longer loaded.
1511 **/
1512 static void igb_release_hw_control(struct igb_adapter *adapter)
1513 {
1514 struct e1000_hw *hw = &adapter->hw;
1515 u32 ctrl_ext;
1516
1517 /* Let firmware take over control of h/w */
1518 ctrl_ext = rd32(E1000_CTRL_EXT);
1519 wr32(E1000_CTRL_EXT,
1520 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1521 }
1522
1523 /**
1524 * igb_get_hw_control - get control of the h/w from f/w
1525 * @adapter: address of board private structure
1526 *
1527 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1528 * For ASF and Pass Through versions of f/w this means that
1529 * the driver is loaded.
1530 **/
1531 static void igb_get_hw_control(struct igb_adapter *adapter)
1532 {
1533 struct e1000_hw *hw = &adapter->hw;
1534 u32 ctrl_ext;
1535
1536 /* Let firmware know the driver has taken over */
1537 ctrl_ext = rd32(E1000_CTRL_EXT);
1538 wr32(E1000_CTRL_EXT,
1539 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1540 }
1541
1542 /**
1543 * igb_configure - configure the hardware for RX and TX
1544 * @adapter: private board structure
1545 **/
1546 static void igb_configure(struct igb_adapter *adapter)
1547 {
1548 struct net_device *netdev = adapter->netdev;
1549 int i;
1550
1551 igb_get_hw_control(adapter);
1552 igb_set_rx_mode(netdev);
1553
1554 igb_restore_vlan(adapter);
1555
1556 igb_setup_tctl(adapter);
1557 igb_setup_mrqc(adapter);
1558 igb_setup_rctl(adapter);
1559
1560 igb_configure_tx(adapter);
1561 igb_configure_rx(adapter);
1562
1563 igb_rx_fifo_flush_82575(&adapter->hw);
1564
1565 /* call igb_desc_unused which always leaves
1566 * at least 1 descriptor unused to make sure
1567 * next_to_use != next_to_clean
1568 */
1569 for (i = 0; i < adapter->num_rx_queues; i++) {
1570 struct igb_ring *ring = adapter->rx_ring[i];
1571 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1572 }
1573 }
1574
1575 /**
1576 * igb_power_up_link - Power up the phy/serdes link
1577 * @adapter: address of board private structure
1578 **/
1579 void igb_power_up_link(struct igb_adapter *adapter)
1580 {
1581 igb_reset_phy(&adapter->hw);
1582
1583 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1584 igb_power_up_phy_copper(&adapter->hw);
1585 else
1586 igb_power_up_serdes_link_82575(&adapter->hw);
1587 }
1588
1589 /**
1590 * igb_power_down_link - Power down the phy/serdes link
1591 * @adapter: address of board private structure
1592 */
1593 static void igb_power_down_link(struct igb_adapter *adapter)
1594 {
1595 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1596 igb_power_down_phy_copper_82575(&adapter->hw);
1597 else
1598 igb_shutdown_serdes_link_82575(&adapter->hw);
1599 }
1600
1601 /**
1602 * igb_up - Open the interface and prepare it to handle traffic
1603 * @adapter: board private structure
1604 **/
1605 int igb_up(struct igb_adapter *adapter)
1606 {
1607 struct e1000_hw *hw = &adapter->hw;
1608 int i;
1609
1610 /* hardware has been reset, we need to reload some things */
1611 igb_configure(adapter);
1612
1613 clear_bit(__IGB_DOWN, &adapter->state);
1614
1615 for (i = 0; i < adapter->num_q_vectors; i++)
1616 napi_enable(&(adapter->q_vector[i]->napi));
1617
1618 if (adapter->msix_entries)
1619 igb_configure_msix(adapter);
1620 else
1621 igb_assign_vector(adapter->q_vector[0], 0);
1622
1623 /* Clear any pending interrupts. */
1624 rd32(E1000_ICR);
1625 igb_irq_enable(adapter);
1626
1627 /* notify VFs that reset has been completed */
1628 if (adapter->vfs_allocated_count) {
1629 u32 reg_data = rd32(E1000_CTRL_EXT);
1630 reg_data |= E1000_CTRL_EXT_PFRSTD;
1631 wr32(E1000_CTRL_EXT, reg_data);
1632 }
1633
1634 netif_tx_start_all_queues(adapter->netdev);
1635
1636 /* start the watchdog. */
1637 hw->mac.get_link_status = 1;
1638 schedule_work(&adapter->watchdog_task);
1639
1640 return 0;
1641 }
1642
1643 void igb_down(struct igb_adapter *adapter)
1644 {
1645 struct net_device *netdev = adapter->netdev;
1646 struct e1000_hw *hw = &adapter->hw;
1647 u32 tctl, rctl;
1648 int i;
1649
1650 /* signal that we're down so the interrupt handler does not
1651 * reschedule our watchdog timer
1652 */
1653 set_bit(__IGB_DOWN, &adapter->state);
1654
1655 /* disable receives in the hardware */
1656 rctl = rd32(E1000_RCTL);
1657 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1658 /* flush and sleep below */
1659
1660 netif_tx_stop_all_queues(netdev);
1661
1662 /* disable transmits in the hardware */
1663 tctl = rd32(E1000_TCTL);
1664 tctl &= ~E1000_TCTL_EN;
1665 wr32(E1000_TCTL, tctl);
1666 /* flush both disables and wait for them to finish */
1667 wrfl();
1668 msleep(10);
1669
1670 igb_irq_disable(adapter);
1671
1672 for (i = 0; i < adapter->num_q_vectors; i++) {
1673 napi_synchronize(&(adapter->q_vector[i]->napi));
1674 napi_disable(&(adapter->q_vector[i]->napi));
1675 }
1676
1677
1678 del_timer_sync(&adapter->watchdog_timer);
1679 del_timer_sync(&adapter->phy_info_timer);
1680
1681 netif_carrier_off(netdev);
1682
1683 /* record the stats before reset*/
1684 spin_lock(&adapter->stats64_lock);
1685 igb_update_stats(adapter, &adapter->stats64);
1686 spin_unlock(&adapter->stats64_lock);
1687
1688 adapter->link_speed = 0;
1689 adapter->link_duplex = 0;
1690
1691 if (!pci_channel_offline(adapter->pdev))
1692 igb_reset(adapter);
1693 igb_clean_all_tx_rings(adapter);
1694 igb_clean_all_rx_rings(adapter);
1695 #ifdef CONFIG_IGB_DCA
1696
1697 /* since we reset the hardware DCA settings were cleared */
1698 igb_setup_dca(adapter);
1699 #endif
1700 }
1701
1702 void igb_reinit_locked(struct igb_adapter *adapter)
1703 {
1704 WARN_ON(in_interrupt());
1705 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1706 msleep(1);
1707 igb_down(adapter);
1708 igb_up(adapter);
1709 clear_bit(__IGB_RESETTING, &adapter->state);
1710 }
1711
1712 void igb_reset(struct igb_adapter *adapter)
1713 {
1714 struct pci_dev *pdev = adapter->pdev;
1715 struct e1000_hw *hw = &adapter->hw;
1716 struct e1000_mac_info *mac = &hw->mac;
1717 struct e1000_fc_info *fc = &hw->fc;
1718 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1719
1720 /* Repartition Pba for greater than 9k mtu
1721 * To take effect CTRL.RST is required.
1722 */
1723 switch (mac->type) {
1724 case e1000_i350:
1725 case e1000_i354:
1726 case e1000_82580:
1727 pba = rd32(E1000_RXPBS);
1728 pba = igb_rxpbs_adjust_82580(pba);
1729 break;
1730 case e1000_82576:
1731 pba = rd32(E1000_RXPBS);
1732 pba &= E1000_RXPBS_SIZE_MASK_82576;
1733 break;
1734 case e1000_82575:
1735 case e1000_i210:
1736 case e1000_i211:
1737 default:
1738 pba = E1000_PBA_34K;
1739 break;
1740 }
1741
1742 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1743 (mac->type < e1000_82576)) {
1744 /* adjust PBA for jumbo frames */
1745 wr32(E1000_PBA, pba);
1746
1747 /* To maintain wire speed transmits, the Tx FIFO should be
1748 * large enough to accommodate two full transmit packets,
1749 * rounded up to the next 1KB and expressed in KB. Likewise,
1750 * the Rx FIFO should be large enough to accommodate at least
1751 * one full receive packet and is similarly rounded up and
1752 * expressed in KB.
1753 */
1754 pba = rd32(E1000_PBA);
1755 /* upper 16 bits has Tx packet buffer allocation size in KB */
1756 tx_space = pba >> 16;
1757 /* lower 16 bits has Rx packet buffer allocation size in KB */
1758 pba &= 0xffff;
1759 /* the Tx fifo also stores 16 bytes of information about the Tx
1760 * but don't include ethernet FCS because hardware appends it
1761 */
1762 min_tx_space = (adapter->max_frame_size +
1763 sizeof(union e1000_adv_tx_desc) -
1764 ETH_FCS_LEN) * 2;
1765 min_tx_space = ALIGN(min_tx_space, 1024);
1766 min_tx_space >>= 10;
1767 /* software strips receive CRC, so leave room for it */
1768 min_rx_space = adapter->max_frame_size;
1769 min_rx_space = ALIGN(min_rx_space, 1024);
1770 min_rx_space >>= 10;
1771
1772 /* If current Tx allocation is less than the min Tx FIFO size,
1773 * and the min Tx FIFO size is less than the current Rx FIFO
1774 * allocation, take space away from current Rx allocation
1775 */
1776 if (tx_space < min_tx_space &&
1777 ((min_tx_space - tx_space) < pba)) {
1778 pba = pba - (min_tx_space - tx_space);
1779
1780 /* if short on Rx space, Rx wins and must trump Tx
1781 * adjustment
1782 */
1783 if (pba < min_rx_space)
1784 pba = min_rx_space;
1785 }
1786 wr32(E1000_PBA, pba);
1787 }
1788
1789 /* flow control settings */
1790 /* The high water mark must be low enough to fit one full frame
1791 * (or the size used for early receive) above it in the Rx FIFO.
1792 * Set it to the lower of:
1793 * - 90% of the Rx FIFO size, or
1794 * - the full Rx FIFO size minus one full frame
1795 */
1796 hwm = min(((pba << 10) * 9 / 10),
1797 ((pba << 10) - 2 * adapter->max_frame_size));
1798
1799 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1800 fc->low_water = fc->high_water - 16;
1801 fc->pause_time = 0xFFFF;
1802 fc->send_xon = 1;
1803 fc->current_mode = fc->requested_mode;
1804
1805 /* disable receive for all VFs and wait one second */
1806 if (adapter->vfs_allocated_count) {
1807 int i;
1808 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1809 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1810
1811 /* ping all the active vfs to let them know we are going down */
1812 igb_ping_all_vfs(adapter);
1813
1814 /* disable transmits and receives */
1815 wr32(E1000_VFRE, 0);
1816 wr32(E1000_VFTE, 0);
1817 }
1818
1819 /* Allow time for pending master requests to run */
1820 hw->mac.ops.reset_hw(hw);
1821 wr32(E1000_WUC, 0);
1822
1823 if (hw->mac.ops.init_hw(hw))
1824 dev_err(&pdev->dev, "Hardware Error\n");
1825
1826 /* Flow control settings reset on hardware reset, so guarantee flow
1827 * control is off when forcing speed.
1828 */
1829 if (!hw->mac.autoneg)
1830 igb_force_mac_fc(hw);
1831
1832 igb_init_dmac(adapter, pba);
1833 #ifdef CONFIG_IGB_HWMON
1834 /* Re-initialize the thermal sensor on i350 devices. */
1835 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1836 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1837 /* If present, re-initialize the external thermal sensor
1838 * interface.
1839 */
1840 if (adapter->ets)
1841 mac->ops.init_thermal_sensor_thresh(hw);
1842 }
1843 }
1844 #endif
1845 if (!netif_running(adapter->netdev))
1846 igb_power_down_link(adapter);
1847
1848 igb_update_mng_vlan(adapter);
1849
1850 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1851 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1852
1853 /* Re-enable PTP, where applicable. */
1854 igb_ptp_reset(adapter);
1855
1856 igb_get_phy_info(hw);
1857 }
1858
1859 static netdev_features_t igb_fix_features(struct net_device *netdev,
1860 netdev_features_t features)
1861 {
1862 /* Since there is no support for separate Rx/Tx vlan accel
1863 * enable/disable make sure Tx flag is always in same state as Rx.
1864 */
1865 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1866 features |= NETIF_F_HW_VLAN_CTAG_TX;
1867 else
1868 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1869
1870 return features;
1871 }
1872
1873 static int igb_set_features(struct net_device *netdev,
1874 netdev_features_t features)
1875 {
1876 netdev_features_t changed = netdev->features ^ features;
1877 struct igb_adapter *adapter = netdev_priv(netdev);
1878
1879 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1880 igb_vlan_mode(netdev, features);
1881
1882 if (!(changed & NETIF_F_RXALL))
1883 return 0;
1884
1885 netdev->features = features;
1886
1887 if (netif_running(netdev))
1888 igb_reinit_locked(adapter);
1889 else
1890 igb_reset(adapter);
1891
1892 return 0;
1893 }
1894
1895 static const struct net_device_ops igb_netdev_ops = {
1896 .ndo_open = igb_open,
1897 .ndo_stop = igb_close,
1898 .ndo_start_xmit = igb_xmit_frame,
1899 .ndo_get_stats64 = igb_get_stats64,
1900 .ndo_set_rx_mode = igb_set_rx_mode,
1901 .ndo_set_mac_address = igb_set_mac,
1902 .ndo_change_mtu = igb_change_mtu,
1903 .ndo_do_ioctl = igb_ioctl,
1904 .ndo_tx_timeout = igb_tx_timeout,
1905 .ndo_validate_addr = eth_validate_addr,
1906 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1907 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1908 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1909 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1910 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1911 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
1912 .ndo_get_vf_config = igb_ndo_get_vf_config,
1913 #ifdef CONFIG_NET_POLL_CONTROLLER
1914 .ndo_poll_controller = igb_netpoll,
1915 #endif
1916 .ndo_fix_features = igb_fix_features,
1917 .ndo_set_features = igb_set_features,
1918 };
1919
1920 /**
1921 * igb_set_fw_version - Configure version string for ethtool
1922 * @adapter: adapter struct
1923 **/
1924 void igb_set_fw_version(struct igb_adapter *adapter)
1925 {
1926 struct e1000_hw *hw = &adapter->hw;
1927 struct e1000_fw_version fw;
1928
1929 igb_get_fw_version(hw, &fw);
1930
1931 switch (hw->mac.type) {
1932 case e1000_i211:
1933 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1934 "%2d.%2d-%d",
1935 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1936 break;
1937
1938 default:
1939 /* if option is rom valid, display its version too */
1940 if (fw.or_valid) {
1941 snprintf(adapter->fw_version,
1942 sizeof(adapter->fw_version),
1943 "%d.%d, 0x%08x, %d.%d.%d",
1944 fw.eep_major, fw.eep_minor, fw.etrack_id,
1945 fw.or_major, fw.or_build, fw.or_patch);
1946 /* no option rom */
1947 } else {
1948 snprintf(adapter->fw_version,
1949 sizeof(adapter->fw_version),
1950 "%d.%d, 0x%08x",
1951 fw.eep_major, fw.eep_minor, fw.etrack_id);
1952 }
1953 break;
1954 }
1955 return;
1956 }
1957
1958 /**
1959 * igb_init_i2c - Init I2C interface
1960 * @adapter: pointer to adapter structure
1961 **/
1962 static s32 igb_init_i2c(struct igb_adapter *adapter)
1963 {
1964 s32 status = E1000_SUCCESS;
1965
1966 /* I2C interface supported on i350 devices */
1967 if (adapter->hw.mac.type != e1000_i350)
1968 return E1000_SUCCESS;
1969
1970 /* Initialize the i2c bus which is controlled by the registers.
1971 * This bus will use the i2c_algo_bit structue that implements
1972 * the protocol through toggling of the 4 bits in the register.
1973 */
1974 adapter->i2c_adap.owner = THIS_MODULE;
1975 adapter->i2c_algo = igb_i2c_algo;
1976 adapter->i2c_algo.data = adapter;
1977 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1978 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1979 strlcpy(adapter->i2c_adap.name, "igb BB",
1980 sizeof(adapter->i2c_adap.name));
1981 status = i2c_bit_add_bus(&adapter->i2c_adap);
1982 return status;
1983 }
1984
1985 /**
1986 * igb_probe - Device Initialization Routine
1987 * @pdev: PCI device information struct
1988 * @ent: entry in igb_pci_tbl
1989 *
1990 * Returns 0 on success, negative on failure
1991 *
1992 * igb_probe initializes an adapter identified by a pci_dev structure.
1993 * The OS initialization, configuring of the adapter private structure,
1994 * and a hardware reset occur.
1995 **/
1996 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1997 {
1998 struct net_device *netdev;
1999 struct igb_adapter *adapter;
2000 struct e1000_hw *hw;
2001 u16 eeprom_data = 0;
2002 s32 ret_val;
2003 static int global_quad_port_a; /* global quad port a indication */
2004 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2005 unsigned long mmio_start, mmio_len;
2006 int err, pci_using_dac;
2007 u8 part_str[E1000_PBANUM_LENGTH];
2008
2009 /* Catch broken hardware that put the wrong VF device ID in
2010 * the PCIe SR-IOV capability.
2011 */
2012 if (pdev->is_virtfn) {
2013 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2014 pci_name(pdev), pdev->vendor, pdev->device);
2015 return -EINVAL;
2016 }
2017
2018 err = pci_enable_device_mem(pdev);
2019 if (err)
2020 return err;
2021
2022 pci_using_dac = 0;
2023 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2024 if (!err) {
2025 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2026 if (!err)
2027 pci_using_dac = 1;
2028 } else {
2029 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2030 if (err) {
2031 err = dma_set_coherent_mask(&pdev->dev,
2032 DMA_BIT_MASK(32));
2033 if (err) {
2034 dev_err(&pdev->dev,
2035 "No usable DMA configuration, aborting\n");
2036 goto err_dma;
2037 }
2038 }
2039 }
2040
2041 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2042 IORESOURCE_MEM),
2043 igb_driver_name);
2044 if (err)
2045 goto err_pci_reg;
2046
2047 pci_enable_pcie_error_reporting(pdev);
2048
2049 pci_set_master(pdev);
2050 pci_save_state(pdev);
2051
2052 err = -ENOMEM;
2053 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2054 IGB_MAX_TX_QUEUES);
2055 if (!netdev)
2056 goto err_alloc_etherdev;
2057
2058 SET_NETDEV_DEV(netdev, &pdev->dev);
2059
2060 pci_set_drvdata(pdev, netdev);
2061 adapter = netdev_priv(netdev);
2062 adapter->netdev = netdev;
2063 adapter->pdev = pdev;
2064 hw = &adapter->hw;
2065 hw->back = adapter;
2066 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2067
2068 mmio_start = pci_resource_start(pdev, 0);
2069 mmio_len = pci_resource_len(pdev, 0);
2070
2071 err = -EIO;
2072 hw->hw_addr = ioremap(mmio_start, mmio_len);
2073 if (!hw->hw_addr)
2074 goto err_ioremap;
2075
2076 netdev->netdev_ops = &igb_netdev_ops;
2077 igb_set_ethtool_ops(netdev);
2078 netdev->watchdog_timeo = 5 * HZ;
2079
2080 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2081
2082 netdev->mem_start = mmio_start;
2083 netdev->mem_end = mmio_start + mmio_len;
2084
2085 /* PCI config space info */
2086 hw->vendor_id = pdev->vendor;
2087 hw->device_id = pdev->device;
2088 hw->revision_id = pdev->revision;
2089 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2090 hw->subsystem_device_id = pdev->subsystem_device;
2091
2092 /* Copy the default MAC, PHY and NVM function pointers */
2093 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2094 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2095 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2096 /* Initialize skew-specific constants */
2097 err = ei->get_invariants(hw);
2098 if (err)
2099 goto err_sw_init;
2100
2101 /* setup the private structure */
2102 err = igb_sw_init(adapter);
2103 if (err)
2104 goto err_sw_init;
2105
2106 igb_get_bus_info_pcie(hw);
2107
2108 hw->phy.autoneg_wait_to_complete = false;
2109
2110 /* Copper options */
2111 if (hw->phy.media_type == e1000_media_type_copper) {
2112 hw->phy.mdix = AUTO_ALL_MODES;
2113 hw->phy.disable_polarity_correction = false;
2114 hw->phy.ms_type = e1000_ms_hw_default;
2115 }
2116
2117 if (igb_check_reset_block(hw))
2118 dev_info(&pdev->dev,
2119 "PHY reset is blocked due to SOL/IDER session.\n");
2120
2121 /* features is initialized to 0 in allocation, it might have bits
2122 * set by igb_sw_init so we should use an or instead of an
2123 * assignment.
2124 */
2125 netdev->features |= NETIF_F_SG |
2126 NETIF_F_IP_CSUM |
2127 NETIF_F_IPV6_CSUM |
2128 NETIF_F_TSO |
2129 NETIF_F_TSO6 |
2130 NETIF_F_RXHASH |
2131 NETIF_F_RXCSUM |
2132 NETIF_F_HW_VLAN_CTAG_RX |
2133 NETIF_F_HW_VLAN_CTAG_TX;
2134
2135 /* copy netdev features into list of user selectable features */
2136 netdev->hw_features |= netdev->features;
2137 netdev->hw_features |= NETIF_F_RXALL;
2138
2139 /* set this bit last since it cannot be part of hw_features */
2140 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2141
2142 netdev->vlan_features |= NETIF_F_TSO |
2143 NETIF_F_TSO6 |
2144 NETIF_F_IP_CSUM |
2145 NETIF_F_IPV6_CSUM |
2146 NETIF_F_SG;
2147
2148 netdev->priv_flags |= IFF_SUPP_NOFCS;
2149
2150 if (pci_using_dac) {
2151 netdev->features |= NETIF_F_HIGHDMA;
2152 netdev->vlan_features |= NETIF_F_HIGHDMA;
2153 }
2154
2155 if (hw->mac.type >= e1000_82576) {
2156 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2157 netdev->features |= NETIF_F_SCTP_CSUM;
2158 }
2159
2160 netdev->priv_flags |= IFF_UNICAST_FLT;
2161
2162 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2163
2164 /* before reading the NVM, reset the controller to put the device in a
2165 * known good starting state
2166 */
2167 hw->mac.ops.reset_hw(hw);
2168
2169 /* make sure the NVM is good , i211 parts have special NVM that
2170 * doesn't contain a checksum
2171 */
2172 if (hw->mac.type != e1000_i211) {
2173 if (hw->nvm.ops.validate(hw) < 0) {
2174 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2175 err = -EIO;
2176 goto err_eeprom;
2177 }
2178 }
2179
2180 /* copy the MAC address out of the NVM */
2181 if (hw->mac.ops.read_mac_addr(hw))
2182 dev_err(&pdev->dev, "NVM Read Error\n");
2183
2184 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2185
2186 if (!is_valid_ether_addr(netdev->dev_addr)) {
2187 dev_err(&pdev->dev, "Invalid MAC Address\n");
2188 err = -EIO;
2189 goto err_eeprom;
2190 }
2191
2192 /* get firmware version for ethtool -i */
2193 igb_set_fw_version(adapter);
2194
2195 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2196 (unsigned long) adapter);
2197 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2198 (unsigned long) adapter);
2199
2200 INIT_WORK(&adapter->reset_task, igb_reset_task);
2201 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2202
2203 /* Initialize link properties that are user-changeable */
2204 adapter->fc_autoneg = true;
2205 hw->mac.autoneg = true;
2206 hw->phy.autoneg_advertised = 0x2f;
2207
2208 hw->fc.requested_mode = e1000_fc_default;
2209 hw->fc.current_mode = e1000_fc_default;
2210
2211 igb_validate_mdi_setting(hw);
2212
2213 /* By default, support wake on port A */
2214 if (hw->bus.func == 0)
2215 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2216
2217 /* Check the NVM for wake support on non-port A ports */
2218 if (hw->mac.type >= e1000_82580)
2219 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2220 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2221 &eeprom_data);
2222 else if (hw->bus.func == 1)
2223 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2224
2225 if (eeprom_data & IGB_EEPROM_APME)
2226 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2227
2228 /* now that we have the eeprom settings, apply the special cases where
2229 * the eeprom may be wrong or the board simply won't support wake on
2230 * lan on a particular port
2231 */
2232 switch (pdev->device) {
2233 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2234 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2235 break;
2236 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2237 case E1000_DEV_ID_82576_FIBER:
2238 case E1000_DEV_ID_82576_SERDES:
2239 /* Wake events only supported on port A for dual fiber
2240 * regardless of eeprom setting
2241 */
2242 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2243 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2244 break;
2245 case E1000_DEV_ID_82576_QUAD_COPPER:
2246 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2247 /* if quad port adapter, disable WoL on all but port A */
2248 if (global_quad_port_a != 0)
2249 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2250 else
2251 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2252 /* Reset for multiple quad port adapters */
2253 if (++global_quad_port_a == 4)
2254 global_quad_port_a = 0;
2255 break;
2256 default:
2257 /* If the device can't wake, don't set software support */
2258 if (!device_can_wakeup(&adapter->pdev->dev))
2259 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2260 }
2261
2262 /* initialize the wol settings based on the eeprom settings */
2263 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2264 adapter->wol |= E1000_WUFC_MAG;
2265
2266 /* Some vendors want WoL disabled by default, but still supported */
2267 if ((hw->mac.type == e1000_i350) &&
2268 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2269 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2270 adapter->wol = 0;
2271 }
2272
2273 device_set_wakeup_enable(&adapter->pdev->dev,
2274 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2275
2276 /* reset the hardware with the new settings */
2277 igb_reset(adapter);
2278
2279 /* Init the I2C interface */
2280 err = igb_init_i2c(adapter);
2281 if (err) {
2282 dev_err(&pdev->dev, "failed to init i2c interface\n");
2283 goto err_eeprom;
2284 }
2285
2286 /* let the f/w know that the h/w is now under the control of the
2287 * driver. */
2288 igb_get_hw_control(adapter);
2289
2290 strcpy(netdev->name, "eth%d");
2291 err = register_netdev(netdev);
2292 if (err)
2293 goto err_register;
2294
2295 /* carrier off reporting is important to ethtool even BEFORE open */
2296 netif_carrier_off(netdev);
2297
2298 #ifdef CONFIG_IGB_DCA
2299 if (dca_add_requester(&pdev->dev) == 0) {
2300 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2301 dev_info(&pdev->dev, "DCA enabled\n");
2302 igb_setup_dca(adapter);
2303 }
2304
2305 #endif
2306 #ifdef CONFIG_IGB_HWMON
2307 /* Initialize the thermal sensor on i350 devices. */
2308 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2309 u16 ets_word;
2310
2311 /* Read the NVM to determine if this i350 device supports an
2312 * external thermal sensor.
2313 */
2314 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2315 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2316 adapter->ets = true;
2317 else
2318 adapter->ets = false;
2319 if (igb_sysfs_init(adapter))
2320 dev_err(&pdev->dev,
2321 "failed to allocate sysfs resources\n");
2322 } else {
2323 adapter->ets = false;
2324 }
2325 #endif
2326 /* do hw tstamp init after resetting */
2327 igb_ptp_init(adapter);
2328
2329 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2330 /* print bus type/speed/width info, not applicable to i354 */
2331 if (hw->mac.type != e1000_i354) {
2332 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2333 netdev->name,
2334 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2335 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2336 "unknown"),
2337 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2338 "Width x4" :
2339 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2340 "Width x2" :
2341 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2342 "Width x1" : "unknown"), netdev->dev_addr);
2343 }
2344
2345 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2346 if (ret_val)
2347 strcpy(part_str, "Unknown");
2348 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2349 dev_info(&pdev->dev,
2350 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2351 adapter->msix_entries ? "MSI-X" :
2352 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2353 adapter->num_rx_queues, adapter->num_tx_queues);
2354 switch (hw->mac.type) {
2355 case e1000_i350:
2356 case e1000_i210:
2357 case e1000_i211:
2358 igb_set_eee_i350(hw);
2359 break;
2360 case e1000_i354:
2361 if (hw->phy.media_type == e1000_media_type_copper) {
2362 if ((rd32(E1000_CTRL_EXT) &
2363 E1000_CTRL_EXT_LINK_MODE_SGMII))
2364 igb_set_eee_i354(hw);
2365 }
2366 break;
2367 default:
2368 break;
2369 }
2370
2371 pm_runtime_put_noidle(&pdev->dev);
2372 return 0;
2373
2374 err_register:
2375 igb_release_hw_control(adapter);
2376 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2377 err_eeprom:
2378 if (!igb_check_reset_block(hw))
2379 igb_reset_phy(hw);
2380
2381 if (hw->flash_address)
2382 iounmap(hw->flash_address);
2383 err_sw_init:
2384 igb_clear_interrupt_scheme(adapter);
2385 iounmap(hw->hw_addr);
2386 err_ioremap:
2387 free_netdev(netdev);
2388 err_alloc_etherdev:
2389 pci_release_selected_regions(pdev,
2390 pci_select_bars(pdev, IORESOURCE_MEM));
2391 err_pci_reg:
2392 err_dma:
2393 pci_disable_device(pdev);
2394 return err;
2395 }
2396
2397 #ifdef CONFIG_PCI_IOV
2398 static int igb_disable_sriov(struct pci_dev *pdev)
2399 {
2400 struct net_device *netdev = pci_get_drvdata(pdev);
2401 struct igb_adapter *adapter = netdev_priv(netdev);
2402 struct e1000_hw *hw = &adapter->hw;
2403
2404 /* reclaim resources allocated to VFs */
2405 if (adapter->vf_data) {
2406 /* disable iov and allow time for transactions to clear */
2407 if (pci_vfs_assigned(pdev)) {
2408 dev_warn(&pdev->dev,
2409 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2410 return -EPERM;
2411 } else {
2412 pci_disable_sriov(pdev);
2413 msleep(500);
2414 }
2415
2416 kfree(adapter->vf_data);
2417 adapter->vf_data = NULL;
2418 adapter->vfs_allocated_count = 0;
2419 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2420 wrfl();
2421 msleep(100);
2422 dev_info(&pdev->dev, "IOV Disabled\n");
2423
2424 /* Re-enable DMA Coalescing flag since IOV is turned off */
2425 adapter->flags |= IGB_FLAG_DMAC;
2426 }
2427
2428 return 0;
2429 }
2430
2431 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2432 {
2433 struct net_device *netdev = pci_get_drvdata(pdev);
2434 struct igb_adapter *adapter = netdev_priv(netdev);
2435 int old_vfs = pci_num_vf(pdev);
2436 int err = 0;
2437 int i;
2438
2439 if (!num_vfs)
2440 goto out;
2441 else if (old_vfs && old_vfs == num_vfs)
2442 goto out;
2443 else if (old_vfs && old_vfs != num_vfs)
2444 err = igb_disable_sriov(pdev);
2445
2446 if (err)
2447 goto out;
2448
2449 if (num_vfs > 7) {
2450 err = -EPERM;
2451 goto out;
2452 }
2453
2454 adapter->vfs_allocated_count = num_vfs;
2455
2456 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2457 sizeof(struct vf_data_storage), GFP_KERNEL);
2458
2459 /* if allocation failed then we do not support SR-IOV */
2460 if (!adapter->vf_data) {
2461 adapter->vfs_allocated_count = 0;
2462 dev_err(&pdev->dev,
2463 "Unable to allocate memory for VF Data Storage\n");
2464 err = -ENOMEM;
2465 goto out;
2466 }
2467
2468 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2469 if (err)
2470 goto err_out;
2471
2472 dev_info(&pdev->dev, "%d VFs allocated\n",
2473 adapter->vfs_allocated_count);
2474 for (i = 0; i < adapter->vfs_allocated_count; i++)
2475 igb_vf_configure(adapter, i);
2476
2477 /* DMA Coalescing is not supported in IOV mode. */
2478 adapter->flags &= ~IGB_FLAG_DMAC;
2479 goto out;
2480
2481 err_out:
2482 kfree(adapter->vf_data);
2483 adapter->vf_data = NULL;
2484 adapter->vfs_allocated_count = 0;
2485 out:
2486 return err;
2487 }
2488
2489 #endif
2490 /**
2491 * igb_remove_i2c - Cleanup I2C interface
2492 * @adapter: pointer to adapter structure
2493 **/
2494 static void igb_remove_i2c(struct igb_adapter *adapter)
2495 {
2496 /* free the adapter bus structure */
2497 i2c_del_adapter(&adapter->i2c_adap);
2498 }
2499
2500 /**
2501 * igb_remove - Device Removal Routine
2502 * @pdev: PCI device information struct
2503 *
2504 * igb_remove is called by the PCI subsystem to alert the driver
2505 * that it should release a PCI device. The could be caused by a
2506 * Hot-Plug event, or because the driver is going to be removed from
2507 * memory.
2508 **/
2509 static void igb_remove(struct pci_dev *pdev)
2510 {
2511 struct net_device *netdev = pci_get_drvdata(pdev);
2512 struct igb_adapter *adapter = netdev_priv(netdev);
2513 struct e1000_hw *hw = &adapter->hw;
2514
2515 pm_runtime_get_noresume(&pdev->dev);
2516 #ifdef CONFIG_IGB_HWMON
2517 igb_sysfs_exit(adapter);
2518 #endif
2519 igb_remove_i2c(adapter);
2520 igb_ptp_stop(adapter);
2521 /* The watchdog timer may be rescheduled, so explicitly
2522 * disable watchdog from being rescheduled.
2523 */
2524 set_bit(__IGB_DOWN, &adapter->state);
2525 del_timer_sync(&adapter->watchdog_timer);
2526 del_timer_sync(&adapter->phy_info_timer);
2527
2528 cancel_work_sync(&adapter->reset_task);
2529 cancel_work_sync(&adapter->watchdog_task);
2530
2531 #ifdef CONFIG_IGB_DCA
2532 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2533 dev_info(&pdev->dev, "DCA disabled\n");
2534 dca_remove_requester(&pdev->dev);
2535 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2536 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2537 }
2538 #endif
2539
2540 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2541 * would have already happened in close and is redundant.
2542 */
2543 igb_release_hw_control(adapter);
2544
2545 unregister_netdev(netdev);
2546
2547 igb_clear_interrupt_scheme(adapter);
2548
2549 #ifdef CONFIG_PCI_IOV
2550 igb_disable_sriov(pdev);
2551 #endif
2552
2553 iounmap(hw->hw_addr);
2554 if (hw->flash_address)
2555 iounmap(hw->flash_address);
2556 pci_release_selected_regions(pdev,
2557 pci_select_bars(pdev, IORESOURCE_MEM));
2558
2559 kfree(adapter->shadow_vfta);
2560 free_netdev(netdev);
2561
2562 pci_disable_pcie_error_reporting(pdev);
2563
2564 pci_disable_device(pdev);
2565 }
2566
2567 /**
2568 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2569 * @adapter: board private structure to initialize
2570 *
2571 * This function initializes the vf specific data storage and then attempts to
2572 * allocate the VFs. The reason for ordering it this way is because it is much
2573 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2574 * the memory for the VFs.
2575 **/
2576 static void igb_probe_vfs(struct igb_adapter *adapter)
2577 {
2578 #ifdef CONFIG_PCI_IOV
2579 struct pci_dev *pdev = adapter->pdev;
2580 struct e1000_hw *hw = &adapter->hw;
2581
2582 /* Virtualization features not supported on i210 family. */
2583 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2584 return;
2585
2586 pci_sriov_set_totalvfs(pdev, 7);
2587 igb_enable_sriov(pdev, max_vfs);
2588
2589 #endif /* CONFIG_PCI_IOV */
2590 }
2591
2592 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2593 {
2594 struct e1000_hw *hw = &adapter->hw;
2595 u32 max_rss_queues;
2596
2597 /* Determine the maximum number of RSS queues supported. */
2598 switch (hw->mac.type) {
2599 case e1000_i211:
2600 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2601 break;
2602 case e1000_82575:
2603 case e1000_i210:
2604 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2605 break;
2606 case e1000_i350:
2607 /* I350 cannot do RSS and SR-IOV at the same time */
2608 if (!!adapter->vfs_allocated_count) {
2609 max_rss_queues = 1;
2610 break;
2611 }
2612 /* fall through */
2613 case e1000_82576:
2614 if (!!adapter->vfs_allocated_count) {
2615 max_rss_queues = 2;
2616 break;
2617 }
2618 /* fall through */
2619 case e1000_82580:
2620 case e1000_i354:
2621 default:
2622 max_rss_queues = IGB_MAX_RX_QUEUES;
2623 break;
2624 }
2625
2626 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2627
2628 /* Determine if we need to pair queues. */
2629 switch (hw->mac.type) {
2630 case e1000_82575:
2631 case e1000_i211:
2632 /* Device supports enough interrupts without queue pairing. */
2633 break;
2634 case e1000_82576:
2635 /* If VFs are going to be allocated with RSS queues then we
2636 * should pair the queues in order to conserve interrupts due
2637 * to limited supply.
2638 */
2639 if ((adapter->rss_queues > 1) &&
2640 (adapter->vfs_allocated_count > 6))
2641 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2642 /* fall through */
2643 case e1000_82580:
2644 case e1000_i350:
2645 case e1000_i354:
2646 case e1000_i210:
2647 default:
2648 /* If rss_queues > half of max_rss_queues, pair the queues in
2649 * order to conserve interrupts due to limited supply.
2650 */
2651 if (adapter->rss_queues > (max_rss_queues / 2))
2652 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2653 break;
2654 }
2655 }
2656
2657 /**
2658 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2659 * @adapter: board private structure to initialize
2660 *
2661 * igb_sw_init initializes the Adapter private data structure.
2662 * Fields are initialized based on PCI device information and
2663 * OS network device settings (MTU size).
2664 **/
2665 static int igb_sw_init(struct igb_adapter *adapter)
2666 {
2667 struct e1000_hw *hw = &adapter->hw;
2668 struct net_device *netdev = adapter->netdev;
2669 struct pci_dev *pdev = adapter->pdev;
2670
2671 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2672
2673 /* set default ring sizes */
2674 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2675 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2676
2677 /* set default ITR values */
2678 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2679 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2680
2681 /* set default work limits */
2682 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2683
2684 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2685 VLAN_HLEN;
2686 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2687
2688 spin_lock_init(&adapter->stats64_lock);
2689 #ifdef CONFIG_PCI_IOV
2690 switch (hw->mac.type) {
2691 case e1000_82576:
2692 case e1000_i350:
2693 if (max_vfs > 7) {
2694 dev_warn(&pdev->dev,
2695 "Maximum of 7 VFs per PF, using max\n");
2696 max_vfs = adapter->vfs_allocated_count = 7;
2697 } else
2698 adapter->vfs_allocated_count = max_vfs;
2699 if (adapter->vfs_allocated_count)
2700 dev_warn(&pdev->dev,
2701 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2702 break;
2703 default:
2704 break;
2705 }
2706 #endif /* CONFIG_PCI_IOV */
2707
2708 igb_init_queue_configuration(adapter);
2709
2710 /* Setup and initialize a copy of the hw vlan table array */
2711 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2712 GFP_ATOMIC);
2713
2714 /* This call may decrease the number of queues */
2715 if (igb_init_interrupt_scheme(adapter, true)) {
2716 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2717 return -ENOMEM;
2718 }
2719
2720 igb_probe_vfs(adapter);
2721
2722 /* Explicitly disable IRQ since the NIC can be in any state. */
2723 igb_irq_disable(adapter);
2724
2725 if (hw->mac.type >= e1000_i350)
2726 adapter->flags &= ~IGB_FLAG_DMAC;
2727
2728 set_bit(__IGB_DOWN, &adapter->state);
2729 return 0;
2730 }
2731
2732 /**
2733 * igb_open - Called when a network interface is made active
2734 * @netdev: network interface device structure
2735 *
2736 * Returns 0 on success, negative value on failure
2737 *
2738 * The open entry point is called when a network interface is made
2739 * active by the system (IFF_UP). At this point all resources needed
2740 * for transmit and receive operations are allocated, the interrupt
2741 * handler is registered with the OS, the watchdog timer is started,
2742 * and the stack is notified that the interface is ready.
2743 **/
2744 static int __igb_open(struct net_device *netdev, bool resuming)
2745 {
2746 struct igb_adapter *adapter = netdev_priv(netdev);
2747 struct e1000_hw *hw = &adapter->hw;
2748 struct pci_dev *pdev = adapter->pdev;
2749 int err;
2750 int i;
2751
2752 /* disallow open during test */
2753 if (test_bit(__IGB_TESTING, &adapter->state)) {
2754 WARN_ON(resuming);
2755 return -EBUSY;
2756 }
2757
2758 if (!resuming)
2759 pm_runtime_get_sync(&pdev->dev);
2760
2761 netif_carrier_off(netdev);
2762
2763 /* allocate transmit descriptors */
2764 err = igb_setup_all_tx_resources(adapter);
2765 if (err)
2766 goto err_setup_tx;
2767
2768 /* allocate receive descriptors */
2769 err = igb_setup_all_rx_resources(adapter);
2770 if (err)
2771 goto err_setup_rx;
2772
2773 igb_power_up_link(adapter);
2774
2775 /* before we allocate an interrupt, we must be ready to handle it.
2776 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2777 * as soon as we call pci_request_irq, so we have to setup our
2778 * clean_rx handler before we do so.
2779 */
2780 igb_configure(adapter);
2781
2782 err = igb_request_irq(adapter);
2783 if (err)
2784 goto err_req_irq;
2785
2786 /* Notify the stack of the actual queue counts. */
2787 err = netif_set_real_num_tx_queues(adapter->netdev,
2788 adapter->num_tx_queues);
2789 if (err)
2790 goto err_set_queues;
2791
2792 err = netif_set_real_num_rx_queues(adapter->netdev,
2793 adapter->num_rx_queues);
2794 if (err)
2795 goto err_set_queues;
2796
2797 /* From here on the code is the same as igb_up() */
2798 clear_bit(__IGB_DOWN, &adapter->state);
2799
2800 for (i = 0; i < adapter->num_q_vectors; i++)
2801 napi_enable(&(adapter->q_vector[i]->napi));
2802
2803 /* Clear any pending interrupts. */
2804 rd32(E1000_ICR);
2805
2806 igb_irq_enable(adapter);
2807
2808 /* notify VFs that reset has been completed */
2809 if (adapter->vfs_allocated_count) {
2810 u32 reg_data = rd32(E1000_CTRL_EXT);
2811 reg_data |= E1000_CTRL_EXT_PFRSTD;
2812 wr32(E1000_CTRL_EXT, reg_data);
2813 }
2814
2815 netif_tx_start_all_queues(netdev);
2816
2817 if (!resuming)
2818 pm_runtime_put(&pdev->dev);
2819
2820 /* start the watchdog. */
2821 hw->mac.get_link_status = 1;
2822 schedule_work(&adapter->watchdog_task);
2823
2824 return 0;
2825
2826 err_set_queues:
2827 igb_free_irq(adapter);
2828 err_req_irq:
2829 igb_release_hw_control(adapter);
2830 igb_power_down_link(adapter);
2831 igb_free_all_rx_resources(adapter);
2832 err_setup_rx:
2833 igb_free_all_tx_resources(adapter);
2834 err_setup_tx:
2835 igb_reset(adapter);
2836 if (!resuming)
2837 pm_runtime_put(&pdev->dev);
2838
2839 return err;
2840 }
2841
2842 static int igb_open(struct net_device *netdev)
2843 {
2844 return __igb_open(netdev, false);
2845 }
2846
2847 /**
2848 * igb_close - Disables a network interface
2849 * @netdev: network interface device structure
2850 *
2851 * Returns 0, this is not allowed to fail
2852 *
2853 * The close entry point is called when an interface is de-activated
2854 * by the OS. The hardware is still under the driver's control, but
2855 * needs to be disabled. A global MAC reset is issued to stop the
2856 * hardware, and all transmit and receive resources are freed.
2857 **/
2858 static int __igb_close(struct net_device *netdev, bool suspending)
2859 {
2860 struct igb_adapter *adapter = netdev_priv(netdev);
2861 struct pci_dev *pdev = adapter->pdev;
2862
2863 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2864
2865 if (!suspending)
2866 pm_runtime_get_sync(&pdev->dev);
2867
2868 igb_down(adapter);
2869 igb_free_irq(adapter);
2870
2871 igb_free_all_tx_resources(adapter);
2872 igb_free_all_rx_resources(adapter);
2873
2874 if (!suspending)
2875 pm_runtime_put_sync(&pdev->dev);
2876 return 0;
2877 }
2878
2879 static int igb_close(struct net_device *netdev)
2880 {
2881 return __igb_close(netdev, false);
2882 }
2883
2884 /**
2885 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2886 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2887 *
2888 * Return 0 on success, negative on failure
2889 **/
2890 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2891 {
2892 struct device *dev = tx_ring->dev;
2893 int size;
2894
2895 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2896
2897 tx_ring->tx_buffer_info = vzalloc(size);
2898 if (!tx_ring->tx_buffer_info)
2899 goto err;
2900
2901 /* round up to nearest 4K */
2902 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2903 tx_ring->size = ALIGN(tx_ring->size, 4096);
2904
2905 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2906 &tx_ring->dma, GFP_KERNEL);
2907 if (!tx_ring->desc)
2908 goto err;
2909
2910 tx_ring->next_to_use = 0;
2911 tx_ring->next_to_clean = 0;
2912
2913 return 0;
2914
2915 err:
2916 vfree(tx_ring->tx_buffer_info);
2917 tx_ring->tx_buffer_info = NULL;
2918 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2919 return -ENOMEM;
2920 }
2921
2922 /**
2923 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2924 * (Descriptors) for all queues
2925 * @adapter: board private structure
2926 *
2927 * Return 0 on success, negative on failure
2928 **/
2929 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2930 {
2931 struct pci_dev *pdev = adapter->pdev;
2932 int i, err = 0;
2933
2934 for (i = 0; i < adapter->num_tx_queues; i++) {
2935 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2936 if (err) {
2937 dev_err(&pdev->dev,
2938 "Allocation for Tx Queue %u failed\n", i);
2939 for (i--; i >= 0; i--)
2940 igb_free_tx_resources(adapter->tx_ring[i]);
2941 break;
2942 }
2943 }
2944
2945 return err;
2946 }
2947
2948 /**
2949 * igb_setup_tctl - configure the transmit control registers
2950 * @adapter: Board private structure
2951 **/
2952 void igb_setup_tctl(struct igb_adapter *adapter)
2953 {
2954 struct e1000_hw *hw = &adapter->hw;
2955 u32 tctl;
2956
2957 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2958 wr32(E1000_TXDCTL(0), 0);
2959
2960 /* Program the Transmit Control Register */
2961 tctl = rd32(E1000_TCTL);
2962 tctl &= ~E1000_TCTL_CT;
2963 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2964 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2965
2966 igb_config_collision_dist(hw);
2967
2968 /* Enable transmits */
2969 tctl |= E1000_TCTL_EN;
2970
2971 wr32(E1000_TCTL, tctl);
2972 }
2973
2974 /**
2975 * igb_configure_tx_ring - Configure transmit ring after Reset
2976 * @adapter: board private structure
2977 * @ring: tx ring to configure
2978 *
2979 * Configure a transmit ring after a reset.
2980 **/
2981 void igb_configure_tx_ring(struct igb_adapter *adapter,
2982 struct igb_ring *ring)
2983 {
2984 struct e1000_hw *hw = &adapter->hw;
2985 u32 txdctl = 0;
2986 u64 tdba = ring->dma;
2987 int reg_idx = ring->reg_idx;
2988
2989 /* disable the queue */
2990 wr32(E1000_TXDCTL(reg_idx), 0);
2991 wrfl();
2992 mdelay(10);
2993
2994 wr32(E1000_TDLEN(reg_idx),
2995 ring->count * sizeof(union e1000_adv_tx_desc));
2996 wr32(E1000_TDBAL(reg_idx),
2997 tdba & 0x00000000ffffffffULL);
2998 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2999
3000 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3001 wr32(E1000_TDH(reg_idx), 0);
3002 writel(0, ring->tail);
3003
3004 txdctl |= IGB_TX_PTHRESH;
3005 txdctl |= IGB_TX_HTHRESH << 8;
3006 txdctl |= IGB_TX_WTHRESH << 16;
3007
3008 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3009 wr32(E1000_TXDCTL(reg_idx), txdctl);
3010 }
3011
3012 /**
3013 * igb_configure_tx - Configure transmit Unit after Reset
3014 * @adapter: board private structure
3015 *
3016 * Configure the Tx unit of the MAC after a reset.
3017 **/
3018 static void igb_configure_tx(struct igb_adapter *adapter)
3019 {
3020 int i;
3021
3022 for (i = 0; i < adapter->num_tx_queues; i++)
3023 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3024 }
3025
3026 /**
3027 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3028 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3029 *
3030 * Returns 0 on success, negative on failure
3031 **/
3032 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3033 {
3034 struct device *dev = rx_ring->dev;
3035 int size;
3036
3037 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3038
3039 rx_ring->rx_buffer_info = vzalloc(size);
3040 if (!rx_ring->rx_buffer_info)
3041 goto err;
3042
3043 /* Round up to nearest 4K */
3044 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3045 rx_ring->size = ALIGN(rx_ring->size, 4096);
3046
3047 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3048 &rx_ring->dma, GFP_KERNEL);
3049 if (!rx_ring->desc)
3050 goto err;
3051
3052 rx_ring->next_to_alloc = 0;
3053 rx_ring->next_to_clean = 0;
3054 rx_ring->next_to_use = 0;
3055
3056 return 0;
3057
3058 err:
3059 vfree(rx_ring->rx_buffer_info);
3060 rx_ring->rx_buffer_info = NULL;
3061 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3062 return -ENOMEM;
3063 }
3064
3065 /**
3066 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3067 * (Descriptors) for all queues
3068 * @adapter: board private structure
3069 *
3070 * Return 0 on success, negative on failure
3071 **/
3072 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3073 {
3074 struct pci_dev *pdev = adapter->pdev;
3075 int i, err = 0;
3076
3077 for (i = 0; i < adapter->num_rx_queues; i++) {
3078 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3079 if (err) {
3080 dev_err(&pdev->dev,
3081 "Allocation for Rx Queue %u failed\n", i);
3082 for (i--; i >= 0; i--)
3083 igb_free_rx_resources(adapter->rx_ring[i]);
3084 break;
3085 }
3086 }
3087
3088 return err;
3089 }
3090
3091 /**
3092 * igb_setup_mrqc - configure the multiple receive queue control registers
3093 * @adapter: Board private structure
3094 **/
3095 static void igb_setup_mrqc(struct igb_adapter *adapter)
3096 {
3097 struct e1000_hw *hw = &adapter->hw;
3098 u32 mrqc, rxcsum;
3099 u32 j, num_rx_queues, shift = 0;
3100 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3101 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3102 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3103 0xFA01ACBE };
3104
3105 /* Fill out hash function seeds */
3106 for (j = 0; j < 10; j++)
3107 wr32(E1000_RSSRK(j), rsskey[j]);
3108
3109 num_rx_queues = adapter->rss_queues;
3110
3111 switch (hw->mac.type) {
3112 case e1000_82575:
3113 shift = 6;
3114 break;
3115 case e1000_82576:
3116 /* 82576 supports 2 RSS queues for SR-IOV */
3117 if (adapter->vfs_allocated_count) {
3118 shift = 3;
3119 num_rx_queues = 2;
3120 }
3121 break;
3122 default:
3123 break;
3124 }
3125
3126 /* Populate the indirection table 4 entries at a time. To do this
3127 * we are generating the results for n and n+2 and then interleaving
3128 * those with the results with n+1 and n+3.
3129 */
3130 for (j = 0; j < 32; j++) {
3131 /* first pass generates n and n+2 */
3132 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3133 u32 reta = (base & 0x07800780) >> (7 - shift);
3134
3135 /* second pass generates n+1 and n+3 */
3136 base += 0x00010001 * num_rx_queues;
3137 reta |= (base & 0x07800780) << (1 + shift);
3138
3139 wr32(E1000_RETA(j), reta);
3140 }
3141
3142 /* Disable raw packet checksumming so that RSS hash is placed in
3143 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3144 * offloads as they are enabled by default
3145 */
3146 rxcsum = rd32(E1000_RXCSUM);
3147 rxcsum |= E1000_RXCSUM_PCSD;
3148
3149 if (adapter->hw.mac.type >= e1000_82576)
3150 /* Enable Receive Checksum Offload for SCTP */
3151 rxcsum |= E1000_RXCSUM_CRCOFL;
3152
3153 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3154 wr32(E1000_RXCSUM, rxcsum);
3155
3156 /* Generate RSS hash based on packet types, TCP/UDP
3157 * port numbers and/or IPv4/v6 src and dst addresses
3158 */
3159 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3160 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3161 E1000_MRQC_RSS_FIELD_IPV6 |
3162 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3163 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3164
3165 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3166 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3167 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3168 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3169
3170 /* If VMDq is enabled then we set the appropriate mode for that, else
3171 * we default to RSS so that an RSS hash is calculated per packet even
3172 * if we are only using one queue
3173 */
3174 if (adapter->vfs_allocated_count) {
3175 if (hw->mac.type > e1000_82575) {
3176 /* Set the default pool for the PF's first queue */
3177 u32 vtctl = rd32(E1000_VT_CTL);
3178 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3179 E1000_VT_CTL_DISABLE_DEF_POOL);
3180 vtctl |= adapter->vfs_allocated_count <<
3181 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3182 wr32(E1000_VT_CTL, vtctl);
3183 }
3184 if (adapter->rss_queues > 1)
3185 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3186 else
3187 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3188 } else {
3189 if (hw->mac.type != e1000_i211)
3190 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3191 }
3192 igb_vmm_control(adapter);
3193
3194 wr32(E1000_MRQC, mrqc);
3195 }
3196
3197 /**
3198 * igb_setup_rctl - configure the receive control registers
3199 * @adapter: Board private structure
3200 **/
3201 void igb_setup_rctl(struct igb_adapter *adapter)
3202 {
3203 struct e1000_hw *hw = &adapter->hw;
3204 u32 rctl;
3205
3206 rctl = rd32(E1000_RCTL);
3207
3208 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3209 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3210
3211 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3212 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3213
3214 /* enable stripping of CRC. It's unlikely this will break BMC
3215 * redirection as it did with e1000. Newer features require
3216 * that the HW strips the CRC.
3217 */
3218 rctl |= E1000_RCTL_SECRC;
3219
3220 /* disable store bad packets and clear size bits. */
3221 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3222
3223 /* enable LPE to prevent packets larger than max_frame_size */
3224 rctl |= E1000_RCTL_LPE;
3225
3226 /* disable queue 0 to prevent tail write w/o re-config */
3227 wr32(E1000_RXDCTL(0), 0);
3228
3229 /* Attention!!! For SR-IOV PF driver operations you must enable
3230 * queue drop for all VF and PF queues to prevent head of line blocking
3231 * if an un-trusted VF does not provide descriptors to hardware.
3232 */
3233 if (adapter->vfs_allocated_count) {
3234 /* set all queue drop enable bits */
3235 wr32(E1000_QDE, ALL_QUEUES);
3236 }
3237
3238 /* This is useful for sniffing bad packets. */
3239 if (adapter->netdev->features & NETIF_F_RXALL) {
3240 /* UPE and MPE will be handled by normal PROMISC logic
3241 * in e1000e_set_rx_mode
3242 */
3243 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3244 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3245 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3246
3247 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3248 E1000_RCTL_DPF | /* Allow filtered pause */
3249 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3250 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3251 * and that breaks VLANs.
3252 */
3253 }
3254
3255 wr32(E1000_RCTL, rctl);
3256 }
3257
3258 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3259 int vfn)
3260 {
3261 struct e1000_hw *hw = &adapter->hw;
3262 u32 vmolr;
3263
3264 /* if it isn't the PF check to see if VFs are enabled and
3265 * increase the size to support vlan tags
3266 */
3267 if (vfn < adapter->vfs_allocated_count &&
3268 adapter->vf_data[vfn].vlans_enabled)
3269 size += VLAN_TAG_SIZE;
3270
3271 vmolr = rd32(E1000_VMOLR(vfn));
3272 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3273 vmolr |= size | E1000_VMOLR_LPE;
3274 wr32(E1000_VMOLR(vfn), vmolr);
3275
3276 return 0;
3277 }
3278
3279 /**
3280 * igb_rlpml_set - set maximum receive packet size
3281 * @adapter: board private structure
3282 *
3283 * Configure maximum receivable packet size.
3284 **/
3285 static void igb_rlpml_set(struct igb_adapter *adapter)
3286 {
3287 u32 max_frame_size = adapter->max_frame_size;
3288 struct e1000_hw *hw = &adapter->hw;
3289 u16 pf_id = adapter->vfs_allocated_count;
3290
3291 if (pf_id) {
3292 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3293 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3294 * to our max jumbo frame size, in case we need to enable
3295 * jumbo frames on one of the rings later.
3296 * This will not pass over-length frames into the default
3297 * queue because it's gated by the VMOLR.RLPML.
3298 */
3299 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3300 }
3301
3302 wr32(E1000_RLPML, max_frame_size);
3303 }
3304
3305 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3306 int vfn, bool aupe)
3307 {
3308 struct e1000_hw *hw = &adapter->hw;
3309 u32 vmolr;
3310
3311 /* This register exists only on 82576 and newer so if we are older then
3312 * we should exit and do nothing
3313 */
3314 if (hw->mac.type < e1000_82576)
3315 return;
3316
3317 vmolr = rd32(E1000_VMOLR(vfn));
3318 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3319 if (aupe)
3320 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3321 else
3322 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3323
3324 /* clear all bits that might not be set */
3325 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3326
3327 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3328 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3329 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3330 * multicast packets
3331 */
3332 if (vfn <= adapter->vfs_allocated_count)
3333 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3334
3335 wr32(E1000_VMOLR(vfn), vmolr);
3336 }
3337
3338 /**
3339 * igb_configure_rx_ring - Configure a receive ring after Reset
3340 * @adapter: board private structure
3341 * @ring: receive ring to be configured
3342 *
3343 * Configure the Rx unit of the MAC after a reset.
3344 **/
3345 void igb_configure_rx_ring(struct igb_adapter *adapter,
3346 struct igb_ring *ring)
3347 {
3348 struct e1000_hw *hw = &adapter->hw;
3349 u64 rdba = ring->dma;
3350 int reg_idx = ring->reg_idx;
3351 u32 srrctl = 0, rxdctl = 0;
3352
3353 /* disable the queue */
3354 wr32(E1000_RXDCTL(reg_idx), 0);
3355
3356 /* Set DMA base address registers */
3357 wr32(E1000_RDBAL(reg_idx),
3358 rdba & 0x00000000ffffffffULL);
3359 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3360 wr32(E1000_RDLEN(reg_idx),
3361 ring->count * sizeof(union e1000_adv_rx_desc));
3362
3363 /* initialize head and tail */
3364 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3365 wr32(E1000_RDH(reg_idx), 0);
3366 writel(0, ring->tail);
3367
3368 /* set descriptor configuration */
3369 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3370 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3371 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3372 if (hw->mac.type >= e1000_82580)
3373 srrctl |= E1000_SRRCTL_TIMESTAMP;
3374 /* Only set Drop Enable if we are supporting multiple queues */
3375 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3376 srrctl |= E1000_SRRCTL_DROP_EN;
3377
3378 wr32(E1000_SRRCTL(reg_idx), srrctl);
3379
3380 /* set filtering for VMDQ pools */
3381 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3382
3383 rxdctl |= IGB_RX_PTHRESH;
3384 rxdctl |= IGB_RX_HTHRESH << 8;
3385 rxdctl |= IGB_RX_WTHRESH << 16;
3386
3387 /* enable receive descriptor fetching */
3388 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3389 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3390 }
3391
3392 /**
3393 * igb_configure_rx - Configure receive Unit after Reset
3394 * @adapter: board private structure
3395 *
3396 * Configure the Rx unit of the MAC after a reset.
3397 **/
3398 static void igb_configure_rx(struct igb_adapter *adapter)
3399 {
3400 int i;
3401
3402 /* set UTA to appropriate mode */
3403 igb_set_uta(adapter);
3404
3405 /* set the correct pool for the PF default MAC address in entry 0 */
3406 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3407 adapter->vfs_allocated_count);
3408
3409 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3410 * the Base and Length of the Rx Descriptor Ring
3411 */
3412 for (i = 0; i < adapter->num_rx_queues; i++)
3413 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3414 }
3415
3416 /**
3417 * igb_free_tx_resources - Free Tx Resources per Queue
3418 * @tx_ring: Tx descriptor ring for a specific queue
3419 *
3420 * Free all transmit software resources
3421 **/
3422 void igb_free_tx_resources(struct igb_ring *tx_ring)
3423 {
3424 igb_clean_tx_ring(tx_ring);
3425
3426 vfree(tx_ring->tx_buffer_info);
3427 tx_ring->tx_buffer_info = NULL;
3428
3429 /* if not set, then don't free */
3430 if (!tx_ring->desc)
3431 return;
3432
3433 dma_free_coherent(tx_ring->dev, tx_ring->size,
3434 tx_ring->desc, tx_ring->dma);
3435
3436 tx_ring->desc = NULL;
3437 }
3438
3439 /**
3440 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3441 * @adapter: board private structure
3442 *
3443 * Free all transmit software resources
3444 **/
3445 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3446 {
3447 int i;
3448
3449 for (i = 0; i < adapter->num_tx_queues; i++)
3450 igb_free_tx_resources(adapter->tx_ring[i]);
3451 }
3452
3453 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3454 struct igb_tx_buffer *tx_buffer)
3455 {
3456 if (tx_buffer->skb) {
3457 dev_kfree_skb_any(tx_buffer->skb);
3458 if (dma_unmap_len(tx_buffer, len))
3459 dma_unmap_single(ring->dev,
3460 dma_unmap_addr(tx_buffer, dma),
3461 dma_unmap_len(tx_buffer, len),
3462 DMA_TO_DEVICE);
3463 } else if (dma_unmap_len(tx_buffer, len)) {
3464 dma_unmap_page(ring->dev,
3465 dma_unmap_addr(tx_buffer, dma),
3466 dma_unmap_len(tx_buffer, len),
3467 DMA_TO_DEVICE);
3468 }
3469 tx_buffer->next_to_watch = NULL;
3470 tx_buffer->skb = NULL;
3471 dma_unmap_len_set(tx_buffer, len, 0);
3472 /* buffer_info must be completely set up in the transmit path */
3473 }
3474
3475 /**
3476 * igb_clean_tx_ring - Free Tx Buffers
3477 * @tx_ring: ring to be cleaned
3478 **/
3479 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3480 {
3481 struct igb_tx_buffer *buffer_info;
3482 unsigned long size;
3483 u16 i;
3484
3485 if (!tx_ring->tx_buffer_info)
3486 return;
3487 /* Free all the Tx ring sk_buffs */
3488
3489 for (i = 0; i < tx_ring->count; i++) {
3490 buffer_info = &tx_ring->tx_buffer_info[i];
3491 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3492 }
3493
3494 netdev_tx_reset_queue(txring_txq(tx_ring));
3495
3496 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3497 memset(tx_ring->tx_buffer_info, 0, size);
3498
3499 /* Zero out the descriptor ring */
3500 memset(tx_ring->desc, 0, tx_ring->size);
3501
3502 tx_ring->next_to_use = 0;
3503 tx_ring->next_to_clean = 0;
3504 }
3505
3506 /**
3507 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3508 * @adapter: board private structure
3509 **/
3510 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3511 {
3512 int i;
3513
3514 for (i = 0; i < adapter->num_tx_queues; i++)
3515 igb_clean_tx_ring(adapter->tx_ring[i]);
3516 }
3517
3518 /**
3519 * igb_free_rx_resources - Free Rx Resources
3520 * @rx_ring: ring to clean the resources from
3521 *
3522 * Free all receive software resources
3523 **/
3524 void igb_free_rx_resources(struct igb_ring *rx_ring)
3525 {
3526 igb_clean_rx_ring(rx_ring);
3527
3528 vfree(rx_ring->rx_buffer_info);
3529 rx_ring->rx_buffer_info = NULL;
3530
3531 /* if not set, then don't free */
3532 if (!rx_ring->desc)
3533 return;
3534
3535 dma_free_coherent(rx_ring->dev, rx_ring->size,
3536 rx_ring->desc, rx_ring->dma);
3537
3538 rx_ring->desc = NULL;
3539 }
3540
3541 /**
3542 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3543 * @adapter: board private structure
3544 *
3545 * Free all receive software resources
3546 **/
3547 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3548 {
3549 int i;
3550
3551 for (i = 0; i < adapter->num_rx_queues; i++)
3552 igb_free_rx_resources(adapter->rx_ring[i]);
3553 }
3554
3555 /**
3556 * igb_clean_rx_ring - Free Rx Buffers per Queue
3557 * @rx_ring: ring to free buffers from
3558 **/
3559 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3560 {
3561 unsigned long size;
3562 u16 i;
3563
3564 if (rx_ring->skb)
3565 dev_kfree_skb(rx_ring->skb);
3566 rx_ring->skb = NULL;
3567
3568 if (!rx_ring->rx_buffer_info)
3569 return;
3570
3571 /* Free all the Rx ring sk_buffs */
3572 for (i = 0; i < rx_ring->count; i++) {
3573 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3574
3575 if (!buffer_info->page)
3576 continue;
3577
3578 dma_unmap_page(rx_ring->dev,
3579 buffer_info->dma,
3580 PAGE_SIZE,
3581 DMA_FROM_DEVICE);
3582 __free_page(buffer_info->page);
3583
3584 buffer_info->page = NULL;
3585 }
3586
3587 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3588 memset(rx_ring->rx_buffer_info, 0, size);
3589
3590 /* Zero out the descriptor ring */
3591 memset(rx_ring->desc, 0, rx_ring->size);
3592
3593 rx_ring->next_to_alloc = 0;
3594 rx_ring->next_to_clean = 0;
3595 rx_ring->next_to_use = 0;
3596 }
3597
3598 /**
3599 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3600 * @adapter: board private structure
3601 **/
3602 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3603 {
3604 int i;
3605
3606 for (i = 0; i < adapter->num_rx_queues; i++)
3607 igb_clean_rx_ring(adapter->rx_ring[i]);
3608 }
3609
3610 /**
3611 * igb_set_mac - Change the Ethernet Address of the NIC
3612 * @netdev: network interface device structure
3613 * @p: pointer to an address structure
3614 *
3615 * Returns 0 on success, negative on failure
3616 **/
3617 static int igb_set_mac(struct net_device *netdev, void *p)
3618 {
3619 struct igb_adapter *adapter = netdev_priv(netdev);
3620 struct e1000_hw *hw = &adapter->hw;
3621 struct sockaddr *addr = p;
3622
3623 if (!is_valid_ether_addr(addr->sa_data))
3624 return -EADDRNOTAVAIL;
3625
3626 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3627 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3628
3629 /* set the correct pool for the new PF MAC address in entry 0 */
3630 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3631 adapter->vfs_allocated_count);
3632
3633 return 0;
3634 }
3635
3636 /**
3637 * igb_write_mc_addr_list - write multicast addresses to MTA
3638 * @netdev: network interface device structure
3639 *
3640 * Writes multicast address list to the MTA hash table.
3641 * Returns: -ENOMEM on failure
3642 * 0 on no addresses written
3643 * X on writing X addresses to MTA
3644 **/
3645 static int igb_write_mc_addr_list(struct net_device *netdev)
3646 {
3647 struct igb_adapter *adapter = netdev_priv(netdev);
3648 struct e1000_hw *hw = &adapter->hw;
3649 struct netdev_hw_addr *ha;
3650 u8 *mta_list;
3651 int i;
3652
3653 if (netdev_mc_empty(netdev)) {
3654 /* nothing to program, so clear mc list */
3655 igb_update_mc_addr_list(hw, NULL, 0);
3656 igb_restore_vf_multicasts(adapter);
3657 return 0;
3658 }
3659
3660 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3661 if (!mta_list)
3662 return -ENOMEM;
3663
3664 /* The shared function expects a packed array of only addresses. */
3665 i = 0;
3666 netdev_for_each_mc_addr(ha, netdev)
3667 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3668
3669 igb_update_mc_addr_list(hw, mta_list, i);
3670 kfree(mta_list);
3671
3672 return netdev_mc_count(netdev);
3673 }
3674
3675 /**
3676 * igb_write_uc_addr_list - write unicast addresses to RAR table
3677 * @netdev: network interface device structure
3678 *
3679 * Writes unicast address list to the RAR table.
3680 * Returns: -ENOMEM on failure/insufficient address space
3681 * 0 on no addresses written
3682 * X on writing X addresses to the RAR table
3683 **/
3684 static int igb_write_uc_addr_list(struct net_device *netdev)
3685 {
3686 struct igb_adapter *adapter = netdev_priv(netdev);
3687 struct e1000_hw *hw = &adapter->hw;
3688 unsigned int vfn = adapter->vfs_allocated_count;
3689 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3690 int count = 0;
3691
3692 /* return ENOMEM indicating insufficient memory for addresses */
3693 if (netdev_uc_count(netdev) > rar_entries)
3694 return -ENOMEM;
3695
3696 if (!netdev_uc_empty(netdev) && rar_entries) {
3697 struct netdev_hw_addr *ha;
3698
3699 netdev_for_each_uc_addr(ha, netdev) {
3700 if (!rar_entries)
3701 break;
3702 igb_rar_set_qsel(adapter, ha->addr,
3703 rar_entries--,
3704 vfn);
3705 count++;
3706 }
3707 }
3708 /* write the addresses in reverse order to avoid write combining */
3709 for (; rar_entries > 0 ; rar_entries--) {
3710 wr32(E1000_RAH(rar_entries), 0);
3711 wr32(E1000_RAL(rar_entries), 0);
3712 }
3713 wrfl();
3714
3715 return count;
3716 }
3717
3718 /**
3719 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3720 * @netdev: network interface device structure
3721 *
3722 * The set_rx_mode entry point is called whenever the unicast or multicast
3723 * address lists or the network interface flags are updated. This routine is
3724 * responsible for configuring the hardware for proper unicast, multicast,
3725 * promiscuous mode, and all-multi behavior.
3726 **/
3727 static void igb_set_rx_mode(struct net_device *netdev)
3728 {
3729 struct igb_adapter *adapter = netdev_priv(netdev);
3730 struct e1000_hw *hw = &adapter->hw;
3731 unsigned int vfn = adapter->vfs_allocated_count;
3732 u32 rctl, vmolr = 0;
3733 int count;
3734
3735 /* Check for Promiscuous and All Multicast modes */
3736 rctl = rd32(E1000_RCTL);
3737
3738 /* clear the effected bits */
3739 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3740
3741 if (netdev->flags & IFF_PROMISC) {
3742 /* retain VLAN HW filtering if in VT mode */
3743 if (adapter->vfs_allocated_count)
3744 rctl |= E1000_RCTL_VFE;
3745 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3746 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3747 } else {
3748 if (netdev->flags & IFF_ALLMULTI) {
3749 rctl |= E1000_RCTL_MPE;
3750 vmolr |= E1000_VMOLR_MPME;
3751 } else {
3752 /* Write addresses to the MTA, if the attempt fails
3753 * then we should just turn on promiscuous mode so
3754 * that we can at least receive multicast traffic
3755 */
3756 count = igb_write_mc_addr_list(netdev);
3757 if (count < 0) {
3758 rctl |= E1000_RCTL_MPE;
3759 vmolr |= E1000_VMOLR_MPME;
3760 } else if (count) {
3761 vmolr |= E1000_VMOLR_ROMPE;
3762 }
3763 }
3764 /* Write addresses to available RAR registers, if there is not
3765 * sufficient space to store all the addresses then enable
3766 * unicast promiscuous mode
3767 */
3768 count = igb_write_uc_addr_list(netdev);
3769 if (count < 0) {
3770 rctl |= E1000_RCTL_UPE;
3771 vmolr |= E1000_VMOLR_ROPE;
3772 }
3773 rctl |= E1000_RCTL_VFE;
3774 }
3775 wr32(E1000_RCTL, rctl);
3776
3777 /* In order to support SR-IOV and eventually VMDq it is necessary to set
3778 * the VMOLR to enable the appropriate modes. Without this workaround
3779 * we will have issues with VLAN tag stripping not being done for frames
3780 * that are only arriving because we are the default pool
3781 */
3782 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3783 return;
3784
3785 vmolr |= rd32(E1000_VMOLR(vfn)) &
3786 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3787 wr32(E1000_VMOLR(vfn), vmolr);
3788 igb_restore_vf_multicasts(adapter);
3789 }
3790
3791 static void igb_check_wvbr(struct igb_adapter *adapter)
3792 {
3793 struct e1000_hw *hw = &adapter->hw;
3794 u32 wvbr = 0;
3795
3796 switch (hw->mac.type) {
3797 case e1000_82576:
3798 case e1000_i350:
3799 if (!(wvbr = rd32(E1000_WVBR)))
3800 return;
3801 break;
3802 default:
3803 break;
3804 }
3805
3806 adapter->wvbr |= wvbr;
3807 }
3808
3809 #define IGB_STAGGERED_QUEUE_OFFSET 8
3810
3811 static void igb_spoof_check(struct igb_adapter *adapter)
3812 {
3813 int j;
3814
3815 if (!adapter->wvbr)
3816 return;
3817
3818 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3819 if (adapter->wvbr & (1 << j) ||
3820 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3821 dev_warn(&adapter->pdev->dev,
3822 "Spoof event(s) detected on VF %d\n", j);
3823 adapter->wvbr &=
3824 ~((1 << j) |
3825 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3826 }
3827 }
3828 }
3829
3830 /* Need to wait a few seconds after link up to get diagnostic information from
3831 * the phy
3832 */
3833 static void igb_update_phy_info(unsigned long data)
3834 {
3835 struct igb_adapter *adapter = (struct igb_adapter *) data;
3836 igb_get_phy_info(&adapter->hw);
3837 }
3838
3839 /**
3840 * igb_has_link - check shared code for link and determine up/down
3841 * @adapter: pointer to driver private info
3842 **/
3843 bool igb_has_link(struct igb_adapter *adapter)
3844 {
3845 struct e1000_hw *hw = &adapter->hw;
3846 bool link_active = false;
3847 s32 ret_val = 0;
3848
3849 /* get_link_status is set on LSC (link status) interrupt or
3850 * rx sequence error interrupt. get_link_status will stay
3851 * false until the e1000_check_for_link establishes link
3852 * for copper adapters ONLY
3853 */
3854 switch (hw->phy.media_type) {
3855 case e1000_media_type_copper:
3856 if (hw->mac.get_link_status) {
3857 ret_val = hw->mac.ops.check_for_link(hw);
3858 link_active = !hw->mac.get_link_status;
3859 } else {
3860 link_active = true;
3861 }
3862 break;
3863 case e1000_media_type_internal_serdes:
3864 ret_val = hw->mac.ops.check_for_link(hw);
3865 link_active = hw->mac.serdes_has_link;
3866 break;
3867 default:
3868 case e1000_media_type_unknown:
3869 break;
3870 }
3871
3872 return link_active;
3873 }
3874
3875 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3876 {
3877 bool ret = false;
3878 u32 ctrl_ext, thstat;
3879
3880 /* check for thermal sensor event on i350 copper only */
3881 if (hw->mac.type == e1000_i350) {
3882 thstat = rd32(E1000_THSTAT);
3883 ctrl_ext = rd32(E1000_CTRL_EXT);
3884
3885 if ((hw->phy.media_type == e1000_media_type_copper) &&
3886 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3887 ret = !!(thstat & event);
3888 }
3889
3890 return ret;
3891 }
3892
3893 /**
3894 * igb_watchdog - Timer Call-back
3895 * @data: pointer to adapter cast into an unsigned long
3896 **/
3897 static void igb_watchdog(unsigned long data)
3898 {
3899 struct igb_adapter *adapter = (struct igb_adapter *)data;
3900 /* Do the rest outside of interrupt context */
3901 schedule_work(&adapter->watchdog_task);
3902 }
3903
3904 static void igb_watchdog_task(struct work_struct *work)
3905 {
3906 struct igb_adapter *adapter = container_of(work,
3907 struct igb_adapter,
3908 watchdog_task);
3909 struct e1000_hw *hw = &adapter->hw;
3910 struct e1000_phy_info *phy = &hw->phy;
3911 struct net_device *netdev = adapter->netdev;
3912 u32 link;
3913 int i;
3914
3915 link = igb_has_link(adapter);
3916 if (link) {
3917 /* Cancel scheduled suspend requests. */
3918 pm_runtime_resume(netdev->dev.parent);
3919
3920 if (!netif_carrier_ok(netdev)) {
3921 u32 ctrl;
3922 hw->mac.ops.get_speed_and_duplex(hw,
3923 &adapter->link_speed,
3924 &adapter->link_duplex);
3925
3926 ctrl = rd32(E1000_CTRL);
3927 /* Links status message must follow this format */
3928 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3929 "Duplex, Flow Control: %s\n",
3930 netdev->name,
3931 adapter->link_speed,
3932 adapter->link_duplex == FULL_DUPLEX ?
3933 "Full" : "Half",
3934 (ctrl & E1000_CTRL_TFCE) &&
3935 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3936 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3937 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
3938
3939 /* check if SmartSpeed worked */
3940 igb_check_downshift(hw);
3941 if (phy->speed_downgraded)
3942 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3943
3944 /* check for thermal sensor event */
3945 if (igb_thermal_sensor_event(hw,
3946 E1000_THSTAT_LINK_THROTTLE)) {
3947 netdev_info(netdev, "The network adapter link "
3948 "speed was downshifted because it "
3949 "overheated\n");
3950 }
3951
3952 /* adjust timeout factor according to speed/duplex */
3953 adapter->tx_timeout_factor = 1;
3954 switch (adapter->link_speed) {
3955 case SPEED_10:
3956 adapter->tx_timeout_factor = 14;
3957 break;
3958 case SPEED_100:
3959 /* maybe add some timeout factor ? */
3960 break;
3961 }
3962
3963 netif_carrier_on(netdev);
3964
3965 igb_ping_all_vfs(adapter);
3966 igb_check_vf_rate_limit(adapter);
3967
3968 /* link state has changed, schedule phy info update */
3969 if (!test_bit(__IGB_DOWN, &adapter->state))
3970 mod_timer(&adapter->phy_info_timer,
3971 round_jiffies(jiffies + 2 * HZ));
3972 }
3973 } else {
3974 if (netif_carrier_ok(netdev)) {
3975 adapter->link_speed = 0;
3976 adapter->link_duplex = 0;
3977
3978 /* check for thermal sensor event */
3979 if (igb_thermal_sensor_event(hw,
3980 E1000_THSTAT_PWR_DOWN)) {
3981 netdev_err(netdev, "The network adapter was "
3982 "stopped because it overheated\n");
3983 }
3984
3985 /* Links status message must follow this format */
3986 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3987 netdev->name);
3988 netif_carrier_off(netdev);
3989
3990 igb_ping_all_vfs(adapter);
3991
3992 /* link state has changed, schedule phy info update */
3993 if (!test_bit(__IGB_DOWN, &adapter->state))
3994 mod_timer(&adapter->phy_info_timer,
3995 round_jiffies(jiffies + 2 * HZ));
3996
3997 pm_schedule_suspend(netdev->dev.parent,
3998 MSEC_PER_SEC * 5);
3999 }
4000 }
4001
4002 spin_lock(&adapter->stats64_lock);
4003 igb_update_stats(adapter, &adapter->stats64);
4004 spin_unlock(&adapter->stats64_lock);
4005
4006 for (i = 0; i < adapter->num_tx_queues; i++) {
4007 struct igb_ring *tx_ring = adapter->tx_ring[i];
4008 if (!netif_carrier_ok(netdev)) {
4009 /* We've lost link, so the controller stops DMA,
4010 * but we've got queued Tx work that's never going
4011 * to get done, so reset controller to flush Tx.
4012 * (Do the reset outside of interrupt context).
4013 */
4014 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4015 adapter->tx_timeout_count++;
4016 schedule_work(&adapter->reset_task);
4017 /* return immediately since reset is imminent */
4018 return;
4019 }
4020 }
4021
4022 /* Force detection of hung controller every watchdog period */
4023 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4024 }
4025
4026 /* Cause software interrupt to ensure Rx ring is cleaned */
4027 if (adapter->msix_entries) {
4028 u32 eics = 0;
4029 for (i = 0; i < adapter->num_q_vectors; i++)
4030 eics |= adapter->q_vector[i]->eims_value;
4031 wr32(E1000_EICS, eics);
4032 } else {
4033 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4034 }
4035
4036 igb_spoof_check(adapter);
4037 igb_ptp_rx_hang(adapter);
4038
4039 /* Reset the timer */
4040 if (!test_bit(__IGB_DOWN, &adapter->state))
4041 mod_timer(&adapter->watchdog_timer,
4042 round_jiffies(jiffies + 2 * HZ));
4043 }
4044
4045 enum latency_range {
4046 lowest_latency = 0,
4047 low_latency = 1,
4048 bulk_latency = 2,
4049 latency_invalid = 255
4050 };
4051
4052 /**
4053 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4054 * @q_vector: pointer to q_vector
4055 *
4056 * Stores a new ITR value based on strictly on packet size. This
4057 * algorithm is less sophisticated than that used in igb_update_itr,
4058 * due to the difficulty of synchronizing statistics across multiple
4059 * receive rings. The divisors and thresholds used by this function
4060 * were determined based on theoretical maximum wire speed and testing
4061 * data, in order to minimize response time while increasing bulk
4062 * throughput.
4063 * This functionality is controlled by the InterruptThrottleRate module
4064 * parameter (see igb_param.c)
4065 * NOTE: This function is called only when operating in a multiqueue
4066 * receive environment.
4067 **/
4068 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4069 {
4070 int new_val = q_vector->itr_val;
4071 int avg_wire_size = 0;
4072 struct igb_adapter *adapter = q_vector->adapter;
4073 unsigned int packets;
4074
4075 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4076 * ints/sec - ITR timer value of 120 ticks.
4077 */
4078 if (adapter->link_speed != SPEED_1000) {
4079 new_val = IGB_4K_ITR;
4080 goto set_itr_val;
4081 }
4082
4083 packets = q_vector->rx.total_packets;
4084 if (packets)
4085 avg_wire_size = q_vector->rx.total_bytes / packets;
4086
4087 packets = q_vector->tx.total_packets;
4088 if (packets)
4089 avg_wire_size = max_t(u32, avg_wire_size,
4090 q_vector->tx.total_bytes / packets);
4091
4092 /* if avg_wire_size isn't set no work was done */
4093 if (!avg_wire_size)
4094 goto clear_counts;
4095
4096 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4097 avg_wire_size += 24;
4098
4099 /* Don't starve jumbo frames */
4100 avg_wire_size = min(avg_wire_size, 3000);
4101
4102 /* Give a little boost to mid-size frames */
4103 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4104 new_val = avg_wire_size / 3;
4105 else
4106 new_val = avg_wire_size / 2;
4107
4108 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4109 if (new_val < IGB_20K_ITR &&
4110 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4111 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4112 new_val = IGB_20K_ITR;
4113
4114 set_itr_val:
4115 if (new_val != q_vector->itr_val) {
4116 q_vector->itr_val = new_val;
4117 q_vector->set_itr = 1;
4118 }
4119 clear_counts:
4120 q_vector->rx.total_bytes = 0;
4121 q_vector->rx.total_packets = 0;
4122 q_vector->tx.total_bytes = 0;
4123 q_vector->tx.total_packets = 0;
4124 }
4125
4126 /**
4127 * igb_update_itr - update the dynamic ITR value based on statistics
4128 * @q_vector: pointer to q_vector
4129 * @ring_container: ring info to update the itr for
4130 *
4131 * Stores a new ITR value based on packets and byte
4132 * counts during the last interrupt. The advantage of per interrupt
4133 * computation is faster updates and more accurate ITR for the current
4134 * traffic pattern. Constants in this function were computed
4135 * based on theoretical maximum wire speed and thresholds were set based
4136 * on testing data as well as attempting to minimize response time
4137 * while increasing bulk throughput.
4138 * this functionality is controlled by the InterruptThrottleRate module
4139 * parameter (see igb_param.c)
4140 * NOTE: These calculations are only valid when operating in a single-
4141 * queue environment.
4142 **/
4143 static void igb_update_itr(struct igb_q_vector *q_vector,
4144 struct igb_ring_container *ring_container)
4145 {
4146 unsigned int packets = ring_container->total_packets;
4147 unsigned int bytes = ring_container->total_bytes;
4148 u8 itrval = ring_container->itr;
4149
4150 /* no packets, exit with status unchanged */
4151 if (packets == 0)
4152 return;
4153
4154 switch (itrval) {
4155 case lowest_latency:
4156 /* handle TSO and jumbo frames */
4157 if (bytes/packets > 8000)
4158 itrval = bulk_latency;
4159 else if ((packets < 5) && (bytes > 512))
4160 itrval = low_latency;
4161 break;
4162 case low_latency: /* 50 usec aka 20000 ints/s */
4163 if (bytes > 10000) {
4164 /* this if handles the TSO accounting */
4165 if (bytes/packets > 8000) {
4166 itrval = bulk_latency;
4167 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4168 itrval = bulk_latency;
4169 } else if ((packets > 35)) {
4170 itrval = lowest_latency;
4171 }
4172 } else if (bytes/packets > 2000) {
4173 itrval = bulk_latency;
4174 } else if (packets <= 2 && bytes < 512) {
4175 itrval = lowest_latency;
4176 }
4177 break;
4178 case bulk_latency: /* 250 usec aka 4000 ints/s */
4179 if (bytes > 25000) {
4180 if (packets > 35)
4181 itrval = low_latency;
4182 } else if (bytes < 1500) {
4183 itrval = low_latency;
4184 }
4185 break;
4186 }
4187
4188 /* clear work counters since we have the values we need */
4189 ring_container->total_bytes = 0;
4190 ring_container->total_packets = 0;
4191
4192 /* write updated itr to ring container */
4193 ring_container->itr = itrval;
4194 }
4195
4196 static void igb_set_itr(struct igb_q_vector *q_vector)
4197 {
4198 struct igb_adapter *adapter = q_vector->adapter;
4199 u32 new_itr = q_vector->itr_val;
4200 u8 current_itr = 0;
4201
4202 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4203 if (adapter->link_speed != SPEED_1000) {
4204 current_itr = 0;
4205 new_itr = IGB_4K_ITR;
4206 goto set_itr_now;
4207 }
4208
4209 igb_update_itr(q_vector, &q_vector->tx);
4210 igb_update_itr(q_vector, &q_vector->rx);
4211
4212 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4213
4214 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4215 if (current_itr == lowest_latency &&
4216 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4217 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4218 current_itr = low_latency;
4219
4220 switch (current_itr) {
4221 /* counts and packets in update_itr are dependent on these numbers */
4222 case lowest_latency:
4223 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4224 break;
4225 case low_latency:
4226 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4227 break;
4228 case bulk_latency:
4229 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4230 break;
4231 default:
4232 break;
4233 }
4234
4235 set_itr_now:
4236 if (new_itr != q_vector->itr_val) {
4237 /* this attempts to bias the interrupt rate towards Bulk
4238 * by adding intermediate steps when interrupt rate is
4239 * increasing
4240 */
4241 new_itr = new_itr > q_vector->itr_val ?
4242 max((new_itr * q_vector->itr_val) /
4243 (new_itr + (q_vector->itr_val >> 2)),
4244 new_itr) : new_itr;
4245 /* Don't write the value here; it resets the adapter's
4246 * internal timer, and causes us to delay far longer than
4247 * we should between interrupts. Instead, we write the ITR
4248 * value at the beginning of the next interrupt so the timing
4249 * ends up being correct.
4250 */
4251 q_vector->itr_val = new_itr;
4252 q_vector->set_itr = 1;
4253 }
4254 }
4255
4256 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4257 u32 type_tucmd, u32 mss_l4len_idx)
4258 {
4259 struct e1000_adv_tx_context_desc *context_desc;
4260 u16 i = tx_ring->next_to_use;
4261
4262 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4263
4264 i++;
4265 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4266
4267 /* set bits to identify this as an advanced context descriptor */
4268 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4269
4270 /* For 82575, context index must be unique per ring. */
4271 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4272 mss_l4len_idx |= tx_ring->reg_idx << 4;
4273
4274 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4275 context_desc->seqnum_seed = 0;
4276 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4277 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4278 }
4279
4280 static int igb_tso(struct igb_ring *tx_ring,
4281 struct igb_tx_buffer *first,
4282 u8 *hdr_len)
4283 {
4284 struct sk_buff *skb = first->skb;
4285 u32 vlan_macip_lens, type_tucmd;
4286 u32 mss_l4len_idx, l4len;
4287
4288 if (skb->ip_summed != CHECKSUM_PARTIAL)
4289 return 0;
4290
4291 if (!skb_is_gso(skb))
4292 return 0;
4293
4294 if (skb_header_cloned(skb)) {
4295 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4296 if (err)
4297 return err;
4298 }
4299
4300 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4301 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4302
4303 if (first->protocol == __constant_htons(ETH_P_IP)) {
4304 struct iphdr *iph = ip_hdr(skb);
4305 iph->tot_len = 0;
4306 iph->check = 0;
4307 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4308 iph->daddr, 0,
4309 IPPROTO_TCP,
4310 0);
4311 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4312 first->tx_flags |= IGB_TX_FLAGS_TSO |
4313 IGB_TX_FLAGS_CSUM |
4314 IGB_TX_FLAGS_IPV4;
4315 } else if (skb_is_gso_v6(skb)) {
4316 ipv6_hdr(skb)->payload_len = 0;
4317 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4318 &ipv6_hdr(skb)->daddr,
4319 0, IPPROTO_TCP, 0);
4320 first->tx_flags |= IGB_TX_FLAGS_TSO |
4321 IGB_TX_FLAGS_CSUM;
4322 }
4323
4324 /* compute header lengths */
4325 l4len = tcp_hdrlen(skb);
4326 *hdr_len = skb_transport_offset(skb) + l4len;
4327
4328 /* update gso size and bytecount with header size */
4329 first->gso_segs = skb_shinfo(skb)->gso_segs;
4330 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4331
4332 /* MSS L4LEN IDX */
4333 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4334 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4335
4336 /* VLAN MACLEN IPLEN */
4337 vlan_macip_lens = skb_network_header_len(skb);
4338 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4339 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4340
4341 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4342
4343 return 1;
4344 }
4345
4346 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4347 {
4348 struct sk_buff *skb = first->skb;
4349 u32 vlan_macip_lens = 0;
4350 u32 mss_l4len_idx = 0;
4351 u32 type_tucmd = 0;
4352
4353 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4354 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4355 return;
4356 } else {
4357 u8 l4_hdr = 0;
4358 switch (first->protocol) {
4359 case __constant_htons(ETH_P_IP):
4360 vlan_macip_lens |= skb_network_header_len(skb);
4361 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4362 l4_hdr = ip_hdr(skb)->protocol;
4363 break;
4364 case __constant_htons(ETH_P_IPV6):
4365 vlan_macip_lens |= skb_network_header_len(skb);
4366 l4_hdr = ipv6_hdr(skb)->nexthdr;
4367 break;
4368 default:
4369 if (unlikely(net_ratelimit())) {
4370 dev_warn(tx_ring->dev,
4371 "partial checksum but proto=%x!\n",
4372 first->protocol);
4373 }
4374 break;
4375 }
4376
4377 switch (l4_hdr) {
4378 case IPPROTO_TCP:
4379 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4380 mss_l4len_idx = tcp_hdrlen(skb) <<
4381 E1000_ADVTXD_L4LEN_SHIFT;
4382 break;
4383 case IPPROTO_SCTP:
4384 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4385 mss_l4len_idx = sizeof(struct sctphdr) <<
4386 E1000_ADVTXD_L4LEN_SHIFT;
4387 break;
4388 case IPPROTO_UDP:
4389 mss_l4len_idx = sizeof(struct udphdr) <<
4390 E1000_ADVTXD_L4LEN_SHIFT;
4391 break;
4392 default:
4393 if (unlikely(net_ratelimit())) {
4394 dev_warn(tx_ring->dev,
4395 "partial checksum but l4 proto=%x!\n",
4396 l4_hdr);
4397 }
4398 break;
4399 }
4400
4401 /* update TX checksum flag */
4402 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4403 }
4404
4405 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4406 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4407
4408 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4409 }
4410
4411 #define IGB_SET_FLAG(_input, _flag, _result) \
4412 ((_flag <= _result) ? \
4413 ((u32)(_input & _flag) * (_result / _flag)) : \
4414 ((u32)(_input & _flag) / (_flag / _result)))
4415
4416 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4417 {
4418 /* set type for advanced descriptor with frame checksum insertion */
4419 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4420 E1000_ADVTXD_DCMD_DEXT |
4421 E1000_ADVTXD_DCMD_IFCS;
4422
4423 /* set HW vlan bit if vlan is present */
4424 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4425 (E1000_ADVTXD_DCMD_VLE));
4426
4427 /* set segmentation bits for TSO */
4428 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4429 (E1000_ADVTXD_DCMD_TSE));
4430
4431 /* set timestamp bit if present */
4432 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4433 (E1000_ADVTXD_MAC_TSTAMP));
4434
4435 /* insert frame checksum */
4436 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4437
4438 return cmd_type;
4439 }
4440
4441 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4442 union e1000_adv_tx_desc *tx_desc,
4443 u32 tx_flags, unsigned int paylen)
4444 {
4445 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4446
4447 /* 82575 requires a unique index per ring */
4448 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4449 olinfo_status |= tx_ring->reg_idx << 4;
4450
4451 /* insert L4 checksum */
4452 olinfo_status |= IGB_SET_FLAG(tx_flags,
4453 IGB_TX_FLAGS_CSUM,
4454 (E1000_TXD_POPTS_TXSM << 8));
4455
4456 /* insert IPv4 checksum */
4457 olinfo_status |= IGB_SET_FLAG(tx_flags,
4458 IGB_TX_FLAGS_IPV4,
4459 (E1000_TXD_POPTS_IXSM << 8));
4460
4461 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4462 }
4463
4464 static void igb_tx_map(struct igb_ring *tx_ring,
4465 struct igb_tx_buffer *first,
4466 const u8 hdr_len)
4467 {
4468 struct sk_buff *skb = first->skb;
4469 struct igb_tx_buffer *tx_buffer;
4470 union e1000_adv_tx_desc *tx_desc;
4471 struct skb_frag_struct *frag;
4472 dma_addr_t dma;
4473 unsigned int data_len, size;
4474 u32 tx_flags = first->tx_flags;
4475 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4476 u16 i = tx_ring->next_to_use;
4477
4478 tx_desc = IGB_TX_DESC(tx_ring, i);
4479
4480 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4481
4482 size = skb_headlen(skb);
4483 data_len = skb->data_len;
4484
4485 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4486
4487 tx_buffer = first;
4488
4489 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4490 if (dma_mapping_error(tx_ring->dev, dma))
4491 goto dma_error;
4492
4493 /* record length, and DMA address */
4494 dma_unmap_len_set(tx_buffer, len, size);
4495 dma_unmap_addr_set(tx_buffer, dma, dma);
4496
4497 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4498
4499 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4500 tx_desc->read.cmd_type_len =
4501 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4502
4503 i++;
4504 tx_desc++;
4505 if (i == tx_ring->count) {
4506 tx_desc = IGB_TX_DESC(tx_ring, 0);
4507 i = 0;
4508 }
4509 tx_desc->read.olinfo_status = 0;
4510
4511 dma += IGB_MAX_DATA_PER_TXD;
4512 size -= IGB_MAX_DATA_PER_TXD;
4513
4514 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4515 }
4516
4517 if (likely(!data_len))
4518 break;
4519
4520 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4521
4522 i++;
4523 tx_desc++;
4524 if (i == tx_ring->count) {
4525 tx_desc = IGB_TX_DESC(tx_ring, 0);
4526 i = 0;
4527 }
4528 tx_desc->read.olinfo_status = 0;
4529
4530 size = skb_frag_size(frag);
4531 data_len -= size;
4532
4533 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4534 size, DMA_TO_DEVICE);
4535
4536 tx_buffer = &tx_ring->tx_buffer_info[i];
4537 }
4538
4539 /* write last descriptor with RS and EOP bits */
4540 cmd_type |= size | IGB_TXD_DCMD;
4541 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4542
4543 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4544
4545 /* set the timestamp */
4546 first->time_stamp = jiffies;
4547
4548 /* Force memory writes to complete before letting h/w know there
4549 * are new descriptors to fetch. (Only applicable for weak-ordered
4550 * memory model archs, such as IA-64).
4551 *
4552 * We also need this memory barrier to make certain all of the
4553 * status bits have been updated before next_to_watch is written.
4554 */
4555 wmb();
4556
4557 /* set next_to_watch value indicating a packet is present */
4558 first->next_to_watch = tx_desc;
4559
4560 i++;
4561 if (i == tx_ring->count)
4562 i = 0;
4563
4564 tx_ring->next_to_use = i;
4565
4566 writel(i, tx_ring->tail);
4567
4568 /* we need this if more than one processor can write to our tail
4569 * at a time, it synchronizes IO on IA64/Altix systems
4570 */
4571 mmiowb();
4572
4573 return;
4574
4575 dma_error:
4576 dev_err(tx_ring->dev, "TX DMA map failed\n");
4577
4578 /* clear dma mappings for failed tx_buffer_info map */
4579 for (;;) {
4580 tx_buffer = &tx_ring->tx_buffer_info[i];
4581 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4582 if (tx_buffer == first)
4583 break;
4584 if (i == 0)
4585 i = tx_ring->count;
4586 i--;
4587 }
4588
4589 tx_ring->next_to_use = i;
4590 }
4591
4592 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4593 {
4594 struct net_device *netdev = tx_ring->netdev;
4595
4596 netif_stop_subqueue(netdev, tx_ring->queue_index);
4597
4598 /* Herbert's original patch had:
4599 * smp_mb__after_netif_stop_queue();
4600 * but since that doesn't exist yet, just open code it.
4601 */
4602 smp_mb();
4603
4604 /* We need to check again in a case another CPU has just
4605 * made room available.
4606 */
4607 if (igb_desc_unused(tx_ring) < size)
4608 return -EBUSY;
4609
4610 /* A reprieve! */
4611 netif_wake_subqueue(netdev, tx_ring->queue_index);
4612
4613 u64_stats_update_begin(&tx_ring->tx_syncp2);
4614 tx_ring->tx_stats.restart_queue2++;
4615 u64_stats_update_end(&tx_ring->tx_syncp2);
4616
4617 return 0;
4618 }
4619
4620 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4621 {
4622 if (igb_desc_unused(tx_ring) >= size)
4623 return 0;
4624 return __igb_maybe_stop_tx(tx_ring, size);
4625 }
4626
4627 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4628 struct igb_ring *tx_ring)
4629 {
4630 struct igb_tx_buffer *first;
4631 int tso;
4632 u32 tx_flags = 0;
4633 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4634 __be16 protocol = vlan_get_protocol(skb);
4635 u8 hdr_len = 0;
4636
4637 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4638 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4639 * + 2 desc gap to keep tail from touching head,
4640 * + 1 desc for context descriptor,
4641 * otherwise try next time
4642 */
4643 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4644 unsigned short f;
4645 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4646 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4647 } else {
4648 count += skb_shinfo(skb)->nr_frags;
4649 }
4650
4651 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4652 /* this is a hard error */
4653 return NETDEV_TX_BUSY;
4654 }
4655
4656 /* record the location of the first descriptor for this packet */
4657 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4658 first->skb = skb;
4659 first->bytecount = skb->len;
4660 first->gso_segs = 1;
4661
4662 skb_tx_timestamp(skb);
4663
4664 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4665 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4666
4667 if (!(adapter->ptp_tx_skb)) {
4668 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4669 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4670
4671 adapter->ptp_tx_skb = skb_get(skb);
4672 adapter->ptp_tx_start = jiffies;
4673 if (adapter->hw.mac.type == e1000_82576)
4674 schedule_work(&adapter->ptp_tx_work);
4675 }
4676 }
4677
4678 if (vlan_tx_tag_present(skb)) {
4679 tx_flags |= IGB_TX_FLAGS_VLAN;
4680 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4681 }
4682
4683 /* record initial flags and protocol */
4684 first->tx_flags = tx_flags;
4685 first->protocol = protocol;
4686
4687 tso = igb_tso(tx_ring, first, &hdr_len);
4688 if (tso < 0)
4689 goto out_drop;
4690 else if (!tso)
4691 igb_tx_csum(tx_ring, first);
4692
4693 igb_tx_map(tx_ring, first, hdr_len);
4694
4695 /* Make sure there is space in the ring for the next send. */
4696 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4697
4698 return NETDEV_TX_OK;
4699
4700 out_drop:
4701 igb_unmap_and_free_tx_resource(tx_ring, first);
4702
4703 return NETDEV_TX_OK;
4704 }
4705
4706 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4707 struct sk_buff *skb)
4708 {
4709 unsigned int r_idx = skb->queue_mapping;
4710
4711 if (r_idx >= adapter->num_tx_queues)
4712 r_idx = r_idx % adapter->num_tx_queues;
4713
4714 return adapter->tx_ring[r_idx];
4715 }
4716
4717 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4718 struct net_device *netdev)
4719 {
4720 struct igb_adapter *adapter = netdev_priv(netdev);
4721
4722 if (test_bit(__IGB_DOWN, &adapter->state)) {
4723 dev_kfree_skb_any(skb);
4724 return NETDEV_TX_OK;
4725 }
4726
4727 if (skb->len <= 0) {
4728 dev_kfree_skb_any(skb);
4729 return NETDEV_TX_OK;
4730 }
4731
4732 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4733 * in order to meet this minimum size requirement.
4734 */
4735 if (unlikely(skb->len < 17)) {
4736 if (skb_pad(skb, 17 - skb->len))
4737 return NETDEV_TX_OK;
4738 skb->len = 17;
4739 skb_set_tail_pointer(skb, 17);
4740 }
4741
4742 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4743 }
4744
4745 /**
4746 * igb_tx_timeout - Respond to a Tx Hang
4747 * @netdev: network interface device structure
4748 **/
4749 static void igb_tx_timeout(struct net_device *netdev)
4750 {
4751 struct igb_adapter *adapter = netdev_priv(netdev);
4752 struct e1000_hw *hw = &adapter->hw;
4753
4754 /* Do the reset outside of interrupt context */
4755 adapter->tx_timeout_count++;
4756
4757 if (hw->mac.type >= e1000_82580)
4758 hw->dev_spec._82575.global_device_reset = true;
4759
4760 schedule_work(&adapter->reset_task);
4761 wr32(E1000_EICS,
4762 (adapter->eims_enable_mask & ~adapter->eims_other));
4763 }
4764
4765 static void igb_reset_task(struct work_struct *work)
4766 {
4767 struct igb_adapter *adapter;
4768 adapter = container_of(work, struct igb_adapter, reset_task);
4769
4770 igb_dump(adapter);
4771 netdev_err(adapter->netdev, "Reset adapter\n");
4772 igb_reinit_locked(adapter);
4773 }
4774
4775 /**
4776 * igb_get_stats64 - Get System Network Statistics
4777 * @netdev: network interface device structure
4778 * @stats: rtnl_link_stats64 pointer
4779 **/
4780 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4781 struct rtnl_link_stats64 *stats)
4782 {
4783 struct igb_adapter *adapter = netdev_priv(netdev);
4784
4785 spin_lock(&adapter->stats64_lock);
4786 igb_update_stats(adapter, &adapter->stats64);
4787 memcpy(stats, &adapter->stats64, sizeof(*stats));
4788 spin_unlock(&adapter->stats64_lock);
4789
4790 return stats;
4791 }
4792
4793 /**
4794 * igb_change_mtu - Change the Maximum Transfer Unit
4795 * @netdev: network interface device structure
4796 * @new_mtu: new value for maximum frame size
4797 *
4798 * Returns 0 on success, negative on failure
4799 **/
4800 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4801 {
4802 struct igb_adapter *adapter = netdev_priv(netdev);
4803 struct pci_dev *pdev = adapter->pdev;
4804 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4805
4806 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4807 dev_err(&pdev->dev, "Invalid MTU setting\n");
4808 return -EINVAL;
4809 }
4810
4811 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4812 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4813 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4814 return -EINVAL;
4815 }
4816
4817 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4818 msleep(1);
4819
4820 /* igb_down has a dependency on max_frame_size */
4821 adapter->max_frame_size = max_frame;
4822
4823 if (netif_running(netdev))
4824 igb_down(adapter);
4825
4826 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4827 netdev->mtu, new_mtu);
4828 netdev->mtu = new_mtu;
4829
4830 if (netif_running(netdev))
4831 igb_up(adapter);
4832 else
4833 igb_reset(adapter);
4834
4835 clear_bit(__IGB_RESETTING, &adapter->state);
4836
4837 return 0;
4838 }
4839
4840 /**
4841 * igb_update_stats - Update the board statistics counters
4842 * @adapter: board private structure
4843 **/
4844 void igb_update_stats(struct igb_adapter *adapter,
4845 struct rtnl_link_stats64 *net_stats)
4846 {
4847 struct e1000_hw *hw = &adapter->hw;
4848 struct pci_dev *pdev = adapter->pdev;
4849 u32 reg, mpc;
4850 u16 phy_tmp;
4851 int i;
4852 u64 bytes, packets;
4853 unsigned int start;
4854 u64 _bytes, _packets;
4855
4856 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4857
4858 /* Prevent stats update while adapter is being reset, or if the pci
4859 * connection is down.
4860 */
4861 if (adapter->link_speed == 0)
4862 return;
4863 if (pci_channel_offline(pdev))
4864 return;
4865
4866 bytes = 0;
4867 packets = 0;
4868 for (i = 0; i < adapter->num_rx_queues; i++) {
4869 u32 rqdpc = rd32(E1000_RQDPC(i));
4870 struct igb_ring *ring = adapter->rx_ring[i];
4871
4872 if (rqdpc) {
4873 ring->rx_stats.drops += rqdpc;
4874 net_stats->rx_fifo_errors += rqdpc;
4875 }
4876
4877 do {
4878 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4879 _bytes = ring->rx_stats.bytes;
4880 _packets = ring->rx_stats.packets;
4881 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4882 bytes += _bytes;
4883 packets += _packets;
4884 }
4885
4886 net_stats->rx_bytes = bytes;
4887 net_stats->rx_packets = packets;
4888
4889 bytes = 0;
4890 packets = 0;
4891 for (i = 0; i < adapter->num_tx_queues; i++) {
4892 struct igb_ring *ring = adapter->tx_ring[i];
4893 do {
4894 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4895 _bytes = ring->tx_stats.bytes;
4896 _packets = ring->tx_stats.packets;
4897 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4898 bytes += _bytes;
4899 packets += _packets;
4900 }
4901 net_stats->tx_bytes = bytes;
4902 net_stats->tx_packets = packets;
4903
4904 /* read stats registers */
4905 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4906 adapter->stats.gprc += rd32(E1000_GPRC);
4907 adapter->stats.gorc += rd32(E1000_GORCL);
4908 rd32(E1000_GORCH); /* clear GORCL */
4909 adapter->stats.bprc += rd32(E1000_BPRC);
4910 adapter->stats.mprc += rd32(E1000_MPRC);
4911 adapter->stats.roc += rd32(E1000_ROC);
4912
4913 adapter->stats.prc64 += rd32(E1000_PRC64);
4914 adapter->stats.prc127 += rd32(E1000_PRC127);
4915 adapter->stats.prc255 += rd32(E1000_PRC255);
4916 adapter->stats.prc511 += rd32(E1000_PRC511);
4917 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4918 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4919 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4920 adapter->stats.sec += rd32(E1000_SEC);
4921
4922 mpc = rd32(E1000_MPC);
4923 adapter->stats.mpc += mpc;
4924 net_stats->rx_fifo_errors += mpc;
4925 adapter->stats.scc += rd32(E1000_SCC);
4926 adapter->stats.ecol += rd32(E1000_ECOL);
4927 adapter->stats.mcc += rd32(E1000_MCC);
4928 adapter->stats.latecol += rd32(E1000_LATECOL);
4929 adapter->stats.dc += rd32(E1000_DC);
4930 adapter->stats.rlec += rd32(E1000_RLEC);
4931 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4932 adapter->stats.xontxc += rd32(E1000_XONTXC);
4933 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4934 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4935 adapter->stats.fcruc += rd32(E1000_FCRUC);
4936 adapter->stats.gptc += rd32(E1000_GPTC);
4937 adapter->stats.gotc += rd32(E1000_GOTCL);
4938 rd32(E1000_GOTCH); /* clear GOTCL */
4939 adapter->stats.rnbc += rd32(E1000_RNBC);
4940 adapter->stats.ruc += rd32(E1000_RUC);
4941 adapter->stats.rfc += rd32(E1000_RFC);
4942 adapter->stats.rjc += rd32(E1000_RJC);
4943 adapter->stats.tor += rd32(E1000_TORH);
4944 adapter->stats.tot += rd32(E1000_TOTH);
4945 adapter->stats.tpr += rd32(E1000_TPR);
4946
4947 adapter->stats.ptc64 += rd32(E1000_PTC64);
4948 adapter->stats.ptc127 += rd32(E1000_PTC127);
4949 adapter->stats.ptc255 += rd32(E1000_PTC255);
4950 adapter->stats.ptc511 += rd32(E1000_PTC511);
4951 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4952 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4953
4954 adapter->stats.mptc += rd32(E1000_MPTC);
4955 adapter->stats.bptc += rd32(E1000_BPTC);
4956
4957 adapter->stats.tpt += rd32(E1000_TPT);
4958 adapter->stats.colc += rd32(E1000_COLC);
4959
4960 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4961 /* read internal phy specific stats */
4962 reg = rd32(E1000_CTRL_EXT);
4963 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4964 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4965
4966 /* this stat has invalid values on i210/i211 */
4967 if ((hw->mac.type != e1000_i210) &&
4968 (hw->mac.type != e1000_i211))
4969 adapter->stats.tncrs += rd32(E1000_TNCRS);
4970 }
4971
4972 adapter->stats.tsctc += rd32(E1000_TSCTC);
4973 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4974
4975 adapter->stats.iac += rd32(E1000_IAC);
4976 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4977 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4978 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4979 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4980 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4981 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4982 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4983 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4984
4985 /* Fill out the OS statistics structure */
4986 net_stats->multicast = adapter->stats.mprc;
4987 net_stats->collisions = adapter->stats.colc;
4988
4989 /* Rx Errors */
4990
4991 /* RLEC on some newer hardware can be incorrect so build
4992 * our own version based on RUC and ROC
4993 */
4994 net_stats->rx_errors = adapter->stats.rxerrc +
4995 adapter->stats.crcerrs + adapter->stats.algnerrc +
4996 adapter->stats.ruc + adapter->stats.roc +
4997 adapter->stats.cexterr;
4998 net_stats->rx_length_errors = adapter->stats.ruc +
4999 adapter->stats.roc;
5000 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5001 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5002 net_stats->rx_missed_errors = adapter->stats.mpc;
5003
5004 /* Tx Errors */
5005 net_stats->tx_errors = adapter->stats.ecol +
5006 adapter->stats.latecol;
5007 net_stats->tx_aborted_errors = adapter->stats.ecol;
5008 net_stats->tx_window_errors = adapter->stats.latecol;
5009 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5010
5011 /* Tx Dropped needs to be maintained elsewhere */
5012
5013 /* Phy Stats */
5014 if (hw->phy.media_type == e1000_media_type_copper) {
5015 if ((adapter->link_speed == SPEED_1000) &&
5016 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5017 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5018 adapter->phy_stats.idle_errors += phy_tmp;
5019 }
5020 }
5021
5022 /* Management Stats */
5023 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5024 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5025 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5026
5027 /* OS2BMC Stats */
5028 reg = rd32(E1000_MANC);
5029 if (reg & E1000_MANC_EN_BMC2OS) {
5030 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5031 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5032 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5033 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5034 }
5035 }
5036
5037 static irqreturn_t igb_msix_other(int irq, void *data)
5038 {
5039 struct igb_adapter *adapter = data;
5040 struct e1000_hw *hw = &adapter->hw;
5041 u32 icr = rd32(E1000_ICR);
5042 /* reading ICR causes bit 31 of EICR to be cleared */
5043
5044 if (icr & E1000_ICR_DRSTA)
5045 schedule_work(&adapter->reset_task);
5046
5047 if (icr & E1000_ICR_DOUTSYNC) {
5048 /* HW is reporting DMA is out of sync */
5049 adapter->stats.doosync++;
5050 /* The DMA Out of Sync is also indication of a spoof event
5051 * in IOV mode. Check the Wrong VM Behavior register to
5052 * see if it is really a spoof event.
5053 */
5054 igb_check_wvbr(adapter);
5055 }
5056
5057 /* Check for a mailbox event */
5058 if (icr & E1000_ICR_VMMB)
5059 igb_msg_task(adapter);
5060
5061 if (icr & E1000_ICR_LSC) {
5062 hw->mac.get_link_status = 1;
5063 /* guard against interrupt when we're going down */
5064 if (!test_bit(__IGB_DOWN, &adapter->state))
5065 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5066 }
5067
5068 if (icr & E1000_ICR_TS) {
5069 u32 tsicr = rd32(E1000_TSICR);
5070
5071 if (tsicr & E1000_TSICR_TXTS) {
5072 /* acknowledge the interrupt */
5073 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5074 /* retrieve hardware timestamp */
5075 schedule_work(&adapter->ptp_tx_work);
5076 }
5077 }
5078
5079 wr32(E1000_EIMS, adapter->eims_other);
5080
5081 return IRQ_HANDLED;
5082 }
5083
5084 static void igb_write_itr(struct igb_q_vector *q_vector)
5085 {
5086 struct igb_adapter *adapter = q_vector->adapter;
5087 u32 itr_val = q_vector->itr_val & 0x7FFC;
5088
5089 if (!q_vector->set_itr)
5090 return;
5091
5092 if (!itr_val)
5093 itr_val = 0x4;
5094
5095 if (adapter->hw.mac.type == e1000_82575)
5096 itr_val |= itr_val << 16;
5097 else
5098 itr_val |= E1000_EITR_CNT_IGNR;
5099
5100 writel(itr_val, q_vector->itr_register);
5101 q_vector->set_itr = 0;
5102 }
5103
5104 static irqreturn_t igb_msix_ring(int irq, void *data)
5105 {
5106 struct igb_q_vector *q_vector = data;
5107
5108 /* Write the ITR value calculated from the previous interrupt. */
5109 igb_write_itr(q_vector);
5110
5111 napi_schedule(&q_vector->napi);
5112
5113 return IRQ_HANDLED;
5114 }
5115
5116 #ifdef CONFIG_IGB_DCA
5117 static void igb_update_tx_dca(struct igb_adapter *adapter,
5118 struct igb_ring *tx_ring,
5119 int cpu)
5120 {
5121 struct e1000_hw *hw = &adapter->hw;
5122 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5123
5124 if (hw->mac.type != e1000_82575)
5125 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5126
5127 /* We can enable relaxed ordering for reads, but not writes when
5128 * DCA is enabled. This is due to a known issue in some chipsets
5129 * which will cause the DCA tag to be cleared.
5130 */
5131 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5132 E1000_DCA_TXCTRL_DATA_RRO_EN |
5133 E1000_DCA_TXCTRL_DESC_DCA_EN;
5134
5135 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5136 }
5137
5138 static void igb_update_rx_dca(struct igb_adapter *adapter,
5139 struct igb_ring *rx_ring,
5140 int cpu)
5141 {
5142 struct e1000_hw *hw = &adapter->hw;
5143 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5144
5145 if (hw->mac.type != e1000_82575)
5146 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5147
5148 /* We can enable relaxed ordering for reads, but not writes when
5149 * DCA is enabled. This is due to a known issue in some chipsets
5150 * which will cause the DCA tag to be cleared.
5151 */
5152 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5153 E1000_DCA_RXCTRL_DESC_DCA_EN;
5154
5155 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5156 }
5157
5158 static void igb_update_dca(struct igb_q_vector *q_vector)
5159 {
5160 struct igb_adapter *adapter = q_vector->adapter;
5161 int cpu = get_cpu();
5162
5163 if (q_vector->cpu == cpu)
5164 goto out_no_update;
5165
5166 if (q_vector->tx.ring)
5167 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5168
5169 if (q_vector->rx.ring)
5170 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5171
5172 q_vector->cpu = cpu;
5173 out_no_update:
5174 put_cpu();
5175 }
5176
5177 static void igb_setup_dca(struct igb_adapter *adapter)
5178 {
5179 struct e1000_hw *hw = &adapter->hw;
5180 int i;
5181
5182 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5183 return;
5184
5185 /* Always use CB2 mode, difference is masked in the CB driver. */
5186 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5187
5188 for (i = 0; i < adapter->num_q_vectors; i++) {
5189 adapter->q_vector[i]->cpu = -1;
5190 igb_update_dca(adapter->q_vector[i]);
5191 }
5192 }
5193
5194 static int __igb_notify_dca(struct device *dev, void *data)
5195 {
5196 struct net_device *netdev = dev_get_drvdata(dev);
5197 struct igb_adapter *adapter = netdev_priv(netdev);
5198 struct pci_dev *pdev = adapter->pdev;
5199 struct e1000_hw *hw = &adapter->hw;
5200 unsigned long event = *(unsigned long *)data;
5201
5202 switch (event) {
5203 case DCA_PROVIDER_ADD:
5204 /* if already enabled, don't do it again */
5205 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5206 break;
5207 if (dca_add_requester(dev) == 0) {
5208 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5209 dev_info(&pdev->dev, "DCA enabled\n");
5210 igb_setup_dca(adapter);
5211 break;
5212 }
5213 /* Fall Through since DCA is disabled. */
5214 case DCA_PROVIDER_REMOVE:
5215 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5216 /* without this a class_device is left
5217 * hanging around in the sysfs model
5218 */
5219 dca_remove_requester(dev);
5220 dev_info(&pdev->dev, "DCA disabled\n");
5221 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5222 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5223 }
5224 break;
5225 }
5226
5227 return 0;
5228 }
5229
5230 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5231 void *p)
5232 {
5233 int ret_val;
5234
5235 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5236 __igb_notify_dca);
5237
5238 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5239 }
5240 #endif /* CONFIG_IGB_DCA */
5241
5242 #ifdef CONFIG_PCI_IOV
5243 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5244 {
5245 unsigned char mac_addr[ETH_ALEN];
5246
5247 eth_zero_addr(mac_addr);
5248 igb_set_vf_mac(adapter, vf, mac_addr);
5249
5250 /* By default spoof check is enabled for all VFs */
5251 adapter->vf_data[vf].spoofchk_enabled = true;
5252
5253 return 0;
5254 }
5255
5256 #endif
5257 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5258 {
5259 struct e1000_hw *hw = &adapter->hw;
5260 u32 ping;
5261 int i;
5262
5263 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5264 ping = E1000_PF_CONTROL_MSG;
5265 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5266 ping |= E1000_VT_MSGTYPE_CTS;
5267 igb_write_mbx(hw, &ping, 1, i);
5268 }
5269 }
5270
5271 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5272 {
5273 struct e1000_hw *hw = &adapter->hw;
5274 u32 vmolr = rd32(E1000_VMOLR(vf));
5275 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5276
5277 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5278 IGB_VF_FLAG_MULTI_PROMISC);
5279 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5280
5281 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5282 vmolr |= E1000_VMOLR_MPME;
5283 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5284 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5285 } else {
5286 /* if we have hashes and we are clearing a multicast promisc
5287 * flag we need to write the hashes to the MTA as this step
5288 * was previously skipped
5289 */
5290 if (vf_data->num_vf_mc_hashes > 30) {
5291 vmolr |= E1000_VMOLR_MPME;
5292 } else if (vf_data->num_vf_mc_hashes) {
5293 int j;
5294 vmolr |= E1000_VMOLR_ROMPE;
5295 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5296 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5297 }
5298 }
5299
5300 wr32(E1000_VMOLR(vf), vmolr);
5301
5302 /* there are flags left unprocessed, likely not supported */
5303 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5304 return -EINVAL;
5305
5306 return 0;
5307 }
5308
5309 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5310 u32 *msgbuf, u32 vf)
5311 {
5312 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5313 u16 *hash_list = (u16 *)&msgbuf[1];
5314 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5315 int i;
5316
5317 /* salt away the number of multicast addresses assigned
5318 * to this VF for later use to restore when the PF multi cast
5319 * list changes
5320 */
5321 vf_data->num_vf_mc_hashes = n;
5322
5323 /* only up to 30 hash values supported */
5324 if (n > 30)
5325 n = 30;
5326
5327 /* store the hashes for later use */
5328 for (i = 0; i < n; i++)
5329 vf_data->vf_mc_hashes[i] = hash_list[i];
5330
5331 /* Flush and reset the mta with the new values */
5332 igb_set_rx_mode(adapter->netdev);
5333
5334 return 0;
5335 }
5336
5337 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5338 {
5339 struct e1000_hw *hw = &adapter->hw;
5340 struct vf_data_storage *vf_data;
5341 int i, j;
5342
5343 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5344 u32 vmolr = rd32(E1000_VMOLR(i));
5345 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5346
5347 vf_data = &adapter->vf_data[i];
5348
5349 if ((vf_data->num_vf_mc_hashes > 30) ||
5350 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5351 vmolr |= E1000_VMOLR_MPME;
5352 } else if (vf_data->num_vf_mc_hashes) {
5353 vmolr |= E1000_VMOLR_ROMPE;
5354 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5355 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5356 }
5357 wr32(E1000_VMOLR(i), vmolr);
5358 }
5359 }
5360
5361 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5362 {
5363 struct e1000_hw *hw = &adapter->hw;
5364 u32 pool_mask, reg, vid;
5365 int i;
5366
5367 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5368
5369 /* Find the vlan filter for this id */
5370 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5371 reg = rd32(E1000_VLVF(i));
5372
5373 /* remove the vf from the pool */
5374 reg &= ~pool_mask;
5375
5376 /* if pool is empty then remove entry from vfta */
5377 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5378 (reg & E1000_VLVF_VLANID_ENABLE)) {
5379 reg = 0;
5380 vid = reg & E1000_VLVF_VLANID_MASK;
5381 igb_vfta_set(hw, vid, false);
5382 }
5383
5384 wr32(E1000_VLVF(i), reg);
5385 }
5386
5387 adapter->vf_data[vf].vlans_enabled = 0;
5388 }
5389
5390 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5391 {
5392 struct e1000_hw *hw = &adapter->hw;
5393 u32 reg, i;
5394
5395 /* The vlvf table only exists on 82576 hardware and newer */
5396 if (hw->mac.type < e1000_82576)
5397 return -1;
5398
5399 /* we only need to do this if VMDq is enabled */
5400 if (!adapter->vfs_allocated_count)
5401 return -1;
5402
5403 /* Find the vlan filter for this id */
5404 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5405 reg = rd32(E1000_VLVF(i));
5406 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5407 vid == (reg & E1000_VLVF_VLANID_MASK))
5408 break;
5409 }
5410
5411 if (add) {
5412 if (i == E1000_VLVF_ARRAY_SIZE) {
5413 /* Did not find a matching VLAN ID entry that was
5414 * enabled. Search for a free filter entry, i.e.
5415 * one without the enable bit set
5416 */
5417 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5418 reg = rd32(E1000_VLVF(i));
5419 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5420 break;
5421 }
5422 }
5423 if (i < E1000_VLVF_ARRAY_SIZE) {
5424 /* Found an enabled/available entry */
5425 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5426
5427 /* if !enabled we need to set this up in vfta */
5428 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5429 /* add VID to filter table */
5430 igb_vfta_set(hw, vid, true);
5431 reg |= E1000_VLVF_VLANID_ENABLE;
5432 }
5433 reg &= ~E1000_VLVF_VLANID_MASK;
5434 reg |= vid;
5435 wr32(E1000_VLVF(i), reg);
5436
5437 /* do not modify RLPML for PF devices */
5438 if (vf >= adapter->vfs_allocated_count)
5439 return 0;
5440
5441 if (!adapter->vf_data[vf].vlans_enabled) {
5442 u32 size;
5443 reg = rd32(E1000_VMOLR(vf));
5444 size = reg & E1000_VMOLR_RLPML_MASK;
5445 size += 4;
5446 reg &= ~E1000_VMOLR_RLPML_MASK;
5447 reg |= size;
5448 wr32(E1000_VMOLR(vf), reg);
5449 }
5450
5451 adapter->vf_data[vf].vlans_enabled++;
5452 }
5453 } else {
5454 if (i < E1000_VLVF_ARRAY_SIZE) {
5455 /* remove vf from the pool */
5456 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5457 /* if pool is empty then remove entry from vfta */
5458 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5459 reg = 0;
5460 igb_vfta_set(hw, vid, false);
5461 }
5462 wr32(E1000_VLVF(i), reg);
5463
5464 /* do not modify RLPML for PF devices */
5465 if (vf >= adapter->vfs_allocated_count)
5466 return 0;
5467
5468 adapter->vf_data[vf].vlans_enabled--;
5469 if (!adapter->vf_data[vf].vlans_enabled) {
5470 u32 size;
5471 reg = rd32(E1000_VMOLR(vf));
5472 size = reg & E1000_VMOLR_RLPML_MASK;
5473 size -= 4;
5474 reg &= ~E1000_VMOLR_RLPML_MASK;
5475 reg |= size;
5476 wr32(E1000_VMOLR(vf), reg);
5477 }
5478 }
5479 }
5480 return 0;
5481 }
5482
5483 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5484 {
5485 struct e1000_hw *hw = &adapter->hw;
5486
5487 if (vid)
5488 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5489 else
5490 wr32(E1000_VMVIR(vf), 0);
5491 }
5492
5493 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5494 int vf, u16 vlan, u8 qos)
5495 {
5496 int err = 0;
5497 struct igb_adapter *adapter = netdev_priv(netdev);
5498
5499 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5500 return -EINVAL;
5501 if (vlan || qos) {
5502 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5503 if (err)
5504 goto out;
5505 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5506 igb_set_vmolr(adapter, vf, !vlan);
5507 adapter->vf_data[vf].pf_vlan = vlan;
5508 adapter->vf_data[vf].pf_qos = qos;
5509 dev_info(&adapter->pdev->dev,
5510 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5511 if (test_bit(__IGB_DOWN, &adapter->state)) {
5512 dev_warn(&adapter->pdev->dev,
5513 "The VF VLAN has been set, but the PF device is not up.\n");
5514 dev_warn(&adapter->pdev->dev,
5515 "Bring the PF device up before attempting to use the VF device.\n");
5516 }
5517 } else {
5518 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5519 false, vf);
5520 igb_set_vmvir(adapter, vlan, vf);
5521 igb_set_vmolr(adapter, vf, true);
5522 adapter->vf_data[vf].pf_vlan = 0;
5523 adapter->vf_data[vf].pf_qos = 0;
5524 }
5525 out:
5526 return err;
5527 }
5528
5529 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5530 {
5531 struct e1000_hw *hw = &adapter->hw;
5532 int i;
5533 u32 reg;
5534
5535 /* Find the vlan filter for this id */
5536 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5537 reg = rd32(E1000_VLVF(i));
5538 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5539 vid == (reg & E1000_VLVF_VLANID_MASK))
5540 break;
5541 }
5542
5543 if (i >= E1000_VLVF_ARRAY_SIZE)
5544 i = -1;
5545
5546 return i;
5547 }
5548
5549 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5550 {
5551 struct e1000_hw *hw = &adapter->hw;
5552 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5553 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5554 int err = 0;
5555
5556 /* If in promiscuous mode we need to make sure the PF also has
5557 * the VLAN filter set.
5558 */
5559 if (add && (adapter->netdev->flags & IFF_PROMISC))
5560 err = igb_vlvf_set(adapter, vid, add,
5561 adapter->vfs_allocated_count);
5562 if (err)
5563 goto out;
5564
5565 err = igb_vlvf_set(adapter, vid, add, vf);
5566
5567 if (err)
5568 goto out;
5569
5570 /* Go through all the checks to see if the VLAN filter should
5571 * be wiped completely.
5572 */
5573 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5574 u32 vlvf, bits;
5575
5576 int regndx = igb_find_vlvf_entry(adapter, vid);
5577 if (regndx < 0)
5578 goto out;
5579 /* See if any other pools are set for this VLAN filter
5580 * entry other than the PF.
5581 */
5582 vlvf = bits = rd32(E1000_VLVF(regndx));
5583 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5584 adapter->vfs_allocated_count);
5585 /* If the filter was removed then ensure PF pool bit
5586 * is cleared if the PF only added itself to the pool
5587 * because the PF is in promiscuous mode.
5588 */
5589 if ((vlvf & VLAN_VID_MASK) == vid &&
5590 !test_bit(vid, adapter->active_vlans) &&
5591 !bits)
5592 igb_vlvf_set(adapter, vid, add,
5593 adapter->vfs_allocated_count);
5594 }
5595
5596 out:
5597 return err;
5598 }
5599
5600 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5601 {
5602 /* clear flags - except flag that indicates PF has set the MAC */
5603 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5604 adapter->vf_data[vf].last_nack = jiffies;
5605
5606 /* reset offloads to defaults */
5607 igb_set_vmolr(adapter, vf, true);
5608
5609 /* reset vlans for device */
5610 igb_clear_vf_vfta(adapter, vf);
5611 if (adapter->vf_data[vf].pf_vlan)
5612 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5613 adapter->vf_data[vf].pf_vlan,
5614 adapter->vf_data[vf].pf_qos);
5615 else
5616 igb_clear_vf_vfta(adapter, vf);
5617
5618 /* reset multicast table array for vf */
5619 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5620
5621 /* Flush and reset the mta with the new values */
5622 igb_set_rx_mode(adapter->netdev);
5623 }
5624
5625 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5626 {
5627 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5628
5629 /* clear mac address as we were hotplug removed/added */
5630 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5631 eth_zero_addr(vf_mac);
5632
5633 /* process remaining reset events */
5634 igb_vf_reset(adapter, vf);
5635 }
5636
5637 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5638 {
5639 struct e1000_hw *hw = &adapter->hw;
5640 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5641 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5642 u32 reg, msgbuf[3];
5643 u8 *addr = (u8 *)(&msgbuf[1]);
5644
5645 /* process all the same items cleared in a function level reset */
5646 igb_vf_reset(adapter, vf);
5647
5648 /* set vf mac address */
5649 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5650
5651 /* enable transmit and receive for vf */
5652 reg = rd32(E1000_VFTE);
5653 wr32(E1000_VFTE, reg | (1 << vf));
5654 reg = rd32(E1000_VFRE);
5655 wr32(E1000_VFRE, reg | (1 << vf));
5656
5657 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5658
5659 /* reply to reset with ack and vf mac address */
5660 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5661 memcpy(addr, vf_mac, 6);
5662 igb_write_mbx(hw, msgbuf, 3, vf);
5663 }
5664
5665 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5666 {
5667 /* The VF MAC Address is stored in a packed array of bytes
5668 * starting at the second 32 bit word of the msg array
5669 */
5670 unsigned char *addr = (char *)&msg[1];
5671 int err = -1;
5672
5673 if (is_valid_ether_addr(addr))
5674 err = igb_set_vf_mac(adapter, vf, addr);
5675
5676 return err;
5677 }
5678
5679 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5680 {
5681 struct e1000_hw *hw = &adapter->hw;
5682 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5683 u32 msg = E1000_VT_MSGTYPE_NACK;
5684
5685 /* if device isn't clear to send it shouldn't be reading either */
5686 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5687 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5688 igb_write_mbx(hw, &msg, 1, vf);
5689 vf_data->last_nack = jiffies;
5690 }
5691 }
5692
5693 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5694 {
5695 struct pci_dev *pdev = adapter->pdev;
5696 u32 msgbuf[E1000_VFMAILBOX_SIZE];
5697 struct e1000_hw *hw = &adapter->hw;
5698 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5699 s32 retval;
5700
5701 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5702
5703 if (retval) {
5704 /* if receive failed revoke VF CTS stats and restart init */
5705 dev_err(&pdev->dev, "Error receiving message from VF\n");
5706 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5707 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5708 return;
5709 goto out;
5710 }
5711
5712 /* this is a message we already processed, do nothing */
5713 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5714 return;
5715
5716 /* until the vf completes a reset it should not be
5717 * allowed to start any configuration.
5718 */
5719 if (msgbuf[0] == E1000_VF_RESET) {
5720 igb_vf_reset_msg(adapter, vf);
5721 return;
5722 }
5723
5724 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5725 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5726 return;
5727 retval = -1;
5728 goto out;
5729 }
5730
5731 switch ((msgbuf[0] & 0xFFFF)) {
5732 case E1000_VF_SET_MAC_ADDR:
5733 retval = -EINVAL;
5734 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5735 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5736 else
5737 dev_warn(&pdev->dev,
5738 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5739 vf);
5740 break;
5741 case E1000_VF_SET_PROMISC:
5742 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5743 break;
5744 case E1000_VF_SET_MULTICAST:
5745 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5746 break;
5747 case E1000_VF_SET_LPE:
5748 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5749 break;
5750 case E1000_VF_SET_VLAN:
5751 retval = -1;
5752 if (vf_data->pf_vlan)
5753 dev_warn(&pdev->dev,
5754 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5755 vf);
5756 else
5757 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5758 break;
5759 default:
5760 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5761 retval = -1;
5762 break;
5763 }
5764
5765 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5766 out:
5767 /* notify the VF of the results of what it sent us */
5768 if (retval)
5769 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5770 else
5771 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5772
5773 igb_write_mbx(hw, msgbuf, 1, vf);
5774 }
5775
5776 static void igb_msg_task(struct igb_adapter *adapter)
5777 {
5778 struct e1000_hw *hw = &adapter->hw;
5779 u32 vf;
5780
5781 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5782 /* process any reset requests */
5783 if (!igb_check_for_rst(hw, vf))
5784 igb_vf_reset_event(adapter, vf);
5785
5786 /* process any messages pending */
5787 if (!igb_check_for_msg(hw, vf))
5788 igb_rcv_msg_from_vf(adapter, vf);
5789
5790 /* process any acks */
5791 if (!igb_check_for_ack(hw, vf))
5792 igb_rcv_ack_from_vf(adapter, vf);
5793 }
5794 }
5795
5796 /**
5797 * igb_set_uta - Set unicast filter table address
5798 * @adapter: board private structure
5799 *
5800 * The unicast table address is a register array of 32-bit registers.
5801 * The table is meant to be used in a way similar to how the MTA is used
5802 * however due to certain limitations in the hardware it is necessary to
5803 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5804 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
5805 **/
5806 static void igb_set_uta(struct igb_adapter *adapter)
5807 {
5808 struct e1000_hw *hw = &adapter->hw;
5809 int i;
5810
5811 /* The UTA table only exists on 82576 hardware and newer */
5812 if (hw->mac.type < e1000_82576)
5813 return;
5814
5815 /* we only need to do this if VMDq is enabled */
5816 if (!adapter->vfs_allocated_count)
5817 return;
5818
5819 for (i = 0; i < hw->mac.uta_reg_count; i++)
5820 array_wr32(E1000_UTA, i, ~0);
5821 }
5822
5823 /**
5824 * igb_intr_msi - Interrupt Handler
5825 * @irq: interrupt number
5826 * @data: pointer to a network interface device structure
5827 **/
5828 static irqreturn_t igb_intr_msi(int irq, void *data)
5829 {
5830 struct igb_adapter *adapter = data;
5831 struct igb_q_vector *q_vector = adapter->q_vector[0];
5832 struct e1000_hw *hw = &adapter->hw;
5833 /* read ICR disables interrupts using IAM */
5834 u32 icr = rd32(E1000_ICR);
5835
5836 igb_write_itr(q_vector);
5837
5838 if (icr & E1000_ICR_DRSTA)
5839 schedule_work(&adapter->reset_task);
5840
5841 if (icr & E1000_ICR_DOUTSYNC) {
5842 /* HW is reporting DMA is out of sync */
5843 adapter->stats.doosync++;
5844 }
5845
5846 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5847 hw->mac.get_link_status = 1;
5848 if (!test_bit(__IGB_DOWN, &adapter->state))
5849 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5850 }
5851
5852 if (icr & E1000_ICR_TS) {
5853 u32 tsicr = rd32(E1000_TSICR);
5854
5855 if (tsicr & E1000_TSICR_TXTS) {
5856 /* acknowledge the interrupt */
5857 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5858 /* retrieve hardware timestamp */
5859 schedule_work(&adapter->ptp_tx_work);
5860 }
5861 }
5862
5863 napi_schedule(&q_vector->napi);
5864
5865 return IRQ_HANDLED;
5866 }
5867
5868 /**
5869 * igb_intr - Legacy Interrupt Handler
5870 * @irq: interrupt number
5871 * @data: pointer to a network interface device structure
5872 **/
5873 static irqreturn_t igb_intr(int irq, void *data)
5874 {
5875 struct igb_adapter *adapter = data;
5876 struct igb_q_vector *q_vector = adapter->q_vector[0];
5877 struct e1000_hw *hw = &adapter->hw;
5878 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5879 * need for the IMC write
5880 */
5881 u32 icr = rd32(E1000_ICR);
5882
5883 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5884 * not set, then the adapter didn't send an interrupt
5885 */
5886 if (!(icr & E1000_ICR_INT_ASSERTED))
5887 return IRQ_NONE;
5888
5889 igb_write_itr(q_vector);
5890
5891 if (icr & E1000_ICR_DRSTA)
5892 schedule_work(&adapter->reset_task);
5893
5894 if (icr & E1000_ICR_DOUTSYNC) {
5895 /* HW is reporting DMA is out of sync */
5896 adapter->stats.doosync++;
5897 }
5898
5899 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5900 hw->mac.get_link_status = 1;
5901 /* guard against interrupt when we're going down */
5902 if (!test_bit(__IGB_DOWN, &adapter->state))
5903 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5904 }
5905
5906 if (icr & E1000_ICR_TS) {
5907 u32 tsicr = rd32(E1000_TSICR);
5908
5909 if (tsicr & E1000_TSICR_TXTS) {
5910 /* acknowledge the interrupt */
5911 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5912 /* retrieve hardware timestamp */
5913 schedule_work(&adapter->ptp_tx_work);
5914 }
5915 }
5916
5917 napi_schedule(&q_vector->napi);
5918
5919 return IRQ_HANDLED;
5920 }
5921
5922 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5923 {
5924 struct igb_adapter *adapter = q_vector->adapter;
5925 struct e1000_hw *hw = &adapter->hw;
5926
5927 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5928 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5929 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5930 igb_set_itr(q_vector);
5931 else
5932 igb_update_ring_itr(q_vector);
5933 }
5934
5935 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5936 if (adapter->msix_entries)
5937 wr32(E1000_EIMS, q_vector->eims_value);
5938 else
5939 igb_irq_enable(adapter);
5940 }
5941 }
5942
5943 /**
5944 * igb_poll - NAPI Rx polling callback
5945 * @napi: napi polling structure
5946 * @budget: count of how many packets we should handle
5947 **/
5948 static int igb_poll(struct napi_struct *napi, int budget)
5949 {
5950 struct igb_q_vector *q_vector = container_of(napi,
5951 struct igb_q_vector,
5952 napi);
5953 bool clean_complete = true;
5954
5955 #ifdef CONFIG_IGB_DCA
5956 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5957 igb_update_dca(q_vector);
5958 #endif
5959 if (q_vector->tx.ring)
5960 clean_complete = igb_clean_tx_irq(q_vector);
5961
5962 if (q_vector->rx.ring)
5963 clean_complete &= igb_clean_rx_irq(q_vector, budget);
5964
5965 /* If all work not completed, return budget and keep polling */
5966 if (!clean_complete)
5967 return budget;
5968
5969 /* If not enough Rx work done, exit the polling mode */
5970 napi_complete(napi);
5971 igb_ring_irq_enable(q_vector);
5972
5973 return 0;
5974 }
5975
5976 /**
5977 * igb_clean_tx_irq - Reclaim resources after transmit completes
5978 * @q_vector: pointer to q_vector containing needed info
5979 *
5980 * returns true if ring is completely cleaned
5981 **/
5982 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5983 {
5984 struct igb_adapter *adapter = q_vector->adapter;
5985 struct igb_ring *tx_ring = q_vector->tx.ring;
5986 struct igb_tx_buffer *tx_buffer;
5987 union e1000_adv_tx_desc *tx_desc;
5988 unsigned int total_bytes = 0, total_packets = 0;
5989 unsigned int budget = q_vector->tx.work_limit;
5990 unsigned int i = tx_ring->next_to_clean;
5991
5992 if (test_bit(__IGB_DOWN, &adapter->state))
5993 return true;
5994
5995 tx_buffer = &tx_ring->tx_buffer_info[i];
5996 tx_desc = IGB_TX_DESC(tx_ring, i);
5997 i -= tx_ring->count;
5998
5999 do {
6000 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6001
6002 /* if next_to_watch is not set then there is no work pending */
6003 if (!eop_desc)
6004 break;
6005
6006 /* prevent any other reads prior to eop_desc */
6007 read_barrier_depends();
6008
6009 /* if DD is not set pending work has not been completed */
6010 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6011 break;
6012
6013 /* clear next_to_watch to prevent false hangs */
6014 tx_buffer->next_to_watch = NULL;
6015
6016 /* update the statistics for this packet */
6017 total_bytes += tx_buffer->bytecount;
6018 total_packets += tx_buffer->gso_segs;
6019
6020 /* free the skb */
6021 dev_kfree_skb_any(tx_buffer->skb);
6022
6023 /* unmap skb header data */
6024 dma_unmap_single(tx_ring->dev,
6025 dma_unmap_addr(tx_buffer, dma),
6026 dma_unmap_len(tx_buffer, len),
6027 DMA_TO_DEVICE);
6028
6029 /* clear tx_buffer data */
6030 tx_buffer->skb = NULL;
6031 dma_unmap_len_set(tx_buffer, len, 0);
6032
6033 /* clear last DMA location and unmap remaining buffers */
6034 while (tx_desc != eop_desc) {
6035 tx_buffer++;
6036 tx_desc++;
6037 i++;
6038 if (unlikely(!i)) {
6039 i -= tx_ring->count;
6040 tx_buffer = tx_ring->tx_buffer_info;
6041 tx_desc = IGB_TX_DESC(tx_ring, 0);
6042 }
6043
6044 /* unmap any remaining paged data */
6045 if (dma_unmap_len(tx_buffer, len)) {
6046 dma_unmap_page(tx_ring->dev,
6047 dma_unmap_addr(tx_buffer, dma),
6048 dma_unmap_len(tx_buffer, len),
6049 DMA_TO_DEVICE);
6050 dma_unmap_len_set(tx_buffer, len, 0);
6051 }
6052 }
6053
6054 /* move us one more past the eop_desc for start of next pkt */
6055 tx_buffer++;
6056 tx_desc++;
6057 i++;
6058 if (unlikely(!i)) {
6059 i -= tx_ring->count;
6060 tx_buffer = tx_ring->tx_buffer_info;
6061 tx_desc = IGB_TX_DESC(tx_ring, 0);
6062 }
6063
6064 /* issue prefetch for next Tx descriptor */
6065 prefetch(tx_desc);
6066
6067 /* update budget accounting */
6068 budget--;
6069 } while (likely(budget));
6070
6071 netdev_tx_completed_queue(txring_txq(tx_ring),
6072 total_packets, total_bytes);
6073 i += tx_ring->count;
6074 tx_ring->next_to_clean = i;
6075 u64_stats_update_begin(&tx_ring->tx_syncp);
6076 tx_ring->tx_stats.bytes += total_bytes;
6077 tx_ring->tx_stats.packets += total_packets;
6078 u64_stats_update_end(&tx_ring->tx_syncp);
6079 q_vector->tx.total_bytes += total_bytes;
6080 q_vector->tx.total_packets += total_packets;
6081
6082 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6083 struct e1000_hw *hw = &adapter->hw;
6084
6085 /* Detect a transmit hang in hardware, this serializes the
6086 * check with the clearing of time_stamp and movement of i
6087 */
6088 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6089 if (tx_buffer->next_to_watch &&
6090 time_after(jiffies, tx_buffer->time_stamp +
6091 (adapter->tx_timeout_factor * HZ)) &&
6092 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6093
6094 /* detected Tx unit hang */
6095 dev_err(tx_ring->dev,
6096 "Detected Tx Unit Hang\n"
6097 " Tx Queue <%d>\n"
6098 " TDH <%x>\n"
6099 " TDT <%x>\n"
6100 " next_to_use <%x>\n"
6101 " next_to_clean <%x>\n"
6102 "buffer_info[next_to_clean]\n"
6103 " time_stamp <%lx>\n"
6104 " next_to_watch <%p>\n"
6105 " jiffies <%lx>\n"
6106 " desc.status <%x>\n",
6107 tx_ring->queue_index,
6108 rd32(E1000_TDH(tx_ring->reg_idx)),
6109 readl(tx_ring->tail),
6110 tx_ring->next_to_use,
6111 tx_ring->next_to_clean,
6112 tx_buffer->time_stamp,
6113 tx_buffer->next_to_watch,
6114 jiffies,
6115 tx_buffer->next_to_watch->wb.status);
6116 netif_stop_subqueue(tx_ring->netdev,
6117 tx_ring->queue_index);
6118
6119 /* we are about to reset, no point in enabling stuff */
6120 return true;
6121 }
6122 }
6123
6124 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6125 if (unlikely(total_packets &&
6126 netif_carrier_ok(tx_ring->netdev) &&
6127 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6128 /* Make sure that anybody stopping the queue after this
6129 * sees the new next_to_clean.
6130 */
6131 smp_mb();
6132 if (__netif_subqueue_stopped(tx_ring->netdev,
6133 tx_ring->queue_index) &&
6134 !(test_bit(__IGB_DOWN, &adapter->state))) {
6135 netif_wake_subqueue(tx_ring->netdev,
6136 tx_ring->queue_index);
6137
6138 u64_stats_update_begin(&tx_ring->tx_syncp);
6139 tx_ring->tx_stats.restart_queue++;
6140 u64_stats_update_end(&tx_ring->tx_syncp);
6141 }
6142 }
6143
6144 return !!budget;
6145 }
6146
6147 /**
6148 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6149 * @rx_ring: rx descriptor ring to store buffers on
6150 * @old_buff: donor buffer to have page reused
6151 *
6152 * Synchronizes page for reuse by the adapter
6153 **/
6154 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6155 struct igb_rx_buffer *old_buff)
6156 {
6157 struct igb_rx_buffer *new_buff;
6158 u16 nta = rx_ring->next_to_alloc;
6159
6160 new_buff = &rx_ring->rx_buffer_info[nta];
6161
6162 /* update, and store next to alloc */
6163 nta++;
6164 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6165
6166 /* transfer page from old buffer to new buffer */
6167 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6168
6169 /* sync the buffer for use by the device */
6170 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6171 old_buff->page_offset,
6172 IGB_RX_BUFSZ,
6173 DMA_FROM_DEVICE);
6174 }
6175
6176 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6177 struct page *page,
6178 unsigned int truesize)
6179 {
6180 /* avoid re-using remote pages */
6181 if (unlikely(page_to_nid(page) != numa_node_id()))
6182 return false;
6183
6184 #if (PAGE_SIZE < 8192)
6185 /* if we are only owner of page we can reuse it */
6186 if (unlikely(page_count(page) != 1))
6187 return false;
6188
6189 /* flip page offset to other buffer */
6190 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6191
6192 /* since we are the only owner of the page and we need to
6193 * increment it, just set the value to 2 in order to avoid
6194 * an unnecessary locked operation
6195 */
6196 atomic_set(&page->_count, 2);
6197 #else
6198 /* move offset up to the next cache line */
6199 rx_buffer->page_offset += truesize;
6200
6201 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6202 return false;
6203
6204 /* bump ref count on page before it is given to the stack */
6205 get_page(page);
6206 #endif
6207
6208 return true;
6209 }
6210
6211 /**
6212 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6213 * @rx_ring: rx descriptor ring to transact packets on
6214 * @rx_buffer: buffer containing page to add
6215 * @rx_desc: descriptor containing length of buffer written by hardware
6216 * @skb: sk_buff to place the data into
6217 *
6218 * This function will add the data contained in rx_buffer->page to the skb.
6219 * This is done either through a direct copy if the data in the buffer is
6220 * less than the skb header size, otherwise it will just attach the page as
6221 * a frag to the skb.
6222 *
6223 * The function will then update the page offset if necessary and return
6224 * true if the buffer can be reused by the adapter.
6225 **/
6226 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6227 struct igb_rx_buffer *rx_buffer,
6228 union e1000_adv_rx_desc *rx_desc,
6229 struct sk_buff *skb)
6230 {
6231 struct page *page = rx_buffer->page;
6232 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6233 #if (PAGE_SIZE < 8192)
6234 unsigned int truesize = IGB_RX_BUFSZ;
6235 #else
6236 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6237 #endif
6238
6239 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6240 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6241
6242 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6243 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6244 va += IGB_TS_HDR_LEN;
6245 size -= IGB_TS_HDR_LEN;
6246 }
6247
6248 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6249
6250 /* we can reuse buffer as-is, just make sure it is local */
6251 if (likely(page_to_nid(page) == numa_node_id()))
6252 return true;
6253
6254 /* this page cannot be reused so discard it */
6255 put_page(page);
6256 return false;
6257 }
6258
6259 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6260 rx_buffer->page_offset, size, truesize);
6261
6262 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6263 }
6264
6265 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6266 union e1000_adv_rx_desc *rx_desc,
6267 struct sk_buff *skb)
6268 {
6269 struct igb_rx_buffer *rx_buffer;
6270 struct page *page;
6271
6272 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6273
6274 page = rx_buffer->page;
6275 prefetchw(page);
6276
6277 if (likely(!skb)) {
6278 void *page_addr = page_address(page) +
6279 rx_buffer->page_offset;
6280
6281 /* prefetch first cache line of first page */
6282 prefetch(page_addr);
6283 #if L1_CACHE_BYTES < 128
6284 prefetch(page_addr + L1_CACHE_BYTES);
6285 #endif
6286
6287 /* allocate a skb to store the frags */
6288 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6289 IGB_RX_HDR_LEN);
6290 if (unlikely(!skb)) {
6291 rx_ring->rx_stats.alloc_failed++;
6292 return NULL;
6293 }
6294
6295 /* we will be copying header into skb->data in
6296 * pskb_may_pull so it is in our interest to prefetch
6297 * it now to avoid a possible cache miss
6298 */
6299 prefetchw(skb->data);
6300 }
6301
6302 /* we are reusing so sync this buffer for CPU use */
6303 dma_sync_single_range_for_cpu(rx_ring->dev,
6304 rx_buffer->dma,
6305 rx_buffer->page_offset,
6306 IGB_RX_BUFSZ,
6307 DMA_FROM_DEVICE);
6308
6309 /* pull page into skb */
6310 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6311 /* hand second half of page back to the ring */
6312 igb_reuse_rx_page(rx_ring, rx_buffer);
6313 } else {
6314 /* we are not reusing the buffer so unmap it */
6315 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6316 PAGE_SIZE, DMA_FROM_DEVICE);
6317 }
6318
6319 /* clear contents of rx_buffer */
6320 rx_buffer->page = NULL;
6321
6322 return skb;
6323 }
6324
6325 static inline void igb_rx_checksum(struct igb_ring *ring,
6326 union e1000_adv_rx_desc *rx_desc,
6327 struct sk_buff *skb)
6328 {
6329 skb_checksum_none_assert(skb);
6330
6331 /* Ignore Checksum bit is set */
6332 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6333 return;
6334
6335 /* Rx checksum disabled via ethtool */
6336 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6337 return;
6338
6339 /* TCP/UDP checksum error bit is set */
6340 if (igb_test_staterr(rx_desc,
6341 E1000_RXDEXT_STATERR_TCPE |
6342 E1000_RXDEXT_STATERR_IPE)) {
6343 /* work around errata with sctp packets where the TCPE aka
6344 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6345 * packets, (aka let the stack check the crc32c)
6346 */
6347 if (!((skb->len == 60) &&
6348 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6349 u64_stats_update_begin(&ring->rx_syncp);
6350 ring->rx_stats.csum_err++;
6351 u64_stats_update_end(&ring->rx_syncp);
6352 }
6353 /* let the stack verify checksum errors */
6354 return;
6355 }
6356 /* It must be a TCP or UDP packet with a valid checksum */
6357 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6358 E1000_RXD_STAT_UDPCS))
6359 skb->ip_summed = CHECKSUM_UNNECESSARY;
6360
6361 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6362 le32_to_cpu(rx_desc->wb.upper.status_error));
6363 }
6364
6365 static inline void igb_rx_hash(struct igb_ring *ring,
6366 union e1000_adv_rx_desc *rx_desc,
6367 struct sk_buff *skb)
6368 {
6369 if (ring->netdev->features & NETIF_F_RXHASH)
6370 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6371 }
6372
6373 /**
6374 * igb_is_non_eop - process handling of non-EOP buffers
6375 * @rx_ring: Rx ring being processed
6376 * @rx_desc: Rx descriptor for current buffer
6377 * @skb: current socket buffer containing buffer in progress
6378 *
6379 * This function updates next to clean. If the buffer is an EOP buffer
6380 * this function exits returning false, otherwise it will place the
6381 * sk_buff in the next buffer to be chained and return true indicating
6382 * that this is in fact a non-EOP buffer.
6383 **/
6384 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6385 union e1000_adv_rx_desc *rx_desc)
6386 {
6387 u32 ntc = rx_ring->next_to_clean + 1;
6388
6389 /* fetch, update, and store next to clean */
6390 ntc = (ntc < rx_ring->count) ? ntc : 0;
6391 rx_ring->next_to_clean = ntc;
6392
6393 prefetch(IGB_RX_DESC(rx_ring, ntc));
6394
6395 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6396 return false;
6397
6398 return true;
6399 }
6400
6401 /**
6402 * igb_get_headlen - determine size of header for LRO/GRO
6403 * @data: pointer to the start of the headers
6404 * @max_len: total length of section to find headers in
6405 *
6406 * This function is meant to determine the length of headers that will
6407 * be recognized by hardware for LRO, and GRO offloads. The main
6408 * motivation of doing this is to only perform one pull for IPv4 TCP
6409 * packets so that we can do basic things like calculating the gso_size
6410 * based on the average data per packet.
6411 **/
6412 static unsigned int igb_get_headlen(unsigned char *data,
6413 unsigned int max_len)
6414 {
6415 union {
6416 unsigned char *network;
6417 /* l2 headers */
6418 struct ethhdr *eth;
6419 struct vlan_hdr *vlan;
6420 /* l3 headers */
6421 struct iphdr *ipv4;
6422 struct ipv6hdr *ipv6;
6423 } hdr;
6424 __be16 protocol;
6425 u8 nexthdr = 0; /* default to not TCP */
6426 u8 hlen;
6427
6428 /* this should never happen, but better safe than sorry */
6429 if (max_len < ETH_HLEN)
6430 return max_len;
6431
6432 /* initialize network frame pointer */
6433 hdr.network = data;
6434
6435 /* set first protocol and move network header forward */
6436 protocol = hdr.eth->h_proto;
6437 hdr.network += ETH_HLEN;
6438
6439 /* handle any vlan tag if present */
6440 if (protocol == __constant_htons(ETH_P_8021Q)) {
6441 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6442 return max_len;
6443
6444 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6445 hdr.network += VLAN_HLEN;
6446 }
6447
6448 /* handle L3 protocols */
6449 if (protocol == __constant_htons(ETH_P_IP)) {
6450 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6451 return max_len;
6452
6453 /* access ihl as a u8 to avoid unaligned access on ia64 */
6454 hlen = (hdr.network[0] & 0x0F) << 2;
6455
6456 /* verify hlen meets minimum size requirements */
6457 if (hlen < sizeof(struct iphdr))
6458 return hdr.network - data;
6459
6460 /* record next protocol if header is present */
6461 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6462 nexthdr = hdr.ipv4->protocol;
6463 } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6464 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6465 return max_len;
6466
6467 /* record next protocol */
6468 nexthdr = hdr.ipv6->nexthdr;
6469 hlen = sizeof(struct ipv6hdr);
6470 } else {
6471 return hdr.network - data;
6472 }
6473
6474 /* relocate pointer to start of L4 header */
6475 hdr.network += hlen;
6476
6477 /* finally sort out TCP */
6478 if (nexthdr == IPPROTO_TCP) {
6479 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6480 return max_len;
6481
6482 /* access doff as a u8 to avoid unaligned access on ia64 */
6483 hlen = (hdr.network[12] & 0xF0) >> 2;
6484
6485 /* verify hlen meets minimum size requirements */
6486 if (hlen < sizeof(struct tcphdr))
6487 return hdr.network - data;
6488
6489 hdr.network += hlen;
6490 } else if (nexthdr == IPPROTO_UDP) {
6491 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6492 return max_len;
6493
6494 hdr.network += sizeof(struct udphdr);
6495 }
6496
6497 /* If everything has gone correctly hdr.network should be the
6498 * data section of the packet and will be the end of the header.
6499 * If not then it probably represents the end of the last recognized
6500 * header.
6501 */
6502 if ((hdr.network - data) < max_len)
6503 return hdr.network - data;
6504 else
6505 return max_len;
6506 }
6507
6508 /**
6509 * igb_pull_tail - igb specific version of skb_pull_tail
6510 * @rx_ring: rx descriptor ring packet is being transacted on
6511 * @rx_desc: pointer to the EOP Rx descriptor
6512 * @skb: pointer to current skb being adjusted
6513 *
6514 * This function is an igb specific version of __pskb_pull_tail. The
6515 * main difference between this version and the original function is that
6516 * this function can make several assumptions about the state of things
6517 * that allow for significant optimizations versus the standard function.
6518 * As a result we can do things like drop a frag and maintain an accurate
6519 * truesize for the skb.
6520 */
6521 static void igb_pull_tail(struct igb_ring *rx_ring,
6522 union e1000_adv_rx_desc *rx_desc,
6523 struct sk_buff *skb)
6524 {
6525 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6526 unsigned char *va;
6527 unsigned int pull_len;
6528
6529 /* it is valid to use page_address instead of kmap since we are
6530 * working with pages allocated out of the lomem pool per
6531 * alloc_page(GFP_ATOMIC)
6532 */
6533 va = skb_frag_address(frag);
6534
6535 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6536 /* retrieve timestamp from buffer */
6537 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6538
6539 /* update pointers to remove timestamp header */
6540 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6541 frag->page_offset += IGB_TS_HDR_LEN;
6542 skb->data_len -= IGB_TS_HDR_LEN;
6543 skb->len -= IGB_TS_HDR_LEN;
6544
6545 /* move va to start of packet data */
6546 va += IGB_TS_HDR_LEN;
6547 }
6548
6549 /* we need the header to contain the greater of either ETH_HLEN or
6550 * 60 bytes if the skb->len is less than 60 for skb_pad.
6551 */
6552 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6553
6554 /* align pull length to size of long to optimize memcpy performance */
6555 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6556
6557 /* update all of the pointers */
6558 skb_frag_size_sub(frag, pull_len);
6559 frag->page_offset += pull_len;
6560 skb->data_len -= pull_len;
6561 skb->tail += pull_len;
6562 }
6563
6564 /**
6565 * igb_cleanup_headers - Correct corrupted or empty headers
6566 * @rx_ring: rx descriptor ring packet is being transacted on
6567 * @rx_desc: pointer to the EOP Rx descriptor
6568 * @skb: pointer to current skb being fixed
6569 *
6570 * Address the case where we are pulling data in on pages only
6571 * and as such no data is present in the skb header.
6572 *
6573 * In addition if skb is not at least 60 bytes we need to pad it so that
6574 * it is large enough to qualify as a valid Ethernet frame.
6575 *
6576 * Returns true if an error was encountered and skb was freed.
6577 **/
6578 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6579 union e1000_adv_rx_desc *rx_desc,
6580 struct sk_buff *skb)
6581 {
6582 if (unlikely((igb_test_staterr(rx_desc,
6583 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6584 struct net_device *netdev = rx_ring->netdev;
6585 if (!(netdev->features & NETIF_F_RXALL)) {
6586 dev_kfree_skb_any(skb);
6587 return true;
6588 }
6589 }
6590
6591 /* place header in linear portion of buffer */
6592 if (skb_is_nonlinear(skb))
6593 igb_pull_tail(rx_ring, rx_desc, skb);
6594
6595 /* if skb_pad returns an error the skb was freed */
6596 if (unlikely(skb->len < 60)) {
6597 int pad_len = 60 - skb->len;
6598
6599 if (skb_pad(skb, pad_len))
6600 return true;
6601 __skb_put(skb, pad_len);
6602 }
6603
6604 return false;
6605 }
6606
6607 /**
6608 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6609 * @rx_ring: rx descriptor ring packet is being transacted on
6610 * @rx_desc: pointer to the EOP Rx descriptor
6611 * @skb: pointer to current skb being populated
6612 *
6613 * This function checks the ring, descriptor, and packet information in
6614 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6615 * other fields within the skb.
6616 **/
6617 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6618 union e1000_adv_rx_desc *rx_desc,
6619 struct sk_buff *skb)
6620 {
6621 struct net_device *dev = rx_ring->netdev;
6622
6623 igb_rx_hash(rx_ring, rx_desc, skb);
6624
6625 igb_rx_checksum(rx_ring, rx_desc, skb);
6626
6627 igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6628
6629 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6630 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6631 u16 vid;
6632 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6633 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6634 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6635 else
6636 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6637
6638 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6639 }
6640
6641 skb_record_rx_queue(skb, rx_ring->queue_index);
6642
6643 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6644 }
6645
6646 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6647 {
6648 struct igb_ring *rx_ring = q_vector->rx.ring;
6649 struct sk_buff *skb = rx_ring->skb;
6650 unsigned int total_bytes = 0, total_packets = 0;
6651 u16 cleaned_count = igb_desc_unused(rx_ring);
6652
6653 do {
6654 union e1000_adv_rx_desc *rx_desc;
6655
6656 /* return some buffers to hardware, one at a time is too slow */
6657 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6658 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6659 cleaned_count = 0;
6660 }
6661
6662 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6663
6664 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6665 break;
6666
6667 /* This memory barrier is needed to keep us from reading
6668 * any other fields out of the rx_desc until we know the
6669 * RXD_STAT_DD bit is set
6670 */
6671 rmb();
6672
6673 /* retrieve a buffer from the ring */
6674 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6675
6676 /* exit if we failed to retrieve a buffer */
6677 if (!skb)
6678 break;
6679
6680 cleaned_count++;
6681
6682 /* fetch next buffer in frame if non-eop */
6683 if (igb_is_non_eop(rx_ring, rx_desc))
6684 continue;
6685
6686 /* verify the packet layout is correct */
6687 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6688 skb = NULL;
6689 continue;
6690 }
6691
6692 /* probably a little skewed due to removing CRC */
6693 total_bytes += skb->len;
6694
6695 /* populate checksum, timestamp, VLAN, and protocol */
6696 igb_process_skb_fields(rx_ring, rx_desc, skb);
6697
6698 napi_gro_receive(&q_vector->napi, skb);
6699
6700 /* reset skb pointer */
6701 skb = NULL;
6702
6703 /* update budget accounting */
6704 total_packets++;
6705 } while (likely(total_packets < budget));
6706
6707 /* place incomplete frames back on ring for completion */
6708 rx_ring->skb = skb;
6709
6710 u64_stats_update_begin(&rx_ring->rx_syncp);
6711 rx_ring->rx_stats.packets += total_packets;
6712 rx_ring->rx_stats.bytes += total_bytes;
6713 u64_stats_update_end(&rx_ring->rx_syncp);
6714 q_vector->rx.total_packets += total_packets;
6715 q_vector->rx.total_bytes += total_bytes;
6716
6717 if (cleaned_count)
6718 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6719
6720 return (total_packets < budget);
6721 }
6722
6723 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6724 struct igb_rx_buffer *bi)
6725 {
6726 struct page *page = bi->page;
6727 dma_addr_t dma;
6728
6729 /* since we are recycling buffers we should seldom need to alloc */
6730 if (likely(page))
6731 return true;
6732
6733 /* alloc new page for storage */
6734 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6735 if (unlikely(!page)) {
6736 rx_ring->rx_stats.alloc_failed++;
6737 return false;
6738 }
6739
6740 /* map page for use */
6741 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6742
6743 /* if mapping failed free memory back to system since
6744 * there isn't much point in holding memory we can't use
6745 */
6746 if (dma_mapping_error(rx_ring->dev, dma)) {
6747 __free_page(page);
6748
6749 rx_ring->rx_stats.alloc_failed++;
6750 return false;
6751 }
6752
6753 bi->dma = dma;
6754 bi->page = page;
6755 bi->page_offset = 0;
6756
6757 return true;
6758 }
6759
6760 /**
6761 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6762 * @adapter: address of board private structure
6763 **/
6764 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6765 {
6766 union e1000_adv_rx_desc *rx_desc;
6767 struct igb_rx_buffer *bi;
6768 u16 i = rx_ring->next_to_use;
6769
6770 /* nothing to do */
6771 if (!cleaned_count)
6772 return;
6773
6774 rx_desc = IGB_RX_DESC(rx_ring, i);
6775 bi = &rx_ring->rx_buffer_info[i];
6776 i -= rx_ring->count;
6777
6778 do {
6779 if (!igb_alloc_mapped_page(rx_ring, bi))
6780 break;
6781
6782 /* Refresh the desc even if buffer_addrs didn't change
6783 * because each write-back erases this info.
6784 */
6785 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6786
6787 rx_desc++;
6788 bi++;
6789 i++;
6790 if (unlikely(!i)) {
6791 rx_desc = IGB_RX_DESC(rx_ring, 0);
6792 bi = rx_ring->rx_buffer_info;
6793 i -= rx_ring->count;
6794 }
6795
6796 /* clear the hdr_addr for the next_to_use descriptor */
6797 rx_desc->read.hdr_addr = 0;
6798
6799 cleaned_count--;
6800 } while (cleaned_count);
6801
6802 i += rx_ring->count;
6803
6804 if (rx_ring->next_to_use != i) {
6805 /* record the next descriptor to use */
6806 rx_ring->next_to_use = i;
6807
6808 /* update next to alloc since we have filled the ring */
6809 rx_ring->next_to_alloc = i;
6810
6811 /* Force memory writes to complete before letting h/w
6812 * know there are new descriptors to fetch. (Only
6813 * applicable for weak-ordered memory model archs,
6814 * such as IA-64).
6815 */
6816 wmb();
6817 writel(i, rx_ring->tail);
6818 }
6819 }
6820
6821 /**
6822 * igb_mii_ioctl -
6823 * @netdev:
6824 * @ifreq:
6825 * @cmd:
6826 **/
6827 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6828 {
6829 struct igb_adapter *adapter = netdev_priv(netdev);
6830 struct mii_ioctl_data *data = if_mii(ifr);
6831
6832 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6833 return -EOPNOTSUPP;
6834
6835 switch (cmd) {
6836 case SIOCGMIIPHY:
6837 data->phy_id = adapter->hw.phy.addr;
6838 break;
6839 case SIOCGMIIREG:
6840 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6841 &data->val_out))
6842 return -EIO;
6843 break;
6844 case SIOCSMIIREG:
6845 default:
6846 return -EOPNOTSUPP;
6847 }
6848 return 0;
6849 }
6850
6851 /**
6852 * igb_ioctl -
6853 * @netdev:
6854 * @ifreq:
6855 * @cmd:
6856 **/
6857 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6858 {
6859 switch (cmd) {
6860 case SIOCGMIIPHY:
6861 case SIOCGMIIREG:
6862 case SIOCSMIIREG:
6863 return igb_mii_ioctl(netdev, ifr, cmd);
6864 case SIOCSHWTSTAMP:
6865 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6866 default:
6867 return -EOPNOTSUPP;
6868 }
6869 }
6870
6871 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6872 {
6873 struct igb_adapter *adapter = hw->back;
6874
6875 if (pcie_capability_read_word(adapter->pdev, reg, value))
6876 return -E1000_ERR_CONFIG;
6877
6878 return 0;
6879 }
6880
6881 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6882 {
6883 struct igb_adapter *adapter = hw->back;
6884
6885 if (pcie_capability_write_word(adapter->pdev, reg, *value))
6886 return -E1000_ERR_CONFIG;
6887
6888 return 0;
6889 }
6890
6891 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6892 {
6893 struct igb_adapter *adapter = netdev_priv(netdev);
6894 struct e1000_hw *hw = &adapter->hw;
6895 u32 ctrl, rctl;
6896 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6897
6898 if (enable) {
6899 /* enable VLAN tag insert/strip */
6900 ctrl = rd32(E1000_CTRL);
6901 ctrl |= E1000_CTRL_VME;
6902 wr32(E1000_CTRL, ctrl);
6903
6904 /* Disable CFI check */
6905 rctl = rd32(E1000_RCTL);
6906 rctl &= ~E1000_RCTL_CFIEN;
6907 wr32(E1000_RCTL, rctl);
6908 } else {
6909 /* disable VLAN tag insert/strip */
6910 ctrl = rd32(E1000_CTRL);
6911 ctrl &= ~E1000_CTRL_VME;
6912 wr32(E1000_CTRL, ctrl);
6913 }
6914
6915 igb_rlpml_set(adapter);
6916 }
6917
6918 static int igb_vlan_rx_add_vid(struct net_device *netdev,
6919 __be16 proto, u16 vid)
6920 {
6921 struct igb_adapter *adapter = netdev_priv(netdev);
6922 struct e1000_hw *hw = &adapter->hw;
6923 int pf_id = adapter->vfs_allocated_count;
6924
6925 /* attempt to add filter to vlvf array */
6926 igb_vlvf_set(adapter, vid, true, pf_id);
6927
6928 /* add the filter since PF can receive vlans w/o entry in vlvf */
6929 igb_vfta_set(hw, vid, true);
6930
6931 set_bit(vid, adapter->active_vlans);
6932
6933 return 0;
6934 }
6935
6936 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6937 __be16 proto, u16 vid)
6938 {
6939 struct igb_adapter *adapter = netdev_priv(netdev);
6940 struct e1000_hw *hw = &adapter->hw;
6941 int pf_id = adapter->vfs_allocated_count;
6942 s32 err;
6943
6944 /* remove vlan from VLVF table array */
6945 err = igb_vlvf_set(adapter, vid, false, pf_id);
6946
6947 /* if vid was not present in VLVF just remove it from table */
6948 if (err)
6949 igb_vfta_set(hw, vid, false);
6950
6951 clear_bit(vid, adapter->active_vlans);
6952
6953 return 0;
6954 }
6955
6956 static void igb_restore_vlan(struct igb_adapter *adapter)
6957 {
6958 u16 vid;
6959
6960 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6961
6962 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6963 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
6964 }
6965
6966 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6967 {
6968 struct pci_dev *pdev = adapter->pdev;
6969 struct e1000_mac_info *mac = &adapter->hw.mac;
6970
6971 mac->autoneg = 0;
6972
6973 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6974 * for the switch() below to work
6975 */
6976 if ((spd & 1) || (dplx & ~1))
6977 goto err_inval;
6978
6979 /* Fiber NIC's only allow 1000 gbps Full duplex
6980 * and 100Mbps Full duplex for 100baseFx sfp
6981 */
6982 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
6983 switch (spd + dplx) {
6984 case SPEED_10 + DUPLEX_HALF:
6985 case SPEED_10 + DUPLEX_FULL:
6986 case SPEED_100 + DUPLEX_HALF:
6987 goto err_inval;
6988 default:
6989 break;
6990 }
6991 }
6992
6993 switch (spd + dplx) {
6994 case SPEED_10 + DUPLEX_HALF:
6995 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6996 break;
6997 case SPEED_10 + DUPLEX_FULL:
6998 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6999 break;
7000 case SPEED_100 + DUPLEX_HALF:
7001 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7002 break;
7003 case SPEED_100 + DUPLEX_FULL:
7004 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7005 break;
7006 case SPEED_1000 + DUPLEX_FULL:
7007 mac->autoneg = 1;
7008 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7009 break;
7010 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7011 default:
7012 goto err_inval;
7013 }
7014
7015 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7016 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7017
7018 return 0;
7019
7020 err_inval:
7021 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7022 return -EINVAL;
7023 }
7024
7025 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7026 bool runtime)
7027 {
7028 struct net_device *netdev = pci_get_drvdata(pdev);
7029 struct igb_adapter *adapter = netdev_priv(netdev);
7030 struct e1000_hw *hw = &adapter->hw;
7031 u32 ctrl, rctl, status;
7032 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7033 #ifdef CONFIG_PM
7034 int retval = 0;
7035 #endif
7036
7037 netif_device_detach(netdev);
7038
7039 if (netif_running(netdev))
7040 __igb_close(netdev, true);
7041
7042 igb_clear_interrupt_scheme(adapter);
7043
7044 #ifdef CONFIG_PM
7045 retval = pci_save_state(pdev);
7046 if (retval)
7047 return retval;
7048 #endif
7049
7050 status = rd32(E1000_STATUS);
7051 if (status & E1000_STATUS_LU)
7052 wufc &= ~E1000_WUFC_LNKC;
7053
7054 if (wufc) {
7055 igb_setup_rctl(adapter);
7056 igb_set_rx_mode(netdev);
7057
7058 /* turn on all-multi mode if wake on multicast is enabled */
7059 if (wufc & E1000_WUFC_MC) {
7060 rctl = rd32(E1000_RCTL);
7061 rctl |= E1000_RCTL_MPE;
7062 wr32(E1000_RCTL, rctl);
7063 }
7064
7065 ctrl = rd32(E1000_CTRL);
7066 /* advertise wake from D3Cold */
7067 #define E1000_CTRL_ADVD3WUC 0x00100000
7068 /* phy power management enable */
7069 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7070 ctrl |= E1000_CTRL_ADVD3WUC;
7071 wr32(E1000_CTRL, ctrl);
7072
7073 /* Allow time for pending master requests to run */
7074 igb_disable_pcie_master(hw);
7075
7076 wr32(E1000_WUC, E1000_WUC_PME_EN);
7077 wr32(E1000_WUFC, wufc);
7078 } else {
7079 wr32(E1000_WUC, 0);
7080 wr32(E1000_WUFC, 0);
7081 }
7082
7083 *enable_wake = wufc || adapter->en_mng_pt;
7084 if (!*enable_wake)
7085 igb_power_down_link(adapter);
7086 else
7087 igb_power_up_link(adapter);
7088
7089 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7090 * would have already happened in close and is redundant.
7091 */
7092 igb_release_hw_control(adapter);
7093
7094 pci_disable_device(pdev);
7095
7096 return 0;
7097 }
7098
7099 #ifdef CONFIG_PM
7100 #ifdef CONFIG_PM_SLEEP
7101 static int igb_suspend(struct device *dev)
7102 {
7103 int retval;
7104 bool wake;
7105 struct pci_dev *pdev = to_pci_dev(dev);
7106
7107 retval = __igb_shutdown(pdev, &wake, 0);
7108 if (retval)
7109 return retval;
7110
7111 if (wake) {
7112 pci_prepare_to_sleep(pdev);
7113 } else {
7114 pci_wake_from_d3(pdev, false);
7115 pci_set_power_state(pdev, PCI_D3hot);
7116 }
7117
7118 return 0;
7119 }
7120 #endif /* CONFIG_PM_SLEEP */
7121
7122 static int igb_resume(struct device *dev)
7123 {
7124 struct pci_dev *pdev = to_pci_dev(dev);
7125 struct net_device *netdev = pci_get_drvdata(pdev);
7126 struct igb_adapter *adapter = netdev_priv(netdev);
7127 struct e1000_hw *hw = &adapter->hw;
7128 u32 err;
7129
7130 pci_set_power_state(pdev, PCI_D0);
7131 pci_restore_state(pdev);
7132 pci_save_state(pdev);
7133
7134 err = pci_enable_device_mem(pdev);
7135 if (err) {
7136 dev_err(&pdev->dev,
7137 "igb: Cannot enable PCI device from suspend\n");
7138 return err;
7139 }
7140 pci_set_master(pdev);
7141
7142 pci_enable_wake(pdev, PCI_D3hot, 0);
7143 pci_enable_wake(pdev, PCI_D3cold, 0);
7144
7145 if (igb_init_interrupt_scheme(adapter, true)) {
7146 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7147 return -ENOMEM;
7148 }
7149
7150 igb_reset(adapter);
7151
7152 /* let the f/w know that the h/w is now under the control of the
7153 * driver.
7154 */
7155 igb_get_hw_control(adapter);
7156
7157 wr32(E1000_WUS, ~0);
7158
7159 if (netdev->flags & IFF_UP) {
7160 rtnl_lock();
7161 err = __igb_open(netdev, true);
7162 rtnl_unlock();
7163 if (err)
7164 return err;
7165 }
7166
7167 netif_device_attach(netdev);
7168 return 0;
7169 }
7170
7171 #ifdef CONFIG_PM_RUNTIME
7172 static int igb_runtime_idle(struct device *dev)
7173 {
7174 struct pci_dev *pdev = to_pci_dev(dev);
7175 struct net_device *netdev = pci_get_drvdata(pdev);
7176 struct igb_adapter *adapter = netdev_priv(netdev);
7177
7178 if (!igb_has_link(adapter))
7179 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7180
7181 return -EBUSY;
7182 }
7183
7184 static int igb_runtime_suspend(struct device *dev)
7185 {
7186 struct pci_dev *pdev = to_pci_dev(dev);
7187 int retval;
7188 bool wake;
7189
7190 retval = __igb_shutdown(pdev, &wake, 1);
7191 if (retval)
7192 return retval;
7193
7194 if (wake) {
7195 pci_prepare_to_sleep(pdev);
7196 } else {
7197 pci_wake_from_d3(pdev, false);
7198 pci_set_power_state(pdev, PCI_D3hot);
7199 }
7200
7201 return 0;
7202 }
7203
7204 static int igb_runtime_resume(struct device *dev)
7205 {
7206 return igb_resume(dev);
7207 }
7208 #endif /* CONFIG_PM_RUNTIME */
7209 #endif
7210
7211 static void igb_shutdown(struct pci_dev *pdev)
7212 {
7213 bool wake;
7214
7215 __igb_shutdown(pdev, &wake, 0);
7216
7217 if (system_state == SYSTEM_POWER_OFF) {
7218 pci_wake_from_d3(pdev, wake);
7219 pci_set_power_state(pdev, PCI_D3hot);
7220 }
7221 }
7222
7223 #ifdef CONFIG_PCI_IOV
7224 static int igb_sriov_reinit(struct pci_dev *dev)
7225 {
7226 struct net_device *netdev = pci_get_drvdata(dev);
7227 struct igb_adapter *adapter = netdev_priv(netdev);
7228 struct pci_dev *pdev = adapter->pdev;
7229
7230 rtnl_lock();
7231
7232 if (netif_running(netdev))
7233 igb_close(netdev);
7234
7235 igb_clear_interrupt_scheme(adapter);
7236
7237 igb_init_queue_configuration(adapter);
7238
7239 if (igb_init_interrupt_scheme(adapter, true)) {
7240 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7241 return -ENOMEM;
7242 }
7243
7244 if (netif_running(netdev))
7245 igb_open(netdev);
7246
7247 rtnl_unlock();
7248
7249 return 0;
7250 }
7251
7252 static int igb_pci_disable_sriov(struct pci_dev *dev)
7253 {
7254 int err = igb_disable_sriov(dev);
7255
7256 if (!err)
7257 err = igb_sriov_reinit(dev);
7258
7259 return err;
7260 }
7261
7262 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7263 {
7264 int err = igb_enable_sriov(dev, num_vfs);
7265
7266 if (err)
7267 goto out;
7268
7269 err = igb_sriov_reinit(dev);
7270 if (!err)
7271 return num_vfs;
7272
7273 out:
7274 return err;
7275 }
7276
7277 #endif
7278 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7279 {
7280 #ifdef CONFIG_PCI_IOV
7281 if (num_vfs == 0)
7282 return igb_pci_disable_sriov(dev);
7283 else
7284 return igb_pci_enable_sriov(dev, num_vfs);
7285 #endif
7286 return 0;
7287 }
7288
7289 #ifdef CONFIG_NET_POLL_CONTROLLER
7290 /* Polling 'interrupt' - used by things like netconsole to send skbs
7291 * without having to re-enable interrupts. It's not called while
7292 * the interrupt routine is executing.
7293 */
7294 static void igb_netpoll(struct net_device *netdev)
7295 {
7296 struct igb_adapter *adapter = netdev_priv(netdev);
7297 struct e1000_hw *hw = &adapter->hw;
7298 struct igb_q_vector *q_vector;
7299 int i;
7300
7301 for (i = 0; i < adapter->num_q_vectors; i++) {
7302 q_vector = adapter->q_vector[i];
7303 if (adapter->msix_entries)
7304 wr32(E1000_EIMC, q_vector->eims_value);
7305 else
7306 igb_irq_disable(adapter);
7307 napi_schedule(&q_vector->napi);
7308 }
7309 }
7310 #endif /* CONFIG_NET_POLL_CONTROLLER */
7311
7312 /**
7313 * igb_io_error_detected - called when PCI error is detected
7314 * @pdev: Pointer to PCI device
7315 * @state: The current pci connection state
7316 *
7317 * This function is called after a PCI bus error affecting
7318 * this device has been detected.
7319 **/
7320 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7321 pci_channel_state_t state)
7322 {
7323 struct net_device *netdev = pci_get_drvdata(pdev);
7324 struct igb_adapter *adapter = netdev_priv(netdev);
7325
7326 netif_device_detach(netdev);
7327
7328 if (state == pci_channel_io_perm_failure)
7329 return PCI_ERS_RESULT_DISCONNECT;
7330
7331 if (netif_running(netdev))
7332 igb_down(adapter);
7333 pci_disable_device(pdev);
7334
7335 /* Request a slot slot reset. */
7336 return PCI_ERS_RESULT_NEED_RESET;
7337 }
7338
7339 /**
7340 * igb_io_slot_reset - called after the pci bus has been reset.
7341 * @pdev: Pointer to PCI device
7342 *
7343 * Restart the card from scratch, as if from a cold-boot. Implementation
7344 * resembles the first-half of the igb_resume routine.
7345 **/
7346 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7347 {
7348 struct net_device *netdev = pci_get_drvdata(pdev);
7349 struct igb_adapter *adapter = netdev_priv(netdev);
7350 struct e1000_hw *hw = &adapter->hw;
7351 pci_ers_result_t result;
7352 int err;
7353
7354 if (pci_enable_device_mem(pdev)) {
7355 dev_err(&pdev->dev,
7356 "Cannot re-enable PCI device after reset.\n");
7357 result = PCI_ERS_RESULT_DISCONNECT;
7358 } else {
7359 pci_set_master(pdev);
7360 pci_restore_state(pdev);
7361 pci_save_state(pdev);
7362
7363 pci_enable_wake(pdev, PCI_D3hot, 0);
7364 pci_enable_wake(pdev, PCI_D3cold, 0);
7365
7366 igb_reset(adapter);
7367 wr32(E1000_WUS, ~0);
7368 result = PCI_ERS_RESULT_RECOVERED;
7369 }
7370
7371 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7372 if (err) {
7373 dev_err(&pdev->dev,
7374 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7375 err);
7376 /* non-fatal, continue */
7377 }
7378
7379 return result;
7380 }
7381
7382 /**
7383 * igb_io_resume - called when traffic can start flowing again.
7384 * @pdev: Pointer to PCI device
7385 *
7386 * This callback is called when the error recovery driver tells us that
7387 * its OK to resume normal operation. Implementation resembles the
7388 * second-half of the igb_resume routine.
7389 */
7390 static void igb_io_resume(struct pci_dev *pdev)
7391 {
7392 struct net_device *netdev = pci_get_drvdata(pdev);
7393 struct igb_adapter *adapter = netdev_priv(netdev);
7394
7395 if (netif_running(netdev)) {
7396 if (igb_up(adapter)) {
7397 dev_err(&pdev->dev, "igb_up failed after reset\n");
7398 return;
7399 }
7400 }
7401
7402 netif_device_attach(netdev);
7403
7404 /* let the f/w know that the h/w is now under the control of the
7405 * driver.
7406 */
7407 igb_get_hw_control(adapter);
7408 }
7409
7410 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7411 u8 qsel)
7412 {
7413 u32 rar_low, rar_high;
7414 struct e1000_hw *hw = &adapter->hw;
7415
7416 /* HW expects these in little endian so we reverse the byte order
7417 * from network order (big endian) to little endian
7418 */
7419 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7420 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7421 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7422
7423 /* Indicate to hardware the Address is Valid. */
7424 rar_high |= E1000_RAH_AV;
7425
7426 if (hw->mac.type == e1000_82575)
7427 rar_high |= E1000_RAH_POOL_1 * qsel;
7428 else
7429 rar_high |= E1000_RAH_POOL_1 << qsel;
7430
7431 wr32(E1000_RAL(index), rar_low);
7432 wrfl();
7433 wr32(E1000_RAH(index), rar_high);
7434 wrfl();
7435 }
7436
7437 static int igb_set_vf_mac(struct igb_adapter *adapter,
7438 int vf, unsigned char *mac_addr)
7439 {
7440 struct e1000_hw *hw = &adapter->hw;
7441 /* VF MAC addresses start at end of receive addresses and moves
7442 * towards the first, as a result a collision should not be possible
7443 */
7444 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7445
7446 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7447
7448 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7449
7450 return 0;
7451 }
7452
7453 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7454 {
7455 struct igb_adapter *adapter = netdev_priv(netdev);
7456 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7457 return -EINVAL;
7458 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7459 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7460 dev_info(&adapter->pdev->dev,
7461 "Reload the VF driver to make this change effective.");
7462 if (test_bit(__IGB_DOWN, &adapter->state)) {
7463 dev_warn(&adapter->pdev->dev,
7464 "The VF MAC address has been set, but the PF device is not up.\n");
7465 dev_warn(&adapter->pdev->dev,
7466 "Bring the PF device up before attempting to use the VF device.\n");
7467 }
7468 return igb_set_vf_mac(adapter, vf, mac);
7469 }
7470
7471 static int igb_link_mbps(int internal_link_speed)
7472 {
7473 switch (internal_link_speed) {
7474 case SPEED_100:
7475 return 100;
7476 case SPEED_1000:
7477 return 1000;
7478 default:
7479 return 0;
7480 }
7481 }
7482
7483 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7484 int link_speed)
7485 {
7486 int rf_dec, rf_int;
7487 u32 bcnrc_val;
7488
7489 if (tx_rate != 0) {
7490 /* Calculate the rate factor values to set */
7491 rf_int = link_speed / tx_rate;
7492 rf_dec = (link_speed - (rf_int * tx_rate));
7493 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7494 tx_rate;
7495
7496 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7497 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7498 E1000_RTTBCNRC_RF_INT_MASK);
7499 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7500 } else {
7501 bcnrc_val = 0;
7502 }
7503
7504 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7505 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7506 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7507 */
7508 wr32(E1000_RTTBCNRM, 0x14);
7509 wr32(E1000_RTTBCNRC, bcnrc_val);
7510 }
7511
7512 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7513 {
7514 int actual_link_speed, i;
7515 bool reset_rate = false;
7516
7517 /* VF TX rate limit was not set or not supported */
7518 if ((adapter->vf_rate_link_speed == 0) ||
7519 (adapter->hw.mac.type != e1000_82576))
7520 return;
7521
7522 actual_link_speed = igb_link_mbps(adapter->link_speed);
7523 if (actual_link_speed != adapter->vf_rate_link_speed) {
7524 reset_rate = true;
7525 adapter->vf_rate_link_speed = 0;
7526 dev_info(&adapter->pdev->dev,
7527 "Link speed has been changed. VF Transmit rate is disabled\n");
7528 }
7529
7530 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7531 if (reset_rate)
7532 adapter->vf_data[i].tx_rate = 0;
7533
7534 igb_set_vf_rate_limit(&adapter->hw, i,
7535 adapter->vf_data[i].tx_rate,
7536 actual_link_speed);
7537 }
7538 }
7539
7540 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7541 {
7542 struct igb_adapter *adapter = netdev_priv(netdev);
7543 struct e1000_hw *hw = &adapter->hw;
7544 int actual_link_speed;
7545
7546 if (hw->mac.type != e1000_82576)
7547 return -EOPNOTSUPP;
7548
7549 actual_link_speed = igb_link_mbps(adapter->link_speed);
7550 if ((vf >= adapter->vfs_allocated_count) ||
7551 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7552 (tx_rate < 0) || (tx_rate > actual_link_speed))
7553 return -EINVAL;
7554
7555 adapter->vf_rate_link_speed = actual_link_speed;
7556 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7557 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7558
7559 return 0;
7560 }
7561
7562 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7563 bool setting)
7564 {
7565 struct igb_adapter *adapter = netdev_priv(netdev);
7566 struct e1000_hw *hw = &adapter->hw;
7567 u32 reg_val, reg_offset;
7568
7569 if (!adapter->vfs_allocated_count)
7570 return -EOPNOTSUPP;
7571
7572 if (vf >= adapter->vfs_allocated_count)
7573 return -EINVAL;
7574
7575 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7576 reg_val = rd32(reg_offset);
7577 if (setting)
7578 reg_val |= ((1 << vf) |
7579 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7580 else
7581 reg_val &= ~((1 << vf) |
7582 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7583 wr32(reg_offset, reg_val);
7584
7585 adapter->vf_data[vf].spoofchk_enabled = setting;
7586 return E1000_SUCCESS;
7587 }
7588
7589 static int igb_ndo_get_vf_config(struct net_device *netdev,
7590 int vf, struct ifla_vf_info *ivi)
7591 {
7592 struct igb_adapter *adapter = netdev_priv(netdev);
7593 if (vf >= adapter->vfs_allocated_count)
7594 return -EINVAL;
7595 ivi->vf = vf;
7596 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7597 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7598 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7599 ivi->qos = adapter->vf_data[vf].pf_qos;
7600 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7601 return 0;
7602 }
7603
7604 static void igb_vmm_control(struct igb_adapter *adapter)
7605 {
7606 struct e1000_hw *hw = &adapter->hw;
7607 u32 reg;
7608
7609 switch (hw->mac.type) {
7610 case e1000_82575:
7611 case e1000_i210:
7612 case e1000_i211:
7613 case e1000_i354:
7614 default:
7615 /* replication is not supported for 82575 */
7616 return;
7617 case e1000_82576:
7618 /* notify HW that the MAC is adding vlan tags */
7619 reg = rd32(E1000_DTXCTL);
7620 reg |= E1000_DTXCTL_VLAN_ADDED;
7621 wr32(E1000_DTXCTL, reg);
7622 case e1000_82580:
7623 /* enable replication vlan tag stripping */
7624 reg = rd32(E1000_RPLOLR);
7625 reg |= E1000_RPLOLR_STRVLAN;
7626 wr32(E1000_RPLOLR, reg);
7627 case e1000_i350:
7628 /* none of the above registers are supported by i350 */
7629 break;
7630 }
7631
7632 if (adapter->vfs_allocated_count) {
7633 igb_vmdq_set_loopback_pf(hw, true);
7634 igb_vmdq_set_replication_pf(hw, true);
7635 igb_vmdq_set_anti_spoofing_pf(hw, true,
7636 adapter->vfs_allocated_count);
7637 } else {
7638 igb_vmdq_set_loopback_pf(hw, false);
7639 igb_vmdq_set_replication_pf(hw, false);
7640 }
7641 }
7642
7643 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7644 {
7645 struct e1000_hw *hw = &adapter->hw;
7646 u32 dmac_thr;
7647 u16 hwm;
7648
7649 if (hw->mac.type > e1000_82580) {
7650 if (adapter->flags & IGB_FLAG_DMAC) {
7651 u32 reg;
7652
7653 /* force threshold to 0. */
7654 wr32(E1000_DMCTXTH, 0);
7655
7656 /* DMA Coalescing high water mark needs to be greater
7657 * than the Rx threshold. Set hwm to PBA - max frame
7658 * size in 16B units, capping it at PBA - 6KB.
7659 */
7660 hwm = 64 * pba - adapter->max_frame_size / 16;
7661 if (hwm < 64 * (pba - 6))
7662 hwm = 64 * (pba - 6);
7663 reg = rd32(E1000_FCRTC);
7664 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7665 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7666 & E1000_FCRTC_RTH_COAL_MASK);
7667 wr32(E1000_FCRTC, reg);
7668
7669 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7670 * frame size, capping it at PBA - 10KB.
7671 */
7672 dmac_thr = pba - adapter->max_frame_size / 512;
7673 if (dmac_thr < pba - 10)
7674 dmac_thr = pba - 10;
7675 reg = rd32(E1000_DMACR);
7676 reg &= ~E1000_DMACR_DMACTHR_MASK;
7677 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7678 & E1000_DMACR_DMACTHR_MASK);
7679
7680 /* transition to L0x or L1 if available..*/
7681 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7682
7683 /* watchdog timer= +-1000 usec in 32usec intervals */
7684 reg |= (1000 >> 5);
7685
7686 /* Disable BMC-to-OS Watchdog Enable */
7687 if (hw->mac.type != e1000_i354)
7688 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7689
7690 wr32(E1000_DMACR, reg);
7691
7692 /* no lower threshold to disable
7693 * coalescing(smart fifb)-UTRESH=0
7694 */
7695 wr32(E1000_DMCRTRH, 0);
7696
7697 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7698
7699 wr32(E1000_DMCTLX, reg);
7700
7701 /* free space in tx packet buffer to wake from
7702 * DMA coal
7703 */
7704 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7705 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7706
7707 /* make low power state decision controlled
7708 * by DMA coal
7709 */
7710 reg = rd32(E1000_PCIEMISC);
7711 reg &= ~E1000_PCIEMISC_LX_DECISION;
7712 wr32(E1000_PCIEMISC, reg);
7713 } /* endif adapter->dmac is not disabled */
7714 } else if (hw->mac.type == e1000_82580) {
7715 u32 reg = rd32(E1000_PCIEMISC);
7716 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7717 wr32(E1000_DMACR, 0);
7718 }
7719 }
7720
7721 /**
7722 * igb_read_i2c_byte - Reads 8 bit word over I2C
7723 * @hw: pointer to hardware structure
7724 * @byte_offset: byte offset to read
7725 * @dev_addr: device address
7726 * @data: value read
7727 *
7728 * Performs byte read operation over I2C interface at
7729 * a specified device address.
7730 **/
7731 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7732 u8 dev_addr, u8 *data)
7733 {
7734 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7735 struct i2c_client *this_client = adapter->i2c_client;
7736 s32 status;
7737 u16 swfw_mask = 0;
7738
7739 if (!this_client)
7740 return E1000_ERR_I2C;
7741
7742 swfw_mask = E1000_SWFW_PHY0_SM;
7743
7744 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7745 != E1000_SUCCESS)
7746 return E1000_ERR_SWFW_SYNC;
7747
7748 status = i2c_smbus_read_byte_data(this_client, byte_offset);
7749 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7750
7751 if (status < 0)
7752 return E1000_ERR_I2C;
7753 else {
7754 *data = status;
7755 return E1000_SUCCESS;
7756 }
7757 }
7758
7759 /**
7760 * igb_write_i2c_byte - Writes 8 bit word over I2C
7761 * @hw: pointer to hardware structure
7762 * @byte_offset: byte offset to write
7763 * @dev_addr: device address
7764 * @data: value to write
7765 *
7766 * Performs byte write operation over I2C interface at
7767 * a specified device address.
7768 **/
7769 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7770 u8 dev_addr, u8 data)
7771 {
7772 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7773 struct i2c_client *this_client = adapter->i2c_client;
7774 s32 status;
7775 u16 swfw_mask = E1000_SWFW_PHY0_SM;
7776
7777 if (!this_client)
7778 return E1000_ERR_I2C;
7779
7780 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7781 return E1000_ERR_SWFW_SYNC;
7782 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7783 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7784
7785 if (status)
7786 return E1000_ERR_I2C;
7787 else
7788 return E1000_SUCCESS;
7789
7790 }
7791 /* igb_main.c */
This page took 0.273417 seconds and 6 git commands to generate.